WorldWideScience

Sample records for cu mn zn

  1. On the concentration and separation of the trace-elements fe, cu, zn, mn, pb, mo and co : Paper chromatography

    NARCIS (Netherlands)

    Erkelens, P.C. van

    1961-01-01

    Paper chromatographic separations are described by which the minor constituents of biological ashes are separated either into: (Pb) - Mn - Co - (Pb) - Cu - Fe, Mo, Zn; or into: Cu, Mn, Co - Pb - Fe - Mo - Zn.

  2. Relationship between color and composition of Cu-Mn-Zn alloys

    Institute of Scientific and Technical Information of China (English)

    张玉平; 张津徐; 吴建生

    2002-01-01

    The color of Cu-Mn-Zn alloys is quantitatively researched using the CIE L*a*b* color system. The color parameters such as L*, a* and b* are employed to describe the color and are measured by a spectrophotometer. Based on the color data of 46 experimental alloys, a series of formulae are established to correlate color parameters changed with the alloy composition. Therefore, the color of the ternary Cu-Mn-Zn alloys can be calculated and forecast easily. The results show that Mn plays a more important role in the color of Cu-Mn-Zn alloys than Zn does. In particular, the chroma values of ternary Cu-Mn-Zn alloys mainly depend on the Mn content.

  3. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    Science.gov (United States)

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  4. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals.

    Science.gov (United States)

    Shen, Huaibin; Wang, Hongzhe; Li, Xiaomin; Niu, Jin Zhong; Wang, Hua; Chen, Xia; Li, Lin Song

    2009-12-21

    High quality zinc blende ZnSe and ZnSe/ZnS core/shell nanocrystals have been synthesized by two converse injection methods (i.e. zinc precursor injection or selenium precursor injection) when Se-ODE complex was chosen as the phosphine-free selenium precursor. Absorption spectroscopy, fluorescence spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the as-synthesized ZnSe and ZnSe/ZnS nanocrystals. The quality of the as-prepared ZnSe nanocrystals reached the same high level compared with the method using phosphine selenium precursors since the quantum yields were between 40 and 60% and photoluminescence (PL) full width at half-maximum (FWHM) was well controlled between 14 and 17 nm. The parameter window for the growth of high quality ZnSe nanocrystals was found to be much broader and monodisperse ZnSe nanocrystals were synthesized successfully even when the reaction temperature was set as low as 240 degrees C. As cores, such zinc blende ZnSe nanocrystals were also used to synthesize ZnSe/ZnS core/shell nanocrystals with high fluorescence quantum yields of 70%. Cu(2+) or Mn(2+) doped ZnSe nanocrystals were also synthesized by simply modifying this phosphine-free method. The emission range has been extended to 500 and 600 nm with the use of Cu(2+) and Mn(2+) dopants compared with the emission coverage of ZnSe at around 400 nm. This is the first totally "green approach" (i.e. phosphine-free synthesis) for the synthesis of high quality ZnSe, ZnSe/ZnS, and Cu(2+) or Mn(2+) doped ZnSe nanocrystals.

  5. Ca, Mg, Zn, Fe, Cu and Mn content of ass’s milk

    Directory of Open Access Journals (Sweden)

    Elisabetta Salimei

    2010-01-01

    Full Text Available The aim of this study was to determine Ca, Mg, Zn, Fe, Cu and Mn content of ass’s milk. Twenty four individual milk samples were collected from 4 lactating asses. During the experi- mental period milk samples were collected every 3 weeks interval, using a milking machine; asses were housed with the foals that were separated from the jennets 3 hours before milking. Milk was analysed for Ca, Mg, Zn, Fe, Cu and Mn content by atomic absorption spectrometry. The concentration mean (±SD of Ca Mg, Zn, Fe, and Cu were respectively 334.61±39.80, 58.46±8.43, 1.99±0.51, 1.15±0.52, 0.16±0.06 mg/kg. Mn was found only at trace level. Iron content of ass’s milk was the most variable ranging from 0.43 to 1.88 mg/kg. Correlation coefficients were positive and significant between Ca and Mg (r=0.63, Zn and Mg (r=0.45, Zn and Fe (r=0.49 and Zn and Cu (r=0.50. In this study, except for Fe, mean concentration of Ca, Mg, Zn, and Cu in ass’s milk was similar to those reported in literature for human milk.

  6. Effect of Sn on the Color and Tarnishing of Cu-Mn-Zn Alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effect of Sn on the color and tarnishing of Cu-Mn-Zn alloys is investigated quantitatively. Using the CIE LAB color system,color parameters such as L*, a* and b* are selected to describe the surface color of alloys while the color difference (△E*)is used to evaluate the color stability. The results show that with the increase of Sn, the color change of Cu-Mn-Zn alloys is greatly reduced and the corrosion resistance in the synthetic sweat is improved dramatically. However, up to 4.4 wt pct Sn does not change the color of Cu-Mn-Zn alloys much. XPS and AES are employed to analyze the tarnished surface. It is proved that a Sn enriched film is formed and Sn takes the form of Sn oxide. This thin and protective oxide film can prevent alloy from further tarnishing.

  7. Cumulation of Cu, Zn, Cd, and Mn in Plants of Gardno Lake

    Directory of Open Access Journals (Sweden)

    Trojanowski J.

    2013-04-01

    Full Text Available In the present paper there have been shown the results of research on yhe content of Zn, Cd, Cu, Mn and Pb in chosen plants of Lake Gardno.The biggest concentration of those metals has been observed in Potamogton natans and Elodea canadensis, on average Zn – 34.9, Pb -2.77, Cd – 0.62, Cu – 3.24 and Mn – 257.4 μg g-1. It has been found that the over-ground parts of the plants under analysis cumulate several times less of heavy metals than their roots. The determined enrichment factors enabled the researchers to state that Cu in the examined plants is of natural origin while Mn, Cd and Zn – of anthropogenic origin.

  8. Modeling and analysis of soybean (Glycine max. L Cu/Zn, Mn and Fe superoxide dismutases

    Directory of Open Access Journals (Sweden)

    V. Ramana Gopavajhula

    2013-01-01

    Full Text Available Superoxide dismutase (SOD, EC 1.15.1.1 is an important metal-containing antioxidant enzyme that provides the first line of defense against toxic superoxide radicals by catalyzing their dismutation to oxygen and hydrogen peroxide. SOD is classified into four metalloprotein isoforms, namely, Cu/Zn SOD, Mn SOD, Ni SOD and Fe SOD. The structural models of soybean SOD isoforms have not yet been solved. In this study, we describe structural models for soybean Cu/Zn SOD, Mn SOD and Fe SOD and provide insights into the molecular function of this metal-binding enzyme in improving tolerance to oxidative stress in plants.

  9. Size-dependent dual emission of Cu,Mn:ZnSe QDs: Controlling both emission wavelength and intensity.

    Science.gov (United States)

    Xu, Shuhong; Jiang, Han; Dong, Renjie; Lv, Changgui; Wang, Chunlei; Cui, Yiping

    2017-06-01

    Cu,Mn:ZnSe quantum dots (QDs) of tunable size, controllable photoluminescence (PL) intensity ratio and PL range were prepared. A study of the experimental conditions confirmed that the size of Cu,Mn:ZnSe QDs is affected by the pH of the solution, the speed at which the Zn solution is injected and the reaction temperature. In general, high pH, low injection speed and high reaction temperature are optimal for preparing large QDs. Based on this knowledge, different sizes of Cu,Mn:ZnSe QDs were synthesized. Moreover, white emission Cu,Mn:ZnSe QDs were designed by controlling the experimental conditions and the feeding mole ratio of Mn:Cu. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Relation of Zn, Fe, Cu and Mn between progenies of mate-tree and soil

    Directory of Open Access Journals (Sweden)

    Josiane Cava Guimarães

    2014-06-01

    Full Text Available The mate tea tree (Ilex Paraguariensis St. Hil. has considerable growth in acid a low fertility soils. The knowledge of soil and plant relation will contribute to genetic improvement programs, as highly capable progenies in nutrient acquisition may be selected. The objective of this study was to evaluate the interference of provenance and, or progenies, in relations established among the extractable contents of Zn, Fe, Cu and Mn, via Mehlich-1 (1:10; and EDTA (1%, with the corresponding contents in the mate tea tree leaves. In the experiment two provenances, Ivaí-PR and Barão de Cotegipe-RS, with five progenies each considered as treatments. The samples were distributed in four randomized blocks, totalizing 120 plant leaf samples, related to 120 soil samples of a Red Distrophic Latosol. The results were analyzed and fitted in regression equations. In Ivaí provenance Zn and Mn from the soil correlated with their contents in the leaves for progeny 04, for both extracts. For provenances 08 and 10, soil Mn via EDTA correlated with leaf Mn contents, while via Mehlich-1 only for progeny 10. In the provenance of Barão de Cotegipe, the correlations between soil and leaves for Zn, Fe and Cu occurred for the EDTA extract in the progenies 61, 65 and 69 respectively. For Mn and Cu, via Melich-1 the correlations occurred for progenies 53 and 69 respectively, and still for Cu, via EDTA, for progeny 53.

  11. Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles.

    Science.gov (United States)

    Sangeetha, R; Muthukumaran, S; Ashokkumar, M

    2015-06-05

    Zn(0.96-x)Cu0.04Mn(x)O (0⩽x⩽0.04) nanoparticles were synthesized by sol-gel method. The X-ray diffraction pattern indicated that doping of Mn and Cu did not change the ZnO hexagonal wurtzite structure. The Mn doped nanoparticles had smaller average crystallite size than un-doped Zn0.96Cu0.04O nanoparticles due to the distortion in the host ZnO lattice. This distortion prevented the subsequent growth and hence the size reduced by Mn doping. The changes in lattice parameters, average crystallite size, peak position and peak intensity confirmed the Mn substitution in Zn-Cu-O lattice. The Mn and Cu co-doping increased the charge carrier density in ZnO nanoparticles which led to increase the dielectric constant. The dielectric constant also varied by depend the size of the nanoparticles. The change in morphology by Mn-doping was studied by transmission electron microscope. The optical absorption and band gap were changed with respect to both compositional and size effects. The band gap was initially increased from 3.65 to 3.73 eV at 1% of Mn doping, while decreasing trend in band gap was noticed for further increase of Mn. The band gap was decreased from 3.73 to 3.48 eV when Mn concentration was increased from 2% to 4%. Presence of chemical bonding and purity of the nanoparticles were confirmed by FTIR spectra. The antibacterial study revealed that that the antibacterial activity of Zn0.96Cu0.04O is enhanced by Mn doping.

  12. Effect of tellurium on machinability and mechanical property of CuAlMnZn shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Na [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li Zhou, E-mail: lizhou6931@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Xu Genying; Feng Ze; Gong Shu; Zhu Lilong; Liang Shuquan [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)

    2011-10-15

    Highlights: {yields} A novel free-machining Cu-7.5Al-9.7Mn-3.4Zn-0.3Te (wt.%) shape memory alloy has been developed. {yields} The size of dispersed particles with richer Te is 2-5 {mu}m. {yields} The CuAlMnZnTe alloy has good machinability which approached that of BZn15-24-1.5 due to the addition of Te. {yields} Its shape memory property keeps the same as that of CuAlMnZn alloy with free Te. {yields} The CuAlMnZn shape memory alloy with and without Te both have good ductile as annealed at 700 deg. C for 15 min. - Abstract: The microstructure transition, shape memory effect, machinability and mechanical property of the CuAlMnZn alloy with and without Te have been studied using X-ray diffraction analysis, chips observation and scanning electron microscopy (SEM), tensile strength test and differential scanning calorimeter (DSC), and semi-quantitative shape memory effect (SME) test. The particles with richer Te dispersedly distributed in grain interior and boundary with size of 2-5 {mu}m. After the addition of Te, the CuAlMnZnTe alloy machinability has been effectively increased to approach that of BZn15-24-1.5 and its shape memory property remains the same as the one of CuAlMnZn alloy. The CuAlMnZn shape memory alloys with and without Te both have good ductility as annealed at 700 deg. C for 15 min.

  13. Gene Expression and Activities of SOD in Cucumber Seedlings Were Related with Concentrations of Mn2+,Cu2+,or Zn2+ Under Low Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    GAO Jun-jie; LI Tao; YU Xian-chang

    2009-01-01

    Effects of increasing Mn2+,Cu2+,or Zn2+ on SOD expressions were studied in cucumber seedlings under low temperature stress.Both gene expressions and activities of Cu/Zn-SOD and Mn-SOD in cucumber seedling leaves were induced by increasing Mn2+,Cu2+,or Zn2+ under low temperature stress,especially 48 h afterwards.The activities of Cu/Zn-SOD and Mn-SOD at 0 and 48 h after treatment were in accordance with their gene expression levels,which implied that the transcriptional regulation plays key roles in regulating their activities at the early stage of low temperature stress.Gene expressions of Cu/Zn-SOD and Mn-SOD declined at 96 h,but Cu/Zn-SOD and Mn-SOD activities still remain high,which suggested that Cu/Zn-SOD and Mn-SOD activities might be regulated by other factors after transcription at the later stage of low temperature stress.Therefore,we concluded that the increasing Mn2+,Cu2+,or Zn2+ could increase the capacity of scavenging ROS in cucumber seedlings under low temperature stress by inducing gene expressions of Cu/Zn-SOD and Mn-SOD,elevating activities of Cu/Zn-SOD,Mn-SOD,or regulating other factors after transcription.

  14. Evaluation of the bioaccessible fractions of Fe, Zn, Cu and Mn in baby foods.

    Science.gov (United States)

    do Nascimento da Silva, Emanueli; Leme, Ana Beatriz Perriello; Cidade, Mirla; Cadore, Solange

    2013-12-15

    The bioaccessibility of four essential micronutrients (iron, zinc, copper and manganese) in some baby foods was evaluated using an in vitro gastrointestinal digestion model. For all of the flour-based foods evaluated, the bioaccessibility of Zn was low, while the bioaccessibility of Cu was above 50%. For these samples, the bioaccessibility of Mn was lower than 50%. Two samples composed of oat and rice flour and whole wheat flour demonstrated a lower bioaccessible fraction of Fe (less than 35%), while the sample made with wheat flour showed high Fe bioaccessibility (approximately 80%). For vegetable- and meat-based baby foods, the Fe bioaccessibility was greater than 80% in samples that contained meat and chicken and approximately 20% for the banana-based sample. The bioaccessibility of Zn was small for all of the foods studied, and in some cases, no Zn appeared to be released. The sample containing banana showed 100% Cu bioaccessibility, in contrast to meat and chicken-based samples, whose Cu bioaccessibility values were less than 50%. The opposite effect occurred for Mn, in which samples containing meat and chicken presented a bioaccessible fraction greater than 50% while the banana-based sample had a fraction less than 50%. © 2013 Elsevier B.V. All rights reserved.

  15. Correlation between K, Mn, Fe, Cu and Zn in natural honeys from Eucalyptus sources

    Directory of Open Access Journals (Sweden)

    Silvânia V. M. Mattos

    1998-01-01

    Full Text Available Thirty-five natural honey samples from three apicultural regions of the state of Minas Gerais, Brazil, were collected from honeybee hives under various climatic conditions over a two-year period. The beehives were located in the districts of Bom Jesus do Amparo, Barão de Cocais and São Gonçalo do Rio Abaixo, all within a 100 km radius of Belo Horizonte, Minas Gerais, Brazil. The pollinic spectrum, color and ash, moisture, K, Fe, Mn, Cu and Zn contents were determined. Elemental analysis were done by flame atomic absorption spectrometry. Accuracy and precision were verified by recovery tests and relative standard deviation, respectively. The mean mineral contents encountered were K = 1130; Mn = 3.88; Fe = 2.79; Zn = 2.34 and Cu = 0.54 µ g/g. During the dry season, several species of Eucalyptus pollen grains predominated, with Vernonia pollen grains present in lower abundance. In the rainy season, there was an inversion of dominance. Statistical treatment of results, separated according to comb and season, showed statistically equivalent means, although some good correlation indices (p = 0.05 were obtained, e.g. between percent Eucalyptus pollen grains and Mn content (0.450, between Fe and Zn (0.698 and between K and Mn (0.738.Foram coletadas 35 amostras de mel natural em diferentes condições climáticas, por um período de dois anos. Os apiários se localizavam nos distritos de Bom Jesus do Amparo, Barão de Cocais e São Gonçalo do Rio Abaixo, a cerca de 100 km de Belo Horizonte, a capital do Estado de Minas Gerais, Brasil. As amostras foram analisadas quanto aos teores de K, Fe, Mn, Cu, Zn, espectro polínico, cor, cinzas e umidade. As médias encontradas foram: K = 1130; Mn = 3,88; Fe = 2,79; Zn = 2,34 e Cu = 0,54 µ g/g. No período de seca houve predomínio de grãos de pólen de origem de espécies de Eucalyptus e, em menor extensão de Vernonia. No período chuvoso, houve uma inversão dessa proporção. O tratamento estat

  16. Metabolismo del Mg, Cu, Zn, Cr, Mn, y Ni en la diabetes melitus

    OpenAIRE

    1995-01-01

    En los últimos años, a los elementos traza y al mg se las ha implicado en la patologenesis de las complicaciones crónicas de la diabetes mellitus (dm). Las alteraciones del estado mineral asociadas a la dm podrían estar influidas, entre otros factores, por el grado de control metabólico y la asociación, o no, de otras patologías metabólicas como la hipertensión arterial (hta), la dislipemia y la obesidad. A pesar de que el mg, cu, zn, cr, mn y ni son cationes de localización principalmente in...

  17. Cu, Mn, Fe, and Zn Levels in Soils of Shika Area, Nigeria

    Institute of Scientific and Technical Information of China (English)

    S. A. MASHI; S. A. YARO; A. S. HAIBA

    2004-01-01

    Heavy metals presented in toxic amounts can become injurious to human health. In areas where there is a high level of human activities on soils (such as agriculture and grazing) studies are therefore required from time to time to monitor levels of such metals in the soils in order to identify the point in time when toxicity problems become real. The 英文摘要: of this paper is to determine the concentrations of some trace metals (Cu, Mn, Fe, and Zn) in soils under cultivation and grazing practices in Shika, a rural area of Kaduna state of Nigeria. Method In this study, soil samples collected from three different categories of locations (cultivated, grazed, and uncultivated/non- grazed serving as a control) across Shika area, Nigeria, were analysed for some trace metal levels (Cu, Mn, Fe, and Zn) using atomic absorption spectrophotometry. For each category, multiple sites were chosen to accommodate all possible intra-category variations, especially in terms of land use and management history and topographic characteristics. Topsoil (0-15 cm) and subsoil (20-30 cm) samples were collected from every site and analysed for the above metals. Averaged values of the metals for the three categories revealed that Zn is the most abundant metal, followed by Fe, then Mn and Cu the least. Results The results obtained indicate that the cultivation practices, and to a lesser extent grazing, in the area result in higher levels of all the metals than in the control, suggesting that crop immobilization of the metals from soils of the area is low, and that their systematic accumulation is taking place in cultivated soils of the area. Prospects of having elevated soil levels of the metals due to cultivation practices in the area therefore seem quite high. Conclusion On the basis of the results obtained, it was concluded that grazing and cultivation practices have in general caused some significant elevations in the bioavailable (i.e the plant available forms) levels of Zn, Fe, Mn

  18. Measurement of the time-resolved spectrum of photoelectrons from ZnS:Mn, Cu luminescent material

    CERN Document Server

    Dong Guo Yi; Wei Zh; Yang Shao Peng; Fu Guang Sheng

    2003-01-01

    The process of decay of photoelectrons in the conduction band of ZnS:Mn, Cu luminescent materials after excitation with a short-pulse laser has been investigated in this paper by means of measurements made using the microwave absorption dielectric spectrum detection technique. Exponential decay processes were observed for the electrons in the conduction band and the shallow-trapped electrons; the lifetimes of the electrons were found to be 1177 and 1703 ns, respectively. The processes of decay of the luminescence from ZnS:Mn, Cu were investigated and exponential decay processes were found for blue Cu sup + , green Cu sup + and Mn sup 2 sup + luminescent centres with lifetimes of the excited state of 139, 140 and 680 mu s, respectively.

  19. DETERMINATION OF Cu, Fe, Mn, Zn AND FREE FATTY ACIDS IN PEQUI OIL

    Directory of Open Access Journals (Sweden)

    Aparecida M. S. Mimura

    2016-06-01

    Full Text Available Pequi (Caryocar brasiliense Camb., a typical fruit of the Brazilian Cerrado, is an important source of micronutrients and fatty acids. In this work, a new approach for the acid digestion (using H2SO4, HNO3 and H2O2 of pequi oil samples and the determination of Cu, Fe, Zn and Mn by flame atomic absorption spectrometry (F AAS was employed. Capillary zone electrophoresis (CZE was used for free fatty acid (FFA determination after simple and fast extraction with heated ethanol. Good results regarding precision (RSD < 10%, in most cases, sensitivity and adequate LOD and LOQ values were obtained. The accuracy was evaluated using spike tests and the recoveries were from 97 to 107%. The analytes were investigated in four different pequi oil samples. Fe was the trace element with the highest concentration (from 1.99 to 10.3 mg/100 g, followed by Zn, Mn and Cu (1.15 to 3.19, 0.42 to 0.91 and 0.31 to 0.56 mg/100 g, respectively. The main FFA found were oleic acid and palmitic acid (1.61 to 10.7 and 0.82 to 2.69 g/100 g, respectively, while linoleic acid (0.50 g/100 g was detected in only one sample. The pequi oil chemical composition showed good characteristics to be used as a food additive, in cosmetic formulations and for traditional medicine.

  20. A free-cutting and ductile CuAlMnZnTiB shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    刘娜; 李周; 李灵; 刘斌; 李擎天; 徐根应

    2015-01-01

    The mechanical properties and cutting performance of the designed CuAlMnZnTiB shape memory alloy were studied by tensile test and microstructure observation. Using X-ray diffractometry, differential scanning calorimetry (DSC) and semi-quantitative shape memory effect test, the microstructure and shape memory effect were analyzed. It is found that lots ofβ phase and fewα phase are formed in the quenching of Cu-7.5Al-9.7Mn-3.4Zn-0.3Ti-0.14B (mass fraction, %) alloy, a great deal of martensite and fewα phase are formed in the aging alloy, while the annealing alloy is composed of a great deal ofα phase and fewβ phase. The tensile strength and elongation of the annealed alloy are 649 MPa and 17.1%, respectively. Some tiny and dispersion distributed second phase particles are generated in Ti and B precipitates, greatly improving the alloy machinability.

  1. Investigation of electronic structure, magnetic and transport properties of half-metallic Mn2CuSi and Mn2ZnSi Heusler alloys

    Science.gov (United States)

    Bhat, Idris Hamid; Yousuf, Saleem; Mohiuddin Bhat, Tahir; Gupta, Dinesh C.

    2015-12-01

    The electronic and magnetic properties of Mn2CuSi and Mn2ZnSi Heusler alloys have been investigated using full-potential linearized augmented plane wave method. The optimized equilibrium lattice parameters in stable F-43m configuration are found to be 5.75 Å for Mn2CuSi and 5.80 Å for Mn2ZnSi. Spin-resolved calculations show that the Mn atoms at inequivalent Wyckoff positions have different contributions to the total magnetic moment in the unit cell. The anti-parallel magnetic moments of inequivalent Mn atoms sum to an integer with total magnetic moment per unit cell. The 100% spin-polarization at Fermi energy together with the total magnetic moment of 1.0 μB for Mn2CuSi and 2.0 μB for Mn2ZnSi per unit cell, predict that the materials follow MT=ZT - 28 Slater-Pauling rule. Both the materials under study exhibit half-metallicity with an energy gap in the spin-down channels. In the study, we predict a rather fine value of Seebeck coefficient. Further, the decreasing electrical conductivity with temperature shows a metallic character in spin-up configurations, while the electrical conductivity of spin-down states follows a semiconductor-like trend.

  2. High temperature EPR study of the M3Fe4V6O24 (M = Cu, Zn, Mg and Mn

    Directory of Open Access Journals (Sweden)

    Guskos Niko

    2016-09-01

    Full Text Available Electron paramagnetic resonance (EPR spectra of M3Fe4V6O24 (M = Cu, Zn, Mg and Mn compounds in high temperature range (293 K to 493 K have been investigated. The role of magnetic (Cu, Mn and non-magnetic (Zn, Mg ions in M3Fe4V6O24 structure in formation of magnetic resonance spectra was studied. Temperature dependence of EPR parameters: resonance field, linewidth and integrated intensity were examined. Similarities and differences in temperature behavior of these parameters has been discussed in terms of different relaxation mechanisms and magnetic interactions in the spin systems. An important role of additional magnetic ions (M = Mn or Cu in the M3Fe4V6O24 structure has been identified and its consequences considered.

  3. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.Heavy metals are a group of elements with specific features and natural occurrence in the environment, representing an accessory in the formation of rocks. These elements, although associated with toxicity, must be treated different from xenobiotics, since many

  4. Ba(Zn1−2xMnxCux)2As2: A Bulk Form Diluted Ferromagnetic Semiconductor with Mn and Cu Codoping at Zn Sites

    Science.gov (United States)

    Man, Huiyuan; Guo, Shengli; Sui, Yu; Guo, Yang; Chen, Bin; Wang, Hangdong; Ding, Cui; Ning, F.L.

    2015-01-01

    We report the synthesis and characterization of a bulk form diluted magnetic semiconductor Ba(Zn1−2xMnxCux)2As2 with the crystal structure identical to that of “122” family iron based superconductors and the antiferromagnet BaMn2As2. No ferromagnetic order occurs with (Zn, Mn) or (Zn, Cu) substitution in the parent compound BaZn2As2. Only when Zn is substituted by both Mn and Cu simultaneously, can the system undergo a ferromagnetic transition below TC ~ 70 K, followed by a magnetic glassy transition at Tf  ~ 35 K. AC susceptibility measurements for Ba(Zn0.75Mn0.125Cu0.125)2As2 reveal that Tf strongly depends on the applied frequency with and a DC magnetic field dependence of , demonstrating that a spin glass transition takes place at Tf. As large as −53% negative magnetoresistance has been observed in Ba(Zn1−2xMnxCux)2As2, enabling its possible application in memory devices. PMID:26492957

  5. Surface characterization of ZnO/ZnMn{sub 2}O{sub 4} and Cu/Mn{sub 3}O{sub 4} powders obtained by thermal degradation of heterobimetallic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Barrault, Joeel, E-mail: joel.barrault@univ-poitiers.fr [CNRS-Universite de Poitiers, LACCO/Laboratoire de catalyse en Chimie Organique, UMR6503, ENSIP, 1 rue Marcel Dore, 86022 Poitiers cedex (France); Makhankova, Valeriya G., E-mail: leram@univ.kiev.ua [Department of Inorganic Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska str. 64, Kyiv 01601 (Ukraine); Khavryuchenko, Oleksiy V.; Kokozay, Vladimir N. [Department of Inorganic Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska str. 64, Kyiv 01601 (Ukraine); Ayrault, Philippe [CNRS-Universite de Poitiers, LACCO/Laboratoire de catalyse en Chimie Organique, UMR6503, ENSIP, 1 rue Marcel Dore, 86022 Poitiers cedex (France)

    2012-03-15

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2 Prime -bipyridyl by thermal degradation at relatively low (350 Degree-Sign C) temperature, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33{+-}0.2 and 9{+-}0.06 m{sup 2} g{sup -1} for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products. - Graphical abstract: From the selective transformation of heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Highlights: Black-Right-Pointing-Pointer Thermal degradation of heterometallic complexes results in fine disperse particles. Black-Right-Pointing-Pointer Core-shell Cu/Mn{sub 3}O{sub 4} particles are obtained. Black-Right-Pointing-Pointer ZnMn{sub 2}O{sub 4} spinel layer covers ZnO particles.

  6. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com, E-mail: acpaiva@cnen.gov.br, E-mail: jmnilda@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Jessica V. de, E-mail: Jessica_clorofila@hotmail.com [Universidade de Pernambuco, Recife, PE (Brazil)

    2013-07-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  7. TEM observation of oxidation of CuZnAlMnNi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atmospheric oxidation of a quenched CuZnAlMnNi alloy after ion-polishing was examined by transmission electron microscopy (TEM). It was found that a lot of oxide grains with various sizes yield homogeneously on the surface of the alloy after exposure at room temperature for 90 d. The grains mainly form along the planes of stacking fault, meanwhile, they can also be observed at the stacking fault tetrahedrals or around the dislocation lines. The formarion of the oxides gives rise to the reduction of the stacking faults, and even complete disappearance in some zones,which is partly responsible for the decrement of shape memory. effect (SME) of the alloy quenched during long-term holding at room temperature.

  8. Low-temperature sintering method for NiCuZn ferrite and effect of Mn addition on electromagnetic properties

    Institute of Scientific and Technical Information of China (English)

    JU Dong-ying; BIAN Pei

    2006-01-01

    Low temperature sintering NiCuZn ferrite was employed at most cases due to its co-firability with Ag (below 960 ℃). The NiCuZn ferrite sintered body with high-strength and high-frequency magnetic properties was fabricated. Firstly,NiCuZn ferrite powder was synthesized under CO2 atmosphere at 500 ℃ from the mixed doxalate synthesized by liquid phase precipitation method. Then a small amount of boric acid (H3BO3) was added to the powder,and the NiCuZn ferrite powder compact was prepared with Newton press and CIP methods. Finally,NiCuZn ferrite sintered body was fabricated by sintering at 900 ℃ under CO2 atmosphere. The minimum sintering temperature (800 ℃) was determined by the study of high temperature shrinkage. By this method,NiCuZn ferrite sintered body with 0.5% (mass fraction) boric acid was obtained,which has the bending strength of 340 MPa. The effect of various Mn addition on electromagnetic properties were studied.

  9. Mechanisms for the Movement of Fe,Mn,Cu and Zn to Plant Roots in Loessal Soil and Lou Soil

    Institute of Scientific and Technical Information of China (English)

    XUMINGGANG; ZHANGYIPING; 等

    1996-01-01

    The pot experiments were conducted in the artificial climate laboratories to determine the relative importance of mass flow and diffusion in supplying ,Fe,Mn,Cu,and Zn to wheat,soybean and maize plants growing in loessal soil and lou soil.It was found that the calculated relative contribution of mass flow of iron,manganese,copper and zinc to plant uptake varied from 5% to more than 100%,depending on the crop species and soil types as well as plant growth stage,soil moisture,atmosphere humidity,etc.The results also showed that the major transportation mechanisms of these micronutrients in soil-root system varied with the crop and its growth,climate and soil,singnificantly,In general,mass flow was more important for Cu and Zn and diffusion was more significant for Fe and Mn at the seedling stage.

  10. Cu(II) and Zn(II) ions alter the dynamics and distribution of Mn(II) in cultured chick glial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wedler, F.C.; Ley, B.W. (Dept. of Molecular Cell Biology, Pennsylvania State University, University Park (USA))

    1990-12-01

    Previous studies revealed that Mn(II) is accumulated in cultured glial cells to concentrations far above those present in whole brain or in culture medium. The data indicated that Mn(II) moves across the plasma membrane into the cytoplasm by facilitated diffusion or counter-ion transport with Ca(II), then into mitochondria by active transport. The fact that 1-10 microM Mn(II) ions activate brain glutamine synthetase makes important the regulation of Mn(II) transport in the CNS. Since Cu(II) and Zn(II) caused significant changes in the accumulation of Mn(II) by glia, the mechanisms by which these ions alter the uptake and efflux of Mn(II) ions has been investigated systematically under chemically defined conditions. The kinetics of (54MN)-Mn(II) uptake and efflux were determined and compared under four different sets of conditions: no adducts, Cu(II) or Zn(II) added externally, and with cells preloaded with Cu(II) or Zn(II) in the presence and absence of external added metal ions. Zn(II) ions inhibit the initial velocity of Mn(II) uptake, increase total Mn(II) accumulated, but do not alter the rate or extent Mn(II) efflux. Cu(II) ions increase both the initial velocity and the net Mn(II) accumulated by glia, with little effect on rate or extent of Mn(II) efflux. These results predict that increases in Cu(II) or Zn(II) levels may also increase the steady-state levels of Mn(II) in the cytoplasmic fraction of glial cells, which may in turn alter the activity of Mn(II)-sensitive enzymes in this cell compartment.

  11. Concentrations of Zn, Mn, Cu and Cd in different tissues of perch (Perca fluviatilis) and in perch intestinal parasite (Acanthocephalus lucii) from the stream near Prague (Czech Republic)

    Energy Technology Data Exchange (ETDEWEB)

    Jankovska, Ivana, E-mail: jankovska@af.czu.cz [Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21 Prague 6 - Suchdol (Czech Republic); Miholova, Daniela [Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21 Prague 6 - Suchdol (Czech Republic); Lukesova, Daniela [Department of Animal Science and Food Processing in Tropics and Subtropics, Institute of Tropics and Subtropics, Czech University of Life Sciences, 165 21 Prague 6 - Suchdol (Czech Republic); Kalous, Lukas; Valek, Petr; Romocusky, Stepan; Vadlejch, Jaroslav; Petrtyl, Miloslav; Langrova, Iva; Cadkova, Zuzana [Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21 Prague 6 - Suchdol (Czech Republic)

    2012-01-15

    We monitored concentrations of Cd, Cu, Mn and Zn in acantocephalan parasites (Acanthocephalus lucii) and its final host (Perca fluviatilis). The concentrations in parasites were found to be significantly higher than those found in the muscle, gonads and liver of fish host. The bioaccumulation factor values were 194, 24.4, 2.2 and 4.7 for Cd, Cu, Mn and Zn, respectively. This suggests a benefit for the host due to the high accumulation of toxic cadmium.

  12. Mn-SOD and CuZn-SOD polymorphisms and interactions with risk factors in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigate the effects of superoxide dismutase (SOD) polymorphisms (rs4998557 , rs4880), Helicobacter pylori (H. pylori ) infection and environmental factors in gastric cancer (GC) and malignant potential of gastric precancerous lesions (GPL). METHODS: Copper-zinc superoxide dismutase (SOD1, CuZn-SOD)-G7958A (rs4998557 ) and manganese superoxide dismutase (SOD2, Mn-SOD)-Val16Ala (rs4880 ) polymorphisms were genotyped by SNaPshot multiplex polymerase chain reaction (PCR) in 145 patients with GPL (87...

  13. Influence of Heating Rate on Double Reversible Transformation in CuZnAlMnNi Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The influence of heating rate on double reversible transformation in CuZnA1MnNi shape memory alloy was investigated by differential scanning calorimetry. It was found that rapid heating inhibits X→M transformation but is fa vorable to the reverse martensite transformation, giving rise to the approach of the two transformation peaks. With the decrease of heating rate, the two transformation peaks separate gradually.

  14. Two distinct halo populations in the solar neighborhood II. Evidence from stellar abundances of Mn, Cu, Zn, Y, and Ba

    DEFF Research Database (Denmark)

    Nissen, Poul Erik; Schuster, William J.

    2011-01-01

    .4 in the solar neighborhood has revealed the existence of two distinct halo populations with a systematic difference in [α/Fe] at a given metallicity. In continuation of that work, abundances of Mn, Cu, Zn, Y, and Ba are determined for the same sample of stars. Methods. Equivalent widths of atomic lines...... differences between the “high-α” and “low-α” halo populations are found for [Cu/Fe], [Zn/Fe], and [Ba/Y], whereas there is no significant difference in the case of [Mn/Fe]. At a given metallicity, [Cu/Fe] shows a large scatter that is closely correlated with a corresponding scatter in [Na/Fe] and [Ni....../Fe]. Conclusions. The metallicity trends of [Cu/Fe], [Zn/Fe], and [Ba/Y] can be explained from existing nucleosynthesis calculations if the high-α stars formed in regions with such a high star formation rate that only massive stars and type II supernovae contributed to the chemical enrichment. The low-α stars...

  15. Mn、Cu共掺ZnO磁性的研究%Magnetic Properties of Mn, Cu Co-doped ZnO Crystals

    Institute of Scientific and Technical Information of China (English)

    韦志仁; 李哲; 胡志鹏; 罗小平; 高平; 王伟伟; 董国义

    2007-01-01

    In this paper, Mn, Cu co-doped ZnO crystals were synthesized by hydrothermal method with 3mol/L-1KOH as mineralizer, the fill factor of 35%, reaction temperature of 430℃, and time of 24h.When the Zn(OH)2 mixed with Mn, Cu were used as precursor, the shape of the most crystals was column. The positive polar +c{0001}, negative polar -c{000(1-)}, negative pyramidal face -p{ 10(1-)(1-)},and column face m { (1-)010 } were exposed. The length of the column crystals was 30-50μm. Some of the crystals shape were hexagonal cone. The negative polar -c{000(1-)}, positive pyramidal face +p{10(1-)1},and column face m{(1-)010} were exposed. The length of the hexagonal cone crystals was 100μm. And the length to the diameter was 5:1. When the ZnO mixed with Mn, Cu were used as precursor, the length of the column crystals was 10-30μm. The hexagonal shape of all the crystals became asymmetry. The concentration of Mn2+ in ZnO was 3.19at% ,1.62at%, respectively,when the precursor was ZnO and Zn (OH) 2 by the EDX. But the Cu ions were not found. Although the morphology of the crystals was affected by Mn, Cu doped, antiferromagnet was observed by the SQUID.%本文采用水热法,分别以ZnO、Zn(OH)2为前驱物,添加一定量的MnCl4·4H2O和CuSO4·2H2O,3mol/LKOH作矿化剂,温度430℃,填充度35%,反应24h,制备了Mn、Cu共掺ZnO晶体.当前驱物为Zn(OH)2时,所得晶体大部分为短柱状晶体,显露正负极面{0001}、{000(1-)}、负锥面-P{10(1-)(1-)}和柱面m{(1-)010},长度约为30~50 μm.少部分晶体为单锥六棱柱状,显露正锥面P{10(1-)1},柱面m{(1-)010},负极面-c{000(1-)},晶体的长度约为100μm,长径比为5∶1.当ZnO用作前驱物时,短柱状晶体长度大约为10~30μm,晶体的六棱对称性都出现较大的偏差.X射线荧光能谱分析表明,前驱物为ZnO、Zn(OH)2时,Mn离子含量在分别为3.19%和1.62%原子分数,没有检测到Cu离子.虽然Mn、Cu离子的掺入会明显影响晶体形态,磁性测量显示掺杂Mn、Cu的ZnO仍为反铁磁.

  16. Role of estuarine natural flocculation process in removal of Cu, Mn, Ni, Pb and Zn

    Directory of Open Access Journals (Sweden)

    S. Hassani

    2017-04-01

    Full Text Available The flocculation of dissolved heavy metals is a process which has an important effect on decreasing the concentration of the colloidal elements during estuarine mixing of river water and sea or ocean water. During this important process, a large amount of colloidal elements change into particles in the form of flock and the dissolved loads decline. This study is performed to evaluate the mechanism of self-purification of heavy metals in Sardabroud's estuary. For this purpose, the effect of salinity (varying from 1 to 8.5‰ on the removal efficiency of colloidal metals (copper, zinc, lead, nickel and magnesium by flocculation process during mixing of Sardabroud River water and the Caspian Sea water was explored. The flocculation rate of Ni (25% > Zn (18.59% > Cu (16.67% > Mn(5.83% > Pb(4.86%  indicates that lead and manganese have relatively conservative behavior but nickel, zinc and copper have non-conservative behavior during Sardabroud River’s estuarine mixing. The highest removal efficiencies were obtained between salinities of 1 to 2.5%. Due to flocculation process, annual discharge of dissolved zinc, copper, lead, manganese and nickel release into the Caspian Sea via Sardabroud River would reduce from 44.30 to 36.06 ton/yr, 3.41 to 2.84 ton/yr, 10.22 to 9.7 ton/yr, 8.52 to 7.8 ton/yr and 3.41 to 2.56 ton/yr, respectively. Statistical analysis shows that the flocculation rate of Nickel is highly controlled by redox potential and dissolved oxygen. Moreover, it is found that total dissolved solid, salinity, electrical conductivity and potential of hydrogen do not have a significant influence in flocculation of studied metals.

  17. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dingfeng Jin; Bing Zhu; Zhaoyin Hou; Jinhua Fei; Hui Lou; Xiaoming Zheng [Zhejiang University, Hangzhou (China). Institute of Catalysis, Department of Chemistry

    2007-12-15

    A series of zeolite Y modified with La, Ce, Pr, Nd, Sm and Eu were prepared via ion-exchange, and characterized by XRD, FT-IR and NH{sub 3}-TPD. It was found that these rare earth metals were encapsulated in the supercage of zeolite Y and resulted in its enhanced acidity. Among them, La-, Ce-, Pr- and Nd-modified zeolite Y exhibited higher activity and stability (than pure HY) for methanol dehydration to dimethyl ether (DME). For DME synthesis directly from CO hydrogenation using the dual Cu-Mn-Zn/modified-Y catalysts, it was found that Cu-Mn-Zn/La-Y and Cu-Mn-Zn/Ce-Y were more active than Cu-Mn-Zn/pure-HY. The conversion of CO on Cu-Mn-Zn/Ce-HY achieved 77.1% in an isothermal fixed bed reactor at 245{sup o}C, 2.0 MPa, H{sub 2}/CO = 3/2 and 1500 h{sup -1}. 36 refs., 7 figs., 3 tabs.

  18. Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning.

    Science.gov (United States)

    Lombardi, Ana T; Garcia, Oswaldo

    2002-07-01

    The chemical fractionation and bioleaching of Mn, Al, Zn, Cu and Ti in municipal sewage sludge were investigated using Thiobacillus ferrooxidans as leaching microorganism. As a result of the bacterial activity, ORP increase and pH reduction were observed. Metal solubilization was accomplished only in experimental systems supplemented with energy source (Fe(II)). The solubilization efficiency approached approximately 80% for Mn and Zn, 24% for Cu, 10% for Al and 0.2% for Ti. The chemical fractionation of Mn, Al, Zn, Cu and Ti was investigated using a five-step sequential extraction procedure employing KNO3, KF, Na4P2O7, EDTA and HNO3. The results show that the bioleaching process affected the partitioning of Mn and Zn, increasing its percentage of elution in the KNO3 fraction while reducing it in the KF, Na4P2O7 and EDTA fractions. No significant effect was detected on the partitioning of Cu and Al. However, quantitatively the metals Mn, Zn, Cu and Al were extracted with higher efficiency after the bacterial activity. Titanium was unaffected by the bioleaching process in both qualitative and quantitative aspects.

  19. Synthesis and Study of Optical properties of MgO based TM oxide (TM=Cu, Mn and Zn) nanocomposites

    Science.gov (United States)

    Tamizh Selvi, K.; Alamelumangai, K.; Priya, M.; Rathnakumari, M.; Kumar, P. Suresh; Sagadevan, Suresh

    2016-11-01

    A nanocomposite of MgO based transition metal (TM) oxide (TM=Zn, Mn, and Cu) was synthesized using sol-gel method. The powder x-ray diffraction confirmed the phase purity and particle size. The surface morphology and elemental composition were examined by High resolution scanning electron microscopy and energy-dispersive x-ray spectroscopy. The change in optical band gap of the synthesized nanocomposites, by increasing the Mg content was determined using UV-vis spectra and the luminescent properties were analyzed using photoluminescence spectra.

  20. Kinetic equations characterizing double reversible transformations in heating CuZnAlMnNi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The apparent activation energies and frequency factors of the double reversible transformations occurring in heating CuZnAlMnNi shape memory alloy (SMA) were deduced as AEx .M = 62.597 8 kJ/mol, AEm.A 153.92 kJ'mol,Ax-m = 5.223 2 × 109s 1, and AM-A = 2.325 1 × l023 s 1, respectively. The kinetic equations of the two transfornations during heating were established simultaneously.

  1. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping

    Science.gov (United States)

    Mhlongo, Gugu H.; Shingange, Katekani; Tshabalala, Zamaswazi P.; Dhonge, Baban P.; Mahmoud, Fawzy A.; Mwakikunga, Bonex W.; Motaung, David E.

    2016-12-01

    Undoped and transition metal (Cu, Co and Mn) doped ZnO nanostructures were successfully prepared via a microwave-assisted hydrothermal method followed by annealing at 500 °C. Numerous characterization facilities such as X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM) were employed to acquire the structural and morphological information of the prepared ZnO based products. Combination of defect structure analysis based on photoluminescence (PL) and electron paramagnetic resonance (EPR) indicated that co-existing oxygen vacancies (VO) and zinc interstitials (Zni) defects are responsible for the observed ferromagnetism in undoped and transition metal (TM) doped ZnO systems. PL analysis demonstrated that undoped ZnO has more donor defects (VO and Zni) which are beneficial for gas response enhancement. Undoped ZnO based sensor exhibited a higher sensor response to NH3 gas compared to its counterparts owing to high content of donor defects while transition metal doped sensors showed short response and recovery times compared to undoped ZnO.

  2. Dye-Sensitized Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Gonce, Mehmet Kerem; Aslan, Emre; Ozel, Faruk; Hatay Patir, Imren

    2016-03-21

    The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosin Y as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2 NiSnS4 >Cu2 FeSnS4 >Cu2 CoSnS4 >Cu2 ZnSnS4 >Cu2 MnSnS4 (2028, 1870, 1926, 1420, and 389 μmol g(-1) h(-1) , respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2 NiSnS4, Cu2 FeSnS4 , and Cu2 CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light.

  3. Effect of mineral-enriched diet and medicinal herbs on Fe, Mn, Zn, and Cu uptake in chicken

    Directory of Open Access Journals (Sweden)

    Stef Ducu

    2012-03-01

    Full Text Available Abstract Background The goal of our study was to evaluate the effects of different medicinal herbs rich in polyphenol (Lemon balm, Sage, St. John's wort and Small-flowered Willowherb used as dietary supplements on bioaccumulation of some essential metals (Fe, Mn, Zn and Cu in different chicken meats (liver, legs and breast. Results In different type of chicken meats (liver, legs and breast from chickens fed with diets enriched in minerals and medicinal herbs, beneficial metals (Fe, Mn, Zn and Cu were analysed by flame atomic absorption spectrometry. Fe is the predominant metal in liver and Zn is the predominant metal in legs and breast chicken meats. The addition of metal salts in the feed influences the accumulations of all metals in the liver, legs and breast chicken meat with specific difference to the type of metal and meat. The greatest influences were observed in legs meat for Fe and Mn. Under the influence of polyphenol-rich medicinal herbs, accumulation of metals in the liver, legs and breast chicken meat presents specific differences for each medicinal herb, to the control group that received a diet supplemented with metal salts only. Great influence on all metal accumulation factors was observed in diet enriched with sage, which had significantly positive effect for all type of chicken meats. Conclusions Under the influence of medicinal herbs rich in different type of polyphenol, accumulation of metals in the liver, legs and breast chicken meat presents significant differences from the group that received a diet supplemented only with metal salts. Each medicinal herb from diet had a specific influence on the accumulation of metals and generally moderate or poor correlations were observed between total phenols and accumulation of metals. This may be due to antagonism between metal ions and presence of other chelating agents (amino acids and protein from feeding diets which can act as competitor for complexation of metals and influence

  4. Effect of anions on removing Cu2+, Mn2+ and Zn2+ in electrocoagulation process using aluminum electrodes.

    Science.gov (United States)

    Hanay, Özge; Hasar, Halil

    2011-05-15

    In the present study, the performance of electrocoagulation process with aluminum electrodes in the treatment of Cu(2+), Zn(2+) and Mn(2+) containing aqueous solutions was investigated by depending on type of anion in solution, considering some operating conditions such as initial metal concentration and pH. Results obtained from synthetic wastewater showed that type of anion in solutions has a significant effect on the metal removal. The initial concentration of zinc influenced significantly the performance of electrocoagulation process as compared with the results obtained from Mn and Cu metals. Anions studied did not generate an important difference between pH variations. Best removals for three metals were achieved with increasing the pH in the presence of both anions. Total removals of copper and zinc reached almost 100% after 5 min at pH values > 7. At the end of the experiments for 35 min, the Mn removals were 85 and 80% in the presence of sulfate and chloride anions, respectively.

  5. COMPARISON OF DIFFERENT EXTRACTION METHODS REPRESENTING AVAILABLE AND TOTAL CONCENTRATIONS OF Cd, Cu, Fe, Mn and Zn IN SOIL

    Directory of Open Access Journals (Sweden)

    Vladimir Ivezić

    2013-06-01

    Full Text Available Various extraction methods are used to predict plant uptake of trace metals. Most commonly it is total concentration that is used for risk assessment and evaluation of trace metal availability. However, recent studies showed that total concentration is a poor indicator of availability while concentrations in soil solution show good correlation with plant uptake. Present study was conducted on magricultural soils with low levels of trace metals where 45 soil samples were collected from different soil types. The main objective was to compare four different extraction methods and examine how total and reactive (EDTA trace metal concentrations correlate ,with soil solution concentration (in this study determined by water extraction. The samples were analyzed by four extraction methods: strong acid extraction (ultra-pure HNO3 extraction and aqua regia, weak acid extraction by EDTA and the most available fraction, fraction in soil solution, were represented by water extraction (weakest extractant. Five elements were investigated (Cd, Cu, Fe, Mn and Zn. Water extraction significantly correlated with EDTA extraction for Cu, Fe and Mn, while total extraction (HNO3 extraction and aqua regia correlated significantly with water extraction only for Cu. No correlation between water extraction and total extraction confirmed poor role of total concentration as an indicator of availability. EDTA extraction can be used to represent reactive pool of trace metals in soil but it should be also taken with caution when using it to describe available fraction.

  6. Accumulation of heavy metals (Co, Cr, Cu, Mn, Zn in the freshwater alga Ulva type, sediments and water of the Wielkopolska region, Poland

    Directory of Open Access Journals (Sweden)

    Andrzej Rybak

    2013-12-01

    Full Text Available The concentration of five trace elements: cobalt (Co, chrome (Cr, copper (Cu, manganese (Mn and zinc (Zn was determined in the Ulva thalli, in the water and sediment collection from several inland sites (lakes, stream and river from the Wielkopolska region during summer 2010. The multielemental analysis of the heavy metal concentration was carried out with the use of ICP-OES method. The aim of this study was to determine the role of tubular forms as biomonitoring species. The relative abundance of metals in sediment decreased in the order: Mn > Zn > Cu > Cr > Co and in the water: Cr > Mn > Zn > Cu > Co. In Ulva thalli the distribution order from higher to lower was Mn > Zn > Cr > Cu > Co. The results indicate that the concentration changes of heavy metals in thallus, water and sediment have some differences, but concentration distribution tends to be similar, because among the analysed heavy metals Mn has the highest concentrations while Co the lowest abundance in the thalli and sediment of all the sites. Possibility to use freshwater species from Ulva genus as bioindicators of water pollution by manganese requires further study.

  7. Designed synthesis of MOx (M = Zn, Fe, Sn, Ni, Mn, Co, Ce, Mg, Ag), Pt, and Au nanoparticles supported on hierarchical CuO hollow structures.

    Science.gov (United States)

    Zhang, Zailei; Jung, Ji Chul; Yan, Ning

    2016-12-01

    Despite intensive research into support substrates for the dispersal of nanoparticles and their applications, there has been a lack of general methods to produce metal oxide hollow substrates supporting a wide range of metal and metal oxides. Herein, a synthetic protocol for the preparation of CuO hollow structure-supported MOx (M = Zn, Fe, Ni, Sn, Mn, Co, Ce, Mg, and Ag) and noble metals (Pt and Au) with the desired properties and shell structure, such as CuO/Fe2O3, CuO/ZnO, CuO/SnO2, CuO/MgO, CuO/NiO, CuO/Mn2O3, CuO/CoO, CuO/CeO2, CuO/Ag2O, CuO/Pt, CuO/Au hollow cubes, CuO/ZnO double-shell hollow cubes, CuO/SnO2 double-shell hollow octahedra, CuO/SnO2/Fe2O3 and CuO/Mn2O3/NiO double-shell hollow cubes, was developed based on controlled calcination and etching. These hybrid hollow structures were employed not only as support substrates but also as active constituents for catalytic reactions. As an example, we demonstrated that CuO/ZnO hollow cubes are remarkably efficient in converting solid chitin biomass to liquid chemicals in methanol. In addition, CuO/ZnO double-shell hollow cubes were highly effective in the oxidation of benzyl alcohol in the presence of H2O2, whereas CuO/Pt and CuO/Au hollow cubes promoted the oxidation of benzyl alcohol in pure O2. The strategy developed in this work extends the controllable fabrication of high-quality CuO hollow structure-supported nanoparticles using various compositions and shell structures, paving the way to the exploration and systematic comparison of these materials in a wider range of applications.

  8. Zn{sub x-1}Cu{sub x}Mn{sub 2}O{sub 4} spinels; synthesis, structural characterization and electrical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Mendez M, F.; Lima, E.; Bosch, P.; Pfeiffer, H. [UNAM, Instituto de Investigaciones en Materiales, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Gonzalez, F., E-mail: pfeiffer@iim.unam.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-07-01

    This work presents the structural characterization and electrical evaluation of Zn{sub x-1}Cu{sub x}Mn{sub 2}O{sub 4} spinels, which are materials presented as secondary phases into the vari stor ceramic systems. Samples were analyzed by X-ray diffraction, solid-state nuclear magnetic resonance, infrared spectroscopy, scanning electron microscopy and impedance spectroscopy. Although, the addition of copper to the ZnMn{sub 2}O{sub 4} spinel did not produce morphological changes, the structure and electrical behaviors changed considerably. Structurally, copper addition induced the formation of partial inverse spinels, and its addition increases significantly the electrical conductivity. Therefore, the formation of Zn{sub x-1}Cu{sub x}Mn{sub 2}O{sub 4} spinels, as secondary phases into the vari stor materials, may compromise significantly the vari stor efficiency. (Author)

  9. Investigation on Fe, Mn, Zn, Cu, Pb and Cd fractions in the natural surface coating samples and surficial sediments in the Songhua River, China

    Institute of Scientific and Technical Information of China (English)

    GUO Shu-hai; WANG Xiao-li; LI YU; CHEN Jie-jiang; YANG Jun-cheng

    2006-01-01

    Natural surface coating samples (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River,China were employed to investigate the relationship between NSCSs and SSs in fractions of heavy metals (Fe, Mn, Zn, Cu, Pb, and Cd) using the modified sequential extraction procedure (MSEP). The results show that the differences between NSCSs and SSs in Fe fractions were insignificant and Fe was dominantly present as residual phase (76.22% for NSCSs and 80.88% for SSs) and Fe-oxides phase (20.33% for NSCSs and 16.15% for SSs). Significant variation of Mn distribution patterns between NSCSs and SSs was observed with Mn in NSCSs mainly present in Mn-oxides phase (48.27%) and that in SSs present as residual phase (45.44%). Zn, Cu,Pb and Cd were found dominantly in residual fractions (>48%), and next in solid oxides/hydroxides for Zn, Pb and Cd and in easily oxidizable solids/compounds form for Cu, respectively. The heavy metal distribution patterns implied that Fe/Mn oxides both in NSCSs and SSs were more important sinks for binding and adsorption of Zn, Pb and Cd than organic matter (OM), and inversely,higher affinity of Cu to OM than Fe/Mn oxides in NSCSs and SSs was obtained. Meanwhile, it was found that the distributions of heavy metals in NSCSs and SSs were similar to each other and the pseudo-total concentrations of Zn, Cu, Pb and Cd in NSCSs were greater than those in SSs, highlighting the more importance for NSCSs than SSs in controlling behaviours of heavy metals in aquatic environments.

  10. Seasonal variation of major elements (Ca, Mg) and trace metals (Fe, Cu, Zn, Mn) and cultured mussel Perna viridis L. and seawater in the Dona Paula Bay, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Rivonker, C.U.; Parulekar, A.H.

    The major elements and trace metals were analysed from nussel tissue and the seawater taken from three depths (0, 5 and 9 meters) from the culture site. Range of variation in Ca, Mg, Fe, Cu, Zn and Mn were 226-399; 708-1329; 0.005-0.084; BDL-0...

  11. Aqueous-phase synthesis and color-tuning of core/shell/shell inorganic nanocrystals consisting of ZnSe, (Cu, Mn)-doped ZnS, and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongwan; Yoon, Sujin [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Felix Sunjoo, E-mail: fskim@cau.ac.kr [School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Kim, Nakjoong, E-mail: kimnj@hanyang.ac.kr [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-06-25

    We report synthesis of colloidal nanocrystals based on ZnSe core, (Cu,Mn)-doped ZnS inner-shell, and ZnS outer-shell by using an eco-friendly method and their optical properties. Synthesis of core/shell/shell nanocrystals was performed by using a one-pot/three-step colloidal method with 3-mercaptopropionic acid as a stabilizer in aqueous phase at low temperature. A double-shell structure was employed with inner-shell as a host for doping and outer-shell as a passivation layer for covering surface defects. Copper and manganese were introduced as single- or co-dopants during inner-shell formation, providing an effective means to control the emission color of the nanocrystals. The synthesized nanocrystals showed fluorescent emission ranging from blue to green, to white, and to orange, adjusted by doping components, amounts, and ratios. The photoluminescence quantum yields of the core/doped-shell/shell nanocrystals approached 36%. - Highlights: • ZnSe/ZnS:(Cu,Ms)/ZnS core/(doped)shell/shell nanocrystals were synthesized in an aqueous phase. • Emission color of nanocrystals was controlled from blue to white to orange by adjusting the atomic ratio of Cu and Mn co-dopants. • Photoluminescence quantum yields of the colloidal nanocrystals approached 36%.

  12. Cu, Zn and Mn uptake and redistribution in Cabernet Sauvignon grapes and wine: effect of soil metal content and plant vigor

    Science.gov (United States)

    Concepción Ramos, Maria; Romero, María Paz

    2015-04-01

    This study investigated the influence of leaf thinning on micronutrient (Cu, Zn and Mn) uptake and distribution in grape tissues, in a 16 year-old Cabernet Sauvignon vineyard. The analysis was carried out in two plots with differences in vigor (P1- high and P2-low) grown in calcareous soils. Vigour was analysed by the NDVI values. In each plot, two treatments (with and without leaf thinning after bloom) were applied. Total and the CaCl2-DTPA extractable fraction of these micronutrients were evaluated. Nutrient concentration in petiole were evaluated from veraison to harvest as well as the concentration of those elements in seeds and skins at ripening and in wines elaborated with grapes grown in each plot and treatment in 2013. Their relationships were evaluated. The soil extractable fraction did not give a good correlation with petiole concentrations. However, Mn in petiole was strongly correlated with soil total Mn. Cu and Zn had higher concentration at veraison than at harvest, while for Mn it was the opposite. Cu concentration in petiole and seeds was greater in the most vigorous plots, but there were not clear differences between treatments. Cu in seeds and skins correlated significantly but there was not correlation with Cu in petiole. Zn concentration in skins was quite similar in both plots, but with higher values in vines without leaf thinning. Zn concentrations in skins were correlated with Zn in petiole but no significant correlation was found with Zn in seeds. Higher concentrations were found in the no thinning treatment in skins. For Mn, petiole concentrations were greater in the high vigorous plot and in the leaf thinning treatment. However, petiole Zn concentrations were greater in the less vigorous plot and without clear effect of leaf thinning. Mn concentration in skins was greater in the less vigorous vines in both treatments and it was inversely correlated with Mn in seeds, but there were no significant correlation between them and Mn in petiole

  13. The Influence of the East Pacific Rise Hydrothermal Field on the Distributions of Dissolved Fe, Mn, Zn, Cu and Cd in the South Pacific

    Science.gov (United States)

    Roshan, S.; Wu, J.

    2014-12-01

    East Pacific Rise (EPR) hosts the largest hydrothermal field in the world. The concentrations of dissolved key trace metals (Fe, Zn, Cu and Cd) were determined in the seawater samples collected from EPR to Tahiti in the South Pacific along 10-15 ºS during U. S. GEOTRACES 2013 by means of Mg(OH)2 co-precipitation isotope dilution method using ICP-MS. Dissolved Mn was determined in these samples using a new method combining Mg(OH)2 co-precipitation with calibration with external standards of 57Fe, 52Cr and 59Co. The results show substantial mid-depth maxima of Fe and Mn extended from EPR. These hydrothermally-enriched Fe and Mn show long-distance westward transportation to the central South Pacific. The mid-depth enrichment of Zn was also observed at stations close to EPR. In contrast, Cu and Cd show depletions around the hydrothermal vent near EPR. Overall the results suggest that hydrothermal activity is a source for Fe, Mn and Zn and a sink for Cu and Cd.

  14. A preliminary study of the effect of phytoadditive carvacrol on the trace elements (Cu, Mn and Zn content in fish tissues

    Directory of Open Access Journals (Sweden)

    EBRU YILMAZ

    2014-04-01

    Full Text Available Phytoadditives have gained increasing interest as feed additives for fish. The aim of the present study was to determine whether selected dietary phytoadditive can influence the bioavailability of several trace elements (Cu, Mn and Zn, which play an important role in the physiological processes. The experiments were carried out at a commercial trout farm. A total of 420 juvenile rainbow trout (mean weight ± SD = 10.79±0.57, Oncorhynchus mykiss, were randomly allocated into four different treatments with three replicates each. Fish were kept in raceways (3X0.8X0.4 m at 10±1°C with a natural photoperiod. Proper amount of carvacrol was sprayed on 1 kg of commercial trout diet to prepare four diets with 0 (Control, C0, 1 (C1, 3 (C3 and 5 (C5 carvacrol g/kg diet. Fish were fed to apparent satiation three times per day. The feeding trial lasted four weeks. Then, in different type of fish tissues (muscle, liver and pyloric caeca from fish fed with diets enriched in carvacrol, beneficial elements (Cu, Mn and Zn were analysed by atomic adsorption spectrophotometer. Results showed that the levels of Cu, Zn and Mn were especially significantly increase by C1 diet in all tissues (muscle, liver and pyloric caeca except muscle and pyloric caeca Zn. The results of this experiment indicate that the carvacrol had the ability to potentiate the trace element retention. Although bioaccumulations of Cu, Zn and Mn in the muscle, liver and pyloric caeca are well demonstrated, the exact mechanisms of phytoadditives are still only partially understood. More investigations are required to detail the mechanisms involved in phytoadditives this enhancement.

  15. Electronic structure and half-metallicity in new Heusler alloys CoYO2 (Y = Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn)

    Science.gov (United States)

    Esteki, S.; Ahmadian, F.

    2017-09-01

    First-principles calculations based on density functional theory (DFT) using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method were applied to study the electronic structures and magnetic properties of new Heusler alloys CoYO2 (Y = Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn). The calculated formation energies of these compounds were negative, therefore, they can be synthesized experimentally. All compounds were stable in ferromagnetic AlCu2Mn-type structure. In AlCu2Mn-type structure, CoScO2, CoFeO2, and CoNiO2 compounds were HM ferromagnets, CoCuO2 was a nearly half-metal, CoZnO2 was a spin gapless semiconductor, and other compounds were conventional ferromagnets. In CuHg2Ti-type structure, CoTiO2 compound had a nearly HM characteristic, CoVO2 was a spin gapless semiconductor, and other compounds were conventional ferromagnets. The origin of the half-metallic band gap for CoScO2 alloy Heusler alloy was well understood. The total magnetic moments of the three HM compounds obeyed Slater-Pauling rules (Mtot = 22-Ztot and Mtot = 32-Ztot). CoScO2 had the widest region of half-metallicity between the three half-metals indicating its high robustness of half-metallicity with respect to the variation of lattice constants.

  16. Study of the Cu, Mn, Pb and Zn dynamics in soil, plants and bee pollen from the region of Teresina (PI, Brazil

    Directory of Open Access Journals (Sweden)

    Aline S. Silva

    2012-12-01

    Full Text Available The purpose of this study is to characterize native bee plants regarding their capacity to extract and accumulate trace elements from the soil and its consequences to the sanity of the produced pollen. The trace elements Cu, Mn, Pb and Zn were analyzed in soil, plants and bee pollen from Teresina region (PI, Brazil, by flame atomic absorption spectrophotometer. Considering the studied plant species, Cu and Pb metals presented in the highest levels in the roots of B. platypetala with 47.35 and 32.71 μg.mL-1 and H. suaveolens with 39.69 and 17.06 μg.mL-1, respectively, while in the aerial parts Mn and Zn metals presented the highest levels in S. verticillata with 199.18 and 85.73 μg.mL-1. In the pollen, the levels of Cu, Mn, Pb and Zn vary from 5.44 to 11.75 μg.mL-1; 34.31 to 85.75 μg.mL-1; 13.98 to 18.19 μg.mL-1 and 50.19 to 90.35 μg.mL-1, respectively. These results indicate that in the apicultural pasture the translocation (from soil to pollen of Mn and Zn was more effective than in case of Cu and Pb, therefore, the bee pollen can be used as food supplement without causing risks to human health.O objetivo deste estudo é caracterizar plantas apícolas nativas, quanto a sua capacidade de extrair e acumular elementos-traço do solo e suas conseqüências na sanidade do pólen produzido. Os elementos-traço Cu, Mn, Pb e Zn foram analisados em solo, planta e pólen apícolas em Teresina (PI, Brasil, por espectrofotometria de absorção atômica com atomização em chama. Considerando as espécies de plantas estudadas, os metais Cu e Pb apresentaram nas raízes maiores teores de B. platypetala com 47,35 e 32,71 µg.mL-1 e H. suaveolens com 39,69 e 17,06 µg.mL-1, respectivamente, enquanto na parte aérea os metais Mn e Zn apresentaram os maiores teores, em S. verticillata com 199,18 e 85, 73 µg.mL-1. No pólen os teores de Cu, Mn, Pb e Zn varia de 5,44 a 11,75 µg.mL-1; 34,31 a 85,75 µg.mL-1; 13,98 a 18,19 µg.mL-1 e 50,19 a 90,35 µg.mL-1

  17. The supplementation of yam powder products can give the nutritional benefits of the antioxidant mineral (cu, zn, mn, fe and se) intakes.

    Science.gov (United States)

    Shin, Mee-Young; Cho, Young-Eun; Park, Chana; Sohn, Ho-Yong; Lim, Jae-Hwan; Kwun, In-Sook

    2012-12-01

    Yam has been recognized having the beneficial effects for the prevention of various diseases, such as cancer, immunity, infection and obesity etc. There is increasing consideration to supplement the antioxidant nutrients to make up the lack of the antioxidant nutrient intakes. No study has been reported for the analysis of antioxidant mineral contents and comparison to dietary recommended intake for the sense of health promotion. In our study, we analyzed the contents of antioxidant trace elements (Zn, Mn, Fe, Cu and Se) and Cr contents in cultivated Korean yam powders for evaluation of nutrient intake aspects. We collected the commercial yam powders from six different cultivated areas in the South Korea and measured antioxidant minerals (Zn, Mn, Fe, Cu and Se) and Cr contents using trace element-free plasma spectrometer (ICP) or atomic absorption spectrometer (AAS) after dry-ashing and then wet-acid digestion. The accuracy of mineral analysis method was confirmed by the mineral analysis of standard reference material. Each analyzed element contents in yam were compared to dietary reference intakes of Koreans (KDRIs). The average levels of trace elements (Zn, Mn, Fe, Cu, Se and Cr) in yam powders were 18.3, 11.9, 36.0, 3.7, 1.9 and 1.27 μg/g yam powder, respectively. The intakes of Zn, Fe, Cu and Se of which KDRIs is determined, are accounted as being up to 23.8%, 55.6%, 32.5% and 236% recommended intake (RI) of KDRIs, if daily yam supplementation (50 g) of commercial instruction would be considered. The intake of Mn is about 25% adequate intake (AI) of KDRIs with the daily supplementation of yam powder. Most of mineral intakes from daily yam supplementation were with the range of non-detectable to yam power is beneficial to provide the supplemental nutrient intake and also is safe, if the suggested dosage would be considered.

