WorldWideScience

Sample records for cu fe pb

  1. Superconducting spin-valve effect and triplet superconductivity in Co Ox/Fe1/Cu /Fe2/Cu /Pb multilayer

    Science.gov (United States)

    Leksin, P. V.; Garif'yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Hess, C.; Kataev, V.; Büchner, B.; Garifullin, I. A.

    2015-06-01

    We report magnetic and superconducting properties of the modified spin-valve system CoOx/Fe1/Cu /Fe2/Cu /Pb . Introduction of a Cu interlayer between Fe2 and Pb layers prevents material interdiffusion process, increases the Fe2/Pb interface transparency, stabilizes and enhances properties of the system. This allowed us to perform a comprehensive study of such heterostructures and to present theoretical description of the superconducting spin-valve effect and of the manifestation of the long-range triplet component of the superconducting condensate.

  2. On the concentration and separation of the trace-elements fe, cu, zn, mn, pb, mo and co : Paper chromatography

    NARCIS (Netherlands)

    Erkelens, P.C. van

    1961-01-01

    Paper chromatographic separations are described by which the minor constituents of biological ashes are separated either into: (Pb) - Mn - Co - (Pb) - Cu - Fe, Mo, Zn; or into: Cu, Mn, Co - Pb - Fe - Mo - Zn.

  3. Density Of The Copper-Rich Cu-Pb-Fe Alloys

    Directory of Open Access Journals (Sweden)

    Sak T.

    2015-09-01

    Full Text Available Density of the copper-rich corner of the ternary Cu-Pb-Fe alloys was determined with the dilatometric method. Investigated alloys had constant copper content equal to 0.9, 0.8 and 0.7 mole fraction, and varied iron concentration up to 0.1 mole fraction. A model predicting the density of ternary solution from knowledge of density of pure component and the excess of molar volume for limiting binaries is proposed.

  4. Kinetics of lead removal from the Cu-Pb-Fe alloy by barbotage with inert gases

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2011-04-01

    Full Text Available Discussion of the kinetics of lead removal from the Cu-Pb-Fe alloy by barbotage with argon and helium. The values of the mass penetration coefficient for the liquid and solid phase as well as the mass transfer coefficient were calculated for the temperatures of 1 473 K and 1 548 K, and for the gas flow rate of 5,55 • 10-6, 6,94 • 10-6, 8,33 • 10-6 and 9,72 • 10-6 m • s-1.

  5. Energy Parameters of Interfacial Layers in Composite Systems: Graphene – (Si, Cu, Fe, Co, Au, Ag, Al, Ru, Hf, Pb and Semiconductor (Si,Ge – (Fe, Co, Cu, Al, Au, Cr, W, Pb

    Directory of Open Access Journals (Sweden)

    B.P. Koman

    2015-12-01

    Full Text Available On the basis of the non-equilibrium thermodynamics relations and the surface physics phenomena we calculate adhesion and energy parameters to characterize the interfacial interactions in graphene – (Si, Cu, Fe, Co, Au, Ag, Al, Ru, Hf, Pb and semiconductor (Si, Ge – (Fe, Co, Cu, Al, Au, Cr, W, Pb systems. We analyze trends of the interfacial energy, interfacial tension, work of adhesion and the energy of adhesive bonds on the contacting element’s atomic number in the periodic table and on the electronegativity difference of interacting elements. Thus, this work provides theoretical basis for the development of new composite materials.

  6. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercool- ings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  7. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG XueHua; RUAN Ying; WANG WeiLi; WEI BingBo

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercoolings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  8. Efficiency of Chitosan for the Removal of Pb (II), Fe (II) and Cu (II) Ions from Aqueous Solutions

    OpenAIRE

    Soheil Sobhanardakani; Raziyeh Zandipak; Hassan Parvizimosaed; Arash Javanshir Khoei; Mehran Moslemi; Mahsa Tahergorabi; Seyed Mehdi Hosseini; Parisa Delfieh

    2014-01-01

    Background: Heavy metals have been recognized as harmful environmental pollutant known to produce highly toxic effects on different organs and systems of both humans and animals. The aim of this paper is to evaluate the adsorption potential of chitosan for the removal of Pb(II), Fe(II) and Cu(II) ions from aqueous solutions. Methods: This study was conducted in laboratory scale. In this paper chitosan has been used as an adsorbent for the removal of Pb(II), Fe(II) and Cu(II) from aqueous s...

  9. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash.

    Science.gov (United States)

    Fujimori, Takashi; Takaoka, Masaki; Takeda, Nobuo

    2009-11-01

    Model fly ashes containing admixed Cu, Fe, Pb, and Zn chlorides and oxides were heated at a temperature corresponding to the postcombustion zone of a municipal solid waste incinerator (MSWI), resulting in the formation of chlorinated aromatic compounds, including polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs), polychlorinated biphenyls (PCBs), and chlorobenzenes (CBzs). The concentrations of these compounds were measured and compared with those occurring in real fly ash. The order with respect generative capacity of each metal additive was calculated from principal component analysis of the concentrations of the different chlorinated aromatic compounds as CuCl(2)*2H(2)O > Cu(2)(OH)(3)Cl > FeCl(3)*6H(2)O > FeCl(2)*4H(2)O > CuO > Fe(2)O(3) > PbCl(2) > blank (no metal added) > ZnCl(2) > PbO > ZnO. From hierarchical cluster analysis of the concentrations and congener distribution patterns of the PCDDs, PCDFs, PCBs, and CBzs, the metallic compounds were divided into five groups: Group A (CuCl(2)*2H(2)O and Cu(2)(OH)(3)Cl), B (FeCl(3)*6H(2)O and FeCl(2)*4H(2)O), C (CuO and PbCl(2)), D (Fe(2)O(3), blank, and ZnCl(2)), and E (PbO and ZnO). Cluster analysis showed the congener distribution patterns of model fly ashes to be similar to the pattern of real MSWI fly ash. The formation of PCDDs was influenced mainly by group B, blank, and PbO; PCDFs, mainly by CuO, Fe(2)O(3) and ZnCl(2); PCBs, mainly by groups B and C; and CBzs, mainly by groups A and B. Thus, the multiple promotion of chlorinated aromatic compound formation by metallic chlorides and oxides in the fly ashes of MSWIs and other thermal processes has considerable importance for the environment.

  10. Efficiency of Chitosan for the Removal of Pb (II, Fe (II and Cu (II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2014-09-01

    Full Text Available Background: Heavy metals have been recognized as harmful environmental pollutant known to produce highly toxic effects on different organs and systems of both humans and animals. The aim of this paper is to evaluate the adsorption potential of chitosan for the removal of Pb(II, Fe(II and Cu(II ions from aqueous solutions. Methods: This study was conducted in laboratory scale. In this paper chitosan has been used as an adsorbent for the removal of Pb(II, Fe(II and Cu(II from aqueous solution. In batch tests, the effects of parameters like pH solution (1.0-8.0, initial metal concentrations (100-1000 mgL-1, contact time (5.0-150 min and adsorbent dose (1.0-7.0 g on the adsorption process were studied. Results: The results showed that the adsorption of Pb(II, Fe(II and Cu(II ions on chitosan strongly depends on pH. The experimental isothermal data were analyzed using the Langmuir and Freundlich equations and it was found that the removal process followed the Langmuir isotherm and maximum adsorption capacity for the adsorption of Pb(II, Fe(II and Cu(II ions by the chitosan were 55.5mg g−1, 71.4 mg g−1 and 59 mg g−1, respectively, under equilibrium conditions at 25±1 ºC. The adsorption process was found to be well described by the pseudo-second-order rate model. Conclusion: The obtained results showed that chitosan is a readily, available, economic adsorbent and was found suitable for removing Pb(II, Fe(II and Cu(II ions from aqueous solution.

  11. Determination of some heavy metals (Fe, Cu, Zn and Pb) in blood by total reflection X-ray fluorescence

    Science.gov (United States)

    Bounakhla, M.; Doukkali, A.; Lalaoui, K.; Aguenaou, H.; Mokhtar, N.; Attrassi, B.

    2003-05-01

    The main purpose of this study is the interaction between nutrition (micronutrients heavy metals: Fe, Zn, Cu) and toxic heavy metals such as Pb in blood of children living in Gharb region of Morocco. This region receives all pollution carried by the Sebou river coming mainly from industrial activities. A rapid and simple analytical procedure was used for the determination of Fe, Cu and Zn trace amounts in blood by total-reflection X-ray fluorescence technique. This method is an energy dispersive XRF technique in a special geometry of primary beam, sample and detector. The sample is deposited on a plane polished surface of a suitable reflector material. It is presented as a few drops (25 μl) from a solution of blood digested in a mixture of HNO3 and H2O2 using a microwaves accelerated reaction system. The accuracy of measurements has been investigated by using certified materials. The concentration of Cu was found to be normal in all samples (\\cong1 ppm) which ruled out any interaction between this element and the others. On the other hand, amounts of Fe and Zn are very variables, suggesting an interaction between Fe and Zn. However, amounts of Pb in blood are inferior to 50 ppb, suggesting that no interaction exist with this metal and micronutrients.

  12. Investigation on Fe, Mn, Zn, Cu, Pb and Cd fractions in the natural surface coating samples and surficial sediments in the Songhua River, China

    Institute of Scientific and Technical Information of China (English)

    GUO Shu-hai; WANG Xiao-li; LI YU; CHEN Jie-jiang; YANG Jun-cheng

    2006-01-01

    Natural surface coating samples (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River,China were employed to investigate the relationship between NSCSs and SSs in fractions of heavy metals (Fe, Mn, Zn, Cu, Pb, and Cd) using the modified sequential extraction procedure (MSEP). The results show that the differences between NSCSs and SSs in Fe fractions were insignificant and Fe was dominantly present as residual phase (76.22% for NSCSs and 80.88% for SSs) and Fe-oxides phase (20.33% for NSCSs and 16.15% for SSs). Significant variation of Mn distribution patterns between NSCSs and SSs was observed with Mn in NSCSs mainly present in Mn-oxides phase (48.27%) and that in SSs present as residual phase (45.44%). Zn, Cu,Pb and Cd were found dominantly in residual fractions (>48%), and next in solid oxides/hydroxides for Zn, Pb and Cd and in easily oxidizable solids/compounds form for Cu, respectively. The heavy metal distribution patterns implied that Fe/Mn oxides both in NSCSs and SSs were more important sinks for binding and adsorption of Zn, Pb and Cd than organic matter (OM), and inversely,higher affinity of Cu to OM than Fe/Mn oxides in NSCSs and SSs was obtained. Meanwhile, it was found that the distributions of heavy metals in NSCSs and SSs were similar to each other and the pseudo-total concentrations of Zn, Cu, Pb and Cd in NSCSs were greater than those in SSs, highlighting the more importance for NSCSs than SSs in controlling behaviours of heavy metals in aquatic environments.

  13. Determination of Cr, Cu, Fe, Ni, Pb and Zn by ICP-OES in mushroom samples from Sakarya, Turkey

    Directory of Open Access Journals (Sweden)

    Esra Altıntığ

    2017-06-01

    Full Text Available Russula cyanoxantha, Russula delica, Lactarius salmonicolor, Lactarius deliciosus, Pleurotus eryngii, Pleurotus ostreatus, Agaricus bisporus, Suillus luteus, Pleurotus spp and Boletus edulis were collected from Sakarya-Turkey respectively. Also canned food in the form of the Pleurotus eryngii, Pleurotus ostreatus, and Lactarius salmonicolor mushrooms were used for the examination. Trace metal concentrations found in these mushrooms were determined inductively using coupled plasma optic emission spectrometry microwave processes. The results were obtained for (Cr 0.3-26.65, (Cu 17.38-132.75, (Fe 26.3-225.40, (Ni 2.57-39.28, (Pb 11.52-185.20, and (Zn 22.86-126.84 mg/kg. The accuracy of the method was checked by the standard reference material; tea leaves (INCY-TL-1 and tomato leaves (1573a.

  14. Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions

    Science.gov (United States)

    Liu, Yu; Fu, Ruiqi; Sun, Yue; Zhou, Xiaoxin; Baig, Shams Ali; Xu, Xinhua

    2016-04-01

    In this study, EDTA-functionalized Fe3O4 (Fe3O4@SiO2-EDTA) was prepared by silanization reaction between N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (EDTA-silane) and hydroxyl groups for Pb(II) and Cu(II) removal from aqueous solutions. Fe3O4@SiO2-EDTA composites were characterized using SEM, TEM, EDX, FTIR, XPS, TGA and saturated magnetization techniques. Maximum Pb(II) adsorption capacity was found to be 114.94 mg g-1 with SiO2/EDTA molar ratio of 2.5:1. The adsorption rate was significantly fast and the equilibrium was reached within 10 min. The optimum pH was recorded to be 5.0. The maximum adsorption capacity of the studied heavy metal ions calculated by Langmuir model followed the order: Cu(II) (0.58 mmol g-1) > Pb(II) (0.55 mmol g-1) ≈ Ni(II) (0.55 mmol g-1) > Cd(II) (0.45 mmol g-1). Moreover, Pb(II) and Cu(II) adsorption capacities were not significantly affected by co-existing cations and NOM. These results suggested that this adsorbent can be considered as a promising adsorbent to remove Pb(II) and Cu(II) from wastewaters.

  15. Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles.

    Science.gov (United States)

    Fan, Chunzhen; Li, Kan; Li, Juexiu; Ying, Diwen; Wang, Yalin; Jia, Jinping

    2017-03-15

    In this paper, tetraethylenepentamine (TEPA) modified chitosan/CoFe2O4 particles were prepared for comparative and competitive adsorption of Cu(II) and Pb(II) in single and bi-component aqueous solutions. The characteristics results of SEM, FTIR and XRD indicated that the adsorbent was successfully fabricated. The magnetic property results manifested that the particles with saturation magnetization value of 63.83emug(-1) would have a fast magnetic response. The effects of experimental parameters including contact time, pH value, initial metal ions concentration and coexisting ions on single and bi-component adsorption were investigated. The results revealed that the adsorption kinetic was followed pseudo-second-order kinetic model, indicating that chemical adsorption was the rate-limiting step. Sorption isotherms were also determined in single and bi-component solutions with different mass ratio of Cu(II) to Pb(II) (Cu(II)/Pb(II)) and fitted using Langmuir and Freundlich isotherm models. A better fit for Cu(II) and Pb(II) adsorption were obtained with Langmuir model, with a maximum sorption capacity of 168.067 and 228.311mgg(-1) for Cu(II) and Pb(II) in single component solution, 139.860 and 160.256mgg(-1) in bi-component solution (Cu(II)/Pb(II)=1:1), respectively. The present results suggest that TEPA modified chitosan/CoFe2O4 particles are feasible and satisfactory adsorbent for efficient removal of Cu(II) and Pb(II) ions.

  16. Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4.

    Science.gov (United States)

    Ren, Yueming; Li, Nan; Feng, Jing; Luan, Tianzhu; Wen, Qing; Li, Zhanshuang; Zhang, Milin

    2012-02-01

    The adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe(2)O(4) prepared by a sol-gel process was investigated. Single batch experiment was employed to test pH effect, sorption kinetics, and isotherm. The interaction mechanism and the regeneration were also explored. The results showed that Pb(II) and Cu(II) removal was strongly pH-dependent with an optimum pH value of 6.0, and the equilibrium time was 3.0 h. The adsorption process could be described by a pseudo-second-order model, and the initial sorption rates were 526.3 and 2631.5 μmol g(-1)min(-1) for Pb(II) and Cu(II) ions, respectively. The equilibrium data were corresponded well with Langmuir isotherm, and the maximum adsorption capacities were 333.3 and 952.4 μmol g(-1) for Pb(II) and Cu(II) ions, respectively. The adsorbed Pb(II) and Cu(II) ions were in the form of the complex with oxygen in carboxyl and hydroxyl groups binding on the surface of magnetic porous MnFe(2)O(4). The sorbent could be reused for five times with high removal efficiency.

  17. Origin and fate of sulfide liquids in hotspot volcanism (La Réunion): Pb isotope constraints from residual Fe-Cu oxides

    Science.gov (United States)

    Vlastélic, I.; Gannoun, A.; Di Muro, A.; Gurioli, L.; Bachèlery, P.; Henot, J. M.

    2016-12-01

    Immiscible sulfide liquids in basaltic magmas play an important role in trace metal transport and the sulfur budget of volcanic eruptions. However, sulfides are transient phases, whose origin and fate are poorly constrained. We address these issues by analyzing sulfide destabilization products preserved in lavas from La Réunion Island. Iron oxide globules and coatings, typically 20-80 μm in size, were found to occur in vesicles of differentiated lavas from Piton des Neiges, and recent pumice samples from Piton de la Fournaise. Field and mineralogical evidence indicates that the iron oxides are syn-eruptive phases not resulting from hydrothermal processes. Samples were first studied by Scanning Electron Microscopy. The globules were separated, whereas the smaller spherules and coatings were concentrated by magnetic sorting and acid leaching, and samples were processed through wet chemistry. The Fe oxide phases comprise 49-74 wt.% Fe, 26-40 wt.% O, and up to 6 wt.% Cu, 811 ppm Ni, 140 ppm Bi, and 8.5 ppm Pb. Compared to the host lava, Cu, Ni, and Bi are enriched by a factor of 101-103. Systematic Pb isotope disequilibrium (between 500 ppm and 2.9% for 206Pb/204Pb) exists between Fe oxides and host rocks, with Fe oxides generally displaying less radiogenic ratios. Unradiogenic Pb is a typical signature of sulfide, which tends to concentrate Pb, but not its parent elements U and Th. Thus, both the chemical and isotopic compositions of the vesicle-hosted Fe oxides suggest that they are more or less direct products of the destabilization of immiscible sulfide liquids. Although Pb dominantly partitions into the gas phase during sulfide breakdown, the original Pb isotope signature of sulfide is preserved in the residual oxide. The composition estimated for the parent sulfides (206Pb/204Pb = 18.20-18.77, 207Pb/204Pb = 15.575, and 208Pb/204Pb = 38.2-38.8) precludes a genetic link with the La Réunion plume, and suggests a lithospheric or crustal origin. It is estimated

  18. Growth of Photosynthetic Biofilms and Fe, Pb, Cu, and Zn Speciation in Unsaturated Columns with Calcareous Mine Tailings from Arid Zones

    Directory of Open Access Journals (Sweden)

    J. V. García-Meza

    2011-01-01

    Full Text Available Mine tailing remediation aims to reduce the rate of sulfide mineral oxidation. Earlier studies showed that photosynthetic biofilms may act as a physical barrier against oxygen diffusion. Currently, a long-term assay (6 months is required to evaluate the solid phase redistribution of the Pb, Fe, Cu, and Zn originally present in historic and calcareous mine tailing samples (in our case from a semiarid region in North-Central Mexico. The presence of biofilms may provide chemical gradients and physical conditions that shift the proportion of Fe, Cu, and Zn originally associated with oxides to carbonates and organic matter/sulfide fractions.

  19. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.

    Science.gov (United States)

    Chandra, Ram; Yadav, Sangeeta

    2011-07-01

    A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater.

  20. Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils.

    Science.gov (United States)

    Michálková, Zuzana; Komárek, Michael; Šillerová, Hana; Della Puppa, Loïc; Joussein, Emmanuel; Bordas, François; Vaněk, Aleš; Vaněk, Ondřej; Ettler, Vojtěch

    2014-12-15

    The potential of three Fe- and Mn-(nano)oxides for stabilizing Cd, Cu and Pb in contaminated soils was investigated using batch and column experiments, adsorption tests and tests of soil microbial activity. A novel synthetic amorphous Mn oxide (AMO), which was recently proposed as a stabilizing amendment, proved to be the most efficient in decreasing the mobility of the studied metals compared to nano-maghemite and nano-magnetite. Its application resulted in significant decreases of exchangeable metal fractions (92%, 92% and 93% decreases of Cd, Cu and Pb concentrations, respectively). The adsorption capacity of the AMO was an order of magnitude higher than those recorded for the other amendments. It was also the most efficient treatment for reducing Cu concentrations in the soil solution. No negative effects on soil microorganisms were recorded. On the other hand, the AMO was able to dissolve soil organic matter to some extent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Sorption of Pb(II and Cu(II by low-cost magnetic eggshells-Fe3O4 powder

    Directory of Open Access Journals (Sweden)

    Ren Jianwei

    2012-01-01

    Full Text Available This study explored the feasibility of using magnetic eggshell-Fe3O4 powder as adsorbent for the removal of Pb(II and Cu(II ions from aqueous solution. The metal ionsadsorption media interaction was characterized using XRD and FTIR. The effects of contact time, initial concentrations, temperature, solution pH and reusability of the adsorption media were investigated. The metal ions adsorption was fast and the amount of metal ions adsorbed increased with an increase in temperature, suggesting an endothermic adsorption. The kinetic data showed that the adsorption process followed the pseudo-second-order kinetic model. The optimal adsorption pH value was around 5.5 at which condition the equilibrium capacity was 263.2 mg/g for Pb(II and 250.0 for Cu(II. The adsorption equilibrium data fitted very well to the Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Pb(II and Cu(II adsorption onto the magnetic eggshell-Fe3O4 powder indicated that the adsorption was spontaneous. The reusability study has proven that magnetic eggshell-Fe3O4 powder can be employed as a low-cost and easy to separate adsorbent.

  2. Incommensurate Spin Correlations Induced by Magnetic Fe ions Substituted into Overdoped Bi1.75Pb0.35Sr1.90CuO6+z

    Energy Technology Data Exchange (ETDEWEB)

    Hiraka, H.; Tranquada, J.; Hayashi, Y.; Wakimoto, S.; Takeda, M.; Kakurai, K.; Adachi, T.; Koike, Y.; Yamada, I.; Miyazaki, M.; Hiraishi, M.; Takeshita, S.; Kohda, A.; Kadono, R.; Yamada, K.

    2010-04-01

    Spin correlations in the overdoped region of Bi{sub 1.75}Pb{sub 0.35}Sr{sub 1.90}CuO{sub 6+z} have been explored with Fe-doped single crystals characterized by neutron scattering, muon-spin-rotation spectroscopy, and magnetic-susceptibility measurements. Static incommensurate spin correlations induced by the Fe spins are revealed by elastic neutron scattering. The resultant incommensurability {delta} is unexpectedly large (-0.2 r.l.u.), as compared with {delta}-1/8 in overdoped superconductor La{sub 2-x}Sr{sub x}CuO{sub 4}. Intriguingly, the large {delta} in this overdoped region is close to the hole concentration p. This result is reminiscent of the {delta}{approx}p trend observed in underdoped La{sub 2-x}Sr{sub x}CuO{sub 4}; however, it is inconsistent with the saturation of {delta} in the latter compound in the overdoped regime. While our findings in Fe-doped Bi{sub 1.75}Pb{sub 0.35}Sr{sub 1.90}CuO{sub 6+z} support the commonality of incommensurate spin correlations in high-T{sub c} cuprate superconductors, they also suggest that the magnetic response might be dominated by a distinct mechanism in the overdoped region.

  3. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  4. Utilização de pelos de animais silvestres para monitoramento ambiental de Cd, Cr, Cu, Fe, Mn, Pb e Zn Utilization of wild animal hair for the environmental monitoring of Cd, Cr, Cu, Fe, Mn, Pb e Zn

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Hoff Brait

    2009-01-01

    Full Text Available This study investigates the use of wild animal hair of C. brachyurus, C. thous and L. pardalis as biomonitors of trace metal at Parque Nacional das Emas, Brazil. Results reveal a strong correlation between Cd and Pb as well as Cu and Zn, which suggests a single source of emission. Most metals showed a lower or equal concentration than those obtained in previous studies. The research shows that monitoring may be performed only with Zn, Pb, Cd, and Cr because of statistical similarity and of a non-natural occurrence of large amounts of the material under analysis.

  5. Coexistence of Cu, Fe, Pb, and Zn oxides and chlorides as a determinant of chlorinated aromatics generation in municipal solid waste incinerator fly ash.

    Science.gov (United States)

    Fujimori, Takashi; Tanino, Yuta; Takaoka, Masaki

    2014-01-01

    We investigated chemical determinants of the generation of chlorinated aromatic compounds (aromatic-Cls), such as polychlorinated biphenyls (PCBs) and chlorobenzenes (CBzs), in fly ash from municipal solid waste incineration. The influences of the following on aromatic-Cls formation in model fly ash (MFA) were systematically examined quantitatively and statistically: (i) inorganic chlorides (KCl, NaCl, CaCl2), (ii) base materials (SiO2, Al2O3, CaCO3), (iii) metal oxides (CuO, Fe2O3, PbO, ZnO), (iv) metal chlorides (CuCl2, FeCl3, PbCl2, ZnCl2), and (v) "coexisting multi-models." On the basis of aromatic-Cls concentrations, the ∑CBzs/∑PCBs ratio, and the similarity between distribution patterns, MFAs were categorized into six groups. The results and analysis indicated that the formation of aromatic-Cls depended strongly on the "coexistence condition", namely multimodels composed of not only metal chlorides, but also of metal oxides. The precise replication of metal chloride to oxide ratios, such as the precise ratios of Cu-, Fe-, Pb-, and Zn-chlorides and oxides, may be an essential factor in changing the thermochemical formation patterns of aromatic-Cls. Although CuCl2 acted as a promoter of aromatic-Cls generation, statistical analyses implied that FeCl3 also largely influenced the generation of aromatic-Cls under mixture conditions. Various additional components of fly ash were also comprehensively analyzed.

  6. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption.

    Science.gov (United States)

    Dai, Chong; Hu, Yandi

    2015-01-06

    Fe(III) hydroxide nanoparticles are an essential carrier for aqueous heavy metals. Particularly, iron hydroxide precipitation on mineral surfaces can immobilize aqueous heavy metals. Here, we used grazing-incidence small-angle X-ray scattering (GISAXS) to quantify nucleation and growth of iron hydroxide on quartz in 0.1 mM Fe(NO3)3 solution in the presence of Na(+), Cu(2+), Pb(2+), or Cr(3+) at pH = 3.7 ± 0.1. In 30 min, the average radii of gyration (R(g)) of particles on quartz grew from around 2 to 6 nm in the presence of Na(+) and Cu(2+). Interestingly, the particle sizes remained 3.3 ± 0.3 nm in the presence of Pb(2+), and few particles formed in the presence of Cr(3+). Quartz crystal microbalance dissipation (QCM-D) measurements showed that only Cr(3+) adsorbed onto quartz, while Cu(2+) and Pb(2+) did not. Cr(3+) adsorption changed the surface charge of quartz from negative to positive, thus inhibiting the precipitation of positively charged iron hydroxide on quartz. Masses and compositions of the precipitates were also quantified. This study provided new insights on interactions among quartz, iron hydroxide, and metal ions. Such information is helpful not only for environmental remediation but also for the doping design of iron oxide catalysts.

  7. Distribution, mobility, and pollution assessment of Cd, Cu, Ni, Pb, Zn, and Fe in intertidal surface sediments of Sg. Puloh mangrove estuary, Malaysia.

    Science.gov (United States)

    Udechukwu, Bede Emeka; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir; Omar, Hishamuddin

    2015-03-01

    Sungai Puloh mangrove estuary supports a large diversity of macrobenthic organisms and provides social benefits to the local community. Recently, it became a major recipient of heavy metals originating from industries in the hinterland as a result of industrialization and urbanization. This study was conducted to evaluate mobility and pollution status of heavy metals (Cd, Cu, Ni, Pb, Zn, and Fe) in intertidal surface sediments of this area. Surface sediment samples were collected based on four different anthropogenic sources. Metals concentrations were analyzed using an atomic absorption spectrophotometer (AAS). Results revealed that the mean concentrations were Zn (1023.68 ± 762.93 μg/g), Pb (78.8 ± 49.61 μg/g), Cu (46.89 ± 43.79 μg/g), Ni (35.54 ± 10.75 μg/g), Cd (0.94 ± 0.29 μg/g), and Fe (7.14 ± 0.94%). Most of the mean values of analyzed metals were below both the interim sediment quality guidelines (ISQG-low and ISQG-high), except for Pb concentration (above ISQG-low) and Zn concentration (above ISQG-high), thus suggesting that Pb and Zn may pose some environmental concern. Cadmium, Pb, and Zn concentrations were above the threshold effect level (TEL), indicating seldom adverse effect of these metals on macrobenthic organisms. Pollution load index (PLI) indicated deterioration and other indices revealed the intertidal surface sediment is moderately polluted with Cd, Pb, and Zn. Therefore, this mangrove area requires urgent attention to mitigate further contamination. Finally, this study will contribute to data sources for Malaysia in establishing her own ISQG since it is a baseline study with detailed contamination assessment indices for surface sediment of intertidal mangrove area.

  8. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    Science.gov (United States)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-05-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  9. Analysis of Zn, Cd, As, Cu, Pb, and Fe in snails as bioindicators and soil samples near traffic road by ICP-OES.

    Science.gov (United States)

    Massadeh, Adnan M; Alomary, Ahmed A; Mir, Sayeeda; Momani, Fouad A; Haddad, Hazem I; Hadad, Yazen A

    2016-07-01

    Snails are used as biological indicators of the environment pollution for heavy metals. Living snail samples were collected from different sites at the city of Irbid-Jordan and classified according to their morphological features including Helix pelasga, Eobania vermiculata, Xeropicta derbentina, Oychilus, Xerocrassa seetzenii, Xerocrassa simulata, and Pila. Zn, Cd, As, Cu, Pb, and Fe levels were measured by inductively coupled plasma-optical emission spectroscopy. Results indicated that metal concentrations in all snail shell samples were with an average and range for Zn 22.4 (6.5-105.5) μg g(-1), Cd 7.8 (0.4-48.1) μg g(-1), As 25.9 (0.7-248.5) μg g(-1), Cu 15.1 (1.6-69.0) μg g(-1), Pb 0.4 (0.2-1.7) μg g(-1), and Fe 119.6 (14.0-1102.0) μg g(-1), whereas, in soil samples, the average and range for Zn 204.0 (12.0-709.0) μg g(-1), Cd 5.7 (0.2-39.5) μg g(-1), As 3.2 (1.8-5.2) μg g(-1), Cu 22.1 (2.3-77.4) μg g(-1), Pb 0.2 (0.1-0.3) μg g(-1), and Fe 242.4 (25.0-680.0) μg g(-1).

  10. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Daniel M.; Lima, Claudio F. [Departamento de Quimica, Universidade Federal de Vicosa, A. Peter Henry Rolfs s/n, Vicosa/MG, 36570-000 (Brazil); Robaina, Nicolle F. [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil); Fonseca, Teresa Cristina O. [Petrobras, Cenpes/PDEDS/QM, Av. Horacio Macedo 950, Ilha do Fundao, Rio de Janeiro/RJ, 21941-915 (Brazil); Cassella, Ricardo J., E-mail: cassella@vm.uff.br [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil)

    2011-05-15

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO{sub 3}, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO{sub 3} medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  11. Drinking water interlaboratory ring test. Part IV. Results of some cationic analytes. Al, Zn, Cd, Cr, Pb, Ni, Mn, Fe, Cu and V; Circuito interlaboratorio Unichim sulle acque potabili. Parte IV. Risultati di alcuni cationi metallici. Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu e V

    Energy Technology Data Exchange (ETDEWEB)

    Cavaterra, E.; Divo, C.; Bottazzini, N. [Unichim, Milan (Italy); Alava, F. [Bergamo Ambiente e Servizi, Bergamo (Italy); Bettinelli, M. [Electric Power Production Company, Piacenza (Italy); Bonfiglioli, F. [Azienda Mediterranea Gas e Acqua SpA, Genoa (Italy)

    2002-01-01

    In this paper results of statistical treatment of experimental data obtained in some cycles of an interlaboratory ring test of content of Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu and V in drinking water are reported. Means, variances and parameters of precision and accuracy of some analytical techniques and methods employed by laboratories participating to the ring test will be reported and discussed. [Italian] Nel presente lavoro vengono riportati i risultati dell'elaborazione statistica dei dati sperimentali ottenuti in alcuni cicli del circuito interlaboratorio e relativi ai seguenti cationi metallici: Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu e V. Vengono riportati e discussi i valori medi e la varianza ed infine i dati di accuratezza e precisione delle tecniche o metodi d'analisi impiegati dai laboratori partecipanti al circuito.

  12. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico; Evaluacion de los metales pesados Cr, Mn, Fe, Cu, Zn y Pb en sombrerillo de agua (Hydrocotyle ranunculoides) del curso alto del Rio Lerma, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G.; Avila P, P.; Tejeda, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Valdivia B, M.; Macedo M, G. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Zepeda G, C., E-mail: graciela.zarazua@inin.gob.mx [Universidad Autonoma del Estado de Mexico, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Estado de Mexico (Mexico)

    2013-07-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  13. Use of multivariate statistical tool for data processing in the analysis of Cu, Cr, Fe, Pb, Mo and Mg in lubricating oil by LIBS

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Luana F.N.; Sarkis, Jorge E.S.; Bordon, Isabela C.A.C., E-mail: ludemar1@hotmail.com, E-mail: jesarkis@ipen.br, E-mail: isabella.bordon@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Analysis of industrial lubricants is widely used for monitoring and predicting maintenance requirements in a broad range of mechanical systems. Laser induced breakdown spectroscopy has been used to evaluate the potentiality of the technique for the determination of metals in lubricating oils. Prior to quantitative analysis, the LIBS system was calibrated using standard samples containing the elements investigated (Cu, Cr, Fe, Pb, Mo and Mg). This study presents the usefulness of multivariate statistical techniques for evaluation and interpretation of large complex data sets in order to get more information about concentration of metals in oils lubricants is related to engine wear. (author)

  14. Study of the analytic quality in the determinations of Cr, Fe, Mn, Cu, Zn, Pb and Hg through conventional and nuclear analytical techniques in mosses of the MATV; Estudio de la calidad analitica en las determinaciones de Cr, Fe, Mn, Cu, Zn, Pb y Hg a traves de tecnicas analiticas nucleares y convencionales en musgos de la ZMVT

    Energy Technology Data Exchange (ETDEWEB)

    Caballero S, B.

    2013-07-01

    To evaluate the environmental risks of air pollution and to facilitate the decision-making for control, is necessary to have the capacity to generate data with analytical quality. A comparison between nuclear (Neutron activation analysis and total reflection X-ray fluorescence spectrometry) and no nuclear analytical techniques (atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry) for simultaneous determination of metal content (Cr, Cu, Fe, Hg, Mn, Pb and Zn) in mosses from Metropolitan Area of the Toluca Valley (MATV) was performed. Epiphytic mosses (Fabriona ciliaris and Leskea angustata) were sampled in two campaigns, 16 sites (urban, transition and natural) and were prepared for each technique. The biological certified reference materials were used for the quality control and to evaluate accuracy, precision, linearity, detection and quantification limits. Results show that nuclear analytical techniques and no nuclear applied in chemical analysis of Cr, Cu, Fe, Hg, Mn, Pb and Zn in moss from MATV are comparable and therefore all of these can potentially be used for this purpose. However, if its considered both, the performance parameters and economic/operational characteristics is widely recommended inductively coupled plasma optical emission spectrometry, conventional analytical technique, which showed the highest analytical grade quality. Also were observed spatial and temporal variations in the concentrations of Cr, Cu, Fe, Hg, Mn, Pb and Zn in mosses from MATV and was discussed its potential origin. The urban sites had the highest concentration of anthropogenic elements as Cr, Cu, Fe, Hg, Pb and Zn because are strongly impacted by roads with high vehicle traffic. (Author)

  15. Concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, and Zn in uruguayan rice determined by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mario E. Rivero Huguet

    2011-04-01

    Full Text Available The United Nations General Assembly declared the year 2004 the International Year of Rice and the concept "Rice is life". The largest nutritional problems occurring globally are protein-energy malnutrition, and Ca, Fe, I, Zn, and vitamin A deficiency. In this report, 49 rice samples (Oryza sativa L. were digested by dry ashing in order to determine As, Cd, Cr, and Pb by ETA-AAS; while Ca, Co, Cu, Fe, K, Mg, Mo, Mn, Na, Ni, and Zn were determined by FAAS; and Hg by CV-AAS using microwave-assisted decomposition. The following concentration ranges were obtained for Ca (9.1-15 mg/100 g, Cd (2.30-4.12 µg/kg, Co (41-60 µg/kg, Cu (1.33-180 mg/kg, Fe (4.41-7.15 mg/kg, K (167-217 mg/100 g, Mg (45-121 mg/100 g, Mo (0.52-0.97 mg/kg, Mn (5.45-25.4 mg/kg, Na (0.95-2.50 mg/100g, Ni (0.53-0.72 mg/kg, and Zn (5.86-12.6 mg/kg. Mean recoveries of elements from fortified rice were: 87±12% for As, 95.3±8.9% for Ca, 106.2±7.7% for Cd, 103.3±6.5% for Co, 89.4±8.1% for Cr, 99.3±4.6% for Cu, 103±10% for Fe, 96.3±9.3% for Hg, 95.4±12% for K, 98.3±8.0% for Mg, 93.4±7.8% for Mo, 95.3±9.9% for Mn, 89±12% for Na, 90.3±9.7% for Ni, 91.2±5.5% for Pb and 92.0±9.4% for Zn. The concentrations of the minerals and microelements studied fall within the typical range of rice grown around the world. Potassium was the most abundant mineral, followed by Mg and Ca; among microelements, the concentrations of Cu, Fe, Mo, Mn, Na, and Zn in rice were outstanding. It was also found that the milling process highly affects the K, Mg, Mn, Na, and Zn concentrations, while it has little influence on Ca, Co, Cu, and Fe. On the other hand, there is a loss of Ca, Fe, and Mn during the parboiling process. Recent studies have shown the potential to exploit the genetic variation of rice seeds with regard to the concentration of some minerals (Ca, Fe, Zn, etc. without affecting yield or adding new traits. All rice samples tested showed lower levels of As, Cd, Hg, and Pb in comparison

  16. Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum

    Directory of Open Access Journals (Sweden)

    Jaber SALEHZADEH

    2013-11-01

    Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of metal pollution is slow and interminable, as these metal ions are non bio-degradable. The adsorption capacity of Xanthium Pensylvanicum towards metal ions such as Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+, was studied. The adsorption capacity was performed by batch experiments as a function of process parameters (such as sorption time and pH. Experimental results showed that the removal percentages increasing of metal ions at pH=4, initial concentration of metal ions 10 mg/L, and after 90 min of shaking was: Zn2+ < Cd2+ < Cu2+ < Pb2+ < Ni2+ < Fe3+ < Co2+.