  18. Organic and inorganic fertilization effects on DTPA-extractable Fe, Cu, Mn and Zn, and their concentration in the edible portion of crops

    OpenAIRE

    Maqueda Porras, Celia; Herencia, Juan F.; Ruiz Porras, J. C.; Hidalgo García, Mª F.

    2011-01-01

    The application of organic composts to soil may affect the availability of micronutrients and their concentration in plants. The present field research study compared soil micronutrient extractability after 5 years of organic fertilization v. conventional inorganic fertilization. Iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn) were extracted from soil using diethylene triamine pentaacetic acid (DTPA) and the data obtained were compared with the concentration of these micronutrients in th...

  19. Levels of Cd (II, Mn (II, Pb (II, Cu (II, and Zn (II in Common Buzzard (Buteo buteo from Sicily (Italy by Derivative Stripping Potentiometry

    Directory of Open Access Journals (Sweden)

    P. Licata

    2010-01-01

    Full Text Available The purpose of this study was to determine the concentrations of heavy metals (Cd, Pb, Cu, Mn, and Zn in different organs (liver, kidney, muscle, lung, skin, and feathers of buzzards (Buteo buteo, utilized as a “biological indicator” for environmental contamination, from different areas of Sicily and to investigate the relationships between birds sex, age, and weight and metal levels in these samples. All samples of common buzzards were collected at the “Recovery Center of Wild Fauna” of Palermo, through the Zooprophilactic Institute. Potentiometric stripping analysis (PSA was used to determine the content of Cd(II, Cu(II, Mn(II, Pb(II, and Zn(II in bird tissues. For toxic metals, the highest levels of Pb were in liver and those of Cd in lung; Zn levels were higher than Cu and Mn in all tissues analyzed. The concentrations in liver, lung, kidney, and muscle could be considered as an indicative of chronic exposure to metals while the presence of metals in skin could be consequential to storing and elimination processes. The found concentrations of metals in the studied matrices required a highly sensitive method for their determination and a simple sample preparation procedure, and the proposed method was well suited for this purpose.

  20. Investigation of electronic structure, magnetic and transport properties of half-metallic Mn{sub 2}CuSi and Mn{sub 2}ZnSi Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Idris Hamid, E-mail: idu.idris@gmail.com; Yousuf, Saleem; Mohiuddin Bhat, Tahir; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2015-12-01

    The electronic and magnetic properties of Mn{sub 2}CuSi and Mn{sub 2}ZnSi Heusler alloys have been investigated using full-potential linearized augmented plane wave method. The optimized equilibrium lattice parameters in stable F-43m configuration are found to be 5.75 Å for Mn{sub 2}CuSi and 5.80 Å for Mn{sub 2}ZnSi. Spin-resolved calculations show that the Mn atoms at inequivalent Wyckoff positions have different contributions to the total magnetic moment in the unit cell. The anti-parallel magnetic moments of inequivalent Mn atoms sum to an integer with total magnetic moment per unit cell. The 100% spin-polarization at Fermi energy together with the total magnetic moment of 1.0 µ{sub B} for Mn{sub 2}CuSi and 2.0 µ{sub B} for Mn{sub 2}ZnSi per unit cell, predict that the materials follow M{sub T}=Z{sub T} – 28 Slater–Pauling rule. Both the materials under study exhibit half-metallicity with an energy gap in the spin-down channels. In the study, we predict a rather fine value of Seebeck coefficient. Further, the decreasing electrical conductivity with temperature shows a metallic character in spin-up configurations, while the electrical conductivity of spin-down states follows a semiconductor-like trend. - Highlights: • Half-metallic materials. • Highly spin-polarized. • Possess large conductivity in spin-up and large resistivity in spin-down channels. • Large Seebeck coefficient makes them suitable thermoelectric materials.

  1. Extratores para Cd, Cu, Cr, Mn, Ni, Pb e Zn em LATOSSOLOS tratados com biossólido e cultivados com milho Extractants for Cd, Cu, Cr, Mn, Ni, Pb and Zn in biossolid-amanded Oxisols cultivated with corn

    Directory of Open Access Journals (Sweden)

    Ana Rosa Martins dos Anjos

    2001-06-01

    in agriculture needs more information on plant availability of heavy metals added to soil by this waste. The efficiency of the chemical extractants HCl 0.1 mol L-1, DTPA-TEA pH 7.3, Mehlich 3 and aqua regia for the evaluation of Cd, Cu, Cr, Mn, Ni, Pb and Zn availability in biosolid-amended soils, was studied in a pot (0.5 m³ experiment using corn as test plant. The soils used were a dystrophic Typic Hapludox (LAd and a dystrophic Rhodic Hapludox (LVd. The statistic design consisted of: random blocks in a 4x4 factorial outline, 4 treatments (LVd+sludge, LVd, LAd+sludge, LAd, 4 extraction methods (HCl 0.1 mol L-1, Mehlich 3, DTPA-TEA 0.005 mol L-1 pH 7,3 and aqua regia and 4 replications. Seventy-eight Mg ha-1 of biosolids on dry base were applied every two months to the soils, one year before planting corn. In five applications 388 Mg ha-1 of biosolids were applied. The metal contents of the various parts of the plants were correlated with the contents removed by the extraction methods. The results show that the total contents of Cr, Cu, Mn, Ni, and Zn did not exceed the critical limits established by USEPA and the European Community regulations even at the biosolid application rate of 388 Mg ha-1. Mehlich 3 was an effective extractor only in the evaluation of the bioavailability of Cu and Zn in corn grown on soils treated with biosolids. Cd, Cr, Ni and Pb presented no availability to corn plants.

  2. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico; Evaluacion de los metales pesados Cr, Mn, Fe, Cu, Zn y Pb en sombrerillo de agua (Hydrocotyle ranunculoides) del curso alto del Rio Lerma, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G.; Avila P, P.; Tejeda, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Valdivia B, M.; Macedo M, G. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Zepeda G, C., E-mail: graciela.zarazua@inin.gob.mx [Universidad Autonoma del Estado de Mexico, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Estado de Mexico (Mexico)

    2013-07-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  3. Perspectives on the exploitation of CuZnAl alloys, FeMnSi-based alloys and ZrO{sub 2}-containing shape-memory ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, T.Y. [Shanghai Jiao Tong Univ. (St. Helena). School of Materials Science and Engineering

    2002-07-01

    Cu-Zn-Al alloys possess advantages for exploitation such as low cost, easy fabrication and excellent shape memory effect (SME). The deficiencies of Cu-Zn-Al shape memory alloys, i.e. the appearance of the stabilization of martensite, degradation of SME in prolonged application and the rather low fatigue life, can be overcome by various processing such as immediate up-quenching, alloying addition for retarding the incubation of bainite formation and grain refinement. Fe-Mn-Si based alloys are one-way shape memory material with high strength, high action temperatures, good workability and low cost. Addition of nitrogen or rare earth (RE) elements can considerably strengthen the austenite and lower the Neel temperature in Fe-Mn-Si alloys. Partial replacement of Mn with Cr and addition of RE elements to Fe-Mn-Si may reduce its stacking fault energy. Nitrogen and RE elements also lower the M{sub s} temperature of Fe-Mn-Si and Fe-Mn-Si-Cr, stabilizing the austenite after shape recovery. The newly developed Fe-25Mn-6Si-5Cr-0.14N alloy possesses not only a complete shape memory recovery with a recoverable strain of 3% through only one cycle of training, but also the nice corrosion resistance in aqueous solution of NaOH and NaCl. The SME of Fe-Mn-Si-RE is superior to that of Fe-Mn-Si, e.g. its recoverable strain is about two-fold larger than that of Fe-Mn-Si when the pre-strain {epsilon}>3%. The exploitation of the Fe-Mn-Si-Cr-N and Fe-Mn-Si-RE alloys as coupling materials seems to be foresighted. Studies on (8{proportional_to}12)mol%CeO{sub 2}-(0.25{proportional_to}0.75)mol%Y{sub 2}O{sub 3}-ZrO{sub 2} with various grain size and density after different sintering processes show that 8mol%CeO{sub 2}-0.5mol%Y{sub 2}O{sub 3}-ZrO{sub 2} fabricated by sintering at 1773 K for 6 hours exhibits best SME, i.e. a complete shape memory recovery and a recoverable strain of 1.2% at high temperatures (above 773 K). The shape memory ceramics 8Ce-0.5Y-TZP is worthy to be developed. (orig.)

  4. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe{sub 2}O{sub 4} (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India); Siva Prasada Reddy, P.; Sarala Devi, G. [Inorganic and Physical Chemistry Division, Indian Institute Chemical Technology, Hyderabad 500607 (India); Sathiyaraj, S. [Department of Chemistry, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India)

    2016-01-15

    Spinel ferrite (MnZnFe{sub 2}O{sub 4}, MnCuFe{sub 2}O{sub 4}, MnNiFe{sub 2}O{sub 4} and MnCoFe{sub 2}O{sub 4}) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe{sub 2}O{sub 3} after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe{sub 2}O{sub 4} ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG). - Highlights: • The egg white support to achieve sample with shorter reaction time. • Manganese plays a significant role in sensor response. • Nature of the ferrites was affected with increasing annealing temperature.

  5. The molecular characterizations of Cu/ZnSOD and MnSOD and its responses of mRNA expression and enzyme activity to Aeromonas hydrophila or lipopolysaccharide challenge in Qihe crucian carp Carassius auratus.

    Science.gov (United States)

    Kong, Xianghui; Qiao, Dan; Zhao, Xianliang; Wang, Li; Zhang, Jie; Liu, Dandan; Zhang, Hongxu

    2017-08-01

    Superoxide dismutases (SODs), as the prime antioxidant enzymes, present the first line of defense against oxidative stress caused by excessive reactive oxygen species (ROS) in organism. In the study, two distinct members of SOD family were cloned and analyzed in Qihe crucian carp Carassius auratus (designated as CaCu/ZnSOD and CaMnSOD, respectively). The full-length cDNA of CaCu/ZnSOD is 759 bp, containing a 5' -untranslated region (UTR) of 39 bp, a ORF (including stop codon, TAG) of 465 bp and a 3'-UTR of 255 bp. The ORF of CaCu/ZnSOD encodes a protein of 154 amino acids (aa), in which, two Cu/ZnSOD signature ((45)GFHVHAFGDNT(55) and (139)GNAGGRLACGVI(150)) and four conserved amino acids for Cu/Zn(2+)-binding sites (H64, H72, H81 and D84) were observed. The full-length CaMnSOD cDNA (960 bp) consists of a 5'-UTR of 114 bp, a ORF of 675 bp and a 3'-UTR of 231 bp, the ORF of CaMnSOD encodes a 224 aa protein with a 26 aa mitochondrial-targeting sequence (MTS) in the N-terminus, and four conserved amino acids for manganese binding (H52, H100, D185 and H189) were observed. Multiple alignment and the structural analysis revealed two Cu/ZnSOD signature motifs and a MnSOD signature motif as well as the invariant binding sites for Cu(2+)/Zn(2+) in CaCu/ZnSOD and Mn(2+) in CaMnSOD. The phylogenetic analysis indicated that CaCu/ZnSOD was homologous to cytosolic Cu/ZnSODs, and CaMnSOD was high similarity with mitochondrial MnSODs from other fish. The tissue distribution analysis demonstrated that CaCu/ZnSOD and CaMnSOD were highly expressed in liver, heart and muscle. The dynamic expressions of CaCu/ZnSOD and CaMnSOD were observed after the challenges with Aeromonas hydrophila or LPS, which generally increased in liver, gill, kidney and spleen, while, the mRNA expressions were down-regulated at some time points in head kidney. The enzyme activities increased after A. hydrophila or LPS challenge, compared to the control. In this study, the molecular structures and functional

  6. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry.

    Science.gov (United States)

    Rapp, Insa; Schlosser, Christian; Rusiecka, Dagmara; Gledhill, Martha; Achterberg, Eric P

    2017-07-11

    A rapid, automated, high-throughput analytical method capable of simultaneous analysis of multiple elements at trace and ultratrace levels is required to investigate the biogeochemical cycle of trace metals in the ocean. Here we present an analytical approach which uses a commercially available automated preconcentration device (SeaFAST) with accurate volume loading and in-line pH buffering of the sample prior to loading onto a chelating resin (WAKO) and subsequent simultaneous analysis of iron (Fe), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd), lead (Pb), cobalt (Co) and manganese (Mn) by high-resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS). Quantification of sample concentration was undertaken using isotope dilution for Fe, Zn, Cu, Ni, Cd and Pb, and standard addition for Co and Mn. The chelating resin is shown to have a high affinity for all analyzed elements, with recoveries between 83 and 100% for all elements, except Mn (60%) and Ni (48%), and showed higher recoveries for Ni, Cd, Pb, Co and Mn in direct comparison to an alternative resin (NOBIAS Chelate-PA1). The reduced recoveries for Ni and Mn using the WAKO resin did not affect the quantification accuracy. A relatively constant retention efficiency on the resin over a broad pH range (pH 5-8) was observed for the trace metals, except for Mn. Mn quantification using standard addition required accurate sample pH adjustment with optimal recoveries at pH 7.5 ± 0.3. UV digestion was necessary to increase recovery of Co and Cu in seawater by 15.6% and 11.4%, respectively, and achieved full break-down of spiked Co-containing vitamin B12 complexes. Low blank levels and detection limits could be achieved (e.g., 0.029 nmol L(-1) for Fe and 0.028 nmol L(-1) for Zn) with the use of high purity reagents. Precision and accuracy were assessed using SAFe S, D1, and D2 reference seawaters, and results were in good agreement with available consensus values. The presented method is ideal for

  7. Utilização de pelos de animais silvestres para monitoramento ambiental de Cd, Cr, Cu, Fe, Mn, Pb e Zn Utilization of wild animal hair for the environmental monitoring of Cd, Cr, Cu, Fe, Mn, Pb e Zn

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Hoff Brait

    2009-01-01

    Full Text Available This study investigates the use of wild animal hair of C. brachyurus, C. thous and L. pardalis as biomonitors of trace metal at Parque Nacional das Emas, Brazil. Results reveal a strong correlation between Cd and Pb as well as Cu and Zn, which suggests a single source of emission. Most metals showed a lower or equal concentration than those obtained in previous studies. The research shows that monitoring may be performed only with Zn, Pb, Cd, and Cr because of statistical similarity and of a non-natural occurrence of large amounts of the material under analysis.

  8. Concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, and Zn in uruguayan rice determined by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mario E. Rivero Huguet

    2011-04-01

    Full Text Available The United Nations General Assembly declared the year 2004 the International Year of Rice and the concept "Rice is life". The largest nutritional problems occurring globally are protein-energy malnutrition, and Ca, Fe, I, Zn, and vitamin A deficiency. In this report, 49 rice samples (Oryza sativa L. were digested by dry ashing in order to determine As, Cd, Cr, and Pb by ETA-AAS; while Ca, Co, Cu, Fe, K, Mg, Mo, Mn, Na, Ni, and Zn were determined by FAAS; and Hg by CV-AAS using microwave-assisted decomposition. The following concentration ranges were obtained for Ca (9.1-15 mg/100 g, Cd (2.30-4.12 µg/kg, Co (41-60 µg/kg, Cu (1.33-180 mg/kg, Fe (4.41-7.15 mg/kg, K (167-217 mg/100 g, Mg (45-121 mg/100 g, Mo (0.52-0.97 mg/kg, Mn (5.45-25.4 mg/kg, Na (0.95-2.50 mg/100g, Ni (0.53-0.72 mg/kg, and Zn (5.86-12.6 mg/kg. Mean recoveries of elements from fortified rice were: 87±12% for As, 95.3±8.9% for Ca, 106.2±7.7% for Cd, 103.3±6.5% for Co, 89.4±8.1% for Cr, 99.3±4.6% for Cu, 103±10% for Fe, 96.3±9.3% for Hg, 95.4±12% for K, 98.3±8.0% for Mg, 93.4±7.8% for Mo, 95.3±9.9% for Mn, 89±12% for Na, 90.3±9.7% for Ni, 91.2±5.5% for Pb and 92.0±9.4% for Zn. The concentrations of the minerals and microelements studied fall within the typical range of rice grown around the world. Potassium was the most abundant mineral, followed by Mg and Ca; among microelements, the concentrations of Cu, Fe, Mo, Mn, Na, and Zn in rice were outstanding. It was also found that the milling process highly affects the K, Mg, Mn, Na, and Zn concentrations, while it has little influence on Ca, Co, Cu, and Fe. On the other hand, there is a loss of Ca, Fe, and Mn during the parboiling process. Recent studies have shown the potential to exploit the genetic variation of rice seeds with regard to the concentration of some minerals (Ca, Fe, Zn, etc. without affecting yield or adding new traits. All rice samples tested showed lower levels of As, Cd, Hg, and Pb in comparison

  9. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.

    Science.gov (United States)

    Chandra, Ram; Yadav, Sangeeta

    2011-07-01

    A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater.

  10. Drinking water interlaboratory ring test. Part IV. Results of some cationic analytes. Al, Zn, Cd, Cr, Pb, Ni, Mn, Fe, Cu and V; Circuito interlaboratorio Unichim sulle acque potabili. Parte IV. Risultati di alcuni cationi metallici. Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu e V

    Energy Technology Data Exchange (ETDEWEB)

    Cavaterra, E.; Divo, C.; Bottazzini, N. [Unichim, Milan (Italy); Alava, F. [Bergamo Ambiente e Servizi, Bergamo (Italy); Bettinelli, M. [Electric Power Production Company, Piacenza (Italy); Bonfiglioli, F. [Azienda Mediterranea Gas e Acqua SpA, Genoa (Italy)

    2002-01-01

    In this paper results of statistical treatment of experimental data obtained in some cycles of an interlaboratory ring test of content of Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu and V in drinking water are reported. Means, variances and parameters of precision and accuracy of some analytical techniques and methods employed by laboratories participating to the ring test will be reported and discussed. [Italian] Nel presente lavoro vengono riportati i risultati dell'elaborazione statistica dei dati sperimentali ottenuti in alcuni cicli del circuito interlaboratorio e relativi ai seguenti cationi metallici: Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu e V. Vengono riportati e discussi i valori medi e la varianza ed infine i dati di accuratezza e precisione delle tecniche o metodi d'analisi impiegati dai laboratori partecipanti al circuito.

  11. The Performance Study on M-(CuO-ZnO-MnO2)/ZSM-5 Catalyst Synthesizing Diethyl Ether%M-(CuO-ZnO-MnO2)/ZSM-5催化剂合成二甲醚性能研究

    Institute of Scientific and Technical Information of China (English)

    张四方; 渠静

    2009-01-01

    用浸渍法制备了以(CuO-ZnO-MnO2)/ZSM-5为基体,含Co、Cd、Ni、Ce、Zr助剂的系列催化剂,在连续加压微分反应器中考查了它们对甲醇脱水合成二甲醚催化性能.研究发现:CuO-ZnO-MnO2-NiO/ZSM-5在温度280℃左右、压强为2.2 MPa下催化性能最好,二甲醚转化率达42.935%.

  12. Bioavailability of Cu, Zn and Mn from Mineral Chelates or Blends of Inorganic Salts in Growing Turkeys Fed with Supplemental Riboflavin and/or Pyridoxine.

    Science.gov (United States)

    Salami, S A; Oluwatosin, O O; Oso, A O; Fafiolu, A O; Sogunle, O M; Jegede, A V; Bello, F A; Pirgozliev, V

    2016-09-01

    An 84-day feeding trial was conducted in growing turkeys to measure the bioavailability of Cu, Zn and Mn from a commercial mineral chelate and corresponding inorganic salts in composite feeds containing supplemental riboflavin (B2) and/or pyridoxine (B6). A total of 320, 28-day-old British United Turkeys (BUT) were assigned to eight dietary treatments in a 2 × 4 factorial arrangement comprising two trace mineral sources: chelated trace mineral blend (CTMB) and its corresponding inorganic trace minerals blend (ITMB) fed solely or with supplements of vitamin B2 (8 ppm) or B6 (7 ppm) or 8 ppm B2 + 7 ppm B6. Each treatment was replicated four times with 10 turkeys each. It was observed that turkeys fed with diets supplemented solely with ITMB elicited higher (P < 0.05) Zn excretion than their counterparts fed with diets containing ITMB with supplements of vitamins B2 and/or B6. Manganese retention was lower (P < 0.05) in turkeys fed with diets supplemented solely with ITMB than those fed with diets containing vitamins B2 and/or B6 additives. Combination of CTMB or ITMB with B6 improved (P < 0.05) the concentration of Mn in the liver and Cu in the bone. It was concluded that the minerals in CTMB were more available to the animals than ITMB. Furthermore, vitamins B2 and/or B6 supplementation improved the bioavailability of the inorganic Cu, Zn and Mn in growing turkeys and tended to reduce the concentration of these trace elements in birds' excreta.

  13. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  14. A Detailed Observation on Successive Stress-Induced Martensite Transformation in CuAlMnZnZr Alloy Polycrystalline Above Af

    Institute of Scientific and Technical Information of China (English)

    Li Zhou; Wang Ming-pu; Tang Wang; Guo Ming-xing

    2004-01-01

    The successive stress-induced martensite morphologies and mechanisms in polycrystalline CuAlMnZnZr samples have been examined. By applying stress to the uniform β1 matrix, two or more orientation plates of M18R martensite are stress-induced in a grain. With further increasing stress, one orientation plate depletes the other and coalesces into a single region in some view field. The mechanisms by which these are developed have been ascertained, and include variant-variant coalescence, stress-induced martensite to martensite transformation and the complicated cross-like stress-induced martensite formation.

  15. Tribological studies of composite material based on CuZn38Al2Mn1Fe brass strengthened with δ-alumina fibres

    Directory of Open Access Journals (Sweden)

    J. W. Kaczmar

    2010-10-01

    Full Text Available The results of tribological studies (friction coefficient, wear resistance of the frictional couple of composite material based on CuZn38Al2Mn1Fe brass strengthened with δ-alumina fibres (Saffil and cast iron are shown in this paper. The wear investigations were conducted applying the tribological pin-on-disc tester and the friction forces between composite materials containing 10 and 20 vol. % of δ-alumina fibres (Saffil and cast iron were registered. Wear was determined on the base of the specimen mass loss after 1, 3,5 and 8.5 km of friction distance.

  16. Microstructure and diffraction pattern changes resulted from long-term aging of martensite CuZnAlMnNi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Microstructures of a CuZnAlMnNi shape memory alloy in the as-quenched and long-term aged conditions were investigated by transmission electron microscopy. Aged for one year in martensite phase, an equilibrium (-phase with fcc structure was observed in the M18R martensite matrix, accompanied by the appearance of a novel diffraction pattern. By analysis, it was suggested that the novel pattern results from the (-phase and the martensite matrix remaining in seven fine plates which produce intense secondary diffraction effect when the diffraction beams enter from one phase into another.

  17. Preparation of Cu doped Mn-Zn ferrite by spent Zn-Mn batteries%废旧锌锰电池制备Cu掺杂Mn-Zn铁氧体

    Institute of Scientific and Technical Information of China (English)

    席国喜; 李伟伟; 乔祎

    2007-01-01

    以硝酸溶解废旧碱性锌锰电池所得的溶液为原料,以酒石酸为凝胶剂,采用sol-gel法制备出一系列Cu掺杂Mn-Zn铁氧体(Mn0.6-x/2Zn0.4-x/2CuxFe2O4, x = 0.1, 0.2, 0.3和0.4).经XRD、VSM测试,结果表明:Cu掺杂不仅没有改变Mn-Zn铁氧体的相结构,而且有利于尖晶石结构的形成;Cu掺杂后Mn-Zn铁氧体的Ms、Mr和Hc的变化趋势,都是先增大后减小,最适宜的掺杂量x为0.1.此时,Ms为2.66×105 A/m,Mr为5.73×104 A/m,Hc为1.6/π×104 A/m.

  18. Study of the analytic quality in the determinations of Cr, Fe, Mn, Cu, Zn, Pb and Hg through conventional and nuclear analytical techniques in mosses of the MATV; Estudio de la calidad analitica en las determinaciones de Cr, Fe, Mn, Cu, Zn, Pb y Hg a traves de tecnicas analiticas nucleares y convencionales en musgos de la ZMVT

    Energy Technology Data Exchange (ETDEWEB)

    Caballero S, B.

    2013-07-01

    To evaluate the environmental risks of air pollution and to facilitate the decision-making for control, is necessary to have the capacity to generate data with analytical quality. A comparison between nuclear (Neutron activation analysis and total reflection X-ray fluorescence spectrometry) and no nuclear analytical techniques (atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry) for simultaneous determination of metal content (Cr, Cu, Fe, Hg, Mn, Pb and Zn) in mosses from Metropolitan Area of the Toluca Valley (MATV) was performed. Epiphytic mosses (Fabriona ciliaris and Leskea angustata) were sampled in two campaigns, 16 sites (urban, transition and natural) and were prepared for each technique. The biological certified reference materials were used for the quality control and to evaluate accuracy, precision, linearity, detection and quantification limits. Results show that nuclear analytical techniques and no nuclear applied in chemical analysis of Cr, Cu, Fe, Hg, Mn, Pb and Zn in moss from MATV are comparable and therefore all of these can potentially be used for this purpose. However, if its considered both, the performance parameters and economic/operational characteristics is widely recommended inductively coupled plasma optical emission spectrometry, conventional analytical technique, which showed the highest analytical grade quality. Also were observed spatial and temporal variations in the concentrations of Cr, Cu, Fe, Hg, Mn, Pb and Zn in mosses from MATV and was discussed its potential origin. The urban sites had the highest concentration of anthropogenic elements as Cr, Cu, Fe, Hg, Pb and Zn because are strongly impacted by roads with high vehicle traffic. (Author)

  19. Cu(II), Zn(II) andMn(II) complexes of poly(methyl vinyl ether-alt-maleic anhydride). Synthesis, characterization and thermodynamic parameters

    Indian Academy of Sciences (India)

    Hidayet Mazi; Ali Gulpinar

    2014-01-01

    The complexes of poly(methyl vinyl ether-alt-maleic anhydride) (poly(MVE-alt-MA)) with Zn(II), Mn(II) and Cu(II) ions were synthesized from the reaction of the aqueous solution of copolymer and metal(II) chlorides at different temperatures ranging from 25° to 40°C. Elemental analysis of themetal-polymer complexes suggests that the metal to ligand ratio is 1:1. The formation constants of each complex were determined by the mol-ratio method. UV-Vis studies showed that the complex formation tendency increased in the following order: Zn(II) > Cu(II) > Mn(II). This order was confirmed by the Irving-William series and Pearson’s classification. The IR spectral data indicated the metal ions to be coordinated through the hydroxyl groups of the hydrolysed maleic anhydride. The intrinsic viscosity and thermal properties of the copolymer and metal-polymer complexes and their thermal stability are discussed.

  20. Modulation of the Activities of Catalase, Cu-Zn, Mn Superoxide Dismutase, and Glutathione Peroxidase in Adipocyte from Ovariectomised Female Rats with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Rebeca Cambray Guerra

    2014-01-01

    Full Text Available The aim of this study was to evaluate the association between estrogen removal, antioxidant enzymes, and oxidative stress generated by obesity in a MS female rat model. Thirty two female Wistar rats were divided into 4 groups: Control (C, MS, MS ovariectomized (Ovx, and MS Ovx plus estradiol (E2. MS was induced by administering 30% sucrose to drinking water for 24 weeks. After sacrifice, intra-abdominal fat was dissected; adipocytes were isolated and lipid peroxidation, non-enzymatic antioxidant capacity, and the activities of Cu-Zn and Mn superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx were determined. There were no significant differences in the activities of Cu-Zn, Mn SOD, CAT, and GPx between the C and MS groups, but in the MS Ovx group there was a statistically significant decrease in the activities of these enzymes when compared to MS and MS Ovx+E2. The increased lipid peroxidation and nonenzymatic antioxidant capacity found in MS Ovx was significantly decreased when compared to MS and MS Ovx+E2. In conclusion, the removal of E2 by ovariectomy decreases the activity of the antioxidant enzymes in the intra-abdominal tissue of MS female rats; this is reflected by increased lipid peroxidation and decreased nonenzymatic antioxidant capacity.

  1. Apply Woods Model in the Predictions of Ambient Air Particles and Metallic Elements (Mn, Fe, Zn, Cr, and Cu at Industrial, Suburban/Coastal, and Residential Sampling Sites

    Directory of Open Access Journals (Sweden)

    Guor-Cheng Fang

    2012-01-01

    Full Text Available The main purpose for this study was to monitor ambient air particles and metallic elements (Mn, Fe, Zn, Cr, and Cu in total suspended particulates (TSPs concentration, dry deposition at three characteristic sampling sites of central Taiwan. Additionally, the calculated/measured dry deposition flux ratios of ambient air particles and metallic elements were calculated with Woods models at these three characteristic sampling sites during years of 2009-2010. As for ambient air particles, the results indicated that the Woods model generated the most accurate dry deposition prediction results when particle size was 18 μm in this study. The results also indicated that the Woods model exhibited better dry deposition prediction performance when the particle size was greater than 10 μm for the ambient air metallic elements in this study. Finally, as for Quan-xing sampling site, the main sources were many industrial factories under process around these regions and were severely polluted areas. In addition, the highest average dry deposition for Mn, Fe, Zn, and Cu species occurred at Bei-shi sampling site, and the main sources were the nearby science park, fossil fuel combustion, and Taichung thermal power plant (TTPP. Additionally, as for He-mei sampling site, the main sources were subjected to traffic mobile emissions.

  2. Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2016-05-01

    Full Text Available The effects of transition metals on the hydrophobicity of nano–structured layered double hydroxides (LDHs and the compatibility of LDHs/ethylene vinyl acetate (EVA composites have seldom been reported. NiMgAl–LDHs slightly surface–modified with stearate and doped with transition metal cations (Mn2+, Co2+, Cu2+, Zn2+ are investigated. Compared to the pure EVA, not only were the maximal degradation–rate temperatures (Tmax of the ethylene–based chains enhanced, but also the smoke production rate (SPR and the production rate of CO (COP were sharply decreased for all the composites. Most importantly, a new flame retardant mechanism was found, namely the peak heat release rate (pk-HRR time, which directly depends on the peak production rate of CO2 (pk-CO2 time for EVA and all composites by cone calorimeter test. Moreover, the Mn–doped LDH S–NiMgAl–Mn shows more uniform dispersion and better interfacial compatibility in the EVA matrix. The cone calorimetric residue of S–NiMgAl–Mn/EVA has the intumescent char layer and the compact metal oxide layer. Therefore, S–NiMgAl–Mn/EVA shows the lowest pk-HRR and the longest pk-HRR time among all the composites.

  3. Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function.

    Science.gov (United States)

    Osorio, J S; Trevisi, E; Li, C; Drackley, J K; Socha, M T; Loor, J J

    2016-03-01

    The physiologic and metabolic stresses that dairy cows experience during the transition into early lactation can promote oxidative stress, inflammation, and immune dysfunction. Optimal supply of micronutrients such as trace minerals (e.g., Zn, Mn, Cu, and Co) via more bioavailable forms (e.g., AA complexes) might minimize these negative effects. Multiparous Holstein cows were enrolled at 60 d before dry-off (~110 d before calving) and remained on experiment until 30 d in milk (DIM). Cows were offered a common diet supplemented entirely with inorganic trace minerals (INO) from -110 to -30 d before calving. From -30 to calving cows received a common prepartal [1.5 Mcal/kg of dry matter (DM), 15% crude protein] diet, and from calving to 30 DIM a common postpartal (1.76 Mcal/kg of DM, 18% crude protein) diet. Both diets were partially supplemented with an INO mix of Zn, Mn, and Cu to supply 35, 45, and 6 mg/kg, respectively, of the total diet DM. Cows were assigned to treatments in a randomized complete block design to receive an oral bolus with a mix of INO (n=21) or organic AA complexes (AAC; n=16) of Zn, Mn, Cu, and Co to achieve supplemental levels of 75, 65, 11, and 1mg/kg, respectively, in the total diet DM. Inorganic trace minerals were provided in sulfate form and AAC were supplied via Availa Zn, Availa Mn, Availa Cu, and COPRO (Zinpro Corp., Eden Prairie, MN). Liver tissue was harvested on -30, -15, 10, and 30 d, and blood samples for biomarker analyses were obtained more frequently from -30 to 30 DIM. Short-term changes in blood ketones were measured via Precision Xtra (Abbott Diabetes Care, Alameda, CA) every other day from 1 to 15 d postpartum. Prepartal DM intake was lower in AAC cows. In contrast, a tendency for a diet by time (D × T) interaction resulted in greater postpartal DM intake of approximately 2 kg/d in cows fed AAC. Milk and milk protein yield had a D × T interaction because AAC cows produced approximately 3.3 kg/d more milk and 0.14 kg

  4. Assessment of heavy metal (Cu, Ni, Fe, Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus.

    Science.gov (United States)

    Javed, Mehjbeen; Usmani, Nazura

    2013-01-01

    The present study was conducted to examine the contamination of rivulet situated at Kasimpur, Aligarh (27.218° N; 79.378° E). It receives the wastewater of Harduaganj Thermal Power Plant (HTPS) containing fly ash and heavy metals. Among the heavy metals estimated in the rivulet water, Fe (8.71 mgL(-1)) was present in the highest concentration followed by Cu (0.86 mgL(-1)), Zn (0.30 mgL(-1)) Mn (0.21 mgL(-1)), Ni (0.12 mgL(-1)), Co (0.11 mgL(-1)) and Cr (0.10 mgL(-1)). The values for the heavy metals such as Fe, Ni and Mn were beyond the limits set by UNEPGEMS. Bioaccumulation of these heavy metals was detected in tissues such as gills, liver, kidney, muscle and integument of the fish Mastacembelus armatus. Accumulation of Fe (213.29 - 2601.49 mgkg(-1).dw) was highest in all the organs. Liver was the most influenced organ and integument had the least metal load. The accumulation of Fe, Zn, Cu and Mn, observed in the tissues were above the values recommended by FAO/WHO. Biochemical estimation related to blood glucose, liver and muscle glycogen conducted showed significant (p < 0.01) elevation in blood glucose content over control (17.73%), whereas liver glycogen dropped significantly (p < 0.01) over control (-89.83%), and similarly muscle glycogen also decreased significantly (p < 0.05) over control (-71.95%), suggesting enhanced glycolytic capacity to fuel hepatic metabolism. Histopathological alterations were also observed in selected organs (gills, liver and kidney) of Mastacembelus armatus.

  5. Efeitos da suplementação de fitase sobre a disponibilidade aparente de Mg, Ca, Zn, Cu, Mn e Fe em alimentos vegetais para a tilápia-do-nilo Effects of phytase supplementation on apparent availability of Mg, Ca, Zn, Cu, Mn, and Fe of plant feedstuffs for nile tilapia

    Directory of Open Access Journals (Sweden)

    Giovani Sampaio Gonçalves

    2005-12-01

    Full Text Available Cem juvenis de tilápia-do-nilo (Oreochromis niloticus; PV = 100.0 ± 5.0 g foram distribuídos em 10 tanques-rede com o objetivo de avaliar o efeito da suplementação da enzima fitase (0, 1.000 e 2.000 UFA/kg sobre a disponibilidade de minerais em alguns alimentos energéticos (milho, milho extrusado, farelo de trigo, farelo de arroz e farelo de sorgo e protéicos (farelo de soja extrusado, farelo de soja, farelo de girassol, farelo de algodão e glúten de milho utilizados na alimentação de tilápia-do-nilo (Oreochromis niloticus. Para determinação dos coeficientes de disponibilidade aparente (CDA do cálcio (Ca, magnésio (Mg, zinco (Zn, cobre (Cu, ferro (Fe e manganês (Mn, foram confeccionadas 31 rações, marcadas com 0,10% de óxido de crômio III uma referência (ração purificada e 30 contendo os dez alimentos e os diferentes níveis de suplementação da enzima fitase. O CDA dos nutrientes foi calculado com base no teor de crômio da ração e das fezes. A fitase aumenta, nos vegetais, a disponibilidade do Mg, Cu, Zn e Mn, os quais apresentam tendência diferenciada, em razão do seu valor biológico e do nível de suplementação de enzima.One hundred Nile tilapia juveniles (Oreochromis niloticus; BW= 100.0 ± 5.0 g were assigned to 10 experimental cages to evaluate the effects of phytase supplementation (0, 1,000, and 2,000 FTU/kg on calcium (Ca, magnesium (Mg, zinc (Zn, copper (Cu, iron (Fe and manganese (Mn availability of ten feedstuffs: five energetic (corn, extruded corn, wheat meal, rice meal and low-tannin sorghum and five protein (extruded soybean, soybean meal, sunflower meal, cottonseed meal and corn gluten meal. As reference, an albumin and gelatin-based diet [with 0.10 % chromic oxide (III as external marker] was fed to the juveniles. Thirty-one diets (one reference and 30 based on all feedstuffs and increasing levels of phytase were formulated to determine the coefficients of apparent availability of minerals (Mg

  6. Assessment of heavy metal (Cu, Ni, Fe, Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus

    OpenAIRE

    Javed, Mehjbeen; Usmani, Nazura

    2013-01-01

    The present study was conducted to examine the contamination of rivulet situated at Kasimpur, Aligarh (27.218° N; 79.378° E). It receives the wastewater of Harduaganj Thermal Power Plant (HTPS) containing fly ash and heavy metals. Among the heavy metals estimated in the rivulet water, Fe (8.71 mgL-1) was present in the highest concentration followed by Cu (0.86 mgL-1), Zn (0.30 mgL-1) Mn (0.21 mgL-1), Ni (0.12 mgL-1), Co (0.11 mgL-1) and Cr (0.10 mgL-1). The values for the heavy metals such a...

  7. Concentrations of Mn, Fe, Cu, Zn, Cr, Cd, Pb, Ni in selected Nigerian tubers, legumes and cereals and estimates of the adult daily intakes.

    Science.gov (United States)

    Akinyele, I O; Shokunbi, O S

    2015-04-15

    This study was designed to determine the levels of microminerals (manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr)) and heavy metals (cadmium (Cd), lead (Pb) and nickel (Ni)) in some tubers, legumes and cereals obtained from the markets in Abeokuta city, South-West Nigeria. The food samples were digested by dry ashing procedure and their minerals were determined by atomic absorption spectrophotometer. The results show mean values of 1.67-32.00, 7.25-61.58, 1.59-10.56, 6.65-46.99, 0.02-0.58, legumes and cereals from various parts of the world. The daily intakes of the metals through tubers, legumes and cereals were found to be lower than the provisional tolerable daily intakes proposed by Joint FAO/WHO Expert Committee on Food Additives.

  8. Cr(III,Mn(II,Fe(III,Co(II,Ni(II,Cu(II and Zn(II Complexes with Diisobutyldithiocarbamato Ligand

    Directory of Open Access Journals (Sweden)

    Mohammad Tarique

    2011-01-01

    Full Text Available The synthesis of sulphur and nitrogen containing dithiocarbamato ligand derived from diisobutylamine as well as its coordination compounds with 3d series transition metals is presented. These synthesized compounds were characterized on the basis of elemental analysis, conductometric measurements and IR spectral studies. The analytical data showed the stoichiometry 1:2 and 1:3 for the compounds of the types ML2 {M=Mn(II, Co(II, Ni(II, Cu(II and Zn(II} and M'L3{M'=Cr(III and Fe(III} respectively. The conductometric measurements proved the non-electrolytic behaviour of all the compounds. The bidentate nature of dithiocarbamato moiety was confirmed on the basis of IR spectral data.

  9. On the use of Arion ater to biomonitor environmental pollution by Cd, Cu, Fe, Mn and Zn, with a special insight into the population variability.

    Science.gov (United States)

    Crespo, D; Bolón, M; Aboal, J R; Fernández, J A; Carballeira, A

    2015-05-01

    The suitability of Arion ater as a biomonitor of Cd, Cu, Fe, Mn and Zn was assessed. Individual specimens were collected from 22 sampling sites. Slugs from 3 of the sites were analysed individually, whereas the slugs from the other sites were pooled to make a composite sample for each site. The tissue burdens did not differ between individuals from contaminated and uncontaminated sites, and there was no gradient of bioaccumulation of any of the elements in the surroundings of the smelter. Analysis of the individual specimens from the 3 sites revealed very high coefficients of variation for the metal concentrations. As a result of the high level of variation, large numbers of slugs are required to produce a low error in characterizing the mean concentration at each site. Furthermore, as a consequence of the similar mean concentrations and high variability, large numbers of samples are needed to detect significant differences between pairs of sites.

  10. Immunometabolic Status during the Peripartum Period Is Enhanced with Supplemental Zn, Mn, and Cu from Amino Acid Complexes and Co from Co Glucoheptonate.

    Directory of Open Access Journals (Sweden)

    Fernanda Batistel

    Full Text Available The peripartum (or transition period is the most-critical phase in the productive life of lactating dairy cows and optimal supply of trace minerals through more bioavailable forms could minimize the negative effects associated with this phase. Twenty Holstein cows received a common prepartal diet and postpartal diet. Both diets were partially supplemented with an inorganic (INO mix of Zn, Mn, and Cu to supply 35, 45, and 6 ppm, respectively, of the diet dry matter (DM. Cows were assigned to treatments in a randomized completed block design, receiving an daily oral bolus with INO or organic trace minerals (AAC Zn, Mn, Cu, and Co to achieve 75, 65, 11, and 1 ppm supplemental, respectively, in the diet DM. Liver tissue and blood samples were collected throughout the experiment. The lower glutamic-oxaloacetic transaminase concentration after 15 days in milk in AAC cows indicate lower hepatic cell damage. The concentration of cholesterol and albumin increased, while IL-6 decreased over time in AAC cows compared with INO indicating a lower degree of inflammation and better liver function. Although the acute-phase protein ceruloplasmin tended to be lower in AAC cows and corresponded with the reduction in the inflammatory status, the tendency for greater serum amyloid A concentration in AAC indicated an inconsistent response on acute-phase proteins. Oxygen radical absorbance capacity increased over time in AAC cows. Furthermore, the concentrations of nitric oxide, nitrite, nitrate, and the ferric reducing ability of plasma decreased with AAC indicating a lower oxidative stress status. The expression of IL10 and ALB in liver tissue was greater overall in AAC cows reinforcing the anti-inflammatory response detected in plasma. The greater overall expression of PCK1 in AAC cows indicated a greater gluconeogenic capacity, and partly explained the greater milk production response over time. Overall, feeding organic trace minerals as complexed with amino acids

  11. From which soil metal fractions Fe, Mn, Zn and Cu are taken up by olive trees (Olea europaea L., cv. 'Chondrolia Chalkidikis') in organic groves?

    Science.gov (United States)

    Chatzistathis, T; Papaioannou, A; Gasparatos, D; Molassiotis, A

    2017-12-01

    Organic farming has been proposed as an alternative agricultural system to help solve environmental problems, like the sustainable management of soil micronutrients, without inputs of chemical fertilizers. The purposes of this study were: i) to assess Fe, Mn, Zn and Cu bioavailability through the determination of sequentially extracted chemical forms (fractions) and their correlation with foliar micronutrient concentrations in mature organic olive (cv. 'Chondrolia Chalkidikis') groves; ii) to determine the soil depth and the available forms (fractions) by which the 4 metals are taken up by olive trees. DTPA extractable (from the soil layers 0-20, 20-40 and 40-60 cm) and foliar micronutrient concentrations were determined in two organic olive groves. Using the Tessier fractionation, five fractions, for all the metals, were found: exchangeable, bound to carbonates (acid-soluble), bound to Fe-Mn oxides (reducible), organic (oxidizable), as well as residual form. Our results indicated that Fe was taken up by the olive trees as organic complex, mainly from the soil layer 40-60 cm. Manganese was taken up from the exchangeable fraction (0-20 cm); Zinc was taken up as organic complex from the layers 0-20 and 40-60 cm, as well as in the exchangeable form from the upper 20 cm. Copper was taken up from the soil layers 0-20 and 40-60 cm as soluble organic complex, and as exchangeable ion from the upper 20 cm. Our data reveal the crucial role of organic matter to sustain metal (Fe, Zn and Cu) uptake -as soluble complexes-by olive trees, in mature organic groves grown on calcareous soils; it is also expected that these data will constitute a thorough insight and useful tool towards a successful nutrient and organic C management for organic olive groves, since no serious nutritional deficiencies were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Immunometabolic Status during the Peripartum Period Is Enhanced with Supplemental Zn, Mn, and Cu from Amino Acid Complexes and Co from Co Glucoheptonate

    Science.gov (United States)

    Batistel, Fernanda; Osorio, Johan S.; Ferrari, Annarita; Trevisi, Erminio; Socha, Michael T.; Loor, Juan J.

    2016-01-01

    The peripartum (or transition) period is the most-critical phase in the productive life of lactating dairy cows and optimal supply of trace minerals through more bioavailable forms could minimize the negative effects associated with this phase. Twenty Holstein cows received a common prepartal diet and postpartal diet. Both diets were partially supplemented with an inorganic (INO) mix of Zn, Mn, and Cu to supply 35, 45, and 6 ppm, respectively, of the diet dry matter (DM). Cows were assigned to treatments in a randomized completed block design, receiving an daily oral bolus with INO or organic trace minerals (AAC) Zn, Mn, Cu, and Co to achieve 75, 65, 11, and 1 ppm supplemental, respectively, in the diet DM. Liver tissue and blood samples were collected throughout the experiment. The lower glutamic-oxaloacetic transaminase concentration after 15 days in milk in AAC cows indicate lower hepatic cell damage. The concentration of cholesterol and albumin increased, while IL-6 decreased over time in AAC cows compared with INO indicating a lower degree of inflammation and better liver function. Although the acute-phase protein ceruloplasmin tended to be lower in AAC cows and corresponded with the reduction in the inflammatory status, the tendency for greater serum amyloid A concentration in AAC indicated an inconsistent response on acute-phase proteins. Oxygen radical absorbance capacity increased over time in AAC cows. Furthermore, the concentrations of nitric oxide, nitrite, nitrate, and the ferric reducing ability of plasma decreased with AAC indicating a lower oxidative stress status. The expression of IL10 and ALB in liver tissue was greater overall in AAC cows reinforcing the anti-inflammatory response detected in plasma. The greater overall expression of PCK1 in AAC cows indicated a greater gluconeogenic capacity, and partly explained the greater milk production response over time. Overall, feeding organic trace minerals as complexed with amino acids during the

  13. Efeito da adição de fontes de matéria orgânica como amenizantes do efeito tóxico de B, Zn, Cu, Mn e Pb no cultivo de Brassica juncea Effect of sources of organic matter in the alleviation of the toxic effects of B, Zn, Cu, Mn and Pb to Brassica Juncea

    Directory of Open Access Journals (Sweden)

    Glaucia Cecília Grabrielli dos Santos

    2007-08-01

    Full Text Available Atividades humanas como mineração, siderurgia e aplicação de fertilizantes tornam a poluição por metais sério problema ambiental na atualidade. A fitorremediação - uso de plantas e da microbiota, associada ou não a adições de amenizantes de solo, para extrair, seqüestrar e, ou, reduzir a toxicidade dos poluentes - tem sido descrita como uma tecnologia efetiva, não-destrutiva, econômica e socialmente aceita para remediar solos poluídos. O objetivo deste trabalho foi avaliar a eficiência da mostarda na remoção de Zn, Cu, Mn, Pb e B de um solo contaminado e o efeito da adição de materiais orgânicos na redução da disponibilidade de metais pesados e B para essa planta. O trabalho foi realizado em casa de vegetação, com delineamento inteiramente casualizado em esquema fatorial 3 x 5 com quatro repetições, utilizando 0, 7, 14, 21 e 28 g kg-1 de C no solo. Os materiais orgânicos utilizados foram: solomax, turfa e concentrado húmico mineral (CHM. A adição de turfa e concentrado húmico mineral reduziu os teores de Zn, Cu, Pb e B extraíveis do solo e na parte aérea da mostarda; contudo, essa redução não foi suficiente para impedir os efeitos fitotóxicos dos elementos. A adição dos materiais orgânicos promoveu aumento nos teores de Mn no solo, entretanto apenas o solomax proporcionou aumento na concentração do elemento na parte aérea das plantas. Os efeitos da turfa e do CHM sobre a disponibilidade de Zn, Cu, Mn, Pb e B no solo, a concentração na parte aérea e o crescimento das plantas indicaram o potencial desses materiais como agentes amenizantes de toxicidade e do solomax como auxiliar em programas de fitoextração induzida.As a result of anthropogenic activities such as mining, metal industry and agricultural fertilizer application, metal pollution has become one of the most serious environmental problems of today. Phytoremediation denotes the use of plants and micro-biota, together or without soil

  14. Evaluación de algunos métodos para la extracción de los micronutrimentos B, Fe, Zn, Mn y Cu en suelos de las zonas norte y centro del Valle del Cauca

    Directory of Open Access Journals (Sweden)

    García O. Álvaro

    1988-12-01

    Full Text Available Para evaluar el contenido de Fe, Cu, Mn y Zn disponibles en el suelo se usaron: EDTA 0.01M + NaHCD3 0.5 N, HCI 0.05 N + H2SD4, DTPA y HCI 0.1N. El B disponible fue extraído con Ca(H2PD42H20 0.008 M, HCI 0.05N y NH40Ac pH 4.8. Para la determinación de los micronutrimentos en el material vegetal se usaron como soluciones para la digestión el metanol ácido y la mezcla nítrico perclórica para Fe, Mn, Cu y Zn; para el B se usó el método de Hunter. El DTP A resultó adecuado para evaluar Fe y Cu, el doble ácido para Mn, el NaHC03 + EDTA para el Zn y el HCI 0.05N y Ca (H2P042 H20 para evaluar el B disponible en el suelo. La mezcla nítrico perclórica resultó más apropiada para la determinación de los nutrimentos en los tejidos que el metanol ácido.To evaluate available Fe, Cu, Mn and Zn was used: EDTA 00.1M + NaHC03 0.5N, HCI 0.05N + H2S04 0.025N, DTPA and HCI 0.1 N. Available B was extracted with Ca (H2P042 H2O 0.008M; HCI 0.05N and NH40Ac pH 4.8. For determination of micronutriment in the vegetal material was used as solution acid methanol and nitric – perchloric mixture for Fe, Mn, Cu and Zn; for B Hunters methods. DTPA is advantageous to evaluate Fe and Cu, double acid to Mn, NaHC03 + EDTA to Zn and HCI 0.05N and Ca(H2P042 H20 to evaluate B available in the soil. Nitric-perchloric mixture is most advantageous for determination of nutriments in the tissues than acid methanol.

  15. Produção de grãos e absorção de Cu, Fe, Mn e Zn pelo milho em solo adubado com lodo de esgoto, com e sem calcário Corn yield and uptake of Cu, Fe, Mn and Zn from sewage sludge-amended soil with and without liming

    Directory of Open Access Journals (Sweden)

    A. L. C. Martins

    2003-06-01

    Full Text Available O lodo de esgoto (LE, apesar do seu reconhecido valor como fertilizante, ainda é motivo de preocupação quando usado na agricultura, em virtude do potencial de absorção excessiva de metais pesados pelas plantas e entrada na cadeia alimentar. Para avaliar o efeito da adição de 0, 20, 40, 60 e 80 Mg ha-1 (com base no material seco de LE, aplicado de forma única ou parcelada em 2, 3 e 4 anos nas doses de 40, 60 e 80 Mg ha-1, respectivamente, com e sem calcário, na produção de grãos e massa seca da parte aérea e na absorção de Cu, Fe, Mn e Zn pelo milho, foi realizado, em Cordeirópolis (SP, um experimento em condições de campo, utilizando um Latossolo Vermelho distrófico típico, no período de 1983 a 1987. Foi utilizado o experimento em faixas ("split block" com quatro repetições. A maior dose de LE adicionou ao solo, em kg ha-1, 63, 3040, 25 e 152 de Cu, Fe, Mn e Zn, respectivamente. A produção de grãos e de massa seca da parte aérea aumentou linearmente com a adição de LE nos anos estudados. O LE aumentou significativamente as concentrações de Zn nas folhas e na parte aérea e provocou a redução nas concentrações de Fe e Mn, mas não alterou as de Cu. As concentrações dos metais nos grãos não foram influenciadas de forma significativa pela adição de LE, estando mesmo nas maiores doses, dentro dos níveis aceitáveis, sem causar restrição ao consumo humano. A absorção de Zn, Fe e Mn pelo milho foi significativamente reduzida pela adição de calcário. O Zn foi o metal que mais teve reduzida sua concentração na parte aérea pela adição de calcário. O parcelamento das doses de lodo de 40 a 80 Mg ha-1 provocou, de modo geral, aumento das quantidades absorvidas de metais pelo milho, sendo o Fe e o Zn os elementos que mais se acumularam na planta em resposta a esse parcelamento.Although the value of sewage sludge (SS as a fertilizer has long been recognized, it is still a matter of considerable concern

  16. Dietary manganese source does not affect Mn, Zn and Cu tissue deposition and the activity of manganese-containing enzymes in lambs.

    Science.gov (United States)

    Gresakova, Lubomira; Venglovska, Katarina; Cobanova, Klaudia

    2016-12-01

    Manganese (Mn) is a trace element required for normal physiological processes in animals and humans. Organic forms of trace elements are expected to have higher bioavailability in comparison with inorganic sources. The effect of feeding a diet supplemented with different sources of manganese to lambs was studied in a 112-d feeding trial. The aim of this study was to investigate the deposition of Mn in relation to activities of superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD) and arginase in the tissues of lambs fed the diet supplemented with an inorganic or an organic source of manganese up to the maximum total Mn content allowed in the European Union (150mg Mn/kg). A total of eighteen female lambs of the improved Valachian breed were randomly allocated to three dietary treatments and fed an unsupplemented basal diet (Control, 31mg Mn/kg) or the identical diet supplemented with manganese sulphate (MnSO4) or manganese chelate of glycine hydrate (Mn-Gly) with a total Mn content up to 150mg/kg. Regardless of the source, feed supplementation with manganese increased Mn concentrations in plasma (P˂0.05) and the liver (P˂0.001) as well as the activity of liver MnSOD (P˂0.05) and arginase (P˂0.001) compared with the control lambs. In the kidney cortex, the concentration of Mn was greatest in lambs fed the diet supplemented with the chelated Mn source compared with animals receiving the inorganic Mn source (P˂0.05) and the unsupplemented diet (P˂0.001). The 112-d intake of feed enriched with manganese did not result in any change in Mn levels, SOD or MnSOD activity in pancreas and kidney tissues. Plasma Cu concentration was depressed in both supplemented treatments. No analyzed tissue showed a change in zinc and copper levels, except the greater Cu concentration in the liver of lambs fed the diet with Mn-Gly. The presented results did not indicate any differences between dietary Mn sources either in Mn tissue deposition or activity of SOD, MnSOD and

  17. Accumulation of Pb, Fe, Mn, Cu and Zn in plants and choice of hyperaccumulator plant in the industrial town of Vian, Iran

    Directory of Open Access Journals (Sweden)

    Lorestani B.

    2011-01-01

    Full Text Available Various industrial activities contribute heavy metals to the soil environment directly or indirectly through the release of solid wastes, waste gases, and wastewater. Phytoremediation can be potentially used to remedy metal-contaminated sites. A major step towards the development of phytoremediation of heavy metal-impacted soils is the discovery of the heavy metal hyperaccumulation in plants. This study evaluated the potential of 7 species growing on a contaminated site in an industrial area. Several established criteria to define a hyperaccumulator plant were applied. The case study was represented by an industrial town in the Hamedan province in the central-western part of Iran. This study showed that most of the sampled species were able to grow in heavily metal-contaminated soils and were also able to accumulate extraordinarily high concentrations of some metals such as Pb, Fe, Mn, Cu and Zn. Based on the obtained results and using the most common criteria, Camphorosma monospeliacum for Pb and Fe, and Salsola soda and Circium arvense for Pb can be classified as hyperaccumulators and, therefore, they have suitable potential for the phytoremediation of contaminated soils.

  18. Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China.

    Science.gov (United States)

    Leung, H M; Leung, A O W; Wang, H S; Ma, K K; Liang, Y; Ho, K C; Cheung, K C; Tohidi, F; Yung, K K L

    2014-01-15

    The major aim of this study was to investigate heavy metal content of edible fish in the PRD. Eleven species of fish (consisting of 711 individuals) [catfish (Clarias fuscus), tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idellus), bighead carp (Aristichthys nobilis), mandarin fish (Siniperca kneri), snakehead (Channa asiatiea), black bass (Micropterus salmoides), mangrove snapper (Lutjanus griseus), star snapper (Lutjanu stellatus), snubnose pompano (Trachinotus blochii) and orange-spotted grouper (Epinephelus coioides)] were collected for the analyses of heavy metals. Overall concentrations (mg/kg, ww) in the fish muscles were: As (0.03-1.53), Pb (0.03-8.62), Cd (0.02-0.06), Ni (0.44-9.75), Zn (15.7-29.5), Cr (0.22-0.65), Cu (0.79-2.26), Mn (0.82-6.91). Significant level of Pb were found in tilapia at all locations. It is recommended that heavy metal concentrations in different fish species must be determined on a regular basis in the future so as to reduce human health risks from acute and chronic food intoxication.

  19. Manufacturing and microstructure of MMC based on CuZn38Al2Mn1Fe brass strengthened with δ-alumina fibres

    Directory of Open Access Journals (Sweden)

    J. W. Kaczmar

    2010-01-01

    Full Text Available Metal matrix composite materials were manufactured by squeeze casting with CuZn38Al2Mn1Fe brass of porous preforms made of δ-alumina SAFFIL fibres. The microstructure, Brinell hardness and Vickers microhardness of manufactured composite materials were characterized. Preforms with 10 and 20 vol. % of fibres were preheated and infiltrated applying the pressure of 80 MPa. Microscopic observations showed that alumina fibres are uniformly distributed in the MA58 matrix and there was not observed the destroying of ceramic fibres during squeeze casting process. Hardness of composite materials strengthened with 20 vol.% of SAFFIL fibres reached 265 HB. At the boundary of composite material/not strengthened MA58 alloy it was ascertained the filtration and retention of iron compound precipitates caused by the small dimensions of pores in the ceramic preform. The collection of iron phase precipitates at the boundary composite material/ not strengthened MA58 alloy effected in the increase of microhardness in this zone to 352 HV. On the base of SEM observations the conclusion on limited wettability of fibres by liquid MA58 brass was drawn.

  20. Lattice parameters values and phase diagram for the Cu{sub 2}Zn{sub 1−z}Mn{sub z}GeSe{sub 4} alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Caldera, D. [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of); Quintero, M., E-mail: mquinter@ula.ve [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of); Morocoima, M.; Moreno, E.; Quintero, E.; Grima-Gallardo, P.; Bocaranda, P. [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of); Henao, J.A.; Macías, M.A. [Grupo de Investigación en Química Estructural (GIQUE), Facultad de Ciencias, Escuela de Química, Universidad Industrial de Santander, Apartado aéreo 678, Bucaramanga (Colombia); Briceño, J.M.; Mora, A.E. [Laboratorio de Análisis Químico y Estructura de Materiales, Departamento de Física, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of)

    2014-11-25

    Highlights: • The samples were annealed at 500 °C for 1 month. • Samples in the ranges 0 < z < 0.375 had the tetragonal stannite α structure (I4{sup ¯}2m). • For 0.725 < z ⩽ 1 the wurtz–stannite δ structure (Pmn2{sub 1}). • Undercooling effects occur for samples in the range 0.725 < z < 0.925. - Abstract: The T(z) phase diagram of the Cu{sub 2}Zn{sub 1−z}Mn{sub z}GeSe{sub 4} alloy system is obtained from X-ray diffraction and differential thermal analysis DTA. At room temperature, the X-ray diffraction data showed that samples in the ranges 0 < z < 0.375 had the tetragonal stannite α structure (I4{sup ¯}2m), while for 0.725 < z ⩽ 1 the wurtz–stannite δ structure (Pmn2{sub 1}). The α and δ fields are separated by a relative wide three-phase field (α + δ + MnSe{sub 2}). The DTA thermograms were used to construct the phase diagram of the Cu{sub 2}Zn{sub 1−z}Mn{sub z}GeSe{sub 4} alloy system. It was confirmed that the Cu{sub 2}ZnGeSe{sub 4} and Cu{sub 2}MnGeSe{sub 4} compounds melt incongruently. It was observed that undercooling effects occur for samples in the range 0.725 < z < 0.925.

  1. Distribution and accumulation of elements (As, Cu, Fe, Hg, Mn, and Zn) in tissues of fish species from different trophic levels in the Danube River at the confluence with the Sava River (Serbia).

    Science.gov (United States)

    Subotić, S; Višnjić Jeftić, Ž; Spasić, S; Hegediš, A; Krpo-Ćetković, J; Lenhardt, M

    2013-08-01

    Pikeperch (Sander lucioperca), European catfish (Silurus glanis), common carp (Cyprinus carpio), and gobies (Neogobius gymnotrachelus, Neogobius melanostomus) were collected from the Danube River (Belgrade section), and samples of liver, muscle, or whole-body composites (in the case of gobies) were analyzed for As, Cu, Fe, Hg, Mn, and Zn with inductively coupled plasma optical spectrometry to find out if there was a correlation between accumulation of these elements in predatory and prey species, as well as in pairs of species with overlapping diets. Concentrations of all analyzed elements were either higher (Cu, Fe, Mn, Zn) in liver than in muscle, or equal (As, Hg), except for Hg in carp, which was higher in muscle. Mercury concentration in liver and muscle of predators (catfish, pikeperch) was significantly (<10(-4)) higher than in prey fishes (carp and gobies). The results indicate that Hg concentration was biomagnified through the food chain. Concentrations of As, Fe, and Hg in carp liver and gobies whole-body composite were similar, but carp had significantly (<10(-4)) higher values of Zn and Cu in liver. The regression analysis and trendline equations indicate that the concentrations of all tested elements, except for As in liver, and Mn and Fe in muscle, were similar in predatory fish (pikeperch and catfish), on one hand, and in prey fish (carp and gobies), on the other hand. Distinctly high Zn concentration in carp is very common in this species due to its physiology. Concentrations of Hg and Zn were higher than the maximum acceptable concentration due to the high pollution level in this section of the Danube River, accordingly posing a risk for the human consumption of these fish species.

  2. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  3. Periodic trends within a series of five-coordinate thiolate-ligated [MII(SMe2N4(tren))]+ (M = Mn, Fe, Co, Ni, Cu, Zn) complexes, including a rare example of a stable CuII-thiolate.

    Science.gov (United States)

    Brines, Lisa M; Shearer, Jason; Fender, Jessica K; Schweitzer, Dirk; Shoner, Steven C; Barnhart, David; Kaminsky, Werner; Lovell, Scott; Kovacs, Julie A

    2007-10-29

    A series of five-coordinate thiolate-ligated complexes [M(II)(tren)N4S(Me2)]+ (M = Mn, Fe, Co, Ni, Cu, Zn; tren = tris(2-aminoethyl)amine) are reported, and their structural, electronic, and magnetic properties are compared. Isolation of dimeric [Ni(II)(SN4(tren)-RS(dang))]2 ("dang"= dangling, uncoordinated thiolate supported by H bonds), using the less bulky [(tren)N4S](1-) ligand, pointed to the need for gem-dimethyls adjacent to the sulfur to sterically prevent dimerization. All of the gem-dimethyl derivatized complexes are monomeric and, with the exception of [Ni(II)(S(Me2)N4(tren)]+, are isostructural and adopt a tetragonally distorted trigonal bipyramidal geometry favored by ligand constraints. The nickel complex uniquely adopts an approximately ideal square pyramidal geometry and resembles the active site of Ni-superoxide dismutase (Ni-SOD). Even in coordinating solvents such as MeCN, only five-coordinate structures are observed. The MII-S thiolate bonds systematically decrease in length across the series (Mn-S > Fe-S > Co-S > Ni-S approximately Cu-S tren)]+, represents a rare example of a stable CuII-thiolate, and models the perturbed "green" copper site of nitrite reductase. In contrast to the intensely colored, low-spin Fe(III)-thiolates, the M(II)-thiolates described herein are colorless to moderately colored and high-spin (in cases where more than one spin-state is possible), reflecting the poorer energy match between the metal d- and sulfur orbitals upon reduction of the metal ion. As the d-orbitals drop in energy proceeding across the across the series M(2+) (M= Mn, Fe, Co, Ni, Cu), the sulfur-to-metal charge-transfer transition moves into the visible region, and the redox potentials cathodically shift. The reduced M(+1) oxidation state is only accessible with copper, and the more oxidized M(+4) oxidation state is only accessible for manganese.

  4. Synthesis and spectral studies of Cu(II, Ni(II, Co(II, Mn(II, Zn(II and Cd(II complexes of a new macroacyclic ligand N,N’-bis(2-benzothiazolyl-2,6-pyridinedicarboxamide

    Directory of Open Access Journals (Sweden)

    KALAGOUDA B. GUDASI

    2006-05-01

    Full Text Available A new macroacyclic amide ligand N,N’-bis(2-benzothiazolyl-2,6-pyridinedicarboxamide (BPD, formed by the condensation of 2,6-pyridinedicarbonyldichloride with 2-aminobenzothiazole, and its Cu(II, Ni(II, Co(II, Mn(II, Zn(II and Cd(II complexes were synthesized. Their structures were elucidated on the basis of elemental analyses, conductance measurements, magnetic moments, spectral (IR, NMR, UV-Visible, EPR and FAB and thermal studies. The complexes exhibit an octahedral geometry around the metal center. Conductance data of the complexes suggested them to be 1:1 electrolytes. The pentadentate behavior of the ligand was proposed on the basis of spectral studies. The X-band EPR spectra of the Cu(II and Mn(II complexes in the polycrystalline state at room (300 K and liquid nitrogen temperature (77 K were recorded and their salient features are reported.

  5. The effect of mustard gas on salivary trace metals (Zn, Mn, Cu, Mg, Mo, Sr, Cd, Ca, Pb, Rb.

    Directory of Open Access Journals (Sweden)

    Elham Zamani Pozveh

    Full Text Available We have determined and compared trace metals concentration in saliva taken from chemical warfare injures who were under the exposure of mustard gas and healthy subjects by means of inductively coupled plasma optical emission spectroscopy (ICP-OES for the first time. The influence of preliminary operations on the accuracy of ICP-OES analysis, blood contamination, the number of restored teeth in the mouth, salivary flow rate, and daily variations in trace metals concentration in saliva were also considered. Unstimulated saliva was collected at 10:00-11:00 a.m. from 45 subjects in three equal groups. The first group was composed of 15 healthy subjects (group 1; the second group consisted of 15 subjects who, upon chemical warfare injuries, did not use Salbutamol spray, which they would have normally used on a regular basis (group 2; and the third group contained the same number of patients as the second group, but they had taken their regular medicine (Salbutamol spray; group 3. Our results showed that the concentration of Cu in saliva was significantly increased in the chemical warfare injures compared to healthy subjects, as follows: healthy subjects 15.3± 5.45 (p.p.b., patients (group 2 45.77±13.65, and patients (Salbutamol spray; group 3 29 ±8.51 (P <0.02. In contrast, zinc was significantly decreased in the patients, as follows: healthy subjects 37 ± 9.03 (p.p.b., patients (group 2 12.2 ± 3.56, and patients (Salbutamol spray; group 3 20.6 ±10.01 (P < 0.01. It is important to note that direct dilution of saliva samples with ultrapure nitric acid showed the optimum ICP-OES outputs.

  6. Synthesis, Spectral Characterization, Molecular Modeling, and Antimicrobial Studies of Cu(II, Ni(II, Co(II, Mn(II, and Zn(II Complexes of ONO Schiff Base

    Directory of Open Access Journals (Sweden)

    Padmaja Mendu

    2012-01-01

    Full Text Available A series of Cu(II, Ni(II, Co(II, Mn(II, and Zn(II complexes have been synthesized from the schiff base ligand L. The schiff base ligand [(4-oxo-4H-chromen-3-yl methylene] benzohydrazide (L has been synthesized by the reaction between chromone-3-carbaldehyde and benzoyl hydrazine. The nature of bonding and geometry of the transition metal complexes as well as schiff base ligand L have been deduced from elemental analysis, FT-IR, UV-Vis, 1HNMR, ESR spectral studies, mass, thermal (TGA and DTA analysis, magnetic susceptibility, and molar conductance measurements. Cu(II, Ni(II, Co(II, and Mn(II metal ions are forming 1:2 (M:L complexes, Zn(II is forming 1:1 (M:L complex. Based on elemental, conductance and spectral studies, six-coordinated geometry was assigned for Cu(II, Ni(II, Co(II, Mn(II, and Zn(II complexes. The complexes are 1:2 electrolytes in DMSO except zinc complex, which is neutral in DMSO. The ligand L acts as tridentate and coordinates through nitrogen atom of azomethine group, oxygen atom of keto group of γ-pyrone ring and oxygen atom of hydrazoic group of benzoyl hydrazine. The 3D molecular modeling and energies of all the compounds are furnished. The biological activity of the ligand and its complexes have been studied on the four bacteria E. coli, Edwardella, Pseudomonas, and B. subtilis and two fungi pencillium and tricoderma by well disc and fusion method and found that the metal chelates are more active than the free schiff base ligand.

  7. Analysis of six elements (Ca, Mg, Fe, Zn, Cu, and Mn) in several wild vegetables and evaluation of their intakes based on Korea National Health and Nutrition Examination Survey 2010-2011.

    Science.gov (United States)

    Bae, Yun-Jung; Kim, Mi-Hyun; Lee, Je-Hyuk; Choi, Mi-Kyeong

    2015-03-01

    Wild vegetables, those edible among naturally grown vegetables, have been reported to contain many bioactive substances, dietary fibers, vitamins, and minerals. The purpose of this study is to examine the six elements of the wild vegetables frequently consumed by Koreans and assess the element intakes through them. Contents of six kinds of elements (Ca, Mg, Fe, Zn, Cu, and Mn) in 11 wild vegetables were analyzed by inductively coupled plasma optical emission spectroscopy. Using these analysis data, the 6-element intakes from the wild vegetables were evaluated in healthy Korean adults aged 19-64 years from the Korea National Health and Nutrition Examination Survey (2010-2011). Sedum and shepherd's purse contained over 100 mg of Ca in 100 g of their edible portion. The Mg content per 100 g of the 11 wild vegetables ranged from 12.1 mg to 43.4 mg. The wild vegetable with the highest mineral content per 100 g was sedum for Ca, spinach for Mg, shepherd's purse for Fe, spinach for Zn, bracken for Cu, and fragrant edible wild aster for Mn. The element intakes from the 11 wild vegetables compared with dietary reference intakes in the healthy Koreans were 1.0 % for Ca, 2.1 % for Mg, 5.3 % for Fe, 1.4 % for Zn, 0.3 % for Cu, and 1.8 % for Mn. Considering the low intake ratio (1.2 %) of the wild vegetable to total food intake, wild vegetables may contribute to some element intakes. Our results show the nutritional value of the wild vegetables in the aspect of mineral nutrition; however, further research is needed to evaluate the bioavailability of various elements in wild vegetables.

  8. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II, Co(II, Ni(II, Cu(II, and Zn(II] metals

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-09-01

    Full Text Available A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II. All the polymeric compounds were characterized by (FT-IR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA and antibacterial activities. Polymer complexes of Mn(II, Co(II and Ni(II show octahedral geometry, while polymer complexes of Cu(II and Zn(II show square planar and tetrahedral geometry, respectively. The TGA revealed that all the polymer metal complexes are more thermally stable than their parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM-D-5338-93 standards of biodegradable polymers by CO2 evolution method which says that coordination decreases biodegradability. The antibacterial activity was screened with the agar well diffusion method against some selected microorganisms. Among all the complexes, the antibacterial activity of the Cu(II polymer–metal complex showed the highest zone of inhibition because of its higher stability constant.

  9. Determination of Cu Fe Zn Mn Pb in Cocoa Powder%可可粉中铜、铁、锌、锰、铅的测定

    Institute of Scientific and Technical Information of China (English)

    蒲涛猛; 张金生; 李丽华; 焦瑞; 牛桂昂

    2014-01-01

    The method of determining the contents of trace element Cu Fe Zn Mn and Pb in cacao powder was studied by microwave digestion-flame atomic absorption spectrometry. Some process variables , including the effects of acid, coexistence ion disruption, background interference, accuracy and precision were optimized. The cacao powder was treated by microwave digestion. We can obtain the linear coefficients (all more than 0.999 0), limits of detection (all less than 0.004 2 mg/L), the RSDs (all less than 4.72%). The standard addition recovery rate of each element respectively were 96.5%-101.2%, 97.3%-102.7%, 95.4%-101.5%, 97.7%-102.3%. The result proved that the method was correct and reliable, higher sensitivity and recovery. Compared with the content of each element in cacao powder from different manufacturer through statistical comparison , the results showed that there was no significant difference.%建立微波消解火焰原子吸收法测定可可粉中的微量元素铜、铁、锌、锰、铅含量的方法。对酸效应、共存离子干扰、背景干扰、准确度和精密度进行考察。用微波消解法处理可可粉。测得各元素的工作曲线相关系数均大于0.9990,方法检出限均小于0.0042 mg/L,相对标准偏差(RSD)均小于4.72%,各元素的加标回收率分别为96.5%~101.2%、97.3%~102.7%、95.4%~101.5%、97.7%~102.3%。经统计对比不同厂家生产的可可粉,发现各元素的含量不存在显著差异。

  10. Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) Schiff base complexes derived from o-phenylenediamine and acetoacetanilide

    Indian Academy of Sciences (India)

    N Raman; Y Pitchaikani Raja; A Kulandaisamy

    2001-06-01

    Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) have been synthesised using a Schiff base formed by the condensation of -phenylenediamine with acetoacetanilide in alcohol medium. All the complexes were characterised on the basis of their microanalytical data, molar conductance, magnetic susceptibility, IR, UV-Vis 1H NMR and ESR spectra. IR and UV-Vis spectral data suggest that all the complexes are square-planar except the Mn(II) and VO(II) chelates, which are of octahedral and square pyramidal geometry respectively. The monomeric and neutral nature of the complexes was confirmed by their magnetic susceptibility data and low conductance values. The ESR spectra of copper and vanadyl complexes in DMSO solution at 300 K and 77 K were recorded and their salient features are reported.

  11. Study on the distributions of Cd, Co, Sr, Zn, Ag, Cu, Pb, Mn and Ni in the eolian sands of the Gavkuni playa (southeast of Isfahan

    Directory of Open Access Journals (Sweden)

    Hamidreza Pakzad

    2014-11-01

    Full Text Available Introduction Heavy metals are continually introduced into hydrosphere, atmosphere and biosphere. These potentially toxic elements can concentrate in sediments in aqueous ecosystems and they can act as pollution sources in particular conditions. Heavy metals mainly concentrate in fine sand particles because of more concentration of heavy minerals in this grain size. The Gavkhuni playa lake with an approximate area of 550 km2 is located at southeast of Isfahan, Iran. The Zayandehrud permanent river and several seasonal rivers flow into this playa. During quaternary, massive volume of sediments in sand and gravel sizes were carried into this area and deposited. These sediments are mainly deposited in the delta of Zayandehrud river (northwest of Gavkhuni playa and northwest of the sand dunes in margin of the Zayandehrud river particularly from Varzaneh to the playa. The megafans surrounding the playa can be partly origin of these sediments. The Gavkhuni playa lake is composed of three major flats namely sand, mud and salt flats. The salt flat forms the major part of the playa. Igneous, metamorphic and sedimentary (mainly carbonates rocks outcrop in the drainage basin of the Gavkhuni playa lake. Schist, gneiss, limestone, shale and andesite are the dominant lithology in this basin. The main objective of this research is to determine the concentrations of Cd, Co, Sr, Zn, Ag, Cu, Pb, Mn and Ni in the eolian sand deposits, the factors influencing the distributions of these elements and also relationship between the heavy metals and the minerals (particularly heavy minerals containing these elements. Material & Methods The eolian sands (sand dunes and sand flats of the Gavkhuni playa were sampled in 15 sampling points from north to south of the playa. Grain size distribution of the sediments were determined through dry sieving method. Heavy minerals were separated and studied through microscopy of the prepared thin and polish sections. The concentration

  12. Study on the behavior of the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and {sup 137}Cs in an estuarine ecosystem using Mytilus galloprovincialis as a bioindicator species: the case of Thermaikos gulf, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Catsiki, Vassiliki-Angelique [Hellenic Centre for Marine Research, Mavro Lithari, 46.7 Km Athens-Sounio, Anavyssos Attikis 19013 (Greece)]. E-mail: cats@ath.hcmr.gr; Florou, H. [National Centre for Scientific Research ' Demokritos' , Ag. Paraskevi 153 10, Athens (Greece)

    2006-07-01

    Mussels are worldwide recognized as pollution bioindicators and used in Mussel Watch programs, because they accumulate pollutants in their tissues at elevated levels in relation to pollutant biological availability in the marine environment. The present study deals with the use of Mytilus galloprovincialis as a local bioindicator of heavy metal and {sup 137}Cs contamination in an estuarine ecosystem (Thermaikos gulf, Greece in Eastern Mediterranean). M. galloprovincialis samples were collected monthly from two aquaculture farms during the period April to October 2000. Analyses for the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and {sup 137}Cs showed that the concentrations measured were low and similar to those from other non-polluted Mediterranean areas. In terms of the two sampling stations, there were no statistically significant differences between them. On the contrary, the seasonal evolution of either heavy metals or {sup 137}Cs levels presented high variation. The levels were found to increase during the cold period of the year, especially for Cu, Zn, Mn and Cr which are essential for life. Stable metals were positively inter-related and moreover, metals more involved in biochemical activities seem to present more correlations than others with less significant role in the metabolism of the organisms.

  13. Quaternary M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (M = Ni, Zn, Co, Mn) ferrite oxides: Synthesis, characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ciocarlan, Radu George [Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bd., no. 11, 700506, Iasi (Romania); Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerpen (CDE), Universiteitsplein 1, 2610, Wilrijk, Antwerpen (Belgium); Pui, Aurel, E-mail: aurel@uaic.ro [Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bd., no. 11, 700506, Iasi (Romania); Gherca, Daniel; Virlan, Constantin [Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bd., no. 11, 700506, Iasi (Romania); Dobromir, Marius; Nica, Valentin [Faculty of Physics, “Alexandru Ioan Cuza” University of Iasi, Carol I Bd., no. 11, 700506, Iasi (Romania); Craus, Mihail Liviu [Laboratory of Neutron Physics – JINR, Joliot Curie 6, 141980, Dubna, Moscow region, Russia, (Russian Federation); National Institute of Research & Development for Technical Physics, Bd. Mangeron 47, 700050 Iasi (Romania); Gostin, Irina Neta [Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bd. nr. 20 A, 700505, Iasi (Romania); Caltun, Ovidiu [Faculty of Physics, “Alexandru Ioan Cuza” University of Iasi, Carol I Bd., no. 11, 700506, Iasi (Romania); Hempelman, Rolf [Saarland University, Physical Chemistry, 66123 Saarbrüken (Germany); Cool, Pegie [Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerpen (CDE), Universiteitsplein 1, 2610, Wilrijk, Antwerpen (Belgium)

    2016-09-15

    Highlights: • Superparamagnetic quaternary nanoferrite (M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4,} where M = Mn, Zn, Co, Ni) were obtained. • C, O, H and metals were observed by XPS analysis. • Phases purity were confirmed by XRD diffraction and crystallite size (3–10 nm) were determind. - Abstract: We report the synthesis of M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (where M = Mn, Zn, Co, Ni) nanoparticles using the coprecipitation method in the presence of carboxymethyl cellulose (CMC) as the in-situ surfactant. The crystalline structure and surface morphology were examined by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) and it was established that the average diameter of the magnetic nanoparticles (MNPs) is in the range of 3–10 nm. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) show that the MNPs are activated by the hydrophilic groups of the surfactant, which coat them and enhance their stability. The vibrating sample magnetometry measurements show the superparamagnetic behavior of the nanoparticles. Due to their small crystallite size, which implies large surface area, and their functionalization with organic groups, the obtained nanoparticles could have medical and catalytic applications.

  14. Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia)

    Science.gov (United States)

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-06-01

    Fluxes of suspended particulate matter (SPM) and their associated metals were performed off the Mejerda River Delta during both the wet (March) and the dry (July) seasons in 2012, using sediment traps at study stations at depths of 10, 20 and 40 m. Fluxes nearest to the Mejerda outlet were more significant, especially during winter (36 g m-2 day-1), but dissipated further offshore, 24.5-6 g m-2 day-1 at the 20 m and 21.8-4.8 g m-2 day-1 at the 40 m stations. Many variations observed in seasonal and spatial metal fluxes are similar to those of SPM, in particular Pb and Zn, probably because they are associated with the mining activity characteristic of the Mejerda catchment. Chemical speciation reveals that most of the metals (20-100%) are bound to the residual fraction. The most toxic metals (Pb, Zn) are bound in part to the exchangeable fraction (20-50% for Pb and 5-15% for Zn) making them relatively bioavailable and therefore potentially toxic. While Cu and Cd fluxes are not always clearly established according to season, both metals are apparently sequestered deep in the sediment, bound especially to clays (40-80% for Cd and up to 100% for Cu).

  15. Estudo de metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn na Bacia do Tarumã-Açu Manaus (AM Heavy metal (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn study in the Tarumã-Açu Basin Manaus (AM

    Directory of Open Access Journals (Sweden)

    Genilson Pereira Santana

    2007-01-01

    Full Text Available Os resíduos gerados em domicílios incluem diversos produtos, como pesticidas, produtos farmacêuticos, detergentes, óleos de cozinha, metais pesados contidos em baterias e outros utensílios. Esses resíduos são lançados continuamente em aterro sanitário ou lixões em cidades como Manaus. O chorume produzido nesses aterros, quando não tratados, contamina recursos hídricos superficiais e subterrâneos. Neste estudo foi feita uma avaliação das conseqüências da liberação do chorume no sistema hídrico da bacia do Tarumã-Açu. Amostras de água e sedimento foram coletadas nos igarapés Matrinxã, Acará, Bolívia, bacia do Tarumã-Açu e dentro do aterro sanitário (Manaus - Amazonas - Brasil em março 2001. As amostras de água foram filtradas em filtro Milipore (0,45 mm de poro e, em seguida, tratadas com HNO3 concentrado. As amostras de sedimento foram peneiradas em malha de 0,053 mm e digeridas com HCl:HNO3 (1:3 a 150ºC. As concentrações de alguns metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn foram determinadas nas amostras de água e sedimento por espectrometria de absorção atômica de chama. Os resultados revelaram que a concentração dos metais pesados é muito acima dos permitidos pela resolução 357/2005 do CONAMA em praticamente todos os locais amostrados, mostrando que o Aterro Sanitário é um dos principais responsáveis pelo impacto ambiental observado nos corpos hídricos estudados. As análises dos componentes principais (PCA e hierárquica de cluster (HCA, revelam que os pontos de coleta localizados dentro do aterro sanitário apresentam características diferentes dos outros locais amostrados. Além disso, o HCA e PCA mostraram que existe uma similaridade entre os pontos de coleta localizados fora do aterro o que permite afirmar que o chorume do aterro se dissolve por todo corpo hídrico estudado.Domestic sewage involves several products, such as pesticides, pharmaceutics products, detergents, soybean oil

  16. Luminescence of nanocrystalline ZnSe:Mn2+

    NARCIS (Netherlands)

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2000-01-01

    The luminescence properties of nanocrystalline ZnSe:Mn^(2+) prepared via an inorganic chemical synthesis are described. Photoluminescence spectra show distinct ZnSe and Mn^(2+) related emissions, both of which are excited via the ZnSe host lattice. The Mn^(2+) emission wavelength and the

  17. Spectroscopic and thermal degradation behavior of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with thiopental sodium anesthesia drug

    Science.gov (United States)

    Refat, Moamen S.

    2013-04-01

    A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized with thiopental sodium anesthesia drug. The elemental analyses of the complexes are confined to stoichiometry of the formulas [M(TPL)3]ṡnH2O (M = Cr(III) or Fe(III); n = 6 or 5), [M(TPL)2(H2O)2]ṡnH2O (M = Mn(II), Co(II) or Ni(II); n = 0 or 4), and [M(TPL)2] (M = Cu(II) or Zn(II); n = 2 or 0) respectively, where TPL is thiopental chelating agent. Structures have been discussed and suggested upon elemental analyses, infrared, Raman, electronic, electron spin resonance, 1H NMR spectral data and magnetic studies. The X-ray powder diffraction (XRD) was performed of metal complexes. The XRD patterns indicate crystalline nature for the complexes. The measured low molar conductance values in dimethylsulfoxide indicate that the complexes are non-electrolyte nature. Spectroscopic discussion refer that coordination take place through three types: Cdbnd N (pyrimidine moiety) nitrogen and C2sbnd S (2-thiolate group) for Cr(III), Mn(II) and Fe(III), C6dbnd O (amido group) oxygen and C2sbnd S (2-thiolate group) for Co(II) and Ni(II), and Cu(II) and Zn(II) ions coordinated via Cdbnd N (pyrimidine moiety) nitrogen, C2dbnd S (2-thiolate group) and C6dbnd O (amido group) oxygen, respectively. The thermal behavior (TG/DTG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The thiopental and its complexes have been screened for their antimicrobial (G+ and G-) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans) activities by minimum inhibitory concentration (MIC) method.

  18. On Cu diffusion in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, F.; Lavrov, E.V.; Weber, J. [Technische Universitaet Dresden (Germany)

    2009-07-01

    Copper in ZnO is of special interest since recent theoretical and experimental studies found ferromagnetic behavior of ZnO:Cu at room temperature. In addition, Cu is a deep acceptor in ZnO and one of the causes of the green emission band. Experimental studies of Cu diffusion in bulk ZnO single crystals were carried out in the temperature range 1030 to 1180 C. Concentration profiles of substitutional Cu were determined via IR absorption at 5817 cm{sup -1}. Our findings reveal that the diffusion coefficient of Cu is 7.6 x 10{sup 7} exp(-4.56 eV/k{sub B}T) cm{sup 2}s{sup -1}. This is about a factor of 25 higher than reported in the earlier studies, which probed the total Cu concentration. The discrepancy is explained by the formation of Cu complexes, which occurs at high concentrations. Diffusion mechanisms are discussed.

  19. Synthesis, spectral characterization and biological evaluation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with thiosemicarbazone ending by pyrazole and pyridyl rings

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2014-08-01

    Here we present the synthesis of the new Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with chelating ligand (Z)-(2-((1,3-diphenyl-1H-pyrazol-4-yl)methylene) hydrazinyl)(pyridin-2-ylamino)methanethiol. All the complexes were characterized by elemental analysis, IR, 1H NMR, UV-vis, magnetic susceptibility measurements and EPR spectral studies. IR spectra of complexes showed that the ligand behaves as NN neutral bidentate, NSN mononegative tridentate and NSNN mononegative tetradentate. The electronic spectra and the magnetic measurements suggested the octahedral geometry for all complexes as well as the EPR confirmed the tetragonal distorted octahedral for Cu(II) complex. Cd(II) complex showed the highest inhibitory antioxidant activity either using ABTS method. The SOD-like activity exhibited those Cd(II) and Zn(II) complexes have strong antioxidative properties. We tested the synthesized compounds for antitumor activity and showed that the ability to kill liver (HePG2) and breast (MCF-7) cancer cells definitely.

  20. Certification of the contents (mass fractions) of Cd, Pb, Se, Cu, Zn, Fe and Mn in wholemeal flour and lyophilized brown bread reference materials. Wholemeal flour - CRM no. 189; brown bread - CRM no. 191

    Energy Technology Data Exchange (ETDEWEB)

    Wagstaffe, P.J.; Griepink, B.; Muntau, H.; Schramel, P.

    1987-01-01

    The report describes the preparation and certification of a wholemeal flour (CRM 189) and a lyophilised brown breas (CRM 191) for their contents (mass fractions) of elements of toxicological and nutritional importance: Cd, Pb, Se, Cu, Zn, Fe and Mn. Indicative values are also given for As, Ca, Cl, Cr, Hg, Mg, Na, Ni, P and K. Details are given of a preliminary intercomparison of methods for these elements in a wholemeal flour sample, homogeneity and stability studies on the two reference materials and the results and evaluation of the certification exercise which involved 21 European Laboratories. Summaries of the certification methods are also presented. The report concludes with a discussion of the most common sources of error in determining the elements of interest and the steps to be taken to control them. With 7 figs., 28 tabs.

  1. SERS and DFT investigation of 1-(2-pyridylazo)-2-naphthol and its metal complexes with Al(III), Mn(II), Fe(III), Cu(II), Zn(II) and Pb(II)

    Science.gov (United States)

    Szabó, László; Herman, Krisztian; Mircescu, Nicoleta E.; Fălămaş, Alexandra; Leopold, Loredana F.; Leopold, Nicolae; Buzumurgă, Claudia; Chiş, Vasile

    The development of surface-enhanced Raman scattering (SERS) as a prospective analytical methodology for detection of metal ions was shown in recent years by several studies on metal complexes. In this work, 1-(2-pyridylazo)-2-naphthol (PAN) and its Al(III), Mn(II), Fe(III), Cu(II), Zn(II) and Pb(II) complexes were studied by FTIR, FT-Raman and surface enhanced Raman spectroscopies. Molecular geometry optimization, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations were performed using the hybrid B3LYP exchange-correlation functional for the PAN molecule and its bidentate complexes. The calculated MEP distributions indicated the atoms with highest electronegativity, the adsorption to the silver surface occurring through these atoms. Based on experimental and theoretical data we were able to identify unique and representative features, useful for the identification of each PAN-metal complex.

  2. Competitive bulk liquid membrane transport of Co(Ⅱ),Ni(Ⅱ),Zn(Ⅱ),Cd(Ⅱ),Ag(Ⅰ),Cu(Ⅱ)and Mn(Ⅱ),cations using 2,2'-dithio(bis)benzothiazole as carrier

    Institute of Scientific and Technical Information of China (English)

    A.Nezhadali; N.Rabani

    2011-01-01

    A series of competitive metal-ion transport experiments has been performed.Each involved transport from an aqueous source phase across an organic membrane phase into an aqueous receiving phase.The source phase contained equimolar concentration of Co(Ⅱ),Ni(Ⅱ),Zn(Ⅱ),Cd(Ⅱ),Ag(Ⅰ),Cu(Ⅱ)and Mn(Ⅱ)metal cations.The transport experiments of metal cations were carried out by2,2'-dithio(bis)benzothiazole(DTB)in chloroform(CHCl3).The source phase being buffered at range pH of 4-6.5 and receiving phase being buffered at pH 3.The obtained results show that the selectivity and the efficiency of Ag(Ⅰ)transport from aqueous solutions are observed in this investigation.The effect of concentration of palmitic acid in the transport efficiency of Ag(Ⅰ)ion was also conformed.

  3. Determinação de Mn, Cu e Zn em matrizes salinas após separação e pré-concentração usando Amberlite XAD-7 impregnada com Vermelho de Alizarina S

    Directory of Open Access Journals (Sweden)

    Santos Júnior Aníbal de Freitas

    2002-01-01

    Full Text Available The aim of this work was to explore the possibility of the application of a non-ionic resin obtained by impregnation of Alizarin Red S (VAS in Amberlite XAD-7 for manganese, copper and zinc separation and preconcentration in saline matrices. For these system, the metals were quantitatively retained, in the pH range 8.5-10.0, by using 0.50 g of solid phase, stirring time of five minutes and a total mass up to 200 mug of each cation. The sorbed elements were subsequently eluted and a fifty-fold, ten-fold and ten-fold preconcentration factor for to Zn, Cu and Mn were obtained, respectively.

  4. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid

    Science.gov (United States)

    Kalinowska, M.; Piekut, J.; Bruss, A.; Follet, C.; Sienkiewicz-Gromiuk, J.; Świsłocka, R.; Rzączyńska, Z.; Lewandowski, W.

    2014-03-01

    The molecular structure of Mn(II), Cu(II), Zn(II), Cd(II) and Ca(II) ferulates (4-hydroxy-3-methoxycinnamates) was studied. The selected metal ferulates were synthesized. Their composition was established by means of elementary and thermogravimetric analysis. The following spectroscopic methods were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance (13C, 1H NMR) and ultraviolet-visible (UV/VIS). On the basis of obtained results the electronic charge distribution in studied metal complexes in comparison with ferulic acid molecule was discussed. The microbiological study of ferulic acid and ferulates toward Escherichia coli, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris was done.

  5. Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance

    OpenAIRE

    Balakrishna Ananthoju; Jeotikanta Mohapatra; Jangid, Manoj K.; Bahadur, D.; Medhekar, N. V.; ASLAM, M.

    2016-01-01

    Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal s...

  6. 1,3,5,7-Tetrakis(tetrazol-5-yl)-adamantane: the smallest tetrahedral tetrazole-functionalized ligand and its complexes formed by reaction with anhydrous M(II)Cl2 (M = Mn, Cu, Zn, Cd).

    Science.gov (United States)

    Boldog, Ishtvan; Domasevitch, Konstantin V; Sanchiz, Joaquín; Mayer, Peter; Janiak, Christoph

    2014-09-07

    1,3,5,7-Tetrakis(tetrazol-5-yl)-adamantane (H4L) was probed as a building block for the synthesis of tetrazolato/halido coordination polymers with open-network structures. MCl2 (M = Cu, Cd, Zn, Mn) was reacted with H4L in DMF at 70 °C to yield [Cu4Cl4L(DMF)5]·DMF, ; [Cd4Cl4L(DMF)7]·DMF, ; [Zn3Cl2L(DMF)4]·2DMF, and [Mn2L(DMF)2(MeOH)4]·DMF·2MeOH·2H2O, . and (Fddd) are nearly isostructural and have zeolitic structures with a {4(3)·6(2)·8}, gis or gismondine underlying net, where the role of the tetrahedral nodes is served by the coordination bonded clusters and the adamantane moiety. (P21/n) has a porous structure composed of coordination bonded layers with a (4·8(2)) fes topology joined via trans-{Zn(tetrazolate)2(DMF)4} pillars with an overall topology of {4·6(2)}{4·6(6)·8(3)}, fsc-3,5-Cmce-2. (Pca21) is composed of stacked {Mn2L} hexagonal networks. In and the ligand fulfills a symmetric role of a tetrahedral building block, while in and it fulfills rather a role of an effective trigonal unit. Methanol-exchanged and activated displayed an unusual type IV isotherm with H2 type hysteresis for N2 sorption with an expected uptake at high P/P0, but with a smaller SBET = 505.5 m(2) g(-1) compared to the calculated 1789 m(2) g(-1), which is a possible result of the framework's flexibility. For H2 sorption 0.79 wt% (1 bar, 77 K) and 0.06 wt% (1 bar, RT) uptake and Qst = -7.2 kJ mol(-1) heat of adsorption (77 K) were recorded. Weak antiferromagnetic interactions were found in and with J1 = -9.60(1), J2 = -17.2(2), J3 = -2.28(10) cm(-1) and J = -0.76 cm(-1) respectively. The formation of zeolitic structures in and , the concept of structural 'imprinting' of rigid building blocks, and design opportunities suggested as a potential hexafunctionalized biadamantane building block.

  7. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sima, M., E-mail: msima@infim.ro [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Mihut, L. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Vasile, E. [University “Politehnica”of Bucharest, Faculty of Applied Chemistry and Material Science, Department of Oxide Materials and Nanomaterials, No. 1-7 Gh. Polizu Street, 011061 Bucharest (Romania); Sima, Ma.; Logofatu, C. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania)

    2015-09-01

    Mn doped ZnO films and wires, having different manganese concentrations were synthesized by thermal oxidation of the corresponding ZnMn alloy films and wires electrodeposited on a gold substrate. Structural and optical properties were addressed with scanning electron microscopy, X-ray diffraction (XRD), Raman scattering and photoluminescence (PL). To estimate the manganese concentration in Mn doped ZnO films, X-ray photoelectron spectroscopy was used. XRD patterns indicate that the incorporation of Mn{sup 2+} ions into the Zn{sup 2+} site of ZnO lattice takes place. Quenching of the ZnO PL appears due to Mn{sup 2+} ions in the ZnO lattice. Moreover, a significant decrease in the green emission of ZnO is reported in the case of the Mn doped ZnO wire array with a Mn concentration of 1.45%. The wurtzite ZnO has a total of 12 phonon modes, namely, one longitudinal acoustic (LA), two transverse acoustic (TA), three longitudinal optical (LO), and six transverse optical branches. Compared to the undoped ZnO, a gradual up-shift of the Raman lines assigned to the 2LA and A{sub 1} (LO) vibrational modes, from 482 and 567 cm{sup −1} to 532 and 580 cm{sup −1}, respectively, takes place for the Mn doped ZnO films having a Mn concentration between 2 and 15%. Additionally, in the case of the Mn doped ZnO films with 7 and 15% Mn concentration, Raman spectra show the appearance and increase in the relative intensity of the ZnO Raman line assigned to the TA + LO vibrational mode in the 600–750 cm{sup −1} spectral range. For the Mn-doped ZnO wires, the presence of the Raman line peaking at 527 cm{sup −1} confirms the insertion of Mn{sup 2+} ions in ZnO lattice. - Highlights: • Mn doped ZnO films and wires grown by thermal oxidation of ZnMn alloy • Incorporation of Mn{sup 2+} ions into Zn{sup 2+} site of ZnO lattice • Appearance of a strong Raman line in the spectral range 600–800 cm{sup −1} at high Mn concentration • Compensation of the oxygen vacancy at higher

  8. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10.

    Science.gov (United States)

    Niu, Zhirui; Huang, Qifei; Wang, Jia; Yang, Yiran; Xin, Baoping; Chen, Shi

    2015-11-15

    Bioleaching of spent batteries was often conducted at pulp density of 1.0% or lower. In this work, metallic ions catalytic bioleaching was used for release Zn and Mn from spent ZMBs at 10% of pulp density. The results showed only Cu(2+) improved mobilization of Zn and Mn from the spent batteries among tested four metallic ions. When Cu(2+) content increased from 0 to 0.8 g/L, the maximum release efficiency elevated from 47.7% to 62.5% for Zn and from 30.9% to 62.4% for Mn, respectively. The Cu(2+) catalysis boosted bioleaching of resistant hetaerolite through forming a possible intermediate CuMn2O4 which was subject to be attacked by Fe(3+) based on a cycle of Fe(3+)/Fe(2+). However, poor growth of cells, formation of KFe3(SO4)2(OH)6 and its possible blockage between cells and energy matters destroyed the cycle of Fe(3+)/Fe(2+), stopping bioleaching of hetaerolite. The chemical reaction controlled model fitted best for describing Cu(2+) catalytic bioleaching of spent ZMBs.

  9. Schiff base ligand derived from (±trans-1,2-cyclohexanediamine and its Cu(II, Co(II, Zn(II and Mn(II complexes: Synthesis, characterization, styrene oxidation and hydrolysis study of the imine bond in Cu(II Schiff base complex

    Directory of Open Access Journals (Sweden)

    Sarkheil Marzieh

    2016-01-01

    Full Text Available A Schiff base ligand (H2L derived from 2´-hydroxypropiophenone and (±trans-1,2-cyclohexanediamine was synthesized. The reactions of MCl2.xH2O (M =Cu(II, Co(II, Zn(II and Mn(IIwith the di-Schiff base ligand (H2L were studied. This ligand when stirred with 1 equivalent of CuCl2.2H2O in the solution of ethanol and chloroform undergoes partial hydrolysis of the imino bond and the resultant tridentate ligand (HL′immediately forms complex[CuL´Cl]∙3/2CHCl3(1with N2O coordination sphere. Under the same condition, the reaction of H2L with MCl2.xH2O (M = Co(II (3, Zn(II (4 and Mn(II (5 gave complexes[ML]•1/2CHCl3∙3/2H2O (3-5with N2O2 coordination sphere and no hydrolytic cleavage was occurred. Also, the reaction of H2L with CuCl2.2H2O in THF gave the complex CuL (2with N2O2 coordination sphere. The ligand and complexes were characterized by FTIR, UV-Vis, 1H NMRand elemental analysis. The homogeneous catalytic activity of the complexes1, 3 and 5wasevaluated for the oxidation of styrene using tert-butyl hydroperoxide (TBHP as oxidant. Finally, the copper(II complex(1encapsulated in the nanopores of zeolite-Y by flexible ligand method (CuL´-Yand its encapsulation was ensured by different studies. The catalytic performance of heterogeneous catalyst in the styrene oxidation with TBHP was investigated. The catalytic tests showed that the homogenous and heterogeneous catalysts were active in the oxidation of styrene.

  10. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media.

    Science.gov (United States)

    Fang, Zheng; Wu, Ping; Zhong, Xinhua; Yang, Yong-Ji

    2010-07-30

    High-quality water-dispersible Mn(2+)-doped ZnSe core/ZnS shell (Mn:ZnSe/ZnS) nanocrystals have been synthesized directly in aqueous media. Overcoating a high bandgap ZnS shell around the Mn:ZnSe cores can bring forward an efficient energy transfer from the ZnSe host nanocrystals to the dopant Mn. The quantum yields of the dopant Mn photoluminescence in the as-prepared water-soluble Mn:ZnSe/ZnS core/shell nanocrystals can be up to 35 +/- 5%. The optical features and structure of the obtained Mn:ZnSe/ZnS core/shell nanocrystals have been characterized by UV-vis, PL spectroscopy, TEM, XRD and ICP elementary analysis. The influences of various experimental variables, including the Mn concentration, the Se/Zn molar ratio as well as the kind and amount of capping ligand used in the core production and shell deposition process, on the luminescent properties of the obtained Mn:ZnSe/ZnS nanocrystals have been systematically investigated.

  11. Structural and luminescence properties of nanostructured ZnS:Mn

    Science.gov (United States)

    Adachi, Daisuke; Hasui, Shigeki; Toyama, Toshihiko; Okamoto, Hiroaki

    2000-08-01

    We have studied structural and luminescence properties of nanostructured (NS-) ZnS:Mn which has potential applications in thin-film electroluminescence (TFEL) devices. As a NS-ZnS:Mn system, a ZnS:Mn/Si3N4 multilayer having thicknesses of 2.5 nm for ZnS and 0.6 nm for Si3N4 was prepared by a conventional rf-magnetron sputtering method. Grazing incidence x-ray reflectometry and x-ray diffractometry show that ZnS:Mn nanocrystals were formed between the amorphous Si3N4 layers. Photoluminescence intensity associated with the Mn2+ transitions per total thickness of the ZnS:Mn layers is increased in NS-ZnS:Mn in comparison with that of the ZnS:Mn thin film, indicating the effects due to quantum confinement. The TFEL device with NS-ZnS:Mn as an emission layer exhibits a reddish-orange broad band emission with the maximum luminance of 2.8 cd/m2 under the 1-kHz sinusoidal wave operation at a voltage of 20.5 V0-p.

  12. Mechanosynthesis ZnS : Mn Microcrystals

    Directory of Open Access Journals (Sweden)

    M.F. Bulanyi

    2015-12-01

    Full Text Available It has been investigated the photoluminescence and X-Ray diffraction spectra of ZnS : Mn microcrystals (dimension ~ 25 μm. After mechanical crush (time 10 and 20 min the physical properties of microcrystals was changed. Dimension of micro crystals decrease up to 10 μm (mechanical crush 10 min and 5 μm (mechanical crush 20 min; intensity of photoluminescence decrease too at 6,5 and 10 times accordingly. The paper will present the physical reasons of this result.

  13. Cu2ZnSiS4

    Directory of Open Access Journals (Sweden)

    Kimberly A. Rosmus

    2011-04-01

    Full Text Available Single crystals of Cu2ZnSiS4, dicopper(I zinc silicon tetrasulfide, have been prepared via high-temperature solid-state synthesis. Cu2ZnSiS4 was found to have the wurtz-stannite structure type, like that of Li2CdGeS4, Li2CdSnS4, and Cu2CdSiS4. Each sulfur anion is tetrahedrally coordinated by two Cu cations, one Si cation, and one Zn cation, forming a three-dimensional honeycomb structure. When viewed along the c axis, the atoms are aligned in rows in which each cation alternates with the sulfur anions.

  14. Cloning of a putative extracellular Cu/Zn superoxide dismutase and functional differences of superoxide dismutases in invasive and indigenous whiteflies.

    Science.gov (United States)

    Gao, Xian-Long; Li, Jun-Min; Xu, Hong-Xing; Yan, Gen-Hong; Jiu, Min; Liu, Shu-Sheng; Wang, Xiao-Wei

    2015-02-01

    Superoxide dismutases (SODs) are a group of important antioxidant defense enzymes. In this study, a putative extracellular Cu/Zn superoxide dismutase (ecCuZnSOD) complementary DNA was cloned and characterized from the whitefly, Bemisia tabaci. Quantitative polymerase chain reaction analysis showed that the expression level of BtecCuZnSOD was more than 10-fold higher in the invasive Middle East Asia Minor 1 (MEAM1) than in the native Asia II 3 species of the B. tabaci species complex. After exposure to low temperature (4 °C), the expression of Bt-ecCuZnSOD gene was significantly up-regulated in MEAM1 but not in Asia II 3. Furthermore, the expression level of B. tabaci intracellular CuZnSOD (Bt-icCuZnSOD), Bt-ecCuZnSOD and mitochondrial MnSOD (Bt-mMnSOD) was compared after transferring MEAM1 and Asia II 3 whiteflies from favorable (cotton) to unfavorable host plants (tobacco). On cotton, both CuZnSOD genes were expressed at a higher level in MEAM1 compared with Asia II 3. Interestingly, after transferring onto tobacco, the expression of Bt-ecCuZnSOD was significantly induced in Asia II 3 but not in MEAM1. On the other hand, while Bt-mMnSOD was expressed equally in both species on cotton, Bt-mMnSOD messenger RNA was up-regulated in MEAM1 on tobacco. Consistently, enzymatic activity assays of CuZnSOD and MnSOD demonstrated that CuZnSOD might play an important protective role against oxidative stress in Asia II 3, whereas MnSOD activation was critical for MEAM1 whiteflies during host adaptation. Taken together, our results suggest that the successful invasion of MEAM1 is correlated with its constitutive high activity of CuZnSOD and inducible expression of MnSOD under stress conditions.

  15. New procedure of quantitative mapping of Ti and Al released from dental implant and Mg, Ca, Fe, Zn, Cu, Mn as physiological elements in oral mucosa by LA-ICP-MS.

    Science.gov (United States)

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2017-12-01

    A new procedure for determination of elements derived from titanium implants and physiological elements in soft tissues by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented. The analytical procedure was developed which involved preparation of in-house matrix matched solid standards with analyte addition based on certified reference material (CRM) MODAS-4 Cormorant Tissue. Addition of gelatin, serving as a binding agent, essentially improved physical properties of standards. Performance of the analytical method was assayed and validated by calculating parameters like precision, detection limits, trueness and recovery of analyte addition using additional CRM - ERM-BB184 Bovine Muscle. Analyte addition was additionally confirmed by microwave digestion of solid standards and analysis by solution nebulization ICP-MS. The detection limits are in range 1.8μgg(-1) to 450μgg(-1) for Mn and Ca respectively. The precision values range from 7.3% to 42% for Al and Zn respectively. The estimated recoveries of analyte addition line within scope of 83%-153% for Mn and Cu respectively. Oral mucosa samples taken from patients treated with titanium dental implants were examined using developed analytical method. Standards and tissue samples were cryocut into 30µm thin sections. LA-ICP-MS allowed to obtain two-dimensional maps of distribution of elements in tested samples which revealed high content of Ti and Al derived from implants. Photographs from optical microscope displayed numerous particles with µm size in oral mucosa samples which suggests that they are residues from implantation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Investigation of spectroscopy of ZnCuInS/ZnSe/ZnS quantum dots].

    Science.gov (United States)

    Lin, Yi-Jun; Liu, Wen-Yan; Zhang, Yu; Bi, Ke; Zhang, Tie-Qiang; Feng, Yi; Wang, Yi-Ding

    2014-01-01

    ZnCuInS/ZnSe/ZnS quantum dots were non-toxic and heavy-metal free semiconductor nanocrystals. In the present paper, ZnCuInS/ZnSe/ZnS core/shell/shell quantum dots were prepared with the particle size of 3.3, 2.7 and 2.3 nm. The photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots with different size were measured, and the wavelength of peak was blue-shifted with decreasing the diameter. The wavelength of absorption peaks and photoluminescence peaks were 510 nm, 611 nm (3.3 nm), 483 nm, 583 nm (2.7 nm) and 447 nm and 545 nm(2.3 nm). The obvious size-dependence of ZnCuInS/ZnSe/ZnS quantum dots was shown. The Stokes shifts of ZnCuInS/ZnSe/ZnS quantum dots were 398 meV (3.3 nm), 436 meV (2.7 nm) and 498 meV (2.3 nm). Such large Stokes shifts indicate that the emission should be ascribed to the defect-related recombination. The temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots with the particle size of 3.3 nm were measured. The wavelength of peaks was red-shifted with increasing temperature and the intensity of photoluminescence spectra was decreased with increasing temperature. Therefore, the emission was concluded to be the transition from the conduction band to defect state.

  17. Biodegradable coordination polymer: Polycondensation of glutaraldehyde and starch in complex formation with transition metals Mn(II, Co(II, Ni(II, Cu(II and Zn(II

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-11-01

    Full Text Available Starch a biopolymer, possesses many unique characteristics features accompanied with some shortcoming simultaneously. Some synthetic compounds are of great help to these demerits of starch and so by an addition of all these alternatively may acquire the tailor made features of starch-based compounds. By combining the individual advantages of starch and some other compounds and elements, starch-based biodegradable polymers were prepared for potential applications in biomedical and environmental fields. In this research, the structural analysis and characterization studies of starch glutaraldehyde polycondensed polymer were undertaken, and then the formation of polymer metal complexes with transition metal in coordinated form are carried out. FT-IR spectroscopy and 1H NMR and 13C NMR spectroscopy were used to analyze the functionality of the synthesized compound. CHN of the synthesized compound was supported by FT-IR and NMR which again proved helpful for structural analysis. Electronic spectroscopy confirmed the geometry of the synthesized compounds. Thermal studies were carried out by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Besides this the biodegradable studies were carried out by ASTM standards of biodegradable materials by CO2 evolution in respirometric titration method. All the polymers showed good thermal strength and reduced biodegradation on attachment of transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II.

  18. Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of O2N type tridentate chromone-2-carboxaldehyde Schiff's base ligand

    Science.gov (United States)

    Ammar, Reda A.; Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Al-Bedair, Lamia A.

    2017-08-01

    Tridentate Schiff's base (HL) ligand was synthesized via condensation of salicylaldehyde and 3-hydroxypyridin-2-yliminomethyl-4H-chromen-4-one and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR), magnetic moment, EPR, and thermal measurements. The IR spectra showed that HL was coordinated to the metal ions in tridentate manner with O2N donor sites of the azomethine N, deprotonated phenolic-OH and carbonyl-O. The activation of thermodynamic parameters are calculated using Coast-Redfern and Horowitz-Metzger (HM). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations, UV-Vis and magnetic moment measurements, ESR and ligand field parameters. Antioxidant activities have also been performed for all the compounds. The investigated ligand and metal complexes were screened for their in-vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data assert on the inspected compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated towards human liver Carcinoma (HepG2) cell line.

  19. The rhizosphere pH change of Pinus koraiensis seedlings as affected by N sources of different levels and its effect on the availability and uptake of Fe, Mn, Cu and Zn

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Dark brown forest soil was collected from the upper 20 cm soil layer in Changbai Mountain Research Station of Ecosystem, Chinese Academy of Sciences. The soil was amended with two different forms of nitrogen fertilizers: NO3- as Ca(NO3)2, NH4+ as NH4Cl at the concentrations of 50, 100, 200 and 400 mg?kg-1 respectively. The experiment was carried out with 2-yr-old Pinus koraiensis seedlings in pot. The pH change of rhizosphere soil and the contents of available Fe, Mn, Cu, and Zn in soil and leaves were analyzed. The result indicated that the addition of NH4--N decreased the rhizosphere pH value, while the addition of NO3--N increased the rhizosphere pH value in contrast with the control treatment. The direction and extent of the pH change mainly depended on N source and its concentrations applied. The rhizosphere pH change had a remarkable influence on the availability of the micronutrients in the rhizosphere, and thereafter affected the nutrient uptake by the seedlings. The contents of available mineral nutrients had a negative correlation with the pH value in the rhizosphere soil. The contents of available mineral nutrients in leaves were positively correlated to the levels of the available nutrients in the rhizosphere soils.

  20. Obtainment of Hg-free Mn/Zn solutions from spent alkaline batteries; Obtencion de soluciones de Mn/Zn libres de Hg provenientes de pilas alcalinas gastadas

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nicolas, L.; Espinosa-Ramirez, I. [Instituto Politecnico Nacional, UPALM, Mexico, D.F. (Mexico)]. E-mail: lepeni@hotmail.com; Aguilar, M. [Instituto de Fisica, UNAM, Mexico, D.F. (Mexico); Palacios-Beas, E. [Instituto Politecnico Nacional, UPALM, Mexico, D.F. (Mexico)

    2009-09-15

    As in many other countries, the excessive consumption of alkaline batteries in Mexico has generated highly contaminating wastes, with heavy metal contents such as Mn, Zn, Fe, Hg, Cu and Ni, among others. This has caused a large degree of environmental degradation with repercussions for the health of living beings. Because there are no regulations regarding the disposal of spent batteries, they are thrown out with the rest of the domestic wastes or directly into nature, ending up in open-air landfills or containers where they are incinerated, thereby contaminating the planet's environment, soil and springs. The present work studies the obtainment of solutions of Hg-free Mn and Zn (Mn/Zn {>=} 1) from spent alkaline batteries for use in synthesis of (Mn,Zn)Fe{sub 2}O{sub 4} ferrite by a wet method. The effect is analyzed of the dissolution medium (H{sub 2}SO{sub 4}/H{sub 2}O{sub 2}, HCl and HCl/NO{sub 3}) temperature and time on the percentage of dissolution of the metals present in the electrode material, characterized by atomic absorption (AA) spectroscopy and x-ray diffraction (XRD). The results of the investigation indicate that the best dissolution conditions are MD=H{sub 2}SO{sub 4}/H{sub 2}O{sub 2}, T=50 degrees Celsius and t =30 min, where 94.1 and 90.7 % (w/w) of Mn and Zn are obtained, respectively, with Mn/Zn = 1.51. The mercury content was determined to be 3.91%, higher than that stated by the battery specifications, which is recovered by dissolving with HCl/HNO{sub 3} in the residual solid. [Spanish] En Mexico como en muchos otros paises, el consumo excesivo de pilas alcalinas ha generado desechos altamente contaminantes, con contenidos de metales pesados como Mn, Zn, Fe, Hg, Cu y Ni entre otros, que han provocado un gran deterioro en el medio ambiente repercutiendo en la salud de los seres vivos. Dado que no se tiene una regulacion en cuanto a la disposicion de pilas gastadas, estas se desechan con el resto de las residuos domesticos o directamente

  1. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi, E-mail: kamphysics@gmail.com; Gujarati, Vivek P.; Chaki, S. H. [Department of Physics, Sardar Patel University, VallabhVidyanagr-388120,Anand, Gujarat, India. (India)

    2016-05-06

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn{sup 2+} an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  2. Effects of Zn application on uptake of Ca, Fe, Mn and Cu by maize plants under different water conditions in soil layers%土层水分非均匀供应下施锌对玉米植株中Ca、Fe、Mn、Cu吸收积累的影响

    Institute of Scientific and Technical Information of China (English)

    汪洪; 刘荣乐; 金继运

    2012-01-01

    进行分层盆栽试验,模拟田间土壤剖面上下层水分不均匀分布条件,研究表层土壤施锌对玉米植株吸收Ca、Fe、Mn和Cu养分的影响.结果表明:上层土壤干旱抑制了苗期玉米植株生长,降低了地上部Ca、Fe、Mn分配比例.上层土壤干旱情况下,增加下层土壤水分供应,并没有提高植株生长和养分元素的吸收量.施锌明显促进了玉米地上部生长,在土壤水分充足时,施锌对植株生长效果更明显.不论土壤水分状况如何,施锌显著降低了植株中Ca、Fe、Mn、Cu浓度,对植株吸收积累Fe有拮抗作用;上层土壤干旱条件下,施锌还降低了地上部和整株中Mn以及根部Cu的积累量.施锌对植株体内Ca、Fe、Mn、Cu向上运输没有显著性影响.研究表明土壤表层干旱条件下,即使增加土壤水分,尚不能提高玉米植株生长和对Ca、Fe、Mn、Cu等养分的吸收利用.施用锌肥可以提高作物对土壤水分利用,但要注意对作物吸收Fe与Mn的拮抗作用,适当配合铁锰等养分供应.%A pot experiment with splitting vertically layer culture systems was conducted to study the effects of Zn application in topsoil on maize plant growth and the uptake of Ca, Fe, Mn and Cu in two soil layers under different water conditions. The results showed that plant growth was inhibited by soil water deficit in topsoils, even when the water sup-ply in subsoils was improved. The translocation of Ca, Fe and Mn to shoots in maize plants was decreased by drought in topsoil. The shoot biomass and Zn accumulation in shoots were significantly enhanced by Zn application. Under adequate moisture supply in whole soil layers, the increases of plant growth and Zn uptake due to Zn application were more re-markable than that under drying conditions. Whatever soil water condition, Zn application decreased Ca, Fe, Mn and Cu concentrations in shoots and plant Fe accumulation. However, Zn application did not affect Ca, Fe, Mn or Cu

  3. Zn-Mn-O: Ferromagnet at room temperature

    Directory of Open Access Journals (Sweden)

    Milivojević Dušan D.

    2007-01-01

    Full Text Available Semiconductor Zn-Mn-O crystallites were synthesized by a solid state reaction method starting from the thermal decomposition of the appropriate oxalates. Samples were thermally treated in air at temperatures ranging from 400 to 900°C. The nominal concentrations of manganese werex = 0.01, 0.02, 0.04 and 0.10. The samples were investigated by the X-ray powder diffraction method, magnetization measurements and by electron paramagnetic resonance. X-ray diffractgrams show a dominant wurtzite structure of Zn-Mn-O. Room temperature ferromagnetism was observed in Zn-Mn-O samples with manganese concentrations x ≤ 0.04, thermally treated at low temperature (500°C. The saturation magnetiza­tion for the sample with x = 0.01 was 0.05 μB/Mn. The room temperature ferromagnetism seems to be due to the diffusion of Zn into the Mn-oxides grains.

  4. Interface charge transfer process in ZnO:Mn/ZnS nanocomposites

    Science.gov (United States)

    Stefan, M.; Toloman, D.; Popa, A.; Mesaros, A.; Vasile, O. R.; Leostean, C.; Pana, O.

    2016-03-01

    ZnO:Mn/ZnS nanocomposites were prepared by seed-mediated growth of ZnS QDs onto the preformed ZnO:Mn nanoparticles. The formation of the nanocomposite structure has been evidenced by XRD, HRTEM, and XPS. The architecture of the nanocomposite with outer ZnS QDs around ZnO:Mn cores is sustained by the sulfur and oxygen depth profiles resulted from XPS. When the two components are brought together, the band gap of ZnS component decreases while that of ZnO:Mn increases. It is the result of interface charge transfer from ZnO:Mn to ZnS QDs. Here ZnO:Mn valence states are extended through the interface into unoccupied gap states of ZnS. The energy band setup is modified from a type II into a type I band alignment. The process is accompanied by enhancement of composite UV emission of PL spectra as compared to its counterparts. The charge transfer from valence band also determines the increase of the core-polarization effect of s shell electrons at Mn2+ nucleus, thus determining the increase of the hyperfine field through the reduction of the covalency degree of Zn(Mn)-O bonds. The quantum confinement in ZnS QDs promotes the ferromagnetic coupling of singly occupied states due to Zn vacancies determining a superparamagnetic behavior of the ensemble. When the nanocomposites are formed, due to interface charge transfer effects, an increased number of filled cation vacancies in ZnS QDs develop, thus disrupting the pre-existing ferromagnetic coupling between spins resulting in a significant reduction of the overall saturation magnetization. The possibility to modulate nanocomposite properties by controlling the interface interactions may be foreseen in these types of materials.

  5. Alloyed Mn-Cu-In-S nanocrystals: a new type of diluted magnetic semiconductor quantum dots.

    Science.gov (United States)

    Liu, Qinghui; Deng, Ruiping; Ji, Xiangling; Pan, Daocheng

    2012-06-29

    A new type of Mn-Cu-In-S diluted magnetic semiconductor quantum dots was synthesized and reported for the first time. The quantum dots, with no highly toxic elements, not only show the same classic diluted magnetic behavior as Mn-doped CdSe, but also exhibit tunable luminescent properties in a relatively large window from 542 to 648 nm. An absolute photoluminescence quantum yield up to 20% was obtained after the shell growth of ZnS. This kind of magnetic/luminescent bi-functional Mn-Cu-In-S/ZnS core/shell quantum dot might serve as promising nanoprobes for use in dual-mode optical and magnetic resonance imaging techniques.

  6. Microwave-absorbing properties of Ni{sub 0.50-x}Zn{sub 0.50-x}Me{sub 2x}Fe{sub 2}O{sub 4} (Me=Cu, Mn, Mg) ferrite-wax composite in X-band frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Alexandre R. [DCMM, Pontificia Universidade Catolica do Rio de Janeiro-R. Marques de Sao Vicente, 225, 22453-900, Rio de Janeiro, RJ (Brazil)], E-mail: arbueno@rdc.puc-rio.br; Gregori, Maria L. [IPqM-Instituto de Pesquisas da Marinha-Rua Ipiru, Praia da Bica, Ilha do Governador, 21931-090, Rio de Janeiro, RJ (Brazil); Nobrega, Maria C.S. [COPPE/UFRJ PEMM-Universidade Federal do Rio de Janeiro-Ilha do Fundao, C.P. 68505, 21945-970, Rio de Janeiro, RJ (Brazil)

    2008-03-15

    Ni{sub 0.5-x}Zn{sub 0.5-x}Me{sub 2x}Fe{sub 2}O{sub 4} (Me=Cu, Mg, Mn; x=0.00 and 0.10) ferrite powders were prepared by the nitrate-citrate precursor method and investigated as a radar absorbing material (RAM) in a frequency range of 8-12 GHz (X-band). The effects of Cu{sup 2+}, Mn{sup 2+} and Mg{sup 2+} substitution on the microwave-absorbing feature, the complex permeability ({mu}{sub r}*) and the complex permittivity ({epsilon}{sub r}*) were investigated. The microwave-absorbing properties were studied as a function of frequency, Me{sup 2+} content, and thickness of absorber. The adoption of Cu{sup 2+} and Mn{sup 2+} substitution was found to improve the microwave absorption and bandwidth, while the substitution of Mg{sup 2+} was found to reduce the microwave absorption in relation to non-substituted NiZn ferrite.

  7. La0.9Sr0.1Ga0.8M0.2O3– (M = Mn, Co, Ni, Cu or Zn): Transition metal-substituted derivatives of lanthanum–strontium–gallium–magnesium (LSGM) perovskite oxide ion conductor

    Indian Academy of Sciences (India)

    Litty Sebastian; A K Shukla; J Gopalakrishnan

    2000-06-01

    Perovskite oxides of the general formula, La0.9Sr0.1Ga0.8M0.2O3– for M = Mn, Co, Ni, Cu and Zn, have been prepared and investigated. All the oxides exhibit high electrical conductivities ( ∼ 10–2 S/cm at 800°C) comparable to that of the best perovskite oxide ion conductor, La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) ( ∼ 8 × 10–2 S/cm at 800°C). While M = Mn, Co, Ni, Cu members appear to be mixed conductors with a variable electronic contribution to the conductivity, especially at high oxygen partial pressures (O2 \\geq 1 atm), arising from mixed-valency of the transition metals, the M = Zn(II) phase is a pure oxide ion conductor exhibiting a conductivity ( ∼ 1.5 × 10–2 S/cm at 800°C) that is slightly lower than that of LSGM. The lower conductivity of the M = Zn(II) derivative could be due to the preference of Zn(II) for a tetrahedral oxygen coordination.

  8. Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site

    Energy Technology Data Exchange (ETDEWEB)

    Bagur-Gonzalez, Maria Gracia [Univ. of Granada, Faculty of Sciences, Dept. of Analytical Chemistry, Granada (Spain); Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Estepa-Molina, Carmen [Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain); Martin-Peinado, Francisco [Univ. of Granada, Faculty of Sciences, Dept. of Soil Science, Granada (Spain); Morales-Ruano, Salvador [Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain)

    2011-02-15

    We used the different soluble-in-water concentrations of As, Cu, Mn, Pb and Zn from contaminated soils in an abandoned mining area (anthropogenic origin) to assess the phytotoxicity of the abandoned site using the results obtained with a Lactuca sativa L. bioassay. Material and methods The study has been carried out on potentially polluted samples from the Rodalquilar mining district (southern Spain). The area was sampled according to the different metallurgical treatments for gold extraction used in each one: dynamic cyanidation and heap leaching. The saturation extracts were obtained by filtering each saturated paste with a vacuum-extraction pump, in which measurements of metal(loid) concentrations, pH and electrical conductivity were made. The variables evaluated in the bioassay, defined as toxicity indices ranging from -1 (maximum phytotoxicity) to >0 (hormesis), were seed germination (SG) and root elongation (RE) of lettuce seeds. Results and discussion In areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil toxicity. According to these results, samples from the western area showed moderate to low toxicity, which was closely related to water-soluble As concentrations. Samples from the eastern area had a high degree of toxicity in 40% of the soils. Conclusions The comparison of the two indices (SG and RE) defined using the L. sativa L. bioassay indicates that, for areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil phytotoxicity. Unsupervised pattern recognition methods such as HCA and PCA enabled us to conclude that the low/moderate phytotoxicity of the soils is related to the extraction process used for the recovery of gold (mainly dynamic cyanidation in tanks located in the eastern area) and to the As and Pb contents. (orig.)

  9. Rational serendipity: "undirected" synthesis of a large {MnCu} complex from pre-formed Mn(II) building blocks.

    Science.gov (United States)

    Frost, Jamie M; Kettles, Fraser J; Wilson, Claire; Murrie, Mark

    2016-11-15

    Use of an aminopolyalcohol-based Mn(II) complex in solvothermal Cu(II) chemistry leads to a rare example of a high nuclearity heterometallic {MnCu} system, in which four Cu(II)(H1Edte) units trap an inner {MnCu(II)} oxide core.

  10. Electrodeposition and properties of Zn, Cu, and Cu{sub 1−x} Zn{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Özdemir, Rasim [Kilis Vocational High School, Kilis 7 Aralık University, 79000 Kilis (Turkey); Karahan, İsmail Hakkı, E-mail: ihkarahan@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, 31040 Hatay (Turkey)

    2014-11-01

    Highlights: • Cu, Zn and Cu–Zn deposits successfully deposited from the non-cyanide sulphate electrolyte. • The effect of alloying element was investigated on the electrical resistivity and the structure of Cu–Zn alloy. • The average crystallite size of the samples varied from 66 to 161 nm and decreased when the Zn and Cu combined in Cu–Zn. • Microstrain has been decreased with increasing crystallite size. • Electrical resistivity of alloy was obtained between the Zn and Cu films. - Abstract: The electrodeposition of Cu, Zn and Cu–Zn deposits from the non-cyanide Zn sulphate and Cu sulphate reduced by citrate at constant stirring speed has been investigated. The composition of the Cu–Zn bath was shown to influence the morphology, electrical resistivity, phase composition, and Cu and Zn content of the Cu–Zn deposits. Their structural and electrical properties have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDAX), cyclic voltammeter (CV) and current–voltage measurements against the temperature for electrical resistivity, respectively. XRD shows that Cu–Zn samples are polycrystalline phase. Resistivity results show that the copper film exhibits bigger residual resistivity than both the zinc and the Cu–Zn alloy. Theoretical calculations of the XRD peaks demonstrate that the average crystallite size of the Cu–Zn alloy decreased and microstrain increased when the Cu alloyed with zinc.

  11. Interfacial Reactions in the Ni/Sn- xZn/Cu Sandwich Couples

    Science.gov (United States)

    Yen, Yee-Wen; Lin, Chung-Yung; Lai, Mei-Ting; Chen, Wan-Ching

    2016-01-01

    The interfacial reactions in Ni/Sn- xZn/Cu sandwich couples which were reflowed at 270°C for 1 h and then aged at 160°C for 1-1000 h were investigated. When the 1000- μm-thick Sn-Zn alloy reacted with Ni and Cu in this couple, the results indicated that the (Ni, Cu)3Sn4, (Ni, Cu)5Zn21, and Ni5Zn21 phases were formed at Sn-1Zn/Ni, Sn-5Zn/Ni, and Sn-9Zn/Ni interfaces for 1 h reflowing, respectively. After 1000 h aging, each intermetallic compound (IMC) was converted to (Cu, Ni, Zn)6Sn5, (Ni, Cu, Sn)5Zn21/Ni5Zn21, and Ni5Zn21 (two layers) phases in the related couples. On the Cu side, the Cu6Sn5 phase in the Sn-1Zn/Cu interface and the Cu5Zn8 phase in the Sn-5Zn/Cu and Sn-9Zn/Cu interfaces were observed when the couple was reflowed at 270°C for 1 h. After 100 h aging, the (Cu, Ni, Zn)6Sn5, Cu5Zn8/(Cu, Zn)6Sn5, and Cu5Zn8 phases were formed at the Sn-1Zn/Cu, Sn-5Zn/Cu and Sn-9Zn/Cu interfaces. When the Sn-Zn alloy thickness was decreased to 500 μm, the (Cu, Ni, Zn)6Sn5 phase at the Sn-1Zn/Ni interface and the (Ni, Cu, Sn)5Zn21 phase at the Sn-5Zn/Ni and Sn-9Zn/Ni interfaces were observed after 1 h reflowing. When the couple was aged at 160°C for 1000 h, each IMC was converted to (Cu, Ni, Zn)6Sn5 and Cu5Zn8/(Cu, Ni, Sn)Zn/Ni5Zn21 phases at the Sn-1Zn/Ni and Sn-(5, 9)Zn/Ni interfaces. (Cu, Ni, Zn)6Sn5 and Cu5Zn8 were, respectively, formed at the Sn-1Zn/Cu and Sn-(5, 9)Zn/Cu interfaces for 1 h reflowing. After 100 h aging, the IMCs were converted to (Cu, Ni, Zn)6Sn5 and Cu5Zn8/(Cu, Zn)6Sn5 phases. This current study reveals that the IMC formation in Ni/(Sn- xZn)/Cu sandwich couples are very sensitive to the Zn concentration and thickness in Sn- xZn alloys.

  12. Synthesis, characterization and potential application of MnZn ferrite and MnZn ferrite @ Au nanoparticles.

    Science.gov (United States)

    Wang, Xin; Wang, Lingyan; Lim, I-Im S; Bao, Kun; Mott, Derrick; Park, Hye-Young; Luo, Jin; Hao, Shunli; Zhong, Chuan-Jian

    2009-05-01

    The ability to tune the magnetic properties of magnetic nanoparticles by manipulating the composition or surface properties of the nanoparticles is important for exploiting the application of the nanomaterials. This report describes preliminary findings of an investigation of the viability of synthesizing MnZn ferrite and core @ shell MnZn ferrite @ Au nanoparticles as potentially magnetization-tunable nanomaterials. The synthesis of the core-shell magnetic nanoparticles involved a simple combination of seed formation of the MnZn ferrite magnetic nanoparticles and surface coating of the seeds with gold shells. Water-soluble MnZn ferrite nanoparticles of 20-40 nm diameters and MnZn ferrite @ Au nanoparticles of 30-60 nm have been obtained. The MnZn ferrite @ Au nanoparticles have been demonstrated to be viable in magnetic separation of nanoparticles via interparticle antibody-specific binding reactivity between antibodies on the gold shells of the core-shell magnetic particles and proteins on gold nanoparticles. These findings have significant implications to the design of the core @ shell magnetic nanomaterials with core composition tuned magnetization for bioassay application.

  13. On diffusion of Cu in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, F., E-mail: frank.herklotz@physik.tu-dresden.d [Institut fuer Angewandte Physik, Technische Universitaet Dresden, 01062 Dresden (Germany); Lavrov, E.V.; Weber, J. [Institut fuer Angewandte Physik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-12-15

    An experimental study of Cu diffusion in bulk ZnO single crystals in the temperature range 1012-1220 deg. C is presented. Concentration profiles of substitutional Cu were determined by IR absorption at 5817cm{sup -1}. Our findings reveal that Cu in ZnO diffuses faster than previously reported [G. Mueller, R. Helbig, J. Phys. Chem. Solids 32 (1971) 1971]. The discrepancy is tentatively explained by the formation of Cu complexes, which occurs at high Cu concentrations.

  14. Changes of Cu, Zn, and Cd speciation in sewage sludge during composting

    Institute of Scientific and Technical Information of China (English)

    GAO Ding; ZHENG Guo-di; CHEN Tong-bin; LUO Wei; GAO Wei; ZHANG Yi-an; LI Yan-xia

    2005-01-01

    The potential toxicity risks from heavy metals depend on their chemical speciation. The four stages of the Tessier sequential extraction method were employed to investigate changes in heavy metal speciation(Cu, Zn, and Cd) of sewage sludge during forced aeration composting, and then to identify whether the composting process would reduce or enhance their toxicities. Throughout the composting process, the exchangeable, carbonate-bound, Fe-Mn oxide-bound, and organic matter-bound fractions of Cu were converted to the residual Cu fraction. The organic matter-bound Cu fraction greatly contributed to this transformation. Residual Zn fraction was transformed to the Fe-Mn oxide-bound and organic matter-bound fractions after composting. The residual Zn fraction was a major contributor to the organic matter-bound Zn fraction. The availability of Cu and Zn was reduced by composting such that the risk of heavy metal toxicity decreased with prolonged treatment times. Additionally, attention should be paid to the increased availability of Cd in sewage sludge after composting treatment.

  15. Ferromagnetism in CuO-ZnO multilayers

    Science.gov (United States)

    Chandran, Sudakar; Kirby, B. J.; Padmanabhan, K.; Lawes, G.; Naik, R.; Kumar, Sanjiv; Naik, V. M.