  17. Accumulation of Pb, Fe, Mn, Cu and Zn in plants and choice of hyperaccumulator plant in the industrial town of Vian, Iran

    Directory of Open Access Journals (Sweden)

    Lorestani B.

    2011-01-01

    Full Text Available Various industrial activities contribute heavy metals to the soil environment directly or indirectly through the release of solid wastes, waste gases, and wastewater. Phytoremediation can be potentially used to remedy metal-contaminated sites. A major step towards the development of phytoremediation of heavy metal-impacted soils is the discovery of the heavy metal hyperaccumulation in plants. This study evaluated the potential of 7 species growing on a contaminated site in an industrial area. Several established criteria to define a hyperaccumulator plant were applied. The case study was represented by an industrial town in the Hamedan province in the central-western part of Iran. This study showed that most of the sampled species were able to grow in heavily metal-contaminated soils and were also able to accumulate extraordinarily high concentrations of some metals such as Pb, Fe, Mn, Cu and Zn. Based on the obtained results and using the most common criteria, Camphorosma monospeliacum for Pb and Fe, and Salsola soda and Circium arvense for Pb can be classified as hyperaccumulators and, therefore, they have suitable potential for the phytoremediation of contaminated soils.

  18. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry.

    Science.gov (United States)

    Rapp, Insa; Schlosser, Christian; Rusiecka, Dagmara; Gledhill, Martha; Achterberg, Eric P

    2017-07-11

    A rapid, automated, high-throughput analytical method capable of simultaneous analysis of multiple elements at trace and ultratrace levels is required to investigate the biogeochemical cycle of trace metals in the ocean. Here we present an analytical approach which uses a commercially available automated preconcentration device (SeaFAST) with accurate volume loading and in-line pH buffering of the sample prior to loading onto a chelating resin (WAKO) and subsequent simultaneous analysis of iron (Fe), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd), lead (Pb), cobalt (Co) and manganese (Mn) by high-resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS). Quantification of sample concentration was undertaken using isotope dilution for Fe, Zn, Cu, Ni, Cd and Pb, and standard addition for Co and Mn. The chelating resin is shown to have a high affinity for all analyzed elements, with recoveries between 83 and 100% for all elements, except Mn (60%) and Ni (48%), and showed higher recoveries for Ni, Cd, Pb, Co and Mn in direct comparison to an alternative resin (NOBIAS Chelate-PA1). The reduced recoveries for Ni and Mn using the WAKO resin did not affect the quantification accuracy. A relatively constant retention efficiency on the resin over a broad pH range (pH 5-8) was observed for the trace metals, except for Mn. Mn quantification using standard addition required accurate sample pH adjustment with optimal recoveries at pH 7.5 ± 0.3. UV digestion was necessary to increase recovery of Co and Cu in seawater by 15.6% and 11.4%, respectively, and achieved full break-down of spiked Co-containing vitamin B12 complexes. Low blank levels and detection limits could be achieved (e.g., 0.029 nmol L(-1) for Fe and 0.028 nmol L(-1) for Zn) with the use of high purity reagents. Precision and accuracy were assessed using SAFe S, D1, and D2 reference seawaters, and results were in good agreement with available consensus values. The presented method is ideal for

  19. Concentrations of Mn, Fe, Cu, Zn, Cr, Cd, Pb, Ni in selected Nigerian tubers, legumes and cereals and estimates of the adult daily intakes.

    Science.gov (United States)

    Akinyele, I O; Shokunbi, O S

    2015-04-15

    This study was designed to determine the levels of microminerals (manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr)) and heavy metals (cadmium (Cd), lead (Pb) and nickel (Ni)) in some tubers, legumes and cereals obtained from the markets in Abeokuta city, South-West Nigeria. The food samples were digested by dry ashing procedure and their minerals were determined by atomic absorption spectrophotometer. The results show mean values of 1.67-32.00, 7.25-61.58, 1.59-10.56, 6.65-46.99, 0.02-0.58, legumes and cereals from various parts of the world. The daily intakes of the metals through tubers, legumes and cereals were found to be lower than the provisional tolerable daily intakes proposed by Joint FAO/WHO Expert Committee on Food Additives.

  20. The Magnetoelectric Effect of a Ni0.3Zn0.62Cu0.08Fe2O4 - PbFe0.5Nb0.5O3 Multilayer Composite

    Directory of Open Access Journals (Sweden)

    Guzdek P.

    2014-10-01

    Full Text Available The magnetoelectric effect in multiferroic materials has been widely studied for its fundamental interest and practical applications. The magnetoelectric effect observed for single phase materials like Cr2O3, BiFeO3, and Pb(Fe0.5Nb0.5O3 is usually small. A much larger effect can be obtained in composites consisting of magnetostrictive and piezoelectric phases. This paper investigates the magnetoelectric effect of a multilayer (laminated structure consisting of 6 nickel ferrite and 7 PFN relaxor layers. It describes the synthesis and tape casting process for Ni0.3Zn0.62Cu0.08Fe2O4 ferrite and relaxor PbFe0.5Nb0.5O3 (PFN. Magnetic hysteresis, ZFC - FC curves and dependencies of magnetization versus temperature for PFN relaxor and magnetoelectric composite were measured with a vibrating sample magnetometer (VSM in an applied magnetic field up to 85 kOe at a temperature range of 10 – 400 K. Magnetoelectric effect at room temperature was investigated as a function of a static magnetic field (0.3 - 6.5 kOe and the frequency of sinusoidal magnetic field (0.01 - 6.5 kHz. At lower magnetic field, the magnetoelectric coefficient increases slightly before reaching a maximum and then decreases. The magnetoelectric coefficient aME increases continuously as the frequency is raised, although this increase is less pronounced in the 1-6.5 kHz range. Maximum values of the magnetoelectric coefficient attained for the layered composites exceed about 50 mV/(Oe cm.

  1. Adsorption Studies on Aqueous Cd2 +, Pb2+, Cu2 + Ions by Thiol and Humic Acid Functionalized Fe3O4 Nanoparticles%巯基修饰和胡敏酸包裹纳米Fe3O4颗粒的制备及其对溶液中pb2+ Cd2+ Cu2+的吸附效果研究

    Institute of Scientific and Technical Information of China (English)

    王萌; 雷丽萍; 方敦煌; 徐照丽; 陈世宝

    2011-01-01

    采用改进的化学共沉淀法制备纳米Fe3O4颗粒,利用3-巯丙基三乙氧基硅烷(MPTES)和胡敏酸(HA)对所制备的纳米Fe3O4进行巯基修饰和胡敏酸包裹,通过红外光谱(IR)、X射线衍射分析(XRD)等方法对上述制备的纳米颗粒的性质进行了表征,同时对上述不同的纳米Fe3O4颗粒在恒温下对水体中金属离子(Pb2+、Cd2+、Cu2+)的吸附进行了研究.结果表明,所制备的功能化前后的纳米Fe3O4纯度较高,平均粒径约为20~30 nm,且分布均匀.不同纳米型Fe3O4颗粒对溶液中金属离子具有较好的吸附性能,其吸附等温线均可以用Langmuir方程进行较好的拟合;裸露的纳米Fe3O4颗粒对Pb2+最大吸附量(b)达到172.4 mg·g-1,经过胡敏酸包裹后的纳米Fe3O4颗粒对Cd2+、Cu2+的最大吸附量分别增加了75.8%和231.5%;对不同金属离子而言,裸露的和巯基修饰的纳米Fe3O4对3种重金属离子的吸附能力的强弱为pb2+>Cd2+>Cu2+,而经胡敏酸包裹后的顺序则为Pb2+>Cu2,Cd2+;与裸露的和巯基修饰的纳米Fe3O4相比,经HA包裹的纳米Fe3O4对Cd2+和Cu2+具有较高的吸附量和吸附亲和力参数,而对Pb2+的吸附无显著性差异.%The magnetic Fe3O4 nanoparticles were prepared using modified chemical co- precipitation, and corresponding thiolated and coating nanoparticles were also obtained via surface mercaptopropyltriethoxysilane(MPTES) modification and humic acid(HA). The properties and structure of the nanoparticles were characterized by X-Ray diffraction(XRD) and infrared spectroscopy(IR) etc. The application of the nanoparticles to the adsorption of aqueous Pb2+, Cd2+, Cu2+ were also investigated in this study. The results showed that the average size of prepared nanoparticles were about 20-30 nm with homogeneous distribution; the nanoparticles could adsorb Pb2+, Cd2+, Cu2+ in solution efficiently and the adsorption data were well fitted with the Langmuir isotherm. The sorption maxima of

  2. Positive feedback between strain localization and fluid flow at the ductile-brittle transition leading to Pb-Zn-Fe-Cu-Ag ore deposits in Lavrion (Greece)

    Science.gov (United States)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier

    2016-04-01

    At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and

  3. Magnetic field effect on Fe-induced short-range magnetic correlation and electrical conductivity in Bi1.75Pb0.35Sr1.90Cu0.91Fe0.09O6+y

    Energy Technology Data Exchange (ETDEWEB)

    Wakimoto, S [Japan Atomic Energy Agency (JAEA); Hiraka, Haruhiro [Institute for Materials Research, Tohoku University, Sendai, Japan; Kudo, Kazutaka [Institute for Materials Research, Tohoku University, Sendai, Japan; Okamoto, Daichi [Institute for Materials Research, Tohoku University, Sendai, Japan; Nishizaki, Terukazu [Institute for Materials Research, Tohoku University, Sendai, Japan; Kakurai, Kazuhisa [Japan Atomic Energy Agency (JAEA); Hong, Tao [ORNL; Zheludev, Andrey [Laboratory for Neutron Scattering ETHZ & PSI; Tranquada, John M. [Brookhaven National Laboratory (BNL); Kobayashi, Norio [Institute for Materials Research, Tohoku University, Sendai, Japan; Yamada, Kazuyoshi [Institute for Materials Research, Tohoku University, Sendai, Japan

    2010-08-01

    We report electrical-resistivity measurements and neutron-diffraction studies under magnetic fields of Bi{sub 1.75}Pb{sub 0.35}Sr{sub 1.90}Cu{sub 0.91}Fe{sub 0.09}O{sub 6+y}, in which hole carriers are overdoped. This compound shows short-range incommensurate magnetic correlation with incommensurability {delta} = 0.21, whereas a Fe-free compound shows no magnetic correlation. Resistivity shows an up turn at low temperature in the form of ln(1/T) and shows no superconductivity. We observe reduction in resistivity by applying magnetic fields (i.e., a negative magnetoresistive effect) at temperatures below the onset of short-range magnetic correlation. Application of magnetic fields also suppresses the Fe-induced incommensurate magnetic correlation. We compare and contrast these observations with two different models: (1) stripe order and (2) dilute magnetic moments in a metallic alloy with associated Kondo behavior. The latter picture appears to be more relevant to the present results.

  4. Study of Cu and Pb partitioning in mine tailings using the Tessier sequential extraction scheme

    Science.gov (United States)

    Andrei, Mariana Lucia; Senila, Marin; Hoaghia, Maria Alexandra; Borodi, Gheorghe; Levei, Erika-Andrea

    2015-12-01

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings from Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.

  5. Determination of Cu Fe Zn Mn Pb in Cocoa Powder%可可粉中铜、铁、锌、锰、铅的测定

    Institute of Scientific and Technical Information of China (English)

    蒲涛猛; 张金生; 李丽华; 焦瑞; 牛桂昂

    2014-01-01

    The method of determining the contents of trace element Cu Fe Zn Mn and Pb in cacao powder was studied by microwave digestion-flame atomic absorption spectrometry. Some process variables , including the effects of acid, coexistence ion disruption, background interference, accuracy and precision were optimized. The cacao powder was treated by microwave digestion. We can obtain the linear coefficients (all more than 0.999 0), limits of detection (all less than 0.004 2 mg/L), the RSDs (all less than 4.72%). The standard addition recovery rate of each element respectively were 96.5%-101.2%, 97.3%-102.7%, 95.4%-101.5%, 97.7%-102.3%. The result proved that the method was correct and reliable, higher sensitivity and recovery. Compared with the content of each element in cacao powder from different manufacturer through statistical comparison , the results showed that there was no significant difference.%建立微波消解火焰原子吸收法测定可可粉中的微量元素铜、铁、锌、锰、铅含量的方法。对酸效应、共存离子干扰、背景干扰、准确度和精密度进行考察。用微波消解法处理可可粉。测得各元素的工作曲线相关系数均大于0.9990,方法检出限均小于0.0042 mg/L,相对标准偏差(RSD)均小于4.72%,各元素的加标回收率分别为96.5%~101.2%、97.3%~102.7%、95.4%~101.5%、97.7%~102.3%。经统计对比不同厂家生产的可可粉,发现各元素的含量不存在显著差异。

  6. Ordinary and triplet superconducting spin valve effect in Fe/Pb based systems

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Krupskaya, Yulia; Kataev, Vladislav; Hess, Christian; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute of RAS, Kazan (Russian Federation); Fominov, Yakov [L. D. Landau Institute for Theoretical Physics of RAS, Moscow (Russian Federation)

    2015-07-01

    We report on experimental evidence for the occurrence of the long range triplet correlations (LRTC) of the superconducting (SC) condensate in the spin-valve heterostructures CoO{sub x}/Fe1/Cu/Fe2/Pb. The LRTC generation in this layer sequence is accompanied by a T{sub c} suppression near the orthogonal mutual orientation of the Fe1 and Fe2 layers' magnetization. This T{sub c} drop reaches its maximum of 60mK at the Fe2 layer thickness d{sub Fe2} = 0.6 nm and falls down when d{sub Fe2} is increased. The modification of the Fe/Pb interface by using a thin Cu layer between Fe and Pb layers reduces the SC transition width without preventing the interaction between Pb and Fe2 layers. The dependence of the SSVE magnitude on Fe1 layer thickness d{sub Fe1} reveals maximum of the effect when d{sub Fe1} and d{sub Fe2} are equal and the d{sub Fe2} value is minimal. Using the optimal d{sub Fe1}, d{sub Fe2} and the intermediate Cu layer we realized almost full switching from normal to SC state due to SSVE.

  7. Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia)

    Science.gov (United States)

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-06-01

    Fluxes of suspended particulate matter (SPM) and their associated metals were performed off the Mejerda River Delta during both the wet (March) and the dry (July) seasons in 2012, using sediment traps at study stations at depths of 10, 20 and 40 m. Fluxes nearest to the Mejerda outlet were more significant, especially during winter (36 g m-2 day-1), but dissipated further offshore, 24.5-6 g m-2 day-1 at the 20 m and 21.8-4.8 g m-2 day-1 at the 40 m stations. Many variations observed in seasonal and spatial metal fluxes are similar to those of SPM, in particular Pb and Zn, probably because they are associated with the mining activity characteristic of the Mejerda catchment. Chemical speciation reveals that most of the metals (20-100%) are bound to the residual fraction. The most toxic metals (Pb, Zn) are bound in part to the exchangeable fraction (20-50% for Pb and 5-15% for Zn) making them relatively bioavailable and therefore potentially toxic. While Cu and Cd fluxes are not always clearly established according to season, both metals are apparently sequestered deep in the sediment, bound especially to clays (40-80% for Cd and up to 100% for Cu).

  8. Bi-sulphotellurides associated with Pb - Bi - (Sb ± Ag, Cu, Fe) sulphosalts: an example from the Stan Terg deposit in Kosovo

    Science.gov (United States)

    Kołodziejczyk, Joanna; Pršek, Jaroslav; Voudouris, Panagiotis Ch.; Melfos, Vasilios

    2017-08-01

    New mineralogical and mineral-chemical data from the Stan Terg deposit, Kosovo, revealed the presence of abundant Bi-sulphotellurides associated with Bi- and Sb-sulphosalts and galena in pyrite-pyrrhotite-rich skarn-free ore bodies (ores without skarn minerals). The Bi-bearing association comprises Bi-sulphotellurides (joséite-A, joséite-B, unnamed phase A with a chemical formula close to (Bi,Pb)2(TeS)2, unnamed phase B with a chemical composition close to (Bi,Pb)2.5Te1.5S1.5), ikunolite, cosalite, Sb-lillianite, members of the kobellite series and Bi-jamesonite. Compositional trends of the Bi-sulphotellurides suggest lattice-scale incorporation of Bi-(Pb)-rich module and/or admixture with submicroscopic PbS layers in modulated structures, or complicated Bi-Te substitution. Cosalite is characterized by high Sb (max. 3.94 apfu), and low Cu and Ag (up to 0.72 apfu of Cu+Ag). Jamesonite from this mineralization has elevated Bi content, from 0.85 to 2.30 apfu. The negligible content of Au and Ag in the Bi-sulphotellurides, the low content of Ag in Bi-sulphosalts, together with the lack of Au-Ag bearing phases in the mineralization, indicate either ore deposition from fluid(s) depleted in precious metals, or physico-chemical conditions of ore formation preventing Au and Ag precipitation at the deposit site. The temperature of initial mineralization may have exceeded 400 °C as suggested by the lamellar exsolution textures observed in lillianite, which indicate breakdown textures from decomposition of high-temperature initial crystals. Non-stoichiometric phases among the Bi-sulphosalts and sulphotellurides studied at Stan Terg reflect modulated growth processes in a metasomatic environment.

  9. Use of statistical design of experiments to evaluate the sorption capacity of 7-amine-4-azaheptylsilica and 10-amine- 4-azadecylsilica for Cu(II), Pb(II), and Fe(III) adsorption.

    Science.gov (United States)

    Passos, Camila G; Ribaski, Fernanda S; Simon, Nathália M; dos Santos, Araci A; Vaghetti, Júlio C P; Benvenutti, Edilson V; Lima, Eder Cláudio

    2006-10-15

    7-Amine-4-azaheptylsilica (AAH Si) and 10-amine-4-azadecylsilica (AAD Si) were prepared and used for removal of Cu(II), Pb(II), and Fe(III) from aqueous solutions. Full 2(3) factorial designs with two pseudo-central points were carried out in order to achieve the best conditions of the batch adsorption procedure for metallic ion uptake by the adsorbents. To continue the optimizations, central composite surface design was also employed. These two independent statistical designs of experiments lead to the following conditions: m=30.0 mg of adsorbent; pH 6.0 for Cu(II) and Pb(II), pH 4.0 for Fe(III); t of contact 180 min to guarantee equilibration at higher adsorbate concentration. After optimization of the conditions, isotherms of the metallic ions adsorbed on the AAH Si and AAD Si adsorbents were obtained, which were fitted to nonlinear Langmuir and Freundlich isotherm models.

  10. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase microextraction system

    Energy Technology Data Exchange (ETDEWEB)

    Nomngongo, Philiswa N.; Ngila, J. Catherine, E-mail: jcngila@uj.ac.za

    2014-08-01

    This study reports a simple and efficient method for the determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline samples by inductively coupled plasma mass spectrometry after matrix removal and analyte pre-concentration using hollow fiber-solid phase microextraction (HF–SPME). The optimization of HF-SPME procedure was carried out using two-level full factorial and central composite designs. Four factors (variables), that are, sample solution pH, acceptor phase amount, extraction time and eluent concentration were optimized. Under the optimized experimental conditions, the precision was ≤ 3% (C = 10 μg L{sup −1}, n = 15), limits of detection and quantification ranged from 0.1 to 0.3 μg L{sup −1} and 0.3–0.9 μg L{sup −1}, respectively, and the maximum preconcentration factor was 30. The HF-SPME method was applied for the determination of trace metals in real gasoline and diesel samples. - Highlights: • Hollow fiber solid phase microextraction of metal ions in diesel and gasoline • Use of hollow fiber-supported sol–gel combined with cation exchange resin • Optimization of HF-SPME using multivariate techniques • Determination of Cd, Cu, Fe, Pb and Zn using ICP–MS • Relatively low LOD and LOQ.

  11. Estudo de metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn na Bacia do Tarumã-Açu Manaus (AM Heavy metal (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn study in the Tarumã-Açu Basin Manaus (AM

    Directory of Open Access Journals (Sweden)

    Genilson Pereira Santana

    2007-01-01

    Full Text Available Os resíduos gerados em domicílios incluem diversos produtos, como pesticidas, produtos farmacêuticos, detergentes, óleos de cozinha, metais pesados contidos em baterias e outros utensílios. Esses resíduos são lançados continuamente em aterro sanitário ou lixões em cidades como Manaus. O chorume produzido nesses aterros, quando não tratados, contamina recursos hídricos superficiais e subterrâneos. Neste estudo foi feita uma avaliação das conseqüências da liberação do chorume no sistema hídrico da bacia do Tarumã-Açu. Amostras de água e sedimento foram coletadas nos igarapés Matrinxã, Acará, Bolívia, bacia do Tarumã-Açu e dentro do aterro sanitário (Manaus - Amazonas - Brasil em março 2001. As amostras de água foram filtradas em filtro Milipore (0,45 mm de poro e, em seguida, tratadas com HNO3 concentrado. As amostras de sedimento foram peneiradas em malha de 0,053 mm e digeridas com HCl:HNO3 (1:3 a 150ºC. As concentrações de alguns metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn foram determinadas nas amostras de água e sedimento por espectrometria de absorção atômica de chama. Os resultados revelaram que a concentração dos metais pesados é muito acima dos permitidos pela resolução 357/2005 do CONAMA em praticamente todos os locais amostrados, mostrando que o Aterro Sanitário é um dos principais responsáveis pelo impacto ambiental observado nos corpos hídricos estudados. As análises dos componentes principais (PCA e hierárquica de cluster (HCA, revelam que os pontos de coleta localizados dentro do aterro sanitário apresentam características diferentes dos outros locais amostrados. Além disso, o HCA e PCA mostraram que existe uma similaridade entre os pontos de coleta localizados fora do aterro o que permite afirmar que o chorume do aterro se dissolve por todo corpo hídrico estudado.Domestic sewage involves several products, such as pesticides, pharmaceutics products, detergents, soybean oil

  12. Dispersive liquid-liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    Science.gov (United States)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal

    2012-07-01

    Dispersive liquid-liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 μL of a 0.5% solution of DDTC, 30 μL of carbon tetrachloride (extraction phase) and 500 μL of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2-3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 μg mL- 1. If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 μg mL- 1. In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL- 1 for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation-inductively coupled plasma-mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry.

  13. Removal of Cu (II) and Pb (II) from Aqueous Solution using engineered Iron Oxide Nanoparticles.

    Science.gov (United States)

    Tamez, Carlos; Hernandez, Rebecca; Parsons, J G

    2016-03-01

    Nano-sized Fe3O4 and Fe2O3 were synthesized using a precipitation method. The nanomaterials were tested as adsorbents for the removal of both Cu(2+) and Pb(2+) ions. The nanomaterials were characterized using X-ray powder diffraction to determine both the phase and the average grain size of the synthesized nanomaterials. Batch pH studies were performed to determine the optimum binding pH for both the Cu(2+) and Pb(2+) to the synthesized nanomaterials. The optimum binding was observed to occur at pH 4 and above. Time dependency studies for Cu(2+) and Pb(2+) showed the binding occurred within the first five minutes of contact and remained constant up to 2 hours of contact. Isotherm studies were utilized to determine the binding capacity of each of the nanomaterials for Cu(2+) and Pb(2+). The binding capacity of Fe3O4 with Cu(2+) and Pb(2+) were 37.04 mg/g and 166.67 mg/g, respectively. The binding capacities of the Fe2O3 nanomaterials with Cu(2+) and Pb(2+) were determined to be 19.61 mg/g and 47.62 mg/g, respectively. In addition, interference studies showed no significant reduction in the binding of either Cu(2+) or Pb(2+) to the Fe3O4 or Fe2O3 nanomaterials in the presence of solutions containing the individual ions Na(+), K(+), Mg(2+) and Ca(2+) or a solution consisting of a combination of all the aforementioned cations in one solution.

  14. Bioaccumulation and Distribution of Heavy Metals (Cd, Cu, Fe, Ni, Pb and Zn in the Different Tissues of Chicoreus capucinus Lamarck (Mollusca: Muricidae Collected from Sungai Janggut, Kuala Langat, Malaysia

    Directory of Open Access Journals (Sweden)

    Franklin Edward Berandah

    2010-01-01

    Full Text Available Knowledge on accumulation and distribution of metals in the soft tissues may help us to understand the processes involved in the uptake and excretion of metals in the different parts of molluscs such as Chicoreus capucinus. Chicoreus capucinus was collected from intertidal areas of Sungai Janggut mudflat, Kuala Langat, Selangor and analysed for heavy metals content in the tissues. The capability of the different parts to accumulate heavy metal from the environment was measured by calculating their Biota-Sediment Accumulation Factor (BSAF values. From this preliminary investigation, it was found that the highest concentrations of Cu were found in the caecum (194±24.4 µg/g dw, Cd in digestive gland (32.9±0.000 µg/g dw and Fe in operculum (971±2.50 µg/g dw. For Ni and Pb, high concentrations in shell were observed and Zinc high levels in most of the tissues studied except shell and operculum. On the other hand, highest BSAF values were obtained in caecum for Cu (101.2, Zn (27.4 and Cd (53.1, while highest BSAF values were obtained in shell for Pb (32.6 and Ni (8.88. However, in general, most of the different parts of the gastropod could be suggested as macro concentrator organs, since the BSAF values were greater than 2. More studies should be conducted in the future to determine the potential of C. capucinus as biomonitor.

  15. Certification of the contents (mass fractions) of Cd, Pb, Se, Cu, Zn, Fe and Mn in wholemeal flour and lyophilized brown bread reference materials. Wholemeal flour - CRM no. 189; brown bread - CRM no. 191

    Energy Technology Data Exchange (ETDEWEB)

    Wagstaffe, P.J.; Griepink, B.; Muntau, H.; Schramel, P.

    1987-01-01

    The report describes the preparation and certification of a wholemeal flour (CRM 189) and a lyophilised brown breas (CRM 191) for their contents (mass fractions) of elements of toxicological and nutritional importance: Cd, Pb, Se, Cu, Zn, Fe and Mn. Indicative values are also given for As, Ca, Cl, Cr, Hg, Mg, Na, Ni, P and K. Details are given of a preliminary intercomparison of methods for these elements in a wholemeal flour sample, homogeneity and stability studies on the two reference materials and the results and evaluation of the certification exercise which involved 21 European Laboratories. Summaries of the certification methods are also presented. The report concludes with a discussion of the most common sources of error in determining the elements of interest and the steps to be taken to control them. With 7 figs., 28 tabs.

  16. SERS and DFT investigation of 1-(2-pyridylazo)-2-naphthol and its metal complexes with Al(III), Mn(II), Fe(III), Cu(II), Zn(II) and Pb(II)

    Science.gov (United States)

    Szabó, László; Herman, Krisztian; Mircescu, Nicoleta E.; Fălămaş, Alexandra; Leopold, Loredana F.; Leopold, Nicolae; Buzumurgă, Claudia; Chiş, Vasile

    The development of surface-enhanced Raman scattering (SERS) as a prospective analytical methodology for detection of metal ions was shown in recent years by several studies on metal complexes. In this work, 1-(2-pyridylazo)-2-naphthol (PAN) and its Al(III), Mn(II), Fe(III), Cu(II), Zn(II) and Pb(II) complexes were studied by FTIR, FT-Raman and surface enhanced Raman spectroscopies. Molecular geometry optimization, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations were performed using the hybrid B3LYP exchange-correlation functional for the PAN molecule and its bidentate complexes. The calculated MEP distributions indicated the atoms with highest electronegativity, the adsorption to the silver surface occurring through these atoms. Based on experimental and theoretical data we were able to identify unique and representative features, useful for the identification of each PAN-metal complex.

  17. 原子吸收法连续测定铋及氧化铋中铜铅铁镉镍%Sequential Determination of Cu, Pb, Fe, Cd and Ni in Bismuth and Bismuth Oxide by Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    张耀春

    2003-01-01

    HNO3分解样品后,直接用火焰原子吸收法测定铋及氧化铋中铜、铅、铁、镉、镍.方法的检出限分别为Cu 0.22 μg/g, Pb 1.5 μg/g, Fe 0.39 μg/g, Cd 0.11 μg/g , Ni 0.34 μg/g.与国标方法进行比较,分析结果基本一致,精密度试验,各元素的RSD(n=6)≤5.2% .

  18. Origin of positive out-of-plane magnetoconductivity in overdoped Bi1.6Pb0.4Sr2CaCu1.96Fe0.04O8 +δ

    Science.gov (United States)

    Watanabe, Takao; Usui, Tomohiro; Adachi, Shintaro; Teramoto, Yuki; Dobroka, Mihaly M.; Kakeya, Itsuhiro; Kondo, Akihiro; Kindo, Koichi; Kimura, Shojiro

    2016-11-01

    To elucidate the pseudogap phase diagram including the overdoped state of high transition temperature (high-Tc) cuprates, we must understand the origin of the positive out-of-plane magnetoconductivity observed in these compounds. For this purpose, the out-of-plane resistivity ρc(T ,H ) of an overdoped Bi1.6Pb0.4Sr2CaCu1.96Fe0.04O8 +δ (Bi-2212) single crystal is measured under pulsed magnetic fields up to 60 T. We show that the superconducting density-of-states depletion effect, in addition to the pseudogap effect, clearly appears below the superconducting fluctuation regime, and the contribution becomes dominant in the superconducting state.

  19. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    Science.gov (United States)

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  20. Microstructure-Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites

    Science.gov (United States)

    Sharma, Amit Siddharth; Biswas, Krishanu; Basu, Bikramjit

    2014-01-01

    The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10-6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu.

  1. Dispersive liquid-liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl

    2012-07-15

    Dispersive liquid-liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 {mu}L of a 0.5% solution of DDTC, 30 {mu}L of carbon tetrachloride (extraction phase) and 500 {mu}L of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2-3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 {mu}g mL{sup -1}. If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 {mu}g mL{sup -1}. In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL{sup -1} for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation-inductively coupled plasma-mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry. - Highlights: Black-Right-Pointing-Pointer Multielement trace analysis using dried-spot technique and dispersive liquid-liquid microextraction. Black-Right-Pointing-Pointer Possibility of combination of LPME with EDXRF, LIBS or LA-ICP-MS. Black-Right-Pointing-Pointer Comparison of APDC and DDTC as chelating agents.

  2. Coupled perpendicular magnetization in Fe/Cu/Fe trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, D. [Max Planck Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany)]. E-mail: D.Repetto@fkf.mpg.de; Enders, A. [Max Planck Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany); Kern, K. [Max Planck Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany)

    2006-05-15

    Ultrathin epitaxial Fe films on Cu(1 0 0) with perpendicular magnetization have been used as templates for the preparation of FCC Fe/Cu/Fe trilayers. The magnetic anisotropy and the coupling of these films have been studied by in-situ magneto optical Kerr effect measurements and Kerr microscopy. The magnetic coupling of both Fe layers is found to be dominated by magnetostatic interaction. Adsorbate-induced spin reorientation in the top layer also causes spin reorientation in the bottom layer. The governing role of the Fe-vacuum interface for the magnetism of the whole trilayer is demonstrated.

  3. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II).

    Science.gov (United States)

    Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna

    2016-08-20

    The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters.

  4. GMI in FeCuNbSiB/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Correa, M.A. [Departamento de Fisica, CCNE, UFSM, 97105-900, Santa Maria, RS (Brazil)]. E-mail: mmacorrea@gmail.com; Viegas, A.D.C. [Departamento de Fisica, CCNE, UFSM, 97105-900, Santa Maria, RS (Brazil); Silva, R.B. da [Departamento de Fisica, CCNE, UFSM, 97105-900, Santa Maria, RS (Brazil); Andrade, A.M.H. de [Departamento de Fisica, CCNE, UFSM, 97105-900, Santa Maria, RS (Brazil); Sommer, R.L. [Centro Brasileiro de Pesquisas Fisicas, 22290-180, Rio de Janeiro, RJ (Brazil)

    2006-10-01

    Very high magnetoimpedance (MI) measured at frequencies up to 1.8 GHz in single and multilayered thin films with composition Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} and (Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9}+Cu) are reported. The magnetic properties of both systems are also compared. MI ratio as high as 300% for the multilayered samples were obtained.

  5. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Science.gov (United States)

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  6. Transport critical current density of (Bi{sub 1.6}Pb{sub 0.4})Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag superconductor tapes with addition of nanosized CoFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hafiz, M.; Abd-Shukor, R. [Universiti Kebangsaan Malaysia, School of Applied Physics, Bangi, Selangor (Malaysia)

    2015-09-15

    The effect of nanosized CoFe{sub 2}O{sub 4} (60 nm) addition on the transport critical current density, J{sub c}, of (Bi{sub 1.6}Pb{sub 0.4})Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}(CoFe{sub 2}O{sub 4}){sub x} (x = 0-0.05 wt%) superconductor prepared by the co-precipitation method was investigated. The optimal J{sub c} (measured using the four-point probe method) was observed in the x = 0.01 wt% pellets. Using this optimal wt%, Ag-sheathed (Bi{sub 1.6}Pb{sub 0.4})Sr{sub 2}Ca{sub 2}Cu3O{sub 10}(CoFe{sub 2}O{sub 4}){sub 0.01} superconductor tapes were fabricated using the powder-in-tube method. The tapes were sintered for 50 and 100 h at 845 C. The phase and microstructure of the samples were determined using the powder X-ray diffraction method and scanning electron microscopy, respectively. The temperature dependence of J{sub c} for the tapes in various applied magnetic fields was also measured. J{sub c} of (Bi{sub 1.6}Pb{sub 0.4})Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}(CoFe{sub 2}O{sub 4}){sub 0.01}/Ag tapes sintered for 100 h was 22,420 A/cm{sup 2} at 30 K. The non-added tapes sintered for 100 h showed a much lower J{sub c} (8280 A/cm{sup 2} at 30 K). This study showed that addition of CoFe{sub 2}O{sub 4} nanoparticles enhanced the transport critical current density in the (Bi{sub 1.6}Pb{sub 0.4})Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} superconductor tapes. This result is consistent with the previous calculations on frozen flux superconductor in a nanomagnet-superconductor hybrid system. (orig.)

  7. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments--a review.

    Science.gov (United States)

    Kumpiene, Jurate; Lagerkvist, Anders; Maurice, Christian

    2008-01-01

    The spread of contaminants in soil can be hindered by the soil stabilization technique. Contaminant immobilizing amendments decrease trace element leaching and their bioavailability by inducing various sorption processes: adsorption to mineral surfaces, formation of stable complexes with organic ligands, surface precipitation and ion exchange. Precipitation as salts and co-precipitation can also contribute to reducing contaminant mobility. The technique can be used in in situ and ex situ applications to reclaim and re-vegetate industrially devastated areas and mine-spoils, improve soil quality and reduce contaminant mobility by stabilizing agents and a beneficial use of industrial by-products. This study is an overview of data published during the last five years on the immobilization of one metalloid, As, and four heavy metals, Cr, Cu, Pb and Zn, in soils. The most extensively studied amendments for As immobilization are Fe containing materials. The immobilization of As occurs through adsorption on Fe oxides by replacing the surface hydroxyl groups with the As ions, as well as by the formation of amorphous Fe(III) arsenates and/or insoluble secondary oxidation minerals. Cr stabilization mainly deals with Cr reduction from its toxic and mobile hexavalent form Cr(VI) to stable in natural environments Cr(III). The reduction is accelerated in soil by the presence of organic matter and divalent iron. Clays, carbonates, phosphates and Fe oxides were the common amendments tested for Cu immobilization. The suggested mechanisms of Cu retention were precipitation of Cu carbonates and oxy-hydroxides, ion exchange and formation of ternary cation-anion complexes on the surface of Fe and Al oxy-hydroxides. Most of the studies on Pb stabilization were performed using various phosphorus-containing amendments, which reduce the Pb mobility by ionic exchange and precipitation of pyromorphite-type minerals. Zn can be successfully immobilized in soil by phosphorus amendments and clays.