    2008-03-01

    The magnetic properties of CuO-ZnO heterostructures are examined to elucidate the origin of the ferromagnetic signature in Cu doped ZnO. The CuO and ZnO layer thickness varied from 15 nm to 350 nm, and we observed no significant diffusion of either Cu^2+ in the ZnO layers or of Zn^2+ in the CuO layers using Rutherford backscattering spectrometry. Bulk magnetization measurements established that the multilayers exhibit a ferromagnetic moment at room temperature, with a saturation magnetization (˜2-5 emu/cc of CuO) that depends on the CuO size, but not the CuO-ZnO interfacial area. Polarized neutron reflection studies suggest that the ferromagnetism arises from the CuO layers, and not from the interdiffusion of CuO and ZnO. These results indicate that the ferromagnetism in these multicomponent structures arises from the uncompensated surface spins of CuO nanoparticles in the layer rather than from regions of interdiffusing ZnO and CuO.

  16. Characterization of the corrosion products of electrodeposited Zn, Zn-Co and Zn-Mn alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Z.I.; Diaz-Arista, P.; Meas, Y.; Ortega-Borges, R. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (CIDETEQ), Parque Tecnologico Sanfandila, Pedro Escobedo, Queretaro, A.P. 064, C.P. 76703 Queretaro (Mexico); Trejo, G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (CIDETEQ), Parque Tecnologico Sanfandila, Pedro Escobedo, Queretaro, A.P. 064, C.P. 76703 Queretaro (Mexico)], E-mail: gtrejo@cideteq.mx

    2009-11-15

    The morphology, composition, phase composition and corrosion products of coatings of pure Zn (obtained from two types of electrolytic bath: an acidic bath (Zn{sub acid}) and a cyanide-free alkaline bath (Zn{sub alkaline})) and of Zn-Mn and Zn-Co alloys on steel substrates were studied. To achieve this, diverse techniques were used, including polarization curves, atomic force microscopy (AFM), scanning electron microscopy (SEM), glow discharge spectroscopy (GDS), X-ray diffraction (XRD), and the salt spray test. In the salt spray test, the exposure time required for the coatings to exhibit red corrosion (associated with the oxidation of steel) decreased in the following order: Zn-Mn{sub (432h)} > Zn-Co{sub (429h)} > Zn{sub alkaline(298h)} > Zn{sub acid(216h)}. The shorter exposure times required for corrosion of the pure Zn coatings are related to the coating composition and the crystallographic structure. Analysis of the corrosion products disclosed that Zn{sub 5}(OH){sub 8}Cl{sub 2}.H{sub 2}O was a corrosion product of all of the coatings tested. However, the formation of oxides of manganese (MnO, Mn{sub 0.98}O{sub 2}, Mn{sub 5}O{sub 8}) in the Zn-Mn coating, and the formation of the hydroxide Zn{sub 2}Co{sub 3}(OH){sub 10}.2H{sub 2}O in the Zn-Co coating, produced more compact and stable passive layers, with lower dissolution rates.

  17. Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance

    Science.gov (United States)

    Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Jangid, Manoj K.; Bahadur, D.; Medhekar, N. V.; Aslam, M.

    2016-10-01

    Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations. Moreover, secondary phases are not observed and grain sizes are enhanced significantly with selenium doping (grain size ~1 μm). The earth-abundant Cu2MSnS4/Se4 (M = Zn, Mn and Fe) nanoparticles have band gaps in the range of 1.04–1.51 eV with high optical-absorption coefficients (~104 cm‑1) in the visible region. The power conversion efficiency of a CZTS solar cell is enhanced significantly, from 0.4% to 7.4% with selenium doping, within an active area of 1.1 ± 0.1 cm2. The observed changes in the device performance parameters might be ascribed to the variation of optical band gap and microstructure of the thin films. The performance of the device is at par with sputtered fabricated films, at similar scales.

  18. Influence of iron plaque on Cd, Mn, Cu and Zn uptakes of rice seedlings under different Cd treatments%镉处理根表铁膜对水稻吸收镉、锰、铜、锌的影响

    Institute of Scientific and Technical Information of China (English)

    刘侯俊; 李雪平; 韩晓日; 高晓宁

    2013-01-01

    本试验利用营养液和土壤培养系统,研究不同Fe、Cd处理下根表铁膜对水稻吸收Cd、Mn、Cu、Zn的影响。土壤中Fe的水平为0、1、2 g/kg Fe(以FeSO4·7H2O的形式供应),Cd的水平为0、2、10 mg/kg Cd(以3CdSO4·8H2 O的形式供应)。营养液中Fe和Cd的水平分别为0、10、30、50、80、100 mg/L Fe和0、0.1、1.0 mg/L Cd。收获后测定水稻根表、根中和地上部Cd、 Fe、 Mn、Cu、Zn含量。试验结果表明,两种培养方式下,随着介质中Fe浓度的增加,水稻根表铁膜( DCB-Fe)逐渐增多。土壤培养方式下,根表铁膜中Cd和Mn含量随铁膜量增加而略有增加,所有元素含量均表现为根中大于铁膜中。营养液培养条件下,根表铁膜中Mn和Cu含量在高量Fe供应时有所增加, Mn、Cu、Zn表现为铁膜中大于根中。根表铁膜中Zn含量在两种培养方式下均未呈现一定规律性变化。根中和地上部Cd、Mn、Cu、Zn含量一般都随介质中Fe浓度的增加而下降,Cu和Zn含量在加Cd处理中下降。以上结果证明,铁膜对Cd的吸附阻挡能力有限,对Mn、Cu、 Zn的吸附作用因培养方式和元素种类不同而有所差异,植株体内微量元素含量的下降主要与它们之间的相互抑制作用有关。%In this study , soil and hydroponics culture systems were used to investigate the effects of iron plaque on the uptakes of Cd , Mn, Cu and Zn by rice seedlings supplied with different levels of Fe and Cd .The three iron levels(as FeSO4· 7H2O) were 0, 1 and 2 g/kg in soil culture, and the six levels were 0,10,30,50,80 and 100 mg/L in solution culture.The cadmium levels(as 3CdSO4· 8H2O) were 0,2 and 10 mg/kg in soil, and 0,0.1 and 1.0 mg/L in solution.After harvest, the contentrations of Fe , Cd, Mn, Cu and Zn in iron plaque, roots and shoots were determined.The results showed that the iron plaque (Dithionite-Citrate-Bicarbonate DCB-Fe) on root surface was increased with

  19. Probing the connections between superconductivity, stripe order, and structure in La <mn>1.905mn> Ba <mn>0.095mn> Cu <mn>1mn>-y Zn y O <mn>4mn>

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; Jie, Qing; Hücker, M.; Zheludev, A.; Tian, Wei; Winn, B. L.; Zarestky, J. L.; Singh, D. K.; Hong, Tao; Li, Qiang; Gu, Genda; Tranquada, J. M.

    2012-04-01

    The superconducting system La2-xBaxCuO4 is known to show a minimum in the transition temperature Tc at x=1/8 where maximal stripe order is pinned by the anisotropy within the CuO2 planes that occurs in the low-temperature-tetragonal (LTT) crystal structure. For x=0.095, where Tc reaches its maximum value of 32 K, there is a roughly coincident structural transition to a phase that is very close to LTT. Here, we present a neutron scattering study of the structural transition, and demonstrate how features of it correlate with anomalies in the magnetic susceptibility, electrical resistivity, thermal conductivity, and thermoelectric power. We also present measurements on a crystal with 1% Zn substituted for Cu, which reduces Tc to 17 K, enhances the spin stripe order, but has much less effect on the structural transition. We make the case that the structural transition correlates with a reduction of the Josephson coupling between the CuO2 layers, which interrupts the growth of the superconducting order. We also discuss evidence for two-dimensional superconducting fluctuations in the normal state, analyze the effective magnetic moment per Zn impurity, and consider the significance of the anomalous thermopower often reported in the stripe-ordered phase.

  20. The suitability of the simplified method of the analysis of coffee infusions on the content of Ca, Cu, Fe, Mg, Mn and Zn and the study of the effect of preparation conditions on the leachability of elements into the coffee brew.

    Science.gov (United States)

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2013-12-01

    A fast and straightforward method of the analysis of coffee infusions was developed for measurements of total concentrations of Ca, Cu, Fe, Mg, Mn and Zn by flame atomic absorption spectrometry. Its validity was proved by the analysis of spiked samples; recoveries of added metals were found to be within 98-104% while the precision was better than 4%. The method devised was used for the analysis of re-distilled water infusions of six popular ground coffees available in the Polish market. Using the mud coffee preparation it was established that percentages of metals leached in these conditions varied a lot among analysed coffees, especially for Ca (14-42%), Mg (6-25%) and Zn (1-24%). For remaining metals, the highest extractabilities were assessed for Mn (30-52%) while the lowest for Fe (4-16%) and Cu (2-12%). In addition, it was found that the water type and the coffee brewing preparation method influence the concentration of studied metals in coffee infusions the most.

  1. Determination of Fe,Mn,Cu and Zn Elements in Oatmeal by Flame Atomic Absorption Spectrometry%火焰原子吸收分光光谱法测定燕麦片中铁、锰、铜、锌含量

    Institute of Scientific and Technical Information of China (English)

    杨葵华; 黎国兰; 谢丽; 邓文文

    2011-01-01

    采用HNO3-HClO4(4+1)湿法消解样品,用火焰原子吸收光谱法测定燕麦片中铁、锰、铜、锌的含量。测得铁、锰、铜、锌的回收率分别在98%~100%、99%~101%9、8%~99%9、6%~101%之间。平均回收率为96%~101%,RSD为0.3%~0.9%,表明该方法准确可靠。%To preprocess samples of oatmeal with HNO3-HClO4(4+1) wet digestion,the contents of Fe,Mn,Cu,Zn in oatmeal can be determined by flame atomic absorption spectrometry,obtaining the recovery rate of 98%~100% for Fe,99%~101% for Mn,98%~99% for Cu,96%~101% for Zn.,and the average rate is 96%~101%,RSD is 0.3%~0.9%.The result of this experiment shows that the method is reliable and accurate for the test.

  2. New Family of Materials with Negative Coefficients of Thermal Expansion: The Effect of MgO, CoO, MnO, NiO, or CuO on the Phase Stability and Thermal Expansion of Solid Solution Phases Derived from BaZn2Si2O7.

    Science.gov (United States)

    Thieme, Christian; Waurischk, Tina; Heitmann, Stephan; Rüssel, Christian

    2016-05-02

    Recently, a silicate with the composition SrxBa1-xZn2Si2O7 was reported, which exhibits a negative coefficient of thermal expansion. The compound BaZn2Si2O7 shows a highly positive coefficient of thermal expansion up to a temperature of 280 °C and then transfers to a high temperature phase, which exhibits a coefficient of thermal expansion near zero or negative over a limited temperature range up to around 500 °C. This high temperature modification can be stabilized to room temperature if Ba(2+) is replaced by Sr(2+). In the solid solution SrxBa1-xZn2Si2O7, also Zn(2+) can be replaced in a wide concentration range by other cations with the respective valency. In the present study, Zn was partially or completely replaced by Mg, Co, Mn, Ni, or Cu. If the high temperature phase is stable at room temperature, the thermal expansion is negative, and if the partial substitution exceeds a certain concentration threshold, the low temperature phase with the crystal structure of BaZn2Si2O7 and highly positive thermal expansion is formed. The lowest mean coefficients of thermal expansion were measured for the composition Ba0.5Sr0.5Zn1.4Co0.6Si2O7 with a value of -2.9 × 10(-6) K(-1). In general, a lower Zn-concentration leads to a higher anisotropy and a lower mean coefficient of thermal expansion.

  3. Effects of doping concentration on properties of Mn-doped ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    Gao Li; Zhang Jian-Min

    2009-01-01

    This paper reports that the radio frequency magnetron sputtering is used to fabricate ZnO and Mn-doped ZnO thin films on glass substrates at 500 ℃. The Mn-doped ZnO thin films present wurtzite structure of ZnO and have a smoother surface, better conductivity but no ferromagnetism. The x-ray photoelectron spectroscopy results show that the binding energy of Mn_(2p3/2) increases with increasing Mn content slightly, and the state of Mn in the Mn-doped ZnO thin films is divalent. The chemisorbed oxygen in the Mn-doped ZnO thin films increases with increasing Mn doping concentration. The photoluminescence spectra of ZnO and Mn-doped ZnO thin films have a similar ultraviolet emission. The yellow green emissions of 4 wt. % and 10 wt. % Mn-doped thin films are quenched, whereas the yellow green emission occurs because of abundant oxygen vacancies in the Mn-doped ZnO thin films after 20 wt. % Mn doping. Compared with pure ZnO thin film, the bandgap of the Mn-doped ZnO thin films increases with increasing Mn content.

  4. Magnetodielectric effect of Mn-Zn ferrite at resonant frequency

    Science.gov (United States)

    Pengfei, Pan; Ning, Zhang

    2016-10-01

    The dielectric properties and the magnetodielectric effect in Mn-Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn-Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect.

  5. 羟基蛋氨酸螯合铜/锰/锌对产蛋鸡蛋壳品质、酶活及微量元素沉积的影响%Effects of 2-hydroxy-4-(methylthio)-butanoic acid chelated Cu/Mn/Zn on eggshell quality,enzyme activity and trace mineral retention in laying hens

    Institute of Scientific and Technical Information of China (English)

    孙秋娟; 呙于明; 张天国; 温金磊

    2011-01-01

    为研究日粮中有机(羟基蛋氨酸螯合)铜、锰和锌等量替代其硫酸盐对产蛋高峰期蛋鸡的影响,试验选用108只37周龄海兰褐商品蛋鸡,分为2个处理。对照组在基础日粮的基础上添加10、30和30 mg/kg硫酸盐形式的Cu、Mn和Zn,处理组采用蛋氨酸羟基类似物螯合Cu、Mn和Zn等量替代其硫酸盐形式。试验各处理的蛋氨酸当量相同,试验前蛋鸡饲喂2周基础日粮,以降低其微量元素体储备。结果表明,微量元素来源对蛋壳强度及厚度未产生影响(P〉0.05)。有机微量元素的添加显著提高43周龄肝脏CA(P=0.052 1)、CP活%In order to compare the effects of mineral 2-hydroxy-4-(methylthio)-butanoic acid(HMBA) chelates(Cu,Mn,Zn) versus sulfates on laying hens,one hundred and eight 37-wk-old laying hens(Hyline Brown) were assigned to two treatments,where basal diet in the control group(CON) supplemented with a combination of inorganic minerals(sulfate source,i.e.,Cu 10 mg/kg,Zn 30 mg/kg and Mn 30 mg/kg of diet) and the treatment diets(OTM) supplemented with a combination of organic minerals to replace their inorganic forms in CON group,i.e.,10 mg/kg organic Cu(Novus Intl.,USA),20 mg/kg organic Zn,and 20 mg/kg organic Mn.All diets were iso-methionine.Basal diet was fed for 2 week of a pre-experiment period.Results showed that supplementation with HMBA chelated minerals did not affect eggshell quality(P〉0.05).Supplementation of organic minerals significantly increased CA(P=0.052 1) and CP(P〈0.000 1) activities in liver at 43 week of age.However,differences disappeared at 48 week of age(P〉0.05).Supplementation of organic minerals significantly increased Cu concentration in liver,pancreas,spleen at 43 and 48 week of age,and yolk at 48 and 53 week of age(P〈0.05).Zn concentration were increased in liver and yolk,but decreased in spleen and tibia when fed with organic minerals(P〈0.05).Mn

  6. 10 Towards a Safer Environment:(7)How apatite minerals remediate Pb, Zn and Mn from wastewater?

    Institute of Scientific and Technical Information of China (English)

    Samy Mohamed Abdallah

    2010-01-01

    To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apatite mineral were selected.In situ remediation experiment proved that apatite mineral has the highest affinity for Pb and removed more than 94% from initial Pb concentration.The rest of contaminants followed the descending order of:Zn>Mn>Cu>Co>Ni.The sorption of Pb,Zn and Mn onto apatite mineral was well characterized by the Langmuir model.Ternary-metal addition induced competitive sorption among the three metals,with the interfering effect of Pb>Zn>Mn.Durlng metal retention by apatite mineral calcium and phosphate were determined in equilibrium solution.Calcium increased and phosphate decreased with increasing metal disappearance.The greatest increase of calcium and the largest phosphate reduction were found with Pb+2 sorption.This is suggested that Pb+2 retention by apatite was through the dissolution of apatite which mean release of Ca and P into solution and formation of pyromorphite(lead phosphate)as consuming of P.Obtained results suggested that there are two general mechanisms for the ability of apatite mineral to fake up Pb2+,Zn+2 and Mn+2.The first is(ion-ion exchange mechanism)concerned with adsorption of ions on the solid surface followed by their diffusion into apatite mineral and the release of cations originally contained within apatite.The second is(dissolution-precipitation mechanism)concerned to the dissolution of apatite in the aqueous solution containing Pb2+,Zn+2 and Mn+2 followed by the precipitation or coprecipitation.Pb+2 desorption responding to solution pH may indicate that not all the Pb+2 was chemisorbed and fraction of Pb+2 was weakly adsorbed or complexed on the surface of apatite mineral.

  7. Structure and magnetic properties of ZnO coated MnZn ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mallesh, Shanigaram [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Sunny, Annrose; Vasundhara, Mutta [Materials Science and Technology Division, CSIR-NIIST, Thiruvananthapuram, Kerala 695019 (India); Srinivas, Veeturi, E-mail: veeturi@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-11-15

    A comparative study of structural and magnetic properties of MnZn spinel ferrite (SF) and ZnO coated MnZn ferrite (ZF) nanoparticles (NPs) has been carried out. The as-prepared NPs show a single phase cubic spinel structure, with lattice parameter ~8.432 Å. However, α-Fe{sub 2}O{sub 3} impurity phase emerge from SF particles when subjected to annealing at 600 °C in air. The weight fraction of α-Fe{sub 2}O{sub 3} phase increases with increasing Mn concentration (9% for x=0.2 and 53% for x=0.6). On the other hand in ZF (x=0.2 and 0.4) NPs no trace of impurity phase is observed when annealed at 600 °C. The magnetic measurements as a function of field and temperature revealed superparamagnetic like behavior with cluster moment ~10{sup 4} μ{sub B} in as-prepared particles. The cluster size obtained from the magnetic data corroborates well with that estimated from structural analysis. Present results on ZnO coated MnZn ferrite particles suggest that an interfacial (ZnO@SF) reaction takes place during annealing, which results in formation of Zn-rich ferrite phase in the interface region. This leads to deterioration of magnetic properties even in the absence of α-Fe{sub 2}O{sub 3} impurity phase. - Highlights: • The properties of ZnO coated MnZn ferrite NPs are compared with uncoated NPs. • The structural data reveals that the ZnO shell protects ferrite core from degradation. • The field and temperature dependence of magnetization suggests SPM like behavior. • From the magnetic isotherms average cluster moment is estimated to be ~10{sup 4} μ{sub B.} • Magnetic data suggests formation of Zn-rich ferrite phase in interfacial region.

  8. Effect of temperature on mechanical alloying of Cu-Zn and Cu-Cr system

    Institute of Scientific and Technical Information of China (English)

    ZUO Ke-sheng; XI Sheng-qi; ZHOU Jin-gen

    2009-01-01

    Cu-Zn and Cu-Cr powders were milled with an attritor mill at room temperature, -10, -20 and -30 ℃, respectively. Phase transformation and morphology evolution of the alloyed powder were investigated by X-ray diffractometry(XRD), X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy(SEM). The results show that lowering temperature can delay mechanical alloying(MA) process of Cu-Zn system with negative mixing enthalpy, and promote MA process of Cu-Cr system with positive mixing enthalpy. As for Cu-Cr and Cu-Zn powders milled at -10 ℃, lamellar structures are firstly formed, while fewer lamellar particles can be found when the powder is milled at -20 ℃. When the alloyed powder is annealed at 1 000 ℃, Cu(Cr) solid solution is decomposed and Cr precipitates from Cu matrix, whereas Cu(Zn) solid solution keeps stable.

  9. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: masataka-hakamada@aist.go.j [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimosihidami, Moriyama, Nagoya 463-8560 (Japan); Mabuchi, Mamoru [Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501 (Japan)

    2009-10-19

    Nanoporous Ni, Ni-Cu and Cu with ligament sizes of 10-20 nm were fabricated by dealloying rolled Ni-Mn, Cu-Ni-Mn and Cu-Mn alloys, respectively. Unlike conventional Raney nickel composed of brittle Ni-Al intermetallic compounds, the initial alloys had good workability. Ni and Cu atoms formed a homogeneous solid solution in the nanoporous architecture. The ligament sizes of nanoporous Ni and Ni-Cu were smaller than that of nanoporous Cu, reflecting the difference between the surface diffusivities of Ni and Cu.

  10. In situ observations of domain structures and magnetic flux distributions in Mn-Zn and Ni-Zn ferrites by Lorentz microscopy and electron holography.

    Science.gov (United States)

    Kasahara, Takehiro; Shindo, Daisuke; Yoshikawa, Hideyuki; Sato, Takafumi; Kondo, Koichi

    2007-01-01

    Domain structures and magnetic flux distributions in Mn-Zn and Ni-Zn ferrites are investigated by in situ observations with Lorentz microscopy and electron holography. In situ Lorentz microscopic observation with the magnetic field applied reveals that the domain walls in Mn-Zn ferrite move easily across the grain boundary. On the other hand, each grain of Ni-Zn ferrite is magnetized by domain wall motion inside the grain. By taking a series of holograms with adjustment of the optical axis and astigmatism while the magnetic field is applied, we succeeded in observing the change in magnetic flux distribution quantitatively. Eventually, it is clarified that magnetization rotation does not take place in the magnetization process of Ni-Zn ferrite. The domain wall widths delta in Mn-Zn and Ni-Zn ferrites are evaluated to be 73 and 58 nm, respectively. Furthermore, through direct observation of the domain structure in Ni-Cu-Zn ferrite with Lorentz microscopy, it is found that the grains with size below 1.5 microm diameter are single domain.

  11. Tuning of properties of sprayed CuZnS films

    Science.gov (United States)

    Sreejith, M. S.; Deepu, D. R.; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-04-01

    CuZnS is an alloy having mixed structure of CuxS and ZnS. Here we studied the structural, optical, compositional and electrical properties of CuZnS films prepared using chemical spray pyrolysis (CSP). Just by varying ratio of Cu to Zn was observed that material can be changed from P type to N type and electrical conductivity can be increased by 4 orders. Increase in concentration of Cu leads to decrease bandgap to 1.8 eV from 3.4 eV. CuZnS films having high concentration of copper can be used as good absorber and weakly doped films as buffer / window layers in solar cells.

  12. Distribuição de Zn, Pb, Ni, Cu, Mn e Fe nas frações do sedimento superficial do Rio Cachoeira na região sul da Bahia, Brasil

    Directory of Open Access Journals (Sweden)

    José Soares dos Santos

    2013-01-01

    Full Text Available The metal distribution in the surface sediment fractions of the Cachoeira River was evaluated based on the fractionation method using a five-step sequential extraction. The determination of metals was made by flame atomic absorption spectrophotometry (F AAS. Zn, Pb and Cu exhibit higher concentrations in the residual fraction of the sediment from sites that receive discharges from urban and industrial zones. High levels of Ni (60 ± 1 to 447 ± 9 µg L-1 were found in the river water, which may be detrimental to the "health" of rural communities that utilize the river water for domestic purposes without treatment.

  13. Materials for spintronic: Room temperature ferromagnetism in Zn-Mn-O interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Quesada, A. [Instituto de Magnetismo Aplicado and Departamento de Fisica de Materiales Universidad Complutense, P.O. Box 155, Las Rozas, Madrid (Spain); Garcia, M.A. [Instituto de Magnetismo Aplicado and Departamento de Fisica de Materiales Universidad Complutense. P.O. Box 155, Las Rozas, Madrid (Spain); Crespo, P. [Instituto de Magnetismo Aplicado and Departamento de Fisica de Materiales Universidad Complutense, P.O. Box 155, Las Rozas, Madrid (Spain); Hernando, A. [Instituto de Magnetismo Aplicado and Departamento de Fisica de Materiales Universidad Complutense, P.O. Box 155, Las Rozas, Madrid (Spain)]. E-mail: ahernando@renfe.es

    2006-09-15

    In this paper we study the room temperature ferromagnetism reported on Mn-doped ZnO and ascribed to spin polarization of conduction electrons. We experimentally show that the ferromagnetic behaviour is associated to the coexistence of Mn{sup 3+} and Mn{sup +4} in MnO{sub 2} grains where diffusion of Zn promotes the Mn{sup 4+{yields}}Mn{sup 3+} reduction. Potential uses of this material in spintronic devices are analysed.

  14. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    Science.gov (United States)

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  15. Structure and magnetic properties of ZnO coated MnZn ferrite nanoparticles

    Science.gov (United States)

    Mallesh, Shanigaram; Sunny, Annrose; Vasundhara, Mutta; Srinivas, Veeturi

    2016-11-01

    A comparative study of structural and magnetic properties of MnZn spinel ferrite (SF) and ZnO coated MnZn ferrite (ZF) nanoparticles (NPs) has been carried out. The as-prepared NPs show a single phase cubic spinel structure, with lattice parameter ~8.432 Å. However, α-Fe2O3 impurity phase emerge from SF particles when subjected to annealing at 600 °C in air. The weight fraction of α-Fe2O3 phase increases with increasing Mn concentration (9% for x=0.2 and 53% for x=0.6). On the other hand in ZF (x=0.2 and 0.4) NPs no trace of impurity phase is observed when annealed at 600 °C. The magnetic measurements as a function of field and temperature revealed superparamagnetic like behavior with cluster moment ~104 μB in as-prepared particles. The cluster size obtained from the magnetic data corroborates well with that estimated from structural analysis. Present results on ZnO coated MnZn ferrite particles suggest that an interfacial (ZnO@SF) reaction takes place during annealing, which results in formation of Zn-rich ferrite phase in the interface region. This leads to deterioration of magnetic properties even in the absence of α-Fe2O3 impurity phase.

  16. Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, R. [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Junaid Bushiri, M., E-mail: junaidbushiri@gmail.com [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Achary, Sreekumar Rajappan; Muñoz-Sanjosé, Vicente [Departamento de FisicaAplicada y Electromagnetismo, Universitat de Valencia, c/Dr. Moliner 50, Burjassot, Valencia 46100 (Spain)

    2015-01-15

    Highlights: • Single crystalline ZnO:Mn nanorods. • Reduced optical active defects. • Quenching and blue shift of UV emission. - Abstract: ZnO:Mn alloyed nanorods (Mn nominal concentration – 3–5 wt%) were synthesized by using hydrothermal process at an optimized growth temperature of 200 °C and a growth time of 3 h. The XRD, SEM and Raman, FTIR investigations reveal that ZnO:Mn (Mn – 3–5 wt%) retained hexagonal wurtzite crystal structure with nanorod morphology. The HRTEM and SAED analysis confirm the single crystalline nature of hydrothermally grown ZnO and ZnO:Mn (5 wt%) nanorods. The ZnO:Mn nanorods (Mn – 0–5 wt%) displayed optical band gap in the range 3.23–3.28 eV. The blue shift of UV emission peak (PL) from 393 (ZnO) to 386 nm and quenching of photoluminescence emission in ZnO:Mn is due to the Mn incorporation in ZnO lattice. Relative increase in intensity of Raman band at 660 cm{sup −1} with nominal doping of Mn 3–5 wt% in ZnO indicate that defects are introduced in ZnO:Mn system as a result of doping that leads to the quenching of photoluminescence emission at 393 nm.

  17. Effects of Mn, Fe, Zn and Cu on growth and paeoniflorin content of Paeonia lactiflora%锰、铁、锌、铜4种微量元素对芍药生长和芍药苷含量的影响

    Institute of Scientific and Technical Information of China (English)

    陈暄; 张雪媛; 张荣荣; 王康才

    2009-01-01

    Objective: To study the effects of four trace elements Mn, Fe, Zn and Cu on growth of the 2nd- and the 3rd-years' Paeonia lactiflora. Method: The experiment was designed as randomized blocks. The data of physiological parameters such as fresh weight of root, numbers of bud and root division, length and diameter of the root and the contents of paeoniflorin in root were measured after fertilized with the four trace elements. Also the contents of the four trace elements in soil and roots, stem and leaves of P. lactiflo-ra were detected by atomic absorption spectrometry. Result and Conclusion: The growth of the P. lactiflora was improved and the con-tent of paeoniflorin was increased by proper level of Mn, Fe, Zn and Cu, but depressed by the higher level. Only Zn can be accumula-ted in the roots of P. lactiflora.%目的:研究锰、铁、锌、铜4种元素对二、三年生芍药生长的影响.方法:采用完全随机区组,测定施用各微量元素后芍药产量等生理指标和质量指标芍药苷的变化,并用原子吸收分光光度法测定各元素在芍药根、茎、叶及土壤中的含量.结果与结论:锰、铁、锌、铜在一定水平下能显著促进芍药的生长并能提高根中芍药苷的含量,但施用过多会产生生长抑制,除锌外其他元素均不在根中积累.

  18. Optical properties of ZnS:Mn nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.; En Naciri, A. [Universite Paul Verlaine-Metz, Laboratoire LPMD, 1 Bd Arago, 57078 Metz (France); Grob, J.J. [InESS, 23 rue du Loess-B20, 67037 Strasbourg Cedex 2 (France)

    2010-02-15

    The optical properties of Mn-doped zinc sulfide (ZnS) nanocrystals embedded in SiO{sub 2} matrix are studied by spectroscopic ellipsometry (SE). The crystals are obtained by sequential multi-energy ion implantation of Zn, S, and Mn into a silica layer grown on Si(111) followed by a subsequent annealing for 30 min at 900 C. The formation of the nanocrystals is evidenced by transmission electron microscopy. The application of a critical-point based model for the analysis of the SE data yields die dielectric function (DF) between 0.6 and 6.5 eV. A pronounced shift of the absorption edge towards higher energies is detected for the nanocrystals In comparison to bulk ZnS (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Variation of the coordination environment and its effect on the white light emission properties in a Mn-doped ZnO-ZnS complex structure.

    Science.gov (United States)

    Cheng, Yan; Chen, Rui; Feng, Haifeng; Hao, Weichang; Xu, Huaizhe; Wang, Yu; Li, Jiong

    2014-03-14

    Mn-doped ZnO-ZnS complex nanocrystals were fabricated through coating of dodecanethiol on Mn-doped ZnO nanocrystals. The relationship between the component of white light emission and the coordination environments of Mn-dopants were experimentally investigated. It was shown that Mn ions mainly formed Mn(3+)O6 octahedra in as prepared Mn-doped ZnO, while the Mn(3+) ions on the surface of ZnO transferred into Mn(2+) ions at the interface between ZnO and ZnS after dodecanethiol coating. The Mn(2+)S4 tetrahedron density and the orange emission intensity increased upon enhancing the dodecanethiol content. These results provide an alternative way to optimize the white emission spectrum from nanocrystals of Mn-doped ZnS-ZnO complex structures through modulation of the coordination environment of Mn ions.

  20. Room temperature ferromagnetism in Cu-doped ZnO synthesized from CuO and ZnO nanoparticles

    Science.gov (United States)

    Owens, Frank J.

    2009-11-01

    AC susceptibility and ferromagnetic resonance (FMR) measurements indicate that ZnO doped with Cu by a simple sintering process starting from nanoparticles of ZnO and CuO is ferromagnetic above room temperature. FMR measurements above room temperature indicate the ordering temperature to be above 520 K. The observation supports the recent theoretical calculations of Huang et al. which predict ferromagnetism in copper-doped ZnO.

  1. Studies of the interaction of CS@ZnS:Mn with bovine serum albumin under illumination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li, E-mail: 2476625723@qq.com [Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064 (China); Xiao, Ling [School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430072 (China)

    2015-09-15

    Highlights: • The interaction and illumination damages of CS@ZnS:Mn D-dots to BSA were studied. • The quenching mechanism of CS@ZnS:Mn D-dots with BSA belongs to dynamic quenching. • The hydrophobic interaction plays a major role; the binding processes are spontaneous. • The FL enhancement of CS@ZnS:Mn D-dots by BSA under UV illumination was observed. • The probable mechanism is mainly a photo-induced free radical procedure. - Abstract: In this study, chitosan coated Mn-doped ZnS quantum dots (CS@ZnS:Mn D-dots) were obtained in aqueous media under ambient pressure. The interaction and illumination damages of CS@ZnS:Mn D-dots with bovine serum albumin (BSA) were studied by means of ultraviolet–visible (UV–vis) and fluorescence (FL) spectra. It was found that the FL of BSA was quenched by CS@ZnS:Mn D-dots. The dominating quenching mechanism of CS@ZnS:Mn D-dots with BSA belongs to dynamic quenching. Hydrophobic interaction plays a major role in the CS@ZnS:Mn–BSA interaction; binding processes are spontaneous. Influencing factors such as illumination time and CS@ZnS:Mn D-dots concentrations were considered. The FL quenching effect of BSA by CS@ZnS:Mn D-dots is enhanced with the increase of illumination time and CS@ZnS:Mn D-dots concentration. The FL enhancement of CS@ZnS:Mn D-dots by BSA under UV illumination was also observed. It was proved that, the interaction of CS@ZnS:Mn D-dots with BSA under UV illumination is mainly a result of a photo-induced free radical procedure. CS@ZnS:Mn D-dots may be used as photosensitizers in photodynamic therapy.

  2. Effect of dietary Zn on high Cu intake in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.J.

    1976-01-01

    The objective was to determine whether high dietary levels of Zn will ameliorate or prevent chronic Cu toxicity in lambs fed a high Cu containing finishing diet. Four-month-old crossbred lambs were individually fed a pelleted diet of 35% cottonseed hulls, 5% alfalfa, 1.6% urea, 57.4% corn meal, vitamins A and D and minerals. The ration supplements and number of head per treatment were: group 1, none (4); group 2, 45 ppm Cu (5);group 3, 45 ppm Cu plus 250 ppm Zn (5), group 4, 45 ppm Cu plus 500 ppm Zn. The Cu and Zn supplements were CuSO/sub 4/ and ZnO. Plasma aspartate transaminase (AspT) activity, measured biweekly, was first elevated after 41 days feeding. Thereafter, in group 2, one lamb died and the AspT levels of the others gradually increased to a point where death from chronic Cu toxicity seemed imminent; the lambs in all groups were then slaughtered after 91 days feeding. Mean plasma AspT (SF units/ml) and liver Cu and Zn (..mu..g/g DM) at slaughter were, respectively: group 1, 65, 232 and 118; group 2, 308, 1074 and 135; group 3, 130, 705 and 139; group 4, 194, 1145 and 179. Neither Zn level reduced (P > .05) liver Cu; both reduced (P < .05) AspT activity late in the study, but not to control levels (P < .05). Thus, chronic Cu toxicity may be delayed, but not prevented, by high Zn levels.

  3. Mobility and speciation of Cd,Cu,and Zn in two acidic soils affected by simulated acid rain

    Institute of Scientific and Technical Information of China (English)

    GUO Zhao-hui; LIAO Bo-han; HUANG Chang-yong

    2005-01-01

    Through a batch experiment, the mobility and speciation of heavy metals(Cd, Cu, Zn) in two acidic forest soils from Hunan Province were studied. The results showed that the release and potential active speciation of Cd, Cu, and Zn in the tested contaminated red soil(CRS) and yellow red soil(CYRS) increased significantly with pH decreasing and ion concentrations increasing of simulated acid rain, and these effects were mainly decided by the pH value of simulated acid rain. Cd had the highest potential risk on the environment compared with Cu and Zn. Cd existed mainly in exchangeable form in residual CRS and CYRS, Cu in organically bound and Mn-oxide occluded forms, and Zn in mineral forms due to the high background values.

  4. First-principles spin-transfer torque in CuMnAs |GaP |CuMnAs junctions

    Science.gov (United States)

    Stamenova, Maria; Mohebbi, Razie; Seyed-Yazdi, Jamileh; Rungger, Ivan; Sanvito, Stefano

    2017-02-01

    We demonstrate that an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation. By using state-of-the-art density functional theory combined with quantum transport, we show that the Néel vector of the electrodes can be manipulated by spin-transfer torque. This is staggered over the two different magnetic sublattices and can generate dynamics and switching. At the same time the different magnetization states of the junction can be read by standard tunneling magnetoresistance. Calculations are performed for CuMnAs |GaP |CuMnAs junctions with different surface terminations between the antiferromagnetic CuMnAs electrodes and the insulating GaP spacer. We find that the torque remains staggered regardless of the termination, while the magnetoresistance depends on the microscopic details of the interface.

  5. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

    Science.gov (United States)

    Lin, Mei; Huang, Junxing; Sha, Min

    2014-01-01

    This paper reviews the recent research and development of nanosized manganese zinc (Mn-Zn) ferrite magnetic fluid hyperthermia (MFH) for cancer treatment. Mn-Zn ferrite MFH, which has a targeted positioning function that only the temperature of tumor tissue with magnetic nanoparticles can rise, while normal tissue without magnetic nanoparticles is not subject to thermal damage, is a promising therapy for cancer. We introduce briefly the composition and properties of magnetic fluid, the concept of MFH, and features of Mn-Zn ferrite magnetic nanoparticles for MFH such as thermal bystander effect, universality, high specific absorption rate, the targeting effect of small size, uniformity of hyperthermia temperature, and automatic temperature control and constant temperature effect. Next, preparation methods of Mn-Zn ferrite magnetic fluid are discussed, and biocompatibility and biosecurity of Mn-Zn ferrite magnetic fluid are analyzed. Then the applications of nanosized Mn-Zn ferrite MFH in cancer are highlighted, including nanosized Mn-Zn ferrite MFH alone, nanosized Mn-Zn ferrite MFH combined with As2O3 chemotherapy, and nanosized Mn-Zn ferrite MFH combined with radiotherapy. Finally, the combination application of nanosized Mn-Zn ferrite MFH and gene-therapy is conceived, and the challenges and perspectives for the future of nanosized Mn-Zn ferrite MFH for oncotherapy are discussed.

  6. Synthesis of bovine serum albumin imprinted Mn:ZnS quantum dots

    Institute of Scientific and Technical Information of China (English)

    Ming Bo Xu; Tai Ye; Shi Yan Lu; Qin Qin Hu; Juan Zhou; Jian Quan Lu

    2012-01-01

    A novel bovine serum albumin (BSA) imprinted Mn-doped ZnS quantum dots (Mn:ZnS QDs) is firstly reported.The molecular imprinted polymer (MIP) functionalized Mn:ZnS QDs (Mn:ZnS@SiO2@MIP) include the preparation of Mn:ZnS QDs,the coating of silica on the surface of Mn:ZnS QDs,and the functional polymerization by sol-gel reaction using 3-aminophenylboronic acid as the functional and cross-linking monomer in the presence of BSA (Mn:ZnS@SiO2@MIP-BSA),and then the elution of the imprinted BSA on the surface of Mn:ZnS@SiO2 QDs.The results showed that the phosphorescence of Mn:ZnS@SiO2@MIP is stronger quenched by BSA than that of non-imprinted one (Mn:ZnS@SiO2@NIP),indicating that the selectivity of the imprinted Mn:ZnS quantum dots toward BSA is superior to that of non-imprinted one.

  7. Process of electroless plating Cu-Sn-Zn ternary alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Cu-Sn-Zn ternary alloy layer with 10 μm thickness was prepared through electroless plating method. The influences of process conditions including the concentration of metallic salts, reductant and complex agent on Cu-Sn-Zn alloy were studied in details.The stability to bear color changes and corrosion resistance of Cu-Sn-Zn film layer were studied through air-exposure experiment and electrochemical analyses test respectively. The results show that the performances of Cu-Sn-Zn film layer are obviously superior to brass matrix. By use of SEM,EDS and XRD, the morphology, microstructure and chemical composition were investigated. The results show that complex agent can increase the content of Sn and Zn, improve the evenness and compactness and decrease needle holes, therefore the properties of electroless plating layer such as the stability to bear color changes and corrosion resistance are improved remarkably.The probable mechanism of complex agent was discussed.

  8. Cu,Zn-superoxide dismutase without Zn is folded but catalytically inactive.

    Science.gov (United States)

    Nedd, Sean; Redler, Rachel L; Proctor, Elizabeth A; Dokholyan, Nikolay V; Alexandrova, Anastassia N

    2014-12-12

    Amyotrophic lateral sclerosis has been linked to the gain of aberrant function of superoxide dismutase, Cu,Zn-SOD1 upon protein misfolding. The mechanism of SOD1 misfolding is thought to involve mutations leading to the loss of Zn, followed by protein unfolding and aggregation. We show that the removal of Zn from SOD1 may not lead to an immediate unfolding but immediately deactivates the enzyme through a combination of subtle structural and electronic effects. Using quantum mechanics/discrete molecular dynamics, we showed that both Zn-less wild-type (WT)-SOD1 and its D124N mutant that does not bind Zn have at least metastable folded states. In those states, the reduction potential of Cu increases, leading to the presence of detectable amounts of Cu(I) instead of Cu(II) in the active site, as confirmed experimentally. The Cu(I) protein cannot participate in the catalytic Cu(I)-Cu(II) cycle. However, even without the full reduction to Cu(I), the Cu site in the Zn-less variants of SOD1 is shown to be catalytically incompetent: unable to bind superoxide in a way comparable to the WT-SOD1. The changes are more radical and different in the D124N Zn-less mutant than in the Zn-less WT-SOD1, suggesting D124N being perhaps not the most adequate model for Zn-less SOD1. Overall, Zn in SOD1 appears to be influencing the Cu site directly by adjusting its reduction potential and geometry. Thus, the role of Zn in SOD1 is not just structural, as was previously thought; it is a vital part of the catalytic machinery.

  9. Mechanically driven luminescence in a ZnS:Cu-PDMS composite

    Directory of Open Access Journals (Sweden)

    Kee-Sun Sohn

    2016-10-01

    Full Text Available The conventional mechanoluminescence (ML mechanism of phosphors such as SrAl2O4:Eu and ZnS:Mn is known to utilize carrier trapping at shallow traps followed by stress (or strain-induced detrapping, which leads to activator recombination in association with local piezoelectric fields. However, such a conventional ML mechanism was found to be invalid for the ZnS:Cu-embedded polydimethylsiloxane (PDMS composite, due to the absence of luminescence with a rigid matrix and a negligibly small value of the piezoelectric coefficient (d33 of the composite. An alternative mechanism, namely, the triboelectricity-induced luminescence has been proposed for the mechanically driven luminescence of a ZnS:Cu-PDMS composite.

  10. Characterization of ZnO/Cu/ZnO multilayers structure for solar cell devices

    Science.gov (United States)

    Rasheed, Hiba S.; Hassan, Z.; Ahmed, Naser M.; Sabah, Fayroz A.; Azzez, Shrook A.; Al-Hazim, Nabeel Z.

    2016-07-01

    A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. The influences of the ZnO and Cu layer thicknesses, and Ar flow rate on the optical, electrical and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The thickness of the ZnO layers were varied between 20 and 60 nm and the Cu layers were between 5 and 15 nm, the optimum thin film structures were deposited under 12 sccm Ar flow rate. Low sheet resistance and high transmittance were obtained when the film was prepared using thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm).

  11. (55)Mn pulsed ENDOR spectroscopy of Mn(2+) ions in ZnO thin films and single crystal.

    Science.gov (United States)

    Böttcher, Rolf; Pöppl, Andreas; Lorenz, Michael; Friedländer, Stefan; Spemann, Daniel; Grundmann, Marius

    2014-08-01

    (55)Mn pulsed electron nuclear double resonance (ENDOR) experiments were performed at X-band on high spin S=5/2 Mn(2+) ions incorporated at zinc lattice sites in heteroepitaxial ZnO thin films. The films have been prepared by pulsed laser deposition and the manganese ions were doped during the growth process. We examine how the c/a lattice axes ratio of the ZnO films influences the (55)Mn hyperfine (hf) and nuclear quadrupole (nq) coupling parameters of the Mn(2+) probe ions. The results are compared with those obtained for Mn(2+) ions present as impurities in ZnO single crystals and revealed that the (55)Mn nq coupling monitors sensitively the structural distortions in the bonding environment of the Mn(2+) ions. The experiments provided the full axially symmetric (55)Mn hf and nq interaction tensors. The latter is found to be very sensitive to small axial distortions of the MnO4 tetrahedrons. In particular, the (55)Mn pulsed ENDOR spectra of the ZnO:Mn thin films are strongly subjected to strain effects in the nq coupling parameter indicating a variation of the local structural parameters for the heteroepitaxial films. In the analysis of the (55)Mn pulsed ENDOR spectra the axial and cubic zero field splitting of the Mn(2+) ions was taken into account and intensity effects in the ENDOR spectra due to the zero field splitting effects were discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Spin polarization and exchange coupling of Cu and Mn atoms in paramagnetic CuMn diluted alloys induced by a Co layer

    Science.gov (United States)

    Abes, M.; Atkinson, D.; Tanner, B. K.; Charlton, T. R.; Langridge, Sean; Hase, T. P. A.; Ali, M.; Marrows, C. H.; Hickey, B. J.; Neudert, A.; Hicken, R. J.; Arena, D.; Wilkins, S. B.; Mirone, A.; Lebègue, S.

    2010-11-01

    Using the surface, interface, and element specificity of x-ray resonant magnetic scattering in combination with x-ray magnetic circular dichroism, we have spatially resolved the magnetic spin polarization, and the associated interface proximity effect, in a Mn-based high-susceptibility material close to a ferromagnetic Co layer. We have measured the magnetic polarization of Mn and Cu3d electrons in paramagnetic CuMn alloy layers in [Co/Cu(x)/CuMn/Cu(x)]20 multilayer samples with varying copper layer thicknesses from x=0 to 25Å . The size of the Mn and CuL2,3 edge dichroism shows a decrease in the Mn-induced polarization for increasing copper thickness indicating the dominant interfacial nature of the Cu and Mn spin polarization. The Mn polarization is much higher than that of Cu. Evidently, the Mn moment is a useful probe of the local spin density. Mn atoms appear to be coupled antiferromagnetically with the Co layer below x=10Å and ferromagnetically coupled above. In contrast, the interfacial Cu atoms remain ferromagnetically aligned to the Co layer for all thicknesses studied.

  13. Aqueous synthesis of internally doped Cu:ZnSe/ZnS core-shell nanocrystals with good stability.

    Science.gov (United States)

    Xu, Shuhong; Wang, Chunlei; Wang, Zhuyuan; Zhang, Haisheng; Yang, Jing; Xu, Qinying; Shao, Haibao; Li, Rongqing; Lei, Wei; Cui, Yiping

    2011-07-08

    To prepare biologically available Zn-based NCs in aqueous solution, we herein reported the synthesis of aqueous Cu:ZnSe/ZnS NCs with internally doped aqueous Cu:ZnSe NCs as the core template. Due to the dual protection of Cu impurities by the ZnSe core and ZnS shells, the as-prepared Cu:ZnSe/ZnS NCs show excellent stability in the open air, which overcomes the intrinsic instability of traditional aqueous Cu:ZnSe NCs. The as-prepared Cu:ZnSe/ZnS NCs possess extremely good stability, good biocompatibility and lower cytotoxicity, and thus can be used as a promising candidate for fluorescent NC-based biological applications.

  14. Glassy dynamics in CuMn thin-film multilayers

    Science.gov (United States)

    Zhai, Qiang; Harrison, David C.; Tennant, Daniel; Dalhberg, E. Dan; Kenning, Gregory G.; Orbach, Raymond L.

    2017-02-01

    Thin-film multilayered spin-glass CuMn/Cu structures display glassy dynamics. The freezing temperature Tf was measured for 40 layers of CuMn films of thickness L =4.5 ,9.0 , and 20.0 nm, sandwiched between nonmagnetic Cu layers of thickness ≈60 nm. The Kenning effect, Tf∝lnL , is shown to follow from power-law dynamics where the correlation length grows from nucleation as ξ (t ,T ) =c1a0(t/τ0) c2(T /Tg) , leading to [(Tf/Tg) c2ln(tco/τ0) ] +lnc1=ln(L /a0) . Here, Tg is the bulk spin-glass temperature, c1 and c2 are constants determined from the spin-glass dynamics, tco is the time for the correlation length to grow to the film thickness, τ0 is a characteristic exchange time ≈ℏ /kBTg , and a0 is the average Mn-Mn separation. For t ≥tco , the magnetization dynamics are simple activated, with a single activation energy Δmax(L ) /kBTg=(1 /c2) [ln(L /a0) -lnc1] that does not change with time. Values for all these parameters are found for the three values of L explored in these measurements. We find experimentally Δmax(L ) /kB =907 , 1246, and 1650 K, respectively, for the three CuMn thin-film multilayer thicknesses, consistent with power-law dynamics. We perform a similar analysis based on the activated dynamics of the droplet model and find a much larger spread for Δmax(L ) than found experimentally.

  15. Magnetism and Magnetocaloric Properties of Mn3Zn1-xSnxC and Mn3-xCrxZnC Compounds

    Institute of Scientific and Technical Information of China (English)

    Naikun Sun; Yaobiao Li; Feng Liu; Tongbo Ji

    2012-01-01

    Upon substitution of Sn for Zn, the Curie temperature of Mn3ZnC is lowered from 380 to 375 K for MnzZno.gsSno.osC and to 305 K for Mn3Zno.75Sno.25C. In accordance with the second-order ferromagnetic-paramagnetic transition, a room-temperature magnetocaloric effect without thermal and magnetic hysteresis is observed over a wide temperature range. The maximum value of the magnetic-entropy change ABM for a magnetic-field change from 0 to 5 T is 2.42 J.kg^-1·-K^-1 at 386 K for Mn3Zno.95Sno.osC and 1.70 J·kg^-1.K^-1 at 308 K for Mn3Zn0.75Sno.25C. Meanwhile, substitution of Cr for Mn lowers the temperature of ferromagnetic-ferrimagnetic transition from 233 K for Mn3ZnC to 230 K for Mn2.9Cro.tZnC and to 175 K for Mn2.iCro.oZnC. An inverse magnetocaloric effect with △Bu equal to 0.28 J·kg^-1.K^-1 at 223 K for a field change from 0 to 1.47 T is observed for Mn2.gCro.zZnC.

  16. Synthesis and resistive switching behaviour of ZnMnO3 thin films with an Ag/ZnMnO3/ITO unsymmetrical structure

    Indian Academy of Sciences (India)

    Hua Wang; Shu-Ming Gao; Ji-Wen Xu; Chang-Lai Yuan; Xiao-Wen Zhang

    2015-02-01

    Single-phase MnZnO3 films were prepared on glass substrates coated with the use of indium tin oxide (ITO) as transparent bottom electrode via the sol–gel method. The effects of annealing temperature on structure, resistance switching behaviour and endurance characteristics of the ZnMnO3 films were investigated. The stable resistive switching behaviour with high resistance ratio in Ag/ZnMnO3/ITO unsymmetrical structure was observed. No second phase is detected, and the crystallinity of the MnZnO3 films is improved with the increase in annealing temperature from 350 to 400°C. The MnZnO3 films annealed at 350–450°C with an Ag/MnZnO3/ITO structure exhibit bipolar resistive switching behaviour. Ohmic and space-charge-limited conductions are the dominant mechanisms at low and high resistance states, respectively. $V{}_{\\text{ON}},\\ \\text{V_{OFF}}$ and $R_{\\text{HRS}}/R_{\\text{LRS}}$ of theMnZnO3 films increase with the increase in annealing temperature. Improved endurance characteristics are observed in the samples annealed at 350 and 400°C. The endurance of the MnZnO3 films degrades when annealed at >450°C.

  17. Li(Zn,Co,Mn)As: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites

    Science.gov (United States)

    Chen, Bijuan; Deng, Zheng; Li, Wenmin; Gao, Moran; Zhao, Jianfa; Zhao, Guoqiang; Yu, Shuang; Wang, Xiancheng; Liu, Qingqing; Jin, Changqing

    2016-11-01

    We report the synthesis and characterization of a series of bulk forms of diluted magnetic semiconductors Li(Zn1-x-yCoxMny)As with a crystal structure close to that of III-V diluted magnetic semiconductor (Ga,Mn)As. No ferromagnetic order occurs with single (Zn,Co) or (Zn, Mn) substitution in the parent compound LiZnAs. Only with co-doped Co and Mn ferromagnetic ordering can occur at the Curie temperature ˜40 K. The maximum saturation moment of the this system reached to 2.17 μB /Mn , which is comparable to that of Li (Zn,Mn)As. It is the first time that a diluted magnetic semiconductor with co-doping Co and Mn into Zn sites is achieved in "111" LiZnAs system, which could be utilized to investigate the basic science of ferromagnetism in diluted magnetic semiconductors. In addition, ferromagnetic Li(Zn,Co,Mn)As, antiferromagnetic LiMnAs, and superconducting LiFeAs share square lattice at As layers, which may enable the development of novel heterojunction devices in the future.

  18. Li(Zn,Co,MnAs: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites

    Directory of Open Access Journals (Sweden)

    Bijuan Chen

    2016-11-01

    Full Text Available We report the synthesis and characterization of a series of bulk forms of diluted magnetic semiconductors Li(Zn1-x-yCoxMnyAs with a crystal structure close to that of III-V diluted magnetic semiconductor (Ga,MnAs. No ferromagnetic order occurs with single (Zn,Co or (Zn, Mn substitution in the parent compound LiZnAs. Only with co-doped Co and Mn ferromagnetic ordering can occur at the Curie temperature ∼40 K. The maximum saturation moment of the this system reached to 2.17μB/Mn, which is comparable to that of Li (Zn,MnAs. It is the first time that a diluted magnetic semiconductor with co-doping Co and Mn into Zn sites is achieved in “111” LiZnAs system, which could be utilized to investigate the basic science of ferromagnetism in diluted magnetic semiconductors. In addition, ferromagnetic Li(Zn,Co,MnAs, antiferromagnetic LiMnAs, and superconducting LiFeAs share square lattice at As layers, which may enable the development of novel heterojunction devices in the future.

  19. Electrochemical deposition of Mn:ZnO films under hydrothermal conditions

    OpenAIRE

    Yılmaz, Ceren; Ünal, Uğur

    2013-01-01

    This study demonstrated the electrochemical deposition of Mn-doped ZnO films under hydrothermal conditions at 130 degrees C in 50% v/v DMSO-H2O mixture. X-ray diffraction analysis showed that the deposition of the ZnO structures was along (002) direction. However, the presence of Mn2+ affected the thickness of ZnO structures and we believe that the interaction of Mn2+ with the nonpolar surface of ZnO restricts lateral growth. Mn appears in the mixed oxide state in ZnO lattice. The photolumine...

  20. pyridine Zn(II) and Cu(II) Complexes

    African Journals Online (AJOL)

    NICO

    2014-09-03

    Sep 3, 2014 ... The kinetics, mechanism and polymer microstructure studies of ring-opening polymerization (ROP) of lactides (LA) by Zn(II) and Cu(II) ... transparency, ease of processing and ease of microbial decompo- sition or degradation.

  1. MnO nanoparticles as the cause of ferromagnetism in bulk dilute Mn-doped ZnO

    Science.gov (United States)

    Lançon, Diane; Nilsen, Gøran J.; Wildes, Andrew R.; Nemkovski, Kirill; Huang, Ping; Fejes, Dóra; Rønnow, Henrik M.; Magrez, Arnaud

    2016-12-01

    We show that the observed ferromagnetic behavior of ZnO lightly doped with Mn coincides with the presence of MnO nanoparticles, whereas cluster-free Mn doped ZnO behaves paramagnetically. This conclusion is reached by a study of the structural and magnetic properties of powdered samples of (Mnx,Zn1-x)O with x ≤ 0.033 using polarized neutron scattering. Two types of samples were synthesized via, respectively, a solid state method and the decomposition of hydrozincite. Further characterization has been performed using standard X-ray diffraction and magnetization measurements. The results show evidence for the formation of MnO nanoparticles in the highest doped samples for both synthesis methods, with a ferromagnetic behavior attributed to uncompensated Mn2+ in the MnO nanoparticles. The lower Mn-doped samples showed no evidence for structural segregation or magnetic correlations and showed only a paramagnetic behaviour.

  2. Paramagnetism in Mn/Fe implanted ZnO

    CERN Document Server

    Gunnlaugsson, HP; Weyer, G; Kobayashi, Y; Bharuth-Ram, K; Olafsson, S; Gislason, H P; Gunnlaugsson, H P; Yoshida, Y; Langouche, G; Molholt, T E; Masenda, H; Johnston, K; Sielemann, R; Dlamini, W B; ISOLDE Collaboration; Naidoo, D; Mantovan, R

    2010-01-01

    Prompted by the generally poor understanding of the nature of magnetic phenomena in 3d-metal doped ZnO, we have undertaken on-line Fe-57 Mossbauer spectroscopy on ZnO single crystals in an external magnetic field of 0.6 T, following the implantation of radioactive Mn-57 ions at room temperature. The Mossbauer spectra of the dilute Fe impurities are dominated by sextets whose angular dependence rules out an ordered magnetic state (which had been previously proposed) but are well accounted for on the basis of Fe3+ paramagnetic centers on substitutional Zn sites with unusually long relaxation times (> 20 ns). (C) 2010 American Institute of Physics. {[}doi:10.1063/1.3490708

  3. Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xueliang [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zou, Xingli, E-mail: xinglizou@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xionggang, E-mail: luxg@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Changyuan; Cheng, Hongwei; Xu, Qian [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhou, Zhongfu [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)

    2016-11-01

    Graphical abstract: Micro/nanostructured Zn and Cu–Zn alloy films have been electrodeposited directly from ZnO/CuO precursors in ChCl/urea-based DES, the typical nucleation-growth mechanism and the micro/nanostructures-formation process are determined. Display Omitted - Highlights: • Micro/nanostructured Zn films have been electrodeposited directly from ZnO precursor in deep eutectic solvent (DES). • The morphology of the Zn electrodeposits depends on the cathodic potential and temperature. • The electrodeposited Zn films exhibit homogeneous morphologies with controllable particle sizes and improved corrosion resistance. • Cu–Zn alloy films have also been electrodeposited directly from their metal oxides precursors in DES. - Abstract: The electrodeposition of Zn and Cu–Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu–Zn alloy films have also been electrodeposited directly from CuO–ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu–Zn alloy depends on the electrodeposition potential.

  4. Recovery of pure ZnO nanoparticles from spent Zn-MnO₂ alkaline batteries.

    Science.gov (United States)

    Deep, Akash; Kumar, Kamal; Kumar, Parveen; Kumar, Pawan; Sharma, Amit L; Gupta, Bina; Bharadwaj, Lalit M

    2011-12-15

    The recovery of pure ZnO (zinc oxide) nanoparticles from spent Zn-Mn dry alkaline batteries is reported. Spent batteries were dismantled to separate the contained valuable metals of the cell electrodes in the form of black powder. Treatment of this black powder with 5 mol L(-1) HCl produced leach liquor, primarily containing 2.90 g L(-1) Zn and 2.02 g L(-1) Mn. Selective and quantitative liquid-liquid extraction of Zn(II) was then carried out in three counter current steps by using Cyanex 923 (0.10 mol L(-1) in n-hexane). Zn(II) distributed in the organic phase as complex ZnCl(2)·2R (R = Cyanex 923 molecule). The metal loaded organic phase was subjected to combust at 600 °C to yield pure ZnO nanoparticles (40-50 nm). Important characteristics of the synthesized nanoparticles were investigated by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), and atomic force microscopy (AFM).

  5. Synthesis and Characterization of Mn:ZnSe/ZnS/ZnMnS Sandwiched QDs for Multimodal Imaging and Theranostic Applications.

    Science.gov (United States)

    Wang, Yucheng; Wu, Bo; Yang, Chengbin; Liu, Maixian; Sum, Tze Chien; Yong, Ken-Tye

    2016-01-27

    In this work, a facile aqueous synthesis method is optimized to produce Mn:ZnSe/ZnS/ZnMnS sandwiched quantum dots (SQDs). In this core-shell co-doped system, paramagnetic Mn(2+) ions are introduced as core and shell dopants to generate Mn phosphorescence and enhance the magnetic resonance imaging signal, respectively. T1 relaxivity of the nanoparticles can be improved and manipulated by raising the shell doping level. Steady state and time-resolved optical measurements suggest that, after high level shell doping, Mn phosphorescence of the core can be sustained by the sandwiched ZnS shell. Because the SQDs are free of toxic heavy metal compositions, excellent biocompatibility of the prepared nanocrystals is verified by in vitro MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To explore the theranostic applications of SQDs, liposome-SQD assemblies are prepared and used for ex vivo optical and magnetic resonance imaging. In addition, these engineered SQDs as nanocarrier for gene delivery in therapy of Panc-1 cancer cells are employed. The therapeutic effects of the nanocrystals formulation are confirmed by gene expression analysis and cell viability assay.

  6. Preparation-Properties Relation of Mn-Cu Hopcalite Catalyst

    Directory of Open Access Journals (Sweden)

    Ardita Mele

    2012-01-01

    Full Text Available Problem statement: The Mn-Cu hopcalite catalyst was used for the conversion of CO to CO2 at low temperatures. It was the catalyst of choice in the gas masks for respiratory protection in mines, aircrafts, military, spatial laboratories. Approach: The efficiency of hopcalite catalyst depends on its surface parameters. Its surface characteristics can be influenced from the chosen way of the MnO2 and CuO precipitation and from the pressure of pelletizing. Results: The hopcalite samples has been prepared by precipitation of MnO2 and by adding CuSO4 further in the solution the adsorption of Cu2+ ions on MnO2 particles surface is achieved. After acidification of the solution up to pH = 3 the copper is precipitated in form of Cu (OH2CuCO3 by adding NaHCO3. Precipitate was washed, dried, pressed, crushed, sieved (1-2 mm and calcined at 180°C for 3 h. MnO2 and hopcalite samples were characterized by XRD. The activity was evaluated by determination of its protection time and it was 610 min, better than activity of a commercial catalyst. Specific surface area, pore volume and density were measured by nitrogen adsorption and mercury intrusion porosimetry. The X-Ray diffractograms shows that the only crystallinity of hopcalite comes from MnO2, which is present mainly in amorphous form. By increasing the pressure in the pelletizing step, a significant decrease in the specific surface area (247.64-147.77 m2 g-1 and in the total pore volume (446-278 mm3 g-1 is observed in the hopcalite samples. Conclusion: The obtained hopcalite catalyst by the two step precipitation method shows high catalytic activity. The increasing pressure increases the strength and reduces the specific surface area and pore volume. A pressure of 500 kg cm-2 is recommended for the hopcalite production procedure.

  7. Microstructure and magnetic performance of Ni-substituted high density MnZn ferrite

    Institute of Scientific and Technical Information of China (English)

    YU Zhong; LAN Zhongwen; CHEN Shengming; SUN Yueming; SUN Ke

    2006-01-01

    The effects of NiO on microstructure and magnetic properties of Mn-Zn ferrite with a nominal composition of Zn0.32Mn0.60-xNixFe2.08O4 were investigated. The calcined powder of Mn-Zn ferrite was characterized by X-ray diffraction (XRD), the fracture surface of Mn-Zn ferrite was checked by scanning electronic microscope (SEM), and then the magnetic properties were measured. As a result, the substitution of Ni can cause the crystallattice constant of MnZn ferrite to decline, and the grain size to decrease, therefore improve the magnetic performance of MnZn ferrite whose density exceeds 5.0 g·cm-3.

  8. The recycling of Mn-Zn ferrite wastes through a hydrometallurgical route

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangkang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Peng, Changhong, E-mail: phc416@csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Jiang, Kaiqi [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2011-10-30

    Highlights: {yields} Mn-Zn ferrite wastes were recycled through wet chemical route. {yields} The Mn-Zn ferrite takes advantage over A102 made in Acme Electronics Corporation. {yields} The novel recycling technology attained environmental, social and economic benefits. - Abstract: A novel recycling route using acid leaching, reduction, purification, co-precipitation and traditional ceramic process was applied to process the Mn-Zn ferrite wastes and prepare the corresponding high permeability soft magnetic product. Above 95% of Fe, Mn, Zn in the waste materials could be recycled in the form of Mn-Zn ferrite products through the hydrometallurgical route. The comprehensive properties of Mn-Zn ferrite prepared from wastes by this route have broader frequency characteristics, higher resistivity, lower loss coefficient and temperature coefficient as compared to the A102 product (Acme Electronics Corporation, Taiwan). Moreover, the cost of this recycling technology has economical advantage over the traditional ceramic process, which holds a promising industrial application.

  9. ac MH loop measurements on Mn doped YBa2Cu3O7– superconductors

    Indian Academy of Sciences (India)

    E Isaac Samuel; V Seshu Bai

    2006-06-01

    Isothermal ac MH (magnetization-field) loops for varying field amplitudes were recorded at 77 K on YBa2(Cu1–Mn)3O7– with = 0, 0.010, 0.015, 0.020, 0.025, 0.035 and 0.050, YBa2(Cu0.075Fe0.025)3O7–, YBa2(Cu0.075Ni0.025)3O7– and YBa2(Cu0.075Zn0.025)3O7– samples up to a maximum field amplitude of 80 Oe. Flat band susceptibility, ac losses and flux profiles were deduced from the ac MH loops. The undoped sample exhibited a minimum weak link ac loss and the 5.0% doped sample showed maximum weak link ac loss. Ni and Fe doped samples showed higher granular losses. cg estimated from the flux profiles decreases monotonically with increasing concentrations of Mn up to 2.5%.

  10. Cu-Zn disorder in Cu2ZnGeSe4: A complementary neutron diffraction and Raman spectroscopy study

    Science.gov (United States)

    Gurieva, G.; Többens, D. M.; Valakh, M. Ya.; Schorr, S.

    2016-12-01

    The crystal structure of the quaternary compound semiconductor Cu2ZnGeSe4 (CZGSe) was investigated by the complementary use of neutron diffraction, and Raman spectroscopy. The powder sample, which resulting from wavelength dispersive X-ray spectroscopy (WDX) turned out to be single phase Cu-rich CZGSe, was synthesized by solid state reaction of the pure elements in an evacuated silica tube at 700 °C. Raman spectroscopy confirmed the homogeneity and phase purity of the sample, in addition, the kesterite type structure was suggested. Rietveld analysis of the neutron diffraction data confirmed that the compound crystallizes in the tetragonal kesterite type structure. The refined site occupancy factors were used to determine the average neutron scattering lengths of the cation sites, giving insights into cation distribution and finally point defect types. Thus it has been shown, that additional to the CuZn-ZnCu anti-site defects in the lattice planes at z=¼ and ¾ (Cu-Zn disorder) also the off-stoichiometry type related point defects like Cui and CuZn occur in Cu-rich CZGSe.

  11. Fatigue crack behavior on a Cu-Zn-Al SMA

    OpenAIRE

    V. Di Cocco; Iacoviello, F.; Natali, S.; V. Volpe

    2014-01-01

    In recent years, mechanical property of many SMA has improved in order to introduce these alloys in specific field of industry. Main examples of these alloys are the NiTi, Cu-Zn-Al and Cu-Al-Ni which are used in many fields of engineering such as aerospace or mechanical systems. Cu-Zn-Al alloys are characterized by good shape memory properties due to a bcc disordered structure stable at high temperature called β-phase, which is able to change by means of a reversible transition to...

  12. Effect of pre-aging on precipitation behavior of Al- 1.29Mg- 1.22Si-0.68Cu-0.69Mn-0.3Fe-0.2Zn-0.1 Ti alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Hong; CHEN Yang; ZHAO Gang; LIU Chun-ming; ZUO Liang

    2006-01-01

    By means of Vickers-hardness and electrical conductivity measurements, DSC tests and TEM analyses, the effect of different pre-aging treatments on precipitation characteristic of the Al- 1.29Mg- 1.22Si-0.68Cu-0.69Mn-0.3Fe-0.2Fe-0.1 Ti (mass fraction, %) alloy during subsequent artificial aging was investigated. The results indicate that with increasing pre-aging time from 2.5 min to 10 min at 170 ℃, the number of formedβ" nuclei increases, resulting in promoting artificial aging kinetics and enhancing peak hardness. The hardness of pre-aged alloy reduces within lower temperature range of non-isothermal aging and increases in early stage of isothermal aging at 170 ℃. The size and density of clusters in pre-aged samples determine the hardenability in early stage of artificial aging. Pre-aging has dual mechanisms: namely, clusters (β" nuclei) formed by pre-aging can inhibit the precipitation of GP zones during natural aging, and can quicken the precipitation of β" phase in the early stage of subsequent artificial aging.

  13. Cu(Ⅱ),Ni(Ⅱ),Co(Ⅱ),Mn(Ⅱ),Zn(Ⅱ)和Cd(Ⅱ)的乙基3-(2-氨硫化亚肼基)-2-(羟胺基)丁烯酸酯配合物:合成、表征和细胞毒性%Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), Mn(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) Complexes of Ethyl-3-(2-carbamothioylhydrazono)-2-(hydroxyimino)butanoate: Synthesis,Characterization and Cytotoxicity Activity

    Institute of Scientific and Technical Information of China (English)

    Ramadan M El Bahnasawy; Abdou S El-Tabl; Mohamad M E Shakdofa; Noran M Abd El-Wahed

    2014-01-01

    合成了Cu(Ⅱ),Ni(Ⅱ),Co(Ⅱ),Mn(Ⅱ),Zn(Ⅱ)和Cd(Ⅱ)的乙基3-(2-氨硫化亚肼基)-2-(羟胺基)丁烯酸酯配合物(H2L)并用元素分析,DTA热分析,IR,UV-Vis,1H-NMR,质谱,顺磁共振以及磁矩,电导率测量等对合成的配合物进行表征.摩尔电导率测量结果证明合成的配合物为非电解质.光谱数据表明配体分别表现为一元的三齿配体,一元的二齿配体,中性的二齿配体,中性的三齿配体,一元的四齿配体或二元的四齿配体通过席夫碱的氮原子,氨基硫脲中的氮原子,肟中的氮原子和硫酮中的硫原子与金属离子键合生成围绕金属离子的四面体或平面正方形构型.固态Cu(Ⅱ)(2),(3),(4)和(5)的配合物顺磁共振谱表明其为轴向对称,但(10~15)的配合物却为各向异性.配体和配合物(2),(3),(10),(13),(16)和(19)由于它们对乳腺癌(MCF-7细胞系)和肝癌(HePG-2细胞系)的抑制作用而表现出潜在的抗癌活性.

  14. Raman Submicron Spatial Mapping of Individual Mn-doped ZnO Nanorods.

    Science.gov (United States)

    Strelchuk, V; Kolomys, O; Rarata, S; Lytvyn, P; Khyzhun, O; Chey, Chan Oeurn; Nur, Omer; Willander, Magnus

    2017-12-01

    ZnO nanorods (NRs) arrays doped with a large concentration of Mn synthesized by aqueous chemical growth and were characterized by SEM, photoluminescence, Raman scattering, magnetic force microscopy (MFM). By comparison of spectra taken on pure and Mn-doped ZnO NRs, a few new Raman impurity-related phonon modes, resulting from the presence of Mn in the investigated samples. We also present a vibrational and magnetic characterization of individual lying nanorods using Raman and MFM imaging. Confocal scanning micro-Raman mapping of the spatial distribution of intensity and frequency of phonon modes in single Mn-doped ZnO NRs nanorods is presented and analyzed for the first time. Mn-related local vibrational modes are also registered in Raman spectra of the single nanorod, confirming the incorporation of Mn into the ZnO host matrix. At higher Mn concentration the structural transformation toward the spinel phase ZnMn2O4 and Mn3O4 is observed mainly in 2D bottom layers. MFM images of Mn-doped ZnO NR arrays and single nanorod were studied in nanoscale at room temperature and demonstrate magnetic behavior. The circular domain magnetic pattern on top of single nanorod originated to superposition of some separate domains inside rod. This demonstrates that long-range ferromagnetic order is present at room temperature. Aligned Mn-doped ZnO NRs demonstrates that long-range ferromagnetic order and may be applied to future spintronic applications.

  15. Mixed Zn and O substitution of Co and Mn in ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Decoster, Stefan; Correia, João Guilherme; Amorim, Lígia Marina; da Silva, Manuel Ribeiro; Araújo, João Pedro; Vantomme, André

    2011-01-01

    The physical properties of an impurity atom in a semiconductor are primarily determined by the lattice site it occupies. In general, this occupancy can be correctly predicted based on chemical intuition, but not always. We report on one such exception in the dilute magnetic semiconductors Co- and Mn-doped ZnO, experimentally determining the lattice location of Co and Mn using $\\beta$-emission channeling from the decay of radioactive $^{61}$Co and $^{56}$Mn implanted at the ISOLDE facility at CERN. Surprisingly, in addition to the majority substituting for Zn, we find up to 18% (27%) of the Co (Mn) atoms in O sites, which is virtually unaffected by thermal annealing up to 900 °C. We discuss how this anion site configuration, which had never been considered before for any transition metal in any metal oxide material, may in fact have a low formation energy. This suggests a change in paradigm regarding transition-metal incorporation in ZnO and possibly other oxides and wide-gap semiconductors.

  16. High permeability-high frequency stable MnZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Kalarus, J. [Ferroxcube Polska, 96-100 Skierniewice (Poland); Kogias, G., E-mail: kogias@cperi.certh.gr [Centre for Research and Technology-Hellas, Chemical Process Engineering Research Institute, Laboratory of Inorganic Materials, 57001 Thessaloniki (Greece); Aristotle University of Thessaloniki, Department of Chemical Engineering, Laboratory of Materials Technology, 54124 Thessaloniki (Greece); Holz, D. [Ferroxcube Polska, 96-100 Skierniewice (Poland); Zaspalis, V.T. [Centre for Research and Technology-Hellas, Chemical Process Engineering Research Institute, Laboratory of Inorganic Materials, 57001 Thessaloniki (Greece); Aristotle University of Thessaloniki, Department of Chemical Engineering, Laboratory of Materials Technology, 54124 Thessaloniki (Greece)

    2012-09-15

    Modern MnZn ferrite applications require high magnetic initial permeability and exceptional frequency stability; the former implies large grains, while the latter high grain boundary resistivity. In this article the optimization of the final firing process is described for achieving both. The optimization is based on the homogeneous dissolution of dopants under oxidative conditions and their subsequent precipitation along grain boundaries. This was accomplished by integrating isothermal plateaus at the upper stadia of the cooling stage of the final firing process. MnZn ferrites of the basic composition [Mn{sub 0.47}Zn{sub 0.47}Fe{sub 0.06}{sup 2+}]Fe{sub 2}{sup 3+}O{sub 4} were synthesized with initial permeability (measured at f=10 kHz, B<0.1 mT, T=25 Degree-Sign C) 12,600 and losses, expressed as tan({delta})/{mu}{sub i}, of 3.1 Multiplication-Sign 10{sup -6} at 10 kHz and 20.5 Multiplication-Sign 10{sup -6} at 100 kHz (B<0.1 mT, T=25 Degree-Sign C), that reflect good frequency stability. These results could be reproduced in pilot production scale. - Highlights: Black-Right-Pointing-Pointer Optimization of sintering is described for achieving high initial permeability. Black-Right-Pointing-Pointer Optimization of sintering is described for receiving frequency stability. Black-Right-Pointing-Pointer For high permeability, high densities and large grain sizes are required. Black-Right-Pointing-Pointer The achieved initial permeability is higher than 12,500. Black-Right-Pointing-Pointer The losses, tan({delta})/{mu}{sub i}, are 3.1 Multiplication-Sign 10{sup -6} at 10 kHz and 20.5 Multiplication-Sign 10{sup -6} at 100 kHz.

  17. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Science.gov (United States)

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  18. Electrical and thermal properties of bulk superconductors Eu{sub 0.95}Pr{sub 0.05}Ba{sub 2}(Cu{sub 1-x}M{sub x}){sub 3}O{sub 7-d}elta (M = Fe, Ni, Zn and Mn)

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Tirthankar [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700 032 (India); Gahtori, Bhasker [Superconductivity and Cryogenics Division, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110 012 (India); Soni, Ajay; Okram, G.S. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Agarwal, S.K. [Superconductivity and Cryogenics Division, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110 012 (India); Chen, Y.-S. [Department of Physics, National Dong-Hwa University, Hualien 974, Taiwan (China); Kuo, Y.-K., E-mail: ykkuo@mail.ndhu.edu.t [Department of Physics, National Dong-Hwa University, Hualien 974, Taiwan (China); Geetha [Department of Physics, Manipal Institute of Technology, Manipal 576 104 (India); Rao, Ashok, E-mail: ashokanu_rao@rediffmail.co [Department of Physics, Manipal Institute of Technology, Manipal 576 104 (India); Sarkar, Chandan Kumar [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700 032 (India)

    2010-02-01

    Measurements of transition temperature, magneto-resistance, thermal conductivity, thermo-electric power and specific heat have been carried out on co-doped samples of Eu{sub 0.95}Pr{sub 0.05}Ba{sub 2}(Cu{sub 1-x}M{sub x}){sub 3}O{sub 7-d}elta (M = Fe, Ni, Zn and Mn) compounds. It is found that all samples exhibit metallic behavior, except the co-doped sample of Fe that shows semiconducting behavior. It is seen that the upper-critical field H{sub c2} decreases with Pr-doping. However, an increase in H{sub c2} for dopants like Fe and Mn is observed. Thermal conductivity for the pristine sample of EuBa{sub 2}Cu{sub 3}O{sub 7-d}elta (Eu-123) exhibits a pronounced hump below the superconducting transition temperature T{sub C}. However, the peak height of the hump decreases with Pr-doping and such a feature is further suppressed in the co-doped samples. The negative sign of the measured thermo-electric power of Eu-123 indicates that the dominant carrier in this sample is electron-like, whereas it turns to hole-like for all of the doped samples. A jump in specific heat C{sub P} is detected in the pure sample of Eu-123 at T{sub C}, while only a change in slope in C{sub P} is seen around the transition temperature in the Pr-doped sample.

  19. Cu and Zn Speciation in an Acid Soil Amended with Alkaline Biosolids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fractionation of metals in a granite-derived acid sandy loam soil amended with alkaline-stabilised sewage sludge biosolids was conducted in order to assess metal bioavailability and environmental mobility. Soil solution was extracted by a centrifugation and filtration technique. Metal speciation in the soil solution was determined by a cation exchange resin method. Acetic acid and EDTA extracting solutions were used for extraction of metals in soil solid surfaces. Metal distribution in different fractions of soil solid phase was determined using a three-step sequential extraction scheme. The results show that the metals in the soil solution existed in different fractions with variable lability and metals in the soil solid phase were also present in various chemical forms with potentially different bioavailability and environmental mobility. Alkalinestabilised biosolids could elevate solubility of Cu and proportion of Cu in organically complexed fractions both in soil liquid and solid phases, and may therefore increase Cu mobility. In contrast, the biosolids lowered the concentrations of water-soluble Zn (labile fraction) and exchangeable Zn and may hence decrease bioavailability and mobility of Zn. However, Fe and Mn oxides bound and organic matter bound fractions are likely to be Zn pools in the sludge-amended soil. These consequences possibly result from the liming effect and metal speciation of the sludge product and the difference in the chemistry between the metals in soil.

  20. Research Update: Stable single-phase Zn-rich Cu2ZnSnSe4 through In doping

    Science.gov (United States)

    Hartnauer, Stefan; Körbel, Sabine; Marques, Miguel A. L.; Botti, Silvana; Pistor, Paul; Scheer, Roland

    2016-07-01

    Alloying in the system Cu2ZnSnSe4-CuInSe2-ZnSe (CZTISe) is investigated experimentally and theoretically. The goal is to distinguish single-phase and multi-phase regions within the Cu2ZnSnSe4-2CuInSe2-4ZnSe pseudo-ternary phase diagram. CZTISe thin films are prepared by co-evaporation of the chemical elements and are investigated in real-time during growth using in situ angle dispersive X-ray diffraction. The focus is mainly on thin films along the Cu2ZnSnSe4-2CuInSe2 isopleth with small ZnSe addition as well as on films along the Cu2ZnSnSe4-4ZnSe isopleth with small CuInSe2 addition. For both cases, ab initio calculations with density-functional theory are performed to estimate the stability of the alloy with respect to the formation of secondary phases. Both in experiment and calculation, we find a surprisingly large single-phase region in the Cu2ZnSnSe4 corner of the pseudo-ternary phase diagram slightly off the Cu2ZnSnSe4-4ZnSe isopleth. This may help avoiding secondary phase formation under Zn-rich conditions and open up new possibilities for the application of CZTISe thin films in solar cells.

  1. Exploring the activated state of Cu/ZnO-Zn, a model catalyst for methanol synthesis

    NARCIS (Netherlands)

    Batyrev, E.D.; Shiju, N.R.; Rothenberg, G.

    2012-01-01

    The interaction of Cu clusters with ZnO(0001)-Zn terminated crystal faces is studied after reduction at high temperatures by a combination of scanning tunneling microscopy, scanning tunneling spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy. We find that tiny

  2. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-02

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.

  3. Fractionation of Cd, Cu, Ni, Pb, and Zn in floodplain soils from Egypt, Germany and Greece

    Directory of Open Access Journals (Sweden)

    Shaheen S. M.

    2013-04-01

    Full Text Available Trace elements are potentially toxic to human life and the environment. Element toxicity depends on chemical associations in soils. Therefore, determining the chemical form of an element in soils is important to evaluate its mobility and bioavailability. Initial soil development in river floodplains influences soil properties, processes and therefore behavior of trace elements. In this study, three different floodplain soils sampled at three rivers (Nile/Egypt, Elbe/Germany and Penios/Greece were used to link soil development and properties to the geochemical fractions and mobility of some trace elements. Sequential extraction was used to fractionate five trace elements (Cd, Cu, Ni, Pb and Zn into five operationally defined groups: water soluble + exchangeable, carbonate, Fe-Mn oxide, organic, and residual. German soil showed the highest total concentration of the studied elements (except Ni. The Greek soil had the greatest amount of Ni. The residual fraction was the abundant pool for the studied elements examined in the Egyptian and Greek soils while the non-residual fraction was the dominant pool for all elements in the German soil. A significant amount (71- 94% of all elements was present in German soil in the potentially available fraction: non-residual fraction, while the amount of this fraction ranged between 9 and 39 % in Greek soil and between 9 and 34 % in Egyptian soil. These suggest that the potential availability of the studied trace elements was extremely high in German soil compared to the Egyptian and Greek soil. In the German soil, most of the non-residual Cd, Ni and Zn were bounded with the Fe-Mn oxide fraction, while Cu and Pb distributed in the organic fraction. While in the Egyptian and Greek soils Fe-Mn oxide fraction was the abundant pool for the studied elements except for Cd, in which the exchangeable and the carbonate fractions had the greatest amount of Cd. Assuming that mobility and bioavailability of these elements

  4. Punicalagin Green Functionalized Cu/Cu2O/ZnO/CuO Nanocomposite for Potential Electrochemical Transducer and Catalyst

    Science.gov (United States)

    Fuku, X.; Kaviyarasu, K.; Matinise, N.; Maaza, M.

    2016-09-01

    A novel ternary Punica granatum L-Cu/Cu2O/CuO/ZnO nanocomposite was successfully synthesised via green route. In this work, we demonstrate that the green synthesis of metal oxides is more viable and facile compare to other methods, i.e., physical and chemical routes while presenting a potential electrode for energy applications. The prepared nanocomposite was characterised by both microscopic and spectroscopic techniques. High-resolution scanning electron microscopy (HRSEM) and X-ray diffraction (XRD) techniques revealed different transitional phases with an average nanocrystallite size of 29-20 mm. It was observed that the nanocomposites changed from amorphous-slightly crystalline Cu/Cu2O to polycrystalline Cu/Cu2O/CuO/ZnO at different calcination temperatures (room temperature-RT- 600 °C). The Cu/Cu2O/ZnO/CuO metal oxides proved to be highly crystalline and showed irregularly distributed particles with different sizes. Meanwhile, Fourier transform infrared (FTIR) spectroscopy confirmed the purity while together with ultraviolet-visible (UV-Vis) spectroscopy proved the proposed mechanism of the synthesised nanocomposite. UV-Vis showed improved catalytic activity of the prepared metal oxides, evident by narrow band gap energy. The redox and electrochemical properties of the prepared nanocomposite were achieved by cyclic voltammetry (CV), electrochemical impedance (EIS) and galvanostatic charge-discharge (GCD). The maximum specific capacitance ( C s) was calculated to be 241 F g-1 at 50 mV s-1 for Cu/Cu2O/CuO/ZnO nanoplatelets structured electrode. Moreover, all the CuO nanostructures reveal better power performance, excellent rate as well as long term cycling stability. Such a study will encourages a new design for a wide spectrum of materials for smart electronic device applications.

  5. Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II Ions in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jungho Heo

    2016-04-01

    Full Text Available Water-dispersible ZnS:Mn nanocrystals (NCs were synthesized by capping the surface with polar L-aspartic acid (Asp molecules. The obtained ZnS:Mn-Asp NC product was optically and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible (UV-VIS absorption spectrum and photoluminescence (PL emission spectrum of the NCs showed broad peaks at 320 and 590 nm, respectively. The average particle size measured from the obtained high resolution-transmission electron microscopy (HR-TEM image was 5.25 nm, which was also in accordance with the Debye-Scherrer calculations using the X-ray diffraction (XRD data. Moreover, the surface charge and degree of aggregation of the ZnS:Mn-Asp NCs were determined by electrophoretic and hydrodynamic light scattering methods, respectively. These results indicated the formation of agglomerates in water with an average size of 19.8 nm, and a negative surface charge (−4.58 mV in water at ambient temperature. The negatively-charged NCs were applied as a photosensor for the detection of specific cations in aqueous solution. Accordingly, the ZnS:Mn-Asp NCs showed an exclusive luminescence quenching upon addition of copper (II cations. The kinetic mechanism study on the luminescence quenching of the NCs by the addition of the Cu2+ ions proposed an energy transfer through the ionic binding between the two oppositely-charged ZnS:Mn-Asp NCs and Cu2+ ions.

  6. One-pot synthesis of stable water soluble Mn:ZnSe/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hao; Gao Xue; Liu Siyu; Su Xingguang, E-mail: suxg@jlu.edu.cn [College of Chemistry, Jilin University, Department of Analytical Chemistry (China)

    2013-06-15

    In this paper, Mn:ZnSe/ZnS core/shell-doped quantum dots (d-dots) with 3-mercaptopropionic acid as the stabilizer are successfully synthesized through a simple one-pot synthesis procedure in aqueous solution. The average diameter of Mn:ZnSe/ZnS core/shell d-dots is about 2.9 nm, which is lager than that of Mn:ZnSe cores (about 1.9 nm). The optical features and structure of the obtained Mn:ZnSe/ZnS core/shell quantum dots have been characterized by UV-Vis and fluorescence spectroscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photostability against UV irradiation and chemical stability against H{sub 2}O{sub 2} etching have been studied, and the results showed that the prepared Mn:ZnSe/ZnS core/shell d-dots are more stable than CdTe quantum dots prepared in aqueous solution. Finally, the resulting core/shell quantum dots are used as fluorescent label in human osteoblast-like HepG2 cell imaging.

  7. Giant orthorhombic distortions by Cu+ in ferrimagnetic spinel Mn334

    Science.gov (United States)

    Chung, Jae-Ho; Lee, Kee Hwan; Chang, Hun; Hwang, In Yong; Kang, Hyun Wook; Kim, Su Jae; Lee, Seongsu

    2015-03-01

    Mn3O4 is a tetragonal (c > a) spinel that exhibits noncollinear Yafet-Kittel ferrimagnetic ordering at low temperatures. We report large orthorhombic distortions in its ferrimagnetic phase stabilized by a few percent of Cu doping. The orthorhombic strains of the ferrimagnetic phases increased linearly to the doping and reached up to ɛ ~ 8 . 2 ×10-3 for x = 0.19, which is three times larger than the saturated value under external magnetic fields. For high doping (xagt 0 . 17), the distortions first appeared in the paramagnetic phases and underwent further enhancement simultaneously with the onset of the noncollinear ferrimagnetic ordering. We present the rich magnetostructural phase diagram of CuxMn3-xO4, and argue that the diluted t2 orbital degeneracy of Cu2+ under tetrahedral crystal field breaks the global symmetry and triggers the orthorhombic instability inherent in Mn3O4. This work was supported by the National Research Foundation of Korea through the ARCNEX (NRF-2011-0031933).

  8. Influence of Zn content and annealing process on electrical property of CuZn alloy

    Institute of Scientific and Technical Information of China (English)

    罗丰华; 尹志民; 汪明朴; 左铁镛

    2001-01-01

    The relationship among annealing temperature, microstructure and electrical resistivity of Cu-(8%~13%)Zn (mole fraction) alloys was studied. The results show that the relationship between the electrical resistivity of cold deformation CuZn alloy and annealing temperature is related to the recovery and recrystallization of the processes. The increments of electrical resistivity due to strain are restored mainly on the process of recovery and recrystallization. The room temperature resistivity of soft state alloys is linear to the Zn contents. The extended application of Matthissen rule on high concentration solid solution was discussed.

  9. A second copper zinc superoxide dismutase (CuZnSOD) in the blue crab Callinectes sapidus: cloning and up-regulated expression in the hemocytes after immune challenge.

    Science.gov (United States)

    Sook Chung, J; Bachvaroff, T R; Trant, J; Place, A

    2012-01-01

    The full-length cDNA (1362 nucleotides, GenBank JF736621) encoding an extracellular copper zinc superoxide dismutase initially isolated from an EST library of the blue crab Callinectes sapidus was characterized using 3' RACE and named Cas-ecCuZnSOD-2. The open reading frame of Cas-ecCuZnSOD-2 contains 203 deduced amino acids with the conserved active catalytic center for copper and zinc binding and the post-translational modification at two putative N-glycosylation and nine phosphorylation sites. Overall, the deduced amino acids of Cas-ecCuZnSOD-2 shared only 35% sequence identity with that of Cas-ecCuZnSOD (GenBank AF264031) which was previously found in C. sapidus, while it showed ∼75% sequence identity to Scylla paramamosain ecCuZnSOD (GenBank FJ774661). The expression profile of Cas-ecCuZnSOD-2 and the other three C. sapidus SODs: ecCuZn, cytMn- and mitMn SODs was largely ubiquitous among the tested tissues obtained from a juvenile female at intermolt: brain, eyestalk ganglia, pericardial organs, and thoracic ganglia complex (nervous system); hepatopancreas (digestive system); heart, artery and hemocytes (circulatory system); gill and antennal gland (excretory system), hypodermis, and Y-organ (endocrine organ). Our study reports, for the first time in the crustaceans, expression analyses for all four Cas-SODs in hemocytes after immune challenges. Crabs challenged with lipopolysaccharides (LPS) injection had a remarkable induction of Cas-ecCuZnSOD-2 expression along with three other SODs in hemocytes, suggesting that Cas-SODs including Cas-ecCuZnSOD-2 are involved in the defense system, possibly innate immunity and immunocompetency of C. sapidus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Magnetic and structural properties of Zn doped MnV2O4

    Science.gov (United States)

    Shahi, Prashant; Shukla, K. K.; Singh, Rahul; Das, A.; Ghosh, A. K.; Nigam, A. K.; Chatterjee, Sandip

    2014-04-01

    The magnetization, Neutron diffraction and X-ray diffraction of Zn doped MnV2O4 as a function of temperature have been measured. It has been observed, with increase of Zn the non-linear orientation of Mn spins with the V spins will decrease which effectively decrease the structural transition temperature more rapidly than Curie Temperature.

  11. Magnetic and structural properties of Zn doped MnV{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, Prashant; Shukla, K. K.; Singh, Rahul; Chatterjee, Sandip, E-mail: schatterji.app@itbhu.ac.in [Department of Applied Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi (India); Das, A. [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai-400085 (India); Ghosh, A. K. [Department of Physics, Banaras Hindu University, Varanasi (India); Nigam, A. K. [Department of CMP and MS, Tata Institute of Fundamental Research, Mumbai-400005 (India)

    2014-04-24

    The magnetization, Neutron diffraction and X-ray diffraction of Zn doped MnV{sub 2}O{sub 4} as a function of temperature have been measured. It has been observed, with increase of Zn the non-linear orientation of Mn spins with the V spins will decrease which effectively decrease the structural transition temperature more rapidly than Curie Temperature.

  12. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.

    Science.gov (United States)

    Frierdich, Andrew J; Catalano, Jeffrey G

    2012-10-16

    The reduction of trace elements and contaminants by Fe(II) at Fe(III) oxide surfaces is well documented. However, the effect of aqueous Fe(II) on the fate of redox-active trace elements structurally incorporated into iron oxides is unknown. Here, we investigate the fate of redox-active elements during Fe(II)-activated recrystallization of Cu-, Co-, and Mn-substituted goethite and hematite. Enhanced release of Cu, Co, and Mn to solution occurs upon exposure of all materials to aqueous Fe(II) relative to reactions in Fe(II)-free fluids. The quantity of trace element release increases with pH when Fe(II) is present but decreases with increasing pH in the absence of Fe(II). Co and Mn release from goethite is predicted well using a second-order kinetic model, consistent with the release of redox-inactive elements such as Ni and Zn. However, Cu release and Co and Mn release from hematite require the sum of two rates to adequately model the kinetic data. Greater uptake of Fe(II) by Cu-, Co-, and Mn-substituted iron oxides relative to analogues containing only redox-inactive elements suggests that net Fe(II) oxidation occurs. Reduction of Cu, Co, and Mn in all materials following reaction with Fe(II) at pHs 7.0-7.5 is confirmed by X-ray absorption near-edge structure spectroscopy. This work shows that redox-sensitive elements structurally incorporated within iron oxides are reduced and repartitioned into fluids during Fe(II)-mediated recrystallization. Such abiotic reactions likely operate in tandem with partial microbial and abiotic iron reduction or during the migration of Fe(II)-containing fluids, mobilizing structurally bound contaminants and micronutrients in aquatic systems.

  13. Impact of Mn(II)-Manganese Oxide Reactions on Ni and Zn Speciation.

    Science.gov (United States)

    Hinkle, Margaret A G; Dye, Katherine G; Catalano, Jeffrey G

    2017-03-01

    Layered Mn oxide minerals (phyllomanganates) often control trace metal fate in natural systems. The strong uptake of metals such as Ni and Zn by phyllomanganates results from adsorption on or incorporation into vacancy sites. Mn(II) also binds to vacancies and subsequent comproportionation with structural Mn(IV) may alter sheet structures by forming larger and distorted Mn(III)O6 octahedra. Such Mn(II)-phyllomanganate reactions may thus alter metal uptake by blocking key reactive sites. Here we investigate the effect of Mn(II) on Ni and Zn binding to phyllomanganates of varying initial vacancy content (δ-MnO2, hexagonal birnessite, and triclinic birnessite) at pH 4 and 7 under anaerobic conditions. Dissolved Mn(II) decreases macroscopic Ni and Zn uptake at pH 4 but not pH 7. Extended X-ray absorption fine structure spectroscopy demonstrates that decreased uptake at pH 4 corresponds with altered Ni and Zn adsorption mechanisms. These metals transition from binding in the interlayer to sheet edges, with Zn increasing its tetrahedrally coordinated fraction. These effects on metal uptake and binding correlate with Mn(II)-induced structural changes, which are more substantial at pH 4 than 7. Through these structural effects and the pH-dependence of Mn(II)-metal competitive adsorption, system pH largely controls metal binding to phyllomanganates in the presence of dissolved Mn(II).

  14. Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures

    Science.gov (United States)

    Ma, Qun; Lv, Xiangzhou; Wang, Yongqian; Chen, Jieyu

    2016-10-01

    A novel Mn doped flower-like ZnO hierarchical structures were successfully synthesized with a facile ion-exchange method. Structural properties of the synthesized photocatalysis have been investigated with XRD, FESEM equipped with energy dispersive spectroscopy, while UV-vis and PL spectroscopy were employed to study their optical properties. The inner structure of doped ZnO hierarchical structure can be finely transformed from nanosheets to nanorods and to nanoparticles with the increasing of doping contents. All the synthesized Mn/ZnO samples exhibit strong blue-violet emission. Furthermore, the optical absorption towards visible light of ZnO was significantly enhanced due to the incorporation of Mn ions. The photocatalytic results indicate that photocatalytic activity of ZnO was enhanced with the doping of Mn and there is an optimum Mn doping level, leading to the highest photocatalytic performance.

  15. The dissolution mechanism of cathodic active materials of spent Zn-Mn batteries in HCl.

    Science.gov (United States)

    Li, Yunqing; Xi, Guoxi

    2005-12-09

    The cathodic active materials of spent Zn-Mn batteries are complicated. The majority materials that they contain are Mn(OH)(2), Mn(2)O(4), lambda-Mn(2)O(2), ZnMn(2)O(4), Zn(NH(3))(2)Cl(2), [Zn(OH)(2)](4).ZnCl(2), etc. Dissolving these kinds of materials is important to the environmental pollution control and materials recycle. In present paper we investigated the dissolution mechanism of the cathodic active materials in HCl by testing the factors that can influence the dissolution procedure, including temperature, time, and the concentration of HCl and H(2)O(2). Our results showed that both neutralization and oxidation-reduction reactions occurred in the dissolution process, and that H(2)O(2) had a great effect on the dissolution efficiency.

  16. Structural, morphological and optical properties of Mn doped ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    V. D. Mote

    2013-09-01

    Full Text Available Mn doped ZnS samples with composition formula Zn1-xMn xS where x = 0.00, 0.02, 0.05 and 0.10 were prepared by chemical method. Samples characterized for its structural, morphological and optical properties by X-ray diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR and UV-vis spectrometer. XRD patterns confirm cubic zinc blend structure with no secondary phases for pure and Mn doped ZnS. Lattice constant value increases slightly with Mn concentration due to the substitution of Mn in ZnS lattice. TEM images show that the particles have spherical in shape with an average particle size between 3-4 nm. The chemical species of the grown crystals are identified by FTIR spectra. Optical absorption spectra show decrement in band gap with increasing Mn concentration.

  17. Structural, morphological and optical properties of Mn doped ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    V. D. Mote

    2013-12-01

    Full Text Available Mn doped ZnS samples with composition formula Zn1-xMn xS where x = 0, 0.02, 0.05 and 0.10 were prepared by chemical method. Samples characterized for its structural, morphological and optical properties by X-ray diffraction (XRD, transmission electron microscope (TEM, Fourier transform infrared spectroscopy (FTIR and UV-vis spectrometry. XRD patterns confirm cubic zinc blend structure with no secondary phases for pure and Mn doped ZnS. Lattice constant value increases slightly with Mn concentration due to the substitution of Mn in ZnO lattice. TEM images show that the particles have spherical in shape with an average particle size 3-4 nm. The chemical species of the grown crystals are identified by FTIR spectra. Optical absorption spectra show decrement in band gap with increasing Mn concentration.

  18. Mn doped nanostucture ZnO thin film for photo sensor and gas sensor application

    Science.gov (United States)

    Mahajan, Sandip V.; Upadhye, Deepak S.; Shaikh, Shahid U.; Birajadar, Ravikiran B.; Siddiqui, Farha Y.; Ghule, Anil V.; Sharma, Ramphal

    2013-02-01

    Mn doped nanostructure ZnO thin film prepared by soft chemically route method. ZnO thin films were deposited on glass substrate by successive ionic layer adsorption and reaction technique (SILAR). After deposit ZnO thin film dipped in MnSO4 solution for 1 min. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Structural properties were studied by XRD. The improvement in gas sensing properties was found to enhance after doping of Mn on ZnO thin film. The Photo Sensor nature was calculated by I-V characteristics.

  19. Optical and structural properties of Mn-doped ZnO nanorods grown by aqueous chemical growth for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Strelchuk, V.V. [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky pr., 03028 Kyiv (Ukraine); Nikolenko, A.S., E-mail: nikolenko_mail@ukr.net [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky pr., 03028 Kyiv (Ukraine); Kolomys, O.F.; Rarata, S.V.; Avramenko, K.A.; Lytvyn, P.M. [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky pr., 03028 Kyiv (Ukraine); Tronc, P. [Centre National de la Recherche Scientifique, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin, 75005 Paris (France); Chey, Chan Oeurn; Nur, Omer; Willander, Magnus [Department of Science and Technology, Linköping University, 601 74 Norrköping (Sweden)

    2016-02-29

    The effect of Mn-doping on the structural, morphological, optical and magnetic properties of the ZnO:Mn nanorods (NRs) synthesized by aqueous chemical process is reported. Grown ZnO:Mn NRs are shown to have hexagonal end facets and the diameters increasing with nominal Mn content. Optical absorption measurements show a decrease in optical band gap with increase of Mn concentration. Raman spectroscopy revealed significant modification of the lattice vibrational properties of the ZnO matrix upon Mn doping. The additional Mn-related vibrational mode, intensity of which increases with amount of Mn can be regarded as an evidence of Mn incorporation into the host lattice of the ZnO. At high Mn concentrations, coexistence of hexagonal Zn{sub 1−x}Mn{sub x}O phase along with the secondary phases of ZnMn{sub 2}O{sub 4} cubic spinel is revealed. Magnetic properties of ZnO:Mn NRs are studied by combinatorial atomic force microscopy and magnetic force microscopy imaging, and obtained clear magnetic contrast at room temperature provides a strong evidence of ferromagnetic behavior. - Highlights: • Synthesis of Mn-doped ZnO nanorods by hydrothermal method is demonstrated. • Doping with Mn significantly changes the morphology of ZnO nanorods. • Additional Mn-induced Raman modes evidence incorporation of Mn into ZnO matrix. • Formation of secondary ZnMn{sub 2}O{sub 4} spinel phase is found at high Mn concentrations. • Contrast MFM images of ZnO:Mn nanorods indicate ferromagnetism at room temperature.

  20. Induced effects of Cu underlayer on (111) orientation of Fe50 Mn50 thin films

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; WANG Feng-ping; LIU Huan-ping; WU Ping; QIU Hong; PAN Li-qing

    2005-01-01

    Effects of Cu underlayer on the structure of Fe50 Mn50 films were studied. Samples with a structure of Fe50 Mn50 (200 nm)/Cu(tCu) were prepared by magnetron sputtering on thermally oxidized silicon substrates at room temperature. The thickness of Cu underlayer varied from 0 to 60 nm in the intervals of 10 nm. High-vacuum annealing treatments, at different temperatures of 200, 300 and 400 ℃ for 1 h, respectively, on the Fe50 Mn50 (200 nm)/Cu(20 nm) thin films were performed. The surface morphologies and textures of the samples were measured by field emission scan electronic microscope (FE-SEM) and X-ray diffraction(XRD). Energy dispersive X-ray spectroscopy (EDX) and Auger electron spectroscopy(AES) were used to analyze the compositional distribution. It is found that Cu underlayer has an obvious induce effect on (111) orientation of Fe50 Mn50 thin films. The induce effects of Cu on (111) orientation of Fe50 Mn50 changed with the increase of Cu layer thickness and the best effect was obtained at the Cu layer thickness of 20 nm. High-vacuum annealing treatments cause the migration of Mn atoms towards surface of the film and interface between Cu layer and substrate. With the increasing annealing temperature, migration of Mn atoms is more obvious, which leads to a Fe-riched Fe-Mn alloy film.

  1. The properties of CdTe solar cells with ZnTe/ZnTe: Cu buffer layers

    Institute of Scientific and Technical Information of China (English)

    Song Huijin; Zheng Jiagui; Feng Lianghuan; Yan Qiang; Lei Zhi; Wu Lili; Zhang Jingquan; Li Wei; Li Bing

    2008-01-01

    CdS/CdTe solar cells with ZnTe/ZnTe:Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe:Cu buffer layers affect the solar cell conversion efficiency and its fill factor.

  2. MnO{sub 2}/ZnO porous film: Electrochemical synthesis and enhanced supercapacitor performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaoping, E-mail: xpzh2012@126.com; Ma, Lin

    2015-12-31

    MnO{sub 2}/ZnO porous compound film was synthesized by a two-step electrochemical route at room temperature. The structure and surface morphology of the as-prepared MnO{sub 2}/ZnO film were characterized by X-ray diffraction and scanning electron microscopy. The supercapacitive behavior of the as-prepared MnO{sub 2}/ZnO film in aqueous 0.1 M Na{sub 2}SO{sub 4} electrolyte was studied by cyclic voltammetry, charge/discharge cycling and electrochemical impedance spectroscopy. In addition, single MnO{sub 2} film was also synthesized and characterized by the same method for comparison. The SEM results show that the as-prepared MnO{sub 2}/ZnO film exhibits a uniform porous net structure while the single MnO{sub 2} film shows a bulk structure with uneven surface morphology. The electrochemical results indicate that the MnO{sub 2}/ZnO porous film shows good capacitive behavior with a specific capacitance of 570.9 μF cm{sup −2} which is three times larger than that of the single MnO{sub 2} film (179.4 μF cm{sup −2}), which reveals a potential application prospect in electrochemical supercapacitors. - Highlights: • MnO{sub 2}/ZnO porous film was synthesized by an electrochemical route. • The as-prepared MnO{sub 2}/ZnO film showed a uniform porous structure. • The MnO{sub 2}/ZnO porous film showed good capacitive behavior. • The specific capacitance of compound film was three times larger than that of the single MnO{sub 2} film.

  3. Medical applications of Cu, Zn, and S isotope effects.

    Science.gov (United States)

    Albarede, Francis; Télouk, Philippe; Balter, Vincent; Bondanese, Victor P; Albalat, Emmanuelle; Oger, Philippe; Bonaventura, Paola; Miossec, Pierre; Fujii, Toshiyuki

    2016-10-01

    This review examines recent applications of stable copper, zinc and sulfur isotopes to medical cases and notably cancer. The distribution of the natural stable isotopes of a particular element among coexisting molecular species varies as a function of the bond strength, the ionic charge, and the coordination, and it also changes with kinetics. Ab initio calculations show that compounds in which a metal binds to oxygen- (sulfate, phosphate, lactate) and nitrogen-bearing moieties (histidine) favor heavy isotopes, whereas bonds with sulfur (cysteine, methionine) favor light isotopes. Oxidized cations (e.g., Cu(ii)) and low coordination numbers are expected to favor heavy isotopes relative to their reduced counterparts (Cu(i)) and high coordination numbers. Here we discuss the first observations of Cu, Zn, and S isotopic variations, three elements closely related along multiple biological pathways, with emphasis on serum samples of healthy volunteers and of cancer patients. It was found that heavy isotopes of Zn and to an even greater extent Cu are enriched in erythrocytes relative to serum, while the difference is small for sulfur. Isotopic variations related to age and sex are relatively small. The (65)Cu/(63)Cu ratio in the serum of patients with colon, breast, and liver cancer is conspicuously low relative to healthy subjects. The characteristic time over which Cu isotopes may change with disease progression (a few weeks) is consistent with both the turnover time of the element and albumin half-life. A parallel effect on sulfur isotopes is detected in a few un-medicated patients. Copper in liver tumor tissue is isotopically heavy. In contrast, Zn in breast cancer tumors is isotopically lighter than in healthy breast tissue. (66)Zn/(64)Zn is very similar in the serum of cancer patients and in controls. Possible reasons for Cu isotope variations may be related to the cytosolic storage of Cu lactate (Warburg effect), release of intracellular copper from cysteine

  4. Density-functional study on the ferromagnetism of (Mn,Na)-codoped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai-Cheng, E-mail: kczhang@yeah.net [College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Li, Yong-Feng [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Liu, Yong [State Key Laboratory of Metastable Materials Science and Technology and College of Science, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zhu, Yan [Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2014-10-15

    We have investigated the magnetic properties of (Mn,Na)-codoped ZnO, which was reported to have room-temperature ferromagnetism recently, by first-principles calculation. Our results reveal that antiferromagnetic interaction dominates in the system with Mn substitution only. The antiferromagnetism arises from the superexchange interaction between Mn atoms. When Mn and Na are codoped into ZnO, holes are introduced into the orbitals of Mn and O, which leads to strong ferromagnetism. The origin of ferromagnetism can be attributed to the hole-mediated double-exchange interaction.

  5. Magnetic exchange interactions in Mn doped ZnSnAs{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Bouhani-Benziane, H.; Sahnoun, O. [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Sahnoun, M., E-mail: sahnoun_cum@yahoo.fr [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Department of Chemistry, University of Fribourg (Switzerland); Driz, M. [Laboratoire de Sciences des Matériaux (LSM), University of Sidi Bel Abbes (Algeria); Daul, C. [Department of Chemistry, University of Fribourg (Switzerland)

    2015-12-15

    Accurate ab initio full-potential augmented plane wave (FP-LAPW) electronic calculations within generalized gradient approximation have been performed for Mn doped ZnSnAs{sub 2} chalcopyrites, focusing on their electronic and magnetic properties as a function of the geometry related to low Mn-impurity concentration and the spin magnetic alignment (i.e., ferromagnetic vs antiferromagnetic). As expected, Mn is found to be a source of holes and localized magnetic moments of about 4 µ{sub B} per Mn atom are calculated which are sufficiently large. The defect calculations are firstly performed by replacing a single cation (namely Zn and Sn) with a single Mn atom in the pure chalcopyrite ZnSnAs{sub 2} supercell, and their corresponding formation energies show that the substitution of a Sn atom (rather than Zn) by Mn is strongly favored. Thereafter, a comparison of total energy differences between ferromagnetic (FM) and antiferromagnetic (AFM) are given. Surprisingly, the exchange interaction between a Mn pairs is found to oscillate with the distance between them. Consequently, the AFM alignment is energetically favored in Mn-doped ZnSnAs{sub 2} compounds, except for low impurity concentration associated with lower distances between neighboring Mn impurities, in this case the stabilization of FM increases. Moreover, the ferromagnetic alignment in the Mn-doped ZnSnAs{sub 2} systems behaves half-metallic; the valence band for majority spin orientation is partially filled while there is a gap in the density of states for the minority spin orientation. This semiconducting gap of ~1 eV opened up in the minority channel and is due to the large bonding–antibonding splitting from the p–d hybridization. Our findings suggest that the Mn-doped ZnSnAs{sub 2} chalcopyrites could be a different class of ferromagnetic semiconductors. - Highlights: • ab initio calculations were performed on Mn doped ZnSnAs{sub 2} chalcopyrite. • Substitution of a Sn atom (rather than Zn) by Mn

  6. Phase transformation of Al-Zn (Cu) alloys and the phase diagram of Al-Zn-Cu system%Al-Zn(Cu)合金的相变和Al-Zn-Cu系相图

    Institute of Scientific and Technical Information of China (English)

    郝士明; 李洪晓; 陈辉

    2005-01-01

    The room temperature phase diagram of Al-Zn-Cu system is the important basis for judging the phase constituents of the materials at the usage condition. New results about the room temperature phase diagram of the low copper side in the Al-Zn-Cu systems have been shown in this study. Miscibility gap of fcc phase in the Al-Zn-Cu system has also been studied by experimental diffusion-couple method and thermodynamic calculation. Properties of this miscibility gap have been known. It is practically significant for the study on the aging behavior and for the control of the microstructure and properties of the Al alloys with Zn and Cu element.

  7. Conduction behavior conversion for Cu-doped ZnS/n-type Si devices with different Cu contents

    Science.gov (United States)

    Ni, Wei-Shih; Lin, Yow-Jon

    2015-06-01

    Currents through Cu-doped ZnS (ZnCuS)/n-type Si structures were studied. The electrical conduction investigations suggest that the carrier transport behavior is governed by the Poole-Frenkel emission for ZnCuS/n-type Si devices having the low Cu concentration. However, the carrier transport behavior is governed by the thermionic emission for ZnCuS/n-type Si devices having the high Cu concentration. The photoluminescence result revealed that sulfur vacancy ( V S) is the origin of conduction behavior conversion. It is shown that the increased Cu concentration leads to the reduced formation probability of V S. The dependence of V S on the film composition was identified for providing a guide to control the current transport behavior of ZnCuS/n-type Si devices.

  8. Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots

    Science.gov (United States)

    Deng, Pan; Lu, Li-Qiang; Cao, Wei-Cheng; Tian, Xi-Ke

    2017-02-01

    The phosphorescent L-cysteine modified manganese-doped zinc sulfide quantum dots (L-cys-MnZnS QDs) was developed for a highly sensitive detection of permanganate anions (MnO4-). L-cys-MnZnS QDs, which were easily synthesized in aqueous media using safe and low-cost materials, can emit intense phosphorescence even though the solution was not deoxygenated. However, the phosphorescence of L-cys-Mn-ZnS QDs was strongly quenched by MnO4- ascribed to the oxidation of L-cys and the increase of surface defects on L-cys-MnZnS QDs. Under the optimal conditions, L-cys-MnZnS QDs offer high selectivity over other anions for MnO4- determination, and good linear Stern-Volmer equation was obtained for MnO4- in the range of 0.5-100 μM with a detection limit down to 0.24 μM. The developed method was finally applied to the detection of MnO4- in water samples, and the spike-recoveries fell in the range of 95-106%.

  9. Electrodeposited Cu2ZnSnS4 thin films

    CSIR Research Space (South Africa)

    Valdes, M

    2014-05-01

    Full Text Available Electrochimica Acta Vol. 128, pp 393-399 Electrodeposited Cu2ZnSnS4thin films M. Valdesa, M. Modibedib, M. Matheb, T. Hilliec,d, M. Vazqueza,∗ aDivisión Electroquimica y Corrosión, INTEMA, UNMdP-CONICET, J. B. Justo 4302 B7608FDQ Mar del Plata, Argentina...

  10. Tuning the emission of aqueous Cu:ZnSe quantum dots to yellow light window.

    Science.gov (United States)

    Wang, Chunlei; Hu, Zhiyang; Xu, Shuhong; Wang, Yanbin; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2015-07-31

    Synthesis of internally doped Cu:ZnSe QDs in an aqueous solution still suffers from narrow tunable emissions from the blue to green light window. In this work, we extended the emission window of aqueous Cu:ZnSe QDs to the yellow light window. Our results show that high solution pH, multiple injections of Zn precursors, and nucleation doping strategy are three key factors for preparing yellow emitted Cu:ZnSe QDs. All these factors can depress the reactivity of CuSe nuclei and Zn monomers, promoting ZnSe growth outside CuSe nuclei rather than form ZnSe nuclei separately. With increased ZnSe QD size, the conduction band and nearby trap state energy levels shift to higher energy sites, causing Cu:ZnSe QDs to have a much longer emission.

  11. EPR study of ZnS: Mn2 + nanocrystals and pyrex glasses

    Institute of Scientific and Technical Information of China (English)

    刘俊业; 刘春旭; 郑荧光; 李丹; 窦恺; 许武; 虞家琪

    1999-01-01

    Pyrex glasses with different ZnS: Mn2+ contents were prepared by melting method. It has been found that Mn ion may occupy two sites: (Mn2+)sub and (Mn2+)int from photoluminescene (PL) and photoluminescence excitation (PLE) spectra. The results were confirmed by the further electron paramagnetic resonance (EPR) experiments and the three types of states (Mn2+)sub, (Mn2+)int and Mn clusters were identified. It was observed that the gfactor and the hyperfine structure (HFS) constant increase with the decreasing size of nanocrystallite. This may result from hybridization of sp3 electron states of ZnS and 3d5 electron states of Mn by the effects of quantum confinement and the surface states.

  12. Organic/inorganic nanocomposites of ZnO/CuO/chitosan with improved properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xingfa, E-mail: xingfamazju@aliyun.com [School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai, 264005 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Zhang, Bo; Cong, Qin; He, Xiaochun; Gao, Mingjun [School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai, 264005 (China); Li, Guang [National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, 310027 (China)

    2016-08-01

    To extend the visible light response of ZnO, ZnO/CuO heterostructured nanocomposite was synthesized by a hydrothermal approach. At the same time, chitosan (Ch) is considered as a very promising natural polymer. It holds not only abundant resource and low cost, but also has excellent adsorption properties to a broad range of organic pollutants and some heavy metal ions. To improve the adsorption properties of ZnO/CuO nanocomposite, ZnO/CuO/chitosan organic-inorganic composites were prepared with precipitation method. The as-prepared nanocomposites were characterized by TEM (Transmission electron microscopy), SAED pattern (Selected Area Electron Diffraction), SEM (scanning electron microscopy), UV–Vis (Ultraviolet–visible spectroscopy), PL (Photoluminescence), XRD (X-ray diffraction), TGA (Thermo Gravimetric Analyzer), Fourier transform infrared spectroscopy spectra (FTIR) et al. To examine the surface and interface properties of nanocomposites, chemical prototype sensor arrays were constructed based on ZnO, ZnO/CuO, ZnO/Cu{sub 2}O, ZnO/CuO/chitosan, ZnO/Cu{sub 2}O/chitosan nanocomposites and QCM (quartz crystal microbalance) arrays devices. The adsorption response behaviors of the sensor arrays to some typical volatile compounds were examined under similar conditions. The results indicated that with comparison to ZnO nanostructure, the ZnO/CuO nanocomposite exhibited enhanced adsorption properties to some typical volatile compounds greatly, and the adsorption properties of ZnO/CuO/chitosan are much better than that of ZnO/CuO nanocomposite. The adsorption of ZnO/CuO system is super to that of ZnO/Cu{sub 2}O. Therefore, ZnO/CuO/chitosan nanocomposite not only showed broadening visible light response, but also possessed of excellent adsorption properties, and has good potential applications in photocatalysts, chemical sensors, biosensors, self-cleaning coating fields et al. - Highlights: • ZnO/CuO nanocomposites exhibited good response in near whole visible

  13. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation

    Science.gov (United States)

    Qian, Kun; Qian, Zhaoxia; Hua, Qing; Jiang, Zhiquan; Huang, Weixin

    2013-05-01

    A series of CuO/MnO2 catalysts with different CuO loadings were synthesized by the incipient wetness impregnation method. The catalysts were characterized by N2 adsorption-desorption isotherms, powder X-ray diffraction, X-ray photoelectron spectroscopy, H2-temperature programmed reduction, CO-temperature programmed reduction and scanning electron microscope. The CuO/MnO2 catalysts with CuO loading of 1-40% exhibit almost the same catalytic performance toward CO oxidation while those with higher CuO loadings exhibit a much poorer catalytic activity. The structural characterization results demonstrate that the CuO-MnO2 interface is the active site for CO oxidation in CuO/MnO2 catalysts and CO oxidation over CuO/MnO2 probably follows the interfacial reaction mechanism in which CO chemisorbed on CuO reacts with oxygen species on MnO2 at the CuO-MnO2 interface.

  14. Crednerite-CuMnO{sub 2} thin films prepared using atmospheric pressure plasma annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong-Ying, E-mail: hychen@cc.kuas.edu.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chiken Kuang Road, Kaohsiung 807, Taiwan, ROC (China); Lin, Yu-Chang [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chiken Kuang Road, Kaohsiung 807, Taiwan, ROC (China); Lee, Jiann-Shing [Department of Applied Physics, National Pingtung University, 4-18 Minsheng Road, Pingtung City 900, Taiwan, ROC (China)

    2015-05-30

    Highlights: • Crednerite-CuMnO{sub 2} thin films were formed at atmospheric pressure plasma with N{sub 2}–(5–10)%O{sub 2}. • The binding energy of Cu-2p spectrum of the crednerite-CuMnO{sub 2} thin films was 932.3 eV (Cu{sup +}). • The binding energies of Mn-3p spectrum were 48.1 ± 0.2 eV (Mn{sup 3+}) and 50.0 ± 0.2 eV (Mn{sup 4+}). • The cation distribution in the crednerite-CuMnO{sub 2} thin films was Cu{sub 1.0}{sup +}(Mn{sub 0.6}{sup 3+}Mn{sub 0.4}{sup 4+})O{sub 2}. • The electrical conductivity of CuMnO{sub 2} thin films was (2.61–2.65) × 10{sup 4} Ω cm. - Abstract: This study reports the preparation of crednerite-CuMnO{sub 2} thin films using atmospheric pressure plasma annealing. The pristine thin films were deposited onto a quartz substrate using the sol–gel process. The specimens were then annealed using atmospheric pressure plasma at N{sub 2}–(0–20%)O{sub 2} for 20 min. Crednerite-CuMnO{sub 2} thin films were obtained using atmospheric pressure plasma annealing at N{sub 2}–5%O{sub 2} and N{sub 2}–10%O{sub 2}. The lattice parameters of the thin films were a = 0.5574–0.5580 nm, b = 0.2874–0.2879 nm, c = 0.5878–0.5881 nm, and β = 104.15–104.25°, which agree well with previous reports. The Raman shifts of the crednerite-CuMnO{sub 2} thin films were 688 ± 2 cm{sup −1}, 381 ± 2 cm{sup −1}, and 314 ± 2 cm{sup −1}. The binding energy of Cu-2p spectrum of the crednerite-CuMnO{sub 2} thin films was 932.3 ± 0.2 eV representing the Cu{sup +} in the thin films. The binding energies of Mn-3p spectrum were 48.1 ± 0.2 eV (Mn{sup 3+}) and 50.0 ± 0.2 eV (Mn{sup 4+}). Furthermore, the cation distribution in the thin films was Cu{sup +}{sub 1.0}(Mn{sup 3+}{sub 0.6}Mn{sup 4+}{sub 0.4})O{sub 2} from the X-ray photoelectron spectroscopy measurement. When the crednerite-CuMnO{sub 2} phase was formed, the surface morphology exhibited a compact/dense granular morphology. The optical bandgap of the crednerite-CuMnO{sub 2} thin

  15. Prion Protein Does Not Confer Resistance to Hippocampus-Derived Zpl Cells against the Toxic Effects of Cu2+, Mn2+, Zn2+ and Co2+ Not Supporting a General Protective Role for PrP in Transition Metal Induced Toxicity.

    Science.gov (United States)

    Cingaram, Pradeep Kumar Reddy; Nyeste, Antal; Dondapati, Divya Teja; Fodor, Elfrieda; Welker, Ervin

    2015-01-01

    The interactions of transition metals with the prion protein (PrP) are well-documented and characterized, however, there is no consensus on their role in either the physiology of PrP or PrP-related neurodegenerative disorders. PrP has been reported to protect cells from the toxic stimuli of metals. By employing a cell viability assay, we examined the effects of various concentrations of Cu2+, Zn2+, Mn2+, and Co2+ on Zpl (Prnp-/-) and ZW (Prnp+/+) hippocampus-derived mouse neuronal cells. Prnp-/- Zpl cells were more sensitive to all four metals than PrP-expressing Zw cells. However, when we introduced PrP or only the empty vector into Zpl cells, we could not discern any protective effect associated with the presence of PrP. This observation was further corroborated when assessing the toxic effect of metals by propidium-iodide staining and fluorescence activated cell sorting analysis. Thus, our results on this mouse cell culture model do not seem to support a strong protective role for PrP against transition metal toxicity and also emphasize the necessity of extreme care when comparing cells derived from PrP knock-out and wild type mice.

  16. Microstructural and optical properties of spinel oxide M{sub x}Co{sub 2−x}MnO{sub 4} (M = Ni, Zn or Cu; 0 < x < 1) thin films prepared by inorganic polycondensation and dip-coating methods

    Energy Technology Data Exchange (ETDEWEB)

    Le, Thi Ly; Guillemet-Fritsch, Sophie; Dufour, Pascal; Tenailleau, Christophe, E-mail: tenailleau@chimie.ups-tlse.fr

    2016-08-01

    Spinel oxide nanoparticles of M{sub x}Co{sub 2−x}MnO{sub 4} (M = Ni, Zn, Cu; 0 < x < 1) were prepared at 120 °C by the inorganic polycondensation method. Phase composition and microstructure of each sample powder thus obtained were characterized by X-ray diffraction, X-ray fluorescence and scanning electron microscopy. Nanoparticles are well crystallized and uniformly distributed in both shape and size. Colloidal dispersions were stabilized in a low cost and environmentally friendly solvent solution. Spinel oxide thin films were then deposited on glass substrates by using the dip-coating technique. Their optical properties were measured in the 300–1100 nm wavelength range. Thin films show extremely good absorbance in the ultra-violet and blue regions. The highest absorbance observed in the red region was for x = 0.15 in zinc. A smaller direct band gap was determined when a low amount of doping M element was introduced in the cobalt and manganese spinel oxide material. - Highlights: • Pure complex spinel oxide nanoparticles synthesis at low T • Low cost method used to stabilize colloidal dispersions • Preparation of homogenous light absorber thin films by dip-coating • Adjustable optical properties and band gaps with the dopants.

  17. The determination of Ca,P,Fe,Mn,Zn,Cu and Se analysis in Spinibarbus hollandi Oshima muscles%光倒剌繴肌肉中钙、磷、铁、锰、锌、铜、硒的初步测定

    Institute of Scientific and Technical Information of China (English)

    陈琴; 陈意明; 蔡子德; 林丽华

    2001-01-01

    用常规方法对光倒剌繵Spinibarbus hollandiOshima肌肉中几种矿物元素(亦称生命元素)进行分析,结果表明:每100g干样中含钙85.6mg,磷100.4mg,铁3.51mg,锰2.45mg,锌5.37mg,铜0.28mg,硒346.3μg。认为光倒剌繵是一种营养价值较高,具有重要开发价值的优质淡水鱼类。%The mineral elements (or the life element) in meat of Spinibarbus hol landi were analysed with the proximate analysis method. The result showed that it contains 85.6 mg(Ca)、100.4 mg(P)、3.51 mg(Fe)、2.45 mg(Mn)、5.37 mg(Zn) 、0.28 mg(Cu )、346.3 μg(Se) in 100 gram dry sample.We think that Spinibarbus hollandi oshim a is one of freshwater fish with better nutritive value and worthy to be developed.

  18. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  19. One-, Two-, and Three-Dimensional Heterospin Complexes Consisting of 4-(N-tert-Butyloxylamino)pyridine (4NOpy), Dicyanamide Ion (DCA), and 3d Metal Ions: Crystal Structures and Magnetic Properties of [M(II)(4NOpy)x(DCA)y(CH3CN)z]n (M = Mn, Co, Ni, Cu, Zn).

    Science.gov (United States)

    Ogawa, Hiraku; Mori, Koya; Murashima, Kensuke; Karasawa, Satoru; Koga, Noboru

    2016-01-19

    Solutions of 3d metal ion salts, M(NO3)2, 4-(N-tert-butyloxylamino)pyridine (4NOpy), and dicyanamide (DCA) in CH3CN were mixed to afford single crystals of the polymeric complexes [M(II)(4NOpy)x(DCA)y(CH3CN)z]n (M(II) = Mn (1), Co (2), Ni (3), Cu (4a and 4b), Zn (5)). X-ray crystallography revealed that the crystal structures are a three-dimensional (3-D) network for 1, 2-D networks for 2, 3, 4a, and 5, and a 1-D chain for 4b. Crystals of 2, 3, 4a, and 5 contained CH3CN molecules as crystal solvents, which were readily desorbed in the ambient atmosphere. After desorption of the CH3CN molecules, the crystal structures of 2 and 3 were confirmed to be slightly shrunk without destruction of the crystal lattice. Crystals of 2, 3, 4a, and 5 after desorption of crystal solvents were used for investigations of the magnetic properties. Complex 1 showed antiferromagnetic interactions to form a ferrimagnetic chain and exhibited the magnetic behavior of a 2-D (or 3-D) spin-canted antiferromagnet with TN = 12 K. Complex 2 containing anisotropic Co(II) ions also showed the behavior of a 1-D (or 2-D) spin-canted antiferromagnet with TN = 6 K. In 3, 4a, and 4b, the aminoxyl of 4NOpy ferromagnetically interacted with the metal ion with coupling constants of JM-NO/kB = 45, 45, and 43 K, respectively. In 5, the magnetic couplings between the aminoxyls in 4NOpy through the diamagnetic Zn(II) ion were weakly antiferromagntic (JNO-NO = -1.2 K). DCA might be a weak antiferromagnetic connector for the metal chains.

  20. Aging behavior and fatigue crack propagation of high Zn-containing Al-Zn-Mg-Cu alloys with zinc variation

    National Research Council Canada - National Science Library

    Kai Wen Yunqiang Fan Guojun Wang Longbing Jin Xiwu Li Zhihui Li Yongan Zhang Baiqing Xiong

    2017-01-01

    In the present work, the influence of two-step aging treatments on hardness, electrical conductivity and mechanical properties of two high Zn-containing Al-Zn-Mg-Cu alloys with zinc content variation...

  1. Magnetic, optical and structural property studies of Mn-doped ZnO nanosheets.

    Science.gov (United States)

    Ahmed, Faheem; Kumar, Shalendra; Arshi, Nishat; Anwar, M S; Kim, Geun Woo; Heo, Si Nae; Byon, Eung Sun; Lee, Sung Hun; Lyu, Nam Jin; Koo, Bon Heun

    2012-07-01

    We report the synthesis of pure and Mn doped ZnO in the form of nanosheets using a simple and single step procedure involving a microwave assisted chemical method. As prepared Mn-doped ZnO nanosheets were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultra violet-visible (UV-Vis), Raman spectroscopy and magnetization measurements. The structural studies using XRD and TEM revealed the absence of Mn-related secondary phases and showed that Mn-doped ZnO comprise a single phase nature with wurtzite structure. FESEM and TEM micrographs show that the average diameter of Mn-ZnO assembled nanosheets is about approximately 50 nm, and the length of a Mn-doped ZnO nanosheet building block which is made up of thin mutilayered sheets is around approximately 300 nm. Concerning the Raman scattering spectra, the shift in peak position of E2 (high) mode toward low frequencies due to the Mn doping could be explained well by means of the spatial correlation model. Magnetic measurements showed that Mn-doped ZnO nanosheets exhibit ferromagnetic ordering at or above room temperature.

  2. Excellent low-field magnetoresistance effect in Ga-doped MnZn ferrites

    Directory of Open Access Journals (Sweden)

    Hyo-Jin Kim

    2014-12-01

    Full Text Available An excellent low field magnetoresistance (LFMR property was achieved from the Ga-doped (Mn0.8Zn0.2Fe2O4 (MnZn ferrites at room temperature (RT. For this study, undoped and Ga-doped MnZn ferrites with the nominal compositions of (Mn0.8Zn0.21−xGaxFe2O4 (x = 0 ∼ 0.1 were prepared by the conventional solid state reaction at 1400°C for 2 h in air. From the magneto-transport measurements, Ga-doped MnZn ferrites were found to have not only much lower resistivity values but also greatly improved LFMR ratios in comparison with undoped sample. The highest maximum LFMR ratio of 2.5% at 290 K in 0.5 kOe was achievable from 2 mol% Ga-doped MnZn ferrite. This large LFMR effect is attributable to an increase in spin electrons by Ga3+ ion substitution for the (Mn, Zn2+ site.

  3. Absence of intrinsic ferromagnetism in Zn{sub 1-x}Mn{sub x}O alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huawei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Shi Erwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Chen Zhizhan [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Liu Xuechao [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Xiao Bing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2006-10-04

    Zn{sub 1-x}Mn{sub x}O alloys, with different Mn concentrations, were prepared by the hydrothermal method. X-ray diffraction and electron paramagnetic resonance spectra demonstrate that Zn{sup 2+} ions are homogeneously substituted by Mn{sup 2+} ions without changing the ZnO wurtzite structure. The x = 0.02 and 0.04 samples are paramagnetic. When the Mn concentrations are increased to x = 0.08 and 0.10, the samples exhibit some ferromagnetism due to a secondary phase (Zn,Mn)Mn{sub 2}O{sub 4}. (letter to the editor)

  4. Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Cu-Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Tao; Zhang Hailong; Xiao Nianxin; Zhao Xiangling

    2007-01-01

    The microstructure of Cu-Zn alloy with different heat treatment conditions in 3.5% NaCl + NH3 solution were observed, and the average corrosion rates and electrochemical data of Cu-Zn alloy were measured, as well as the effect of heat treatment on microstructure and corrosion resistance of Cu-Zn alloy was analyzed. The results show that the microstructure of Cu-Zn alloy has been changed due to the heat treatment. As a results, the better corrosion resistance can be obtained for the Cu-Zn alloy quenched from 900℃ for 0.5h followed by tempered at 100℃ for 2h.

  5. Effects of long-term fertilization on grain and soil in yellow contents of Zn, B, Cu, Fe and Mn in rice paddy fields of southern China%长期不同施肥对南方黄泥田水稻子粒与土壤锌、硼、铜、铁、锰含量的影响

    Institute of Scientific and Technical Information of China (English)

    王飞; 林诚; 李清华; 何春梅; 李昱; 邱珊莲; 林新坚

    2012-01-01

    increased by 14. 3% 25.1% and 465.2%, respectively. The contents of Mn of grains are also improved more or less under the NPKM and NPKS treatments; however, the Fe contents of grains are all significantly reduced in all fertilization treatments. Applications of the fertilizers, especially the NPKM and NPKS, increase the uptakes of grain micronutrients. There are declining trends of the available B, Fe, Zn and Cu contents of soil in the NPK treatment compared with the CK, moreover, in the NPK treatment, the available Zn and Mn contents of soil are decreased by 36.4% and 24. 6%, respectively compared with the initial soil test. In contrast, the dropping tread was mitigated in the NPKM and NPKS treatments for above micronutrient. Applications of the NPKM, even increase available Zn, B and Mn contents of soil by 46. 6%, 52. 0% and 43.0% compared with the CK, respectively, which shows significant differences. The contents of organic matters are significantly and positively correlated to B, Cu and Zn contents of grains, and the amino acid and coarse protein contents of grains are significantly and positively correlated to the Zn contents of rice grains. In conclusion, the chemical fertilizers combined with cattle manure or straws, not only increase the micronutrient contents of rice grains, yields and some nutrient quality, but also mitigate the dropping trend of the mieronutrient contents of soil to a certain extent, which is more suitable fertilization pattern for yellow paddy fields of southern China.

  6. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  7. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.

    Science.gov (United States)

    Chen, Shiyou; Walsh, Aron; Gong, Xin-Gao; Wei, Su-Huai

    2013-03-20

    The kesterite-structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth-abundant low-cost thin-film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chalcopyrite materials CuGaSe2 and CuInSe2 . Four features are revealed and highlighted: (i) the strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p-type conductivity determined by the high population of acceptor CuZn antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge-compensated defect clusters such as [2CuZn +SnZn ], [VCu +ZnCu ] and [ZnSn +2ZnCu ] and their contribution to non-stoichiometry; (iv) the electron-trapping effect of the abundant [2CuZn +SnZn ] clusters, especially in Cu2ZnSnS4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) ≈ 0.8 and Zn/Sn ≈ 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular characterization and oxidative stress response of an intracellular Cu/Zn superoxide dismutase (CuZnSOD) of the whitefly, Bemisia tabaci.