  8. Molecular Dynamics study of Pb overlayer on Cu(100)

    Science.gov (United States)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  9. Molecular Dynamics study of Pb overlayer on Cu(100)

    Science.gov (United States)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  10. Laser Ablation ICP-MS Titanite U-Th-Pb Dating of the Tonglushan Cu-Fe-Au Skarn Deposit, Southeastern Hubei Province%Laser Ablation ICP-MS Titanite U-Th-Pb Dating of the Tonglushan Cu-Fe-Au Skarn Deposit,Southeastern Hubei Province

    Institute of Scientific and Technical Information of China (English)

    LI Jian-wei; DENG Xiao-dong; ZHOU Mei-fu; LIU Yong-sheng

    2009-01-01

    @@ Titanite (CaTi_2SiO_5) is an important accessory mineral not only in magnatic and metamorphic rocks,but also commonly in hydrothermal mineral deposits.It incorporates appreciable amounts (usually 10 ×10~(-6) s to 100 × 10~(-6) s) of U and Th into its structure and has a closure temperature of Pb diffusion higher than 660 ~ 700 ℃ (Scott and St-Onge, 1995),making it an ideal U-Th-Pb geochronometer.

  11. Distribuição de Zn, Pb, Ni, Cu, Mn e Fe nas frações do sedimento superficial do Rio Cachoeira na região sul da Bahia, Brasil

    Directory of Open Access Journals (Sweden)

    José Soares dos Santos

    2013-01-01

    Full Text Available The metal distribution in the surface sediment fractions of the Cachoeira River was evaluated based on the fractionation method using a five-step sequential extraction. The determination of metals was made by flame atomic absorption spectrophotometry (F AAS. Zn, Pb and Cu exhibit higher concentrations in the residual fraction of the sediment from sites that receive discharges from urban and industrial zones. High levels of Ni (60 ± 1 to 447 ± 9 µg L-1 were found in the river water, which may be detrimental to the "health" of rural communities that utilize the river water for domestic purposes without treatment.

  12. Hyperfine and magnetic properties of Fe-Cu clusters and Fe precipitates embedded in a Cu matrix

    Energy Technology Data Exchange (ETDEWEB)

    Klautau, A B [Faculdade de Fisica, Universidade Federal do Para, 66075-110, Belem, PA (Brazil); Socolovsky, L M [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires, C1063ACV, Buenos Aires (Argentina); Nogueira, R N [Faculdade Taboao da Serra, 06768-000, Taboao da Serra, SP (Brazil); Petrilli, H M, E-mail: aklautau@ufpa.b [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

    2009-12-16

    Using the first-principles real-space linear muffin-tin orbital method within the atomic sphere approximation (RS-LMTO-ASA) we study hyperfine and local magnetic properties of substituted pure Fe and Fe-Cu clusters in an fcc Cu matrix. Spin and orbital contributions to magnetic moments, hyperfine fields and the Moessbauer isomer shifts at the Fe sites in Fe precipitates and Fe-Cu alloy clusters of sizes up to 60 Fe atoms embedded in the Cu matrix are calculated and the influence of the local environment on these properties is discussed.

  13. Biosorption of Cu(Ⅱ) and Pb(Ⅱ) by Auricularia polytricha

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dan; GAO Jianwei; GAO Tingyan; YING Yigao; CHEN Hong

    2007-01-01

    For searching biological material for heavy metal removal of waste-water, using macrofungus Auricularia polytricha as biosorbent for Cu2+ and Pb2+ removal was investigated. After shaking and biosorbing Cu2+ and Pb2+ in solution by biosorbents, the filtrates were tested by AAS and the adsorbed quantity of Cu2+ and Pb2+ was calculated. The biosorbents were effective in removal of Cu2+ and Pb2+ on the biosorbents that showed a highest value around pH 5-6. The biosorption rate of Cu2+ and Pb2+on A. polytricha biomass decreased with increasing the initial concentration of Cu2+ and Pb2+ in the medium. The biosorption of Cu2+ and Pb2+ on the biomasses follows pseudo-second order kinetics. The determined maximum biosorption capacities presented by the fungus biomass were 3.34 and 13.03 mg·g -1 dry weight for Cu2+ and Pb2+, respectively by the biosorption equilibrium with Langmuir adsorption isotherm. According to the whole data analysis in each experiment of studying Cu2+ and Pb2+ biosorption including condition factors and adsorption isotherm, the adsorbed capacity of Pb2+ by A. polytricha biomass was bigger than Cu2+. The biosorption by A. polytricha was most effective when pH 5-6. The biosorbents are suitable for low Cu2+ and Pb2+ concentration waste-water, especially for Pb2+ removal.

  14. Comparison of Microstructural and Morphological Properties of Electrodeposited Fe-Cu Thin Films with Low and High Fe : Cu Ratio

    Directory of Open Access Journals (Sweden)

    Umut Sarac

    2013-01-01

    Full Text Available Fe-Cu films with low and high Fe : Cu ratio have been produced from the electrolytes with different Fe ion concentrations at a constant deposition potential of −1400 mV versus saturated calomel electrode (SCE by electrodeposition technique onto indium tin oxide (ITO coated conducting glass substrates. It was observed that the variation of Fe ion concentration in the electrolyte had a very strong influence on the compositional, surface morphological, and microstructural properties of the Fe-Cu films. An increase in the Fe ion concentration within the plating bath increased the Fe content, consequently Fe : Cu ratio within the films. The crystallographic structure analysis showed that the Fe-Cu films had a mixture of face-centered cubic (fcc Cu and body centered cubic (bcc α-Fe phases. The average crystallite size decreased with the Fe ion concentration. The film electrodeposited from the electrolyte with low Fe ion concentration exhibited a morphology consisting of dendritic structures. However, the film morphology changed from dendritic structure to cauliflower-like structure at high Fe ion concentration. The surface roughness and grain size were found to decrease significantly with increasing Fe ion concentration in the electrolyte. The significant differences observed in the microstructural and morphological properties caused by the change of Fe ion concentration in the electrolyte were ascribed to the change of Fe : Cu ratio within the films.

  15. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles.

    Science.gov (United States)

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B; Warner, Marvin G; Fryxell, Glen E; Addleman, R Shane; Timchalk, Charles

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90 s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g L(-1) of DMSA-Fe3O4, the sensor could detect background level of Pb (0.5 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  16. Fractionation of Cd, Cu, Ni, Pb, and Zn in floodplain soils from Egypt, Germany and Greece

    Directory of Open Access Journals (Sweden)

    Shaheen S. M.

    2013-04-01

    Full Text Available Trace elements are potentially toxic to human life and the environment. Element toxicity depends on chemical associations in soils. Therefore, determining the chemical form of an element in soils is important to evaluate its mobility and bioavailability. Initial soil development in river floodplains influences soil properties, processes and therefore behavior of trace elements. In this study, three different floodplain soils sampled at three rivers (Nile/Egypt, Elbe/Germany and Penios/Greece were used to link soil development and properties to the geochemical fractions and mobility of some trace elements. Sequential extraction was used to fractionate five trace elements (Cd, Cu, Ni, Pb and Zn into five operationally defined groups: water soluble + exchangeable, carbonate, Fe-Mn oxide, organic, and residual. German soil showed the highest total concentration of the studied elements (except Ni. The Greek soil had the greatest amount of Ni. The residual fraction was the abundant pool for the studied elements examined in the Egyptian and Greek soils while the non-residual fraction was the dominant pool for all elements in the German soil. A significant amount (71- 94% of all elements was present in German soil in the potentially available fraction: non-residual fraction, while the amount of this fraction ranged between 9 and 39 % in Greek soil and between 9 and 34 % in Egyptian soil. These suggest that the potential availability of the studied trace elements was extremely high in German soil compared to the Egyptian and Greek soil. In the German soil, most of the non-residual Cd, Ni and Zn were bounded with the Fe-Mn oxide fraction, while Cu and Pb distributed in the organic fraction. While in the Egyptian and Greek soils Fe-Mn oxide fraction was the abundant pool for the studied elements except for Cd, in which the exchangeable and the carbonate fractions had the greatest amount of Cd. Assuming that mobility and bioavailability of these elements

  17. Structural and magnetic properties of epitaxial Fe/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y. E-mail: t5101008@iwate-u.ac.jp; Nakanishi, Y.; Yoshimoto, N.; Yamaguchi, A.; Nakamura, M.; Yoshizawa, M

    2004-05-01

    We have grown FCC-Fe/Cu multilayers by molecular beam epitaxy method. The structural and magnetic properties were studied by RHEED, XRD and magnetoresistance measurement (MR). The RHEED images confirmed that Fe/Cu multilayers were epitaxially grown on Cu(1 0 0). Furthermore, a clear negative MR was observed. The buffer layer condition for MR effect will be discussed.

  18. Preparation of magnetic recoverable nanosize Cu-Fe2O3/Fe photocatalysts.

    Science.gov (United States)

    Kang, Hsu-Ya; Wang, H Paul

    2013-07-02

    Iron based catalysts generally have the advantage of the easily operated magnetically recovery from application sites. In the present work, paramagnetic iron and copper core-shell nanoparticles having the iron fractions (X(Fe) = Fe/(Cu+Fe)) of 0.33-1.0 were prepared and characterized by in situ synchrotron X-ray absorption and scattering spectroscopy. During the temperature-programmed carbonization (TPC) of Cu(2+)- and Fe(3+)-β-cyclodextrin (CD) complexes, a rapid reduction of Cu(II) occurs at about 453 K together with a growth of the metallic copper (Cu). Iron proceeds in the distinct growth path. At 453-513 K, the Fe(III) → Fe(II) → Fe consecutive reduction is observed. The unreduced Fe(III) (7-13%) is coated on the surfaces of the Fe nanoparticles (as Fe2O3/Fe). Growth of the Fe nanoparticle is inhibited by the surface Fe2O3, while the steady growth in Cu is observed. The Cu has a size range of 14-18 nm in diameter, compared to the small Fe2O3/Fe ones (3-6 nm). Under the UV-visible light irradiation for four hours, methylene blue can be photocatalytically degraded (>90%) by the (Cu-Fe2O3/Fe)@C. The (Cu-Fe2O3/Fe)@C photocatalysts can effectively oxidize dye molecules, providing a promising alternative for dye degradation using solar energy. Recovery of the (Cu-Fe2O3/Fe)@C photocatalysts can be attained by applying external magnetic field to trap the ferromagnetic Cu-Fe2O3/Fe nanoparticles, which suggests an economically attractive process, especially applied in photocatalytic degradation of dye-contaminated wastewater.

  19. Pb-free Sn-Ag-Cu ternary eutectic solder

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  20. Magnetism and site exchange in CuFeAs and CuFeSb: A microscopic and theoretical investigation

    Science.gov (United States)

    Kamusella, Sirko; Klauss, Hans-Henning; Thakur, Gohil S.; Haque, Zeba; Gupta, Laxmi C.; Ganguli, Ashok K.; Kraft, Inga; Burkhardt, Ulrich; Rosner, Helge; Luetkens, Hubertus; Lynn, Jeffrey W.; Zhao, Yang

    2017-03-01

    We have investigated the magnetic ground state of CuFeAs and CuFeSb by means of 57Fe-Mössbauer spectroscopy, muon spin rotation/relaxation (μ SR ), neutron diffraction, and electronic structure calculations. Both materials share the 111-LiFeAs crystal structure and are closely related to the class of iron-based superconductors. In both materials there is a considerable occupancy of the Cu site by Fe, which leads to ferromagnetic moments, which are magnetically strongly coupled to the regular Fe site magnetism. Our study shows that CuFeAs is close to an antiferromagnetic instability, whereas a ferromagnetic ground state is observed in CuFeSb, supporting theoretical models of anion height driven magnetism.

  1. Formation of multiferroic PbTiO3/PbFe12O19 composite by exceeding the solubility limit of Fe in PbTiO3

    Science.gov (United States)

    Jaffari, G. Hassnain; Bilal, M.; Ur Rahman, Jamil; Lee, Soonil

    2017-09-01

    PbTiO3/PbFe12O19 composites have been synthesized by keeping the Fe concentration (x) in PbFexTi1-xO3 beyond solubility limit, i.e., x > 0.1% and 5% Pb excess. Both these factors have been successfully utilized to extract Fe doped PbTiO3 tetragonal phase which is composited with Magnetoplumbite (PbFe12O19) phase. A systematic evolution of the tetragonality of the former and improved stoichiometry of the later constituent has been observed. As x increases, emergence of additional Raman mode around 650 cm-1 with Fe addition was observed. Systematic increase in the relative intensity of this mode with x, showed that this mode corresponds to the magnetoplumbite phase. In addition to that resultant composite exhibited noticeable systematic decrease in the value of the energy gap as a function of x. Increasing Fe concentration in PbTiO3 constituent, led to monotonic decrease in c/a and increase in strain experienced by PbTiO3. Increase in the value of the saturation polarization was observed up to x = 0.4, which is identified to be associated with the strain induced by the dopant. A comprehensive magnetic characterization revealed monotonic decrease in magnetization with temperature for all compositions. Finally, we found an anomalous temperature dependent trend in the magnetic coercivity which is explained in terms of low temperature decrease in effective magnetic anisotropy by including magneto-electric coupling. Both constituent phases in the composite being ferroelectric and ferromagnetic at room temperature led to formation of better multiferroic properties and exhibited tunable physical properties with x.

  2. Formation and Oxidation Behavior of Al-Cu-Fe Quasicrystal

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Al62.5Cu25Fe12.5 alloy was prepared by arc melting. It was found that the formation of quasicrystalline phase is related to the condition of annealing, such as temperature and duration. Weight gain of Al-Cu-Fe quasicrystal during the oxidation at 700 and 800 C in dry air was measured by means of thermal balance. The oxidation kinetics showed that the quasicrystal has good oxidation resistance. Only α-Al2O3 was formed on Al62.5Cu25Fe12.5 quasicrystal. The surface morphologies of Al-Cu-Fe quasicrystal after isothermal oxidation for different times were observed.

  3. Synthesis of BiPbSrCaCuO superconductor

    Science.gov (United States)

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  4. Magnetic ordering in Fe/Co sandwiches on Cu(100).

    Science.gov (United States)

    Razee, S S A; Staunton, J B; Szunyogh, L

    2009-07-01

    We investigate magnetic correlations and local magnetic moments at finite temperatures of some Fe and Co multilayers on Cu(100) substrates, such as Co(m)Fe(n)Co(m)/Cu(100) and Fe(m)Co(n)Fe(m)/Cu(100). We use an ab initio mean-field theory of magnetic fluctuations for layered materials based on the first-principles local spin-density functional theory implemented through the screened Korringa-Kohn-Rostoker method. We find that the presence of Fe layers in the neighbourhood of a Co layer always leads to a reduction in the magnetic moment of the Co atoms, whereas that of the Fe atoms is enhanced. Of particular interest is the lack of local moment formation on the single fcc-Co layer sandwiched between two fcc-Fe layers. However, a Co layer completely immersed in a Cu environment remains ferromagnetic. The Curie temperature of the Co(m)Fe(n)Co(m)/Cu(100) system oscillates as the Fe layer thickness is increased whereas that of the Fe(m)Co(n)Fe(m)/Cu(100) system increases almost monotonically with Co layer thickness.

  5. Piezoelectric, dielectric and magnetic properties of (1-x)Pb[Zr, Ti, (Mg{sub 1/2}W{sub 1/2}), (Ni{sub 1/3}Nb{sub 2/3})]O{sub 3}+x(Ni, Co, Cu)FeO{sub 4} composites

    Energy Technology Data Exchange (ETDEWEB)

    Chao Xiaolian [Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 Shaanxi (China); Yang Zupei, E-mail: yangzp@snnu.edu.c [Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 Shaanxi (China); Dong Mingyuan; Zhang Yi [Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 Shaanxi (China)

    2011-08-15

    The phase structure, microstructure, piezoelectric properties, dielectric characteristic and the ME effect of magnetoelectric Pb[Zr{sub 0.23}Ti{sub 0.36}+0.02(Mg{sub 1/2}W{sub 1/2})+0.39(Ni{sub 1/3}Nb{sub 2/3})]O{sub 3} (PZT)+xNi{sub 0.8}Co{sub 0.1}Cu{sub 0.1}Fe{sub 2}O{sub 4} (NCCF) composite ceramics were prepared by the conventional solid state reaction method. The structural analysis of both the constituent phases and their composites was carried out by X-ray diffraction, energy dispersive spectrometry and scanning electron microscopy. The results showed cubic spinel structure for ferrite phase and tetragonal perovskite structure for ferroelectric phase. The piezoelectric constant, dielectric constant, Curie temperature, remanent polarization and coercive electric field decreased with increase of ferrite content. The coercive field strength, saturation magnetization and remanent magnetization increased with increasing ferrite content. - Highlights: (1-x)Pb[Zr{sub 0.23}Ti{sub 0.36}+0.02(Mg{sub 1/2}W{sub 1/2})+0.39(Ni{sub 1/3}Nb{sub 2/3})] O{sub 3}+xNi{sub 0.8}Co{sub 0.1}Cu{sub 0.1}Fe{sub 2}O{sub 4} composites have been prepared by the conventional ceramics technique. However, there is little work that can give piezoelectric characteristics of ME. In this work, the magnetoelectric and piezoelectric properties of magnetoelectric composites are investigated.

  6. Magnetic properties of nanostructured CuFe2O4

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Goya, G.F.; Rechenberg, H.R.

    1999-01-01

    The structural evolution and magnetic properties of nanostructured copper ferrite, CuFe2O4, have been investigated by X-ray diffraction, Mossbauer spectroscopy, and magnetization measurements. Nanometre-sized CuFe2O4 particles with a partially inverted spinel structure were synthesized by high-en...

  7. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    Science.gov (United States)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  8. Sharpness-induced energy shifts of quantum well states in Pb islands on Cu(111)

    Science.gov (United States)

    Chan, Wen-Yuan; Lu, Shin-Ming; Su, Wei-Bin; Liao, Chun-Chieh; Hoffmann, Germar; Tsai, Tsong-Ru; Chang, Chia-Seng

    2017-03-01

    We elucidate that the tip sharpness in scanning tunneling microscopy (STM) can be characterized through the number of field-emission (FE) resonances. A higher number of FE resonances indicates higher sharpness. We observe empty quantum well (QW) states in Pb islands on Cu(111) under different tip sharpness levels. We found that QW states observed by sharper tips always had lower energies, revealing negative energy shifts. This sharpness-induced energy shift originates from an inhomogeneous electric field in the STM gap. An increase in sharpness increases the electric field inhomogeneity, that is, enhances the electric field near the tip apex, but weakens the electric field near the sample. As a result, higher sharpness can increase the electronic phase in vacuum, causing the lowering of QW state energies. Moreover, the behaviors of negative energy shift as a function of state energy are entirely different for Pb islands with a thickness of two and nine atomic layers. This thickness-dependent behavior results from the electrostatic force in the STM gap decreasing with increasing tip sharpness. The variation of the phase contributed from the expansion deformation induced by the electrostatic force in a nine-layer Pb island is significantly greater, sufficient to effectively negate the increase of electronic phase in vacuum.

  9. Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume.

    Science.gov (United States)

    Moreno, T; Querol, X; Pey, J; Minguillón, M C; Pérez, N; Alastuey, A; Bernabé, R M; Blanco, S; Cárdenas, B; Eichinger, W; Salcido, A; Gibbons, W

    2008-03-01

    We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.

  10. Cu clustering stage before the crystallization in Fe-Si-B-Nb-Cu amorphous alloys

    DEFF Research Database (Denmark)

    Ohnuma, M.; Hono, K.; Onodera, H.

    1999-01-01

    The Cu clustering stage before the crystallization of Fe-Si-B-Nb-Cu amorphous alloys have been studied by three dimensional atom probe (3DAP) small-angle neutron scattering (SANS) and high sensitive differential calorimetry (DSC). Cu clustering occurs prior to the onset of the primary crystalliza......The Cu clustering stage before the crystallization of Fe-Si-B-Nb-Cu amorphous alloys have been studied by three dimensional atom probe (3DAP) small-angle neutron scattering (SANS) and high sensitive differential calorimetry (DSC). Cu clustering occurs prior to the onset of the primary...

  11. Effect of Fe Particle on the Surface Peeling in Cu-Fe-P Lead Frame

    Institute of Scientific and Technical Information of China (English)

    SU Juanhua; LIU Ping; DONG Qiming; LI Hejun; TIAN Baohong

    2006-01-01

    Under the surface peeling of Cu-Fe-P lead frame alloy larger Fe particles were observed by energy dispersive spectroscopy. By using the large strain two-dimension plane strain model and elastic-plastic finite element method, the cause for peeling damage of Cu-Fe-P lead frame alloy was investigated. The results show that when the content of Fe particles is more than 30% at local Fe-rich area the intense stress concentration in the Fe particle would make the Fe particle broken up. The high equivalent stress mutation and the mismatch of equivalent strain 10% at the two sides of interface make it easy to develop the crack and peeling damage on finish rolling. The larger Fe particles in the Cu-Fe-P alloy should be avoided.

  12. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Sánchez-Marín, Paula; Fortin, Claude; Campbell, Peter G C

    2014-02-01

    The unicellular alga Chlamydomonas reinhardtii has a very high rate of lead (Pb) internalization and is known to be highly sensitive to dissolved Pb. However, the transport pathway that this metal uses to cross cellular membranes in microalgae is still unknown. To identify the Pb(2+) transport pathway in C. reinhartdii, we performed several competition experiments with environmentally relevant concentrations of Pb(2+) (~10 nM) and a variety of divalent cations. Among the essential trace metals tested, cobalt, manganese, nickel and zinc had no effect on Pb internalization. A greater than tenfold increase in the concentrations of the major ions calcium and magnesium led to a slight decrease (~34 %) in short-term Pb internalization by the algae. Copper (Cu) was even more effective: at a Cu concentration 50 times higher than that of Pb, Pb internalization by the algae decreased by 87 %. Pre-exposure of the algae to Cu showed that the effect was not due to a physiological effect of Cu on the algae, but rather to competition for the same transporter. A reciprocal effect of Pb on Cu internalization was also observed. These results suggest that Cu and Pb share a common transport pathway in C. reinhardtii at environmentally relevant metal concentrations.

  13. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn

    DEFF Research Database (Denmark)

    Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernandez Calviño, David;

    2014-01-01

    % for Pb2+, 83-84% for Cu2+, 78-84% for Cd2+, 77-83% for Zn2+, and 70-75% for Ni2+, and it was faster for low concentrations, with Pb suffering the highest retention, followed by Cu, Cd, Ni and Zn. The fitting to the Freundlich and Langmuir models was satisfactory. Desorption increased in parallel...

  14. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.

    Science.gov (United States)

    Wang, He; Jia, Yongfeng

    2017-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. Adsorption (ADS) and coprecipitation (CPT) on amorphous metal hydroxides are important processes, controlling the fates of heavy metals in an aqueous environment. This work studied the bioavailability of Cu, Cd, Ni, and Pb adsorbed on and/or coprecipitated with amorphous iron and iron/aluminum mixed hydroxides to the wetland plant Phragmites australis. After a 13-day treatment, there was an apparent uptake of the heavy metals by the plant, and the amount of metal bioaccumulation was measurably different for different association forms (ADS vs. CPT). The bioaccumulation of Cd associated with Fe0.5Al0.5(OH)3 was greater than that with Fe(OH)3; the adsorbed metals were found to be more bioavailable than the coprecipitated forms for most of the treatments while the aging treatment significantly reduced the bioaccumulation of ADS metals. In the single metal treatment, root metal concentrations in the Fe(OH)3 ADS system followed the order Ni (68 mg kg(-1)) > Cu (32 mg kg(-1)) > Cd (28 mg kg(-1)) > Pb (9 mg kg(-1)), while the CPT system followed the order of Cu (30 mg kg(-1)) > Ni (22 mg kg(-1)) > Pb (9 mg kg(-1)) > Cd (7 mg kg(-1)). The order of metal accumulation in a combined metal treatment was similar to that for single metal treatments, but observed Ni concentration declines by 22 and 71 % and Cu and Cd concentrations increase by 30 and 50 % (for CPT and ADS treatments, respectively), while Pb concentrations increased by 30~50 % in both of them. When treated with low-molecular-weight organic acids (LMWOAs), metal desorption, indicative of metal oxide bonding strength and metal bioavailability, was consistent with metal accumulation in the plant.

  15. First principles calculations of interlayer exchange coupling in bcc Fe/Cu/Fe structures

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewski, M.; Heninrich, B. [Simon Fraser Univ., Burnaby, British Columbia (Canada); Schulthess, T.C.; Butler, W.H. [Oak Ridge National Lab., TN (United States)

    1998-01-01

    The authors report on theoretical calculations of interlayer exchange coupling between two Fe layers separated by a modified Cu spacer. These calculations were motivated by experimental investigations of similar structures by the SFU group. The multilayer structures of interest have the general form: Fe/Cu(k)/Fe and Fe/Cu(m)/X(1)/Cu(n)/Fe where X indicates one AL (atomic layer) of foreign atoms X (Cr, Ag, or Fe) and k, m, n represent the number of atomic layers of Cu. The purpose of the experimental and theoretical work was to determine the effect of modifying the pure Cu spacer by replacing the central Cu atomic layer with the atomic layer of foreign atoms X. The first principles calculation were performed using the Layer Korringa-Kohn-Rostoker (LKKR) method. The theoretical thickness dependence of the exchange coupling between two semi-infinite Fe layers was calculated for pure Cu spacer thicknesses in the range of 0 < k < 16. The effect of the foreign atoms X on the exchange coupling was investigated using the structure with 9 AL Cu spacer as a reference sample. The calculated changes in the exchange coupling are in qualitative agreement with experiment.

  16. Concentrative phenomenon of relative content ratios of Cu, Pb and Zn in soils

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is discovered that there is the concentrative phenomenon of relative content ratios of Cu, Pb and Zn in soil by studying their parageneous association in soil, meterites and rocks with the relative content ratios. This not only is helpful to understand the trends of Cu, Cd and Zn enriched and dispersed in the evolution course of earth matter, but also provide evidence for geochemical self-organization that there may be in the process of Cu, Pb and Zn translation and distribution.

  17. Preparation of 24Mg-Fe-Cu Target

    Institute of Scientific and Technical Information of China (English)

    FAN; Qi-wen; DU; Ying-hui; ZHANG; Rong

    2012-01-01

    <正>The three-layer-sandwich targets of 24Mg-Fe-Cu needed to be prepared in the physics experiment. The middle layers are thin ferromagnetic Fe layers of about 3.2 mg/cm2. The recoil stopper layers are thick crystallized and defect-free Cu layers of about 15 mg/cm2. The thickness of the 24Mg target layers is about 300 μg/cm2, and the uniformity should be better than 90%.

  18. Superparamagnetism in CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grima-Gallardo, P.; Alvarado, F.; Munoz, M.; Duran, S.; Quintero, M.; Nieves, L.; Quintero, E.; Tovar, R.; Morocoima, M. [Centro de Estudios en Semiconductores (CES), Fac. Ciencias, Dpto. Fisica, Universidad de Los Andes, Merida (Venezuela); Ramos, M.A. [Laboratorio de Difraccion y Fluorescencia de Rayos-X, Instituto Zuliano de Investigaciones Tecnologicas (INZIT), La Canada de Urdaneta, Estado Zulia (Venezuela)

    2012-06-15

    The temperature dependencies of DC magnetic susceptibilities, {chi}(T), of CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys were measured in a SQUID apparatus using the protocol of field cooling (FC) and zero FC (ZFC). The FC curves of both samples reflect a weak ferromagnetic (or ferrimagnetic) behavior with a nearly constant value of {chi}(T) in the measured temperature range (2-300 K) indicating that the critical temperatures (T{sub c}) are >300 K. The ZFC curves diverges from FC, showing irreversibility temperatures (T{sub irr}) of {proportional_to}250 K for CuFeInTe{sub 3} and >300 K for CuFeGaTe{sub 3}, suggesting that we are dealing with cluster-glass systems in a superparamagnetic state. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com, E-mail: acpaiva@cnen.gov.br, E-mail: jmnilda@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Jessica V. de, E-mail: Jessica_clorofila@hotmail.com [Universidade de Pernambuco, Recife, PE (Brazil)

    2013-07-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  20. StudyonTwo-stagesPressureLeachingofZn,CuandFeFromCu-Pb-ZnComplexPolymetallicOre%从铜铅锌复杂多金属精矿中两段加压浸出锌铜铁试验研究

    Institute of Scientific and Technical Information of China (English)

    刘述平; 李博; 王昌良; 唐湘平

    2013-01-01

    T he experimental sample is a Cu-Pb-Zn complex polymetallic ore .Leaching of Zn ,Cu and Fe from the ore by a two-stages pressure leaching process was researched .Using the solution in which H2 SO4 initial concentration is 105 g/L ,Fe concentration is 15 g/L ,Zn concentration is 55 g/L as leaching agent ,the first-stage leaching was conducted under the conditions of leching temperature of 120 ℃ ,leaching time of 2 h ,the ratio between liquid and solid of 4 mL/g ,total pressure of 1 .9 MPa , stirring speed of 600 r/min ,additive usage of 0 .3% ,the leaching rate of Zn was about 72% ,while Cu wasn’t leached ,the removal rate of Fe was 95% .The second-stage leaching of the first-stage leaching residue was conducted under the conditions of H2SO4 initial concentration of 140 g/L ,the ratio between liquid and solid of 4 mL/g ,total pressure of 1 .9 MPa ,stirring speed of 600 r/min ,leaching temperature of 160 ℃ ,leaching time of 3 h ,additive usage of 0 .3% ,leaching rate of Zn ,Cu and Fe were 85 .91% ,77 .76% and 58 .84% ,respectively .The second-stage leaching solution was used to prepare the leaching agent for the first-stage leaching .The first-stage leaching solution with lower concentation of H2 SO4 and Fe is easy to be purified in subsequent ,the purified solution meets with the requirement of zinc electrodepositing .%针对某地铜铅锌复杂多金属精矿,研究了采用两段加压浸出法浸出锌、铜、铁。试验结果表明:以H2 SO4初始质量浓度105 g/L、Fe质量浓度约15 g/L、Zn质量浓度约55 g/L的溶液为浸出剂,在温度120℃、浸出时间2 h、液固体积质量比4 mL/g、总压力1.9 M Pa、搅拌转速600 r/min、添加剂加入量为矿石质量的0.3%条件下进行一次浸出,锌浸出率为72%左右,铜基本不被浸出,溶液中铁去除率为95%;对一次浸出渣,在硫酸初始质量浓度140 g/L、液固体积质量比4 mL/g、总压力1.9 M Pa、搅拌转速600 r/min、温度160

  1. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].

    Science.gov (United States)

    Liu, Xia; Wang, Jian-Tao; Zhang, Meng; Wang, Li; Yang, Ya-Ti

    2013-04-01

    Because of its strong chelation, solubilization characteristics, the chelating agents and biosurfactant are widely used in remediation of heavy metals and organic contaminated soils. Ethylenediamine tetraacetic acid (EDTA), citric acid (CIT) and dirhamnolipid (RL2) were selected as the eluent. Batch experiments and column experiments were conducted to investigate the leaching effect of the three kinds of eluent, as well as the mixture of biosurfactant and chelating agent for Cu, Pb contaminated loess soil. The results showed that the leaching efficiencies of different eluent on Cu, Pb contaminated loess soil followed the sequence of EDTA > CIT > RL2. At an eluent concentration of 0.02 mol x L(-1), the Cu leaching efficiency was 62.74% (EDTA), 52.28% (CIT) and 15.35% (RL2), respectively; the Pb leaching efficiency was 96.10% (EDTA), 23.08% (CIT) and 14.42% (RL2), respectively. When the concentration of RL2 was 100 CMC, it had synergistic effects on the other two kinds of chelating agent in Cu leaching, and when the concentration of RL2 was 200 CMC, it had antagonism effects. The effect of RL2 on EDTA in Pb leaching was similar to that in Cu leaching. Pb leaching by CIT was inhibited in the presence of RL2. EDTA and CIT could effectively remove Cu and Pb in exchangeable states, adsorption states, carbonate salts and organic bound forms; RL2 could effectively remove Cu and Pb in exchangeable and adsorbed states.

  2. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    Science.gov (United States)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  3. Itinerant magnetism in metallic CuFe2Ge2.

    Science.gov (United States)

    Shanavas, K V; Singh, David J

    2015-01-01

    Theoretical calculations are performed to understand the electronic structure and magnetic properties of CuFe2Ge2. The band structure reveals large electron density N(EF) at the Fermi level suggesting a strong itinerant character of magnetism. The Fermi surface is dominated by two dimensional sheet like structures, with potentially strong nesting between them. The magnetic ground state appears to be ferromagnetic along a and antiferromagnetic in other directions. These results show that CuFe2Ge2 is an antiferromagnetic metal, with similarities to the Fe-based superconductors; such as magnetism with substantial itinerant character and coupling between magnetic order and electrons at the Fermi energy.

  4. Magnetic properties of nanocrystalline Fe-Cu-Si-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Ohta, M, E-mail: yoshihito_yoshizawa@hitachi-metals.co.j [Advanced Electronics Research Laboratory, Hitachi Metals, Ltd., 5200 Mikajiri, Kumagaya, Saitama 360-0843 (Japan)

    2009-01-01

    Recently, nanocrystalline Fe-Cu-B and Fe-Cu-Si-B soft magnetic alloys with high saturation magnetic flux density more than 1.8 T and low coercivity of about 6 A m{sup -1} were developed by annealing melt-quenched alloys containing 1.3 -1.5 at % Cu and 0 - 7 at % Si. In this work, the magnetic properties of annealed Fe{sub 77.5-x}Cu{sub x}Si{sub 15.5}B{sub 7} alloys with high Si content prepared by melt spinning are reported. The appropriate Cu content in this alloy system shifted to Cu content higher than that of the reported Fe-Cu-Si-B alloys with high B{sub s}. The annealed alloy with x = 2.0 showed the H{sub c} of about 10 A m{sup -1}, the B{sub 8000} of 1.47 T, and low magnetostriction of +4.8 x 10{sup -6}.

  5. Surfactant-assisted epitaxial growth and magnetism of Fe films on Cu(111)

    Energy Technology Data Exchange (ETDEWEB)

    Nino, M A; Camarero, J; Miguel, J J de; Miranda, R [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Cantoblanco, 28049-Madrid (Spain); Gomez, L [Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Instituto de Fisica Rosario, 2000-Rosario (Argentina); Ferron, J [Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Departamento de Materiales, Facultad de IngenierIa Quimica, UNL, 3000 Santa Fe (Argentina)

    2008-07-02

    The magnetic properties of thin epitaxial layers of Fe grown on Cu(111) depend sensitively on the films' structure and morphology. A combination of experiments and numerical simulations reveals that the use of a surfactant monolayer (ML) of Pb during molecular beam epitaxy (MBE) growth at room temperature reduces the amount of interdiffusion at the Cu-Fe interface, retards the fcc-to-bcc transformation by about 2 ML and substantially increases the films' coercivity. The origin of all these alterations to the magnetic behavior can be traced back to the structural modifications provoked by the surfactant during the early growth stages. These results open the way for the controlled fabrication of custom-designed materials with specific magnetic characteristics.

  6. Magnetic behaviour investigation on symmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co

    Institute of Scientific and Technical Information of China (English)

    李铁; 沈鸿烈

    2002-01-01

    In this paper, we have obtained and investigated the magnetic behaviours of the ferromagnetic layer in thesymmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co by measuring with a vibrating sample magnetometer andanalysing in terms of the multi-domain Ising models. It has been found that some magnetic layer can have quitedifferent magnetic behaviours in different structures of spin valves, depending on the properties of the under-layer. Inour investigation, we have found that the magnetic behaviour of a Co layer depends mainly on the magnetization of theunder-layer, whereas this is not the case for the NiFe layer.

  7. Effect of Cu surface segregation on the exchange coupling field of NiFe/FeMn bilayers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The NiFe/FeMn bilayers with different buffer layers (Ta or Ta/Cu) were prepared by magnetron sputtering.Results show that the exchange coupling field of NiFe/FeMn films with Ta buffer is higher than that of the films with Ta/ Cu buffer. We analysed the reasons by investigating the crystallographic texture, surface roughness and surface segregation of both films, respectively. We found that the decrease of the exchange coupling fields of NiFe/FeMn films with Ta/Cu buffer layers was mainly caused by the Cu surface segregation on NiFe surface.

  8. Divalent Cu, Cd, and Pb Biosorption in Mixed Solvents

    Directory of Open Access Journals (Sweden)

    M. H. Al-Qunaibit

    2009-01-01

    Full Text Available Dead dried Chlorella vulgaris was studied in terms of its performance in binding divalent copper, cadmium, and lead ions from their aqueous or 50% v/v methanol, ethanol, and acetone solutions. The percentage uptake of cadmium ions exhibited a general decrease with decrease in dielectric constant values, while that of copper and lead ions showed a general decrease with increase in donor numbers. Uptake percentage becomes less sensitive to solvent properties the larger the atomic radius of the biosorbed ion, and uptake of copper was the most affected. FT-IR analyses revealed stability of the biomass in mixed solvents and a shift in vibrations of amide(I and (II, carboxylate, glucose ring, and metal oxygen upon metal binding in all media. ΔνCOO values (59–69 cm−1 confirmed bidentate metal coordination to carboxylate ligands. The value of νasCOO increased slightly upon Cu, Cd, and Pb biosorption from aqueous solutions indicating lowering of symmetry, while a general decrease was noticed in mixed solvents pointing to the opposite. M–O stretching frequencies increased unexpectedly with increase in atomic mass as a result of solvent effect on the nature of binding sites. Lowering polarity of the solvent permits variations in metal-alga bonds strengths; the smaller the metal ion, the more affected.

  9. Analysis of Cu and Pb in the sediments of Kakum River, its estuary ...

    African Journals Online (AJOL)

    DR GATSING

    This paper discusses the levels of some heavy metals (Cu and Pb) in the soil sediments of the Kakum. River, its estuary and ... Keywords: River Kakum, soil sediment, Copper and Lead. ..... and active tailings pile in the State of. Mexico.

  10. Speciation and behaviour of Cd, Pb and Cu in Zuari Estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    George

    Dissolved labile and nonlabile forms of Cd, Pb and Cu in Zuari Estuary, Goa, India measured for a period of 14 months showed lowest concentrations during the SW monsoon (June-September) while maximum concentrations were observed during...

  11. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    Science.gov (United States)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  12. Predictive GIS Model for Potential Mapping of Cu, Pb, Zn Mineralization

    Institute of Scientific and Technical Information of China (English)

    Tarik. B. Benomar; BIAN Fuling

    2006-01-01

    The geologic features indicative of Cu, Pb, Zn mineral deposits in a area are fractures (structure), and host rock sediments. Datasets used include Cu, Pb, Zn deposit points record, geological data, remote sensing imagery (Landsat TM5). The mineral potential of the study area is assessed by means of GIS based geodata integration techniques for generating predictive maps. GIS predictive model for Cu, Pb, Zn potential was carried out in this study area (Weixi) using weight of evidence. The weights of evidence modeling techniques is the data driven method in which the spatial associations of the indicative geologic features with the known mineral occurrences in the area are quantified, and weights statistically assigned to the geologic features. The best predictive map generated by this method defines 24% the area having potential for Cu, Pb, Zn mineralization further exploration work.

  13. (Cd, Cu, Ni and Pb) content in two fish species of Persian Gulf in ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... Heavy metal (HMs) pollution of aquatic environment has become a great concern in recent years. ... study, cadmium (Cd), copper (Cu), nickel (Ni) and lead (Pb) levels ... toxic effects on organs (Macfarlane and Burchettt 2000).

  14. Preparation and Properties of Amorphous NiFe/Cu/NiFe Thin Films

    Institute of Scientific and Technical Information of China (English)

    YE Yun; JIANG Ya-dong; HU Wen-cheng; ZENG Hong-juan

    2004-01-01

    The amorphous of Permalloy on the copper subtract was studied using composite electroplating method. A portion of hydrogen brings the counteraction on the surface of cathode leading nickel-iron alloys to be anomalous in the process of co-depositing. The results of X-ray diffraction (XRD) show that the Ni-Fe alloys layer is amorphous. The Giant Magneto -Impedance (GMI) effect of Ni-Fe alloys was obtained under the optimal conditions, dependence on the soft magnetic property of Ni-Fe amorphous thin film. As a result, the ratios△ Z/Z of NiFe/Cu/NiFe amorphous thin film are 30% at 40 kHz which is in low frequency. Furthermore, the GMI value of NiFe/Cu/NiFe amorphous thin film with a sandwich structure is higher than that of single-layer ferromagnetic films of the same thickness.

  15. Pengaruh Medium Tercemar Logam Pb dan Cu terhadap Pertumbuhan Nannochloropsis Salina

    OpenAIRE

    Abd.Wahid Wahab; Yusafir Hala; Fibiyanthy

    2013-01-01

    Penelitian ini dilakukan dengan tujuan memanfaatkan fitoplankton Nannochloropsis salina sebagai biosorben untuk ion logam Pb dan Cu di perairan. Pada penelitian ini pemaparan ion logam Pb dan Cu dengan variasi konsentrasi masing-masing 10, 30, dan 50 ppm dilakukan di awal masa pertumbuhan fitoplankton N. salina dalam Medium Conwy pada salinitas 30 ???, aerasi dan pencahayaan kontinyu, serta suhu ruangan 20 ??C. Konsentrasi ion logam ditentukan dengan menggunakan spektrofotometer serapan atom ...

  16. Dispersion, speciation and adsorption treatment of heavy metals in the vicinity of the Shi-Heung Cu-Pb-Zn mine

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Song; Chon, Hyo Taek [Seoul National Univ., Seoul (Korea, Republic of)

    1995-10-01

    In order to investigate the dispersion patterns and speciation of Cu, Pb, Zn and Cd in soils, stream sediments and stream waters, geochemical studies of soil, stream sediment and stream water samples collected in the vicinity of the Shi-Heung Cu-Pb-Zn mine was carried out. Cation exchange capacity measurement, size analysis, X-ray diffraction analysis and batch test were performed to select applicable soil for adsorption treatment. The average content of Cu, Pb, Zn and Cd in soils collected from tailings and ore dressing plant is 1084 ppm, 2292 ppm, 3512 ppm and, 29.2 ppm, respectively, and therefore, tailings and ore dressing plant site may be the major contamination sources in this study area. The mean content of Cu, Pb, Zn and Cd in stream sediments is extremely high up to 794 ppm, 1633 ppm, 2946 ppm and 25.2 ppm, respectively. Tailing particles and heavy metal ions are dispersed along the tributary system. Results from the sequential extraction analysis indicate; (1) most of Cu is bound to organic matters and sulphides, (2) fraction of Pb is mainly bound to Fe and Mn oxides. Most of Zn is largely bound to Fe and Mn oxides and residual fraction. Ion exchangeable fraction of Cd is relatively higher than those of Cu, Pb and Zn. Batch test on soils collected from the kaolinite and/or pyrophyllite mines and from the control areas was carried out to select an applicable soil samples for adsorption treatment. The sample, S10, collected from the control area 2 (clay content 33.2%) shows the highest K{sub d} (distribution coefficient). Organic content in soils and several clay minerals shows relatively good correlation with K{sub d}. It means that applicable soils for adsorption treatment of heavy metals show high organic and clay content. (author). 37 refs., 9 tabs., 6 figs.

  17. In Situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Estrella, M.; Barrio, L; Zhou, G; Wang, X; Wang, Q; Wen, W; Hanson, J; Frenkel, A; Rodriguez, J

    2009-01-01

    Mixtures of copper and iron oxides are used as industrial catalysts for the water-gas shift (WGS, CO + H2O f H2 + CO2). In-situ time-resolved X-ray diffraction, X-ray absorption fine structure, and atomic pair distribution function analysis were used to study the reduction of CuFe2O4 with CO and the behavior of CuFe2O4 and Cu/Fe2O3 catalysts under WGS reaction conditions. MetalToxygenTmetal interactions enhance the stability of Cu 2+ and Fe 3+ in the CuFe2O4 lattice, and the mixed-metal oxide is much more difficult to reduce than CuO or Fe2O3. Furthermore, after heating mixtures of CuFe2O4/CuO in the presence of CO or CO/H2O, the cations of CuO migrate into octahedral sites of the CuFe2O4 lattice at temperatures (200-250 C) in which CuO is not stable. Above 250 C, copper leaves the oxide, the occupancy of the octahedral sites in CuFe2O4 decreases, and diffraction lines for metallic Cu appear. From 350 to 450 C, there is a massive reduction of CuFe2O4 with the formation of metallic Cu and Fe3O4. At this point, the sample becomes catalytically active for the production of H2 from the reaction of H2O with CO. Neutral Cu 0 (i.e., no Cu 1+ or Cu 2+ cations) is the active species in the catalysts, but interactions with the oxide support cannot be neglected. These studies illustrate the importance of in situ characterization when dealing with mixed-metal oxide WGS catalysts.

  18. In-situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez,J.A.; Estrella, M.; Barrio, L.; Zhou, G.; Wang, X.; Wang, Q.; Wen, W.; Hanson, J.C.; Frenkel, A.

    2009-08-13

    Mixtures of copper and iron oxides are used as industrial catalysts for the water-gas shift (WGS, CO + H2O → H2 + CO2). In-situ time-resolved X-ray diffraction, X-ray absorption fine structure, and atomic pair distribution function analysis were used to study the reduction of CuFe2O4 with CO and the behavior of CuFe2O4 and Cu/Fe2O3 catalysts under WGS reaction conditions. Metal↔oxygen↔metal interactions enhance the stability of Cu2+ and Fe3+ in the CuFe2O4 lattice, and the mixed-metal oxide is much more difficult to reduce than CuO or Fe2O3. Furthermore, after heating mixtures of CuFe2O4/CuO in the presence of CO or CO/H2O, the cations of CuO migrate into octahedral sites of the CuFe2O4 lattice at temperatures (200-250 oC) in which CuO is not stable. Above 250 oC, copper leaves the oxide, the occupancy of the octahedral sites in CuFe2O4 decreases, and diffraction lines for metallic Cu appear. From 350 to 450 oC, there is a massive reduction of CuFe2O4 with the formation of metallic Cu and Fe3O4. At this point, the sample becomes catalytically active for the production of H2 from the reaction of H2O with CO. Neutral Cu0 (i.e. no Cu+1 or Cu+2 cations) is the active species in the catalysts, but interactions with the oxide support are necessary in order to obtain high catalytic activity. These studies illustrate the importance of in-situ characterization when dealing with mixed-metal oxide WGS catalysts.

  19. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    Science.gov (United States)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  20. Thermodynamic Optimization of FeS-PbS and PbS-ZnS Binary Systems%FeS-PbS和PbS-ZnS二元系的热力学优化

    Institute of Scientific and Technical Information of China (English)

    孙军; 庄卫东; 沈剑韵

    1999-01-01

    采用Redlich-Kister多项式描述体系液相的过剩自由焓,根据试验相图和已知的热力学数据优化得到了FeS-PbS和PbS-ZnS二元系的热力学参数.用优化结果计算的相图与试验测量值吻合较好.

  1. Adsorption Kinetics of Pb2+ and Cu2+ on Variable Charge Soils and Minerals:I.Technique

    Institute of Scientific and Technical Information of China (English)

    HUGUO-SONG

    1993-01-01

    A new technique for studying the adsorption kinetics of heavy metals,Pb2+ and Cu2+,on variable charge surfaces was established with two selective electrodes and microcomputer control system.Feasibility of the technique,including interference of other ions (mainly Fe3+ and Al3+),response time of electrodes,and the pH range of testing,was studied.Comparision with the most widely used miscible displacement technique,which was considered insufficient in studying 30-minute rapid reactions,at present time showed that the new technique was more advantageous in testing in situ,easy to operate,and economic.

  2. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    Science.gov (United States)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  3. Engineering of electronic and optical properties of PbS thin films via Cu doping

    Science.gov (United States)

    Touati, Baligh; Gassoumi, Abdelaziz; Dobryden, Illia; Natile, Marta Maria; Vomiero, Alberto; Turki, Najoua Kamoun

    2016-09-01

    Copper-doped PbS polycrystalline thin films were deposited by chemical bath deposition by adding small amount of Cu (ysolution = [Cu2+]/[Pb2+]) between 0.5 and 2 at%. The composition, structure, morphology, optical and electrical properties of the films were investigated by means of X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), UV-visible-near infrared (UV-Vis-NIR) spectrophotometry and Hall effect measurements. The XRD studies showed that the undoped films have PbS face centered cubic structure with (111) preferential orientation, while preferential orientation changes to (200) plane with increasing Cu doping concentration. The AFM and SEM measurements indicated that the film surfaces consisted of nanosized grains with pyramidal shape. Optical band gap was blue shifted from 0.72 eV to 1.69 eV with the increase in Cu doping concentration. The film obtained with the [Cu2+]/[Pb2+] ratio equal to 1.5 at% Cu showed the minimum resistivity of 0.16 Ω cm at room temperature and optimum value of optical band gap close to 1.5 eV. 1.5 at% Cu-doped PbS thin films exhibit the best optical and electrical properties, suitable for solar cells applications.

  4. Metastable Demixing of Supercooled Cu-Co and Cu-Fe Alloys in an Oxide Flux

    Science.gov (United States)

    Li, D.; Robinson, M. B.; Rathz, T. J.; Williams, G.

    1998-01-01

    A systematic study on the liquid separation in supercooled Cu-Co and Cu-Fe alloys was performed using a melt fluxing which permits high supercooling to be achieved. Moreover, this method renders it possible to directly measure binodal temperatures and establish metastable liquid miscibility gap (LMG). All phase-separated samples at compositions ranging from 10 to 80 wt pct Co or to 83 wt pct Fe were found to exhibit droplet-shaped morphologies, in spite of various droplet distributions. Uniformly dispersed microstructures were obtained as the minority component was less than 20 vol.%; while beyond this percentage, serious coarsening was brought about. Calculations of the miscibility gap in the Cu-Co system and Stokes movement velocity of Co and Fe droplets in Cu matrix were made to analyze the experimental results.

  5. Kinetic process of mechanical alloying in Fe50Cu50

    DEFF Research Database (Denmark)

    Huang, J.Y.; Jiang, Jianzhong; Yasuda, H.

    1998-01-01

    It is shown that mechanical alloying in the immiscible Fe-Cu system is governed by the atomic shear event and shear-induced diffusion process. We found that an alpha-to-gamma phase transformation, as evidenced by the Nishiyama-Wasserman orientation relationship, occurs by simultaneous shearing...... structures, until a complete fee Fe-Cu solid solution is formed. The results provide significant insight into the understanding of recent experiments showing that chemical mixing of immiscible elements can bd induced by mechanical alloying. [S0163-1829(98)51342-2]....

  6. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...

  7. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    Science.gov (United States)

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  8. Quantum-well states and induced magnetism in Fe/CuN/Fe bcc (001) trilayers

    DEFF Research Database (Denmark)

    Niklasson, A.M.N.; Mirbt, S.; Skriver, Hans Lomholt

    1996-01-01

    We have used a first-principles Green's function technique to investigate the formation of magnetic moments in Fe/Cu-N/Fe bcc (001) trilayers. We show that the magnetic moment in the paramagnetic spacer material to a first approximation may be described as a linear superposition of the magnetic...

  9. Properties of electrodeposited CoFe/Cu multilayers: The effect of Cu layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Turgut, E-mail: stsahin4@hotmail.com [Deparment of Physics, Science and Literature Faculty, Balikesir University, 10100 Balikesir (Turkey); Kockar, Hakan, E-mail: hkockar@balikesir.edu.tr [Deparment of Physics, Science and Literature Faculty, Balikesir University, 10100 Balikesir (Turkey); Alper, Mursel, E-mail: malper@uludag.edu.tr [Deparment of Physics, Science and Literature Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey)

    2015-01-01

    CoFe/Cu multilayers were potentiostatically electrodeposited on Ti substrates as a function of different non-magnetic (Cu) layer thicknesses, and their characterizations were investigated. The compositional analysis performed by energy dispersive X-ray spectroscopy disclosed that the Cu content in the multilayers increased and the Co content decreased as non-magnetic layer was increased. However, the Fe content was almost stable. The scanning electron microscopy studies showed that the surface morphology of the films is strongly affected by the non-magnetic layer thickness, and X-ray diffraction was used to analyse the structural properties of the multilayers and revealed that the multilayers have face-centred cubic (fcc) structure and their preferred orientations change depending on the Cu layer thickness. In the case of magnetoresistance measurements of the multilayers performed at room temperature, the highest giant magnetoresistance (GMR) values exhibited for the films with the Cu layer thickness (6.0 nm) whereas the lowest GMR magnitudes were observed for the films without Cu layer. Therefore, the variations of the Cu layer thicknesses were observed to have a significant effect on the GMR of multilayers. The differences observed in the magnetotransport properties were attributed to the microstructural changes caused by the Cu layer thickness. - Highlights: • CoFe/Cu multilayers were potentiostatically electrodeposited on Ti substrates. • Microstructural and magnetoresistance properties of CoFe/Cu multilayers were investigated. • All films had a face-centred cubic structure irrespective of the multilayer content. • All samples exhibited GMR and the maximum GMR value was 11%.

  10. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface

    Science.gov (United States)

    Palafox-Hernandez, J. Pablo; Laird, Brian B.

    2016-12-01

    In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 K—a 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface

  11. Reduction of nitrobenzene by the catalyzed Fe/Cu process

    Institute of Scientific and Technical Information of China (English)

    XU Wenying; LI Ping; FAN Jinhong

    2008-01-01

    The polarization behavior of the couple Fe/Cu in 100 mg/L nitrobenzene aqueous solution was studied using Evans coupling diagrams. The results indicated that the iron corrosion was limited by both anodic and cathodic half-cell reactions under the neutral conditions and cathodically controlled under the alkaline conditions. Batch experiments were performed to study the effect of solution pH, reaction duration, concentration, type of electrolyte and dissolved oxygen (DO) on the reduction of nitrobenzene by the catalyzed Fe/Cu process. This process proved effective in the pH range of 3 to 11. The conversion efficiency of nitrobenzene at pH ≈ 10.1 was almost the same as that under highly acid conditions (pH ≈ 3). The degradation of nitrobenzene fell into two phases: adsorption and surface reduction, and the influence of adsorption and mass transfer became more extensive with solution concentration. The reduction rate decreased in the presence of DO in the solution, indicating that a need for aeration was eliminated in the catalyzed Fe/Cu process. Accordingly, spending on energy consumption would be reduced. Economic analysis indicated that merely 0.05 kg was required for the treatment of a ton of nitrobenzene-containing water with pH from 3 to 11. The catalyzed Fe/Cu process is cost-effective and of practical value.

  12. Effects of Cu, Zn and Pb Combined Pollution on Soil Hydrolase Activities

    Directory of Open Access Journals (Sweden)

    FENG Dan

    2015-08-01

    Full Text Available To study the relations between soil enzyme activities and heavy metal pollution, the combined effects of Cu, Zn and Pb on the three hydrolase activities, including invertase(IN, urease(Uand alkaline phosphatase(ALPwere investigated via an orthogonal experiment. Results showed as the following: When the concentration of Cu was 400 mg·kg-1, the U and ALP activities were decreased 51% and 44%, separately; When Zn was at 500 mg·kg-1, IN and ALP activities were only decreased 3% and 9%, while U activity was increased; When Pb was at 500 mg·kg-1, IN and U activities were increased, while ALP activity was decreased 13%. As a whole, Cu was considered as the most remarkable influence factor for IN, U and ALP activity regardless of interactions among the heavy metals, Zn came second, and Pb mainly showed activation. Considering interactions, Cu×Zn could significantly influence U activity(P<0.05, effects of Cu×Pb and Cu×Zn on ALP activity were remarkable(95% confidence interval. The response of ALP activity was more sensitive than the other two enzymes. Soil ALP activity might be a sensitive tool for assessing the pollution degree of Cu.

  13. Time evolution of morphology in mechanically alloyed Fe-Cu

    KAUST Repository

    Wille, Catharina Gabriele

    2011-05-01

    Being widely accessible as well as already utilised in many applications, Fe-Cu acts as an ideal binary model alloy to elaborate the enforced nonequilibrium enhanced solubility in such a solution system that shows a limited regime of miscibility and characterised by a large positive heat of mixing. In addition to the detailed analysis of ball milled Fe-Cu powders by means of Atom Probe Tomography (APT), site specific structural analysis has been performed in this study using Transmission Electron Microscopy (TEM).In this contribution results on powders with low Cu concentrations (2.5-10 at%) are presented. Combining a ductile element (Cu, fcc) and a brittle one (Fe, bcc), striking differences in morphology were expected and found on all length-scales, depending on the mixing ratio of the two elements. However, not only could the atomic mixing of Fe and Cu be evaluated, but also the distribution of impurities, mostly stemming from the fabrication procedure. The combination of APT and TEM enables a correlation between the structural evolution and the chemical mixing during the milling process. For the first time, a clear distinction can be drawn between the morphological evolution at the surface and in the interior of the powder particles. This became possible owing to the site specific sample preparation of TEM lamellae by Focussed Ion Beam (FIB). Surprisingly, the texture arising from the ball milling process can directly be related to the classical rolling texture of cold rolled Fe. In addition, full homogeneity can be achieved even on the nano-scale for this material as shown by APT, resulting in an extended miscibility region in comparison to the equilibrium phase diagram. Grain sizes were determined by means of XRD and TEM. The strain corrected XRD results are in very good agreement with the values derived by TEM, both confirming a truly nanocrystalline structure. © 2011 Elsevier B.V.

  14. Itinerant magnetism in metallic CuFe2Ge2.

    Directory of Open Access Journals (Sweden)

    K V Shanavas

    Full Text Available Theoretical calculations are performed to understand the electronic structure and magnetic properties of CuFe2Ge2. The band structure reveals large electron density N(EF at the Fermi level suggesting a strong itinerant character of magnetism. The Fermi surface is dominated by two dimensional sheet like structures, with potentially strong nesting between them. The magnetic ground state appears to be ferromagnetic along a and antiferromagnetic in other directions. These results show that CuFe2Ge2 is an antiferromagnetic metal, with similarities to the Fe-based superconductors; such as magnetism with substantial itinerant character and coupling between magnetic order and electrons at the Fermi energy.

  15. Rapid solidification of Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Baricco, M.; Bosco, E.; Acconciaioco, G.; Rizzi, P.; Coisson, M

    2004-07-15

    Cu{sub 80-x}Ni{sub x}Fe{sub 20} (x=0, 5 and 20) alloys have been rapidly solidified by planar flow casting. X-ray diffraction (XRD) analysis of as-quenched ribbons shows bcc-Fe precipitates embedded in an fcc phase (x=0), two co-existing fcc solid solutions (x=5) and a complete solid solution of the parent elements (x=20). Thermal treatments in the temperature range between 400 and 600 deg. C give precipitation and spinodal decomposition reactions. These phase transformations have been evidenced from a variation of lattice constants, from a broadening of diffraction peaks and from TEM observations. The role of Ni content on competition between precipitation and decomposition reactions during rapid solidification and annealing is discussed in terms of thermodynamic arguments. Recent CALPHAD assessment of thermodynamic properties for Cu-Fe-Ni system has been used for an estimation of composition and volume fraction of equilibrium phases.

  16. Migration of Cd, Cu, Ni and Pb in low-permeable clay-type solids in presence of acid complexants

    Energy Technology Data Exchange (ETDEWEB)

    Sager, M. [Federal Office and Research Centre of Agriculture, Institute of Agro - Ecology Spargelfeldstrabe, Vienna (Austria)

    1997-12-31

    In order to predict vertical mobility of trace meta ions through low permeable subsurface layers below waste deposition sites, a series of experiments has been carried out; results show that the retardation behaviour of Cu/Cd/Pb/Ni simultaneously and continuously applied to water saturated soil columns together with dilute acids, depends on the the composition of the solid phase as well as the complexing capabilities of the liquid phase. Whereas acetic acid mainly releases Ca + Mg from the solid, oxalic acid can also dissolves large amounts of Fe + Al. The appearance of acid in the eluate is indicative for the penetration of added metals as well, but in some cases, the fastest (Ni) moves much faster than the acid itself. For weakly complexing acetic acid, buffer capacity and releasable Fe seem to be the main factors for the retardation of Cu/Cd/Pb/Ni. Addition of neutral salts (Na{sub 2} SO{sub 4}) lowers the water permeation velocity, and enlarges retardation of the tested cations

  17. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake.

    Science.gov (United States)

    Jiang, Nina; Xu, Yiting; Dai, Yuqiong; Luo, Weiang; Dai, Lizong

    2012-05-15

    Polyaniline (PANI) nanofibers were assembled on the micro- or millimeter-scale calcium alginate (CA) beads by "competitive adsorption-restricted polymerization" approach. The CA beads made the dimensional expansion of PANI nanofibers evident, which overcame the serious aggregation of PANI nanofibers and benefited the practical operation of PANI nanofibers. Batch adsorption results showed that the millimeter-scale CA beads decorated by PANI nanofibers had high affinity to Cu(2+) and Pb(2+) in aqueous solutions. The removal percentages of Cu(2+) and Pb(2+) in aqueous solutions by this PANI/CA composite with milli/nano hierarchical structure surpassed 90% in a wide pH range from 3 to 7. Sorption of the two kinds of ions to PANI/CA composite sorbent agreed well with the Freundlich adsorption model. The adsorption kinetic results of Cu(2+) and Pb(2+) showed that the adsorption reached equilibrium within 120min and 40min, respectively. And their adsorption rates could be described by pseudo-second-order kinetics. The desorption percentages of Pb(2+) and Cu(2+) from this PANI/CA composite are 62% and 75%, respectively. The Pb(2+) and Cu(2+) removal capacity of the sorbent could be further reinforced when the diameter of CA beads turned from millimeter to micrometer. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xinde [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States); Wahbi, Ammar [Soil Science Department, Faculty of Agriculture, University of Aleppo, Aleppo (Syrian Arab Republic); Ma, Lena, E-mail: lqma@ufl.edu [Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States); Li Bing; Yang Yongliang [National Research Center for Geoanalysis, Beijing 100037 (China)

    2009-05-30

    Considerable research has been done on P-induced Pb immobilization in Pb-contaminated soils. However, application of P to soils contaminated with multiple heavy metals is limited. The present study examined effectiveness of phosphoric acid (PA) and/or phosphate rock (PR) in immobilizing Pb, Cu, and Zn in two contaminated soils. The effectiveness was evaluated using water extraction, plant uptake, and a simple bioaccessibility extraction test (SBET) mimicking metal uptake in the acidic environment of human stomach. The possible mechanisms for metal immobilization were elucidated using X-ray diffraction, scanning electron microscopy, and chemical speciation program Visual MINTEQ. Compared to the control, all P amendments significantly reduced Pb water solubility, phytoavailability, and bioaccessibility by 72-100%, 15-86%, and 28-92%, respectively. The Pb immobilization was probably attributed to the formation of insoluble Pb phosphate minerals. Phosphorus significantly reduced Cu and Zn water solubility by 31-80% and 40-69%, respectively, presumably due to their sorption on minerals (e.g., calcite and phosphate phases) following CaO addition. However, P had little effect on the Cu and Zn phytoavailability; while the acid extractability of Cu and Zn induced by SBET (pH 2) were even elevated by up to 48% and 40%, respectively, in the H{sub 3}PO{sub 4} treatments (PA and PR + PA). Our results indicate that phosphate was effective in reducing Pb availability in terms of water solubility, bioaccessibility, and phytoavailability. Caution should be exercised when H{sub 3}PO{sub 4} was amended to the soil co-contaminated with Cu and Zn since the acidic condition of SBET increased Cu and Zn bioaccessibility though their water solubility was reduced.

  19. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.

    Science.gov (United States)

    Cao, Xinde; Wahbi, Ammar; Ma, Lena; Li, Bing; Yang, Yongliang

    2009-05-30

    Considerable research has been done on P-induced Pb immobilization in Pb-contaminated soils. However, application of P to soils contaminated with multiple heavy metals is limited. The present study examined effectiveness of phosphoric acid (PA) and/or phosphate rock (PR) in immobilizing Pb, Cu, and Zn in two contaminated soils. The effectiveness was evaluated using water extraction, plant uptake, and a simple bioaccessibility extraction test (SBET) mimicking metal uptake in the acidic environment of human stomach. The possible mechanisms for metal immobilization were elucidated using X-ray diffraction, scanning electron microscopy, and chemical speciation program Visual MINTEQ. Compared to the control, all P amendments significantly reduced Pb water solubility, phytoavailability, and bioaccessibility by 72-100%, 15-86%, and 28-92%, respectively. The Pb immobilization was probably attributed to the formation of insoluble Pb phosphate minerals. Phosphorus significantly reduced Cu and Zn water solubility by 31-80% and 40-69%, respectively, presumably due to their sorption on minerals (e.g., calcite and phosphate phases) following CaO addition. However, P had little effect on the Cu and Zn phytoavailability; while the acid extractability of Cu and Zn induced by SBET (pH 2) were even elevated by up to 48% and 40%, respectively, in the H(3)PO(4) treatments (PA and PR+PA). Our results indicate that phosphate was effective in reducing Pb availability in terms of water solubility, bioaccessibility, and phytoavailability. Caution should be exercised when H(3)PO(4) was amended to the soil co-contaminated with Cu and Zn since the acidic condition of SBET increased Cu and Zn bioaccessibility though their water solubility was reduced.

  20. Development of a new Pb-free solder: Sn-Ag-Cu

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.M.

    1995-02-10

    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217{degrees}C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  1. Measurement of absolute reaction rates in Be,Pb and Fe spherical systems

    Institute of Scientific and Technical Information of China (English)

    LiuRong; ChenYuan; 等

    1998-01-01

    The absolute reaction rates in Be,Pb and Fe have been measured by using the activation foil technique with different reaction energy thresholds.Thicknesses of Be,Pb and Fe spheres were 5.3,19.1 and 31.9cm.respectively,Eight kinds of activation folis were used for Fe,and four kinds each for Be and Pb,The total experimental er5ror was about 5-7%.The measured results were compared to the values calculated with the 1-D ANISN code and the ENDF/B-VI library data.The average ratio of the experimental to the calculational is less than 7% for Be and Pb,about 5-30% for Fe.

  2. Cytotoxic, Genotoxic, and Neurotoxic Effects of Mg, Pb, and Fe on Pheochromocytoma (PC-12) Cells

    Science.gov (United States)

    Sanders, Talia; Liu, Yi-Ming; Tchounwou, Paul B.

    2014-01-01

    Metals such as lead (Pb), magnesium (Mg), and iron (Fe) are ubiquitous in the environment as a result of natural occurrence and anthropogenic activities. Although Mg, Fe and others are considered essential elements, high level of exposure has been associated with severe adverse health effects including cardiovascular, hematological, nephrotoxic, hepatotoxic, and neurologic abnormalities in humans. In the present study we hypothesized that Mg, Pb, and Fe are cytotoxic, genotoxic and neurotoxic, and their toxicity is mediated through oxidative stress and alteration in protein expression. To test the hypothesis, we used the pheochromocytoma (PC-12) cell line as a neuro cell model and performed the LDH assay for cell viability, Comet assay for DNA damage, Western blot for oxidative stress, and HPLC-MS to assess the concentration levels of neurological biomarkers such as glutamate, dopamine (DA), and 3-methoxytyramine (3-MT). The results of this study clearly show that Mg, Pb, and Fe, respectively in the form of MgSO4, Pb(NO3)2, FeCl2, and FeCl3 induce cytotoxicity, oxidative stress, and genotoxicity in PC-12 cells. In addition, exposure to these metallic compounds caused significant changes in the concentration levels of glutamate, dopamine, and 3-MT in PC-12 cells. Taken together the findings suggest that MgSO4, Pb(NO3)2, FeCl2, and FeCl3 have the potential to induce substantial toxicity to PC-12 cells. PMID:24942330

  3. Pb, Cu botanogeochemical anomalies and toxic effects on plant cells in Pb-Zn (Sn) ore fields, Northeast Guangxi Autonomous Region, China

    Institute of Scientific and Technical Information of China (English)

    SONG Ci'an; LEI Liangqi; YANG Qijun

    2007-01-01

    In the Lingchuan-Daoping and Xinglu Pb-Zn ore fields in northern and eastern Guangxi Autonomous Region, Pb, Cu botanogeochemical anomalies may be ascribed to the excessive amounts of Pb and Cu taken up by the root system of plants, such as China fir (Cunninghamia lanceolata Lamb. Hook), mason pine (Pinus massoniana Lamb.) and bracken fern (Pteridium aquilinum var. latiusculum). Under transmission electron microscope (TEM), the excess Pb, Cu in the leaf cells of the plants are present as high electron-density substances, which were precipitated in the leaf cells, causing phytotoxic effects by deforming and injuring cellular tissues. The sorts of toxic elements accumulating in the leaf cells are consistent with those of the botanogeochemically anomalous elements in the polluted soil where the plants grow. In addition, the plants may also be capable of resisting the invasion of excess Cu (and Pb) .

  4. The ferromagnetic shape memory system Fe-Pd-Cu

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S. [Institute of Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum (Germany); Gruner, M.E. [Faculty of Physics and Center for Nanointegration, CeNIDE, University of Duisburg-Essen, 47048 Duisburg (Germany); Irsen, S. [Forschungszentrum caesar, Electron Microscopy, 53175 Bonn (Germany); Buschbeck, J. [IFW Dresden, P.O. Box: 270116, 01171 Dresden (Germany); Bechtold, C. [Inorganic Functional Materials, Christian-Albrechts-University, 24143 Kiel (Germany); Kock, I. [I. Physikalisches Institut, Georg-August-University Goettingen, 37077 Goettingen (Germany); Mayr, S.G. [I. Physikalisches Institut, Georg-August-University Goettingen, 37077 Goettingen (Germany)] [Leibniz-Institut fuer Oberflaechenmodifizierung eV, Translationszentrum fuer regenerative Medizin und Fakultaet fuer Physik und Geowissenschaften, University Leipzig, 04318 Leipzig (Germany); Savan, A.; Thienhaus, S. [Institute of Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum (Germany); Quandt, E. [Inorganic Functional Materials, Christian-Albrechts-University, 24143 Kiel (Germany); Faehler, S. [IFW Dresden, P.O. Box: 270116, 01171 Dresden (Germany); Entel, P. [Faculty of Physics and Center for Nanointegration, CeNIDE, University of Duisburg-Essen, 47048 Duisburg (Germany); Ludwig, A., E-mail: alfred.ludwig@rub.de [Institute of Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum (Germany)

    2010-10-15

    A new ferromagnetic shape memory thin film system, Fe-Pd-Cu, was developed using ab initio calculations, combinatorial fabrication and high-throughput experimentation methods. Reversible martensitic transformations are found in extended compositional regions, which have increased fcc-fct transformation temperatures in comparison to previously published results. High resolution transmission electron microscopy verified the existence of a homogeneous ternary phase without precipitates. Curie temperature, saturation polarization and orbital magnetism are only moderately decreased by alloying with nonmagnetic Cu. Compared to the binary system; enhanced Invar-type thermal expansion anomalies in terms of an increased volume magnetostriction are predicted. Complementary experiments on splat-fabricated bulk Fe-Pd-Cu samples showed an enhanced stability of the disordered transforming Fe{sub 70}Pd{sub 30} phase against decomposition. From the comparison of bulk and thin film results, it can be inferred that, for ternary systems, the Fe content, rather than the valence electron concentration, should be regarded as the decisive factor determining the fcc-fct transformation temperature.

  5. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  6. Properties and Structure of the F-doped (Bi, Pb)-Sr-Ca-Cu-O Superconductor

    Institute of Scientific and Technical Information of China (English)

    高孝恢; 王小刚; 蒋淑芬; 李洁; 高赛; 郑国栋

    1994-01-01

    By using TEM, XPS, IR, position annihilation and differential specific heat measurements, the properties and structure of the F-doped (Bi, Pb)-Sr-Ca-Cu-O superconductor have been studied. The results show that the fluorine atoms are homogeneously distributed in superconducting phase and substituted for the oxygen atoms at O(2) crystallographic sites; the Pb-F and Cu-F bonds are formed. F-doping results in the variance of the incommensurate modulation structure, the increase of the point defects and chemical pressure, the enhancement of flux pinning effect and the change of the electronic structure and chemical bond, and greatly improves superconductive properties of the 2223 phase (Bi, Pb)-Sr-Ca-Cu-O.

  7. Behavior and influence of Pb and Bi in Ag-Cu-Zn brazing alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of trace content of Pb and Bi elements on the spreading property and the strength of brazed joints of Ag-Cu-Zn filler metal have been studied. The results show that Pb has little effect on both above properties, and Bi has remarkable influence on the spreading property but little effect on the strength of brazed joint. Pb and Bi dissolve into the Ag-Cu-Zn matrix and will melt and gather at lower temperature when that alloy is being heated. Therefore a liquid forms on the surface of the Ag-Cu-Zn alloy and overlays the melting alloy, then keeps the filler metal away from the materials being joined, and so decreases the spreading property.

  8. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters

    Science.gov (United States)

    Paulson, A.J.; Balistrieri, L.

    1999-01-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal

  9. Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yajun, E-mail: yajun.wei@angstrom.uu.se; Akansel, Serkan; Thersleff, Thomas; Brucas, Rimantas; Lansaker, Pia; Leifer, Klaus; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, 75121 Uppsala (Sweden); Harward, Ian; Celinski, Zbigniew [Department of Physics, University of Colorado, Colorado Springs, Colorado 80918 (United States); Ranjbar, Mojtaba; Dumas, Randy K. [Department of Physics, University of Gothenburg, 41296 Gothenburg (Sweden); Jana, Somnath; Pogoryelov, Yevgen; Karis, Olof [Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Åkerman, Johan [Department of Physics, University of Gothenburg, 41296 Gothenburg (Sweden); Department of Applied Physics and Microelectronics, Royal Institute of Technology, 10044 Kista (Sweden)

    2015-01-26

    Magnetic coupling in trilayer films of FeNi/Cu/FeCo deposited on Si/SiO{sub 2} substrates have been studied. While the thicknesses of the FeNi and FeCo layers were kept constant at 100 Å, the thickness of the Cu spacer was varied from 5 to 50 Å. Both hysteresis loop and ferromagnetic resonance results indicate that all films are ferromagnetically coupled. Micromagnetic simulations well reproduce the ferromagnetic resonance mode positions measured by experiments, enabling the extraction of the coupling constants. Films with a thin Cu spacer are found to be strongly coupled, with an effective coupling constant of 3 erg/cm{sup 2} for the sample with a 5 Å Cu spacer. The strong coupling strength is qualitatively understood within the framework of a combined effect of Ruderman-Kittel-Kasuya-Yosida and pinhole coupling, which is evidenced by transmission electron microscopy analysis. The magnetic coupling constant surprisingly decreases exponentially with increasing Cu spacer thickness, without showing an oscillatory thickness dependence. This is partially connected to the substantial interfacial roughness that washes away the oscillation. The results have implications on the design of multilayers for spintronic applications.