    Science.gov (United States)

    Li, Jun-Min; Su, Yun-Lin; Gao, Xian-Long; He, Jiao; Liu, Shu-Sheng; Wang, Xiao-Wei

    2011-07-01

    Superoxide dismutases (SODs) are important for the survival of insects under environmental and biological stresses; however, little attention has been devoted to the functional characterization of SODs in whitefly. In this study, an intracellular copper/zinc superoxide dismutase of whitefly (Bemisia tabaci) (Bt-CuZnSOD) was cloned. Sequence analysis indicated that the full length cDNA of Bt-CuZnSOD is of 907 bp with a 471 bp open reading frame encoding 157 amino acids. The deduced amino acid sequence shares common consensus patterns with the CuZnSODs of various vertebrate and invertebrate animals. Phylogenetic analysis revealed that Bt-CuZnSOD is grouped together with intracellular CuZnSODs. Bt-CuZnSOD was then over-expressed in E. coli and purified using GST purification system. The enzymatic activity of purified Bt-CuZnSOD was assayed under various temperatures. When whiteflies were exposed to low (4°C) and high (40°C) temperatures, the in vivo activity of Bt-CuZnSOD was significantly increased. Furthermore, we measured the activities of several antioxidant enzymes, including SOD, catalase and peroxidase, in the whitefly after transferring the whitefly from cotton to tobacco (an unfavorable host plant). We found that the activity of SOD increased rapidly on tobacco plant. Taken together, these results suggest that the Bt-CuZnSOD plays a major role in protecting the whitefly against various stress conditions.

  9. Electronic Structure and Magnetism of Mn-Doped ZnO Nanowires

    Science.gov (United States)

    Zhang, Fuchun; Chao, Dandan; Cui, Hongwei; Zhang, Weihu; Zhang, Weibin

    2015-01-01

    The geometric structures, electronic and magnetic properties of Mn-doped ZnO nanowires were investigated using density functional theory. The results indicated that all the calculated energy differences were negative, and the energy of the ground state was 0.229 eV lower than ferromagnetic coupling, which show higher stability in antiferromagnetic coupling. The calculated results indicated that obvious spin splitting phenomenon occurred near the Femi level. The Zn atoms on the inner layer of ZnO nanowires are easily substituted by Mn atoms along the [0001] direction. It was also shown that the Mn2+-O2−-Mn2+ magnetic coupling formed by intermediate O atom was proved to be caused by orbital hybridization between Mn 3d and O 2p states. The magnetic moments were mainly attributed to the unpaired Mn 3d orbitals, but not relevant with doping position of Mn atoms. Moreover, the optical properties of Mn-doped ZnO nanowires exhibited a novel blue-shifted optical absorption and enhanced ultraviolet-light emission. The above results show that the Mn-doped ZnO nanowires are a new type of magneto-optical materials with great promise.

  10. Electronic Structure and Magnetism of Mn-Doped ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Fuchun Zhang

    2015-05-01

    Full Text Available The geometric structures, electronic and magnetic properties of Mn-doped ZnO nanowires were investigated using density functional theory. The results indicated that all the calculated energy differences were negative, and the energy of the ground state was 0.229 eV lower than ferromagnetic coupling, which show higher stability in antiferromagnetic coupling. The calculated results indicated that obvious spin splitting phenomenon occurred near the Femi level. The Zn atoms on the inner layer of ZnO nanowires are easily substituted by Mn atoms along the [0001] direction. It was also shown that the Mn2+-O2−-Mn2+ magnetic coupling formed by intermediate O atom was proved to be caused by orbital hybridization between Mn 3d and O 2p states. The magnetic moments were mainly attributed to the unpaired Mn 3d orbitals, but not relevant with doping position of Mn atoms. Moreover, the optical properties of Mn-doped ZnO nanowires exhibited a novel blue-shifted optical absorption and enhanced ultraviolet-light emission. The above results show that the Mn-doped ZnO nanowires are a new type of magneto-optical materials with great promise.

  11. Physicochemical properties of 3,4,5-trimethoxybenzoates of Mn(II, Co(II, Ni(II and Zn(II

    Directory of Open Access Journals (Sweden)

    W. FERENC

    2005-09-01

    Full Text Available The complexes of Mn(II, Co(II, Ni(II, Cu(II and Zn(II with 3,4,5-trimethoxybenzoic acid anion of the formula: M(C10H11O52·nH2O, where n = 6 for Ni(II, n = 1 for Mn(II, Co(II, Cu(II, and n = 0 for Zn, have been synthesized and characterized by elemental analysis, IR spectroscopy, X–ray diffraction measurements, thermogravimetry and magnetic studies. They are crystalline compounds characterized by various symmetry. They decompose in various ways when heated in air to 1273 K. At first, they dehydrate in one step and form anhydrous salts. The final products of decomposition are oxides of the respective metals (Mn2O3, Co3O4, NiO, CuO, ZnO. The solubilities of the analysed complexes in water at 293 K are in the orders of 10-2 – 10-4 mol dm-3. The magnetic susceptibilities of the Mn(II, Co(II, Ni(II and Cu(II complexes were measured over the range of 76–303 K and the magnetic moments were calculated. The results show that the 3,4,5-trimethoxybenzoates of Mn(II, Co(II and Ni(II are high-spin complexes but that of Cu(II forms a dimer [Cu2(C10H11O54(H2O2]. The carboxylate groups bind as monodentate or bidentate chelating or bridging ligands.

  12. Interfacial Phenomena in Al/Al, Al/Cu, and Cu/Cu Joints Soldered Using an Al-Zn Alloy with Ag or Cu Additions

    Science.gov (United States)

    Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    The studies of soldered joints were carried out in systems: Al/solder/Al, Al/solder/Cu, Cu/solder/Cu, where the solder was (Al-Zn)EUT, (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Ag and (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Cu addition. Brazing was performed at 500 °C for 3 min. The EDS analysis indicated that the composition of the layers starting from the Cu pad was CuZn, Cu5Zn8, and CuZn4, respectively. Wetting tests were performed at 500 °C for 3, 8, 15, and 30 min, respectively. Thickness of the layers and their kinetics of growth were measured based on the SEM micrographs. The formation of interlayers was not observed from the side of Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  13. Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions

    DEFF Research Database (Denmark)

    Holse, Christian; Elkjær, Christian Fink; Nierhoff, Anders Ulrik Fregerslev;

    2015-01-01

    The oxidation and reduction of CuZn nanoparticles was studied using X-ray photoelectron spectroscopy (XPS) and in situ transmission electron microscopy (TEM). CuZn nanoparticles with a narrow size distribution were produced with a gas-aggregation cluster source in conjunction with mass......-filtration. A direct comparison between the spatially averaged XPS information and the local TEM observations was thus made possible. Upon oxidation in O2, the as-deposited metal clusters transform into a polycrystalline cluster consisting of separate CuO and ZnO nanocrystals. Specifically, the CuO is observed...... to segregate to the cluster surface and partially cover the ZnO nanocrystals. Upon subsequent reduction in H2 the CuO converts into metallic Cu with ZnO nanocrystal covering their surface. In addition, a small amount of metallic Zn is detected suggesting that ZnO is reduced. It is likely that Zn species can...

  14. Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids

    Digital Repository Service at National Institute of Oceanography (India)

    Augustine, M.S.; Anas, A.; Das, A.V.; Sreekanth, S.; Jayalekshmi, S.

    S:Mn nanoparticles. Synthesis of aminoacid capped ZnS:Mn nanoparticles The aminoacid capped manganese doped zinc sulphide nano-particles were sythesized by the same method described as above. The chemicals used were, Zn (CH3COO)2_2H2O (Merck Specialities Private...-compatible at this concentration. L-arginine is also found to be an efficient capping agent to make ZnS:Mn nano-crystals bio-compatible for 1nM concentration. In vitro cellular uptake study in HEK293T cells In vitro cellular uptake study in HEK293T cells was carried out using...

  15. β-Mn-type Co(8+x)Zn(12-x) as a defect cubic Laves phase: site preferences, magnetism, and electronic structure.

    Science.gov (United States)

    Xie, Weiwei; Thimmaiah, Srinivasa; Lamsal, Jagat; Liu, Jing; Heitmann, Thomas W; Quirinale, Dante; Goldman, Alan I; Pecharsky, Vitalij; Miller, Gordon J

    2013-08-19

    The results of crystallographic analysis, magnetic characterization, and theoretical assessment of β-Mn-type Co-Zn intermetallics prepared using high-temperature methods are presented. These β-Mn Co-Zn phases crystallize in the space group P4(1)32 [Pearson symbol cP20; a = 6.3555(7)-6.3220(7)], and their stoichiometry may be expressed as Co(8+x)Zn(12-x) [1.7(2) phase with a Curie temperature of ∼420 K. Neutron powder diffraction and electronic structure calculations using the local spin density approximation indicate that the spontaneous magnetization of this phase arises exclusively from local moments at the Co atoms. Inspection of the atomic arrangements of Co(8+x)Zn(12-x) reveals that the β-Mn aristotype may be derived from an ordered defect, cubic Laves phase (MgCu2-type) structure. Structural optimization procedures using the Vienna ab initio simulation package (VASP) and starting from the undistorted, defect Laves phase structure achieved energy minimization at the observed β-Mn structure type, a result that offers greater insight into the β-Mn structure type and establishes a closer relationship with the corresponding α-Mn structure (cI58).

  16. Electron paramagnetic resonance in Cu-doped ZnO

    Science.gov (United States)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  17. Crystal growth and reflectivity studies of Zn1–MnTe crystals

    Indian Academy of Sciences (India)

    K Veera Brahmam; D Raja Reddy; B K Reddy

    2005-08-01

    Single crystals of Zn1–MnTe were prepared by vertical Bridgman crystal growth method for different concentrations of Mn. Chemical analysis and reflectivity studies were carried out for compositional and band structure properties. Microscopic variation in composition between starting and end compounds was observed from EDAX analysis. Linear dependence of fundamental absorption edge (0) as a function of Mn concentration () was expressed in terms of a straight line fit and a shift in 0 towards higher energy was observed in reflectivity spectra of Zn1–MnTe.

  18. Size influence on the fluorescence decay time of ZnS:Mn2+ nanocrystals

    Institute of Scientific and Technical Information of China (English)

    SONG Jing; ZHANG Gao-feng; XING Tong-yan; XU Jian-ping; ZHANG Xiao-song; HUANG Qing-song

    2012-01-01

    ZnS:Mn2+ nanocrystals (NCs) with particle size from 1.9 nm to 3.2 nm are synthesized via chemical precipitation method with different [S2-]/[Zn2+] ratios.The size-dependent decay for Mn emission exhibits a double exponential behavior.And two lifetime values,in millisecond time domain,can both be shortened with size increasing,which is attributed to enhanced interaction between host and Mn2+ impurity.A molecular structure model is proposed to interpret the tendency of two lifetime components,which is correlated to the number of S vacancy (Vs) defects around Mn2+.

  19. The cytoplasmic Cu,Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing

    DEFF Research Database (Denmark)

    Park, J I; Grant, C M; Davies, Michael Jonathan

    1998-01-01

    The involvement of oxidative stress in freeze-thaw injury to yeast cells was analyzed using mutants defective in a range of antioxidant functions, including Cu,Zn superoxide dismutase (encoded by SOD1), Mn superoxide dismutase (SOD2), catalase A, catalase T, glutathione reductase, gamma-glutamylc...

  20. Structure and magnetic properties of Mn-doped CuO solids

    Institute of Scientific and Technical Information of China (English)

    FAN Chong-fei; PAN Li-qing; ZHU Hao; QIU Hong-mei; WANG Feng-ping; WU Ping; QIU Hong; ZHANG Yue; J. Q. XIAO

    2005-01-01

    The CuO doped with 5%-20% Mn(molar fraction) solids were sintered from CuO and MnO2 powder at high temperature (1 273 K) for 8 h. X-ray diffraction was used to determine the solid crystallinity and to address the formation of secondary phases. It is found that it is difficult to achieve pure Cu1-xMnxO phase using standard solid phase reaction. However, sintering under a pressure of 27.7 MPa significantly reduces the undesirable second phase CuMn2O4, providing a route to achieve pure Cu1-xMnx O phase. SQUID magnetometry was employed to characterize the magnetic properties. Mn-doped CuO presents ferromagnetic characteristics below 70 K. Electrical transport properties were measured in a current-perpendicular-to-plane(CPP) geometry using the PPMS, which suggests variable-range hopping mechanism.

  1. Highly sensitive and selective detection of phosphate using novel highly photoluminescent water-soluble Mn-doped ZnTe/ZnSe quantum dots.

    Science.gov (United States)

    Song, Yu; Li, Yang; Liu, Yunling; Su, Xingguang; Ma, Qiang

    2015-11-01

    Herein, the facile method with high selectivity for phosphate ion (Pi) sensing using novel Type-II core/shell Mn: ZnTe/ZnSe quantum dots (QDs) was reported. This was the first time that Mn: ZnTe/ZnSe QDs with highlighted optical properties were used for sensing. The water-soluble Mn: ZnTe/ZnSe QDs with a high quantum yield of 7% were synthesized by aqueous synthetic method. Compared with traditional ZnSe QDs or Mn: ZnSe QDs, the smaller effective band gap, longer wavelength and lower ionization potential (high valence band edge) for effective hole localization made Type-II core/shell Mn: ZnTe/ZnSe QDs to be stable and had high photoluminescence (PL). Only Mg(2+) was found to be able to enhance Mn: ZnTe/ZnSe QDs PL selectively. The mechanism of fluorescence enhancement was attributed to the passivated surface nonradiative relaxation centers of Mn: ZnTe/ZnSe QDs. In the presence of Pi anion, the PL intensity got quenched due to the aggregation species of QDs via electrostatic attraction between Pi and Mg(2+) on the surface of Mn: ZnTe/ZnSe QDs. Therefore, the quenching effect can be used to detect Pi selectively. The PL was observed to be linearly proportional to the Pi analyte concentration in the range from 0.67 to 50.0 μmol/L, with a detection limit of 0.2μ mol/L (S/N=3). The novel "on-off" fluorescence nanosensor for Pi detection was sensitive and convenient in the real analysis application. The reported analytical method of Mn: ZnTe/ZnSe QDs is highly sensitive and selective, which can corroborate the extension of its usages in chemo/ biosensing and bioimaging. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Tunable Band Gap Energy of Mn-Doped ZnO Nanoparticles Using the Coprecipitation Technique

    Directory of Open Access Journals (Sweden)

    Tong Ling Tan

    2014-01-01

    Full Text Available A simple coprecipitation technique was introduced to form manganese (Mn doped on zinc oxide (ZnO nanoparticles effectively. Based on our morphological studies, it was revealed that mean particle size was increased while bigger agglomeration of nanoparticles could be observed as the amount of concentration of Mn was increased. Interestingly, it was found that the position of the absorption spectra was shifted towards the lower wavelength (UV region as correlated with the increasing of Mn dopants concentration into ZnO nanoparticles. This result inferred that optimum content of Mn doped into the ZnO nanoparticles was crucial in controlling the visible/UV-responsive of samples. In the present study, 3 mol% of Mn dopants into the ZnO nanoparticles exhibited the better UV as well as visible light-responsive as compared to the other samples. The main reason might be attributed to the modification of electronic structure of ZnO nanoparticles via lattice doping of Mn ions into the lattice, whereas excessive Mn dopants doped on ZnO nanoparticles caused the strong UV-responsive due to the more 3d orbitals in the valence band.

  3. Synthesis of highly non-stoichiometric Cu2ZnSnS4 nanoparticles with tunable bandgaps

    Science.gov (United States)

    Hamanaka, Yasushi; Oyaizu, Wataru; Kawase, Masanari; Kuzuya, Toshihiro

    2017-01-01

    Non-stoichiometric Cu2ZnSnS4 nanoparticles with average diameters of 4-15 nm and quasi-polyhedral shape were successfully synthesized by a colloidal method. We found that a non-stoichiometric composition of Zn to Cu in Cu2ZnSnS4 nanoparticles yielded a correlation where Zn content increased with a decrease in Cu content, suggesting formation of lattice defects relating to Cu and Zn, such as a Cu vacancy (VCu), antisite with Zn replacing Cu (ZnCu), and/or defect cluster of VCu and ZnCu. The bandgap energy of Cu2ZnSnS4 nanoparticles systematically varies between 1.56 and 1.83 eV depending on the composition ratios of Cu and Zn, resulting in a wider bandgap for Cu-deficient Cu2ZnSnS4 nanoparticles. These characteristics can be ascribed to the modification in electronic band structures due to formation of VCu and ZnCu on the analogy of ternary copper chalcogenide, chalcopyrite CuInSe2, in which the top of the valence band shifts downward with decreasing Cu contents, because much like the structure of CuInSe2, the top of the valence band is composed of a Cu 3 d orbital in Cu2ZnSnS4.

  4. Effect of additive on synthesis of MnZn ferrite nanocrystal by hydrothermal crystallization

    Institute of Scientific and Technical Information of China (English)

    桑商斌; 古映莹; 黄可龙

    2003-01-01

    The effect of additive RCOONa on the formation of MnZn ferrite homogeneous coprecipitation precursor was studied in this paper. The action of additive in the MnZn ferrite hydrothermal crystallization process was investigated according to crystal field theory and crystal growth unit theory. And the growth unit formation process was presented and its structure was illustrated. The results show that the precursor of MnZn ferrite is a colloidal mixture composed of Zn(OH)2, Fe(OH)2, Mn(OH)2, MnO(OH) , MnO2 @ xH2O and so on, and dissolves in solution in the form of hydroxyl coordination tetrahedron and octahedron such as Zn(OH)2-4,Fe(OH)2-4 , Fe(OH)4-6 ,Fe(OH)-4 , Fe(OH)3-6 ,Mn(OH)2-4 ,Mn(OH)3-6 etc. , and the growth unit is formed by combination of the coordination polyhedra subsequently in the hydrothermal precess. The additive is beneficial to the formation of homogeneous precursor and has dispersive effect on the aggregation of the crystal growth unit by forming associate with hydrogen bond,which is beneficial to the synthesis of the pure product with a tiny size and a narrow size distribution.

  5. Fatigue crack behavior on a Cu-Zn-Al SMA

    Directory of Open Access Journals (Sweden)

    V. Di Cocco

    2014-10-01

    Full Text Available In recent years, mechanical property of many SMA has improved in order to introduce these alloys in specific field of industry. Main examples of these alloys are the NiTi, Cu-Zn-Al and Cu-Al-Ni which are used in many fields of engineering such as aerospace or mechanical systems. Cu-Zn-Al alloys are characterized by good shape memory properties due to a bcc disordered structure stable at high temperature called β-phase, which is able to change by means of a reversible transition to a B2 structure after appropriate cooling, and reversible transition from B2 secondary to DO3 order, under other types of cooling. In β-Cu-Zn-Al shape memory alloys, the martensitic transformation is not in equilibrium at room temperature. It is therefore often necessary to obtain the martensitic structure, using a thermal treatment at high temperature followed by quenching. The martensitic phases can be either thermally-induced spontaneous transformation, or stressinduced, or cooling, or stressing the β- phase. Direct quenching from high temperatures to the martensite phase is the most effective because of the non-diffusive character of the transformation. The martensite inherits the atomic order from the β-phase. Precipitation of many kinds of intermetallic phases is the main problem of treatment on cu-based shape memory alloy. For instance, a precipitation of α-phase occurs in many low aluminum copper based SMA alloy and presence of α-phase implies a strong degradation of shape recovery. However, Cu-Zn-Al SMA alloys characterized by aluminum contents less than 5% cover a good cold machining and cost is lower than traditional NiTi SMA alloys. In order to improve the SMA performance, it is always necessary to identify the microstructural changing in mechanical and thermal conditions, using X-Ray analyses. In this work a Cu-Zn-Al SMA alloy obtained in laboratory has been microstructurally and metallographically characterized by means of X-Ray diffraction and Light

  6. Defect induced changes on the excitation transfer dynamics in ZnS/Mn nanowires

    Directory of Open Access Journals (Sweden)

    Geburt Sebastian

    2011-01-01

    Full Text Available Abstract Transients of Mn internal 3d 5 luminescence in ZnS/Mn nanowires are strongly non-exponential. This non-exponential decay arises from an excitation transfer from the Mn ions to so-called killer centers, i.e., non-radiative defects in the nanostructures and is strongly related to the interplay of the characteristic length scales of the sample such as the spatial extensions, the distance between killer centers, and the distance between Mn ions. The transients of the Mn-related luminescence can be quantitatively described on the basis of a modified Förster model accounting for reduced dimensionality. Here, we confirm this modified Förster model by varying the number of killer centers systematically. Additional defects were introduced into the ZnS/Mn nanowire samples by irradiation with neon ions and by varying the Mn implantation or the annealing temperature. The temporal behavior of the internal Mn2+ (3d 5 luminescence is recorded on a time scale covering almost four orders of magnitude. A correlation between defect concentration and decay behavior of the internal Mn2+ (3d 5 luminescence is established and the energy transfer processes in the system of localized Mn ions and the killer centers within ZnS/Mn nanostructures is confirmed. If the excitation transfer between Mn ions and killer centers as well as migration effects between Mn ions are accounted for, and the correct effective dimensionality of the system is used in the model, one is able to describe the decay curves of ZnS/Mn nanostructures in the entire time window.

  7. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    Science.gov (United States)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  8. First-principles study of defect formation in the photovoltaic semiconductors Cu2GeS3 and Cu2ZnGeS4 for comparison with Cu2SnS3, Cu2ZnSnS4, and CuInSe2

    Science.gov (United States)

    Nishihara, Hironori; Maeda, Tsuyoshi; Shigemi, Akio; Wada, Takahiro

    2017-04-01

    The formation energies of neutral Cu, Ge, and S vacancies in monoclinic Cu2GeS3 and those of neutral Cu, Zn, Ge, and S vacancies in kesterite-type Cu2ZnGeS4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in a schematic ternary phase diagram of a Cu-Ge-S system for Cu2GeS3 and in Cu-(Zn1/2Ge1/2)-S and Cu29S16-ZnS-GeS2 pseudoternary phase diagrams for Cu2ZnGeS4. The results have been compared with those for Cu2SnS3, Cu2ZnSnS4, and CuInSe2 calculated with the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2GeS3 and Cu2ZnGeS4 under the Cu-poor condition as in the cases of Cu2SnS3, Cu2ZnSnS4, and CuInSe2, suggesting that Cu2GeS3 and Cu2ZnGeS4 are also preferable p-type absorber materials for thin-film solar cells. Desirable preparation conditions of these thin films for photovoltaic application are discussed using the calculated formation energies of antisite defects.

  9. Corrosion Resistance of Zn and Cu Coated Steel Pipes as a Substitute for Cu Pipe in an Air Conditioner System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Gyeong; Park, Chan Jin; Hong, Sung Kil [Chonnam National University, Gwangju (Korea, Republic of)

    2009-02-15

    We investigated the corrosion resistance of Zn and Cu coated steel pipes as a substitute for Cu pipe in an air-conditioner system. In addition, the galvanic corrosion tendency between two dissimilar metal parts was studied. The corrosion resistance of the Cu electroplated steel was similar to that of Cu, while the corrosion rate of the Zn electro-galvanized and the galvalume (Zn-55 % Al) coated steels was much higher and not suitable for Cu substitute in artificial sea water and acidic rain environments. Furthermore, the galvanic difference between Cu electroplated steel and Cu was so small that the Cu coated steel pipe can be used as a substitute for Cu pipe in an air-conditioner system.

  10. The Brittleness Of Zn-Cu-Ti Sheet Alloys

    Directory of Open Access Journals (Sweden)

    Boczkal G.

    2015-09-01

    Full Text Available At temperatures below 5°C, the ductility of ZnCuTi alloy sheets is observed to suffer a drastic drop in direction transverse to the rolling direction. Studies have shown that the critical temperature at which this phenomenon occurs is strongly dependent on the alloy structure and parameters of the sheet metal production process. Quite important is also the role of micro-inhomogeneity arising in the chemical composition of the alloy matrix, directly related with the structure of intermetallic precipitates containing Cu and Ti.

  11. Quenching effects in Cu-Al-Mn shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Obrado, E.; Manosa, L.; Planes, A. [Barcelona Univ. (Spain). Dept. d' Estructura i Constituents de la Materia; Romero, R.; Somoza, A. [IFIMAT, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000 Tandil, and Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Buenos Aires (Argentina)

    1999-12-15

    In this paper the effect of quenching from different temperatures (T{sub q}) in a Cu-Al-Mn alloy is studied. This alloy system, which displays an L2{sub 1} ordered structure, transforms martensitically at an intermediate temperature T{sub M}, and undergoes a spin freezing process at a lower temperature T{sub f}. Positron annihilation measurements have shown that after the quench, an excess of vacancies is retained in the system, depending on T{sub q}. In addition, both T{sub M} and T{sub f} have been found to be sensitive to T{sub q}. This has been attributed to frozen-in disorder induced by the quench. Experimental results have been interpreted in terms of the growth of magnetic clusters, quenched-in vacancies and atomic disorder. (orig.)

  12. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  13. The recycling of Mn-Zn ferrite wastes through a hydrometallurgical route.

    Science.gov (United States)

    Li, Kangkang; Peng, Changhong; Jiang, Kaiqi

    2011-10-30

    A novel recycling route using acid leaching, reduction, purification, co-precipitation and traditional ceramic process was applied to process the Mn-Zn ferrite wastes and prepare the corresponding high permeability soft magnetic product. Above 95% of Fe, Mn, Zn in the waste materials could be recycled in the form of Mn-Zn ferrite products through the hydrometallurgical route. The comprehensive properties of Mn-Zn ferrite prepared from wastes by this route have broader frequency characteristics, higher resistivity, lower loss coefficient and temperature coefficient as compared to the A102 product (Acme Electronics Corporation, Taiwan). Moreover, the cost of this recycling technology has economical advantage over the traditional ceramic process, which holds a promising industrial application.

  14. Sintering process and grain growth of Mn-Zn ferrite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; CUI Yinfang; WANG Yongming; HAO Shunli; LIU Chunjing

    2006-01-01

    The density, microstructure and magnetic properties of non-doped Mn-Zn ferrite nanoparticles sintered compacts were investigated. The compacts of non-doped Mn-Zn ferrite nanoparticles were sintered by segmented-sintering process at lower sintering temperature. The density of sintered samples was measured by Archimedes method, and the phase composition and microstructure were examined by XRD and SEM. The sintered Mn-Zn ferrite magnetic measurements were carried out with Vibrating Sample. The results show that the density of sintered compacts increases with the rising of sintering temperature, achieving 4.8245 g·cm-3 when sintered at 900 ℃, which is the optimal density of Mn-Zn functional ferrite needed and from the fractured surface of sintered samples, it can be seen that the grain grows well with small grain size and homogeneous distribution.

  15. Effect of PEG6000 on magnetic properties of the Mn-Zn ferrite nanoparticles

    Science.gov (United States)

    Zhang, Huanque; Hua, Fei; Zhang, Xuelin; Suo, Qiangqiang; Peng, Huifen; Wang, Xin

    2017-10-01

    In this paper, PEG6000 was used as a surfactant to prevent the MnZn ferrite nanoparticles from aggregation. Introduction of PEG6000 didn't affect structure of the products, but modified their dispersion state and decreased their particle size. Furthermore, saturated magnetization of the MnZn ferrite nanoparticles increased with an increase in the PEG6000 content, and presented the maximum of 110.3 emu/g at the PEG6000 content of 0.006 mol/l. This value is about 40% higher than that without any PEG6000, and almost the highest one reported to date for the MnZn ferrite nanoparticles. Hence the obtained results proved that the PEG6000 was a powerful surfactant to improve magnetic properties of the MnZn ferrite nanoparticles.

  16. Study on sintering process and characteristic of nanosized soft magnetic MnZn ferrite powders

    Institute of Scientific and Technical Information of China (English)

    WANG Yongming; WANG Xin; JIANG Yanfei; HAO Shunli; LIU Chunjing

    2006-01-01

    The effect of sintering process (especially the sintering temperature) on the magnetic property and microstructure of sintered sample of nanosized soft magnetic MnZn ferrite powder was investigated. The sintered sample of MnZn ferrite was prepared by both traditional pressing and cool isostatic pressing on MnZn ferrite nanoparticals. The sintering process of which was segmented. Thedensity, microstructure and phase composition of sintered sample were analyzed by Archimedes'law, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The grain growth and densification in sintering process of MnZn ferrite were investigated. The magnetic property was measured by vibrating sample magnetometer (VSM) and Nim2000 magnetic material testing system. The results show that the better sintering temperature is 850 ℃, at which the better magnetic property and microstructure of sintered compact were obtained.

  17. Mn2+ ions distribution in doped sol-gel deposited ZnO films

    Science.gov (United States)

    Stefan, Mariana; Ghica, Daniela; Nistor, Sergiu V.; Maraloiu, Adrian V.; Plugaru, Rodica

    2017-02-01

    The localization and distribution of the Mn2+ ions in two sol-gel deposited ZnO films doped with different manganese concentrations were investigated by electron paramagnetic resonance spectroscopy and analytical transmission electron microscopy. In the lightly doped sample the Mn2+ ions are mainly localized substitutionally at isolated tetrahedrally coordinated Zn2+ sites in both crystalline ZnO nanograins (34%) and surrounding disordered ZnO (52%). In the highly doped ZnO film, a much smaller proportion of manganese substitutes Zn2+ in the crystalline and disordered ZnO (10%). The main amount (85%) of manganese aggregates in a secondary phase as an insular-like distribution between the ZnO nanograins. The remaining Mn2+ ions (14% and 5% at low and high doping levels, respectively) are localized at isolated, six-fold coordinated sites, very likely in the disordered intergrain region. Annealing at 600 °C induced changes in the Mn2+ ions distribution, reflecting the increase of the ZnO crystallization degree, better observed in the lightly doped sample.

  18. Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu{sub 2}ZnSnSe{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Suresh Babu, G.; Kishore Kumar, Y.B.; Uday Bhaskar, P.; Raja Vanjari, Sundara [Sri Venkateswara University, Solar Energy Laboratory, Department of Physics, S.V.U. Campus, Tirupati 517 502 (India)

    2010-02-15

    The effect of Cu/(Zn+Sn) ratio on the properties of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films is investigated. CZTSe thin films with Cu/(Zn+Sn) ratio in the range 0.85-1.15 are deposited using 4-source co-evaporation technique onto glass substrates held at a substrate temperature T{sub s}=623 K and post-deposition annealed at T{sub pa}=723 K for 1 h in the selenium atmosphere. Powder X-ray diffraction (XRD) patterns reveal that CZTSe films deposited with Cu/(Zn+Sn) ratio in the range 0.90-1.10 are single phase and polycrystalline. CZTSe films, deposited with Cu/(Zn+Sn) ratio of 0.85 contain ZnSe as secondary phase and films with ratio of 1.15 contain Cu{sub 2-X}Se as the secondary phase. The films are found to exhibit kesterite structure. Band gap of the films is found to increase with decrease in Cu/(Zn+Sn) ratio. Electrical resistivity of the films is found to lie in the range 0.02-23-{omega}-cm depending on Cu/(Zn+Sn) ratio. (author)

  19. One-pot synthesis of an Mn(III)-Cu(II)-Mn(III) trinuclear heterometallic compound formed by Mn$\\cdots$S-Cu-S$\\cdots$Mn supramolecular interactions: Crystal structure of [{MnIII(salph)(H2O)}2{CuII(mnt)2}]$\\cdot$4DMF

    Indian Academy of Sciences (India)

    Vedichi Madhu; Samar K Das

    2006-11-01

    A one-pot synthesis, that includes CuCl2$\\cdot$2H2O, Na2mnt, H2salph and Mn(CH3COO)3$\\cdot$H2O, leads to the isolation of a trinuclear heterometallic compound [{MnIII(salph)(H2O)}2{CuII(mnt)2}]$\\cdot$4DMF (1) formed by Mn$\\cdots$S-Cu-S$\\cdots$Mn supramolecular interactions. Compound 1 crystallizes in the monoclinic space group 21/ with = 13.433(4), = 16.283(5), = 15.072(4) Å, = 107.785(4)°, = 2. In the crystal structure, the complex anion [CuII(mnt)2]2- bridges two [MnIII(salph)(H2O)]1+ cations through Mn$\\cdots$S contacts. The non-covalent hydrogen bonding and - interactions among the trinuclear [{MnIII(salph)(H2O)}2{CuII(mnt)2}] complexes lead to an extended chain-like arrangement of [MnIII(salph) (H2O)]1+ cations with [CuII(mnt)2]2- anions embedded in between these chains.

  20. ADSORPTION BEHAVIOUR OF Mn(Ⅱ) AND Zn(Ⅱ) ON ATTAPULGITE WITH FAAS METHOD

    Institute of Scientific and Technical Information of China (English)

    LI Bingbing; LI Chunxiang; LIU Aiqin; XIAO Bo

    2008-01-01

    Active attapulbgite as adsorptive reagent, the adsorptive behavior of Mn(Ⅱ) and Zn(Ⅱ) was studied with Flame atomic absorption spectroscopy (FAAS) method.The mainly factors of influencing the adsorption and desorption of Mn(Ⅱ) and Zn(Ⅱ) were discussed.The interference of coexisting ions was investigated, and the actual sample determination from adzuki beans, mung beans and phosphating waste water was conducted with good result.

  1. ADSORPTION BEHAVIOUR OF Mn(Ⅱ) AND Zn(Ⅱ) ON ATTAPULGITE WITH FAAS METHOD

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Active attapulbgite as adsorptive reagent, the adsorptive behavior of Mn(II) and Zn(II) was studied with Flame atomic absorption spectroscopy (FAAS) method. The mainly factors of influencing the adsorption and desorption of Mn(II) and Zn(II) were discussed. The interference of coexisting ions was investigated, and the actual sample determination from adzuki beans, mung beans and phosphating waste water was conducted with good result.

  2. Synthesis of CuS/ZnO Nanocomposite and Its Visible-Light Photocatalytic Activity

    OpenAIRE

    Lianping Zhu; Min Zheng; Juan Lu; Mengfei Xu; Hyo Jin Seo

    2014-01-01

    The CuS/ZnO nanocomposite was successfully synthesized by a simple mechanical method, without adding any surfactants. TEM images showed that CuS existed in the nanocomposite and the size of CuS/ZnO nanocomposite particle was around 35 nm. CuS worked as an electron absorber in the nanocomposite, which was beneficial for the improvement of photocatalysis of ZnO. It was also proved by the experiments performed under the visible light irradiation that CuS could help ZnO degrade methylene blue (MB...

  3. Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Fritzie T Celino

    Full Text Available BACKGROUND: Spermatogonia are highly tolerant to reactive oxygen species (ROS attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-stage germ cells undergo intense apoptosis and exhibit strong signal for 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage marker, upon exposure to hypoxanthine-generated ROS while spermatogonia remain unaltered. Activity assay of antioxidant enzyme, superoxide dismutase (SOD and Western blot analysis using an anti-Copper/Zinc (Cu/Zn SOD antibody showed a high SOD activity and Cu/Zn SOD protein concentration during early spermatogenesis. Immunohistochemistry showed a strong expression for Cu/Zn SOD in spermatogonia but weak expression in advanced-stage germ cells. Zn deficiency reduced activity of the recombinant eel Cu/Zn SOD protein. Cu/Zn SOD siRNA decreased Cu/Zn SOD expression in spermatogonia and led to increased oxidative damage. CONCLUSIONS/SIGNIFICANCE: These data indicate that the presence of high levels of Cu/Zn SOD and Zn render spermatogonia resistant to ROS, and consequently protected from oxidative stress. These findings provide the biochemical basis for the high tolerance of spermatogonia to oxidative stress.

  4. High performance hydrogen sensor based on Mn implanted ZnO nanowires array fabricated on ITO substrate.

    Science.gov (United States)

    Renitta, A; Vijayalakshmi, K

    2017-08-01

    In the present research, we propose a novel approach for the detection of hydrogen gas using Mn implanted ZnO nanowires fabricated onto ITO coated glass substrate by chemical spray pyrolysis deposition. The effect of Mn concentration on the structural, optical and morphological properties of ZnO films were investigated. X-ray diffraction studies showed that the Mn implanted ZnO films were grown as a polycrystalline hexagonal wurtzite phase without any impurities. The (101) peak position of ZnO-Mn films was shifted towards a lower angle with increasing Mn concentration. The optical band gap decreased from 3.45eV to 3.23eV with increasing Mn content. PL spectra, revealed sharp and strong near band edge emission which suggests that ZnO nanowires exhibit high crystalline quality. FE-SEM images of Mn implanted ZnO show perfectly aligned nanowires for all the films fabricated on ITO. The material (Zn, O, Mn) was confirmed by EDX spectra. The hydrogen sensing mechanism of the Mn implanted ZnO nanowire sensor was also discussed. It was found that H2 response was significantly enhanced by more than one order of magnitude with increasing Mn doping concentrations. The studied ZnO-Mn films coated on ITO substrate can be used as a low cost and easy-fabrication hydrogen sensing material. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation : Steam reforming and oxidative steam reforming

    OpenAIRE

    2006-01-01

    Two series of Cu/ZnO and Cu/ZnO/Al2O3 catalysts with varying Cu/Zn ratio have been prepared by the homogeneous precipitation (hp) method using urea hydrolysis. Steam reforming and oxidative steam reforming of methanol were performed using the hp-Cu/Zn-based catalysts for catalytic production of hydrogen. The hp-Cu/ZnO/Al2O3 catalyst showed a higher activity than the hp-Cu/ZnO catalysts. In both cases, the catalytic activity was well correlated with the surface area of Cu metal, and the maximu...

  6. [Bioconcentration and translocation of Cu and Zn by Brassica sinensis L. planted in high Cu and Zn contaminated pig manure-applied soils].

    Science.gov (United States)

    Zhang, Yan; Cui, Xiao-yong; Luo, Wei; Shi, Peng; Lü, Yong-long

    2011-05-01

    In recent years, Cu and Zn have been widely used in pig fodders in large-scale animal feeding, causing Cu and Zn contamination in soils and effecting plants in land application of pig manure. It is of great concern to the world that pig manure is used in the dose greater than the organic fertilizer criterion. It is very important to clarify bioconcentration and translocation of Cu and Zn in vegetables in order to assess human health risk of these heavy metals accumulated in soil and to safely produce vegetables. Bioconcentration and translocation of Cu and Zn by Brassica sinensis L. planted in pig manure-applied soils were studied using pot experiments. Pig manure with great concentrations of Cu and Zn (Cu = 1114.7 mg x kg(-1), Zn = 1496.8 mg x kg(-1)) were applied to soils at six rates, i.e., 0, 25, 50, 100, 200 and 500 t x hm(-2). The results indicate that the concentration of Zn was greater than that of Cu in both aboveground and underground parts of B. sinensis. Both Cu and Zn concentrations in the underground part were greater than those in upper-ground for every treatment. There were significant differences for both Cu and Zn concentrations in shoots between CK and the treatment with application rate above 50 t x hm(-2). Bioconcentration factor of Cu in B. sinensis increased with pig manure application rate from 0.11 to 0.17, while that of Zn decreased from 0.47 to 0.11. The proportion of Cu and Zn transported from roots to shoots decreased 25% and 38% with the increase of pig manure application, respectively. It indicates that pig manure application can reduce bioconcentration of Zn in B. sinensis, and build up Cu accumulation which leads to human health risk. The ratio of Zn:Cu in every part of B. sinensis decreased with manure application rate increment. This result prompted that uptake and translocation capacity discrepancy of Cu and Zn decreased with manure application rate increment in B. sinensis.

  7. Electric-field control of ferromagnetism in Mn-doped ZnO nanowires.

    Science.gov (United States)

    Chang, Li-Te; Wang, Chiu-Yen; Tang, Jianshi; Nie, Tianxiao; Jiang, Wanjun; Chu, Chia-Pu; Arafin, Shamsul; He, Liang; Afsal, Manekkathodi; Chen, Lih-Juann; Wang, Kang L

    2014-01-01

    In this Letter, the electric-field control of ferromagnetism was demonstrated in a back-gated Mn-doped ZnO (Mn-ZnO) nanowire (NW) field-effect transistor (FET). The ZnO NWs were synthesized by a thermal evaporation method, and the Mn doping of 1 atom % was subsequently carried out in a MBE system using a gas-phase surface diffusion process. Detailed structural analysis confirmed the single crystallinity of Mn-ZnO NWs and excluded the presence of any precipitates or secondary phases. For the transistor, the field-effect mobility and n-type carrier concentration were estimated to be 0.65 cm(2)/V·s and 6.82 × 10(18) cm(-3), respectively. The magnetic hysteresis curves measured under different temperatures (T = 10-350 K) clearly demonstrate the presence of ferromagnetism above room temperature. It suggests that the effect of quantum confinements in NWs improves Tc, and meanwhile minimizes crystalline defects. The magnetoresistace (MR) of a single Mn-ZnO NW was observed up to 50 K. Most importantly, the gate modulation of the MR ratio was up to 2.5 % at 1.9 K, which implies the electric-field control of ferromagnetism in a single Mn-ZnO NW.

  8. Synthesis and influence of ultrasonic treatment on luminescence of Mn incorporated ZnS nanoparticles

    Science.gov (United States)

    Cadis, A.-I.; Muresan, L. E.; Perhaita, I.; Munteanu, V.; Karabulut, Y.; Garcia Guinea, J.; Canimoglu, A.; Ayvacikli, M.; Can, N.

    2017-10-01

    Manganese (Mn) doping of ZnS phosphors was achieved by precipitation method using different ultrasound (US) maturation times. The structural and luminescence properties of the samples were carried out by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), photoluminescence (PL), and cathodoluminescence (CL). The real amount of manganese incorporated in ZnS lattice was calculated based on ICP-OES results. According with XRD patterns, the phase structure of ZnS:Mn samples is cubic. EDS spectra reveal deviations of the Mn dopant concentration from the target composition. Both 300 K PL and CL emission spectra of the Mn doped ZnS phosphors display intense orange emission at 590 and 600 nm, respectively, which is characteristic emission of Mn ion corresponding to a 4T1→6A1 transition. Both PL and CL spectra confirmed manganese is substitutionally incorporated into the ZnS host as Mn2+. However, it is suggested that the origin of broad blue emission around 400 nm appeared in CL is due to the radiative recombination at deep level defect states in the ZnS. The ultrasound treatment at first enhances the luminescent intensity by ∼3 times in comparison with samples prepared by classical way. This study gives rise to an optimization guideline, which is extremely demanded for the development of new luminescent materials.

  9. Modification of ZnS∶Mn Phosphors by Sb-Doped SnO2 Coating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The coating of ZnS∶Mn by Sb-doped SnO2 using an co-precipitation process was reported. ZnS∶Mn phosphor particles were prepared by solid reaction with ZnS and MnCl2·4H2O. Surface modification of the ZnS∶Mn powders was carried out by coating transparent conductive films of Sb-doped tin oxides which were formed by co-precipitation and heat treatment process. Tin tetrachloride and antimony trichloride were used as the precursor materials for the co-precipitation. The influences of coating molar ratio, Sb concentration in the coatings, annealing temperature and time on the resistivity of coated ZnS∶Mn phosphors were investigated. The optimum co-precipitation processing parameters and annealing conditions were determined. The phosphors were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence(PL) observation and conductance measurements. An improvement in phosphors conductivity was observed while the respective photoluminescence intensity is analogous to the as-prepared ZnS∶Mn phosphors.

  10. Photocatalytic studies of crystal violet dye using mn doped and PVP capped ZnO nanoparticles.

    Science.gov (United States)

    Mittal, Manish; Sharma, Manoj; Pandey, O P

    2014-04-01

    Mn (0.5%, 1%, 1.5% and 2%) doped and undoped ZnO nanoparticles (NPs) capped with PVP (1.0%) were successfully synthesized via co-precipitation approach using zinc acetate, sodium hydroxide and manganese acetate as precursors. Structural analysis was performed by XRD confirming phase purity and crystalline wurtzite structure. TEM results show average particle size 15-20 nm and 22-25 nm for Mn (1%) and Mn (2%) doped ZnO NPs respectively. Manganese (Mn) doping has led to reduction in band gap which facilitate the absorption of radiation in visible region. The Photocatalytic activity of undoped and Mn (0.5%,1%,1.5% and 2%) doped NPs was analyzed via degradation of crystal violet (CV) dye. The crystal violet decomposition rate of undoped and Mn doped NPs were studied under UV-visible region. It is observed from degradation studies that the doping has a pronounced effect on the photocatalytic activity of ZnO NPs. Kinetic studies shows that photo degradation of CV follow a pseudo first-order kinetic law. Experiments for reusability of Mn (1%) doped with PVP (1%) capped ZnO were also performed to determine the stability of as prepared sample. It shows an increase in catalytic activity of NPs by small amount when exposed to UV irradiation for 3 h. Photoluminescence and UV-Visible absorption spectroscopy studies were also performed for studying the effect of UV irradiation on the surface of ZnO NPs.

  11. Electronic structure and optical properties of Cu-doping and Zn vacancy impurities in ZnTe.

    Science.gov (United States)

    Li, Qing-Fang; Hu, Ge; She, Qing; Yao, Jing; Feng, Wen-Jiang

    2013-09-01

    The geometric structures of perfect ZnTe, that with Zn vacancy (Zn0.875Te), and Cu-doped ZnTe (Zn0.875Cu0.125Te) were optimized using the pseudopotential plane wave (PP-PW) method based on the density functional theory (DFT) within generalized gradient approximation (GGA). The cohesive energy, band structure, density of states, and Mulliken populations were calculated and discussed in detail. On the other hand, an accurate calculation of linear optical functions (the dielectric function, refraction index, reflectivity, conductivity function, and energy-loss spectrum) was performed. The results demonstrated that compared to the perfect ZnTe, the lattice parameters of Zn0.875Te and Zn0.875Cu0.125Te were changed and the cell volumes decreased to some extent due to the vacancy and introduction of impurity. A vacancy acceptor level and an acceptor impurity level were produced in Zn0.875Te and Zn0.875Cu0.125Te, respectively. By comparison, Cu doping in the ZnTe system is relatively stable while the monovacancy system is not.

  12. Effects of an intensive hog farming operation on groundwater in east Mediterranean (II): a study on K⁺, Na⁺, Cl ⁻, PO₄³⁻-P, Ca²⁺, Mg²⁺, Fe³⁺/Fe²⁺, Mn²⁺, Cu²⁺, Zn²⁺ and Ni²⁺.

    Science.gov (United States)

    Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Liodakis, Stylianos

    2014-12-01

    The application of treated animal wastewater generated in concentrated animal feeding operations on surface soil (within farm borders) leads to degradation of groundwater. Effects of an intensive hog farming operation, located at a Mediterranean limestone soil coastal area, on groundwater were investigated. Treated animal wastewater was discharged on a small plot (~10.8 ha) with a geologic fault. Samples were taken from seven groundwater monitoring wells close to the farm. A significant increase of K(+), Na(+), Cl(-), PO4 (3-)-P, Ca(2+) and Mg(2+) concentrations was found in monitoring wells which are affected by the subsurface flow of groundwater. Concentrations of Fe(3+)/Fe(2+), Mn(2+), Cu(2+), Zn(2+) and Ni(2+) in all groundwater monitoring wells were extremely low. During the winter, significant increases in concentrations of K(+) and PO4 (3-)-P were noted and attributed to high precipitation, which assisted in the leaching of K and P to groundwater.

  13. Metallothionein Zn(2+)- and Cu(2+)-clusters from first-principles calculations

    DEFF Research Database (Denmark)

    Greisen, Per Junior; Jespersen, Jakob Berg; Kepp, Kasper Planeta

    2012-01-01

    Detailed electronic structures of Zn(ii) and Cu(ii) clusters from metallothioneins (MT) have been obtained using density functional theory (DFT), in order to investigate how oxidative stress-caused Cu(ii) intermediates affect Zn-binding to MT and cooperatively lead to Cu(i)MT. The inferred accura...

  14. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    Science.gov (United States)

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  15. Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Arulmurugan, R. [Department of Physics, Pondicherry Engineering College, Pondicherry 605014 (India)]. E-mail: arulphysics@rediffmail.com; Jeyadevan, B. [Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579 (Japan); Vaidyanathan, G. [Department of Physics, Pondicherry Engineering College, Pondicherry 605014 (India)]. E-mail: gvn_pec@yahoo.com; Sendhilnathan, S. [Department of Physics, Sri Manakula Vinayagar Engineering College, Pondicherry 605 107 (India)

    2005-03-01

    Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} and Mn{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.1-0.5) nanoparticles less than 12nm are prepared by chemical co-precipitation method which could be used for ferrofluid preparation. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Vibrational sample magnetometer (VSM) and Thermo gravimetric analysis (TGA) are utilized in order to study the effect of variation in the Zn substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C}, Curie temperature, thermomagnetic coefficient and associated water content. Atomic absorption spectroscopy was used for the estimation of cobalt, zinc and manganese and Fe{sup 3+} ion was estimated using spectrophotometer. The saturation magnetization of the Co-Zn substituted ferrite nanoparticles decreases continuously with the increase in Zn concentration, whereas for the Mn-Zn substituted ferrite nanoparticle the saturation magnetization was maximum for x=0.2 and decreases on further increase in Zn concentration. The particle size decreases with the increase in the Zn concentration for both Co-Zn and Mn-Zn ferrites. The estimation of associated water content, which increases with the Zn concentration, plays a vital role for the correct determination of cation contents. The Curie temperature and the temperature at which maximum value of thermomagnetic coefficient observed simultaneously decrease with the increase in the initial substitution degree of zinc.

  16. XPS Studies of Yb14MnSb11 and Yb14ZnSb11

    Energy Technology Data Exchange (ETDEWEB)

    Holm, A P; Ozawa, T C; Kauzlarich, S M; Morton, S A; Waddill, G D; Pickett, W E; Tobin, J G

    2003-10-02

    Measurements of core and valence electronic states of single crystals of the rare earth transition metal Zintl phases Yb{sub 14}MnSb{sub 11} and Yb{sub 14}ZnSb{sub 11} were performed using the X-ray photoelectron spectroscopy station of Beamline 7 at the Advanced Light Source. Sample surfaces of Yb{sub 14}MnSb{sub 11} and Yb{sub 14}ZnSb{sub 11} were measured as received, after Ar{sup +} ion bombardment, and after cleaving in situ. Detailed analysis of the clean Mn and Zn analog sample surfaces reveal a significant contribution of both Yb{sup 3+} and Yb{sup 2+} 4f states in the valence band region for the Zn analog and no contribution of Yb{sup 3+} states to the valence band for the Mn analog. This result is predicted for the Zn analog by Zintl counting rules, and single crystal X-ray diffraction studies presented here also support the mixed valency of Yb for Yb{sub 14}ZnSb{sub 11}. Further detailed analysis of the core and valence band structure of both Yb{sub 14}MnSb{sub 11} and Yb{sub 14}ZnSb{sub 11} will be presented.

  17. Effect of Mn on microstructure and corrosion properties of extruded Mg-1%Zn alloy

    Science.gov (United States)

    Zhang, Z. M.; Ma, Y.; Xi, Z. Z.; Xu, C. J.; Lv, Z. L.

    2017-03-01

    The microstructure of the extruded Mg-1Zn alloy doped with different content of manganese was analyzed by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffractometry. The mass-loss immersion method and electrochemical test were used to evaluate the corrosion properties. The results show that the microstructure of the extruded Mg-1%Zn-x%Mn (mass fraction, x=0.4, 0.8, 1.2) alloys consists of α-Mg and α-Mn, the grain size of α-Mg decreases with increasing Mn content. Electrochemical corrosion behavior of the alloys is similar. Mn has considerable effect on the corrosion rate, the corrosion process is exacerbated by the galvanic corrosion occurred at interface between α-Mg and α-Mn. The corrosion rate increases as the Mn content increases. Mg-1%Zn-0.4% Mn alloy exhibits the best corrosion resistance between the Mg-1%Zn-x%Mn alloys

  18. Magnetic properties of Mn-doped ZnO diluted magnetic semiconductors

    Institute of Scientific and Technical Information of China (English)

    Liu Xue-Chao; Zhang Hua-Wei; Zhang Tao; Chen Bo-Yuan; Chen Zhi-Zhan; Song Li-Xin; Shi Er-Wei

    2008-01-01

    A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they axe deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn2+ for Zn2+ without additional acceptor doping. The substitution of N for O (NO-) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn2+ and Mn3+ via NO-. The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration.

  19. Effect of Mn doping on structural, optical and photocatalytic behaviors of hydrothermal Zn{sub 1−x}Mn{sub x}S nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nasser, Ramzi [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux (Tunisia); Department of Physics, Sciences Faculty of Tunis, University of Tunis El Manar (Tunisia); Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux (Tunisia)

    2015-10-01

    Highlights: • ZnS nanocrystals doped with Mn{sup 2+} were synthesized from hydrothermal method. • Structural behaviors are analyzed from XRD, Raman and PL measurements. • We report on long PL lifetimes of Mn levels due to excitation transfer from ZnS. • High photocatalytic efficiency was reported for ZnS-doped 3%Mn. - Abstract: Undoped and Mn-doped ZnS nanocrystals (Ncs) have been synthesized by using the hydrothermal method at 200 °C. X-ray diffraction (XRD) patterns revealed that the synthesized Ncs have cubic zinc blende structure. Typical SEM images show that undoped and Mn-doped ZnS Ncs are agglomerated in microspheres. Raman spectra informed that the Mn doping has improved the crystallinity of the ZnS Ncs up to the concentration 3%. The optical properties of Mn-doped ZnS Ncs were studied through UV–vis diffuse reflection spectroscopy, photoluminescence (PL), PL decay and PL excitation (PLE) measurements. The optical band gap was found to decrease from 3.59 to 3.35 eV with increasing the Mn doping concentration. PL spectra demonstrate clearly that Mn{sup 2+} ions reduce the density of defect in both ZnS lattice and surface. An efficient excitation transfer from the ZnS host to Mn{sup 2+} ions is evidenced from PL decays. ZnS:Mn Ncs were found to be good photocatalyst for sunlight degradation of Rhodamine B. The optimum Mn dopant concentration was 3%, above which photocatalytic activity decreased. The degradation reaction obeyed pseudo-first-order kinetics.

  20. Spectral analysis of Cu2+ and Mn2+ ions doped borofluorophosphate glasses

    Indian Academy of Sciences (India)

    B Sudhakar Reddy; S Buddhudu

    2007-10-01

    We report here on the development and spectral analysis of Cu2+ (0.5 mol%) and Mn2+ (0.5 mol%) ions doped in two new series of glasses. The visible absorption spectra of Cu2+ and Mn2+ glasses have shown broad absorption bands at 820 nm and 495 nm, respectively. For Cu2+ BFP glasses, excitation at 380 nm, a blue emission at 441 nm and also a weak emission at 418 nm ions have been observed. For Mn2+ ions doped BFP glasses, excitation at 410 nm and a red shift at 605 nm emission have been observed.

  1. Phase Transformations and Microstructural Evolution in Aged Mn-Cu-Based Alloys

    Science.gov (United States)

    1990-06-01

    Sakhno, V. M. and Udovenko, V. A., "Fine Crystal Structure of MnCuGe Alloys", Physical Metalurgy and Metallography, Vol. 51, No. 4, pp. 93-97, 1981. 36...93 vi I. INTRODUCTION The physical metallurgy of alloys based on the Cu-Mn system has been a subject of research for more than 40 years [Ref. 1-4...separation within it [Ref. 24-30]. The most thorough and revealing body of research on the metal physics of Cu-Mn-based alloys has been reported in the

  2. Co-doping of Ag into Mn:ZnSe Quantum Dots: Giving Optical Filtering effect with Improved Monochromaticity

    OpenAIRE

    Zhiyang Hu; Shuhong Xu; Xiaojing Xu; Zhaochong Wang; Zhuyuan Wang; Chunlei Wang; Yiping Cui

    2015-01-01

    In optics, when polychromatic light is filtered by an optical filter, the monochromaticity of the light can be improved. In this work, we reported that Ag dopant atoms could be used as an optical filter for nanosized Mn:ZnSe quantum dots (QDs). If no Ag doping, aqueous Mn:ZnSe QDs have low monochromaticity due to coexisting of strong ZnSe band gap emission, ZnSe trap emission, and Mn dopant emission. After doping of Ag into QDs, ZnSe band gap and ZnSe trap emissions can be filtered, leaving o...

  3. Aging Characteristics of Sn-Ag Eutectic Solder Alloy with the Addition of Cu, In, and Mn

    Science.gov (United States)

    Ghosh, M.; Kar, Abhijit; Das, S. K.; Ray, A. K.

    2009-10-01

    In the present investigation, three types of solder alloy, i.e., Sn-Ag-Cu, Sn-Ag-In, and Sn-Ag-Cu-Mn, have been prepared and joined with Cu substrate. In the reflowed condition, the joint interface is decorated with Cu6Sn5 intermetallic in all cases. During aging at 100 °C for 50 to 200 hours, Cu3Sn formation took place in the diffusion zone of the Sn-Ag-Cu and Sn-Ag-In vs Cu assembly, which was not observed for the Sn-Ag-Cu-Mn vs Cu joint. Aging also leads to enhancement in the width of reaction layers; however, the growth is sluggish (~134 KJ/mol) for the Sn-Ag-Cu-Mn vs Cu transition joint. In the reflowed condition, the highest shear strength is obtained for the Sn-Ag-Cu-Mn vs Cu joint. Increment in aging time results in decrement in shear strength of the assemblies; yet small reduction is observed for the Sn-Ag-Cu-Mn vs Cu joint. The presence of Mn in the solder alloy is responsible for the difference in microstructure of the Sn-Ag-Cu-Mn solder alloy vs Cu assembly in the reflowed condition, which in turn influences the microstructure of the same after aging with respect to others.

  4. Ten metal complexes of vitamin B3/niacin: Spectroscopic, thermal, antibacterial, antifungal, cytotoxicity and antitumor studies of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Au(III) complexes

    Science.gov (United States)

    Al-Saif, Foziah A.; Refat, Moamen S.

    2012-08-01

    Ten coordination compounds, namely Mn(NA)2Cl2·4H2O (1), Fe(NA)Cl3(H2O)2 (2), Co(NA)2(NO3)2·6H2O (3), Ni(NA)Cl2·5H2O (4), Cu(NA)Cl2·3H2O (5), Zn(NA)(NO3)2·H2O (6), Pd(NA)2Cl2·H2O (7), Cd(NA)Cl2·H2O (8), Pt(NA)2Cl4·5H2O (9) and Au(NA)Cl3 (10) were obtained by the reactions of the corresponding transition metal salts with vitamin B3/niacin (NA) in the presence of 1:4 (v:v) distilled water: methanol solvent at 70 °C for about 30 min, and their suggested structures were determined by elemental analyses, molar conductivity, (infrared, UV-vis) spectra, effective magnetic moment in Bohr magnetons, electron spin resonance (ESR), thermal analysis (TG), X-ray powder diffraction (XRD) as well as scanning electron microscopy (SEM). The results revealed that in complexes 1, 3, 7, and 9 both of two NA ligand coordinates one metal ion to form four or six coordinated structures, while in compound 10, one NA ligand coordinate to Au+++ ion to form a square-planar geometry with N-bonded pyridine ligand is suggested, and (2, 4, 5, 6 and, 8) complexes have 1:1 structures. Antimicrobial and antitumor activities were assessment against some kind of (G+ and G-) bacteria, fungi and breast carcinoma cells (MCF-7-cell line).

  5. Hg, Bi, Cu and Zn distribution in human teeth treated by dental amalgam measured by synchrotron microprobe

    Science.gov (United States)

    Carvalho, M. L.; Marques, J. P.; Brito, J.; Casaca, C.; Cunha, A. S.

    2002-11-01

    Human teeth restored with dental amalgam were analysed by a synchrotron microprobe to evaluate the diffusion of its major constituents, Cu, Zn and Hg, throughout the tooth structures. We measured the elemental distribution inside the tooth from the root to the enamel, specially the region around the amalgam, after its total removal. Hg is present only in restored teeth and concentration profiles show strongly increased levels of this element close to the amalgam region, reaching 500 μg g -1 in one or two cases, decreasing strongly to the inner part of the tooth. Pb concentration profiles do not seem to be affected by metallic amalgam. Very high concentrations of Bi were found in one of the restored teeth, reaching more than 2000 μg g -1, decreasing sharply to the outer regions. The distribution of Mn, Fe, Cu and Zn was also determined in order to evaluate elemental influences by amalgam components. No significant changes in elemental concentrations were detected for Mn and Fe between healthy and restored teeth. However, the levels of Zn and Cu are increased in restored teeth. An X-ray fluorescence set-up with microprobe capabilities, 100 μm of spatial resolution and an energy of 18 keV, installed at LURE synchrotron (France) was used.

  6. Hg, Bi, Cu and Zn distribution in human teeth treated by dental amalgam measured by synchrotron microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.L. E-mail: luisa@cii.fc.ul.pt; Marques, J.P.; Brito, J.; Casaca, C.; Cunha, A.S

    2002-11-01

    Human teeth restored with dental amalgam were analysed by a synchrotron microprobe to evaluate the diffusion of its major constituents, Cu, Zn and Hg, throughout the tooth structures. We measured the elemental distribution inside the tooth from the root to the enamel, specially the region around the amalgam, after its total removal. Hg is present only in restored teeth and concentration profiles show strongly increased levels of this element close to the amalgam region, reaching 500 {mu}g g{sup -1} in one or two cases, decreasing strongly to the inner part of the tooth. Pb concentration profiles do not seem to be affected by metallic amalgam. Very high concentrations of Bi were found in one of the restored teeth, reaching more than 2000 {mu}g g{sup -1}, decreasing sharply to the outer regions. The distribution of Mn, Fe, Cu and Zn was also determined in order to evaluate elemental influences by amalgam components. No significant changes in elemental concentrations were detected for Mn and Fe between healthy and restored teeth. However, the levels of Zn and Cu are increased in restored teeth. An X-ray fluorescence set-up with microprobe capabilities, 100 {mu}m of spatial resolution and an energy of 18 keV, installed at LURE synchrotron (France) was used.

  7. The Electrochemical Behavior of Zn-Mn Alloy Coating in Carbonated Concrete Solution

    Science.gov (United States)

    Touazi, S.; Bučko, M.; Makhloufi, L.; Legat, A.; Bajat, J. B.

    2016-05-01

    In order to improve the protective performance of Zn coating on reinforcing steel in concrete, the electrochemical deposition of Zn-Mn coatings was conducted on steel surface. The morphology, chemical and phase compositions of Zn-Mn coatings obtained from sulfate-citrate bath were investigated in the first part of paper. In the second part, the obtained deposits were tested in solution simulating carbonated concrete, consisting of NaHCO3 and Na2CO3. Data obtained from Tafel analysis showed higher corrosion resistance for Zn-Mn alloy deposits obtained at -1700 and -1800mV versus SCE, when compared to pure Zn deposit. Impedance spectroscopy investigations revealed that the total impedance of Zn-Mn coatings increased steadily with time, and was significantly higher as compared to pure Zn after 24h in corrosion solution. On the contrary, for pure Zn, the impedance increased in the first 12h, and then decreased during prolonged exposure time, which can be explained by rapid growth of nonprotective white rust and the degradation of zinc coating, as was confirmed by optical microscope after 24h of immersion in carbonated concrete pore solution.

  8. Thermal Decomposition Studies of Layered Metal Hydroxynitrates (Metal: Cu, Zn, Cu/Co, and Zn/Co

    Directory of Open Access Journals (Sweden)

    Thimmasandra Narayan Ramesh

    2015-01-01

    Full Text Available Layered metal hydroxynitrates and mixed metal hydroxynitrates (copper/cobalt hydroxynitrates and zinc/cobalt hydroxynitrates at different mole ratios were synthesized by hydrolysis of urea and metal nitrates at 140°C. Layered metal hydroxyl nitrates derive their structure from brucite mineral and generally crystallize in hexagonal and monoclinic phases. Isothermal decomposition studies of Cu2(OH3(NO3, Co2(OH3(NO3, Cu1.5Co0.5(OH3(NO3, Cu1.34Co0.66(OH3(NO3, Zn5(OH8(NO32(H2O2, Zn3.75Co1.25(OH8(NO32(H2O2, and Zn3.35Co1.65(OH8(NO32(H2O2 samples were carried out at different intervals of temperature and the structural transformations during the process were monitored using powder X-ray diffractograms. Biphasic mixture of metal hydroxynitrate/metal oxide is observed in case of cobalt/zinc based layered hydroxynitrates, while copper hydroxynitrate or copper/cobalt metal hydroxynitrate decomposes in a single step. The decomposition temperatures of layered metal hydroxynitrates and mixed layered metal hydroxides depend on the method of preparation, their composition and the nature of metal ion, and their coordination.

  9. Atmospheric corrosion of Cu, Zn, and Cu-Zn alloys protected by self-assembled monolayers of alkanethiols

    Science.gov (United States)

    Hosseinpour, Saman; Forslund, Mattias; Johnson, C. Magnus; Pan, Jinshan; Leygraf, Christofer

    2016-06-01

    In this article results from earlier studies have been compiled in order to compare the protection efficiency of self-assembled monolayers (SAM) of alkanethiols for copper, zinc, and copper-zinc alloys exposed to accelerated indoor atmospheric corrosion conditions. The results are based on a combination of surface spectroscopy and microscopy techniques. The protection efficiency of investigated SAMs increases with chain length which is attributed to transport hindrance of the corrosion stimulators in the atmospheric environment, water, oxygen and formic acid, towards the copper surface. The transport hindrance is selective and results in different corrosion products on bare and on protected copper. Initially the molecular structure of SAMs on copper is well ordered, but the ordering is reduced with exposure time. Octadecanethiol (ODT), the longest alkanethiol investigated, protects copper significantly better than zinc, which may be attributed to the higher bond strength of Cu-S than of Zn-S. Despite these differences, the corrosion protection efficiency of ODT for the single phase Cu20Zn brass alloy is equally efficient as for copper, but significantly less for the heterogeneous double phase Cu40Zn brass alloy.

  10. Cu,Zn SOD in Shandong families with amyotrophic lateral sclerosis

    Institute of Scientific and Technical Information of China (English)

    GU Hong-yan; ZHANG Feng-zhen; JIANG Han-Ming; SUN Ling-Yun; ZAI Jing; ZHANG Yuan-ying

    2004-01-01

    Objective: To understand the relationship between Cu,Zn SOD and amyotrophic lateral sclerosis. Methods: The patients were clinically examined and classified according to the E1 Escorial Criteria, then we obtained blood samples from the patients for Cu,Zn SOD analysis and SOD assay. Amino acid analysis of Cu,Zn SOD were fully automated in instruments called amino acid analyzers. SOD assay was determined by cytochrome c method Results: Amino acid analysis of Cu,Zn SOD from patients with familial ALS was normal. The activity of Cu,Zn SOD was normal both in familial and sporadic form of ALS compared with normal person. Conclusion: Amyotrophic lateral sclerosis is not related to Cu,Zn SOD.

  11. Tensile behavior of Sn-0.7Cu with Zn addition at various deformation temperatures

    Institute of Scientific and Technical Information of China (English)

    Zhongbing LUO; Jie ZHAO; Junshan ZHANG; Lai WANG

    2011-01-01

    The tensile behavior of Sn-0.7Cu and Sn-0.7Cu-lZn was compared at various deformation temperatures. Refined microstructure and γ-CuZn particles were discovered with Zn addition. The strengths of Zn-containing solder were higher than that of Sn-0.7Cu at room and subzero temperatures. With the elevation of deformation temperature, they both decreased and they were nearly the same at 80 ℃. The works of fracture exhibited the similar evolution law. For Sn-0.7Cu solder, the elongation after fracture was smaller and the reduction of area was bigger than those of Sn-0.7Cu-1Zn. This shows that Zn addition improved the deformation stability, which is attributed to the modification of the microstructure. Dimples in fracture surface became smaller and shallower with the decreasing temperature. Ductile fracture was discovered in all the samples.