  10. Phase Transformations in Low-Fe Alloys of the Al-Cu-Fe System

    Institute of Scientific and Technical Information of China (English)

    Liming Zhang

    2004-01-01

    Microstructure and phase transformation in the Al-Cu-Fe alloys of the approximate compositional range of 20 -50 at.% Cu and 2 - 10 Fe at.% have been investigated from samples quenched from their respective temperatures by means of different thermal analysis, magnetothermal analysis, scanning electron microscopy, electron probe analysis and powder X-ray diffraction. Representative phase transformations categorized as polymorphic, discontinuous precipitation,quasi-binary eutectoid, and ternary transitional U-type phase transformation are presented. These phase transformations were found to have a common feature which consumes the β phase and appears the φ phase. A schematic diagram was proposed to demonstrate the transition processes with decreasing temperature.

  11. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.

    Science.gov (United States)

    Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques

    2015-10-01

    This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the

  12. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    Science.gov (United States)

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  13. Physical properties modulation of Fe3O4/Pb(ZrTi)O3 heterostructure via Fe diffusion

    Science.gov (United States)

    Chichvarina, O.; Herng, T. S.; Ding, J.

    2016-03-01

    The manipulation of material properties in perovskite oxide heterojunctions has been increasingly studied, owing to their interacting lattice, charge, spin and orbital degrees of freedom. In this work, the switching, ferroelectricity and magneto-transport properties of epitaxially grown perovskite Pb(Zr0.52Ti0.48)O3 layers sandwiched between Fe3O4 (top electrode) and SrRuO3 (bottom electrode) are investigated. These films show a typical ferroelectric polarization of ˜50 μC/cm2. Once the Pb(Zr0.52Ti0.48)O3 films become thinner (˜30 nm), one can set (reset) the Fe3O4/Pb(Zr0.52Ti0.48)O3/SrRuO3 structures into a low (high) resistance state via formation (rupture) of an Fe-related filament in Pb(Zr0.52Ti0.48)O3 through manipulation of an electric field. Interestingly, at the low-resistance state, a prominent magnetoresistance signal of ˜3% was observed. There is no magnetoresistance signal detected in the virgin Pb(Zr0.52Ti0.48)O3 film (before switching), high-resistive state Pb(Zr0.52Ti0.48)O3 film and Au/Pb(Zr0.52Ti0.48)O3/SrRuO3. These phenomena are attributed to the diffusion of Fe-related ions into the Pb(Zr0.52Ti0.48)O3 film, turning a non-magnetic and insulating layer of perovskite Pb(Zr0.52Ti0.48)O3 into a magnetic and semiconducting-like Pb(Zr0.52Ti0.48)O3. The magneto-transport properties of Fe3O4/Pb(Zr0.52Ti0.48)O3/SrRuO3 have been studied extensively. Such resistance-ferroelectric-ferromagnetic coupling in a single compound paves the way to the realization of a non-volatile multiple-state Pb(ZrTi)O3 hybrid memory, as well as new computing approaches.

  14. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    Science.gov (United States)

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  15. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+.

    Science.gov (United States)

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-06-01

    The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu(2+), Pb(2+)). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3=2.3, Na2O/SiO2=1.4, H2O/Na2O=50, crystallization time 8h, crystallization temperature 95 °C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g(-1) for Cu(2+), Pb(2+) with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu(2+), Pb(2+) from water with metallic contaminants and can be separated easily after a magnetic process.

  16. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying.......The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...

  17. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    Science.gov (United States)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite

  18. Giant Magnetoresistance Effect of [bcc-Fe(M)/Cu](M=Co,Ni)Multilayers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/Cu], and at 1.6 nm Fe(Ni) and 1.4 nm Cu layer thickness in [Fe(Ni)/Cu]. Under the optimum annealing condition, the MR ratio increases up to 50% and 38% for Fe(Co) and Fe(Ni) systems, respectively. The origin of the increase of GMR is discussed, taking the progress of preferred orientation of Fe(Co)[100] or Fe(Ni)[100] by annealing into account.

  19. Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces

    DEFF Research Database (Denmark)

    Lytken, Ole; Waltenburg, Hanne Neergaard; Chorkendorff, Ib

    2003-01-01

    In order to investigate any influence of steps and possible positive effects of making surface alloys the ammonia synthesis has been investigated over Au modified Fe(111) and Ag and Cu modified Fe(100) single crystals in the temperature range 603-773 K, using a system combining ultra-high vacuum...... and a high-pressure cell. Ammonia was synthesized from a stoichiometric (N-2:3H(2)) gas mixture at a pressure of 2 bar. By deposition of small amounts of An, the ammonia production activity of the Fe(1 1 1) surface can be enhanced. More important, for the gold modified surface, the reaction order in ammonia...

  20. Structures and energies of Cu clusters on Fe and Fe3C surfaces from density functional theory computation.

    Science.gov (United States)

    Tian, Xinxin; Wang, Tao; Yang, Yong; Li, Yong-Wang; Wang, Jianguo; Jiao, Haijun

    2014-12-28

    Spin-polarized density functional theory computations have been carried out to study the stable adsorption configurations of Cun (n = 1-7, 13) on Fe and Fe3C surfaces for understanding the initial stages of copper promotion in catalysis. At low coverage, two-dimensional aggregation is more preferred over dispersion and three-dimensional aggregation on the Fe(110) and Fe(100) surfaces as well as the metallic Fe3C(010) surfaces, while dispersion is more favorable over aggregation on the Fe(111) surface. On the Fe3C(001) and Fe3C(100) surfaces with exposed iron and carbon atoms, the adsorbed Cu atoms prefer dispersion at low coverage, while aggregation along the iron regions at high coverage. On the iron surfaces, the adsorption energies of Cun (n = 2-7) are highest on Fe(111), medium on Fe(100) and lowest on Fe(110). On the Fe3C surfaces, the adsorption energies of Cun (n = 1-3) are highest on Fe3C(100), medium on Fe3C(010) and lowest on Fe3C(001), while, for n = 4-7 and 13, Fe3C(010) has stronger adsorption than Fe3C(100). On the basis of their differences in electronegativity, the adsorbed Cu atoms can oxidize the metallic Fe(110), Fe(100) and Fe3C(010) surfaces and become negatively charged. On the Fe3C(001) and Fe3C(100) surfaces with exposed iron and carbon atoms, the adsorbed Cu atoms interacting with surface carbon atoms are oxidized and positively charged. Unlike the most stable Fe(110) and Fe3C(001) surfaces, where the Fe(110) surface has stronger Cu affinity than the Fe3C(001) surface, which is in agreement with the experimental finding, the less and least stable Fe3C(010) and Fe3C(100) surfaces have stronger Cu affinities than the Fe(110) and Fe(100) surfaces. Since less stable facets are not preferably formed thermodynamically, it is crucial to prepare such surfaces to explore Cu adsorption and promotion, and this provides challenges to surface sciences.

  1. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag in the southeastern Atlantic and the Southern Ocean

    Directory of Open Access Journals (Sweden)

    M. Boye

    2012-03-01

    Full Text Available Comprehensive synoptic datasets (surface water down to 4000 m of dissolved cadmium (Cd, copper (Cu, manganese (Mn, lead (Pb and silver (Ag are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu, Ag, and of Cd display nutrient-like profiles similar to silicic acid, and phosphate, respectively. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water-masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs appeared to have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However uptake by dino- and nano-flagelattes may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P, yielding lower Cd/P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd-uptake induced by iron-limiting conditions in these High

  2. Synchrotron X-Ray Study on Structures of Ni80Fe20/Cu Superlattices

    Institute of Scientific and Technical Information of China (English)

    XU Ming; LUO Guang-Ming; CHAI Chun-Lin; YANG Tao; MAI Zhen-Hong; LAI Wu-Yan; WU Zhong-Hua; WANG De-Wu

    2001-01-01

    We have shown that, in contrast to the results in the literature, the Bragg peak intensity of Ni80Fe20/Cu superlattices is enhanced at the incident x-ray energy slightly higher than the absorption edge of the heavier element (Cu). The atomic density at Ni80Fe20/Cu interface was analysed by the diffraction anomalous fine structure technology with the incident angle of x-ray fixed at the first Bragg peak. Our results demonstrate the epitaxy growth of Ni80Fe20/Cu superlattices. Upon annealing, the epitaxity of Ni80Fe20/Cu multilayers becomes poor but the local crystallinity in each layer is improved.

  3. Magneto-volume effects in Fe-Cu solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, P. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain)]. E-mail: pgorria@uniovi.es; Martinez-Blanco, D. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Iglesias, R. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Palacios, S.L. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Perez, M.J. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Fernandez Barquin, L. [Departamento CITIMAC, F. Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Hernando, A. [Instituto de Magnetismo Aplicado, UCM-RENFE, 28230 Las Rozas, Madrid (Spain); Gonzalez, M.A. [Instituto de Ciencia de Materiales de Aragon, CSIC, 50009 Zaragoza (Spain); Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2006-05-15

    The magnetic properties of Fe-Cu metastable solid solutions have been investigated by means of neutron diffraction and magnetisation measurements. These compounds exhibit ferromagnetic order with Curie temperatures above room temperature for concentrations beyond 40 at% in Fe. The magnetic moment at 5 K can reach values over 2 {mu} {sub B}, while the high field susceptibility is similar to that found in FCC-FeNi Invar alloys. These features together with the low values for the linear coefficient for thermal expansion in the ferromagnetic region suggest that magneto-volume anomalies, including Invar behaviour, play a major role in the magnetic properties of this system when the crystal structure is face centred cubic. Such behaviour could be explained using theoretical total-band energy calculations.

  4. Enhancement of spin-Seebeck effect by inserting ultra-thin Fe70Cu30 interlayer

    Science.gov (United States)

    Kikuchi, D.; Ishida, M.; Uchida, K.; Qiu, Z.; Murakami, T.; Saitoh, E.

    2015-02-01

    We report the longitudinal spin-Seebeck effects (LSSEs) for Pt/Fe70Cu30/BiY2Fe5O12 (BiYIG) and Pt/BiYIG devices. The LSSE voltage was found to be enhanced by inserting an ultra-thin Fe70Cu30 interlayer. This enhancement decays sharply with increasing the Fe70Cu30 thickness, suggesting that it is not due to bulk phenomena, such as a superposition of conventional thermoelectric effects, but due to interface effects related to the Fe70Cu30 interlayer. Combined with control experiments using Pt/Fe70Cu30 devices, we conclude that the enhancement of the LSSE voltage in the Pt/Fe70Cu30/BiYIG devices is attributed to the improvement of the spin-mixing conductance at the Pt/BiYIG interfaces.

  5. Characterization of the metastable Cu-Fe nanoparticles prepared by the mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Mahsa Barzegar Vishlaghi

    2014-12-01

    Full Text Available Although Cu and Fe are immiscible under equilibrium conditions, they can form supersaturated solid solutions by mechanical alloying. In this paper, nano-structured of the metastable Cu-Fe phase containing 10, 15, 20 and 25% wt Fe were synthesized by intensive ball milling for 15h, in order to achieve a solid solution of Fe in Cu. The phase composition, dissolution of the Fe atoms into the Cu matrix, and the morphology of the milling products were studied by X-ray Diffraction (XRD, Energy Dispersive Spectrometer (EDS, and Field Emission Scanning Electron Microscope (FESEM techniques, respectively. The mean crystallite size of the milled samples was determined by XRD peak broadening using the Williamson-Hall approximation. The XRD analysis results showed that the solid solubility of the Fe in the Cu was extended to 20%wt after milling for 15 h, and a homogeneous solid solution of Cu80Fe20 with a mean crystallite size of 19nm was obtained. The mean crystallite size decreased with increasing milling time and it was more evident in the initial stage of the milling. The Cu lattice parameter increased by dissolving the Fe into the Cu matrix probably due to the magneto-volume effect in the Cu-Fe alloys. The FESEM observations showed that the milling products were agglomerates consisting of uniform particles. The Vibrating Sample Magnetometer (VSM results showed that the Cu80Fe20 powder has soft magnetic properties.

  6. Extraordinary Hall effect on Fe-rich amorphous thin films and Fe-rich/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Michea, S. [Universidad de Santiago de Chile, Avda. Ecuador, 3493, Estacion Central, Santiago (Chile); Denardin, J.C., E-mail: juliano.denardin@usach.cl [Universidad de Santiago de Chile, Avda. Ecuador, 3493, Estacion Central, Santiago (Chile); Gamino, M.; Dorneles, L.S. [Departamento de Fisica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS (Brazil); Correa, M.A. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitario Lagoa Seca, 59072-970 - Natal, RN - Brazil (Brazil)

    2012-08-15

    In this study we investigated the magnetic and transport properties of thin Fe-rich amorphous films and Fe-rich/Cu multilayers. We compared the extraordinary Hall effect in these two types of samples and discussed it in terms of thickness and sample structure. The thicker films exhibited a strong in-plane magnetic anisotropy, and by decreasing film thickness both saturated Hall resistivity and Hall sensitivity increase. A Hall resistivity value of 20 {mu} Ohm-Sign cm is observed in 100 nm thick Fe-rich films at 12 K and a sensitivity of 1.3 Ohm-Sign /T is obtained at room temperature. Electrical conductance increases and Hall resistivity decreases when the films are sandwiched with Cu.

  7. Sulfur Isotopes Geochemistry of the Nage Cu-Pb Polymetallic Deposit, Southeast Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    LONG Xuan-lin; ZHOU Jia-xi; HUANG Zhi-long; WANG Jing-song; YANG De-zhi; FAN Liang-wu; BAO Guang-ping; LIU Yong-kun

    2009-01-01

    @@ The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia, that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic Sibo group and the Jialu formation (Qbj) , Wuye formation (Qbw) , Fanzhao formation (Qbf) and Gongdong formation (Qbg) of the Neoproterozoic Qingbaikou System Xiajiang group.

  8. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.

    Science.gov (United States)

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-09-01

    The adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite (EP) from aqueous solution were investigated with respect to the changes in pH of solution, adsorbent dosage, contact time and temperature of solution. For the adsorption of both metal ions, the Langmuir isotherm model fitted to equilibrium data better than the Freundlich isotherm model. Using the Langmuir model equation, the monolayer adsorption capacity of EP was found to be 8.62 and 13.39 mg/g for Cu(II) and Pb(II) ions, respectively. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data and the mean free energies of adsorption were found as 10.82 kJ/mol for Cu(II) and 9.12 kJ/mol for Pb(II) indicating that the adsorption of both metal ions onto EP was taken place by chemical ion-exchange. Thermodynamic functions, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were also calculated for each metal ions. These parameters showed that the adsorption of Cu(II) and Pb(II) ions onto EP was feasible, spontaneous and exothermic at 20-50 degrees C. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for both metal ions followed well pseudo-second-order kinetics.

  9. Assessing the Levels of Pb, Cd, Zn and Cu in Biscuits and Home ...

    African Journals Online (AJOL)

    ADOWIE PERE

    The mean levels of Zn, Cu, Pb and Cd found in plantain chips obtained from the University ... the upper limits of the range specified by the World Health Organization, the consumption of .... 0.52 mg/kg) in potato chips sampled from the second.

  10. Determination of Cd, Pb and Cu in Mandovi estuary by differential pulse anodic stripping voltammetry

    Digital Repository Service at National Institute of Oceanography (India)

    George, M.D.; Sawkar, K.; Reddy, C.V.G.

    0-60% for Pb and 0-80% for Cu. Compared to the reported values from other estuaries, Mandovi estuarine waters have registered a higher concentration of the metals. These high concentrations, to a large extent, are considered to be the effect...

  11. Electrodialytic removal of Cu, Zn, Pb, and Cd from harbor sediment: Influence of changing experimental conditions

    DEFF Research Database (Denmark)

    Nystrøm, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic remediation (EDR) was used to remove Cu, Zn, Pb, and Cd from contaminated harbor sediment. Extraction experiments were made prior to EDR, and the metal desorption was pH dependent but not liquid-to-solid ratio (L/S) dependent. The desorption order was Cd $GRT Zn $GRT Pb $GRT Cu...... for the removal of Cu, Zn, and Pb, probably due to oxidation of the sediments during stirring. Contrary, Cd removal was lower in the wet sediment as compared to the air-dried. The heavy metal removal was influenced by higher current strengths and varying L/S ratios. The highest removal obtained...... was in an experiment with dry sediment (L/S 8) and a 70 mA applied current that lasted 14 days. These experimental conditions were thereafter used to remediate more strongly contaminated sediments. Regardless of the initial heavy metal concentrations in the sediments, 67-87% Cu, 79-98% Cd, 90-97% Zn, and 91-96% Pb...

  12. A comparative study on Pb(II), Cd(II), Cu(II)

    African Journals Online (AJOL)

    user

    Co(II) while it decreased in the presence of Cu(II) in the studied range of concentration variation. Maximum Pb(II) .... size variation in the range of 2 to 10 nm. ...... Zinc-bromine Battery, Lead-acid and Lithium Batteries, Arsenic Remediation from.

  13. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    Science.gov (United States)

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pHconcrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization.

  14. Distribution of various forms of Cd, Pb and Cu in the Wadge Bank region (Arabian Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    George, M.D.

    Labile, nonlabile and particulate forms of Cd,Pb and Cu were determined in 29 water samples collected from a depth of 5 m, from the Wadge Bank area. Labile Cd varied from 0.1 to 0.2 mu g.l-1 while nonlabile fraction was in the range 0.1 to 0.3 mu gl...

  15. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, A.J.; Balistrieri, L.

    1999-11-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.

  16. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Science.gov (United States)

    Sirohi, Anshu; Singh, Chandan K.; Thakur, Gohil S.; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Haque, Zeba; Gupta, L. C.; Kabir, Mukul; Ganguli, Ashok K.; Sheet, Goutam

    2016-06-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (˜47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  17. Differential tolerance of Agrostis tenuis populations growing at two mine soils to Cu, Zn, and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Karataglis, S.S.

    1980-01-01

    The Cu, Zn and Pb tolerance of Agrostis tenuis Sibth. populations found in the area of two mines in England as well as in uncontaminated areas were studied by determining the effect of these metals on the rooting of tillers. The populations proved tolerant to the particular metals present in high quantities in the soil of their original habitats as compared to the populations collected from uncontaminated soil. The populations of the Trelogan mine were tolerant only to Zn and not to Cu and Pb. On the contrary, the populations in the mine of Parys Mountain were highly tolerant to all these metals. A linear correlation in the index of tolerance between Zn and Pb in both mines was found suggesting the possibility of a physiological association of the tolerance mechanisms to these two elements.

  18. ASSESSMENT OF Pb, Cd, Cu AND Zn AVAILABILITY FOR PLANTS IN BAIA MARE MINING REGION

    Directory of Open Access Journals (Sweden)

    LEVEI ERIKA-ANDREA

    2010-12-01

    Full Text Available In order to evaluate the mobility of heavy metals in soil from Baia Mare mining region, the total, water and DTPA extractable metal contents were determined. The results showed that despite the high total metals contents and the high percentages of plant available metals only a low percent was water soluble, indicating a potential accumulation of metals in trophic chain and a potential risk for public health. Among the investigated metals, the plant available Pb and Cd species are the most severe contaminants. Significant correlations between total and DTPA extractable metals were found for Cu (r=0.510 and Pb (0.418, and also an affinity between total and water extractable metals were identified for Cu (0.366, Pb (0.502 and Zn (0.597.

  19. CuFe2 O4 -CuO Nanocomposites as Promising Materials for Solar Hydrogen Generation

    Science.gov (United States)

    Razavi, Mehdi; Amrollahi, Pouya; Yazdimamaghani, Mostafa; Tayebi, Lobat; Vashaee, Daryoosh

    2014-03-01

    Currently, hydrogen is produced, almost exclusively, by waterelectrolysis. This method can take advantage of economies of scale and most established techniques of producing hydrogen. We developed a nanocomposite material system composed of CuFe2O4 and CuO semiconductor particles to produce hydrogen by electrolysis of water. The nanocomposite powder was prepared using the sol-gel method. Techniques of X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscopy and UV diffuse reflectance analysis were employed to characterize the synthesized products.The results confirmed the formation of CuFe2O4-CuO nanocomposite powder. The hydrogen evolution was successfully observed over the new hetero-system of CuFe2O4-CuO. The electrolysis activity depended on the concentration of CuO in the system. In order to enhance the hydrogen production, we further optimized the composite material versus the concentration of the compounds.

  20. Ultrafast demagnetization, spin-dependent Seebeck effect, and thermal spin transfer torque in Pt/TbFe/Cu and Pt/TbFe/Cu/Fe thin films

    Science.gov (United States)

    Kimling, Johannes; Hebler, Birgit; Kimling, Judith; Albrecht, Manfred; Cahill, David G.

    We investigate diffusive spin currents in Pt(20nm)/TbFe(10nm)/Cu(100nm) and Pt(20 nm)/TbFe(10nm)/ Cu(100nm)/Fe(3nm) stacks using time-resolved magneto-optic Kerr effect (TRMOKE) and time-domain thermoreflectance measurements. Our experiments are based on two hypothesis: (1) fast changes of magnetization due to laser excitation are transferred into spin accumulation, e.g., via electron-magnon scattering; the generated spin accumulation drives a diffusive spin current into adjacent normal metal layers; (2) electronic thermal transport through the ferromagnetic layer injects a spin current into adjacent normal metal layers, based on the spin-dependent Seebeck effect. We excite the Pt layer with ps-laser pulses. Resulting diffusive spin currents generate nonequilibrium magnetization in the Cu layer (sample I) and induce a precession of the magnetization of the Fe layer via spin transfer torque (sample II). Both responses are probed using TRMOKE. Prior experiments used [Co(0.2nm)/Pt(0.4nm)]x5/Co(0.2nm) instead of TbFe. The ferrimagnetic TbFe layer with introduces two major modifications: (1) slow demagnetization behavior, and (2) large thermal resistance. Hence, thermal spin transfer torques can be observed on significantly longer time scales. Financial support by the German Research Foundation under DFG-Grant No. KI 1893/1-1 and DFG-Grant No. AL 618/21-1 are kindly acknowledged.

  1. Mid-twentieth century increases in anthropogenic Pb, Cd and Cu in central Asia set in hemispheric perspective using Tien Shan ice core

    Science.gov (United States)

    Grigholm, B.; Mayewski, P. A.; Aizen, V.; Kreutz, K.; Wake, C. P.; Aizen, E.; Kang, S.; Maasch, K. A.; Handley, M. J.; Sneed, S. B.

    2016-04-01

    High-resolution major and trace element (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Pb, S, Ti, and V) ice core records from Inilchek glacier (5120 m above sea level) on the northwestern margin of the Tibetan Plateau provide the first multi-decadal ice core record spanning the period 1908-1995 AD in central Tien Shan. The trace element records reveal pronounced temporal baseline trends and concentration maxima characteristic of post-1950 anthropogenic emissions. Examination of Pb, Cd and Cu concentrations, along with non-crustal calculation estimates (i.e. excess (ex) and enrichment factor (EF)), reveal that discernable anthropogenic inputs began during the 1950s and rapidly increased to the late-1970s and early 1980s, by factors up to of 5, 6 and 3, respectively, relative to a 1910-1950 means. Pb, Cd and Cu concentrations between the 1950s-1980s are reflective of large-scale Soviet industrial and agricultural development, including the growth of production and/or consumption of the non-ferrous metals, coal and phosphate fertilizers. NOAA HYSPLIT back-trajectory frequency analysis suggests pollutant sources originating primarily from southern Kazakhstan (e.g. Shymkent and Balkhash) and the Fergana Valley (located in Kazakhstan, Uzbekistan and Kyrgyzstan). Inilchek ice core Pb, Cd and Cu reveals declines during the 1980s concurrent with Soviet economic declines, however, due to the rapid industrial and agricultural growth of western China, Pb, Cd and Cu trends increase during the 1990s reflecting a transition from primarily central Asian sources to emission sources from western China (e.g. Xinjiang Province).

  2. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil.

    Science.gov (United States)

    Moon, Deok Hyun; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Chang, Yoon-Young; Hyun, Seunghun; Ok, Yong Sik; Park, Jeong-Hun

    2016-02-01

    A novel treatment mix was designed for the simultaneous immobilization of As, Cu, and Pb in contaminated soils using natural (waste oyster shells (WOS)) and industrial (coal mine drainage sludge (CMDS)) waste materials. The treatments were conducted using the standard U.S. sieve size no. 20 (0.85 mm) calcined oyster shells (COS) and CMDS materials with a curing time of 1 and 28 days. The As immobilization treatments were evaluated using the 1-N HCl extraction fluid, whereas the Pb and Cu immobilization treatments were evaluated using the 0.1-N HCl extraction fluid based on the Korean leaching standards. The treatment results showed that the immobilization of As, Cu, and Pb was best achieved using a combination mix of 10 wt% COS and 10 wt% CMDS. This treatment mix was highly effective leading to superior leachability reductions for all three target contaminants (>93 % for As and >99 % for Cu and Pb) for a curing period of 28 days. The X-ray absorption near-edge structure (XANES) results showed that As was present in the form of As(V) in the control sample and that no changes in As speciation were observed following the COS-CMDS treatments. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) sample treated with 10 wt% COS and 10 wt% CMDS indicated that As immobilization may be associated with the formation of Ca-As and Fe-As precipitates while Pb and Cu immobilization was most probably linked to calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs).

  3. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls

    Science.gov (United States)

    Alizadeh, Anahita; Mehrpour, Omid; Nikkhah, Karim; Bayat, Golnaz; Espandani, Mahsa; Golzari, Alireza; Jarahi, Lida; Foroughipour, Mohsen

    2016-01-01

    Introduction Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. Methods In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. Results As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). Conclusion All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range. PMID:27757186

  4. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Ke-Chuan [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Wang, Y. K., E-mail: kant@ntnu.edu.tw [Center for General Education and Department of Physics, National Taiwan Normal University, Taipei 106, Taiwan (China)

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  5. Physical properties of the superconducting spin-valve Fe/Cu/Fe/In heterostructure

    Science.gov (United States)

    Leksin, P. V.; Garif'yanov, N. N.; Garifullin, I. A.; Schumann, J.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2012-01-01

    We report on structural, magnetic, and superconducting properties of the spin-valve multilayer system CoOx/Fe1/Cu/Fe2/In. For most of the thicknesses of the second iron layer dFe2 up to 2 nm, we have observed a full spin-valve effect for the superconducting current, i.e., a complete transition from the normal to the superconducting state by changing the mutual orientation of the magnetizations of the Fe1 and Fe2 layers. For dFe2<1 nm, the superconducting transition temperature TcP for the parallel orientation of magnetizations of the Fe1 and Fe2 layers is smaller than that for the antiparallel orientation TcAP, which corresponds to the direct spin-valve effect. For dFe2⩾1 nm, we have found the inverse spin-valve effect with ΔTc=TcAP-TcP<0. Further, in samples with a fixed thickness of the In layer, we have observed an oscillating dependence of its superconducting transition temperature Tc on dFe2. The analysis of the Tc(dFe2) dependence using the theory of the superconducting-ferromagnetic proximity effect has enabled determination of all microscopic parameters of the studied system. With these parameters, a satisfactory description of the sign-changing oscillating behavior of the spin-valve effect ΔTc(dFe2) has been obtained using a recent theory by Fominov [Ya. V. Fominov , Pis'ma Zh. Eksp. Teor. Fiz. 91, 329 (2010) [JETP Lett.JTPLA20021-364010.1134/S002136401006010X 91, 308 (2010)

  6. A route for recycling Nd from Nd-Fe-B magnets using Cu melts

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Martina; Gebert, Annett, E-mail: a.gebert@ifw-dresden.de; Stoica, Mihai; Uhlemann, Margitta; Löser, Wolfgang

    2015-10-25

    Phase evolutions in Nd-Fe-B magnet/Cu systems have been explored with regard to Nd recycling. It was demonstrated that large scale phase separation into a ferromagnetic Fe(B)-rich ingot core with α-Fe main phase and a non-magnetic (Cu,Nd)-rich ingot rim takes place upon arc melting with Cu fractions ≥ 21.5 wt.-%. The re-solidification of the Nd{sub 2}Fe{sub 14}B magnet main phase is suppressed. The rim consists of the Cu{sub 2}Nd main phase and CuNd/Cu{sub 4}Nd minority phases in which Al traces from the magnetic material are gathered. Induction melting of such Nd-Fe-B/Cu mixtures can support the separation of these phase regions with very sharp boundaries. Main features of liquid phase separation and microstructure evolution have been interpreted on the basis of Nd-Fe-Cu phase diagram data. The key advantage with respect to Nd recycling from Nd-Fe-B permanent magnet scrap is the substantial accumulation of Nd in the (Cu,Nd)-rich region of the phase separated solidified specimen, which can be easily detached from the Fe-rich part by mechanical-magnetic treatments. Such portions contained up to ∼44 wt.-% Nd (25 at.-%) in first lab-scale experiments. Nd recovery from the (Cu,Nd)-rich fractions is possible by exploiting the large chemical property differences between the reactive rare earths elements and Cu. - Highlights: • phase evolution analysis in Nd-Fe-B magnet/Cu systems with regard to Nd recycling. • Cu ≥ 21 wt.-%, large scale phase separation- Fe(B)-rich ingot core, (Cu,Nd)-rich rim. • high Nd content (∼44 wt.-%) of (Cu,Nd)-rich region, mechanical-magnetic treatments.

  7. Experimental Phase Equilibria Studies of the Pb-Fe-O System in Air, in Equilibrium with Metallic Lead and at Intermediate Oxygen Potentials

    Science.gov (United States)

    Shevchenko, M.; Jak, E.

    2017-08-01

    The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.

  8. Thermal Stability of CoFe/Cu/CoFe/IrMn Top Spin Valve

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guang-Hong; WANG Yin-Gang; QI Xian-Jin

    2009-01-01

    We present a study of thermal stability of the top spin valve with a structure of seed Ta (5nm)/Co75Fe25 (5nm)/Cu (2.5nm)/Co75Fe25n (5nm)/Ir20 Mn80 (12nm)/cap Ta (8nm) deposited at room temperature by magnetron sputtering. A vibrating sample magnetometer fixed with a heater was used to record the magnetic hysteresis loops at variational temperatures and x-ray diffraction was performed to characterize the structure of the multilayer.The exchange field Hex and the coercivity of the pinned CoFe layer Hcp decrease monotonically with increasing temperature.The coercivity of the free CoFe layer Hcf in the spin valve shows a maximum at 498K.The temperature dependences of Hex,Hcp and Hcf have also been discussed.

  9. The multistage genesis of the giant Dongshengmiao Zn-Pb-Cu deposit in western Inner Mongolia, China:Syngenetic stratabound mineralization and metamorphic remobilization

    Institute of Scientific and Technical Information of China (English)

    Richen Zhong; Wenbo Li

    2016-01-01

    The genesis of the giant Dongshengmiao in the northern margin of the North China Block has been debated since its discovery in the 1950s, because it shows geological and geochemical characteristics with both syngenetic and epigenetic signatures. It has geological settings and sulfur and lead isotopic com-positions that are similar with typical SEDEX (sedimentary exhalative) deposit, while the Zn-Pb-Cu mineralization was controlled by shear deformation and metamorphism, showing similarities with orogenic-type deposits. In this contribution, both the syngenetic and epigenetic features of the Dong-shengmiao are envisaged, and accounted for in the context of a genetic model with two metallogenic periods. Massive pyrite at the Dongshengmiao was mostly recrystallized during metamorphism, but fine-grained texture was locally preserved, indicating its syngenetic origin. On the contrary, all the Zn-Pb-Cu ores observed in this study show characteristics of epigenetic hydrothermal mineralization that controlled by metamorphism and accompanying shear deformation. The sulfur and lead isotopic com-positions of sphalerite and galena indicate that they were in situ remobilized from a syngenetic strata-bound source, and the oxygen and hydrogen isotopic ratios of ore-fluid indicate that the large-scale remobilization was assisted by metamorphic fluid. The thermodynamic modeling indicates that the ore-fluid during remobilization has a great potential of transporting Cu. This may account for the abnormally enriched Cu in the remobilized SEDEX deposit. The metamorphic fluid might strip Cu from the fluid source during devolatilization, and overprint it on the Zn-Pb orebodies during remobilization. A secondary flow-through modeling reveals that Zn- and Cu-sulfides would be preferentially redistributed in Fe-rich car-bonates during remobilization, as a result of fluid-rock interaction. Conclusively, a multistage genetic model is proposed. During the development of the Proterozoic rift

  10. [Impact of polymetallic mine (Zn, Pb, Cu) residues on surface water, sediments and soils at the vicinity (Marrakech, Morocco)].

    Science.gov (United States)

    El Adnani, M; Rodriguez-Maroto, J M; Sbai, M L; Loukili Idrissi, L; Nejmeddine, A

    2007-09-01

    Metal sulphide tailings present a potential risk for the environment because of their natural oxidability which leads to the production of acid mine drainage. The prospected site close to Marrakech includes zinc, lead and copper sulphide deposits. This site is located in an agricultural area near the Tensift River which is used for irrigation. In addition to the tailing leachates, underground mine waters are also discharged into the river. This represents a potential risk for the environment and human health. The aim of this study was to assess the tailings impact on surface water, sediments and soil qualities. Chemical analysis of surface water and sediments collected downstream of the mine revealed that, water and sediments present high concentrations of major ions and heavy metals. The analysis also revealed spatial as well as temporal changes in the chemical properties of the studied water and sediments. These changes are attributed to the rising phenomena. The soil near the mine presents high content of sulphate. Its Zn, Pb, Cu and Fe contents are respectively 38, 15, 11 and 1.6 times higher than non contaminated soils located far away from the site. The soil irrigated with underground mine waters shows concentrations of SO4(2-), Cu, Zn, Fe, Cd and Pb which are respectively 4, 10, 28, 2, 9 and 12 times higher than soils which are not irrigated with this mine water. This study also showed that there has been a change in the physicochemical characteristics of water and sediments in the sampling points downstream of the mine before its closure and after its activity renewal.

  11. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu nanowires

    Indian Academy of Sciences (India)

    R S Liu; S C Chang; I Baginskiy; S F Hu; C Y Huang

    2006-07-01

    Highly ordered composite nanowires with multilayer Ni/Cu and NiFe/Cu have been fabricated by pulsed electrodeposition into nanoporous alumina membrane. The diameter of wires can be easily varied by pore size of alumina, ranging from 30 to 100 nm. The applied potential and the duration of each potential square pulse determine the thickness of the metal layers. The nanowires have been characterized by transmission electron microscopy (TEM), magnetic force microscopy (MFM), and vibrating sample magnetometer (VSM) measurements. The MFM images indicate that every ferromagnetic layer separated by Cu layer was present as single isolated domain-like magnet. This technique has potential use in the measurement and application of magnetic nanodevices.

  12. Induced effects of Cu underlayer on (111) orientation of Fe50 Mn50 thin films

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; WANG Feng-ping; LIU Huan-ping; WU Ping; QIU Hong; PAN Li-qing

    2005-01-01

    Effects of Cu underlayer on the structure of Fe50 Mn50 films were studied. Samples with a structure of Fe50 Mn50 (200 nm)/Cu(tCu) were prepared by magnetron sputtering on thermally oxidized silicon substrates at room temperature. The thickness of Cu underlayer varied from 0 to 60 nm in the intervals of 10 nm. High-vacuum annealing treatments, at different temperatures of 200, 300 and 400 ℃ for 1 h, respectively, on the Fe50 Mn50 (200 nm)/Cu(20 nm) thin films were performed. The surface morphologies and textures of the samples were measured by field emission scan electronic microscope (FE-SEM) and X-ray diffraction(XRD). Energy dispersive X-ray spectroscopy (EDX) and Auger electron spectroscopy(AES) were used to analyze the compositional distribution. It is found that Cu underlayer has an obvious induce effect on (111) orientation of Fe50 Mn50 thin films. The induce effects of Cu on (111) orientation of Fe50 Mn50 changed with the increase of Cu layer thickness and the best effect was obtained at the Cu layer thickness of 20 nm. High-vacuum annealing treatments cause the migration of Mn atoms towards surface of the film and interface between Cu layer and substrate. With the increasing annealing temperature, migration of Mn atoms is more obvious, which leads to a Fe-riched Fe-Mn alloy film.

  13. Magnetization reversal of Fe ultrathin film on Cu (100)

    Institute of Scientific and Technical Information of China (English)

    He Wei; Zhan Qing-Feng; Wang De-Yong; Chen Li-Jun; Cheng Zhao-Hua

    2008-01-01

    The magnetization reversal of Fe/Cu(100) ultrathin films grown at room temperature is investigated by using an in situ magneto-optical Kerr effect polarimcter with a magnet that can rotate in a plane of incidence.There occur spin reorientation transitions from out-of-plane to in-plane magnetizations in 8 and 12 monolayers (ML) thick iron films.The coercive fields axe observed to be proportional to the reciprocal of the cosine with respect to the easy axis,suggesting that the domain-wall displacement plays a main role in the magnetization reversal process.

  14. The Fe-Cu system: A thermodynamic evaluation

    Science.gov (United States)

    Chen, Qing; Jin, Zhanpeng

    1995-02-01

    Thermochemical and phase diagram data in the Fe-Cu system have been critically evaluated by using phenomenological models for the Gibbs energy of various phases. A set of thermodynamic parameters more consistent with most of the selected experimental data than previous assess-ments has been obtained by a computerized least-squares method. Stable and metastable phase equilibria, T 0 curves, and thermodynamic properties are calculated with the optimized param-eters. The calculated liquid/face-centered cubic (fcc) T 0 curve and metastable liquid spinodal seem to permit an accurate prediction of maximum solid solubility obtained upon melt quenching in this system.