  12. Photoluminescence brightening via electrochemical trap passivation in ZnSe and Mn(2+)-doped ZnSe quantum dots.

    Science.gov (United States)

    Weaver, Amanda L; Gamelin, Daniel R

    2012-04-18

    Spectroelectrochemical experiments on wide-gap semiconductor nanocrystals (ZnSe and Mn(2+)-doped ZnSe) have allowed the influence of trap electrochemistry on nanocrystal photoluminescence to be examined in the absence of semiconductor band filling. Large photoluminescence electrobrightening is observed in both materials upon application of a reducing potential and is reversed upon return to the equilibrium potential. Electrobrightening is correlated with the transfer of electrons into nanocrystal films, implicating reductive passivation of midgap surface electron traps. Analysis indicates that the electrobrightening magnitude is determined by competition between electron trapping and photoluminescence (ZnSe) or energy transfer (Mn(2+)-doped ZnSe) dynamics within the excitonic excited state, and that electron trapping is extremely fast (k(trap) ≈ 10(11) s(-1)). These results shed new light on the complex surface chemistries of semiconductor nanocrystals. © 2012 American Chemical Society

  13. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  14. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Science.gov (United States)

    Fang, J. S.; Sun, S. L.; Cheng, Y. L.; Chen, G. S.; Chin, T. S.

    2016-02-01

    The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO4. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  15. Electronic, magnetic, elastic and thermodynamic properties of Cu{sub 2}MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sukriti [Department of Physics, Government Kamla Raja Girls Autonomous Post Graduate College, Gwalior 474001, Madhya Pradesh (India); Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India); Gupta, Dinesh C., E-mail: sosfizix@gmail.com [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India)

    2016-08-01

    The full-potential linearized augmented plane wave method in the stable Fm-3m phase has been implemented to investigate the structural, elastic, magnetic and electronic properties of Cu{sub 2}MnGa. The optimized equilibrium lattice parameter in stable phase is found to be 5.9495 Å. By the spin resolved density of states calculations, we have shown that the exchange splitting due to Mn atom is the main reason of ferromagnetic behavior of Cu{sub 2}MnGa. The absence of energy gap in both the spin channels predicts that the material is metallic. The total and partial density of states, elastic constants, Shear, Bulk and Young’s moduli, Zener isotropy factor, Cauchy pressure, Pugh's ductility, Kleinman parameter and Poisson's ratio are reported for the first time for the alloy. Cauchy's pressure and Pugh's index of ductility label Cu{sub 2}MnGa as ductile. Cu{sub 2}MnGa is found to be ferromagnetic and anisotropic in nature. The quasi-harmonic approximations have been employed to study the pressure and temperature dependent thermodynamic properties of Cu{sub 2}MnGa. - Highlights: • It is the first attempt to predict a variety of crystal properties of Cu{sub 2}MnGa. • Cu{sub 2}MnGa shows magnetism and hence can prove to be important in modern technology. • Cu{sub 2}MnGa is ductile and hence can attract attention of scientists and technologists.

  16. Additional micromineral Mn and Cu in ration to rumen biofermentation activities of sheep in vitro method

    Directory of Open Access Journals (Sweden)

    Farida Fathul

    2010-03-01

    Full Text Available Ruminants need micro mineral for both their own requirements and rumen microbe activities. The objective of this research was to study the effect of Mn, Cu, and its combination addition in ration on the activity of in vitro fermentation using sheep rumen liquid. This research was conducted at Laboratory of Ruminant Nutrition Faculty of Animal Science Bogor Agricultural Institute. The rations were R0 = basal ration; R1 = basal ration + 40 ppm Mn; R2 = basal ration + 10 ppm Cu; dan R3 = basal ration + 40 ppm Mn + 10 ppm Cu. The result indicated that addition of Mn, Cu, or Mn+Cu did not significantly influence (P>0.05 pH, NH3, bacteria and VFA; but they significantly increased (P<0.01 dry matter digestibility (DMD and organic matter digestibility (OMD. The average: pH was 4.78 ± 0.07 – 4.89 ± 0.06; NH3 was 6.77 ± 2.07 – 7.47±0,67 mM, and VFA was 93.19 ± 55.79 – 136.61±15.31 mM. R1 gave the highest value of DMD (57.63% and OMD (70.32%. The VFA related positively to NH3 (r = 0.86; with the equation Ý = -266.9 + 54.182 X and R2 = 0.74. It was concluded that additional of Mn, Cu, or Mn+Cu did not alter pH, NH3, and VFA. The additional of Mn altered DMD, but additional of Mn+Cu reduced DMD and OMD.

  17. Research of Interaction Between Zn Based Solders and Cu, Al Substrates

    Directory of Open Access Journals (Sweden)

    Prach Michal

    2014-06-01

    Full Text Available The paper deals with the study of interaction between Cu, Al substrates (purity 5N and ZnAl4, ZnAg6Al6 zinc solders for higher application temperatures. Soldering was performed with power ultrasound in the air without flux application at temperature 420 °C. Acting time of ultrasonic vibration was 3 s and ultrasound frequency was 40 kHz. Soldered joints were assessed by optical light microscopy and EDX microanalysis. Intermetallic layers (IM CuZn4 and Cu5Zn8 were formed at the Cu/ZnAl4 boundary. The βZn-αAl mechanical mixture was formed at the Al/ZnAl4 boundary. AgZn3 and Cu5Zn8 IM layers were formed at the Cu/ZnAg6Al6 boundary, and mechanical mixture of βZn-αAl and AgZn3 intermetallic mixture were formed at the boundary Al/ZnAg6Al6.

  18. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  19. Study of ferromagnetism in Mn-doped ZnO whisker arrays

    Indian Academy of Sciences (India)

    Feng Zhu; Ye Zhang; Youguo Yan; Wenhai Song; Lingli Xia

    2008-04-01

    Vertically aligned Mn–ZnO whiskers were grown on sapphire substrate by a thermal chemical vapour deposition method. X-ray diffraction measurements indicate that samples are high-quality single crystals and -axis oriented. Raman and XPS analyses revealed that Mn was incorporated into the ZnO lattice. Room temperature c ferromagnetism was observed. These Mn–ZnO whiskers may find their potential applications in spintronic field.

  20. Ferromagnetism of Mn{sub x}Li{sub y}Zn{sub 1-x-y}O films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xueyun [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Ge Shihui [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)], E-mail: zhxy06@lzu.cn; Yao Dongsheng; Zuo Yalu; Xiao Yuhua [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2008-08-15

    We had prepared Mn-doped ZnO and Li, Mn codoped-ZnO films with different concentrations using spin coating method. Crystal structure and magnetic measurements demonstrate that the impurity phases (ZnMnO{sub 3}) are not contributed to room temperature ferromagnetism and the ferromagnetism in Mn-doped ZnO film is intrinsic. Interesting, saturated magnetization decreases with Mn or Li concentration increase, showing that some antiferromagnetism exists in the samples with high Mn or Li concentration. In addition, Mn{sub 0.05}Zn{sub 0.95}O film annealed in vaccum shows larger ferromagnetism than the as-prepared sample and more oxygen vacancies induced by annealing in reducing atmosphere enhance ferromagnetism, which supports the bound magnetic polaron model on the origin of room temperature ferromagnetism.

  1. The electronic and magnetic properties of (Mn,C)-codoped ZnO diluted magnetic semiconductor

    Institute of Scientific and Technical Information of China (English)

    Zhao Long; Lu Peng-Fei; Yu Zhong-Yuan; Ma Shi-Jia; Ding Lu; Liu Jian-Tao

    2012-01-01

    The electronic and magnetic properties of (Mn,C)-codoped ZnO are studied in the Perdew-Burke-Ernzerhof form of generalized gradient approximation of the density functional theory.By investigating five geometrical configurations,we find that Mn doped ZnO exhibits anti-ferromagnetic or spin-glass behaviour,and there are no carriers to mediate the long range ferromagnetic (FM) interaction without acceptor co-doping.We observe that the FM interaction for (Mn,C)-codoped ZnO is due to the hybridization between C 2p and Mn 3d states,which is strong enough to lead to hole-mediated ferromagnetism at room temperature.Meanwhile,we demonstrate that ZnO co-doped with Mn and C has a stable FM ground state and show that the (Mn,C)-codoped ZnO is FM semiconductor with super-high Curie temperature (TC = 5475 K).These results are conducive to the design of dilute magnetic semiconductors with codopants for spintronics applications.

  2. Concentrative phenomenon of relative content ratios of Cu, Pb and Zn in soils

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is discovered that there is the concentrative phenomenon of relative content ratios of Cu, Pb and Zn in soil by studying their parageneous association in soil, meterites and rocks with the relative content ratios. This not only is helpful to understand the trends of Cu, Cd and Zn enriched and dispersed in the evolution course of earth matter, but also provide evidence for geochemical self-organization that there may be in the process of Cu, Pb and Zn translation and distribution.

  3. Quenching of magnetic excitations in single adsorbates at surfaces: Mn on CuN/Cu(100)

    Science.gov (United States)

    Novaes, Frederico D.; Lorente, Nicolás; Gauyacq, Jean-Pierre

    2010-10-01

    The lifetimes of spin excitations of Mn adsorbates on CuN/Cu(100) are computed from first principles. The theory is based on a strong-coupling approach that evaluates the decay of a spin excitation due to electron-hole pair creation. Using a previously developed theory [Phys. Rev. Lett. 103, 176601 (2009)10.1103/PhysRevLett.103.176601 and Phys. Rev. B 81, 165423 (2010)10.1103/PhysRevB.81.165423], we compute the excitation rates by a tunneling current for all the Mn spin states. A rate equation approach permits us to simulate the experimental results by Loth and co-workers [Nat. Phys. 6, 340 (2010)]10.1038/nphys1616 for large tunneling currents, taking into account the finite population of excited states. Our simulations give us insight into the spin dynamics, in particular, in the way polarized electrons can reveal the existence of an excited-state population. In addition, it reveals that the excitation process occurs in a way very different from the deexcitation one. Indeed, while excitation by tunneling electrons proceeds via the s and p electrons of the adsorbate, deexcitation mainly involves the d electrons.

  4. Synthesis and Fluorescence Property of Mn-Doped ZnSe Nanowires

    Directory of Open Access Journals (Sweden)

    Dongmei Han

    2010-01-01

    Full Text Available Water-soluble Mn-doped ZnSe luminescent nanowires were successfully prepared by hydrothermal method without any heavy metal ions and toxic reagents. The morphology, composition, and property of the products were investigated. The experimental results showed that the Mn-doped ZnSe nanowires were single well crystallized and had a zinc blende structure. The average length of the nanowires was about 2-3 μm, and the diameter was 80 nm. With the increase of Mn2+-doped concentration, the absorbance peak showed large difference. The UV-vis absorbance spectrum showed that the Mn-doped ZnSe nanowires had a sharp absorption band appearing at 360 nm. The PL spectrum revealed that the nanowires had two distinct emission bands centered at 432 and 580 nm.

  5. Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties.

    Science.gov (United States)

    Yang, Yefeng; Li, Yaguang; Zhu, Liping; He, Haiping; Hu, Liang; Huang, Jingyun; Hu, Fengchun; He, Bo; Ye, Zhizhen

    2013-11-07

    For colloidal semiconductor nanocrystals (NCs), shape control and doping as two widely applied strategies are crucial for enhancing and manipulating their functional properties. Here we report a facile and green synthetic approach for high-quality colloidal Mn doped ZnO NCs with simultaneous control over composition, shape and optical properties. Specifically, the shape of doped ZnO NCs can be finely modulated from three dimensional (3D) tetrapods to 0D spherical nanoparticles in a single reaction scheme. The growth mechanism of doped ZnO NCs with interesting shape transition is explored. Furthermore, we demonstrate the tunable optical absorption features of Mn doped ZnO NCs by varying the Mn doping levels, and the enhanced photocatalytic performance of Mn doped ZnO NCs under visible light, which can be further optimized by delicately controlling their shapes and Mn doping concentrations. Our results provide an improved understanding of the growth mechanism of doped NCs during the growth process and can be potentially extended to ZnO NCs doped with other metal ions for various applications.

  6. Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films

    Science.gov (United States)

    Schwarz, Torsten; Marques, Miguel A. L.; Botti, Silvana; Mousel, Marina; Redinger, Alex; Siebentritt, Susanne; Cojocaru-Mirédin, Oana; Raabe, Dierk; Choi, Pyuck-Pa

    2015-10-01

    Cu2ZnSnSe4 thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu2ZnSnSe4 and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases. Possible effects of these phases on solar cell performance are discussed.

  7. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huawei [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Cong, Zixiang [School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100976 (China); Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-12-02

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material.

  8. Effect of nonmagnetic substituents Mg and Zn on the phase competition in the multiferroic antiferromagnet MnWO4

    OpenAIRE

    Meddar, Lynda; Josse, Michael; Deniard, Philippe; La, Carole; André, Gilles; Damay, Françoise; Petricek, Vaclav; Jobic, Stéphane; Whangbo, Myung-Hwan; Maglione, Mario; Payen, Christophe

    2010-01-01

    The effects of substituting nonmagnetic Mg2+ and Zn2+ ions for the Mn2+ (S = 5/2) ions on the structural, magnetic and dielectric properties of the multiferroic frustrated antiferromagnet MnWO4 were investigated. Polycrystalline samples of Mn1-xMgxWO4 and Mn1-xZnxWO4 (0

  9. Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies

    DEFF Research Database (Denmark)

    Beinik, Igor; Helström, Matti; Jensen, Thomas Nørregaard;

    2015-01-01

    is of utmost importance. The Cu/ZnO system is among the most investigated of such systems in model studies, but the presence of subsurface ZnO defects and their important role for adhesion on ZnO have been unappreciated so far. Here we reveal that the surface-directed migration of subsurface defects affects...... the Cu adhesion on polar ZnO(0001) in the technologically interesting temperature range up to 550 K. This leads to enhanced adhesion and ultimately complete wetting of ZnO(0001) by a Cu overlayer. On the basis of our experimental and computational results we demonstrate a mechanism which implies...

  10. Low temperature sintering of MgCuZn ferrite and its electrical and magnetic properties

    Indian Academy of Sciences (India)

    S R Murthy

    2001-08-01

    The low temperature sintering of MgCuZn ferrite was investigated using the usual ceramic method. The effect of Cu substitution on the properties of MgZn ferrites was also investigated and it was found that the densification of MgCuZn ferrite is dependent upon Cu concentration. The sintered ferrite with a density of 4.93 g/cm3 and electrical resistivity > 1011-cm was obtained for the ferrite with 12 mol% Cu at relatively low sintering temperature (910°C). The magnetic properties of the ferrites also improved by the Cu substitution. The chip inductors made of the ferrite fired at 910 C with 12 mol% Cu exhibited higher d.c. resistance. From these studies it is concluded that the good quality chip inductor can be obtained using the MgCuZn ferrites.

  11. The effect of Cu/Zn molar ratio on CO2 hydrogenation over Cu/ZnO/ZrO2/Al2O3 catalyst

    Science.gov (United States)

    Shaharun, Salina; Shaharun, Maizatul S.; Mohamad, Dasmawati; Taha, Mohd F.

    2014-10-01

    Catalytic hydrogenation of carbon dioxide (CO2) to methanol is an attractive way to recycle and utilize CO2. A series of Cu / ZnO / Al2O3/ZrO2 catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N2 adsorption-desorption. Higher surface area, SABET values (42.6-59.9 m2/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m2/g found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.

  12. Effect of Cu doping on the properties of ZnTe:Cu thin films and CdS/CdTe/ZnTe solar cells

    Science.gov (United States)

    Tang, J.; Mao, D.; Trefny, J. U.

    1997-02-01

    The effects of Cu doping concentration and post-deposition annealing treatment on the properties of ZnTe thin films were investigated in an effort to decrease the Cu doping concentration and improve the long-term stability of CdS/CdTe/ZnTe solar cells. The structural, compositional, and electrical properties were studied systematically using x-ray diffraction (XRD), electron microprobe, Hall effect and conductivity measurements. XRD measurements indicated that the crystalline phase of as-deposited and low-temperature annealed ZnTe films is dependent on Cu doping concentration. Low-Cu-doped films exhibited zincblende phase, whereas high-Cu-doped films showed wurtzite phase. After annealing at high temperature (⩾350 °C), all films exhibited zincblende structure. Electron probe microanalysis revealed a deficiency of cations in low-Cu-doped films and an excess of cations in high-Cu-doped films. Hall effect measurements revealed a dependence of hole mobility on Cu doping concentration with the highest mobility (20 cm2/Vṡs) obtained at a low Cu concentration. Carrier concentrations higher than mid-1016cm-3 were obtained at a Cu concentration of 2 at. % and relatively low annealing temperatures. Studies of the activation energy of dark conductivity suggested that intrinsic defects (e.g., Zn vacancies) are the dominant acceptors for Cu concentrations lower than 4.5 at. %. Finally, ZnTe films with Cu concentrations as low as 1 at. % were used successfully as a back contact layer in CdTe based solar cells. Fill factors over 0.70 were obtained using ZnTe films of low Cu concentrations.

  13. Synthesis and magnetic properties of hexagonal Y(Mn,Cu)O{sub 3} multiferroic materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeuvrey, L., E-mail: laurent.jeuvrey@univ-rennes1.fr [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Pena, O. [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Moure, A.; Moure, C. [Electroceramics Department, Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049, Madrid (Spain)

    2012-03-15

    Single-phase hexagonal-type solid solutions based on the multiferroic YMnO{sub 3} material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn{sub 1-x}Cu{sub x}O{sub 3}; x<0.15) and self-doping at the A-site (Y{sub 1+y}MnO{sub 3}; y<0.10) successfully maintained the hexagonal structure. Self-doping was limited to y(Y)=2 at% and confirmed that excess yttrium avoids formation of ferromagnetic manganese oxide impurities but creates vacancies at the Mn site. Chemical substitution at the B-site inhibits the geometrical frustration of the Mn{sup 3+} two-dimensional lattice. The magnetic transition at T{sub N} decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn{sup 3+}-Mn{sup 4+} interactions created by the substitution of Mn{sup 3+} by Cu{sup 2+}, are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn{sup 3+}-Mn{sup 4+} pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure. - Highlights: Black-Right-Pointing-Pointer Hexagonal-type solid solutions of Y(Mn,Cu)O{sub 3} synthesized by Pechini process. Black-Right-Pointing-Pointer Chemical substitution at B site inhibits geometrical magnetic frustration. Black-Right-Pointing-Pointer Magnetic transition decreases with Cu-doping. Black-Right-Pointing-Pointer Local ferromagnetic Mn-Mn interactions coexist with the frustrated state.

  14. Cu2+ in layered compounds: origin of the compressed geometry in the model system K2ZnF4:Cu2+.

    Science.gov (United States)

    Aramburu, J A; García-Lastra, J M; García-Fernández, P; Barriuso, M T; Moreno, M

    2013-06-17

    Many relevant properties (including superconductivity and colossal magnetoresistance) of layered materials containing Cu(2+), Ag(2+), or Mn(3+) ions are commonly related to the Jahn-Teller instability. Along this line, the properties of the CuF6(4-) complex in the K2ZnF4 layered perovskite have recently been analyzed using a parametrized Jahn-Teller model with an imposed strain [Reinen, D. Inorg. Chem.2012, 51, 4458]. Here, we present results of ab initio periodic supercell and cluster calculations on K2ZnF4:Cu(2+), showing unequivocally that the actual origin of the unusual compressed geometry of the CuF6(4-) complex along the crystal c axis in that tetragonal lattice is due to the presence of an electric field due to the crystal surrounding the impurity. Our calculations closely reproduce the experimental optical spectrum. The calculated values of the equilibrium equatorial and axial Cu(2+)-F(-) distances are, respectively, R(ax) = 193 pm and R(eq) = 204 pm, and so the calculated distortion R(ax) - R(eq) = 11 pm is three times smaller than the estimated through the parametrized Jahn-Teller model. As a salient feature, we find that if the CuF6(4-) complex would assume a perfect octahedral geometry (R(ax) = R(eq) = 203 pm) the antibonding a(1g)*(∼3z(2) - r(2)) orbital is placed above b(1g)*(∼x(2) - y(2)) with a transition energy E((2)A(1g) → (2)B(1g)) = 0.34 eV. This surprising fact stresses that about half the experimental value E((2)A(1g) → (2)B(1g)) = 0.70 eV is not due to the small shortening of the axial Cu(2+)-F(-) distance, but it comes from the electric field, E(R)(r), created by the rest of the lattice ions on the CuF6(4-) complex. This internal field, displaying tetragonal symmetry, is thus responsible for the compressed geometry in K2ZnF4:Cu(2+) and the lack of symmetry breaking behind the ligand relaxation. Moreover, we show that the electronic energy gain in this process comes from bonding orbitals and not from antibonding ones. The present

  15. Interaction of Copper in CuZn-Superoxide Dismutase With Histidine

    Institute of Scientific and Technical Information of China (English)

    胡皆汉; 舒占永

    1994-01-01

    The interaction of CuZn-superoxide dismutase ( CuZn-SOD ) with the external histidine in aqueous solution has been studied in this work by ESR and NMR. It is found that the Cu(Ⅱ) of CuZn-SOD makes an exchanging interaction with the external substance in aqueous solution. Unlike in solid state, the Cu(Ⅱ) forms complex with external histidine, and keeps a motional equilibrium between the active centers and the complexes. Enzyme activity is also affected by this interaction. Some other amino acids are also discussed in this paper.

  16. Quantifying point defects in Cu2ZnSn(S,Se)4 thin films using resonant x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA; Christensen, Steven T. [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Harvey, Steven P. [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Teeter, Glenn [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Repins, Ingrid L. [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Toney, Michael F. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level of Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.

  17. Quantifying point defects in Cu2ZnSn(S,Se)4 thin films using resonant x-ray diffraction

    Science.gov (United States)

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; Teeter, Glenn; Repins, Ingrid L.; Toney, Michael F.

    2016-10-01

    Cu2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu2ZnSnS4 (8.6% efficiency) and Cu2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level of CuZn and ZnCu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of ZnSn defects and Cu or Zn vacancies.

  18. Preparation of Cu2ZnSnS4 thin films by hybrid sputtering

    Science.gov (United States)

    Tanaka, Tooru; Nagatomo, Takeshi; Kawasaki, Daisuke; Nishio, Mitsuhiro; Guo, Qixin; Wakahara, Akihiro; Yoshida, Akira; Ogawa, Hiroshi

    2005-11-01

    In order to fabricate Cu2ZnSnS4 thin films, hybrid sputtering system with two sputter sources and two effusion cells is used. The Cu2ZnSnS4 films are fabricated by the sequential deposition of metal elements and annealing in S flux, varying the substrate temperature. The Cu2ZnSnS4 films with stoichiometric composition are obtained at the substrate temperature up to 400 °C, whereas the film composition becomes quite Zn-pool at the substrate temperature above 450 °C. The Cu2ZnSnS4 film shows p-type conductivity, and the optical absorption coefficient and the band gap of the Cu2ZnSnS4 film prepared in this experiment are suitable for fabricating a thin film solar cell.

  19. X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation

    Science.gov (United States)

    Ma, Lun; Zou, Xiaoju; Bui, Brian; Chen, Wei; Song, Kwang Hyun; Solberg, Timothy

    2014-07-01

    Copper and cobalt co-doped ZnS (ZnS:Cu,Co) afterglow nanoparticles were conjugated to photosensitizer tetrabromorhodamine-123 (TBrRh123) and efficient energy transfer from the nanoparticles to TBrRh123 was observed. In addition to their X-ray excited luminescence, the ZnS:Cu,Co nanoparticles also show long lasting afterglow, which continuously serve as a light source for photodynamic therapy (PDT) activation. Compared to TBrRh123 or ZnS:Cu,Co alone, the ZnS:Cu,Co-TBrRh123 conjugates show low dark toxicity but high X-ray induced toxicity to human prostate cancer cells. The results indicate that the ZnS:Cu,Co afterglow nanoparticles have a good potential for PDT activation.

  20. Synthesis, structural and luminescence properties of Mn doped ZnO/Zn2SiO4 composite microphosphor

    Science.gov (United States)

    Ramakrishna, P. V.; Murthy, D. B. R. K.; Sastry, D. L.; Samatha, K.

    2014-08-01

    Manganese doped ZnO/Zn2SiO4 (MZS) composite phosphors were successfully prepared by conventional solid state reaction method. The structural and optical properties of as-prepared samples were analysed by means of XRD, SEM, PLE and PL. The result shows that the samples consist of both ZnO and ZnSiO4 phases which confirms the composite phosphor. The strain acting on the phosphor is found to be in the range of 0.0040-0.0058 for different concentration of Mn2+ doping. The doping of Mn2+ significantly influences the optical properties of phosphor. Under 266 nm laser excitation samples show green emission (∼530 nm) and with 355 nm laser excitation blue emission (∼441 nm) is shown. The enhancement of luminescence intensity is achieved with Mn2+ doping up to an optimum concentration (10 at.%) and then decreases. On 266 nm excitation, blue emission intensity decreases with Mn2+ doping. This composite phosphor shows both blue and green emission under different excitations.

  1. ZnCuInS/ZnSe/ZnS Quantum Dot-Based Downconversion Light-Emitting Diodes and Their Thermal Effect

    Directory of Open Access Journals (Sweden)

    Wenyan Liu

    2015-01-01

    Full Text Available The quantum dot-based light-emitting diodes (QD-LEDs were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half maximum (FWHM, and power efficiency (PE. The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed little due to the low emission temperature coefficients of 0.022, 0.050, and 0.068 nm/°C for red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. These indicate that ZnCuInS/ZnSe/ZnS QDs are more suitable for downconversion LEDs compared to CdSe QDs.

  2. Dielectric behaviour of Zn substituted Cu nano-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Jyoti, E-mail: phyjyoti.2@gmail.com [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Saxena, V.K.; Jyoti; Bhatnagar, Deepak [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Sharma, K.B. [Department of Physics, S.S. Jain Subodh P.G. College, Jaipur 302004 (India)

    2015-11-15

    Herein, the dielectric properties such as permittivity (real part ε′ and imaginary part ε′′) and dielectric loss tangent (tan δ) are reported for Zn substituted Cu ferrites (Cu{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}; 0≤x≤1) composite using the sol–gel auto-combustion method. The variations of real and imaginary part of dielectric constant, tan δ and AC conductivity (σ{sub ac}) are studied at room temperature in the frequency range of 100 Hz–120 MHz. The real part of dielectric constant decrease with increasing frequency and the imaginary part (ε′′) varies with frequency showing the characteristic peak for each sample. The relation of tan δ with frequency shows relaxation spectra. Further, the σ{sub ac} tended to increase with increase in frequency. The variation in dielectric constant may be explained on the basis of space charge polarization, according to Maxwell and Wagner two-layer model. The dielectric constant and tan δ as a function of temperature are also studied with different temperatures ranging from 323 K to 583 K. - Highlights: • Zn substituted Cu nano-ferrite samples bearing formula Cu{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}(0≤x≤1) are synthesized by the sol–gel auto combustion method. • The variation of real and imaginary parts of dielectric constant, dielectric loss tangent (tan δ) and AC conductivity with frequency are reported in the frequency range from 100 Hz to 120 MHz at room temperature. • The real part of dielectric constant (ε′) decreases with increasing frequency where as the AC conductivity (σ{sub ac}) increases with increase in frequency. The relation of tan δ with frequency shows relaxation spectra. • The variation in dielectric constant may be explained on the basis of space charge polarization, according to Maxwell and Wagner two-layer model. • Dielectric constant as a function of temperature is studied at different temperatures ranging from 323 K to 583 K.

  3. The Effects of Sputtering Target Preparation and Deposition Temperature on ZnTe:Cu Film Properties

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, Brooke R.; Ohno, T. R.; Burst, James M.; Duenow, Joel N.; Perkins, Craig L.; To, Bobby; Gessert, Timothy A.

    2015-06-14

    A back contact containing a sputtered ZnTe:Cu interface layer can produce high-performing thin-film CdS/CdTe photovoltaic devices. We have found that varying the ZnTe:Cu sputtering target fabrication processes and deposition temperature can affect material properties of the ZnTe:Cu films and the resulting device performance. Two different target 'recipes' with various copper contents were used to study changes in the compositional, structural, optical, and electrical properties of ZnTe:Cu films. Substrate temperature during deposition was also varied to investigate the temperature dependence of the films. It was found that the target recipe, Cu concentration in the target, and deposition temperature affect the composition of the ZnTe:Cu films, which impacts their structural, optical, and electrical properties.

  4. Facile synthesis and photocatalytic activity of bi-phase dispersible Cu-ZnO hybrid nanoparticles.

    Science.gov (United States)

    Liu, Xiao; Liu, HongLing; Zhang, WenXing; Li, XueMei; Fang, Ning; Wang, XianHong; Wu, JunHua

    2015-01-01

    Bi-phase dispersible Cu-ZnO hybrid nanoparticles were synthesized by one-pot non-aqueous nanoemulsion with the use of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) show high crystallinity of the Cu-ZnO hybrid nanoparticles and an average particle size of ~19.4 nm. The ultraviolet-visible light absorbance spectrometry (UV-vis) and photoluminescence spectrophotometry (PL) demonstrate well dispersibility and excellent optical performance of Cu-ZnO hybrid nanoparticles both in organic and aqueous solvent. The X-ray photoelectron spectroscopy (XPS) confirms Cu(1+) and Cu(2+) in ZnO. The observation using Sudan red (III) as probe molecule reveals that the Cu-ZnO hybrid nanoparticles possess enhanced photocatalytic activity and stability which are promising for potential applications in photocatalysis.

  5. Room-temperature ferromagnetism in Mn-doped CuCrO2 nanopowders

    Directory of Open Access Journals (Sweden)

    DENG Linyan

    2015-08-01

    Full Text Available (Cu1-xMnxCrO2 (0≤x≤6 at% and Cu(Cr1-yMnyO2 (0≤y≤6 at% nanopowders were prepared by combining solid-state reaction and ball milling.It is found that all the samples have a pure 3R-CuCrO2 delafossite structure.The lattice expansion supports the Mn entrance into the Cu and Cr sublattices,respectively,in (Cu1-xMnxCrO2 and Cu(Cr1-yMnyO2,which is further proved by X-ray photoelectron spectroscopy to some degree.Room-temperature ferromagnetism is achieved in B-site Mn-doped samples,originating from the hole-mediated Cr3+-Mn3+ double-exchange interaction.The saturation magnetization of this CuMO2 delafossite (M=Cr,Mn is about an order of magnitude higher than literature values,and gradually decreases with the Mn addition due to the combined influence of the number of the M-M pairs,the M-M distances and the hole density.

  6. Barley HvHMA1 is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains.

    Directory of Open Access Journals (Sweden)

    Maria Dalgaard Mikkelsen

    Full Text Available Heavy metal transporters belonging to the P(1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. Heavy metal transporters belonging to the P(1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. In this study we investigated the properties of HvHMA1, which is a barley orthologue of Arabidopsis thaliana AtHMA1 localized to the chloroplast envelope. HvHMA1 was localized to the periphery of chloroplast of leaves and in intracellular compartments of grain aleurone cells. HvHMA1 expression was significantly higher in grains compared to leaves. In leaves, HvHMA1 expression was moderately induced by Zn deficiency, but reduced by toxic levels of Zn, Cu and Cd. Isolated barley chloroplasts exported Zn and Cu when supplied with Mg-ATP and this transport was inhibited by the AtHMA1 inhibitor thapsigargin. Down-regulation of HvHMA1 by RNA interference did not have an effect on foliar Zn and Cu contents but resulted in a significant increase in grain Zn and Cu content. Heterologous expression of HvHMA1 in heavy metal-sensitive yeast strains increased their sensitivity to Zn, but also to Cu, Co, Cd, Ca, Mn, and Fe. Based on these results, we suggest that HvHMA1 is a broad-specificity exporter of metals from chloroplasts and serve as a scavenging mechanism for mobilizing plastid Zn and Cu when cells become deficient in these elements. In grains, HvHMA1 might be involved in mobilizing Zn and Cu from the aleurone cells during grain filling and germination.

  7. Zn—Cu Interaction Affecting Zn Adsorption and Plant Availability in a Metal—Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    D.L.Rimmer; LuoYongming

    1996-01-01

    In a previous greenhouse experiment,we showed that there was an interaction between cu and Zn,which affected growth and metal uptake by young barley plants grown on soil to which Cd,Cu,Pb,and Zn had been added.We suggested that the underlying mechanism was the control of the amount of plant-available Zn by competitive adsorption between Cu and Zn,In order to test this hypothesis,the adsorption of Zn alone,and in the presence of added Cd,Cu and Pb,has been measured using the same soil.Following adsorption,the extractability of the Zn in CaCl2 solution was measured .The adsorption isotherms showed that of the added metals only Cu had a large effect on Zn adsorption.The effect of Cu was to reduce Zn adsoption and to increase the amount of CaCl2-extractable(i.e.plant-available) Zn,in agreement with the conclusions from the greenhouse experiment.The magnitude of the effect of Cu on plant-avalilable Zn was similar in both experiments.

  8. Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity

    Science.gov (United States)

    Wang, Lu; Wang, Peng; Huang, Baibiao; Ma, Xiaojuan; Wang, Gang; Dai, Ying; Zhang, Xiaoyang; Qin, Xiaoyan

    2017-01-01

    ZnS microspheres with a series of Mn-doping concentration were synthesized via a facile solvothermal route. The phase structures, morphologies, and chemical states were characterized by X-ray powder diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The phase structure of the synthesized Mn-ZnS microspheres is hexagonal from the XRD patterns. UV-vis diffuse reflectance spectra were employed to analyze the absorption properties of the samples. The Mn-doped ZnS exhibited stronger visible light absorption with the increasing of Mn content. Their photocatalytic activities were evaluated by H2 production from water and reducing Cr6+ under visible light irradiation. The as-prepared Mn-doped ZnS exhibited better photocatalytic performance than that of pure ZnS and the optimal doping concentration was 7%. The enhancement in photocatalytic activity can be attributed to the expansion of light absorption and the increase in life time of photogenerated carriers.

  9. Preparation and characterization of MnZn/FeSiAl soft magnetic composites

    Science.gov (United States)

    Li, Jing; Peng, Xiaoling; Yang, Yanting; Ge, Hongliang

    2017-03-01

    In this paper, MnZn ferrites were used as coating agents to prepare MnZn/FeSiAl soft magnetic composites (SMCs) in order to improve the magnetic property, because of the higher permeability of magnetic MnZn ferrites than that of traditional coatings which are always nonmagnetic. The effects of molding pressure, annealing temperature, and content of insulation on the soft magnetic properties of MnZn/FeSiAl SMCs were studied. With increasing molding pressure, the effective permeability of the SMCs increased firstly and then decreased, while the core loss decreased firstly and then increased, and both have the best performance at 1.6 GPa. The permeability increased with increasing temperature, reached the maximum value at 660 °C and then decreased, while the core loss decreased with increasing temperature to 700 °C and then increased. The permeability increased with increasing MnZn content from 0.1 to 3% and then decreased, while the D-C bias property continuously increased.

  10. Monte Carlo simulation of magnetic phase transitions in Mn-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Drissi, L.B., E-mail: ldrissi@ictp.it [INANOTECH, Institute of Nanomaterials and Nanotechnology (MAScIR), Rabat (Morocco); International Centre for Theoretical Physics, ICTP, Trieste (Italy); Benyoussef, A. [INANOTECH, Institute of Nanomaterials and Nanotechnology (MAScIR), Rabat (Morocco); Laboratoire de Magnetisme et PHE, Faculte des Sciences, Universite Mohammed V, Rabat (Morocco); Saidi, E.H. [INANOTECH, Institute of Nanomaterials and Nanotechnology (MAScIR), Rabat (Morocco); LPHE, Modelisation et Simulation, Faculte des Sciences, Universite Mohammed V, Rabat (Morocco); CPM, Centre of Physics and Mathematics-Rabat (Morocco); Bousmina, M. [INANOTECH, Institute of Nanomaterials and Nanotechnology (MAScIR), Rabat (Morocco)

    2011-12-15

    The magnetic properties of Mn-doped ZnO semiconductor have been investigated using the Monte Carlo method within the Ising model. The temperature dependences of the spontaneous magnetization, specific heat and magnetic susceptibility have been constructed for different concentrations of magnetic dopant Mn and different carrier concentrations. The exact values of Mn concentration and carrier concentration at which high temperature transition occurs are determined. An alternative for the explanation of some controversies concerning the existence and the nature of magnetism in Mn diluted in ZnO systems is given. Other features are also studied. - Highlights: > Mn-doped ZnO is well investigated by ab-initio, but we are not aware of any studies using Monte Carlo. > We aim to shed more light on ambiguities concerning reports of ferromagnetism in ZnO diluted by Mn. > We use MC that gives more precise results than effective field theory that over estimates T{sub Curie}. > We study the effect of magnetic impurities and hole carriers on the existence and nature of ferromagnetism. > We give the exact values of carriers' concentration that perform magnetic order and those to avoid.

  11. Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Matthew A.; Manceau, Alain; Kersten, Michael

    2004-04-01

    The speciation of Mn, Fe, As and Zn in a fast-growing (0.02mm/yr), shallow-marine ferromanganese nodule has been examined by micro X-ray fluorescence, micro X-ray diffraction, and micro X-ray absorption spectroscopy. This nodule exhibits alternating Fe-rich and Mn-rich layers reflecting redox variations in water chemistry. Fe occurs as two-line ferrihydrite. The As is strictly associated with Fe and is mostly pentavalent, with an environment similar to that of As sorbed on or coprecipitated with synthetic ferrihydrite. The Mn is in the form of turbostratic birnessite with {approx} 10 percent trivalent manganese in the layers and probably {approx} 8 percent corner-sharing metal octahedra in the interlayers. The Zn is enriched on the rim of the nodule, associated with Mn. The Zn is completely (>90 percent) tetrahedrally coordinated and sorbed in the interlayers of birnessite on vacant layer Mn sites. The Zn and Mn species are similar to ones found in soils, suggesting common structural principles, despite the differing formation conditions in these systems.

  12. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Don; Kim, Soojeong; Li, Dongguo; Petkov, Valeri; Yoo, Hyun Deog; Phillips, Patrick J.; Wang, Hao; Kim, Jae Jin; More, Karren L.; Key, Baris; Klie, Robert F.; Cabana, Jordi; Stamenkovic, Vojislav R.; Fister, Timothy T.; Markovic, Nenad M.; Burrell, Anthony K.; Tepavcevic, Sanja; Vaughey, John T.

    2017-05-19

    Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn2+ ion chemistry. Several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. This study utilizes a combination of analytical tools to probe the chemistry of a nanostructured delta-MnO2 cathode in association with a nonaqueous acetonitrile-Zn(TFSI)(2) electrolyte and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. Numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/delta-MnO2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.

  13. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-Bin; ZHANG Feng-Ming; DU You-Wei; HUANG Zhi-Gao; ZHENG Jian-Guo; LU Zhi-Hai; ZOU Wen-Qin; LU Zhong-Lin; XU Jian-Ping; JI Jian-Ti; LIU Xing-Chong; WANG Jian-Feng; LV Li-Ya

    2007-01-01

    Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Zn1-xMnxO films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn2+ ions in Mndoped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.

  14. Microstructure Properties of Rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Emad M. Ahmed

    2014-01-01

    Full Text Available The Rietveld X-ray diffraction analysis was applied to analyze the weight fraction of precipitation phases and microstructure characterizations of rapidly solidified Al-8Zn-4Mg-xCu, x = 1, 4, 8, and 10 alloys (in wt.%, prepared by melt spun technique. A good agreement between observed and calculated diffraction pattern was obtained and the conventional Rietveld factors (Rp, Rwp, and GOF converged to satisfactory values. Solid solubilities of Zn, Mg, and Cu in α-Al were extended to high values. Besides, metastable Al0.71Zn0.29, intermetallic Al2CuMg, Al2Cu, and CuMgZn phases have been observed for x = 4, 8, and 10 Cu alloys. The crystal structure and microstructure characterizations exhibit strong Cu content dependence.

  15. The effect of dopant and optical micro-cavity on the photoluminescence of Mn-doped ZnSe nanobelts

    Science.gov (United States)

    2013-01-01

    Pure and Mn-doped ZnSe nanobelts were synthesized by a convenient thermal evaporation method. Scanning electron microscopy, X-ray powder diffraction, energy dispersive X-ray spectroscopy and corresponding element mapping, and transmission electron microscope were used to examine the morphology, phase structure, crystallinity, composition, and growth direction of as-prepared nanobelts. Raman spectra were used to confirm the effective doping of Mn2+ into ZnSe nanobelts. Micro-photoluminescence (PL) spectra were used to investigate the emission property of as-prepared samples. A dominant trapped-state emission band is observed in single ZnSeMn nanobelt. However, we cannot observe the transition emission of Mn ion in this ZnSeMn nanobelt, which confirm that Mn powder act as poor dopant. There are weak near-bandgap emission and strong 4T1 → 6A1 transition emission of Mn2+ in single ZnSeMnCl2 and ZnSeMn(CH3COO)2 nanobelt. More interesting, the 4T1 → 6A1 transition emission in ZnSeMn(CH3COO)2 nanobelt split into multi-bands. PL mapping of individual splitted sub-bands were carried out to explore the origin of multi-bands. These doped nanobelts with novel multi-bands emission can find application in frequency convertor and wavelength-tunable light emission devices. PMID:23829706

  16. Relationship between BMD and Zn, Cu, Ca Levels in the Hair and Meal in Elderly People

    Institute of Scientific and Technical Information of China (English)

    LI Wanli; TIAN Yuhui; SONG Xiaofei; ZHANG Min; SHEN Guanxin

    2005-01-01

    The relationship between bone mineral density (BMD) and Zn, Cu, Ca levels in the meal and hair of urban and rural elderly people were studied. 470 subjects above 60 years old (urban 205 and rural 265), 178 males with an average age of 65.70±3.48 and 292 females with an average age of 65.90±4.02, were inquired. The BMD and Zn, Cu, Ca levels in the meal and hair were measured. The detected BMD in urban and rural female old people was significantly lower than that of the males; The contents of Ca and Zn in the meal of the urban females were significantly lower than those of the urban males; The Ca, Zn in the meal and Zn in the hair of the rural females were significantly lower than those of rural males (P< 0.05 or 0.01). The BMD, Ca intakes, Ca and Zn in the hair of the rural old people were significantly lower than those of the urban old people (P<0.05 or 0.01). There was a correlation between BMD with the Ca, Zn of the hair and dietary Ca,Zn, Cu or between dietary Zn with Ca, Zn in the hair and Ca, Cu intakes. The Zn, Cu and Ca levels in the meal nutrients were correlated with BMD to some degrees. Lack of Ca and Zn in the meal can cause the reduction of BMD.

  17. Thermal behavior of MOCVD-grown Cu-clusters on ZnO(1010).

    Science.gov (United States)

    Kroll, Martin; Löber, Thomas; Schott, Vadim; Wöll, Christof; Köhler, Ulrich

    2012-02-01

    Scanning tunnelling microscopy (STM) and X-ray photoelectron spectroscopy (XPS, AES) were used to study MOCVD of Cu-clusters on the mixed terminated ZnO(1010) surface in comparison to MBE Cu-deposition. Both deposition methods result in the same Cu cluster morphology. After annealing to 670 K the amount of Cu visible above the oxide surface is found to decrease substantially, indicating a substantial diffusion of Cu atoms inside the ZnO-bulk. The spectroscopic data do not show any evidence for changes in the Cu oxidation state during thermal treatment up to 770 K.

  18. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Diestra, Daysi; Beltran-Huarac, Juan, E-mail: juan.beltran1@upr.edu; Bracho-Rincon, Dina P.; González-Feliciano, José A.; González, Carlos I.; Weiner, Brad R.; Morell, Gerardo [University of Puerto Rico, Molecular Sciences Research Center (United States)

    2015-12-15

    We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H{sub 2}O{sub 2}) oxidation and its eventual reduction (−0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 μmol/L–0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H{sub 2}O{sub 2} to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.Graphical Abstract.

  19. Radiative recombination in Cu2ZnSnSe4 thin films with Cu deficiency and Zn excess

    Science.gov (United States)

    Yakushev, M. V.; Márquez-Prieto, J.; Forbes, I.; Edwards, P. R.; Zhivulko, V. D.; Mudryi, A. V.; Krustok, J.; Martin, R. W.

    2015-12-01

    Thin films of Cu2ZnSnSe4 (CZTSe) with copper deficiency and zinc excess were fabricated at Northumbria University by the selenisation of metallic precursors deposited on Mo/glass and bare glass substrates. Absorption and photoluminescence (PL) measurements were used to examine the film on glass whereas films on Mo/glass were used to produce a solar cell with efficiency of 8.1%. Detailed temperature and excitation intensity analysis of PL spectra allows identification of the main recombination mechanisms as band-to-tail and band-to-band transitions. The latter transition was observed in the spectra from 6 to 300 K.

  20. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    Energy Technology Data Exchange (ETDEWEB)

    Iribarren, A., E-mail: augusto@imre.oc.uh.cu [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba); Hernández-Rodríguez, E. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba); Maqueira, L. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba); Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba)

    2014-12-15

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due to Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.

  1. Polarized Raman spectroscopy of Cu-poor and Zn-rich single-crystal Cu2ZnSnSe4

    Science.gov (United States)

    Nam, Dahyun; Kim, Jungcheol; Lee, Jae-Ung; Nagaoka, Akira; Yoshino, Kenji; Cha, Wonsuk; Kim, Hyunjung; Hwang, In Chul; Yoon, Kyung Byung; Cheong, Hyeonsik

    2014-10-01

    Cu2ZnSnSe4 (CZTSe) is a p-type semiconductor which has been developed as an absorber layer of polycrystalline thin film solar cells. Generally, Cu-poor and Zn-rich compositions tend to give the highest solar conversion efficiencies. Raman spectroscopy has been used to detect secondary phases such as ZnSe and Cu2SnSe3 in CZTSe thin films. However, the fundamental phonon modes in single-crystal CZTSe with a composition matching that of high-efficiency thin film solar cells have not yet been fully understood. We performed polarized Raman measurements on Cu-poor and Zn-rich single-crystal CZTSe and identified 12 peaks, including two low-frequency peaks. By comparing the polarization dependence of the Raman peaks with a group theoretical analysis, we concluded that the crystal structure of CZTSe single-crystal is kesterite and made appropriate peak assignments.

  2. Absolute densities of Cu, Zn, Sn, and S atoms in magnetron sputtering plasmas employing a Cu2ZnSnS4 target

    Science.gov (United States)

    Nafarizal, Nayan; Sasaki, Koichi

    2016-07-01

    Absolute densities of Cu, Zn, Sn, and S atoms in magnetron sputtering plasmas were measured by ultraviolet absorption spectroscopy and vacuum ultraviolet absorption spectroscopy. A stoichiometric Cu2ZnSnS4 (CZTS) target was used in this work. It was found that, at various Ar pressures, the S density ranged between (2-8) × 1010 cm-3, the Cu and Sn densities ranged between (0.6-3) × 1010 cm-3, and the Zn density ranged between (2-3) × 109 cm-3. The effective depositing flux, which was evaluated from the absolute densities and the sticking probabilities, was comparable with that evaluated from the deposition rate of the CZTS film. However, the composition ratio of Cu, Zn, Sn, and S in the gas phase deviated from the ideal stoichiometry of CZTS. We discussed the possible mechanisms for the difference among the element compositions of the target, the deposited film, and the gas-phase densities.

  3. Dispersion, speciation and adsorption treatment of heavy metals in the vicinity of the Shi-Heung Cu-Pb-Zn mine

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Song; Chon, Hyo Taek [Seoul National Univ., Seoul (Korea, Republic of)

    1995-10-01

    In order to investigate the dispersion patterns and speciation of Cu, Pb, Zn and Cd in soils, stream sediments and stream waters, geochemical studies of soil, stream sediment and stream water samples collected in the vicinity of the Shi-Heung Cu-Pb-Zn mine was carried out. Cation exchange capacity measurement, size analysis, X-ray diffraction analysis and batch test were performed to select applicable soil for adsorption treatment. The average content of Cu, Pb, Zn and Cd in soils collected from tailings and ore dressing plant is 1084 ppm, 2292 ppm, 3512 ppm and, 29.2 ppm, respectively, and therefore, tailings and ore dressing plant site may be the major contamination sources in this study area. The mean content of Cu, Pb, Zn and Cd in stream sediments is extremely high up to 794 ppm, 1633 ppm, 2946 ppm and 25.2 ppm, respectively. Tailing particles and heavy metal ions are dispersed along the tributary system. Results from the sequential extraction analysis indicate; (1) most of Cu is bound to organic matters and sulphides, (2) fraction of Pb is mainly bound to Fe and Mn oxides. Most of Zn is largely bound to Fe and Mn oxides and residual fraction. Ion exchangeable fraction of Cd is relatively higher than those of Cu, Pb and Zn. Batch test on soils collected from the kaolinite and/or pyrophyllite mines and from the control areas was carried out to select an applicable soil samples for adsorption treatment. The sample, S10, collected from the control area 2 (clay content 33.2%) shows the highest K{sub d} (distribution coefficient). Organic content in soils and several clay minerals shows relatively good correlation with K{sub d}. It means that applicable soils for adsorption treatment of heavy metals show high organic and clay content. (author). 37 refs., 9 tabs., 6 figs.

  4. Synthetic, structural, spectroscopic and theoretical study of a Mn(III)-Cu(II) dimer containing a Jahn-Teller compressed Mn ion

    DEFF Research Database (Denmark)

    Berg, Nelly; Hooper, Thomas N.; Liu, Junjie;

    2013-01-01

    The heterobimetallic complex [Cu(II)Mn(III)(L)(2)(py)(4)](ClO(4))·EtOH (1) built using the pro-ligand 2,2'-biphenol (LH(2)), contains a rare example of a Jahn-Teller compressed Mn(III) centre. Dc magnetic susceptibility measurements on 1 reveal a strong antiferromagnetic exchange between the Cu(I...

  5. Investigations on Cu2+-substituted Ni-Zn ferrite nanoparticles

    Science.gov (United States)

    Amarjeet; Kumar, Vinod

    2016-11-01

    CuxNi(1-x)/2Zn(1-x)/2Fe2O4 (x = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700∘C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz-5 MHz. Temperature dependence of the dielectric constant of Cu0.1Ni0.45Zn0.45Fe2O4 was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz-5 MHz. It was found that the electrical conductivity decreases with increasing Cu2+ ion content while it increases with the increase in temperature.

  6. Preparation and Sinterability of Mn-Zn Ferrite Powders by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mn-Zn spinel ferrites were synthesized by sol-gel method. Effects of calcined temperature on structure and particle size of MnZnFe2O4 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns indicate that the ultra fine Mn-Zn ferrite exhibits a spinel crystal structure. SEM images show that the powder fired at 900 ℃ for 2 h has an average diameter of 60~90 nm. The particle size becomes larger with the increasing of calcined temperature and the distribution of particle becomes even more homogeneous. Sintering behaviors of synthesized ferrite powders depend on the powder characteristics and high temperatures have induced the good crystallization of particles.

  7. Preparation and properties of nanosize MnZn ferrite from δ-FeOOH

    Institute of Scientific and Technical Information of China (English)

    HAO Shunli; WANG Xin; WEI Yu; Wang Yongming; Liu Chunjing

    2006-01-01

    Ferrous ion was transformed into feroxyhyte (δ-FeOOH) by oxidation. Then, manganese sulfate and zinc sulfate in some ratio were added to the feroxyhyte solution. The co-precipitation was boiling reflux conditions sometime under constant stirring. The nanosize MnZn ferrite powder was formed. The mechanism of preparation of the nanosize MnZn ferrite was discussed, and the formation of feroxyhyte which was playing a key role during the process was mentioned. The properties of powder was tested by means of X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results show that the samples of spherical particles about 20 nm, which have characteristics of ferrimagnetism, has larger saturation magnetization, but the remanent magnetization and coercivity are comparatively smaller. The spinel MnZn ferrite nanosize powder was successfully prepared from δ-FeOOH at low temperature, with low-carbon steel and peroxide as main material.

  8. Phase Pure Synthesis and Morphology Dependent Magnetization in Mn Doped ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    Murtaza Saleem

    2014-01-01

    Full Text Available Zn0.95Mn0.05O nanostructures were synthesized using sol gel derived autocombustion technique. As-burnt samples were thermally annealed at different temperatures (400, 600, and 800°C for 8 hours to investigate their effect on structural morphology and magnetic behavior. X-ray diffraction and scanning electron microscopic studies demonstrated the improvement in crystallinity of phase pure wurtzite structure of Mn doped ZnO with variation of annealing temperature. Energy dispersive X-ray elemental compositional analysis confirmed the exact nominal compositions of the reactants. Electrical resistivity measurements were performed with variation in temperature, which depicted the semiconducting nature similar to parent ZnO after 5 at% Mn doping. Magnetic measurements by superconducting quantum interference device detected an enhanced trend of ferromagnetic interactions in thermally annealed compositions attributed to the improved structural morphology and crystalline refinement process.

  9. Raman Spectroscopy and Magnetic Properties of Mn-Doped ZnO Bulk Single Crystal

    Institute of Scientific and Technical Information of China (English)

    HE Qing-Bo; XU Jia-Yue; LI Xin-Hua; A.Kamzin; L.Kamzina

    2007-01-01

    Mn doped ZnO bulk single crystals are grown by the modified Bridgman method.The as-grown crystals are red in colour.The additional Raman mode observed at 524 cm-1 is attributed to the Mn ions incorporating into ZnO crystal.The crystal exhibited paramagnetic under lower applied fleld below 2280 Oe.Then diamagnetism is observed in the crystal when the magnetic field rises up and becomes dorainant under applied field above 5270 Oe.The magnetic susceptibility dependence on the temperature follows a Curie law indicating a typical paramagnetic characteristic under an applied field of 2kOe.No ferromagnetic ordering is observed in the as-grown Mn-doped ZnO crystal.

  10. Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Li Pan-Pan; Wang Jing-Min; Jiang Cheng-Bao

    2011-01-01

    This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Ni50-x:CuxMn31Ga19 (x=2-10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.

  11. Oxidación de Fenol con Catalizadores de CuO/Al2O3, CuO/ZnAl2O4 y CuO-ZnO-AlxOy Oxidation of Phenol with CuO/Al2O3, CuO/ZnAl2O4 and CuO-ZnO-AlxOy Catalysts

    Directory of Open Access Journals (Sweden)

    Isaías Hernández

    2006-01-01

    Full Text Available Fenol en agua residual industrial fue oxidado catalíticamente con O2 en un reactor por lotes. Para este fin, se evaluaron tres series de catalizadores preparados por impregnación de Cu(NO2 en Al2O3 y en ZnAl2O4 y por precipitación de nitratos de Cu, Zn y Al. Se caracterizaron por difracción de rayos-X, absorción atómica, microscopia electrónica, adsorción de N2 y termorreducción programada. Se observó CuO sobre las superficies de todos los catalizadores. Se encontró una fase amorfa solo en los catalizadores soportados en Al2O3 con alta área y en los demás fue cristalina con bajas áreas. La mayor velocidad de reacción fue obtenida por el catalizador másico de 22% de Cu. La velocidad de reacción máxima para todos los catalizadores fue cercana a una concentración de 20% de Cu. Durante la reacción se produjeron compuestos orgánicos oxigenados que aumentaron la acidez del agua residual, la cual atacó la superficie de los catalizadores disolviendo una parte pequeña de Cu, Zn y Al.Fenol in industrial residual water was oxidized catalytically with O2 in a batch reactor. For this purpose, three series of catalysts were evaluated which were prepared by impregnation of Cu(NO2 on Al2O3, on ZnAl2O4 and by precipitation of nitrates of Cu, Zn and Al. They were characterized by x-ray diffraction, atomic absorption, electronic microscopy, adsorption of N2 and temperature programmed reduction. CuO very dispersed was observed on the surface of all the catalysts. It was found an amorphous phase in the Al2O3 supported catalysts with high surface area and in the other ones it was crystalline with low areas. The highest reaction rate was obtained for the massive catalyst with 22% of Cu. The maximum of reaction rate for all the catalysts was near to 20% of Cu. During the reaction it was produced oxygenated organic compounds which increased the acidity of the residual water, which attacked the surface of the catalysts dissolving a small amount of

  12. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn

    DEFF Research Database (Denmark)

    Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernandez Calviño, David;

    2014-01-01

    % for Pb2+, 83-84% for Cu2+, 78-84% for Cd2+, 77-83% for Zn2+, and 70-75% for Ni2+, and it was faster for low concentrations, with Pb suffering the highest retention, followed by Cu, Cd, Ni and Zn. The fitting to the Freundlich and Langmuir models was satisfactory. Desorption increased in parallel...

  13. Formation of ferric flocks for the removal of Zn and Cu from dockyard wastewater

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Arevalo, Edurado; Stichnothe, Heinz

    2006-01-01

    Wastewater from wash down of boat hulls contains typically Cu, Zn and organometallic biocides, e.g. tributyltin (TBT). In some cases this wastewater is led directly into the marine system. In the present paper a cheap flocculation method (iron flocculants) for removal of Cu and Zn from...

  14. Activation of a Cu/ZnO catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Rasmussen, F.B.; Helveg, S.;

    2006-01-01

    The structural changes during activation by temperature-programmed reduction of a Cu/ZnO catalyst for methanol synthesis have been studied by several in situ techniques. The catalyst is prepared by coprecipitation and contains 4.76 wt% Cu, which forms a substitutional solid solution with Zn...

  15. Selective recovery of Cu, Zn, and Ni from acid mine drainage.

    Science.gov (United States)

    Park, Sang-Min; Yoo, Jong-Chan; Ji, Sang-Woo; Yang, Jung-Seok; Baek, Kitae

    2013-12-01

    In Korea, the heavy metal pollution from about 1,000 abandoned mines has been a serious environmental issue. Especially, the surface waters, groundwaters, and soils around mines have been contaminated by heavy metals originating from acid mine drainage (AMD) and mine tailings. So far, AMD was considered as a waste stream to be treated to prevent environmental pollutions; however, the stream contains mainly Fe and Al and valuable metals such as Ni, Zn, and Cu. In this study, Visual MINTEQ simulation was carried out to investigate the speciation of heavy metals as functions of pH and neutralizing agents. Based on the simulation, selective pH values were determined to form hydroxide or carbonate precipitates of Cu, Zn, and Ni. Experiments based on the simulation results show that the recovery yield of Zn and Cu were 91 and 94 %, respectively, in a binary mixture of Cu and Zn, while 95 % of Cu and 94 % of Ni were recovered in a binary mixture of Cu and Ni. However, the recovery yield and purity of Zn and Ni were very low because of similar characteristics of Zn and Ni. Therefore, the mixture of Cu and Zn or Cu and Ni could be recovered by selective precipitation via pH adjustment; however, it is impossible to recover selectively Zn and Ni in the mixture of them.

  16. Synthesis CuO-ZnO nanocomposite and its application as an antibacterial agent

    Science.gov (United States)

    Widiarti, N.; Sae, J. K.; Wahyuni, S.

    2017-02-01

    The synthesis of CuO-ZnO composites and their application as anti-bacterial have been conducted. Nanocomposite CuO-ZnO was synthesized using sol-gel method. The nanocomposite products were characterized by XRD, DR-UV, SAA, FTIR, SEM-EDX. The results of the XRD analysis showed that the CuO-ZnO composite has a nanometer size with the average of 15.99 nanometer. The DR-UV analysis showed that the CuO-ZnO composite has a band-gap of 2.28 eV in the average. The analysis of SAA showed that the CuO-ZnO has a surface area of 23.20 m2/g in average. FTIR investigation revealed that the vibration of ZnO was observed at 432.05 cm-1 whereas CuO at 524.64 cm-1 and 594, 06 cm-1. The SEM-EDX analysis showed that the ZnO has a hexagonal structure whereas the CuO has a monoclinic structure. The CuO-ZnO nanocomposite has the ability as an antibacterial against S. aureus as gram-positive and E. coli as Gram-negative bacteria.

  17. Formation of ferric flocks for the removal of Zn and Cu from dockyard wastewater

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Arevalo, Edurado; Stichnothe, Heinz

    2006-01-01

    Wastewater from wash down of boat hulls contains typically Cu, Zn and organometallic biocides, e.g. tributyltin (TBT). In some cases this wastewater is led directly into the marine system. In the present paper a cheap flocculation method (iron flocculants) for removal of Cu and Zn from the wastew...

  18. First-principles investigation of Cu-doped ZnS with enhanced photocatalytic hydrogen production activity

    Science.gov (United States)

    Dong, Ming; Zhou, Peng; Jiang, Chuanjia; Cheng, Bei; Yu, Jiaguo

    2017-01-01

    The band structure and electronic properties of Cu-doped wurtzite ZnS were investigated by density functional theory calculations. According to the formation energies, the substitutional Cu and S vacancy defects are stable among the examined doping species. Particularly, the hybridization of substitutional Cu 3d and S 3p orbitals narrows the band gap of substitutional Cu-doped ZnS (CuZn-ZnS), while the high effective mass ratio of photogenerated holes and electrons (mh∗/me∗) in the CuZn-ZnS is beneficial for the separation and migration of the photogenerated charge carriers. Lab-synthesized CuZn-ZnS sample exhibited enhanced visible-light absorption and photocatalytic hydrogen production activity compared to pure ZnS.

  19. Determination of impurity elements in MnZn ferrites by inductively coupled plasma mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    张萍; 符靓; 马俊才; 唐有根

    2015-01-01

    An inductively coupled plasma mass spectrometry (ICP-MS) method was developed for the determination of Na, Mg, Al, K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+HCl with microwave digestion followed by dilution with ultrapure water, then the above 16 impurity elements in the solution were analyzed directly by ICP-MS. The impurity elements were introduced by the helium gas or hydrogen gas into the octopole reaction system (ORS) to eliminate the polyatomic interferences caused by the high salty matrixes. The matrix effect was minimized through matrix matching, and Be, Y and Rh were used as internal standard elements. The working parameters of the instrument were optimized. The results show that the method has good precision and high accuracy. The detection limits for the investigated elements are in the range of 0.9−37.5 ng/L, the relative standard deviation of each element is within 1.1%−4.8%, and the recovery of each element is 90%−108%.

  20. Magnetic properties of Cu substituted NdMn2Si2 intermetallics

    Science.gov (United States)

    Elmali, A.; Dincer, I.; Elerman, Y.; Ehrenberg, H.; Fuess, H.

    2005-05-01

    The structure and magnetic properties of NdMn2-xCuxSi2 (0.2 x 1) were studied by X-ray powder diffraction and magnetization measurements. In this study, we investigate the variations in the magnetic properties of NdMn2-xCuxSi2 as a function of Cu concentration by examing the evolution of the features in the temperature dependence of the magnetization. Earlier neutron diffraction experiments showed that the ferromagnetic Mn planes are ordered antiparallel along the c-axis below 380 K and the Nd sublattice orders at 33 K in NdMn2Si2. The ordering of the Nd sublattice reconfigures the ordering in Mn sublattice and leads to ferromagnetic ordering. With increasing amount of Cu, the Curie temperature has a maximum value of 120 K at x = 0.7 and decreases for the samples with x 0.8.

  1. Studies of Mn/ZnO (0001¯) Interfacial Formation and Electronic Properties with Synchrotron Radiation

    Science.gov (United States)

    Zou, C. W.; Xu, P. S.; Wu, Y. Y.; Sun, B.; Xu, F. Q.; Pan, H. B.; Yuan, H. T.; Du, X. L.

    2007-01-01

    The initial growth, interfacial reaction and Fermi level movement of Mn on the O-terminated Zn (000 1¯) surface have been investigated by using synchrotron radiation photoelectron spectroscopy (SRPES) and X-ray photoemission (XPS). Mn is found to be grown on the surface in the layer-by-layer (Frank-van der Merwe) mode and be quite stable on the O-terminated surface at room temperature. With increasing the coverage of Mn, a downward Fermi level movement in band structure measurement of SRPES is observed and the resultant Schottky Barrier Height (SBH) is calculated to be about 1.1eV. Annealing behavior of the interface is investigated and we find that annealing at 600 °C induces a pronounced Mn-Zn atoms exchange reaction at the interface.

  2. Reversible switching of ferromagnetism in ZnCuO nanorods by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Changwei, E-mail: Changweizou@hotmail.com; Wang, Hongjun; Liang, Feng; Shao, Lexi [Department of Physics and Development Center for New Materials Engineering and Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang 524048 (China)

    2015-04-06

    The reproducible switching of ferromagnetism in ZnCuO nanorods by applying a reversible electric field has been realized. High-resolution transmission electron microscopy images showed a hexagonal wurtzite structure with no detectable trace of secondary phase or precipitation of Cu impurity in the ZnCuO nanorods. The Cu concentrations in the ZnCuO nanorods were tested by energy dispersive spectroscopy and x-ray photoelectron spectroscopy and found to be about 2.7 at. %. The switching mechanism is confirmed in terms of the formation and rupture of conductive filaments, with oxygen vacancies (V{sub O}) localized mainly on surface of the ZnCuO nanorods. Subsequently, the variation of V{sub O} concentration during the resistive switching process modulates the ferromagnetism of the ZnCuO nanorods. The saturation magnetization at low resistance state is apparently 6.4 times larger than that at high resistance state for an Au/ZnCuO/ITO structure. An indirect double-exchange model has been used to explain the ferromagnetism in ZnCuO nanorods.

  3. Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids

    Science.gov (United States)

    Sajimol Augustine, M.; Anas, Abdulaziz; Das, Ani V.; Sreekanth, S.; Jayalekshmi, S.

    2015-02-01

    Highly luminescent, manganese doped, zinc sulphide (ZnS:Mn) nanocrystals biofunctionalized with chitosan and various aminoacids such as L-citrulline, L-lysine, L-arginine, L-serine, L-histidine and glycine were synthesized by chemical capping co-precipitation method at room temperature, which is a simple and cost effective technique. The synthesized nanocrystals were structurally characterized by TEM, XRD, EDXS and FT-IR spectroscopy techniques. They possess high colloidal stability with strong orange red photoluminescence emission at 598 nm. The intensity of orange red emission has been observed to be maximum in L-citrulline capped ZnS:Mn nanocrystals in which the emission at 420 nm is effectively quenched by surface passivation due to capping. Taking into consideration the prospects of these highly luminescent, bio-compatible ZnS:Mn nanocrystals in bio-imaging applications, cytotoxicity studies were conducted to identify the capping combination which would accomplish minimum toxic effects. ZnS:Mn nanocrystals biofunctionalized with chitosan, L-citrulline, glycine, L-artginine, L-serine and L-histidine showed least toxicity up to 10 nM concentrations in mouse fibroblast L929 cells, which further confirms their cytocompatibility. Also the ZnS:Mn nanocrystals biofunctionalized with L-arginine showed maximum uptake in in vitro studies carried out in human embryonic kidney cells, HEK-293T, which shows the significant role of this particular amino acid in fetoplacental nutrition. The present study highlights the suitability of aminoacid conjugated ZnS:Mn nanocrystals, as promising candidates for biomedical applications.

  4. Continuous determination of Cu, Al, Zn in Ag- Cu- Al- Zn quarternary alloy by titration%滴定法连续测定银铜铝锌四元合金中Cu,Al,Zn

    Institute of Scientific and Technical Information of China (English)

    麦丽碧

    2004-01-01

    采用连续滴定的方法同时测定Cu,Al,Zn.加入一定量的EDTA标准溶液,使Cu2+,Al3+,Zn2+全部与EDTA络合,用Zn2+盐滴定过量EDTA,然后加氟盐置换出EDTA-Al中的EDTA,用硫脲抗坏血酸和邻菲啰啉置换出EDTA-Cu中的EDTA,并分别用Zn2+盐滴定,从总量中减去Al量和Cu量即得Zn量.滴定Cu,Al,Zn回收率均在98%以上,本法分析快速准确.