  15. Compressibility of nanostructured Fe-Cu materials prepared by mechanical milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J.S.; Gerward, Leif

    1999-01-01

    The compressibility of nanostructured Fe-Cu materials prepared by mechanical milling has been investigated by in-situ high-pressure x-ray diffraction using synchrotron radiation. It is found that the bulk modulus of both fcc-Cu and bcc-Fe phases decreases with decreasing grain sizes. The unstable...... ferromagnetic fcc-FeCu solid solution prepared by mechanical alloying has a bulk modulus of about 85 GPa, which is much smaller than the corresponding values for bulk fcc-Cu and bcc-Fe....

  16. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres

    Science.gov (United States)

    Ke, Fei; Jiang, Jing; Li, Yizhi; Liang, Jing; Wan, Xiaochun; Ko, Sanghoon

    2017-08-01

    In this work, we report a novel type of thiol-functionalized magnetic core-shell metal-organic framework (MOF) microspheres that can be potentially used for selective removal of Hg2+ and Pb2+ in the presence of other background ions from wastewater. The monodisperse Fe3O4@Cu3(btc)2 core-shell magnetic microspheres have been fabricated by a versatile step-by-step assembly strategy. Further, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres were successfully synthesized by utilizing a facile postsynthetic strategy. Significantly, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres exhibit remarkably selective adsorption affinity for Hg2+ (Kd = 5.98 × 104 mL g-1) and Pb2+ (Kd = 1.23 × 104 mL g-1), while a weaker binding affinity occurred for the other background ions such as Ni2+, Na+, Mg2+, Ca2+, Zn2+ and Cd2+. The adsorption kinetics follow the pseudo-second-order rate equation and with an almost complete removal of Hg2+ and Pb2+ from the mixed heavy metal ions wastewater (0.5 mM) within 120 min. Moreover, this adsorbent can be easily recycled because of the presence of the magnetic Fe3O4 core. This work provides a promising functionalized porous magnetic Fe3O4@MOF-based adsorbent with easy recycling property for the selective removal of heavy metal ions from wastewater.

  17. Assessment of the Bioavailability of Cu, Pb, and Zn through Petunia axillaris in Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Lydia Bondareva

    2014-01-01

    Full Text Available Heavy metals are potentially toxic to human life and the environment. Metal toxicity depends on chemical associations in soils. For this reason, determining the chemical form of a metal in soils is important to evaluate its mobility and the potential accumulation. The aim of this examination is to evaluate the accumulation potential of Petunia x hybrida as a flower crop for three metals, namely, copper (Cu, lead (Pb, and nickel (Ni. Trace metals (Zn, Cu, and Pb in the soils were partitioned by a sequential extraction procedure into H2O extractable (F1, 1 M CH3COONa extractable (F2. Chemical fractionation showed that F1 and F2 fraction of the metals were near 1% and residue was the dominant form for Zn, Cu, and Pb in all samples. Using fluorescence method allowed us to estimate condition of the plants by adding metals. As result of plant and soil analysis, we can conclude that Petunia has Cu, Zn, and Ni tolerance and accumulation. Therefore, Petunia has the potential to serve as a model species for developing herbaceous, ornamental plants for phytoremediation.

  18. Initial biochar properties related to the removal of As, Se, Pb, Cd, Cu, Ni, and Zn from an acidic suspension.

    Science.gov (United States)

    Clemente, Joyce S; Beauchemin, Suzanne; MacKinnon, Ted; Martin, Joseph; Johnston, Cliff T; Joern, Brad

    2017-03-01

    This study tests the influence of a diverse set of biochar properties on As(V), Se(IV), Cd(II), Cu(II), Ni(II), Pb(II), or Zn(II) removal from solution at pH 4.5. Six commercial biochars produced using different feedstock and pyrolysis conditions were extensively characterized using physical, chemical, and spectroscopic techniques, and their properties were correlated to anion and cation removal using multiple linear regression. H/total organic C (TOC) ratio and volatile matter were positively correlated to cation removal from solution, which indicate interactions between metals and non-aromatic C. Defining the correlation of ion removal with specific OC functional groups was hindered by the inherent limitations of the spectroscopic techniques, which was exacerbated by the heterogeneity of the biochars. Ash was negatively correlated to Se(IV) and positively correlated to Cd(II), Cu(II), and Ni(II) removal from solution. Interference from soluble P in biochars may partly explain the low Se(IV) removal from solution; and Ca-, P-, and Fe- containing compounds likely sorbed or precipitated Pb(II), Cd(II), Cu(II), Ni(II) and Zn(II). Furthermore, Ca-oxalate identified using X-ray diffraction in willow, may be responsible for willow's increased ability to remove Cd(II), Ni(II), and Zn(II) compared to the other 5 biochars. It was clear that both OC and inorganic biochar components influenced metal(loid) and Se(IV) removal from solution. The non-aromatic and volatile OC correlated to removal from solution may be readily available for microbial degradation, while Mg, N, P, and S are required for biological growth. Biological metabolism and uptake of these compounds may inhibit or destabilize their interaction with contaminants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Self-organization of Pb thin films on Cu(111) induced by quantum size effects

    Science.gov (United States)

    Dil, J. H.; Kim, J. W.; Gokhale, S.; Tallarida, M.; Horn, K.

    2004-07-01

    Electron confinement in thin films of Pb on Cu(111) leads to the formation of quantum well states, formed out of the upper valence band of Pb. Their evolution as a function of film thickness is characterized in angle-resolved photoemission and can be interpreted in terms of a straightforward quantum well model. This permits an identification of film growth mode at low temperatures. Bringing the films into thermal equilibrium by annealing induces strong changes in the spectra. Their interpretation demonstrates that specific “magic” layers are preferred because of total energy minimization induced by the arrangement of quantum well states with respect to the Fermi level.

  20. FINITE ELEMENT ANALYSIS ABOUT STRESS AND STRAIN OF SURFACE PEELING IN Cu-Fe-P SHEET

    Institute of Scientific and Technical Information of China (English)

    Su Juanhua; Li Hejun; Dong Qiming; Liu Ping; Kang Buxi

    2005-01-01

    The microstructure of surface peeling in finish rolled Cu-0.1Fe-0.03P sheet is analyzed by scanning electron microscope and energy dispersive spectroscope. Fe-rich areas of different contents are observed in the matrix. The stress distributions and strain characteristics at the interface between Cu matrix and Fe particle are studied by elastic-plastic finite element plane strain model. Larger Fe particles and higher deforming extent of finish rolling are attributed to the intense stress gradient and significant non-homogeneity equivalent strain at the interface and accelerate surface peeling of Cu-0.1Fe-0.03P lead frame sheet.

  1. Mechanisms of wear in single- and two-phase materials: Final report. [Cu, Pb, Al/sub 2/O/sub 3/, Pb borosilicate glass, SiC (Pb-Cu), (Pb-Al/sub 2/O/sub 3/), (glass-Cu), (glass-Al/sub 2/O/sub 3/)

    Energy Technology Data Exchange (ETDEWEB)

    Macmillan, N.H.

    1987-11-01

    A comparative study has been made of the rolling-tumbling-sliding wear and solid particle erosion behavior of four single-phase materials (Cu, Pb, Al/sub 2/O/sub 3/, and a lead borosilicate glass and of series of ductile-ductile (Pb-Cu), ductile-brittle (Pb-Al/sub 2/O/sub 3/), brittle-ductile (glass-Cu), and brittle-brittle (glass-Al/sub 2/O/sub 3/) composites prepared from them. The same irregularly shaped 600 ..mu..m WC-8 wt.% Co abrasive particles were used throughout this work. Additional erosion measurements have been made on Danto Koruntz, Abresist, and sintered ..cap alpha..-SiC, using similar particles. Some subtle influences of erosive particle wear are documented for the first time, and the inadequacy of the currently available theoretical models to describe the influence of microstructure on erosion is exposed. 77 refs., 154 figs.

  2. Uptake and accumulation of potentially toxic metals (Zn, Cu and Pb) in soils and plants of Durgapur industrial belt.

    Science.gov (United States)

    Kisku, Ganesh Chandra; Pandey, Poonam; Negi, Mahendra Pratap Singh; Misra, Virendra

    2011-11-01

    Uptake and accumulation of metals in crops may cause possible health risks through food chain. A field survey was conducted to investigate the accumulation of potentially toxic metals contamination in soil and plants irrigated with complexed industrial effluents. Concentration of Zn, Cu and Pb was 205-255,101-130,118-177 microg g(-1) in rhizosphere soils and 116-223, 57-102 and 63-95 microg g(-1) d. wt. in root and 95-186, 44-75 and 27-58 microg g(-1) d. wt. in shoot, respectively. The trend in Cu and Pb was in the order: soil > root > shoot > seed while in Zn it was soil > root > seed > shoot. Roots accumulated a larger fraction of soil Cu (70%) > Zn (67%) > Pb (54%). Bioaccumulation coefficient of soil to root ranged from 51-98 for Zn, 54-85 for Cu and 43-63 for Pb.Analysis of variance showed marginal change in bioaccumulation coefficient, noticed between plants (p > 0.05) while it varied significantly (p shoot > seed/fruit) while decreased between metals from Zn to Pb (Zn > Cu > Pb). Out of the three, two Cu and Pb accumulated to phyotoxic levels while Zn was within threshold limit of phytotoxicity.

  3. Magnetic Properties and Nanostructures of FePtCu:C Thin Films with FePt Underlayers

    Institute of Scientific and Technical Information of China (English)

    JIN Ling-Fang; YAN Ming-Lang

    2007-01-01

    Magnetic properties and nanostructures of FePtCu:C thin films with FePt underlayers (ULs) are studied. The effect of FePt ULs on the orientation and magnetic properties of the thin films are investigated by adjusting FePt UL thicknesses from 2nm to 14nm. X-ray diffraction (XRD) scans reveal that the orientation of the films is dependent on FePt UL thickness. For a 5-nm FePtCu:C nanocomposite thin film with a 2-nm FePt UL, the coercivity is 6.5 KOe, the correlation length is 59nm, the desired face-centred-tetragonal (fct) ordered structure [L10 phase] is formed and the c axis normal to the film plane [(001) texture] is obtained. These results indicate that the better orientation and magnetic properties of the films can be tuned by decreasing the thickness of the FePt UL.

  4. Two Liquid Phases Separation of Fe-Cu-B and Fe-Cu-Ag-B systems at 1873 and 1523 K

    Science.gov (United States)

    Ono-Nakazato, Hideki; Yamaguchi, Katsuhiro; Agawa, Shingo; Taguchi, Kenji; Usui, Tateo

    In recycling of steel scraps, the accumulation of tramp element in steel has been one of serious problems. Because copper in steel causes hot-shortness, the copper content of steel scraps is strictly adjusted under the upper limiting value in steelmaking process. In addition, recycling of steel scrap is necessary for energy savings and to realize a recycling-oriented society. In the present study,it was found that addition of boron could separate a single liquid in Fe-Cu system into Fe-rich and Cu-rich phases. Equilibrium experiments in Fe-Cu-B ternary system at 1873 and 1523 K showed that the copper content in Fe-rich phase decreased to 4.3 mass%. Subsequently, equilibrium experiments in Fe-Cu-Ag-B system were carried out and the copper was observed to be distributed between Fe-B and Ag phases. The distribution ratio of [mass%Cu](in Ag) / [mass%Cu](in Fe) was about 6 at 1873 K, regardless of copper content. It was found that the copper content of iron could be decreased by using silver as the solvent.

  5. Stress impedance effect of FeCoSiB/Cu/FeCoSiB sandwich layers on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Peng, B., E-mail: bpeng@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, W.L.; Liu, J.D.; Zhang, W.X. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2011-06-15

    FeCoSiB/Cu/FeCoSiB sandwich layers were deposited on flexible substrate to develop flexible stress/strain sensors. The influence of stress on the impedance of the multilayers is reported. The results show that the variation of the impedance increases with the increase in deflection of the free end of the cantilever. A relative change in impedance of 6.4% is obtained in the FeCoSiB(1.5 {mu}m)/Cu(0.25 {mu}m)/FeCoSiB(1.5 {mu}m) sandwich layers at 1 MHz with deflection of 2 mm. The stress impedance effects are sensitive to the frequency of the current and the thickness of both FeCoSiB and Cu layers. The stress impedance effect increases with the increase in the thickness of FeCoSiB or Cu layers. The stress impedance effect increases slightly with the increase in frequency and decreases with the further increase in frequency, which can be understood by the stress and frequency-dependent permeability of magnetic films. - Research highlights: We deposited FeCoSiB/Cu/FeCoSiB multilayer on flexible substrate. We studied the stress impedance effect of FeCoSiB/Cu/FeCoSiB multilayer. Stress impedance effect increases with thickness of both FeCoSiB and Cu layer. Stress impedance effect is dependent on current frequency. Results are understood using stress and frequency-dependent permeability.

  6. A Study of Occurrences of Ag in Pb-Zn-Cu Ore Deposits in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A systematic study of occurrences of silver in 156 Pb-Zn-Cu ore deposits indicates that silver mainly occurs in nonferrous metal ore deposits in forms of association and paragenesis. It occurs mainly as independent minerals in nature and occasionally as ion adsorption, isomorphous or amorphous silver minerals. Nearly 190 silver minerals have been discovered in China. Their shapes, constituents, textures, grain sizes, embedded types, distribution patterns, mineral assemblages and metallogenic series suggest that these characteristics are closely related to geneses of deposits and dependent of ore-forming conditions. Pb, Zn and Cu sulphides are the main carrier minerals of silver. The partition of silver in ore is constrained by the mineralization intensity, grain size and embedded form of silver minerals and mineral assemblages.

  7. Monte-Carlo simulation of {Pb}/{Cu (100) } surface superstructures

    Science.gov (United States)

    Tan, S.; Ghazali, A.; Lévy, J.-C. S.

    1997-04-01

    Three surface superstructures of {Pb}/{Cu (100) } at low lead coverage are well known experimentally: c(4 × 4),c(2 × 2) and c(5√2×√2)R45°. The present study consists in (i) using generalized Lennard-Jones pair potentials for lead-lead and copper-copper interactions fitted on structural and elastic bulk properties, (ii) deriving an effective potential for lead-copper and (iii) developing a Monte-Carlo extensive relaxation of superstructure models. The MC simulations reveal the stability of these approximate superstructures and yield structural details that are all observed in STM and LEED experiments: the adlayer corrugation, surface alloying, structural modulations as well as PbPb and PbCu spacings. The simulated results on structures and on melting temperatures are in close agreement with experimental data.

  8. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  9. Investigation of Pb, Cd, Cu and Mg Concentrations in Groundwater Resources of Razan Plain

    OpenAIRE

    S. Sobhan Ardakani; M. Maanijou; Asadi, H.

    2015-01-01

    Introduction & Objective: Iran is located in the dry and semi dry regions, thus almost 90% of the required fresh water is exploited from groundwater resources. Due to the increasing pol-lution of water resources, the purpose of this study was evaluation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain and preparing the zoning map using GIS. Materials & Methods: Groundwater samples were collected from 20 selected stations during two seasons in 2012. The samples were ...

  10. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta).

    Science.gov (United States)

    Sinhal, V K; Srivastava, Alok; Singh, V P

    2010-05-01

    Phytoextraction is an emerging cost-effective solution for remediation of contaminated soils which involves the removal of toxins, especially heavy metals and metalloids, by the roots of the plants with subsequent transport to aerial plant organs. The aim of the present investigation is to study the effects of EDTA and citric acid on accumulation potential of marigold (Tagetes erecta) to Zn, Cu, Pb, and Cd and also to evaluate the impacts of these chelators (EDTA and citric acid) in combination with all the four heavy metals on the growth of marigold. The plants were grown in pots and treated with Zn (7.3 mg l(-1)), Cu (7.5 mg I(-1)), Pb (3.7 mg l(-1)) and Cd (0.2 mg l(-1)) alone and in combination with different doses of EDTA i.e., 10, 20 and 30 mg l(-1). All the three doses of EDTA i.e., 10, 20 and 30 mg l(-1) significantly increased the accumulation of Zn, Cu, Pb and Cd by roots, stems and leaves as compared to control treatments. The 30 mg l(-1) concentration of citric acid showed reduced accumulation of these metals by root, stem and leaves as compared to lower doses i.e., 10 and 20 mg l(-1). Among the four heavy metals, Zn accumulated in the great amount (526.34 mg kg(-1) DW) followed by Cu (443.14 mg kg(-1) DW), Pb (393.16 mg kg(-1) DW) and Cd (333.62 mg kg(-1) DW) in leaves with 30 mg l(-1) EDTA treatment. The highest concentration of EDTA and citric acid (30 mg l(-1)) caused significant reduction in growth of marigold in terms of plant height, fresh weight of plant, total chlorophyll, carbohydrate content and protein content. Thus EDTA and citric acid efficiently increased the phytoextractability of marigold which can be used to remediate the soil contaminated with these metals.

  11. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [Agricultural College, Henan University of Science and Technology, 70 Tianjin Road, Luoyang, Henan Province 471003 (China) and Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)]. E-mail: wfy1975@163.com; Lin Xiangui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China); Yin Rui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)

    2007-05-15

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction. - Co-application of microbial inocula and chitosan enhanced heavy metal phytoextraction by E. splendens.

  12. Adsorption of Cu2+ and Pb2+ ion on dolomite powder.

    Science.gov (United States)

    Pehlivan, Erol; Ozkan, Ali Müjdat; Dinç, Salih; Parlayici, Serife

    2009-08-15

    Natural Turkish dolomite was shown to be effective for removing Cu(2+) and Pb(2+) from aqueous solution. Selected information on pH, dose required, initial metal concentration, adsorption capacity of the raw dolomite powder was evaluated for its efficiency in adsorbing metal ions. Dolomite exhibited good Cu(2+) and Pb(2+) removal levels at all initial metal amount tested (0.04-0.32 mmol, 20 mL). It is important to note that the adsorption capacities of the materials in equilibrium vary, depending on the characteristics of the individual adsorbent, the initial concentration of the adsorbate and pH of the solution. One hour was enough for the removal of metal ions from (0.2 mmol in 20 mL) aqueous solution. Effective removal of metal ions was demonstrated at pH values of 5.0. The adsorptive behavior of dolomite was described by fitting data generated from the study of the Langmuir and Freundlich isotherm models. The adsorption capacity of dolomite was found as 8.26 mg for Cu(2+) and 21.74 mg for Pb(2+), respectively, from the calculation of adsorption isotherm equation. More than 85% of studied cations were removed by dolomite from aqueous solution in single step. The mechanism for cations removal by dolomite includes surface complexation and ion exchange.

  13. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    Science.gov (United States)

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. [Removal of metal ions Cu2+, Cd+ and Pb+ from solutions by sorption on slag].

    Science.gov (United States)

    Chen, Xiao; Hou, Wen-hua; Wang, Qun-hui

    2009-10-15

    Batch experiments were carried out to investigate the adsorption kinetics and thermodynamic characteristics of heavy metal ions Cu2+, Cd2+ and Pb2+ on the electric are furnace (EAF) slag from Baoshan Steel Factory. Several kinds of techniques including XRD analysis, BET specific surface analysis and SEM/EDS analysis were employed to determine the physico-chemical and surface characteristics of slag. Results indicated that the adsorption rate of heavy metal ions on the EAF slag was relatively high, and the sorption rate followed the order Cd2+ > Pb2+ > Cu2+. The adsorption kinetics obeyed first-order kinetics model (R2 > 0.99). Adsorption isotherm experiment showed that adsorption isotherm of heavy metal ions on slag fitted Langmuir model, and the maximum adsorption capacity of Cu2+, Cd2+ and Pb2+ was 0.101, 0.058 and 0.120 mmol x g(-1), respectively. The adsorption of heavy metal ions on slag was a spontaneous reaction (deltaG0 0). The effect of enthopy was the main driving force of the spontaneous adsorption reaction. The analysis results of SEM/EDS revealed the changes of surface morphology and chemical proportion before and after adsorption. Due to low-cost and high-efficiency, electric are furnace slag showed great potential for the treatment of heavy metal polluted wastewaters.

  15. Cu-induced localization in the Fe-based superconductor FeTe0.5Se0.5

    Science.gov (United States)

    Wen, Jinsheng; Xu, Zhijun; Zhang, Cheng; Matsuda, Masa; Sobolev, Oleg; Park, Jitae; Bourret, Edith; Lee, Dunghai; Li, Qiang; Gu, Genda; Xu, Guangyong; Tranquada, John; Birgeneau, Robert

    2013-03-01

    We report neutron scattering and resistivity results on the Cu-substitution effects in FeTe0.5Se0.5 with a Tc of ~15 K. With a 2 % Cu substitution, the Tc is reduced to 8 K, and for Fe0.9Cu0.1Te0.5Se0.5, it is not superconducting. In Fe0.9Cu0.1Te0.5Se0.5, the low-energy magnetic excitations around the in-plane wave vector (0.5, 0.5) is greatly enhanced. Upon heating, the magnetic scattering is weakened, which is different from the temperature dependences of the Cu-free and 2 % Cu-doped sample. The spectral weight reduction upon warming decreases with increasing energy in the 10 % Cu-doped sample. We take these as evidences that Cu drives the system towards localization, which is confirmed by our resistivity data. These observations probably explain why superconductivity is absent in the Cu-doped BaFe2As2 system and demonstrate the inadequacy of the rigid-band shift model on the substitution effects of the 3 d transition metals. The work is supported by the U.S. Department of Energy.

  16. Short-range Ferromagnetism in Alloy Ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    DEFF Research Database (Denmark)

    Thanh, P. Q.; Hoa, N. Q.; Chau, N.

    2014-01-01

    We have studied the magnetic properties of two amorphous alloy ribbons Fe72Cr6Si4Nb5B12Ag1 (FCSNB-Ag) and Fe72Cr6Si4Nb5B12Cu1 (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic...

  17. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys; Estudio cinetico de las reacciones de recocido en aleaciones de Cu-Ni-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2014-07-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi{sub 3} phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi{sub 3} phase. (Author)

  18. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem.

    Science.gov (United States)

    Iskandar, Nur Liyana; Zainudin, Nur Ain Izzati Mohd; Tan, Soon Guan

    2011-01-01

    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.

  19. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem

    Institute of Scientific and Technical Information of China (English)

    Nur Liyana Iskandar; Nur Ain Izzati Mohd Zainudin; Soon Guan Tan

    2011-01-01

    Filamentous fungi are able to accumulate significant amount of metals from their environment.The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention.In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb).The isolates were identified as Aspergillus niger, A.fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P.janthinellum.A.niger and P simplicissimum, were able to survive at 1000 mg/L of Cu(Ⅱ)concentration on Potato Dextrose Agar (PDA) while for Pb, only A.niger survived at 5000 mg/L concentration.The results showed that A.niger, P.simplicissimum and T.asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution.The present study was also determined the maximum removal of Cu(Ⅱ) and Pb(Ⅱ) that was performed by A.niger.The metal removal which occurred at Cu(Ⅱ) 200 mg/L was (20.910 ±0.581) mg/g and at 250 mg/L of Pb(Ⅱ) was (54.046 ± 0.328) mg/g.

  20. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Science.gov (United States)

    Mahmoodi, S.; Moradi, M.; Mohseni, S. M.

    2016-12-01

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism.

  1. Thermophysical Properties of Sn-Ag-Cu Based Pb-Free Solders

    Science.gov (United States)

    Kim, Sok Won; Lee, Jaeran; Jeon, Bo-Min; Jung, Eun; Lee, Sang Hyun; Kang, Kweon Ho; Lim, Kwon Taek

    2009-06-01

    Lead-tin (Pb-Sn) alloys are the dominant solders used for electronic packaging because of their low cost and superior properties required for interconnecting electronic components. However, increasing environmental and health concerns over the toxicity of lead, combined with global legislation to limit the use of Pb in manufactured products, have led to extensive research and development studies of lead-free solders. The Sn-Ag-Cu ternary eutectic alloy is considered to be one of the promising alternatives. Except for thermal properties, much research on several properties of Sn-Ag-Cu alloy has been performed. In this study, five Sn-xAg-0.5Cu alloys with variations of Ag content x of 1.0 mass%, 2.5 mass%, 3.0 mass%, 3.5 mass%, and 4.0 mass% were prepared, and their thermal diffusivity and specific heat were measured from room temperature to 150 °C, and the thermal conductivity was calculated using the measured thermal diffusivity, specific heat, and density values. Also, the linear thermal expansion was measured from room temperature to 170 °C. The results show that Sn-3.5Ag-0.5Cu is the best candidate because it has a maximum thermal conductivity and a low thermal expansion, which are the ideal conditions to be a proper packaging alloy for effective cooling and thermostability.

  2. Influence of IMC in the Semisolid Behaviour of an Eutectic Sn-Pb/Cu Slurry

    Science.gov (United States)

    Merizalde, Carlos; Cabrera, José-María; Prado, José-Manuel

    2007-04-01

    A mixture of a liquid Sn-Pb alloy reinforced with solid Cu particles has been found to show thixotropic and pseudoplastic behaviour. The presence of an intermetallic compound (IMC) between the Cu particles and the molten matrix has some very important consequences in the rheological behaviour of the slurry. The semisolid material is obtained mixing a sufficient amount of Cu particles with a liquid eutectic Sn-Pb alloy by mechanical stirring at a given temperature and time. The intermetallic compound is formed from the reaction of solid Cu and liquid Sn. This reaction results in some displacement in the phase diagram, affecting the liquid alloy composition, moving the liquidus temperature and therefore altering the balance of %wt solid- %wt liquid necessary to obtain the best thixotropic behaviour. In this work a model of the solid fraction of the slurry taking into account the IMC growth rate is presented. This model is also used to predict the processing window under which the material keeps the thixotropic behaviour.

  3. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    Science.gov (United States)

    Chiang, C. K.; Freiman, S. W.; Wong-Ng, W.; Hwang, N. M.; Shapiro, A. J.; Hill, M. D.; Cook, L. P.; Shull, R. D.; Swartzendruber, L. J.; Bennett, L. H.

    1990-01-01

    Researchers produced superconducting ceramics of the Bi-Pb-Sr-Ca-Cu-O system started from a glass. To form the glass, the mixed oxide powder was melted at 1200 C in air. The liquid was quenched rapidly by pouring it onto an aluminum plate and rapidly pressing with another plate. The quenched compound was in the form of black amorphous solid, whose x-ray powder pattern has no crystalline peaks. After heat treatment at high temperatures, the glass crystallized into a superconductor. The crystalline phases in the superconductor identified using x-ray diffraction patterns. These phases were that associated with the superconducting phases of T(sub c) = 80 K (Bi2Ca1Sr2Cu2Ox) and of T(sub c) = 110 K (Bi2Ca2Sr2Cu3Ox). The dc resistivity and the ac susceptibility of these superconductors were studied.

  4. High Temperature Magnetic Properties of Indirect Exchange Spring FePt/M(Cu,C/Fe Trilayer Thin Films

    Directory of Open Access Journals (Sweden)

    Anabil Gayen

    2013-01-01

    Full Text Available We report the investigation of temperature dependent magnetic properties of FePt and FePt(30/M(Cu,C/Fe(5 trilayer thin films prepared by using magnetron sputtering technique at ambient temperature and postannealed at different temperatures. L10 ordering, hard magnetic properties, and thermal stability of FePt films are improved with increasing postannealing temperature. In FePt/M/Fe trilayer, the formation of interlayer exchange coupling between magnetic layers depends on interlayer materials and interface morphology. In FePt/C/Fe trilayer, when the C interlayer thickness was about 0.5 nm, a strong interlayer exchange coupling between hard and soft layers was achieved, and saturation magnetization was enhanced considerably after using interlayer exchange coupling with Fe. In addition, incoherent magnetization reversal process observed in FePt/Fe films changes into coherent switching process in FePt/C/Fe films giving rise to a single hysteresis loop. High temperature magnetic studies up to 573 K reveal that the effective reduction in the coercivity decreases largely from 34 Oe/K for FePt/Fe film to 13 Oe/K for FePt/C(0.5/Fe film demonstrating that the interlayer exchange coupling seems to be a promising approach to improve the stability of hard magnetic properties at high temperatures, which is suitable for high-performance magnets and thermally assisted magnetic recording media.

  5. Tectono-metallogenetic evolution of the Fe-Cu deposit of Dominga, northern Chile

    Science.gov (United States)

    Veloso, E.; Cembrano, J.; Arancibia, G.; Heuser, G.; Neira, S.; Siña, A.; Garrido, I.; Vermeesch, P.; Selby, D.

    2017-04-01

    The Dominga district in northern Chile (2082 Mt at 23.3 % Fe, 0.07 % Cu) shows a spatial and genetic affinity among distinctive structural elements and Fe-Cu-rich paragenetic mineral assemblages. Deep seated, NE-to-E striking structural elements form a right-lateral duplex-like structural system (early structural system, ESS) that cuts a regionally extensive alteration (stage I) zone. The EES system served as a locus and as path for the emplacement of biotite-magnetite alteration/mineralization (stage IIa) as veins and Fe-bearing layers following altered volcano sedimentary strata. NW-striking actinolite-magnetite hydrothermal breccias, coeval with and part of the ESS, include apatite (stage IIb) crystallized at 127 ± 15 Ma (U-Pb, 2σ). The ESS was also the locus of subsequent alteration/mineralization represented by K-feldspar, epidote, and albite (stage IIIa) and Fe-Cu-rich (vermiculite-anhydrite-chalcopyrite, stage IIIb) mineral associations. Shallowly developed, NNE-striking, left-lateral structural elements defining the El Tofo Structural System (ETSS)—probably part of the Atacama Fault System—clearly crosscut the ESS. Minerals associated with alteration/mineralization stage IIIb also occur as veins and as part of hydrothermal breccias of the ETSS, marking the transition from the ESS to ETSS. Molybdenite associated with alteration/mineralization stage IIIb yielded a Re-Os age of 127.1 ± 0.7 Ma (2σ). Both the ESS and ETSS were cut by left-lateral, NW- to E-striking shallowly developed structural elements (Intermediate Structural System, ISS) on which a hematite-calcite assemblage (stage IV) occurs mostly as infill material of veins and fault veins. The ISS is cut by N-striking, left-lateral, and shallowly developed structural elements (Late Structural System, LSS) showing no evidence of alteration/mineralization. Estimated strain and stress fields indicate an overall NW-trending shortening/compression and NE-trending stretching/tension strike-slip regime

  6. Tectono-metallogenetic evolution of the Fe-Cu deposit of Dominga, northern Chile

    Science.gov (United States)

    Veloso, E.; Cembrano, J.; Arancibia, G.; Heuser, G.; Neira, S.; Siña, A.; Garrido, I.; Vermeesch, P.; Selby, D.

    2016-10-01

    The Dominga district in northern Chile (2082 Mt at 23.3 % Fe, 0.07 % Cu) shows a spatial and genetic affinity among distinctive structural elements and Fe-Cu-rich paragenetic mineral assemblages. Deep seated, NE-to-E striking structural elements form a right-lateral duplex-like structural system (early structural system, ESS) that cuts a regionally extensive alteration (stage I) zone. The EES system served as a locus and as path for the emplacement of biotite-magnetite alteration/mineralization (stage IIa) as veins and Fe-bearing layers following altered volcano sedimentary strata. NW-striking actinolite-magnetite hydrothermal breccias, coeval with and part of the ESS, include apatite (stage IIb) crystallized at 127 ± 15 Ma (U-Pb, 2σ). The ESS was also the locus of subsequent alteration/mineralization represented by K-feldspar, epidote, and albite (stage IIIa) and Fe-Cu-rich (vermiculite-anhydrite-chalcopyrite, stage IIIb) mineral associations. Shallowly developed, NNE-striking, left-lateral structural elements defining the El Tofo Structural System (ETSS)—probably part of the Atacama Fault System—clearly crosscut the ESS. Minerals associated with alteration/mineralization stage IIIb also occur as veins and as part of hydrothermal breccias of the ETSS, marking the transition from the ESS to ETSS. Molybdenite associated with alteration/mineralization stage IIIb yielded a Re-Os age of 127.1 ± 0.7 Ma (2σ). Both the ESS and ETSS were cut by left-lateral, NW- to E-striking shallowly developed structural elements (Intermediate Structural System, ISS) on which a hematite-calcite assemblage (stage IV) occurs mostly as infill material of veins and fault veins. The ISS is cut by N-striking, left-lateral, and shallowly developed structural elements (Late Structural System, LSS) showing no evidence of alteration/mineralization. Estimated strain and stress fields indicate an overall NW-trending shortening/compression and NE-trending stretching/tension strike-slip regime

  7. Fe and Cu stable isotopes in archeological human bones and their relationship to sex.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent; Herrscher, Estelle; Lamboux, Aline; Telouk, Philippe; Albarède, Francis

    2012-07-01

    Accurate sex assignment of ancient human remains usually relies on the availability of coxal bones or well-preserved DNA. Iron (Fe) and copper (Cu) stable isotope compositions ((56)Fe/(54)Fe and (65)Cu/(63)Cu, respectively) were recently measured in modern human blood, and an unexpected result was the discovery of a (56)Fe-depletion and a (65)Cu-enrichment in men's blood compared to women's blood. Bones, being pervasively irrigated by blood, are expected to retain the (56)Fe/(54)Fe and (65)Cu/(63)Cu signature of blood, which in turn is useful for determining the sex of ancient bones. Here, we report the (56)Fe/(54)Fe, (65)Cu/(63)Cu, and (66)Zn/(64)Zn ratios from a suite of well-preserved phalanxes (n = 43) belonging to individuals buried in the 17th and 18th centuries at the necropolis of Saint-Laurent de Grenoble, France, and for which the sex was independently estimated from pelvic bone morphology. The metals were purified from the bone matrix by liquid chromatography on ion exchange resin and the isotope compositions were measured by multiple-collector inductively coupled plasma mass spectrometry. The results show that, as expected from literature data on blood, male bone iron is depleted in (56)Fe and enriched in (65)Cu relative to female. No sex difference is found in the (66)Zn/(64)Zn ratios of bone. The concentration and isotopic data show no evidence of soil contamination. Four samples of five (77%) can be assigned their correct sex, a result comparable to sex assignment using Fe and Cu isotopes in blood (81%). Isotopic analysis of metals may therefore represent a valid method of sex assignment applicable to incomplete human remains.

  8. Structure and magnetic properties of Ni/Cu/Fe/MgO(001) films.

    Science.gov (United States)

    Lauhoff, G; Vaz, C A F; Bland, J A C

    2009-04-15

    The structural and magnetic properties of thin Ni films grown on Cu/Fe/MgO(001) and Cu/MgO(001) buffer layers are investigated and compared to those grown on Cu/Si(001). The use of an Fe seed layer a few monolayers thick leads to the epitaxial growth of high surface quality Cu(001) buffer layers on MgO(001), while Cu growth on the bare MgO(001) substrate results in polycrystalline films. Magneto-optic Kerr effect magnetometry shows that Ni films grown on Cu/Fe/MgO(001) exhibit dominant perpendicular magnetic anisotropy up to ∼90 Å, which is similar to that of Ni films grown on Cu/Si(001). The polycrystalline Ni films also exhibit perpendicular magnetic remanence, but with a dominant in-plane magnetization component.

  9. Structure and magnetic properties of Ni/Cu/Fe/MgO(001) films

    Energy Technology Data Exchange (ETDEWEB)

    Lauhoff, G; Vaz, C A F; Bland, J A C [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)], E-mail: georglauhoff@georglauhoff.com, E-mail: carlos.vaz@cantab.net

    2009-04-15

    The structural and magnetic properties of thin Ni films grown on Cu/Fe/MgO(001) and Cu/MgO(001) buffer layers are investigated and compared to those grown on Cu/Si(001). The use of an Fe seed layer a few monolayers thick leads to the epitaxial growth of high surface quality Cu(001) buffer layers on MgO(001), while Cu growth on the bare MgO(001) substrate results in polycrystalline films. Magneto-optic Kerr effect magnetometry shows that Ni films grown on Cu/Fe/MgO(001) exhibit dominant perpendicular magnetic anisotropy up to {approx}90 A, which is similar to that of Ni films grown on Cu/Si(001). The polycrystalline Ni films also exhibit perpendicular magnetic remanence, but with a dominant in-plane magnetization component.

  10. Mineralogy and REE geochemistry at Gomish-Tappeh Zn-Pb-Cu (Ag deposit, southwest of Zanjan

    Directory of Open Access Journals (Sweden)

    Tooba Salehi

    2010-11-01

    Full Text Available Gomish-Tappeh Zn-Pb-Cu (Ag deposit is located 90 km southwest of Zanjan, in northwestern part of Urumieh-Dokhtar volcano-plutonic zone. Exposed rocks at the area include Oligo-Miocene volcano-sedimentary and sedimentary sequences as well as Pliocene volcano-plutonic sequence (andesite porphyry dykes, dacitic subvolcanic dome and rhyodacitic volcanics. Alteration in the deposit developed as silicic, silicic-sulfidic, sericitic, carbonate, argillic and propylitic. Main mineralization at the Gomish-Tappeh deposit is observed as veins occurring in a steeply-deeping normal fault defined by an NE-SW trend in host rocks such as dacitic crystal litic tuff, dacitic subvolcanic dome, specifically the rhyolitic tuff. Paragenetic minerals in the ore veins consist of pyrite, arsenopyrite, chalcopyrite, bornite, low-Fe sphalerite, galena, tetrahedrite and specularite. Gangue minerals accompanying the ores include quartz, calcite, chlorite, sericite and clay minerals. Based on geochemical data, average grades for samples from the ore veins at the Gomish-Tappeh deposit are: 4% Pb, 6% Zn, 2% Cu and 88 ppm Ag. Moreover, REE distribution patterns for altered samples of the dacitic subvolcanic dome and acidic tuff when compared with fresh samples, show enrichment in LREE, while HREE demonstrate various bahaviours. The negative Eu anomaly in chondrite-normalized REE patterns for these rocks is related to the increase in fluid/rock ratio and destruction of those grains of plagioclase enriched in Eu. REE distribution patterns for the silty tuff (footwall to the ore compared with acidic tuff represent enrichment in all REE as well as positive Eu anomalies. However, the ore samples indicate more enrichment in LREE/HREE ratios and higher Eu contents when compared with wallrock of the ore veins (silty tuff. This is due to the influence of chloric magmatic-hydrothermal fluids that caused alteration along the ore zone, releasing LREE and Eu from the host rocks and finally

  11. Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Choi, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Hwang, Chanyong; Qiu, Z.

    2010-06-09

    Magnetic domain evolution at the spin reorientation transition (SRT) of (Fe/Ni)/Cu/Ni/Cu(001) is investigated using photoemission electron microscopy. While the (Fe/Ni) layer exhibits the SRT, the interlayer coupling of the perpendicularly magnetized Ni layer to the (Fe/Ni) layer serves as a virtual perpendicular magnetic field exerted on the (Fe/Ni) layer. We find that the perpendicular virtual magnetic field breaks the up-down symmetry of the (Fe/Ni) stripe domains to induce a net magnetization in the normal direction of the film. Moreover, as the virtual magnetic field increases to exceed a critical field, the stripe domain phase evolves into a bubble domain phase. Although the critical field depends on the Fe film thickness, we show that the area fraction of the minority domain exhibits a universal value that determines the stripe-to-bubble phase transition.

  12. Crystalline style and tissue redistribution in Perna viridis as indicators of Cu and Pb bioavailabilities and contamination in coastal waters.

    Science.gov (United States)

    Yap, C K; Ismail, A; Cheng, W H; Tan, S G

    2006-03-01

    The concentrations of Cu, Pb, and Zn in the crystalline style (CS) and in the remaining soft tissues (ST) of the green-lipped mussel Perna viridis from 10 geographical sites along the coastal waters off peninsular Malaysia were determined. The CS, compared with the remaining ST, accumulated higher levels of Cu in both contaminated and uncontaminated samples, indicating that the style has a higher affinity for the essential Cu to bind with metallothioneins. The similar pattern of Cu accumulation in the different ST of mussels collected from clean and Cu-contaminated sites indicated that the detoxification capacity of the metallothioneins had not been overloaded. For Pb, higher levels of the metal in the CS than in the remaining ST were found only in mussels collected from a contaminated site at Kg. Pasir Puteh. This indicated a tissue redistribution of Pb due to its binding to metallothioneins for Pb detoxification and the potential of the CS as an indicator organ of Pb bioavailability and contamination. For Zn, the above two phenomena were not found since no obvious patterns were observed (lower levels of Zn in the CS than in the remaining ST) in contaminated and uncontaminated samples due to the mechanism of partial regulation. Generally, all the different STs studied (foot, mantle, gonad, CS, gill, muscle, and byssus) are good biomonitoring tissues for Cu and Pb bioavailabilities and contamination. Among these organs, the CS was found to be the best organ for biomonitoring Cu. The present data also suggest the use of the tissue redistribution of Pb in P. viridis as an indicator of Pb bioavailability and contamination in coastal waters.

  13. Friction behavior of Al-Cu-Fe-B polycrystalline quasicrystals

    Institute of Scientific and Technical Information of China (English)

    周细应; 李培耀; 罗军明; 钱士强; 童建华

    2004-01-01

    Dry sliding friction between the polycrystalline Al59 Cu25.5 Fe12.5 B3 quasicrystals(QCs) and coating of thediamond-like carbon(DLC) was carried out by self-made tribometer under different conditions. The influences of four parameters(temperature, sliding velocity, applied load, atmosphere) on friction of quasicrystal surface were studied. Microstructure of quasicrystal, morphology of worn surface, and wear debris were observed by scanning electron microscope(SEM). The results show that for QCs, the friction coefficient and the roughness of worn surface is influenced by the parameters, especially greatly by the temperature. With increasing the applied load and sliding velocity, the friction coefficient decreases. The dominant wear mechanism at 350 ℃ is delamination for QCs. The cracks forms on the worn surface during friction. Moreover, phase transformation is not observed on worn surface of QCs at 350 ℃.

  14. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Loureiro, Jose M. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: loureiro@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO{sub 3} as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  15. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  16. Phase separation and rapid solidification of liquid Cu60Fe30Co10 ternary peritectic alloy

    Institute of Scientific and Technical Information of China (English)

    DAI FuPing; CAO ChongDe; WEI BingBo

    2007-01-01

    The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two separated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respectively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) droplets with the same size.

  17. Phase separation and rapid solidification of liquid Cu60Fe30Co10 ternary peritectic alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two sepa- rated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respec- tively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) drop- lets with the same size.

  18. On synthesis of BaFe12O19, SrFe12O19, and PbFe12O19 hexagonal ferrite ceramics with multiferroid properties

    Science.gov (United States)

    Kostishin, V. G.; Panina, L. V.; Kozhitov, L. V.; Timofeev, A. V.; Zyuzin, A. K.; Kovalev, A. N.

    2015-08-01

    We analyze the possibility of obtaining M-type hexagonal ferrites of barium, strontium, and lead with multiferroid properties with the help of ceramic technology. Using the modified ceramic technology (especially pure initial raw materials, admixture of B2O3, and sintering in the oxygen atmosphere), we obtained for the first time the BaFe12O19 and SrFe12O19 samples with intense multiferroid properties at room temperature. At the same time, the employed technology does not make it possible to obtain PbFe12O19 samples exhibiting ferroelectricity. The multiferroid characteristics of experimental samples are compared with the characteristics of classical high-temperature multiferroic BiFeO3 and with the characteristics of BaFe12O19, SrFe12O19, and PbFe12O19 ferrite ceramics obtained in accordance with polymer precursor technology. We propose a mechanism explaining multiferroid properties of the hexagonal ferrite ceramic samples and note the importance of our results for applications.

  19. Ferromagnetic resonance in 80NiFe/Cu/Co multilayer films

    Science.gov (United States)

    Koizumi, H.; Ando, Y.; Miyazaki, T.

    1996-12-01

    Trilayers and multilayers containing ferromagnetic 80NiFe,Co layers separated by nonmagnetic Cu layers were fabricated using the magnetron sputtering method. For 80NiFe(60 Å)/Cu (d Cu)/ Co(60 Å) trilayer films, the MR ratio and the exchange coupling strength oscillated with increasing dCu. For 80NiFe(60 Å)/Cu (d Cu)/ Co(60 Å)/Cu (d Cu)/ 80NiFe(60 Å) multilayer films, however, the exchange coupling between the bottom 80NiFe and the Co layers oscillated, while that between the Co and the top 80NiFe layers decreased monotonously with increasing dCu. Consequently, antiferromagnetic exchange coupling was not achieved between the Co(60 Å) and the top magnetic layer. The reason for the nonexistence of antiferromagnetic exchange coupling is discussed by taking into account the rougher surface of the Co(60 Å) layer caused by the growth of the different crystalline structures.

  20. Constitutive Behavior of Mixed Sn-Pb/Sn-3.0Ag-0.5Cu Solder Alloys

    Science.gov (United States)

    Tucker, J. P.; Chan, D. K.; Subbarayan, G.; Handwerker, C. A.

    2012-03-01

    During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of Sn-Pb and Sn-Ag-Cu often result from either mixed assemblies or rework. Comprehensive characterization of the mechanical behavior of these mixed solder alloys resulting in a deformationally complete constitutive description is necessary to predict failure of mixed alloy solder joints. Three alloys with 1 wt.%, 5 wt.%, and 20 wt.% Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn-37Pb components mixed with Sn-3.0Ag-0.5Cu. Creep and displacement-controlled tests were performed on specially designed assemblies at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. The observed changes in creep and tensile behavior with Pb additions were related to phase equilibria and microstructure differences observed through differential scanning calorimetric and scanning electron microscopic cross-sectional analysis. As Pb content increased, the steady-state creep strain rates increased, and primary creep decreased. Even 1 wt.% Pb addition was sufficient to induce substantially large creep strains relative to the Sn-3.0Ag-0.5Cu alloy. We describe rate-dependent constitutive models for Pb-contaminated Sn-Ag-Cu solder alloys, ranging from the traditional time-hardening creep model to the viscoplastic Anand model. We illustrate the utility of these constitutive models by examining the inelastic response of a chip-scale package (CSP) under thermomechanical loading through finite-element analysis. The models predict that, as Pb content increases, total inelastic dissipation decreases.

  1. Distribution of Cu and Pb in particle size fractions of urban soils from different city zones of Nanjing, China

    Institute of Scientific and Technical Information of China (English)

    WANG Huan-hua; LI Lian-qing; WU Xin-min; PAN Gen-xing

    2006-01-01

    Soil samples from 4 defined city zones of Nanjing were randomly collected at 0-5 cm and 5-20 cm intervals and size fractions of soil particles were separated from undisturbed bulk soils by low energy dispersion procedure. The total contents of Cu and Pb in the different particle size fractions of the urban soils were analyzed by HNO3-HF-HC1O4 digestion and flame atomic absorption spectrophotometer determination. The total content of Cu and Pb in soil particle size fractions varied with their size and with city zones as well. Both the content and variation with the size fractions of Pb was bigger than of Cu supporting our previous finding that there was Pb pollution to different degrees in the urban soils although the two elements were generally enriched in clay-sized fraction.Contaminated Pb tended to be preferentially enriched in the size fraction of 2000-250 μm and clay-sized fraction. While the size fractions of the soils from newly developed and preserved area contained smaller amount of Cu and Pb, the partitioning of them in coarse and fine particle size fractions were insignificant compared to that from inner residence and commercial area. The very high Pb level over 150 mg/kg of the fine particle fractions from the soils of the inner city could be a cause of high blood Pb level reported of children from the city as acute exposure to Pb of fine particles of the urban soil might occur by soil ingestion and inhalation by young children. Thus, much attention should be paid to the partitioning of toxic metals in fine soil particles of the urban soils and countermeasures against high health risk of Pb exposure by soil ingestion and dust inhalation should be practiced against the health problem of blood Pb for young children from the cities.

  2. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    Science.gov (United States)

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  3. Giant Magneto-Impedance Effect in Sandwiched FeSiB/Cu/FeSiB Films

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong; YANG Chun-Sheng; YU Jin-Qiang; ZHAO Xiao-Lin; MAO Hai-Ping

    2000-01-01

    Giant magneto-impedance (GMI) effect has been realized in the sandwiched FeSiB/Cu/FeSiB films. With magnetic field Ha and ac current applied along the longitudinal direction of the sample, the GMI ratio increases with the increasing Ha, reaching a positive maximum, value, and then decreases to negative values with further increase of magnetic field. Field dependence of the GMI ratio also indicates that the magnetic field corresponding to the maximum GMI ratio is different for various frequencies. The positive maximum GMI ratio is 17.2% for Ha=1600 A/m and frequency of 3 MHz. In addition, the films display a large negative GMI ratio with a magnetic field applied along the transverse direction and the value of the GMI ratio is about -13.4% for Ha=5600A/m and frequency of 3 MHz.

  4. Tunable Magnetic Properties in CuCr2- x Fe x O4 Ceramics by Doping of Fe

    Science.gov (United States)

    Zhu, C. M.; Wang, L. G.; Bao, D. L. G. C.; Luo, H.; Tian, Z. M.; Yuan, S. L.

    2016-08-01

    CuCr2- x Fe x O4 ceramics have been successfully synthesized using the sol-gel method for the first time. With pure formation, material structure has been characterized by x-ray diffraction. The samples have been identified as having the spinel structure with formulae CuCr2- x Fe x O4. Micrographs obtained by scanning electron microscopy show the dense microstructure of the samples. The stoichiometric ratio of the ceramics has been measured through energy dispersive spectra. Magnetic properties of CuCr2- x Fe x O4 ceramics have been discussed. Temperature dependence of magnetization presents the gradually increasing irreversible temperature as the content of Fe element increases from x = 0 to 1. Coercive field ( H C), remanent magnetization ( M r), and saturation magnetization ( M S) respectively display the monotonous variation phenomena with increasing content of Fe. The increasing M r, M S and the decreasing H C can be attributed to the change of magnetic exchange interaction because of the doped Fe. It also proves that the magnetic properties of CuCr2- x Fe x O4 ceramics can be effectively tuned by the doping content of Fe.

  5. Physiological responses and detoxific mechanisms to Pb, Zn, Cu and Cd in young seedlings of Paulownia fortunei.

    Science.gov (United States)

    Wang, Jiang; Li, Weihua; Zhang, Chongbang; Ke, Shisheng

    2010-01-01

    Paulownia fortunei has been successfully used in the phytoremediation of many Pb/Zn mine tailings. However, seed germination and young seedlings of P. fortunei rarely occurred in these mine tailings. The physiological responses and detoxific mechanisms of P. fortunei young seedling to Pb, Zn, Cu and Cd stress were investigated. The germinated rate, shoot length, chlorophyll and carotenoid contents in leaves of young seedlings had a great reduction under Zn and Cu treatments, but had little decrease under Pb and Cd treatments. The production rate of O2*-, H2O2 and malondialdehyde (MDA) contents significantly increased in response to added Zn and Cu indicating great oxidative stress for young seedlings, but they had no significant change to added Pb and Cd. Young seedlings had effective detoxific mechanism to Pb and Cd, as antioxidant enzymes activities, phytochelatins (PCs-SH) and proline contents increased with increasing rates of added Pb and Cd. However, young seedlings had un-effective detoxific mechanisms to Zn and Cu stress. Results revealed the heavy metals (such as Cu) that present at low concentrations in mine tailings may be major constraint for the survival of young seedlings.

  6. Physical, Optical and Electron paramagnetic resonance studies of PbBr2-PbO-B2O3 glasses containing Cu2+ ions

    Science.gov (United States)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2016-09-01

    The glasses with the composition PbBr2-PbO-B2O3 glasses containing Cu2+ ions were prepared by melt quenching technique. X-ray diffractograms revealed the amorphous nature of the glasses. Density and molar volume were determined. Density is found to decrease while the molar volume increases with increase of PbBr2 content. The optical absorption spectra exhibited a broad band corresponding to the d- d transition of Cu2+ ion. From optical absorption spectra Eopt and Urbach energies were determined. Electron Paramagnetic Resonance (EPR) studies were carried out by introducing Cu2+ as the spin probe. Glasses containing transition metal(TM) ions such as Cu2+ give the information about the structure and the site symmetry around the TM ions. EPR spectra of all the glass samples were recorded at X-band frequencies. From the EPR spectra spin-Hamiltonian parameters were evaluated. It was observed that g∥ >g±>ge (2.0023) and A∥>A±. From this values it is concluded that the ground state of Cu2+ is dx2-y2 (2B1g) and the site symmetry around Cu2+ ion is tetragonally distorted octahedral. From the EPR and Optical data bonding coefficients were evaluated. The in plane o-bonding(α2) is moderately ionic while out of plane 7t-bonding(β2) and in plane 7t-bonding(β1 2) are ionic nature

  7. RELATIONSHIPS BETWEEN FRACTIONATIONS OF Pb, Cd, Cu, Zn AND Ni AND SOIL PROPERTIES IN URBAN SOILS OF CHANGCHUN, CHINA

    Institute of Scientific and Technical Information of China (English)

    GUO Ping; XIE Zhong-lei; LI Jun; KANG Chun-li; LIU Jian-hua

    2005-01-01

    An extensive soil investigation was conducted in different domains of Changchun to disclose the fractionations of Pb, Cu, Cd, Zn and Ni in urban soils. Meanwhile correlation analysis and multiple stepwise regressions were used to define relationships between soil properties and metal fractions and the chief factors influencingthe fractionation of heavy metals in the soils. The results showed that Pb, Ni and Cu were mainly associated with the residual and organic forms; most of Cd was concentrated in the residual and exchangeable fractions. Zn in residual and carbonate fraction was the highest. The activities of the heavy metals probably declined in the following order: Cd, Zn,Pb, CuandNi. The chemical fractions of heavy metals in different domains in Changchun City were of significantly spatial heterogeneity. Soil properties had different influences on the chemical fractions of heavy metals to some extent and the main factors influencing Cd, Zn, Pb, Cu and Ni fractionation and transformation were apparently different.

  8. Spatial distribution of dissolved Pb,Hg,Cd,Cu and As in the Bohai Sea

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Characteristics of the spatial distribution of selected dissolved heavy metals were analyzed during large scale surveys from August 12 to 25.2003 in the Bohai Sea.Dissolved Pb was the only element with average concentrations higher than the grade-one sea water quality standard of China.The spatial distribution of dissolved Pb in surface water was similar to those of Cd,Cu and As,where the isopleths generally indicated decreasing values from the bays to the central areas.Only for Hg did the high concentrations not only appear in Liaodong Bay,Bohai Bay and Laizhou Bay,but also in the Central Area,viz.not only in inshore but also in offshore areas.Vertical distributions of dissolved Pb,Cd,Cu and As were largely uniform,while that of dissolved Hg increased with depth.We infer that the input of pollutants from land was the main influencing factor for the detected distribution patterns of dissolved heavy metals,followed by the dynamics of sea water,release from bottom sediments and biochemical processes.Comparing with historical data,average concentrations of dissolved heavy metals appear to decline in recent years.

  9. Preparation, Processing and Tunneling in YBa2Cu3O7-δ-Pb Native-Barrier Structures

    Science.gov (United States)

    Frangi, Francesca; Dwir, Benjamin; James, Jonathan H.; Gauzzi, Andrea; Pavuna, Davor

    1993-06-01

    We have developed a procedure for the preparation of small (40× 40 μm2) window-type YBa2Cu3O7-δ-Pb junctions with YSZ insulator and native tunnel barrier. We present the patterning technique of the two electrodes based on photolithography and wet etching. The nature of the barrier is found to be semiconducting. The tunneling measurements show gap-like feature of YBa2Cu3O7-δ at 8.5 meV and some additional features related to Pb and YBa2Cu3O7-δ phonon spectra.

  10. Tunneling characteristics of YBa 2Cu 3O 7-δ-Pb window-type Josephson junctions

    Science.gov (United States)

    Frangi, F.; Dwir, B.; Pavuna, D.

    1992-02-01

    We present the results of tunneling measurements done on window-type, native-barrier YBa 2Cu 3O 7-δ-Pb junctions. We show features in the I-V curves which are related to the gap of YBa 2Cu 3O 7-δ, as well as to the Pb and YBa 2Cu 3O 7-δ phonon spectra. The nature of barrier in these structures is found to be semi-conducting. We can also see the asymmetry in the tunneling curves.

  11. Test of experimental set-ups for electrodialytic removal of Cu, Zn, Pb and Cd from different contaminated harbour sediments

    DEFF Research Database (Denmark)

    Nystrøm, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    of the sediment slurry, the other without stirring. The removal of heavy metals was highest in the non-calcareous sediment, where 94% Cd, 91% Zn and 73% Cu were removed after 24 days. The highest removal obtained for the calcareous sediment was 81% Cd, 76% Zn, 75% Pb and 53% Cu after 21 days, with stirred...... was the most stable in these experiments, and thus, the stirred set-up is the best choice for experimental set-up. The order in which the heavy metals were removed from the harbour sediments was Cd>Zn>Pb>Cu....

  12. Effects of Pb2+, Cd2+ and Cu2+ on the Aqueous Zn2+ Sorption by Hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    QI Yong; LIU Yu

    2006-01-01

    In this paper, the behaviors of aqueous zinc sorption by hydroxyapatite in the co-existence of Pb2+, Cd2+ and Cu2+ are investigated, the effects of Pb2+, Cd2+ and Cu2+ on the sorption of Zn2+ are discussed, and the hydroxyapatite sorption capabilities for Pb2+, Cd2+, Cu2+ and Zn2+ are compared.The experimental results show that the Zn2+ removal efficiency decreases gradually with the increase of the Cd2+ concentration of the solution, and there is no sorption preference between Cd2+ and Zn2+. On the other hand, the Zn2+ removal efficiency rapidly decreases rapidly with the increase of the Cu2+ concentration of the solution, and there is a clear sorption preference between Cu2+ and Zn2+. It is noticed that the Zn2+ removal efficiency is hardly changed with the variance of Pb2+ concentration because the removal mechanisms for these two ions are totally different. It is concluded that the adsorption affinities of the heavy metals for the hydroxyapatite follows this sequence: Pb2+> Cu2+>Cd2+> Zn2+.

  13. Evidence of Charge Transfer and Orbital Magnetic Moment in Multiferroic CuFeO2

    Science.gov (United States)

    Narumi, Yasuo; Nakamura, Tetsuya; Ikeno, Hidekazu; Terada, Noriki; Morioka, Takayuki; Saito, Kota; Kitazawa, Hideaki; Kindo, Koichi; Nojiri, Hiroyuki

    2016-11-01

    Soft X-ray absorption spectra (XAS) and magnetic circular dichroism (XMCD) of Fe and Cu L2,3 edges have been measured on the triangular lattice antiferromagnet CuFeO2. By applying sum rule analysis to the XMCD of Fe, the ratio of the orbital to spin magnetic moments is determined to be -0.071. Because the nominal valence of Fe in CuFeO2 was Fe3+ (3d5), the orbital magnetic moment was considered to be zero in the past. However, the present research demonstrates that the orbital magnetic moment of Fe takes a finite value and it is possibly due to Fe4+ (3d4), which is considered to be responsible for the strong magnetic anisotropy and the ferroelectricity. We compare the experimental results with the results of ab initio multiplet calculations based on the configuration interaction theory and discuss the anomalous electronic structures of Fe and Cu ions in CuFeO2.

  14. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marin, Paula, E-mail: paulasanchez@uvigo.es [Laboratorio de Ecoloxia Marina (LEM), Universidade de Vigo, Campus Universitario, 36310 Vigo, Galicia (Spain); Santos-Echeandia, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xose Anton [Instituto de Investigacions Marinas, Consejo Superior de Investigaciones Cientificas (CSIC), Eduardo Cabello 6, 36208 Vigo, Galicia (Spain); Beiras, Ricardo [Laboratorio de Ecoloxia Marina (LEM), Universidade de Vigo, Campus Universitario, 36310 Vigo, Galicia (Spain)

    2010-01-31

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L{sub Cu}) than the natural seawater used for their preparation. L{sub Cu} varied from 0.08 {mu}M in natural seawater to 0.3 and 0.5 {mu}M in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC{sub 50} of 0.64 {mu}M, significantly higher than the Cu EC{sub 50} of natural and artificial seawater, which was 0.38 {mu}M. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC{sub 50}. This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC{sub 50}, while L

  15. Effect of Cu doping on the structure and phase transition of directly synthesized FePt nanoparticles

    Science.gov (United States)

    Wang, Hanbin; Li, Yang; Chen, Xu; Shu, Dan; Liu, Xiang; Wang, Xina; Zhang, Jun; Wang, Hao; Wang, Yi; Ruterana, Pierre

    2017-01-01

    In this work, ternary Cu doped FePt nanoparticles were prepared in hexadecylamine at 320 °C by choosing FeCl2 as the Fe source. The experimental results showed that without Cu doping the as-prepared FePt nanoparticles possessed fcc structure and gradually exhibited typical fct diffraction peaks after increasing the Cu doping concentration. TEM images showed that the FePt nanoparticles had larger size and wider size distribution after introducing Cu additive. Magnetic property measurement showed that a coercivity of 4800 Oe was obtained when the composition of the ternary nanoparticles reached Fe35Pt45Cu20, in which the content of Fe+Cu was higher than Pt. The research indicates that Cu doping promotes the phase transition of FePt nanoparticles at temperature as low as 320 °C.

  16. Dissolved Cu, Pb, Zn and Cd in the South China Sea surface waters

    Institute of Scientific and Technical Information of China (English)

    Huo Wenmian; Ji Weidong; Xu Kuncan

    2001-01-01

    A total of 106 surface water samples were collected in the South China Sea during two transects in June and December 1998. The samples were collected with strictly contamination free procedure and trace metals were measured by clean laboratory methods and GFAAS. The mean concentrations for the dissolved fractions are: Cu 0.100 μg/dm3, Pb 0.060 μg/dm3, Zn 0.086 μg/dm3, Cd 0.007 μg/dm3, which is close to the world open ocean's level. The spatial distribution of the trace heavy metals shows higher concentrations in offshore area and lower concentrations in the central in the South China Sea, and the concentrations decrease with the distance from the offshore, which suggests the existence of significant continental shelf input of the trace heavy metals. The correlationship among the elements is better in summer than that in winter. Cu is positively correlated with Cd in both seasons and it is also found for the first time that they are positively correlated with nutrients in the South China Sea surface waters which further indicate the biogeochemical cycle of these elements in the marine environment. The baseline value of Cu, Pb, Zn, Cd in the South China Sea surface waters is obtained through statistical analysis.

  17. Colorimetric detection of Cu2+ and Pb2+ ions using calix[4]arene functionalized gold nanoparticles

    Indian Academy of Sciences (India)

    Ravi Gunupuru; Debdeep Maity; Gopala R Bhadu; Ashish Chakraborty; Divesh N Srivastava; Parimal Paul

    2014-05-01

    Calixarene functionalized gold nanoparticles (CFAuNPs) have been prepared and characterized by spectroscopic and microscopic (TEM) techniques. To use this material as potential colorimetric sensor, the binding property of this new material has been investigated with a large number of metal ions. It exhibited sharp colour change from dark brown to green and blue, detectable by naked-eye, in the presence of Cu2+ and Pb2+ ions, respectively. It has also triggered substantial change in surface plasmon resonance (SPR) band of the functionalized gold nanoparticles, which in case of Pb(II) is due to the inter particle plasmon coupling arising from the metal-induced aggregation of the nanoparticles and for Cu(II), it is because of the formation of AuCu alloy due to anti-galvanic exchange. The size and aggregation of the nanoparticles are confirmed from HRTEM images, elemental analysis and the line profiling for both the metal ions have been done by STEM-EDX analysis.

  18. Synchrotron X—Ray Study on Structures of Ni80Fe20/Cu Superlattices

    Institute of Scientific and Technical Information of China (English)

    杨涛; 麦振洪; 赖武彦; 吴忠华; 王德武; XUMing; 罗光明; 柴春林

    2001-01-01

    We have shown that,in contrast to the results in the literature,the Bragg peak intensity of Ni80Fe20/Cu superlattices is enhanced at the incident x-ray energy slightly higher than the absorption edge of the heavier element(Cu).The atomic density at Ni80Fe20/Cu interface was analysed by the diffraction anomalous fine structure technology with the incident angle of x-ray fixed at the first Bragg peak.Our results demonstrate the epitaxy growth of Ni80Fe20/Cu superlattices.Upon annealing,the epitaxity of Ni80Fe20/Cu multilayers becomes poor but the local crystallinity in each layer is improved.

  19. Direct Measurement of the Metastable Liquid Miscibility Gap in Fe-Co-Cu Ternary Alloy System

    Institute of Scientific and Technical Information of China (English)

    CAO Chong-De; Georg P.G(O)RLER

    2005-01-01

    @@ The metastable liquid-liquid phase separation in undercooled Fe-Co-Cu ternary alloy melts (XCu = 0.10-0.84;XCo:XFe = 1:3,1:1 and 3:1) is investigated by differential thermal analysis in combination with glass fluxing technique. In almost every case, the undercooling of the homogeneous alloy melt was sufficient to reach the boundary line of the submerged miscibility gap. The differential-thermal-analysis signals indicate that this separation into a (Fe, Co)-rich liquid phase L1 and a Cu-rich liquid L2 is exothermic and proceeds until the rapid solidification of the L1 phase occurs. At a given Cu concentration and with the increase of Co content, the phase separation temperatures decrease monotonically between the corresponding values of the boundary systems Fe-Cu and Co-Cu. The boundary lines of the miscibility gap, which are determined for the three quasi-binary cross-sections of the (Fe, Co)-Cu alloy system, show remarkably flat domes. The occurrence of the liquid phase separation shows an evident influence on the subsequent γ-Fe(Co, Cu)→α-Fe(Co, Cu) solid phase transformation.

  20. Enthalpy of mixing of liquid Cu-Fe-Hf alloys at 1873 K

    Energy Technology Data Exchange (ETDEWEB)

    Agraval, Pavel; Turchanin, Mikhail [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Dreval, Liya [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Materials Science International Services GmbH (MSI), Stuttgart (Germany)

    2016-12-15

    In the ternary Cu-Fe-Hf system, the mixing enthalpies of liquid alloys were investigated at 1873 K using a high-temperature isoperibolic calorimeter. The experiments were performed along the sections x{sub Cu}/x{sub Fe} = 3/1, 1/1 at x{sub Hf} = 0-0.47 and along the section x{sub Cu}/x{sub Fe} = 1/3 at x{sub Hf} = 0-0.13. The limiting partial enthalpies of mixing of undercooled liquid hafnium in liquid Cu-Fe alloys, Δ{sub mix} anti H{sub Hf}{sup ∞}, are (-122 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 3/1), (-106 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/1), and (-105 ± 2) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/3). In the investigated composition range, the integral mixing enthalpies are sign-changing. For the integral mixing enthalpy, an analytical expression was obtained by the least squares fit of the experimental results using the Redlich-Kister-Muggianu polynomial.

  1. Structural evolutions of the mechanically alloyed Al70Cu20Fe10 powders

    Indian Academy of Sciences (India)

    Musa Göğebakan; Bariş Avar

    2011-10-01

    Elemental mixtures of Al, Cu, Fe powders with the nominal composition of Al70Cu20Fe10 were mechanically alloyed in a planetary ball mill for 80 h. Subsequent annealing of the as-milled powders were performed at 600–800°C temperature range for 4 h. Structural characteristics of the mechanically alloyed Al70Cu20Fe10 powders with the milling time and the heat treatment were investigated by X-ray diffraction (XRD), differential scanning calorimeter (DSC) and differential thermal analysis (DTA). Mechanical alloying of the Al70Cu20Fe10 did not result in the formation of icosahedral quasicrystalline phase (i-phase) and a long time milling resulted in the formation of -Al(Cu,Fe) solid solution phase (-phase). The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The -phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation indicated that a suitable technique to obtain a large amount of quasicrystalline powders is to use a combination of short-time milling and subsequent annealing.

  2. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    Science.gov (United States)

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  3. Structure and stress in Cu/Au and Fe/Au systems: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Zientarski, Tomasz, E-mail: martom@dyzio.umcs.lublin.pl [Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, ul. Gliniana 33, 20-614 Lublin (Poland); Chocyk, Dariusz [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland)

    2014-07-01

    Growth of Fe and Cu thin films on Au substrate and stress evolution were modeled using molecular dynamics simulation. The interactions in the system are described by embedded atom method. The kinematical theory of scattering is performed to identify the structure obtained from simulations. The gold layers undergo reconstruction before deposition. The deposited copper atoms do not disturb the atoms in the reconstructed gold layer, but the deposited iron atoms cause the disappearance of the reconstructed gold surfaces. In both systems Cu/Au and Fe/Au, in the early stage of growth one observes compressive stress. Next, Cu/Au systems have the compressive stress, while in the case of Fe/Au the tensile stress is observed. In the Fe/Au system, the body-centered cubic lattice of Fe changes its orientation relative to the Au layer. In the Fe/Au system we observed a larger diffusion of Au atoms than in Cu/Au systems. - Highlights: • The kinematical theory of scattering is performed to identify the structure. • The correlation between the stress and the deformation is observed. • The relaxation of the stress depends on the orientation of layers. • The lattice of Fe changes its orientation relative to the Au layer in the Fe/Au system. • The Cu layer continues the lattice of Au in the Cu/Au system.

  4. Isolation and characterization of a new Cu-Fe protein from Desulfovibrio aminophilus DSM12254.

    Science.gov (United States)

    Rivas, Maria G; Mota, Cristiano S; Pauleta, Sofia R; Carepo, Marta S P; Folgosa, Filipe; Andrade, Susana L A; Fauque, Guy; Pereira, Alice S; Tavares, Pedro; Calvete, Juan J; Moura, Isabel; Moura, José J G

    2009-10-01

    The isolation and characterization of a new metalloprotein containing Cu and Fe atoms is reported. The as-isolated Cu-Fe protein shows an UV-visible spectrum with absorption bands at 320 nm, 409 nm and 615 nm. Molecular mass of the native protein along with denaturating electrophoresis and mass spectrometry data show that this protein is a multimer consisting of 14+/-1 subunits of 15254.3+/-7.6 Da. Mössbauer spectroscopy data of the as-isolated Cu-Fe protein is consistent with the presence of [2Fe-2S](2+) centers. Data interpretation of the dithionite reduced protein suggest that the metallic cluster could be constituted by two ferromagnetically coupled [2Fe-2S](+) spin delocalized pairs. The biochemical properties of the Cu-Fe protein are similar to the recently reported molybdenum resistance associated protein from Desulfovibrio, D. alaskensis. Furthermore, a BLAST search from the DNA deduced amino acid sequence shows that the Cu-Fe protein has homology with proteins annotated as zinc resistance associated proteins from Desulfovibrio, D. alaskensis, D. vulgaris Hildenborough, D. piger ATCC 29098. These facts suggest a possible role of the Cu-Fe protein in metal tolerance.

  5. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.

    Science.gov (United States)

    Liu, Hongyuan; Guo, Min; Zhang, Yan

    2014-01-01

    Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.

  6. Dechlorination of carbon tetrachloride by the catalyzed Fe-Cu process

    Institute of Scientific and Technical Information of China (English)

    XU Wen-ying; GAO Ting-yao

    2007-01-01

    The electrochemical reduction characteristics of carbon tetrachloride (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders' iron and the catalyzed Fe-Cu process was discussed. The results showed that CT was reduced directly on the surface of copper rather than by atomic hydrogen produced at the cathode in the catalyzed Fe-Cu process. The reduction was realized largely by atomic hydrogen in Master Builders' iron. The entire CT in 350 ml aqueous solution with 320 mg/L was reduced to trichloromethane and dichloromethane in 2.25 h when 100 g of scrap iron with Fe/Cu ratio of 10:1 (w/w) were used. Moreover, the reduction rate slowed with time. CT could be reduced at acidic, neutral and alkaline pH from solution by Fe-Cu bimetallic media, but the mechanisms were different. The degradation rate was not significantly influenced by pH in the catalyzed Fe-Cu process; in Master Builders' iron it clearly increased with decreasing pH. The kinetics of the reductions followed pseudo-first order in both cases. Furthermore, the reductions under acidic conditions proceeded faster than that under the neutral and alkaline conditions. The catalyzed Fe-Cu process was superior to Master Builders' iron in treating CT-containing water and this advantage was particularly noticeable under alkaline conditions. The reduction was investigated in the cathode (Cu) and anode (Fe) compartments respectively, the results showed that the direct reduction pathway played an important role in the reduction by the catalyzed Fe-Cu process. The catalyzed Fe-Cu process is of practical value.

  7. Electrochemical processing of high- Bi(Pb)–Sr–Ca–CuO thin films

    Indian Academy of Sciences (India)

    N V Desai; L A Ekal; D D Shivagan; S H Pawar

    2000-02-01

    Superconducting thin films of Bi(Pb)–Sr–Ca–CuO system were prepared by depositing the film onto silver substrate by d.c. electrodeposition technique with dimethyl sulphoxide bath in order to examine the effect of Pb addition to the BSCCO system. The films were deposited at the potential of – 0.8 V vs saturated calomel electrode (SCE) onto the silver substrate. The different preparative parameters such as deposition potential, deposition time were studied and optimized. These films were then oxidized electrochemically at room temperature in an alkaline (1 N KOH) solution, and also at 600°C temperature in an oxygen atmosphere. The films showed the superconducting behaviour, with values ranging between 85 K and 96 K, respectively.

  8. Pb/Cu (100) surface superstructures: Monte Carlo and molecular dynamics simulations

    Science.gov (United States)

    Tan, S.; Ghazali, A.; L´vy, J. C. S.

    1997-12-01

    Monte Carlo simulations with simple pair potentials of the Lennard-Jones type enable us to show the stability of the three experimentally known superstructures of Pb/Cu (100) at different lead submonolayer coverages: c(4 × 4)atθ = 3/8,c(2 × 2)atθ = 0.5 and c(5√2 × √2)R45° at θ = 0.6. In addition, numerous details of these superstructures, including interatomic distances, surface alloying, corrugation and weak modulation are obtained numerically in quantitative and qualitative accord with the experimentally observed and measured data. By molecular dynamics the melting of these structures is studied from the temperature dependence of the Pb-atom average energy and diffusion coefficient, with evidence for a first-order transition for every superstructure. The dispersion of surface phonons is also derived.