  5. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Thorhauge, Max; Falsig, Hanne

    2016-01-01

    Promoter elements enhance the activity and selectivity of heterogeneous catalysts. Here, we show how methanol synthesis from synthesis gas over copper (Cu) nanoparticles is boosted by zinc oxide (ZnO) nanoparticles. By combining surface area titration, electron microscopy, activity measurement......, density functional theory calculations, and modeling, we show that the promotion is related to Zn atoms migrating in the Cu surface. The Zn coverage is quantitatively described as a function of the methanol synthesis conditions and of the size-dependent thermodynamic activities of the Cu and Zn...

  6. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    KAUST Repository

    Amin, B.

    2013-04-23

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  7. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying, E-mail: caoying1130@sina.com [Henan Normal University, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2013-11-15

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.

  8. Photocatalytic Characterization of Fe- and Cu-Doped ZnO Nanorods Synthesized by Cohydrolysis

    Directory of Open Access Journals (Sweden)

    Young Rang Uhm

    2013-01-01

    Full Text Available Fe- and Cu-doped ZnO nanorods have been synthesized by a novel process employing a hydrolysis of metal powders. Zn, Fe, and Cu nanopowders were used as starting materials and incorporated into distilled water. The solution was refluxed at 60°C for 24 h to obtain the precipitates from the hydrolysis of Zn and dopants (Cu and Fe. The TEM results for ZnO with and without metal doping showed that the produced powders had a rod-like shape. The rod shape was attributable to the zinc oxide from the hydrolysis of Zn. With an increasing doping content, the UV-vis spectra were shifted to a long wavelength and this result indicates that the band gap was changed by the metal doping. The values of phenol degrading Fe- and Cu-doped ZnO by a solar simulator were measured to be 60 and 75%, respectively.

  9. Cu2ZnSnSe4 thin-film solar cells fabricated using Cu2SnSe3 and ZnSe bilayers

    Science.gov (United States)

    Kim, Kang Min; Liao, Kuang Hsiang; Tampo, Hitoshi; Shibata, Hajime; Niki, Shigeru

    2015-04-01

    Evaporated Cu2SnSe3 (CTSe) and ZnSe bilayers are used as precursors for the fabrication of Cu2ZnSnSe4 (CZTSe) thin films. Large grains (i.e., >1 µm) in CZTSe were obtained at a relatively low annealing temperature of 500 °C. The stacking order of precursors strongly affected the chemical composition of CZTSe thin films even under identical growth conditions. Zn loss in CTSe/ZnSe/Mo precursors occurred during CTSe deposition, whereas ZnSe/CTSe/Mo precursors showed improved stability in composition. The CZTSe solar cells fabricated using ZnSe/CTSe bilayer precursors with annealing showed a conversion efficiency of over 7%.

  10. One-pot synthesis of multicolor MnSe:ZnSe nanocrystals for optical coding.

    Science.gov (United States)

    Wang, Yanbin; Wang, Chunlei; Xu, Shuhong; Shao, Haibao; Jiang, Yuan; Bo, Fan; Wang, Zhuyuan; Cui, Yiping

    2014-02-01

    Though the investigation on controlling the fluorescence properties of nanocrystals (NCs) with single emission has been widely reported, few efforts were spent on adjusting the fluorescence properties of NCs with multiple emission peaks. In this work, we successfully synthesized multicolor MnSe:ZnSe NCs with multiple emission peaks and developed a simple and accurate method to realize photoluminescence (PL) spectra (or color) adjustment. The PL of MnSe:ZnSe NCs has two distinct emission peaks, the trap emission of ZnSe at 475nm and Mn(2+)-induced emission at 585nm. By adjusting the nucleation temperature, the emission color of the NCs can be encoded according to the ratio of the emission intensities at 475 and 585nm. With the nucleation temperature rising from 0 to 70°C, the PL ratio between trap emission and Mn(2+)-induced emission can be consecutively changed from (1, 3) to (1, 0.5). In addition, the trap state is deeply inside the NCs rather than on NCs surface so that the trap emission is stable during environment change. Thus, these MnSe:ZnSe NCs hold great promise as novel single-particle coding labels for biomedical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effect of sintering on structural and electrical properties of co-precipitated Mn-Zn ferrites

    Science.gov (United States)

    Mehmood, S.; Zahra, F.; Rehman, M. A.

    2016-08-01

    Mn-Zn ferrite is one of the important class of soft ferrites. These are famous for possessing high initial permeability. In the present work, we have studied the effect of sintering on Mn-Zn nano particles. The particles were synthesized using co-precipitation method. The structural characterization of the prepared sample after each sintering step were done by using XRD. The XRD analysis showed the spinel structure. The electrical properties were studied as a function of temperature. It was observed that dielectric constant, loss tangent and AC conductivity varies with respect to temperature. The prepared composition is useful in microwave devices.

  12. Synthesis and photoluminescence properties of Mn-doped ZnS nanobelts

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-yan; YANG Xiao-ling; HOU De-dong; LIU Ying-kai

    2009-01-01

    Mn-doped ZnS nanobelts have been prepared through a thermal evaporation method at 1100℃. The synthesized nanobelts are characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectroscopy. The results show that the nanobelts have an uniform single-crystal hexagonal wurtzite structure and grow along [0001] direction. Room-temperature photoluminescence reveals that the intrinsic PL of the nanobelts disappears and a new PL peak of the Mn-doped ZnS nanobelts emerges at 575 nm.

  13. ZnS (Mn Nanoparticles as Luminescent Centers for Siloxane Based Scintillators

    Directory of Open Access Journals (Sweden)

    S. Carturan

    2016-08-01

    Full Text Available Synthesis of oleic acid stabilized ZnS nanocrystals activated with Mn is pursued. A hydrothermal method where high pressure and temperature are applied to control the nanocrystals growth is adopted. Capping the nanoparticle surface with oleic acid (OA improved light output. Samples loaded with both the phosphor and the neutron sensitizer have been produced and tested in a preliminary test as alpha particle detectors and secondly as thermal neutron detectors. The results support further development for siloxane-based scintillator detectors employing ZnS (Mn nanoparticles.

  14. As-cast microstructure of Al-Zn-Mg and Al-Zn-Mg-Cu alloys added erbium

    Institute of Scientific and Technical Information of China (English)

    MAO Jian-wei; JIN Tou-nan; XU Guo-fu; NIE Zuo-ren

    2005-01-01

    The effects of different contents of rare earth element, and erbium, on the as-cast microstructures of Al-6Zn-2Mg and Al-6Zn-2Mg-1.8Cu alloys were studied by optical microscopy, scanning electron microscopy, X-ray diffractometry, transmission electron microscopy and EDS analysis. The results show that the netlike structure of as-cast alloys can be remarkably refined, and the distance of dendritic structure decreases, with Er addition. However, the improvement results on Al-Zn-Mg-Cu are not better than that of Al-Zn-Mg. Er and Al can interact to form Al3Er phase, which is coherent with α(Al) matrix, with trace Er addition to the Al-Zn-Mg alloy. The refinement effect of Al-Zn-Mg alloys is familiar with the formation and precipitation of coherent Al3Er phases. The ternary compound AlCuEr, similar with AlCuSc phase, will form when Er is added to Al-Zn-Mg-Cu alloy, which suppresses the formation of Al3Er phase and doesn't solve in the following heat treatment.

  15. Magnetism in Mn and Co doped ZnO bulk samples

    Institute of Scientific and Technical Information of China (English)

    WANG YongQiang; YUAN SongLiu; SONG YunXing; LIU Li; TIAN ZhaoMing; LI Pai; ZHOU YuanMing; LI YunLong; YIN ShiYan

    2007-01-01

    Bulk samples with nominal composition Zn0.95Co0.05O and Zn0.92Co0.05Mn0.03O were fabricated by a solid-state reaction method at 600℃. X-ray diffraction experiment showed that the peaks of secondary phase Co3O4 with a cubic structure were visible in both samples, besides the main peaks of wurtzite structure as ZnO. Magnetization measurement indicated that doping Co alone can induce ferromagnetism in ZnO itself, while the introduction of Mn significantly enhances ferromagnetism. However,both samples showed different magnetic behavior at temperatures below 50 K. It was also noted that ferromagnetic coupling interaction was weakened due to the presence of antiferromagnetic Co3O4.

  16. Barley HvHMA1 is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Dalgaard; Pedas, Pai; Schiller, Michaela;

    2012-01-01

    Heavy metal transporters belonging to the P1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. Heavy metal transporters belonging to the P1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. In this study we investigated...... interference did not have an effect on foliar Zn and Cu contents but resulted in a significant increase in grain Zn and Cu content. Heterologous expression of HvHMA1 in heavy metal-sensitive yeast strains increased their sensitivity to Zn, but also to Cu, Co, Cd, Ca, Mn, and Fe. Based on these results, we...... suggest that HvHMA1 is a broad-specificity exporter of metals from chloroplasts and serve as a scavenging mechanism for mobilizing plastid Zn and Cu when cells become deficient in these elements. In grains, HvHMA1 might be involved in mobilizing Zn and Cu from the aleurone cells during grain filling...

  17. Room temperature ferromagnetism in Mn doped ZnO: Co nanoparticles by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivelu, V.; Selvadurai, A. Paul Blessington [Department of Physics, Anna University, Chennai 600044 (India); Zhao, Yongsheng; Thiyagarajan, R. [Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai 201203 (China); Murugaraj, R., E-mail: r.murugaraj@gmail.com [Department of Physics, Anna University, Chennai 600044 (India)

    2016-01-15

    In this present work, the Mn{sup 2+} and Co{sup 2+} ions doping and co-doping effect on the structural, vibrational, morphological, optical and magnetic behaviors of ZnO based dilute magnetic semiconductors are reported. The Zn{sub 0.95}Co{sub 0.05}O (ZC), Zn{sub 0.95}Mn{sub 0.05}O (ZM) and Zn{sub 0.90}Co{sub 0.05}Mn{sub 0.05}O (ZCM) samples were prepared by co-precipitation method. From the XRD analysis, it was observed that on the doping of Mn{sup 2+} ion in ZnO matrix, decreases their crystalline nature as well as the crystallite size significantly. The Raman spectra, Photoluminescence and electron paramagnetic resonance spectroscopy measurements reveal that the presence of defects in prepared samples. The UV-DRS spectroscopic exhibits the incorporation of dopant ions and their effect on the band gap subsequently. The magnetization measurements suggest the room temperature ferromagnetism (RTFM) in the prepared samples. The observed RTFM phenomenon was discussed based on the defects and grain confinement.

  18. Research on Cu2ZnSnTe4 crystals and heterojunctions based on such crystals

    Directory of Open Access Journals (Sweden)

    Kovaliuk T. T.

    2015-12-01

    Full Text Available The paper reports on the results of the studies of magnetic, kinetic and optical properties of Cu2ZnSnTe4 crystals. The Cu2ZnSnTe4 crystals showed diamagnetic properties (the magnetic susceptibility almost independent of the magnetic field and temperature. The Cu2ZnSnTe4 crystals possessed p-type of conductivity and the Hall coefficient was independent on temperature. The temperature dependence of the electrical conductivity of the Cu2ZnSnTe4 crystal shows metallic character, i. e. decreases with the increase of temperature, that is caused by the lower charge carrier mobility at higher temperature. Thermoelectric power of the samples ispositive that also indicates on the prevalence of p-type conductivity. Heterojunctions n-TiN/p-Cu2ZnSnTe4, n-TiO2/p-Cu2ZnSnTe4 and n-MoO/p-Cu2ZnSnTe4 were fabricated by the reactive magnetron sputtering of TiN, TiO2 and MoOx thin films, respectively, onto the substrates made of the Cu2ZnSnTe4 crystals. The dominating current transport mechanisms in the n-TiN/p-Cu2ZnSnTe4 and n-TiO2/p-Cu2ZnSnTe4 heterojunctions were established to be the tunnel-recombination mechanism at forward bias and tunneling at reverse bias.

  19. Sputtered Ni-Zn under bump metallurgy (UBM) for Sn-Ag-Cu solders

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Jin; Kim, Young Min [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Young-Ho, E-mail: kimyh@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ni-Zn UBM can effectively suppress the growth of IMCs and the consumption of UBM. Black-Right-Pointing-Pointer The growth of (Ni, Cu){sub 3}Sn{sub 4} was retarded at the SAC305/Ni-Zn interface after aging. Black-Right-Pointing-Pointer Only a single (Cu, Ni){sub 6}Sn{sub 5} formed at the SAC107/Ni-Zn interface after aging. Black-Right-Pointing-Pointer Segregated Zn atoms on IMC layers retarded the interdiffusion of Cu, Ni, and Sn. Black-Right-Pointing-Pointer Sputtered Ni-Zn UBM is promising for Pb-free solder flip chip applications. - Abstract: We developed a new sputtered under bump metallurgy (UBM) based on Ni-20wt% Zn thin films for Pb-free solders. This study focuses on the interfacial reactions between two Pb-free solders (Sn3.0Ag0.5Cu and Sn1.0Ag0.7Cu) and a Ni-Zn alloy UBM. By adding Zn to Ni UBM, Zn is incorporated into intermetallic compounds (IMCs) to form a quaternary Cu-Ni-Zn-Sn phase at the solder/Ni-Zn interface after reflow and subsequent isothermal aging. The Ni-Zn UBM sufficiently reduces the interfacial reaction and IMCs formation rates as well as UBM consumption rates compared to a Ni UBM. In particular, the formation of (Ni, Cu){sub 3}Sn{sub 4} IMC was significantly retarded by adding Zn into UBM.

  20. Evolution of intermetallic phases of Al-Zn-Mg-Cu alloy during heat treatment

    Institute of Scientific and Technical Information of China (English)

    FAN Xi-gang; JIANG Da-ming; MENG Qing-chang; LI Nian-kui; SUN Zhao-xia

    2006-01-01

    Al-Zn-Mg-Cu alloy is a favorable choice for aerospace applications requiring good combination of strength and toughness,which is greatly influenced by the coarse intermetallic particles. The evolution of intermetallic particles in an Al-Zn-Mg-Cu alloy during heat treatment was studied by field emission gun scanning electron microscopy (FEG-SEM) and X-ray diffractometry(XRD).The results show that there are lamellar eutectic structure (α(Al)+Mg(Zn,Al,Cu)2) and Al7Cu2Fe particles in the solidified structure.The Al7Cu2Fe particles are embedded in the eutectic structure. The content of eutectic structure decreases with the increase of holding time and disappears after 24 h. The size and morphology of Al7Cu2Fe particles exhibit no change during the heat treatment. It is found that the Al2CuMg phase is formed during the treatment at 460 ℃. A transformation process from the primary eutectic phase Mg(Zn,Al,Cu)2 to Al2CuMg is observed, and the transformation mechanism and kinetics are analyzed. The Al2CuMg constituents form in the primary Mg(Zn,Al,Cu)2 phase, and grow along the eutectic microstructure.

  1. Low temperature synthesis of flower-like ZnMn 2O 4 superstructures with enhanced electrochemical lithium storage

    Science.gov (United States)

    Xiao, Lifen; Yang, Yanyan; Yin, Jia; Li, Qiao; Zhang, Lizhi

    In this communication, flower-like tetragonal ZnMn 2O 4 superstructures are synthesized by a facile low temperature solvothermal process. Characterizations show that these ZnMn 2O 4 superstructures are well crystallized and of high purity. The product exhibits an initial electrochemical capacity of 763 mAh g -1 and retains stable capacity of 626 mAh g -1 after 50 cycles. Its stable capacity is significantly higher than that of nanocrystalline ZnMn 2O 4 synthesized by a polymer-pyrolysis method. It is found that the higher capacity retention can be attributed to three-dimensional superstructural nature of the as-prepared flower-like ZnMn 2O 4 material. This study suggests that the solvothermally synthesized flower-like ZnMn 2O 4 is a promising anode material for lithium-ion batteries.

  2. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters.

    Science.gov (United States)

    Xie, Renguo; Peng, Xiaogang

    2009-08-05

    Efficient Cu-doped InP quantum dots (Cu:InP d-dots) emitters were successfully synthesized by epitaxial growth of a ZnSe diffusion barrier for the dopants. The Cu dopant emission of the Cu:InP/ZnSe core/shell d-dots covered the important red and near-infrared (NIR) window for biomedical applicaitons, from 630 to 1100 nm, by varying the size of the InP host nanocrystals. These new d-dots emitters not only compensate for the emission wavelength of the existing noncadmium d-dots emitters, Cu- and Mn-doped ZnSe d-dots (450-610 nm), but also offer a complete series of efficient nanocrystal emitters based on InP nanocrystals. The one-pot synthetic scheme for the formation of Cu:InP/ZnSe core/shell d-dots was successfully established by systematically studying the doping process, the dopant concentration-dependent photophysical properties, and the dopant diffusion during shell epitaxy, etc. Complete elimination of InP bandgap emission and efficient pure dopant emission (with photoluminescence quantum yield as high as between 35-40%) of the core/shell d-dots were achieved by optimizing the final doping level and the diffusion barrier thickness.

  3. Defect luminescence and lattice strain in Mn{sup 2+} doped ZnGa{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, K.; Abhilash, K.P. [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Christopher Selvin, P., E-mail: pcsphyngmc@rediffmail.com [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Kadam, R.M. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-06-15

    Undoped and Mn{sup 2+} doped ZnGa{sub 2}O{sub 4} phosphors were prepared by solution combustion method and characterized by XRD, SEM, luminescence and electron paramagnetic resonance (EPR) techniques. Based on XRD results, it is inferred that, strain in ZnGa{sub 2}O{sub 4} host lattice increases with incorporation of Mn{sup 2+} ions in the lattice. Mn{sup 2+} doping at concentration levels investigated, lead to significant reduction in the defect emission and this has been attributed to the formation of higher oxidation states of Mn ions in the lattice. Electron Paramagnetic Resonance studies confirmed that majority of Mn ions exist as Mn{sup 2+} species and they occupy tetrahedral Zn{sup 2+} site in ZnGa{sub 2}O{sub 4} lattice with an average hyperfine coupling constant, A{sub iso}∼82 G.

  4. Effect of Cu content and temperature on the properties of Cu2ZnSnSe4 solar cells

    Science.gov (United States)

    Sahayaraj, Sylvester; Brammertz, Guy; Buffière, Marie; Meuris, Marc; Vleugels, Jef; Poortmans, Jef

    2016-09-01

    The complexity involved in obtaining pure Kesterite Cu2ZnSnSe4 (CZTSe) thin film primarily arises due to its narrow region of stability, leading to the presence of unavoidable binary selenides of the constituent metals. This study offers an insight on the formation of Cu selenides when the amount of Cu is varied in the precursor from Cu poor to Cu rich. The amount of Cu selenides was found to decrease when the composition of CZTSe absorber approached Cu rich conditions but functional devices were not obtained. Detailed characterizations also showed that the Cu and Sn binary phases were present at the backside interface of CZTSe solar cells. However with an increase in the selenization temperature it was found that the amount of Cu selenides and other secondary phases could be drastically minimized or even eliminated leading to high efficiency devices.

  5. Effect of Cu content and temperature on the properties of Cu2ZnSnSe4 solar cells

    Directory of Open Access Journals (Sweden)

    Sahayaraj Sylvester

    2016-01-01

    Full Text Available The complexity involved in obtaining pure Kesterite Cu2ZnSnSe4 (CZTSe thin film primarily arises due to its narrow region of stability, leading to the presence of unavoidable binary selenides of the constituent metals. This study offers an insight on the formation of Cu selenides when the amount of Cu is varied in the precursor from Cu poor to Cu rich. The amount of Cu selenides was found to decrease when the composition of CZTSe absorber approached Cu rich conditions but functional devices were not obtained. Detailed characterizations also showed that the Cu and Sn binary phases were present at the backside interface of CZTSe solar cells. However with an increase in the selenization temperature it was found that the amount of Cu selenides and other secondary phases could be drastically minimized or even eliminated leading to high efficiency devices.

  6. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures.

    Science.gov (United States)

    Kuriakose, Sini; Satpati, Biswarup; Mohapatra, Satyabrata

    2015-10-14

    Copper doped ZnO nanostructures have been synthesized by a facile wet chemical method. Structural properties of as-synthesized nanomaterials have been studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, while UV-visible absorption spectroscopy and Raman spectroscopy have been used to study their optical properties. Sunlight driven photocatalytic degradation of methylene blue (MB) and methyl orange (MO) dyes in water was used to evaluate the photocatalytic activities of Cu doped ZnO nanostructures using UV-visible absorption spectroscopy. The results showed that there is an optimum Cu doping level which leads to the highly enhanced photocatalytic activity of Cu doped ZnO nanostructures, as compared to pure ZnO nanostructures. A mechanism for the enhanced photocatalytic activity of Cu-ZnO nanostructures is tentatively proposed. The enhanced photocatalytic activity of Cu-ZnO nanostructures is attributed to the combined effects of improved separation of photogenerated charge carriers due to optimal Cu doping in ZnO nanostructures and the formation of ZnO-CuO nanoheterojunctions.

  7. Crevice Corrosion of the Shape Memory Alloy Cu-Zn-Al%Cu-Zn-Al形状记忆合金的缝隙腐蚀

    Institute of Scientific and Technical Information of China (English)

    郭海霞; 梁成浩

    2001-01-01

    The crevice corrosion of the benzotriazole(BTA) passive specimensof the shape memory alloy Cu-Zn-Al in Hank's artificial body fluid has been studied using electrochemical tests. The results show that the shape memory alloy Cu-Zn-Al exhibits better property than the annealed alloy Cu-Zn-Al. T he reason is that the martensite single phase in the alloy Cu-Zn-Al improves electrochemical property and inhibits active solution. The occurring of crevice corrosion is attributed to the metal ions concentration cell. BTA passivation improves the crevice corrosion resistance of the alloy.%采用电化学方法研究了Cu-Zn-Al形状记忆合金及其BTA钝化处理试样在Hank's人工体液中的缝隙腐蚀行为。结果表明:在人工体液中,Cu-Zn-Al形状记忆合金的耐缝隙腐蚀性能优于未进行热处理的Cu-Zn-Al合金,其作用机理是单相马氏体组织改善了合金的电化学行为,抑制了活性溶解。缝隙腐蚀的发生是由于形成了金属离子浓差电池。经BTA钝化后,Cu-Zn-Al形状记忆合金的耐缝隙腐蚀性能得到改善。

  8. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  9. Highly efficient visible light photocatalysis of novel CuS/ZnO heterostructure nanowire arrays

    Science.gov (United States)

    Lee, Mikyung; Yong, Kijung

    2012-05-01

    Here, a facile approach for the fabrication of CuS nanoparticle (NP)/ZnO nanowire (NW) heterostructures on a mesh substrate through a simple two-step solution method is demonstrated. Successive ionic layer adsorption and reaction (SILAR) was employed to uniformly deposit CuS NPs on the hydrothermally grown ZnO NW array. The synthesized CuS/ZnO heterostructure NWs exhibited superior photocatalytic activity under visible light compared to bare ZnO NWs. This strong photocatalytic activity under visible light is due to the interfacial charge transfer (IFCT) from the valence band of the ZnO NW to the CuS NP, which reduces CuS to Cu2S. After repeated cycles of photodecolorization of Acid Orange 7 (AO7), the photocatalytic behavior of CuS/ZnO heterostructure NWs exhibited no significant loss of activity. Furthermore, our CuS/ZnO NWs/mesh photocatalyst floats in solution via partial superhydrophobic modification of the NWs.

  10. A new insight of recycling of spent Zn-Mn alkaline batteries: Synthesis of Zn{sub x}Mn{sub 1−x}O nanoparticles and solar light driven photocatalytic degradation of bisphenol A using them

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jiao, E-mail: qujiao@bhu.edu.cn [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); School of Urban and Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024 (China); Feng, Yue; Zhang, Qian [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); Cong, Qiao [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); School of Urban and Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024 (China); Luo, Chunqiu [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); Yuan, Xing [School of Urban and Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024 (China)

    2015-02-15

    Highlights: • Zn{sub 0.5}Mn{sub 0.5}O nanoparticles synthesized using SABs were cylinder with 60 nm diameter. • Adsorption equilibrium of BPA on Zn{sub x}Mn{sub 1−x}O nanoparticles were achieved in 40 min. • Decomposition yields of BPA were increased with light irradiation and Zn{sub x}Mn{sub 1−x}O nanoparticles. • The findings have positive effects on solving the recycling of SABs. - Abstract: This work focuses on the synthesis of Zn{sub 0.1}Mn{sub 0.9}O, Zn{sub 0.3}Mn{sub 0.7}O, and Zn{sub 0.5}Mn{sub 0.5}O nanoparticles using Zn-Mn spent alkaline batteries (SABs) as raw materials and their applications for photocatalytic degradation of bisphenol A in water. Zn-Mn SABs were manually dismantled into scrap (including plastics, copper cap, zinc crust, and carbon rod) and powder. The mashed zinc crust and pretreated powder were successively added into H{sub 2}SO{sub 4} and NH{sub 3}⋅H{sub 2}O, and the formed precipitates were characterized. The yield (wt) of synthesis of Zn{sub 0.5}Mn{sub 0.5}O (ZnMnO{sub 3}) nanoparticles was 57.1%. The synthesized Zn{sub 0.5}Mn{sub 0.5}O nanoparticles were cylinder, with a length of 60 nm. Afterwards, the removal efficiencies of bisphenol A (BPA) under solar light irradiation with the recovered Zn{sub x}Mn{sub 1−x}O nanoparticles were investigated: (1) the adsorption equilibrium of BPA on Zn{sub x}Mn{sub 1−x}O nanoparticles could be achieved after approximate 40 min. The saturation absorbance of BPA was about 32.40 ± 4.76 mg g{sup −1}, 20.40 ± 3.60 mg g{sup −1}, and 14.50 ± 4.55 mg g{sup −1} by Zn{sub 0.1}Mn{sub 0.9}O, Zn{sub 0.3}Mn{sub 0.7}O, and Zn{sub 0.5}Mn{sub 0.5}O nanoparticles, respectively; (2) compared with the 21.7 ± 1.6% degradation of BPA (only solar light irradiation for 180 min), the combination of solar light irradiation and Zn{sub 0.1}Mn{sub 0.9}O, Zn{sub 0.3}Mn{sub 0.7}O, and Zn{sub 0.5}Mn{sub 0.5}O nanoparticles could lead to 59.41 ± 4.32%, 83.43 ± 2.73%, and 71.22 ± 4

  11. Sol gel synthesis and characterization studies of Cupromanganite CaCu3Mn4O12

    Science.gov (United States)

    Nurulhuda, A.; Warikh, A. R. M.; Hafizzal, Y.

    2017-08-01

    A single-phase CaCu3Mn4O12 electroceramic had been prepared via sol gel method and fairly well densified at relative low temperature under atmospheric condition where the crystallization of CaCu3Mn4O12 occurred due to amorphous polymeric mixture. The precursor was prepared by mixing the solutions with 0.6 M citric acid (C6H8O7) as a chelating reagent with the mol ratio 1:2. The precursor gel formed was calcined and sintered at range 400 °C to 800°C by varying dwell time. Material formations under the reported conditions have been confirmed by X-ray diffraction (XRD). The results show that the formation of CaCu3Mn4O12 started at 500 ° C and was formed completely at 700 ° C for 18 hours. The microstructure of all CaCu3Mn4O12 was analysed using field emission scanning electron microscopy (FESEM). A smaller particle size with higher grain boundary was obtained at sintering 700°C to 800°C. FESEM results show the significant influence of calcinations and sintering parameter on the microstructure behaviour of CaCu2Mn4O12.

  12. Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films.

    Science.gov (United States)

    Norberg, Nick S; Kittilstved, Kevin R; Amonette, James E; Kukkadapu, Ravi K; Schwartz, Dana A; Gamelin, Daniel R

    2004-08-04

    We report the synthesis of colloidal Mn(2+)-doped ZnO (Mn(2+):ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn(2+):ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)(2) was found to strongly inhibit oxidation of Mn(2+) by O(2), allowing the synthesis of Mn(2+):ZnO to be performed aerobically. Mn(2+) ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn(2+):ZnO colloids of nearly spherical shape and uniform diameter (6.1 +/- 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn(2+) with very homogeneous speciation, differing from bulk Mn(2+):ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spin-coated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 micro(B)/Mn(2+) and T(C) > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn(2+):ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results.

  13. The dependences of electroluminescent characteristics of ZnS:Mn thin films upon their device parameters

    Science.gov (United States)

    Sasakura, Hiroshi; Kobayashi, Hiroshi; Tanaka, Shosaku; Mita, Juro; Tanaka, Toshihiko; Nakayama, Hirofumi

    1981-11-01

    The dependences of brightness, emission efficiency η, average electric field EA, conduction current JA, and emission lifetime τ upon the device parameters such as film thickness, substrate temperature during evaporation, and Mn concentration have been systematically investigated in ZnS:Mn thin-film electroluminescent devices. The value of η increases rapidly with film thicknesses below 3000 Å but EA decreases slowly. These results can be explained by the increase of the crystallinity of the ZnS:Mn films. The value of η increases with the Mn concentration and reaches its maximum at about 0.45 wt %. At above this Mn concentration, η and τ decrease rapidly, EA increases, and JA decreases slowly. These results may be attributed to a decrease of hot electron energy and/or an increase of the nonradiative transition probability of the excited Mn centers. The brightness-voltage (B-V) hysteresis characteristic is observed in this Mn concentration region. This memory effect is also discussed.

  14. Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film

    Science.gov (United States)

    Karmakar, R.; Neogi, S. K.; Banerjee, Aritra; Bandyopadhyay, S.

    2012-12-01

    The structural, optical and magnetic properties of the Zn1-xMnxO (0 disorder developed in the samples due to Mn doping. The films are of single phase in nature; no formation of any secondary phase has been detected from structural analysis. Absence of magnetic impurity phase in these films has been confirmed from morphological study also. Increasing tendency of lattice parameters and unit cell volume has been observed with increasing Mn doping concentration. The incorporation of Mn2+ ions introduces disorder in the system. That also leads to slight degradation in crystalline quality of the films with increasing doping. The grain size reduces with increase in Mn doping proportion. The band gaps shows red shift with doping and the width of localized states shows an increasing tendency with doping concentration. It is due to the formation of impurity band and trapping of Mn atoms, which leads to the generation of the defect states within the forbidden band. Photoluminescence (PL) spectra show gradual decrease of intensity of exitonic and defect related peaks with increasing Mn doping. Defect mediated intrinsic ferromagnetism has been observed even at room temperature for 5 at% Mn doped ZnO film. The strong presence of antiferromagnetic (AFM) interaction reduces the observed ferromagnetic moments.

  15. Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties

    Science.gov (United States)

    Singhal, Sonal; Kaur, Japinder; Namgyal, Tsering; Sharma, Rimi

    2012-04-01

    Pure and Cu doped ZnO nanopowders (5, 10, 15, 20, 25 and 30 at% Cu) have been synthesized using co-precipitation method. Transmission Electron Microscopic analysis has shown the morphology of ZnO nanopowders to be quasi-spherical. Powder X-ray Diffraction studies have revealed the systematic doping of Cu into the ZnO lattice up to 10% Cu, though the peaks corresponding to CuO in 10% Cu are negligibly very small. Beyond this level, there was segregation of a secondary phase corresponding to the formation of CuO. Fourier Transform Infrared spectra have shown a broad absorption band at ∼490 cm-1 for all the samples, which corresponds to the stretching vibration of Zn-O bond. DC electrical resistivity has been found to decrease with increasing Cu content. The activation energy has also been observed to decrease with copper doping i.e. from ∼0.67 eV for pure ZnO to ∼0.41 eV for 30 at% Cu doped ZnO.

  16. Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Sonal, E-mail: sonal1174@gmail.com [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Kaur, Japinder; Namgyal, Tsering; Sharma, Rimi [Department of Chemistry, Panjab University, Chandigarh 160014 (India)

    2012-04-15

    Pure and Cu doped ZnO nanopowders (5, 10, 15, 20, 25 and 30 at% Cu) have been synthesized using co-precipitation method. Transmission Electron Microscopic analysis has shown the morphology of ZnO nanopowders to be quasi-spherical. Powder X-ray Diffraction studies have revealed the systematic doping of Cu into the ZnO lattice up to 10% Cu, though the peaks corresponding to CuO in 10% Cu are negligibly very small. Beyond this level, there was segregation of a secondary phase corresponding to the formation of CuO. Fourier Transform Infrared spectra have shown a broad absorption band at {approx}490 cm{sup -1} for all the samples, which corresponds to the stretching vibration of Zn-O bond. DC electrical resistivity has been found to decrease with increasing Cu content. The activation energy has also been observed to decrease with copper doping i.e. from {approx}0.67 eV for pure ZnO to {approx}0.41 eV for 30 at% Cu doped ZnO.

  17. Nanocrystalline Zn{sub 1−x}Mn{sub x}O thin film based transparent Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gayen, R.N. [Department of Physics, Presidency University, Kolkata 700073 (India); Paul, R., E-mail: rajiv2008juniv@gmail.com [Birck Nanotechnology Center, Purdue University, IN 47907 (United States)

    2016-04-30

    Highly transparent and nanocrystalline Zn{sub 1−x}Mn{sub x}O (x = 0, 0.008, 0.017, 0.046) thin films have been synthesized by sol–gel spin coating technique on glass and SnO{sub 2} coated glass substrates. The microstructural and compositional analyses confirm the incorporation of Mn in hexagonal ZnO lattice without affecting its structure. Zn{sub 1−x}Mn{sub x}O thin films are highly transparent in the visible region of electromagnetic spectrum. The optical band gap, estimated from the transmittance spectra, decreases from 3.32 to 3.21 eV with the increase in Mn content in ZnO films. Photoluminescence study reveals that Mn introduces more defects in ZnO suppressing the excitonic recombination by the defect center (oxygen vacancy) induced recombination. The non-linear current–voltage characteristics at room temperature reveal Schottky barrier junction formation of Zn{sub 1−x}Mn{sub x}O films with Ag. The diode parameters, extracted from the thermionic emission model, vary with Mn incorporation in ZnO. Both the ideality factor and potential barrier height decrease from 6.5 and 0.63 for pure ZnO to 4.7 and 0.54 respectively, for Zn{sub 0.954}Mn{sub 0.046}O film. The series resistance that arises from the defect distributions at the interface and effects the charge transport through the junction, also decreases for higher percentage of Mn in Zn{sub 1−x}Mn{sub x}O thin films. - Highlights: • Mn doped transparent ZnO thin film synthesis using sol–gel spin coating • Particle size and optical band-gap decreases with increasing Mn doping. • Absence of any secondary phase upto 4.6 at.% of Mn which substitutes Zn sites in ZnO lattice • Interesting Schottky diode characteristics with Ag contact • Ideality factor and barrier height decreases with increasing Mn content.

  18. Calculation and measurement of helium generation and solid transmutations in Cu-Zn-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Oliver, B.M.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Muroga, T. [National Inst. of Fusion Science, Nagoya (Japan)

    1998-03-01

    A method was recently proposed by Garner and Greenwood that would allow the separation of the effects of solid and gaseous transmutation for Cu-Zn-Ni alloys. Pure copper produces zinc and nickel during neutron irradiation. {sup 63}Cu transmutes to {sup 64}Ni and {sup 64}Zn, in about a 2-to-1 ratio, and {sup 65}Cu transmutes to {sup 66}Zn. The {sup 64}Zn further transmutes to {sup 65}Zn which has been shown to have a high thermal neutron (n,{alpha}) cross-section. Since a three-step reaction sequence is required for natural copper, the amount of helium produced is much smaller than would be produced for the two-step, well-known {sup 58}Ni (n,{gamma}) {sup 59}Ni (n,{alpha}) reaction sequence. The addition of natural Zn and Ni to copper leads to greatly increased helium production in neutron spectra with a significant thermal component. Using a suitable Cu-Zn-Ni alloy matrix and comparative irradiation of thermal neutron-shielded and unshielded specimens, it should be possible to distinguish the separate influences of the solid and gaseous transmutants. Whereas helium generation rates have been previously measured for natural nickel and copper, they have not been measured for natural Zn or Cu-Ni-Zn alloys. The (N,{alpha}) cross section for {sup 65}Zn was inferred from helium measurements made with natural copper. By comparing helium production in Cu and Cu-Zn alloys, this cross section can be determined more accurately. In the current study, both the solid and helium transmutants were measured for Cu, Cu-5Ni, Cu-3.5Zn and Cu-5Ni-2Zn, irradiated in each of two positions in the HFIR JP-23 test. Highly accurate helium measurements were performed on these materials by isotope dilution mass spectrometry using a facility that was recently moved from Rockwell International to PNNL. It is shown that both the helium and solid transmutants for Cu-zn-Ni alloys can be calculated with reasonable certainty, allowing the development of a transmutation experiment as proposed by

  19. Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Garcia, F.N. [Departamento de Fisica y Matematicas, Universidad Autonoma de Manizales, Antigua Estacion del Ferrocarril, Manizales, Caldas (Colombia); Departamento de Fisica y Quimica, Universidad Nacional de Colombia, Sede Manizales, Campus la Nubia, Manizales, Caldas (Colombia); Espinosa-Arbelaez, D.G. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico); Posgrado en Ciencia e Ingenieria Materiales, Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Mexico DF (Mexico); Vargas-Hernandez, C. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia, Sede Manizales, Campus la Nubia, Manizales, Caldas (Colombia); Real, A. del [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico); Rodriguez-Garcia, M.E., E-mail: marioga@fata.unam.mx [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico)

    2011-09-01

    ZnO and ZnMnO thin films were obtained by the successive ionic layer adsorption and reaction (SILAR) method. All thin films were deposited on glass microscope slide. A precursor solution of 0.1 M of ZnCl{sub 2} complexed with ammonium hydroxide and water close to boiling point (92 deg. C) as a second solution was used for the ZnO films. An uncomplexed bath comprised of 0.1 M ZnCl{sub 2}, 0.1 M MnCl{sub 2,} and a second solution of 0.1 ml of NH{sub 4}OH with water close to boiling point was used for the ZnMnO films. The film samples were deposited by the SILAR method and annealed at 200 deg. C for 15 min. These samples were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscope. Atomic absorption was used to determine quantitatively the amount of Mn incorporated into the films. According to the XRD patterns these films were polycrystalline with wurtzite hexagonal structure. The morphology of the ZnO films constituted by rice-like and flower-like structures changed significantly to nanosheet structures with the Mn incorporation. The Mn inclusion in a ZnO structure was less than 4% according to the results from EDS, XRD, and atomic absorption.

  20. Synthesis and characterization of (Cd,Zn)S buffer layer for Cu2ZnSnSe4 solar cells

    Science.gov (United States)

    Ben Messaoud, Khaled; Buffière, Marie; Brammertz, Guy; Lenaers, Nick; Boyen, Hans-Gerd; Sahayaraj, Sylvester; Meuris, Marc; Amlouk, Mosbah; Poortmans, Jef

    2017-07-01

    In order to improve the electrical performances of Cu2ZnSnSe4 (CZTSe) based solar cells, the standard CdS buffer layer was replaced by (Cd,Zn)S processed by chemical bath deposition. The morphology and composition of the (Cd,Zn)S thin films were studied as a function of [Zn]/([Zn]  +  [Cd]) ratio in the chemical bath (80, 85 and 90%). The CZTSe/(Cd,Zn)S solar cells with and without Cd partial electrolyte (Cd PE) treatment were compared to CZTSe/CdS reference devices using current-voltage and external quantum efficiency measurements. The (Cd,Zn)S thin films show a non-homogeneity of Zn distribution and phase formation, with a shift from Zn(O,OH) x to ZnS phase when increasing the deposition time and a decrease of the layers thicknesses when increasing the Zn concentration in chemical bath. A model for the growth of (Cd,Zn)S thin films is proposed. The resulting CZTSe/(Cd,Zn)S devices show an important reduction of the barrier at the hetero-interface, which is attributed to the lower density of O contamination in (Cd,Zn)S compared to CdS, inducing a lower density of deep p-type recombination centers. Despite the reduced compensation of the buffer layer, CZTSe/(Cd,Zn)S devices show a deterioration of the open circuit voltage and the fill factor with the increase of Zn content in (Cd,Zn)S. These electrical losses were avoided by Cd PE treatment prior to the deposition of (Cd,Zn)S.

  1. Enhanced bake-hardening response of an Al–Mg–Si–Cu alloy with Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, M.X., E-mail: mingxingguo@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Sha, G., E-mail: gang.sha@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Jiangsu 210094 (China); Cao, L.Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, W.Q. [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Zhang, J.S.; Zhuang, L.Z. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-07-15

    This study reports that Zn addition greatly enhances the bake-hardening response of an Al–Mg–Si–Cu alloy. The pre-aged alloy exhibits a high strength increment of 135 MPa after paint baking. Differential scanning calorimetry, atom probe tomography and high-resolution transmission electron microscopy reveal that Zn addition and pre-aging have significant effects on the solute nanostructure formation. Zn atoms partition into solute clusters/GP zones, and reduce the activation energy of β” precipitation in the alloy. - Highlights: • Zn addition can improve the bake-hardening response of an Al–Mg–Si–Cu alloy. • Zn addition can stabilize the solute clusters/GP zones from dissolution. • Zn addition can reduce the size of clusters formed in the pre-aging treatment. • Zn partitioned into solute clusters/GP zones and β” in the Zn-containing Al alloy.

  2. Simulations of irradiated-enhanced segregation and phase separation in Fe-Cu-Mn alloys

    Science.gov (United States)

    Li, Boyan; Hu, Shenyang; Li, Chengliang; Li, Qiulin; Chen, Jun; Shu, Guogang; Henager, Chuck, Jr.; Weng, Yuqing; Xu, Ben; Liu, Wei

    2017-09-01

    For reactor pressure vessel steels, the addition of Cu, Mn, and Ni has a positive effect on their mechanical, corrosion and radiation resistance properties. However, experiments show that radiation-enhanced segregation and/or phase separation is one of the important material property degradation processes. In this work, we develop a model integrating rate theory and phase-field approaches to investigate the effect of irradiation on solute segregation and phase separation. The rate theory is used to describe the accumulation and clustering of radiation defects, while the phase-field approach describes the effect of radiation defects on phase stability and microstructure evolution. The Fe-Cu-Mn ternary alloy is taken as a model system. The free energies used in the phase-field model are from CALPHAD. Spatial dependent radiation damage from atomistic simulations is introduced into the simulation cell for a given radiation dose rate. The radiation effect on segregation and phase separation is taken into account through the defect concentration dependence of solute mobility. Using the model, the effect of temperature and radiation rates on Cu and Mn segregation and Cu-rich phase nucleation were systematically investigated. The segregation and nucleation mechanisms were analyzed. The simulations demonstrate that the nucleus of Cu precipitates has a core-shell composition profile, i.e. Cu-rich at the center and Mn-rich at the interface, in good agreement with theoretical calculations as well as experimental observations.

  3. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents

    Energy Technology Data Exchange (ETDEWEB)

    Guo, M.X., E-mail: mingxingguo@skl.ustb.edu.cn; Zhang, Y.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z.

    2016-07-04

    The non-isothermal precipitation behaviors of Al–Mg–Si–Cu alloys with different Zn contents were investigated by differential scanning calorimetry (DSC) analysis, hardness measurement and high resolution transmission electron microscope characterization. The results show that Zn addition has a significant effect on the GP zone dissolution and precipitation of Al-Mg-Si-Cu alloys. And their activation energies change with the changes of Zn content and aging conditions. Precipitation kinetics can be improved by adding 0.5 wt% or 3.0 wt%Zn, while be suppressed after adding 1.5 wt%Zn. The Mg-Si precipitates (GP zones and β″) are still the main precipitates in the Al-Mg-Si-Cu alloys after heated up to 250 °C, and no Mg-Zn precipitates are observed in the Zn-added alloy due to the occurrence of Mg-Zn precipitates reversion. The measured age-hardening responses of the alloys are corresponding to the predicted results by the established precipitation kinetic equations. Additionally, a double-hump phenomenon of hardness appears in the artificial aging of pre-aged alloy with 3.0 wt% Zn addition, which resulted from the formation of pre-β″ and β″ precipitates. Finally, the precipitation mechanism of Al-Mg-Si-Cu alloys with different Zn contents was proposed based on the microstructure evolution and interaction forces between Mg, Si and Zn atoms.

  4. Tuning the combined magnetic and antibacterial properties of ZnO nanopowders through Mn doping for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K., E-mail: kkr1365@yahoo.com [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur 613 503, Tamil Nadu (India); Karthika, K.; Sakthivel, B.; Jabena Begum, N.; Snega, S. [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur 613 503, Tamil Nadu (India); Swaminathan, K. [Department of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, Tamil Nadu (India); Senthamilselvi, V. [Department of Physics, Kunthavai Naachiyaar Government College for Women (Autonomous), Thanjavur 613 007, Tamil Nadu (India)

    2014-05-01

    Manganese (Mn) doped ZnO nanopowders (0, 2, 4, 6, 8 and 10 at%) were synthesized using a simple soft chemical route and their structural, optical, surface morphological, magnetic and antibacterial properties were investigated. Structural studies show that the nanopowders exhibit hexagonal wurtzite structure of ZnO. No other secondary phases like MnO{sub 2}, MnO, Mn{sub 3}O{sub 4} and Mn{sub 2}O{sub 3} are observed. The blue shift observed in the photoluminescence spectra beyond the Mn doping level of 6 at% shows that there is an increase in the carrier concentration, caused by the interstitial incorporation of Zn and Mn in the ZnO matrix. From the antibacterial studies, it is found that ZnO:Mn nanopowders with higher Mn doping level (8 and 10 at%) exhibit good antibacterial efficiency against Escherichia coli (E. coli) bacteria. The magnetization curves obtained using vibrating sample magnetometer (VSM) show a sign of strong room temperature ferromagnetic behavior when the Mn doping level is 6 at% and a weak room temperature ferromagnetic behavior, when the Mn doping level is below 6 at%. Beyond 6 at% they are found to exhibit antiferromagnetic and paramagnetic properties, when the Mn doping levels are 8 and 10 at%, respectively. The SEM images indicate that there is a gradual decrease in the grain size with increase in the Mn doping level. The EDAX profile clearly confirms the presence of expected elements in the final product, in appropriate proportions. - Highlights: • Report on unique combined magnetic and antibacterial study of ZnO:Mn nanopowders. • Magnetic, surface and antibacterial properties are corroborated appropriately. • A simple low-cost synthesis procedure is adopted.

  5. Effect of Ag on Sn–Cu and Sn–Zn lead free solders

    Directory of Open Access Journals (Sweden)

    Alam S.N.

    2015-06-01

    Full Text Available Lead and lead-containing compounds are considered as toxic substances due to their detrimental effect on the environment. Sn-based soldering systems, like Sn-Cu and Sn-Zn are considered as the most promising candidates to replace the eutectic Sn-Pb solder compared to other solders because of their low melting temperature and favorable properties. Eutectic Sn-0.7 wt.% Cu and near eutectic composition Sn-8 wt.% Zn solders have been considered here for study. For the Sn-Cu system, besides the eutectic Sn-0.7 wt.% Cu composition, Sn-1Cu and Sn-2Cu were studied. Three compositions containing Ag: Sn-2Ag-0.7Cu, Sn-2.5Ag-0.7Cu and Sn-4.5Ag-0.7Cu were also developed. Ag was added to the eutectic Sn-0.7 wt.% Cu composition in order to reduce the melting temperature of the eutectic alloy and to enhance the mechanical properties. For the Sn-Zn system, besides the Sn-8 wt.% Zn near eutectic composition, Sn-8Zn-0.05Ag, Sn-8Zn-0.1Ag and Sn-8Zn-0.2Ag solder alloys were developed. The structure and morphology of the solder alloys were analyzed using a scanning electron microscope (SEM, filed emission scanning electron microscope (FESEM, electron diffraction X-ray spectroscopy (EDX and X-ray diffraction (XRD. Thermal analysis of the alloys was also done using a differential scanning calorimeter (DSC. Trace additions of Ag have been found to significantly reduce the melting temperature of the Sn-0.7 wt.% Cu and Sn-8 wt.% Zn alloys.

  6. Thermal formation of atomic vacancies in {gamma} Cu-Zn

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, Carlos [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Romero, Ricardo [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Somoza, Alberto [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina) and Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina)]. E-mail: asomoza@exa.unicen.edu.ar

    2006-02-15

    g positron annihilation lifetime spectroscopy, the temperature dependence of the formation of thermal vacancies in the {gamma} phase of the Cu-Zn alloy was studied. Thermal equilibrium measurements were made in situ between 135K and about 950K. The experimental data were interpreted in terms of the well-established positron two-state trapping model. From the evolution of the lifetime parameters between {approx}400K and {approx}800K, an Arrhenius plot for trapping rate, directly linked to the vacancy concentration, exhibits the usual linear behavior. As a result, a value for the vacancy formation enthalpy for the complex cubic structure studied was estimated at H{sub v}{sup f}=0.46+/-0.03eV.

  7. Synthesis and characterization of single-phase Mn-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Chattopadhyay, S. [Department of Physics, Taki Government College, Taki 743 429, West Bengal (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009, West Bengal (India)

    2009-05-01

    Different samples of Zn{sub 1-x}Mn{sub x}O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn{sub 2}O{sub 4} apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau{sub 1}) at defect site (tau{sub 2}) and average (tau{sub av}) increases with milling time.

  8. Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires

    Science.gov (United States)

    Xu, H. J.; Zhu, H. C.; Shan, X. D.; Liu, Y. X.; Gao, J. Y.; Zhang, X. Z.; Zhang, J. M.; Wang, P. W.; Hou, Y. M.; Yu, D. P.

    2010-01-01

    Room temperature ferromagnetic Cu-doped ZnO nanowires have been synthesized using the chemical vapor deposition method. By combining structural characterizations and comparative annealing experiments, it has been found that both extrinsic (CuO nanoparticles) and intrinsic (Zn1-xCuxO nanowires) sources are responsible for the observed ferromagnetic ordering of the as-grown samples. As regards the former, annealing in Zn vapor led to a dramatic decrease of the ferromagnetism. For the latter, a reversible switching of the ferromagnetism was observed with sequential annealings in Zn vapor and oxygen ambience respectively, which agreed well with previous reports for Cu-doped ZnO films. In addition, we have for the first time observed low temperature photoluminescence changed with magnetic properties upon annealing in different conditions, which revealed the crucial role played by interstitial zinc in directly mediating high Tc ferromagnetism and indirectly modulating the Cu-related structured green emission via different charge transfer transitions.

  9. Laser ionization in {beta} decay studies of Zn and Mn nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Oinonen, M.; Jading, Y.; Koester, U.; Lettry, J.; Ravn, H.; Aystoe, J. [CERN, EP Division/ISOLDE (Switzerland); Dendooven, P.; Huikari, J.; Jokinen, A.; Lipas, P.O.; Nieminen, A.; Peraejaervi, K.; Siiskonen, T. [University of Jyvaeskylae, Department of Physics (Finland); Baumann, P.; Huck, A.; Knipper, A.; Ramdhane, M.; Walter, G. [Institut de Recherches Subatomiques (France); Didierjean, F. [Eurisys Measures (France); Fedoseyev, V.N. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)] (and others)

    2000-08-15

    Resonance ionization laser ion source (RILIS) technique has been used in the {beta}-decay studies of {sup 59}Mn and {sup 58}Zn. The importance of the RILIS for production of these elements is discussed. The properties of the low-lying levels of the studied nuclei are discussed.

  10. Recycling Spent Primary Cells for the Synthesis of Spinel ZnMn 2 O ...

    African Journals Online (AJOL)

    Recycling Spent Primary Cells for the Synthesis of Spinel ZnMn 2 O 4 using Waste Polypropylene as Reductant in a Microwave Oven. ... The residual casing was dismantled and scrap iron, plastic and paper separated. The removed mixture ...

  11. Synthesis and inkjet printing of aqueous ZnS:Mn nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Angelo, Peter D., E-mail: peter.angelo@mail.utoronto.ca [Department of Chemical Engineering and Applied Chemistry, Pulp and Paper Centre, University of Toronto, 200 College Street, Toronto, Canada M5G3A1 (Canada); Kronfli, Rosanna; Farnood, Ramin R. [Department of Chemical Engineering and Applied Chemistry, Pulp and Paper Centre, University of Toronto, 200 College Street, Toronto, Canada M5G3A1 (Canada)

    2013-04-15

    Nanoparticles of ZnS doped with Mn, a common photo- and electro-luminescent species, were synthesized in water using a competitive precipitation method. Particle size was controlled by selection of an appropriate stabilizer added during synthesis, 3-mercaptopropionic acid, which also rendered the particles water-dispersible after synthesis and isolation. Primary particle size was ∼3 nm, with small agglomerates of 10–20 nm in size. The particles were stably dispersed into water at a loading of 2.5 w/w%. This dispersion formed the basis for an aqueous inkjet ink, containing 1 w/w% ZnS:Mn. The small particle size allowed the nanoparticles to be successfully delivered to several substrates without loss during filtration or jetting. Bright photoluminescence was observed in the printed patterns on some substrates (glass, photo-paper, foil, etc.) but was quenched on other substrates where the ink penetrated into the surface (uncoated paper). The small drop volume (10 pL) allowed for reasonably high-resolution printed patterns to be deposited, albeit with significant surface roughness due to the “coffee-ring” effect. -- Highlights: ► Highly monodisperse ZnS:Mn nanoparticles were prepared in aqueous solution. ► ZnS:Mn incorporated into a fluid with suitable properties for inkjet printing. ► Photoluminescence was bright on impermeable substrates but quenched on paper. ► Film smoothness was compromised by high solids loading, and high viscosity of ink.

  12. Comparison of photocatalytic activity of TiO2 film doped nonuniformly by Mn and Zn

    Institute of Scientific and Technical Information of China (English)

    XU Wei; LI Xin-jun; ZHENG Shao-jian; WANG Jun-gang; XU Zhong-kui

    2005-01-01

    The thin films of TiO2, doped by Mn or Zn with nonuniform distribution, were prepared by sol-gel method under process control. The actinic absorption of the catalyst thin films was evaluated by UV-vis spectrophotometry. And the activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methyl orange under UV radiation. The results show that the photocatalytic activity of the TiO2 thin film can be evidently enhanced by Mn non-uniformly doping in the bottom layer and can be decreased by Mn doping in the surface layer.The activity of TiO2 thin film can be evidently enhanced by Zn non-uniform doping in either the bottom or the surface layer. But the activity of TiO2 is less affected by uniformly Zn doping. The different mechanisms for enhanced photocatalytic activity of Mn or Zn non-uniformly doped titanium dioxide film were discussed in terms of the separation of photon-generated carrier in the TiO2 films.

  13. Recycling Spent Primary Cells for the Synthesis of Spinel ZnMn2O4 ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... casing was dismantled and scrap iron, plastic and paper separated. ... residual reduced mass showed that it consisted of several peaks of ZnMn2O4 along with peaks of .... Burri, R. (1999), “The Oxyreducer Technology: A.

  14. Ferromagnetism of Fe{sub 86}Mn{sub 14-y}Cu{sub y} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Franca, F. [DF-UDESC, Joinville, CEP 89223-100, SC (Brazil); Paduani, C. [DF-UFSC, Florianopolis, CEP 88040-900, SC (Brazil)]. E-mail: paduani@fisica.ufsc.br; Krause, J.C. [DCET-URI, Santo Angelo, CEP 98802-470, RS (Brazil); Ardisson, J.D. [CDTN, Belo Horizonte, CEP 30123-970, MG (Brazil); Yoshida, M.I. [DQ-ICEX-UFMG, Belo Horizonte, CEP 31270-901, MG (Brazil); Schaf, J. [IF-UFRGS, Porto Alegre, CEP 91501-970, RS (Brazil)

    2007-01-01

    The magnetic properties of disordered Fe{sub 86}Mn{sub 14-y}Cu{sub y} alloys were investigated with several experimental techniques. The results of X-ray diffraction showed that these alloys are single phase with the A2 (BCC) structure. These are ferromagnetic alloys at room temperature, and the Curie temperature decreases with the increase of the Cu content. An abrupt loss of magnetization was observed below T{sub C} at a temperature which increases with the reduction of the Mn content in the alloys. The addition of manganese enhances the solubility of copper in iron matrix and retains the BCC structure in iron-rich alloys. The behavior of the magnetization with temperature and its composition dependence indicate that an antiferromagnetic coupling is expected between the Fe and Mn atoms. The magnetic moments of both Fe and Mn atoms are expected to vary strongly with composition in these alloys.

  15. CARACTERIZATION OF Cu-Al-Mn ALLOYS FABRICATED USING ARC FURNACE

    Directory of Open Access Journals (Sweden)

    Diego E. Velázquez

    2016-06-01

    Full Text Available Two alloys of Cu-Al-Mn fabricated using an arc furnace built at the Instituto de Física de Materiales Tandil (IFIMAT were studied. The manufacture of alloys containing Mn is difficult, due to their high melting point and its low vapor pressure. Moreover, Mn at high temperature easily reacts with the materials used to build crucibles or capsules. In the casting arc difficulties arise to prevent volatilization, so it is very important the choice of electrode, the source setting, cooling, and the arrangement of the pure materials into the crucible. Critical temperatures of martensitic transformation and order were determined by Differential Scanning Calorimetry (DSC. Using Optical Microscopy (OM the presence of martensite phase was determined. From the results obtained it is concluded that this method is suitable for producing Cu-Al-Mn alloys.

  16. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs.

    Science.gov (United States)

    Wadley, P; Novák, V; Campion, R P; Rinaldi, C; Martí, X; Reichlová, H; Zelezný, J; Gazquez, J; Roldan, M A; Varela, M; Khalyavin, D; Langridge, S; Kriegner, D; Máca, F; Mašek, J; Bertacco, R; Holý, V; Rushforth, A W; Edmonds, K W; Gallagher, B L; Foxon, C T; Wunderlich, J; Jungwirth, T

    2013-01-01

    Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.

  17. Improved photocatalytic activity of nanocrystalline ZnO by coupling with CuO

    Science.gov (United States)

    Xu, Linhua; Zhou, Yang; Wu, Zijun; Zheng, Gaige; He, Jiaojiao; Zhou, Yanjing

    2017-07-01

    Although ZnO as a photocatalyst has attracted wide attention in the word in recent years, it is still a big challenge to develop low-cost, visible-light responsive ZnO based photocatalysts which can be used on a large scale. In this work, the CuO/ZnO nanocomposites have been synthesized by a facile one-step hydrothermal method and the influence of CuO contents on the photocatalytic properties of the nanocomposites has been investigated. The crystalline phase of the CuO/ZnO nanocomposites is determined by X-ray diffraction (XRD); the morphology and microstructures of the samples are analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic performance of the samples is tested using methylene blue (MB)dyes as the simulated pollutant under irradiation of a Xe lamp. Compared with pure ZnO, the photocatalytic activity of the CuO/ZnO nanocomposites is largely improved, especially for the sample prepared by the precursor solution with the molar ratio of Zn2+: Cu2+=2:1. The improvement of the photocatalytic activity is attributed to two main factors: (1) the band coupling improves the separation efficiency of photogenerated electrons and holes; (2) the utilization efficiency for solar energy is enhanced in the CuO/ZnO coupling system.

  18. Lattice sites of implanted Cu and Ag in ZnO

    CERN Document Server

    Wahl, Ulrich; Correia, J G; Agne, Thomas; Alves, E; Carvalho-Soares, João

    2006-01-01

    The group $\\textrm{I}$b impurities Cu and Ag on substitutional Zn sites are among possible candidates for p-type doping of ZnO. In order to explore possible lattice sites of Cu and Ag in ZnO the radioactive impurities $^{67}\\!$Cu and $^{111}\\!$Ag were implanted at doses of $4\\!\\times\\!10^{12}$cm$^{-2}\\to1\\!\\times\\!10^{14}$cm$^{-2}$ at 60 keV into ZnO single crystals. The emission channeling effects of $\\beta\\!^{-}$ -particles from the decay were studied by means of position-sensitive electron detectors, giving direct evidence that in the as-implanted state large fractions of Cu and Ag atoms (60--70% for Cu and 30% for Ag) occupy almost ideal substitutional Zn sites with root mean square (rms) displacements of 0.014--0.017 nm. However, following vacuum annealing at 600 °C and above both Cu and Ag were found to be located increasingly on sites that are characterized by large rms displacements (0.03--0.05 nm) from Zn sites. We conclude that in high-temperature treated ZnO Cu and Ag are most likely not simply re...

  19. Molecular Cloning and Expression Analysis of Cu/Zn SOD Gene from Gynura bicolor DC.

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2017-01-01

    Full Text Available Superoxide dismutase is an important antioxidant enzyme extensively existing in eukaryote, which scavenges reactive oxygen species (ROS and plays an essential role in stress tolerance of higher plants. A full-length cDNA encoding Cu/Zn SOD was cloned from leaves of Gynura bicolor DC. by rapid amplification of cDNA ends (RACE. The full-length cDNA of Cu/Zn SOD is 924 bp and has a 681 bp open reading frame encoding 227 amino acids. Bioinformatics analysis revealed that belonged to the plant SOD super family. Cu/Zn SODs of the Helianthus annuus, Mikania micrantha, and Solidago canadensis var. scabra all have 86% similarity to the G. bicolor Cu/Zn SOD. Analysis of the expression of Cu/Zn SOD under different treatments revealed that Cu/Zn SOD was a stress-responsive gene, especially to 1-MCP. It indicates that the Cu/Zn SOD gene would be an important gene in the resistance to stresses and will be helpful in providing evidence for future research on underlying molecular mechanism and choosing proper postharvest treatments for G. bicolor.

  20. Cu-ZnO-C nanoreactors studied by in situ synchrotron SAXS spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ching-I; Kang, Hsu-Ya [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, H. Paul, E-mail: wanghp@mail.ncku.edu.tw [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Lin, Wei-Keng [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Jeng, U-Ser; Su, Chiu-Hun [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2011-04-15

    Research highlights: {yields} Cu-ZnO-C nanoreactors formed by carbonization of Cu{sup 2+}- and Zn{sup 2+}-starch complexes. {yields} A threshold temperature for growth of coreshell nanoparticles at 433 K observed by in situ SAXS. {yields} Cu-ZnO-C nanoreactors are very effective in catalytic partial oxidation of methanol. - Abstract: By small angle X-ray scattering (SAXS) spectroscopy, changes of electronic density of selected element can be determined. A size growth of Cu-ZnO nanoparticles encapsulated in the carbon shell during temperature-programmed carbonization of Cu{sup 2+}- and Zn{sup 2+}-starch (Cu-to-Zn ratio = 1) at 343-523 K was observed by in situ SAXS. The Cu-ZnO-C behaves like a nanoreactor for catalytic partial oxidation of methanol (POM) to yield H{sub 2}-rich product gas. It seems that the enhanced POM may be associated with the high collision frequency of methanol, oxygen (as O atoms) and copper catalytic species in the confined nanoreactor.

  1. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO{sub 2} powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M. [CIICAp-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Juarez-Arellano, E.A., E-mail: eajuarez@unpa.edu.mx [Universidad del Papaloapan, Tuxtepec, Oaxaca (Mexico); Bykov, A. [Institute for Problems of Materials Science of NASU, Kyiv (Ukraine); Leon, I. [CIQ-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Siqueiros-Diaz, A. [FCQI-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico)

    2011-10-15

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 03120min) of powder mixtures of 50%wt ZnO+50%wt MnO{sub 2} can be described as a three stage process. (1) 030min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to {approx}600K) and annealing of defects with the lowest energy of activation E{sub ac}. (2) 30390min, further particle destruction, slow increment of sample average temperature (from {approx}600 to {approx}700K), formation and growth of a very disordered layer of {beta}-MnO{sub 2} around ZnO particles, dehydration of MnO{sub 2}, formation of solid solution of Mn{sup 2+} ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO{sub 2} mixture and onset of the formation of the ZnMnO{sub 3} phase. (3) 3903120min, the sample average temperature remains constant ({approx}700K), the reaction is completed and the spinel ZnMnO{sub 3} phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: > The kinetics during mechanical processing of ZnO-MnO{sub 2} samples is a three stage process. > First stage, reduction of crystallites size and accumulation of defects. > Second stage, nano-quasiamorphous states formation and onset of the ZnMnO{sub 3} phase. > Third stage, complete reaction to the spinel ZnMnO{sub 3} phase.

  2. Hydrogen motion in the Cu-H complex in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Boerrnert, Felix; Lavrov, E.V.; Weber, J. [Technische Universitaet Dresden (Germany)

    2008-07-01

    The Cu-H complex in ZnO consists of Cu on Zn site and a hydrogen atom bound to a nearby O atom with the O-H bond oriented in the basal plane of the hexagonal lattice to the c axis. The motion of hydrogen in the Cu-H complex is studied by the stress-induced dichroism. Stress applied at room temperature along [10 anti 10] results in an alignment of the Cu-H bond. The reorientation process was found to be thermally activated with the activation energy of 0.52{+-}0.04 eV. The connection of the hydrogen movement in the Cu-H complex with the hydrogen diffusion in ZnO is discussed and consequences for the existence of interstitial hydrogen in ZnO at room temperature are presented.

  3. P-Cu2O/n-ZnO nanowires on ITO glass for solar cells.

    Science.gov (United States)

    Zhang, Jin; Que, Wenxiu; Zhong, Peng; Zhu, Gangqiang

    2010-11-01

    In this paper, the fabrication and characterization of a heterojunction solar cell based on p-Cu2O/n-ZnO nanowires on ITO glass are presented. ZnO aligned nanocrystal seed layer is firstly prepared by RF magnetron sputtering technique, and then vertical ZnO nanowire arrays with an acicular crystal structure are obtained by using a chemical bath deposition processing. The results indicate that the ZnO nanowires with a diameter of about 50 nm and 500 nm in length can be easily obtained. The absorption and transmittance of the ZnO nanowires are studied. It is also noted that the Cu2O can fill well into the space between ZnO nanowires by an electrodeposition process. Furthermore, the effect of the Cu2O orientation on the cell performance is also presented.

  4. Ecotoxicity of nanoparticles of CuO and ZnO in natural water

    Energy Technology Data Exchange (ETDEWEB)

    Blinova, I., E-mail: irina.blinova@kbfi.e [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia); Ivask, A. [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia); Heinlaan, M. [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia); Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014 (Estonia); Mortimer, M. [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia); Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618 (Estonia); Kahru, A. [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia)

    2010-01-15

    The acute toxicity of CuO and ZnO nanoparticles in artificial freshwater (AFW) and in natural waters to crustaceans Daphnia magna and Thamnocephalus platyurus and protozoan Tetrahymena thermophila was compared. The L(E)C{sub 50} values of nanoCuO for both crustaceans in natural water ranged from 90 to 224 mg Cu/l and were about 10-fold lower than L(E)C{sub 50} values of bulk CuO. In all test media, the L(E)C{sub 50} values for both bulk and nanoZnO (1.1-16 mg Zn/l) were considerably lower than those of nanoCuO. The natural waters remarkably (up to 140-fold) decreased the toxicity of nanoCuO (but not that of nanoZnO) to crustaceans depending mainly on the concentration of dissolved organic carbon (DOC). The toxicity of both nanoCuO and nanoZnO was mostly due to the solubilised ions as determined by specific metal-sensing bacteria. - Natural waters remarkably reduced the toxicity of nanoCuO but not nano