  9. Concentrations of Pb, Zn, and Cu in Taraxacum spp. in relation to urban pollution

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.M.; Lanaras, T.; Sgardelis, S.P.; Pantis, J.D. (Univ. of Thessaloniki (Greece))

    1994-08-01

    The combustion of petroleum fuel and exhaust emissions are major sources of atmospheric pollution in cities which result in the deposition of toxic substances, particularly heavy metals, in the surface layers of soils. Lead in particular enters the environment from the use of tetraethyl lead as an antiknock agent for petrol engines constituting 21% of fine particles emitted from cars burning leaded petrol. Antiwear protectants incorporated in lubricants often contain Cd, Cr, Cu, Hg, Ni, Pb and/or Zn which are also released into the environment by inefficient engines and irresponsible dumping of engine oils. Zn from tyre wear and Cu from diesel engines also add considerably to the environmental metal burden. Lowering of the permitted lead content of petrol and the growing use of unleaded fuel are expected to lead to reductions in the environmental lead burden, however, until unleaded fuel becomes universally accepted lead contamination, particularly of roadside soils and vegetation is a major cause for concern. A direct relationship between car exhaust, the Pb content of needles of Abies alba and reduced growth has been observed and can extend hundreds of metres from major highways. Lead tolerance has been observed in higher plants growing mine waste soils and to a lesser extent on lead-contaminated roadside soils. Automobiles which are responsible for line sources of pollution emissions in rural and suburban areas have a more far-reaching impact on roadside vegetation, already under considerable stress, in urban areas. Information on heavy metal effects on vegetation in urban environments however, are scarce. Modeling and multivariate analysis of a few of the factors involved have provided only limited data related to plant performance in these complex environments. Therefore in this study, the extent of heavy metal pollution by Pb, Zn, Cu and Cd in soils and in dandelion plants in the city of Thessaloniki has been examined. 20 refs., 2 figs., 3 tabs.

  10. Novel Fluorescent Chemosensors Based on Tryptophan Unit for Cu2+ and Fe3+ in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    CHENG Peng-fei; XU Kuo-xi; YAO Wen-yong; KONG Hua-jie; KOU Li; MA Xiao-dan; WANG Chao-jie

    2013-01-01

    We reported four fluorescent chemosensors containing tryptophan units.The fluorescence spectrum titration experiments suggest that chemosensors 1,2,3 and 4 are highly selective for Cu2+ and Fe3+ over Li+,Na+,K+,Co2+,Zn2+,Ni2+,Hg2+ and Cr3+ via forming complexes with Cu2+ or Fe3+,which is confirmed by dramatical quench of fluoreseence in aqueous solution at pH 7.4,thus making all the chemosensors suitable for Cu2+ and Fe3+ fluorescent sensors.

  11. Variation of photon interaction parameters with energy for some Cu-Pb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Tejbir, E-mail: dr.tejbir@gmail.com; Kaur, Sarpreet; Kaur, Parminder; Kaur, Harvinder [Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Saheb-140406, Punjab (India); Singh, Parjit S. [Department of Physics, Punjabi University, Patiala-147002, Punjab (India)

    2015-08-28

    Various photon interaction parameters (mass attenuation coefficients, effective atomic numbers and effective electron numbers) have been computed for different compositions of Cu-Pb alloys in the wide energy regime of 1 keV to 100 GeV. The mass attenuation coefficients have been computed using mixture rule with the help of WinXCom (mass attenuation coefficient database for elements). The variation of mass attenuation coefficients, effective atomic numbers and electron density has been analysed and discussed in terms of dominance of different photon interaction processes viz. Compton scattering, photoelectric effect and pair production.

  12. Preparation of Bulky Bi(Pb)-Sr-Ca-Cu-O Superconductor by Magnetized Twin-Roll

    Science.gov (United States)

    Kawahara, Nobuaki; Kawabata, Sanemasa; Enami, Hiroyoshi; Shinohara, Toshiyuki; Hoshizaki, Hiroki; Hasegawa, Masashi; Asai, Shigeo; Imura, Toru

    1990-02-01

    A highly oriented (Bi, Pb)2Sr2Ca2Cu3Ox bulk superconductor has been prepared by magnetized twin-roll processing. In these bulks, plate-like crystal grains were highly oriented by a magnetic and mechanical force. The grain c-axes were parallel to the magnetic field and pressing directions. In fact, both critical current density (Jc) and orientation degree of the sample rolled under 2 T were higher than those of the sample rolled with no magnetic field. The magnetized twin-roll processing is effective not only in enhancing grain-orientation but also in packing to improve Jc.

  13. Anodic stripping voltammetric determination of Zn, Pb and Cu traces in whisky samples

    Energy Technology Data Exchange (ETDEWEB)

    Barbeira, P.J.S. [Departamento de Quimica - ICEx - UFMG, Belo Horizonte, MG (Brazil); Stradiotto, N.R. [Departamento de Quimica - FFCLRP - USP, Ribeirao Preto, SP (Brazil)

    1998-07-01

    The simultaneous ``in natura`` determination of trace Zn, Pb and Cu in whisky samples by anodic stripping voltammetry (ASV), using a hanging mercury drop electrode, without previous treatment or addition of supporting electrolyte is described. The choice of an appropriate stripping voltammetric method and deposition potential minimizes the influence of the organic content and ensures a good reproducibility of the measurements. The reliability of the method was tested comparing the results with those of atomic absorption spectroscopy (AAS), with differences of about 10%. The method allows the determination of heavy metal ions in the {mu}g L{sup -1} range. (orig.) With 3 figs., 1 tab., 18 refs.

  14. ELECTROOXIDATION OF METHANOL ON PT MODIFIED WITH ADATOMS (NI, CU, PB, CD

    Directory of Open Access Journals (Sweden)

    A.Khouchaf

    2015-05-01

    Full Text Available The electro oxidation of methanol has been studied in alkaline medium NaOH 0.1 M and acid medium H2SO4 0.5 M on a platinum electrode and a platinum modified by adatom adsorption (Ni, Cu, Pb, and Cd. The influence of different experimental variables (methanol concentration, and temperature is reported. Preliminary investigations by cyclic voltammetry showed that the catalytic activity of platinum is still too low to be considered as a practical catalyst. Underpotential deposition of lead, nickel, cadmium, or copper adatoms at platinum allowed increasing significantly the current densities.

  15. The Role of Saturated Hydrocarbon in Enrichment of Cu, Pb, Znin Kupferschiefer, Southwestern Poland

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to clarify the role of organic matter in the enrichment of base metal, 10 samples of the PermianKupferschiefer from southwestern Poland were analyzed by using microscopic and geochemical methods. The re-suts indicate that the solvent extracts have been depleted in the samples with high Cu, Pb, Zn contents. This de-pletion occurred preferably in saturated hydrocarbons. Saturated hydrocarbons served as hydrogen donor for ther-mochemical sulfate reduction (TSR). The GC traces of saturated hydrocarbon show that the depletion occurredmainly in long-chain n-alkanes.

  16. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO{sub 2} mediated heterogeneous activation of peroxymonosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yaobin, E-mail: yaobinding@mail.scuec.edu.cn [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China); Tang, Hebin [College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Zhang, Shenghua; Wang, Songbo [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China); Tang, Heqing, E-mail: tangheqing@mail.scuec.edu.cn [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-11-05

    Highlights: • CuFeO{sub 2} microparticles were prepared by a microwave-assisted hydrothermal method. • CuFeO{sub 2} microparticles efficiently catalyzed the activation of peroxymonosulfate. • Quenching experiments confirmed sulfate radicals as the major reactive radicals. • Carbamazepine was rapidly degraded by micro-CuFeO{sub 2}/peroxymonosulfate. • Feasibility of CuFeO{sub 2}/peroxymonosulfate was tested for treatment of actual water. - Abstract: Microscaled CuFeO{sub 2} particles (micro-CuFeO{sub 2}) were rapidly prepared via a microwave-assisted hydrothermal method and characterized by scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. It was found that the micro-CuFeO{sub 2} was of pure phase and a rhombohedral structure with size in the range of 2.8 ± 0.6 μm. The micro-CuFeO{sub 2} efficiently catalyzed the activation of peroxymonosulfate (PMS) to generate sulfate radicals (SO{sub 4}·−), causing the fast degradation of carbamazepine (CBZ). The catalytic activity of micro-CuFeO{sub 2} was observed to be 6.9 and 25.3 times that of micro-Cu{sub 2}O and micro-Fe{sub 2}O{sub 3}, respectively. The enhanced activity of micro-CuFeO{sub 2} for the activation of PMS was confirmed to be attributed to synergistic effect of surface bonded Cu(I) and Fe(III). Sulfate radical was the primary radical species responsible for the CBZ degradation. As a microscaled catalyst, micro-CuFeO{sub 2} can be easily recovered by gravity settlement and exhibited improved catalytic stability compared with micro-Cu{sub 2}O during five successive degradation cycles. Oxidative degradation of CBZ by the couple of PMS/CuFeO{sub 2} was effective in the studied actual aqueous environmental systems.

  17. Conversion of syngas to higher alcohols over Cu-Fe-Zr catalysts induced by ethanol

    Institute of Scientific and Technical Information of China (English)

    Hongtao Zhang; Xiaomei Yang; Lipeng Zhou; Yunlai Su; Zhongmin Liu

    2009-01-01

    Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared by the conventional precipitation method. Among various procedures for ethanol induced method,it was found that incorporation of ethanol in the precipitation process was the better. After incorporation of ethanol,the crystal size of CuO decreased and the reduction of copper species became easier. The better activity of Cu-Fe-Zr catalysts prepared by ethanol induced procedures was probably caused by the higher dispersion of Cu species.

  18. Facile preparation of magnetic mesoporous Fe3O4/C/Cu composites as high performance Fenton-like catalysts

    Science.gov (United States)

    Li, Keyan; Zhao, Yongqin; Janik, Michael J.; Song, Chunshan; Guo, Xinwen

    2017-02-01

    Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe2O3/CuO and α-Fe2O3/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe3O4/C/Cu was obtained by calcining the tartrate precursor under N2 atmosphere at 500 °C. The Fe3O4/C/Cu composite possessed mesoporous structure and large surface area up to 133 m2 g-1. The Fenton catalytic performance of Fe3O4/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe3+ to Fe2+, which accelerated the Fe3+/Fe2+ cycles and favored H2O2 decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe3+ and Cu2+, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe3O4/C/Cu-H2O2 system, and MB (100 mg L-1) was nearly removed within 60 min. The Fe3O4/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile, cheap and green method for the synthesis of mesoporous composites as excellent Fenton-like catalysts, without any additional reductants or organic surfactants.

  19. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    Science.gov (United States)

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu(+2), Hg(+2), Pb(+2), and Zn(+2)). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  20. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.

    Science.gov (United States)

    Cutillas-Barreiro, Laura; Paradelo, Remigio; Igrexas-Soto, Alba; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodriguez, Esperanza; Garrote, Gil; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2016-09-01

    Bark from Pinus pinaster is one of the most abundant forestry wastes in Europe, and among the proposed technologies for its reutilization, the removal of heavy metals from wastewater has been gaining increasing attention. In this work, we have studied the performance of pine bark for heavy metal biosorption on competitive systems. Pb, Cu, Ni, Zn and Cd sorption and desorption at equilibrium were studied in batch experiments, whereas transport was studied in column experiments. Batch experiments were performed adding simultaneously different concentrations (0.08-3.15mM) of two or more metals in solution to pine bark samples. Column experiments were performed with 10mM solutions of two metals or a 5mM solution of the five metals. In general, the results under competitive conditions were different to those obtained in monoelemental experiments. The multi-metal batch experiments showed the adsorption sequence Pb≈Cu>Cd>Zn>Ni for lower metal doses, Pb>Cu>Cd>Zn>Ni for intermediate doses, and Pb>Cu>Cd≈Zn≈Ni for high metal doses. Desorption followed the sequence PbCdCdCd, Ni and Zn from adsorption sites on pine bark. The transport experiments produced comparable results to those obtained in the batch experiments, with pine bark retention capacity following the sequence Pb>Cu>Zn>Cd>Ni. The presence of a second metal affected the transport of all the elements studied except Pb, and confirmed the strong influence of Pb and Cu on the retention of the other metals. These results can help to appropriately design decontamination systems using this forestry waste.

  1. EXAFS STUDY OF THE SHORT RANGE STRUCTURE OF NANOCRYSTALLINE BCC-Fe80Cu20 SOLID SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Y.Z. Yang; X.J. Bai; T.C. Kuang; G.M. Wang; S. Q. Wei

    2002-01-01

    The structure of bcc-Fe80 Cu2o solid solution produced by mechanical alloying of theelemental bcc-Fe and fcc-Cu powders has been studied using X-ray diffraction and theextended X-ray absorption fine structure (EXAFS) techniques. The disappearance ofelemental Fe and Cu X-ray diffraction (XRD) peaks and the presence of bcc structuralXRD peaks illustrate the formation of a nanocrystalline single-phase bcc-Fe80 Gu20solid solution. From the EXAFS results, the clear observation of Cu atoms taking onbcc coordination in the solid solution and Fe atoms remaining bcc structure furtherverifies the reality of atomic alloying between Fe and Cu atoms and the lattice changeof Cu from fcc to bcc. However, the supersaturated bcc solid solution is not chemicallyuniform, i.e., some regions are rich in Fe atoms and other regions rich in Cu atoms.

  2. Solute redistribution during phase separation of ternary Fe-Cu-Si alloy

    Science.gov (United States)

    Luo, S. B.; Wang, W. L.; Xia, Z. C.; Wu, Y. H.; Wei, B.

    2015-06-01

    Ternary Fe48Cu48Si4 immiscible alloy was rapidly solidified under the containerless microgravity condition inside a drop tube. Liquid phase separation took place in the alloy melt and led to the formation of various segregated structures. The core-shell structure consisting of Fe-rich and Cu-rich zones and the homogenously dispersed structure were the major structural morphologies. Phase field simulation results revealed that the two-layer core-shell was the final structure of liquid phase separation. The solute redistribution of liquid Fe48Cu48Si4 alloy experienced the macroscopic solute distribution induced by liquid phase separation, the secondary phase separation within the separated liquid phases and the solute trapping during rapid solidification. Energy dispersive spectroscopy analysis showed that the solute Si was enriched in the Fe-rich zone whereas depleted in the Cu-rich zone. In addition, both αFe and (Cu) phases in the Fe-rich zone exhibited a conspicuous solute trapping effect. As compared with (Cu) phase, αFe phase had a stronger affinity with solute Si.

  3. Effect of Applied Current Density on Morphological and Structural Properties of Electrodeposited Fe-Cu Films

    Institute of Scientific and Technical Information of China (English)

    Umut Sarac; M. Celalettin Baykul

    2012-01-01

    A detailed study has been carried out to investigate the effect of applied current density on the composition, crystallographic structure, grain size, and surface morphology of Fe-Cu films. X-ray diffraction (XRD) results show that the films consist of a mixture of face-centered cubic (fcc) Cu and body centered cubic (bcc) ~-Fe phases. The average crystalline size of both Fe and Cu particles decreases as the applied current density becomes more negative. Compositional analysis of Fe-Cu films indicates that the Fe content within the films increases with decreasing current density towards more negative values. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to investigate the surface morphology of Fe-Cu films. It is observed that the surface morphology of the films changes from dendritic structure to a cauliflower structure as the applied current density becomes more negative. The surface roughness and grain size of the Fe-Cu films decrease with decreasing applied current density towards more negative values.

  4. Thermal Spraying of CuAlFe Powder on Cu5Sn Alloy

    Science.gov (United States)

    Roata, I. C.; Pascu, A.; Croitoru, C.; Stanciu, E. M.; Pop, M. A.

    2017-06-01

    To improve the corrosion and wear resistance of copper and its alloys, flame spraying has been employed to obtain a relatively homogenous Cu/Al/Fe-based coating. To minimize the defects that usually occur by using this method, a post-coating annealing step has been employed, by using concentrated solar energy as means of thermal surface treatment. Scanning electron micrographs have indicated a reduction in the cracks/pores density and accelerated corrosion testing have indicated a higher performance of the solar-annealed sample, in comparison with the initial reference material. The coating approach mentioned in this paper could be successfully applied to restore several worn tools and instruments, and could also be of use in the renewable energy field (IR-absorbent coatings) or in advanced oxidation processes, such as photocatalysis.

  5. Characterization of transparent superconductivity Fe-doped CuCrO{sub 2} delafossite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taddee, Chutirat [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak, E-mail: teekam@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Effect of Fe substitution on the physical properties in CuCrO{sub 2} is studied. • The substitution of Cr{sup 3+} by Fe{sup 3+} produces a mixed effect on the magnetic properties. • CuCr{sub 1−x}Fe{sub x}O{sub 2} delafossite oxides show transparent superconductivity. - Abstract: Delafossite CuCr{sub 1−x}Fe{sub x}O{sub 2} (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr{sub 1−x}Fe{sub x}O{sub 2} slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV–visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO{sub 2} samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe{sup 3+} for Cr{sup 3+} produced a mixed effect on the magnetic properties of CuCrO{sub 2} delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr{sub 1−x}Fe{sub x}O{sub 2} with a superconducting transition up to 118 K.

  6. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    Science.gov (United States)

    Unocic, Kinga A.; Hoelzer, David T.

    2016-10-01

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  7. Composition of α−Fe nanoparticles precipitated from CuFe alloy studied by hyperfine interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kubániová, Denisa, E-mail: kubaniova@mbox.troja.mff.cuni.cz [Charles University, Faculty of Mathematics and Physics (Czech Republic); Cesnek, Martin, E-mail: martin.cesnek@fjfi.cvut.cz [Czech Technical University, Department of Nuclear Reactors (Czech Republic); Milkovi c, Ondrej [Slovak Academy of Sciences, Institute of Materials Research (Slovakia); Kohout, Jaroslav [Charles University, Faculty of Mathematics and Physics (Czech Republic); Miglierini, Marcel [Czech Technical University, Department of Nuclear Reactors (Czech Republic)

    2016-12-15

    Iron-based nanoparticles prepared by precipitation from solid solution of saturated binary Cu-Fe alloy were studied by transmission electron microscopy, high-energy X-ray diffraction and Mössbauer spectroscopy. The results showed that the investigated as-prepared nanoparticles contained two phases. The major phase was determined as α−Fe and the minor phase as γ−Fe{sub 2}O{sub 3}. Furthermore, additionally annealed samples in Ar protective atmosphere were investigated. Results showed clear decrease in contribution of α−Fe phase and also revealed the presence of various iron oxides (maghemite, magnetite, hematite and wűstite).

  8. Crystal structure and charge localization in Pb2Sr2Y1-xCaxCu3O8 for x=0.0-0.5

    DEFF Research Database (Denmark)

    Jørgensen, J.-E.; Andersen, N.H.

    1993-01-01

    Neutron powder diffraction studies of Pb2Sr2Y1-xCaxCu3O8 samples for x = 0.0-0. 5 have shown that Ca doping causes a positive charge transfer to the CuO2 as well as to the PbO layers. The bond-valency sum for the Cu ions in the CuO2 layer increases as a function of x, while the bond-valency sum f...

  9. Contact angle study on the activation mechanisms of sphalerite with Cu(II) and Pb(II); Estudio de los mecanismos de activacion de la esfalerita con Cu(II) y Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Davila Pulido, G. I.; Uribe Salas, A.

    2011-07-01

    This article presents results of an experimental study on the sphalerite activation with Cu(II) and Pb(II), whose main objective was to investigate the activation mechanisms and to evaluate the magnitude of the hydrophobization achieved with both chemical species. The hydrophobicity acquired by the mineral due to the interaction with the activator and collector (sodium isopropyl xanthate) is characterized making use of the contact angle technique. The results show that Cu(II) replaces the Zn of the external layers of the mineral, promoting the sulfide (S{sup 2}-) oxidation to produce a mixture of CuS, Cu{sub 2}S and S{sup o}, of hydrophobic nature. The subsequent interaction with xanthate increases the hydrophobicity of the mineral surface. In turn, Pb(II) activation of sphalerite is due to the formation of a PbS layer that reacts with xanthate to produce hydrophobic species (e.g., PbX{sub 2}). It is also observed that the hydrophobicity of sphalerite activated with Pb(II) is favored under air atmospheres, as compared to that obtained under nitrogen atmospheres. It is concluded that the hydrophobicity achieved by lead activation may be of the same order of magnitude to that deliverately induced by copper activation. (Author) 11 refs.

  10. Kinetics of Evaporation of Zn and Pb from Carbon-bearing Pellets Made of Dust Containing Zn-Pb-Fe Oxides

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The influence of reduction temperature, size of coal powder and the carbon content on the evaporation rates of Zn and Pb in pellets made of ZnO-PbO-FeO bearing dust has been investigated between 1100€?1300℃. The evaporation rate of Zn and Pb obtained from the experiments has been analyzed with kinetic models. The results show that the control step for evaporation of Zn is reduction reaction of ZnO by CO at the interface,and that the evaporation rate of Pb is controlled by the volatilization of reduction products, i.e. liquid lead. The overall apparent activation energies of Zn and Pb evaporation from the pellet are 79.42kJ/mol and 88.74kJ/mol respectively.

  11. Photocatalytic Characterization of Fe- and Cu-Doped ZnO Nanorods Synthesized by Cohydrolysis

    Directory of Open Access Journals (Sweden)

    Young Rang Uhm

    2013-01-01

    Full Text Available Fe- and Cu-doped ZnO nanorods have been synthesized by a novel process employing a hydrolysis of metal powders. Zn, Fe, and Cu nanopowders were used as starting materials and incorporated into distilled water. The solution was refluxed at 60°C for 24 h to obtain the precipitates from the hydrolysis of Zn and dopants (Cu and Fe. The TEM results for ZnO with and without metal doping showed that the produced powders had a rod-like shape. The rod shape was attributable to the zinc oxide from the hydrolysis of Zn. With an increasing doping content, the UV-vis spectra were shifted to a long wavelength and this result indicates that the band gap was changed by the metal doping. The values of phenol degrading Fe- and Cu-doped ZnO by a solar simulator were measured to be 60 and 75%, respectively.

  12. The electrical conductivity characteristics of Fe/Cu nano-scale multilayer materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A mathematical model for describing the relationship betweenelectrical conductivity and the thickness of bilayer, ratio of sublayer thickness of a nano-scale multilayer material (MLM) is presented. Fe/Cu MLM was synthesized by electron beam physical vapor deposition (EB-PVD) technique, and the dependence of electrical conductivity of Fe/Cu MLM on the bilayer thickness and ratio of sublayer thickness were investigated. It is shown that the electrical conductivity of Fe/Cu MLM with fixed ratio of sublayer thickness decreases sharply when the thickness of bilayer becomes thinner than 30 nm. When the bilayer thickness is kept constant, the electrical conductivity linearly decreases with the increasing ratio of sublayer thickness. The values of parameters in the model were obtained by fitting the measured results of electrical conductivity of Fe/Cu MLM with fixed ratio of sublayer thickness. It is found that the calculated values agree well with measured ones.

  13. Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2015-03-01

    Full Text Available A highly active and magnetically recyclable nanostructured copper–iron oxide (CuFe) catalyst has been synthesized for hydroxylation of benzene to phenol under mild reaction conditions. The obtained catalytic results were correlated with the catalyst...

  14. ELECTROMAGNETIC MICROWAVE PROPERTIES OF Fe82B17Cu1 BALL MILLED ALLOY

    Science.gov (United States)

    Tian, N.; Fan, X. D.; Wang, J. W.; You, C. Y.; Lu, Z. X.; Ge, L. L.

    2013-07-01

    High saturation magnetization and magnetic anisotropy are helpful for getting a high frequency electromagnetic microwave absorption performance. The α-Fe possesses a high saturation magnetization. Fe-B phases exhibit a relatively higher magnetic anisotropy and higher resistivity than α-Fe simultaneously. In this work, we made nanocrystalline powders of Fe82B17Cu1, mainly consisting of α-Fe and Fe2B phases, by ball milling and post-annealing. Electromagnetic microwave characterization shows that Fe82B17Cu1 powders possess a relative high permeability and considerable permittivity. Due to a good electromagnetic impedance matching, a good electromagnetic microwave absorption property (RL < -35 dB) has been achieved at 3.6 GHz. The experimental frequency and the matching thickness are coincident with the quarter wavelength matching condition.

  15. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions.

    Science.gov (United States)

    Modin, Oskar; Wang, Xiaofei; Wu, Xue; Rauch, Sebastien; Fedje, Karin Karlfeldt

    2012-10-15

    In a microbial bioelectrochemical system (BES) living microorganisms catalyze the anodic oxidation of organic matter at a low anode potential. We used a BES with a biological anode to power the cathodic recovery of Cu, Pb, Cd, and Zn from a simulated municipal solid waste incineration ash leachate. By varying the control of the BES, the four metals could sequentially be recovered from a mixed solution by reduction on a titanium cathode. First, the cell voltage was controlled at zero, which allowed recovery of Cu from the solution without an electrical energy input. Second, the cathode potential was controlled at -0.51 V to recover Pb, which required an applied voltage of about 0.34 V. Third, the cathode potential was controlled at -0.66 V to recover Cd, which required an applied voltage of 0.51 V. Finally, Zn was the only metal remaining in solution and was recovered by controlling the anode at +0.2V to maximize the generated current. The study is the first to demonstrate that a BES can be used for cathodic recovery of metals from a mixed solution, which potentially could be used not only for ash leachates but also for e.g. metallurgical wastewaters and landfill leachates.

  16. [Response of Nostoc flageliforme cell to Cu2+, Cr2+ and Pb2+ stress].

    Science.gov (United States)

    Guo, Jinying; Shi, Mingke; Zhao, Yanli; Ren, Guoyan; Yi, Junpeng; Niu, Leilei; Li, Juan

    2013-06-04

    This study aimed to investigate the effects of Cu2+, Cr2+ and Pb2+ stress on Nostoc flagelliforme cell. The response of Nostoc flagelliforme cell was analyzed under the stress. The modified BG11 culture medium containing different heavy metal ions of 0, 0.1, 1.0, 10, 100 mg/L was used to cultivate Nostoc flagelliforme cell at 25 degrees C and light intensity of 80 micromol/(m x s). Electrolyte leakage, the activities of superoxide dismutase, the content of malondialdehyde, proline, soluble protein and trehalose were analyzed. Under 1 - 100 mg/L Cu2+, Cr2+ and Pb2+ stress, electrolyte leakage and malondialdehyde contents in Nostoc flagelliforme cell were higher than those in the control group during heavy metal ions stress. Meanwhile, superoxide dismutase activity increased slightly under 10 mg/L, but was lower afterwards. The contents of proline, soluble protein and trehalose increased under 10 mg/L heavy metal ions stress, while declined under extreme heavy metal ions stress (100 mg/L). Nostoc flagelliforme cell has resistance to low heavy metal ions stress, but is damaged badly under extreme heavy metal ions stress.

  17. Comparison Studies of Dielectric and AC Conduction of PbPc and CuPc Thin Films

    Directory of Open Access Journals (Sweden)

    S. Sivamalar

    2012-08-01

    Full Text Available The thin film of Lead Phthalocyanine (PbPc and Copper Phthalocyanine (CuPc on glass are prepared by Vacuum deposition method. Deposition of PbPc and CuPc on pre-cleaned glass substrates under the pressure of 10-6 Torr are achieved by slowly varying current of 20 Volt. The rate of evaporation is properly controlled and maintained constant during all the evaporations. The thicknesses of the films are 150 nm, 300 nm and 450 nm on glass substrate. Dielectric and AC conduction studies of Lead Phthalocyanine and Cupper Phthalocyanine thin films have been studied. The variations of capacitance with frequency at different, permittivity with temperature, capacitance with temperature and ac conductance with frequency at different temperatures of PbPc and CuPc have been studied. The activation energies have been determined from the slope of 1000/T vs. log Gp curves at different frequencies (where Gp= -Eg/RT.

  18. Evaporation Mechanism of Cu from Liquid Fe Containing C and S

    Science.gov (United States)

    Jung, Sung-Hoon; Kang, Youn-Bae

    2016-08-01

    A number of liquid-gas experiments were carried out in order to elucidate evaporation mechanism of Cu from liquid Fe containing C and S. Rate of Cu evaporation in liquid Fe droplets at 1873 K (1600 °C) was determined using electromagnetic levitation equipment. Evaporation rate of the Cu under various conditions (flow rate of gas mixtures, initial C, and S concentrations) was examined. It was found from a series of kinetic analyses of the experimental data that Cu evaporates in forms of Cu(g) and CuS(g). As was reported for the Sn evaporation from liquid iron (Jung et al. Met. Mater. Trans. 46B, 250-258, 2014), S plays two roles for the evaporation of Cu: accelerating the rate by forming CuS(g) and decelerating the rate by blocking evaporation sites. As a result of these combinatorial effects, the evaporation of Cu is decelerated at low S content, but is accelerated at high S content. Based on the elucidated mechanism, an evaporation model equation for Cu was developed in the present study, which takes into account (1) evaporation of Cu in the two forms (Cu(g) and CuS(g)), (2) surface blocking by S using ideal Langmuir adsorption, and (3) effect of C. The obtained rate constant of a reaction Cu i + S i = CuS i (g), k CuS R , is 1.37 × 10-9 m4 mol-1 s-1, and the residual rate constant, k CuS r , is 4.11 × 10-10 m4 mol-1 s-1 at 1873 K (1600 °C). Both of them were found to be one order lower than those for Sn evaporation.

  19. Fine scale characterization of surface/subsurface and nanosized debris particles on worn Cu-10 % Pb nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amit S.; Biswas, Krishanu, E-mail: kbiswas@iitk.ac.in; Basu, Bikramjit [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India)

    2013-05-15

    The identification of the damage mechanisms involved in the wear process demands the finer scale characterization of the surface, as well as the subsurface region of the wear scar region, and to this end, this article discusses the results obtained with Cu-10 wt% Pb-based metallic nanocomposites using a host of characterization techniques, including transmission electron microscopy and ion milling microscopy. Apart from finer scale characterization to understand deformation and cracking during the wear process, X-ray photoelectron spectroscopy analysis of wear debris confirms the occurrence of oxidation of Pb phase to Pb{sub 3}O{sub 4}. In order to understand the role of oxides on friction and wear, sliding wear tests in argon were also carried out and such tests did not result in the formation of any tribo-oxides, as confirmed using electron probe microanalysis. Conclusively, oxidative wear is attributed as the dominant wear mechanism in ambient conditions for Cu-10 wt% Pb composite.

  20. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin

    2016-01-01

    In this work, we accurately measure the electrical properties of individual Fe30Co61Cu9/Cu multilayered nanowires using nanomanipulators in in situ scanning electron microscopy to reveal that interfacial transition layers are influential in determining their transport behaviors. We investigate the morphology, crystal structure and chemistry of the Fe30Co61Cu9/Cu multilayered nanowires to characterize them at the nanoscale. We also compare the transport properties of these multilayered nanowires to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed analysis of the electrical data reveals that interfacial transition layers influence the electrical properties of multilayered nanowires and are likely to have a strong impact on the life of nanodevices. This work contributes to a basic understanding of the electrical parameters of individual magnetic multilayered nanowires for their application as functional building blocks and interconnecting leads in nanodevices and nanoelectronics, and also provides a clear physical picture of a single multilayered nanowire which explains its electrical resistance and its source of giant magnetoresistance. © The Royal Society of Chemistry 2016.

  1. Structural and magnetic properties of Cu-alloyed FePd films

    Energy Technology Data Exchange (ETDEWEB)

    Polit, A., E-mail: aleksander.polit@gmail.com [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland); Makarov, D., E-mail: d.makarov@ifw-dresden.de [Chemnitz University of Technology, Institute of Physics, D-09107 Chemnitz (Germany); Brombacher, C., E-mail: Christoph.Brombacher@vacuumschmelze.com [Chemnitz University of Technology, Institute of Physics, D-09107 Chemnitz (Germany); Krupinski, M., E-mail: michal.krupinski@ifj.edu.pl [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland); Perzanowski, M., E-mail: marcin.perzanowski@ifj.edu.pl [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland); Zabila, Y., E-mail: yevhen.zabila@ifj.edu.pl [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland); Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de [Chemnitz University of Technology, Institute of Physics, D-09107 Chemnitz (Germany); Marszałek, M., E-mail: marta.marszalek@ifj.edu.pl [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland)

    2015-05-01

    Multilayer films [Cu(d Å)/Fe(9 Å)/Pd(11 Å)]{sub 5} were deposited at room temperature on Si(001)/SiO{sub 2}(400 nm) substrates. In order to induce chemical L1{sub 0} ordering, the as-deposited samples were post-annealed by rapid thermal annealing (RTA) at 600 °C for 90 s followed additionally by heating in ultra-high vacuum (UHV) at 700 °C up to several hours. In this study the impact of post-annealing on the structural and magnetic properties of FePdCu alloy films in dependence on the Cu content was investigated. It was found that the addition of Cu to the FePd alloy has a strong influence on the chemical ordering process and the (001) texture formation. After the RTA treatment only an isotropic distribution of the easy axis of magnetization with coercive fields in the range of a few hundred mT was observed. In contrast, samples which were additionally heated for 1 h at 700 °C revealed an out-of-plane easy axis of magnetization with an effective magnetic anisotropy of about 2×10{sup 5} J/m{sup 3} for the sample containing 10 at% of Cu. - Highlights: • Fabrication by two-step annealing of FePdCu thin alloy films. • The impact of post-annealing on the structural and magnetic properties of FePdCu alloy films. • The addition of Cu to the FePd alloy has a strong influence on the chemical ordering process and the (001) texture formation. • Importance of texture in polycrystalline L1{sub 0} FePdCu alloy for perpendicular magnetic anisotropy.

  2. Microstructural and magnetic characterizations of CoFeCu electrodeposited in self-assembled mesoporous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fortas, G., E-mail: g.fortas@gmail.com [Centre de Recherche en Technologie des Semi-conducteur pour l’Energétique, Bd. 2 Frantz Fanon, les sept merveilles B.P.140, Alger (Algeria); Université des Sciences et de la Technologie Houari Boumediene, Faculté des Physique, BP 32 El Alia 16111 Bab Ezzouar, Alger (Algeria); Haine, N. [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Physique, BP 32 El Alia 16111 Bab Ezzouar, Alger (Algeria); Sam, S.; Gabouze, N. [Centre de Recherche en Technologie des Semi-conducteur pour l’Energétique, Bd. 2 Frantz Fanon, les sept merveilles B.P.140, Alger (Algeria); Saifi, A. [Université Mouloud Mammeri, laboratoire de physique et de chimie quantique, BP No. 17 RP Hasnaoua Tizi-Ouzou 15000 (Algeria); Ouir, S. [Université Said SDB, Route De Soumaa BP 270, Blida (Algeria); Menari, H. [Centre de Recherche en Technologie des Semi-conducteur pour l’Energétique, Bd. 2 Frantz Fanon, les sept merveilles B.P.140, Alger (Algeria)

    2015-03-15

    Self-assembled mesoporous silicon with quasi-regular pore arrangements has been fabricated by the electrochemical anodization process in hydrofluoric acid solution. CoFeCu was electrodeposited in this structure from a bath containing sodium acetate as a complexing agent with a pH value of 5. The effect of current density on the morphology, the structure and the magnetic properties of CoFeCu deposit was studied by SEM, EDS, DRX and VSM. It has been shown that the morphology and structure of samples were strongly influenced by the current density and etching duration. The micrographs show the vertical and branched nanowires and also a discontinuous growth of wires. Further, the growth of a thick layer from the grain boundaries of released CoFeCu wires is produced. The magnetic hysteresis loops demonstrate that the CoFeCu nanowires exhibit easy magnetic axis perpendicular to the PS channels axis when the current density varied from 3 to 10 mA/cm{sup 2}. Nevertheless, they reveal a no magnetic anisotropy of CoFeCu nanostructures deposited only in the outside of porous silicon, probably due to the vanishing the shape anisotropy. - Highlights: • CoFeCu deposit has been electrodeposited on self assembled mesoporous silicon. • SEM observation shows that CoFeCu embedded in Porous silicon channels. • Magnetic measurements show the anisotropy magnetic behavior of CoFeCu nanostructures. • The growth rate of nanowires is enhanced with an increase of current density.

  3. Phase field simulation of monotectic transformation for liquid Ni-Cu-Pb alloys

    Institute of Scientific and Technical Information of China (English)

    LUO BingChi; WANG HaiPeng; WEI BingBo

    2009-01-01

    Based on the subregular solution model, the liquid phase separation of ternary (NixCu100-x)50Pb50monotectic alloys is simulated by the phase field method. It is found that if the surface segregation potential is not incorporated, the dynamic morphologies of alloy melt show a transition from disperse microstructure into bicontinuous microstructure with the increase of fluidity parameter. When the sur-face segregation potential is coupled, Pb-rich phase migrates preferentially to the surface of the liquid alloy, and the Ni-rich phase depends on the Pb-rich phase to nucleate. With the extension of the phase separation time, the surface layer is formed through coagulation and growth, and its thickness gradu-ally increases. The Ni-rich phase migrates to the central part, and finally a two-layer core-shell micro-structure is produced. The concentration in the surface layer fluctuates more conspicuously than that inside the bulk phase, which subsequently transfers from the surface to the interior by a wave. The fluid field near the liquid-liquid interface is strong at the beginning of phase separation, and reduces later on. The surface segregation is essential to the formation of the surface layer, concentration profile variation, fluid field distribution and phase separation morphology.

  4. Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars.

    Science.gov (United States)

    Doumer, M E; Rigol, A; Vidal, M; Mangrich, A S

    2016-02-01

    Sorption and desorption of heavy metals (Cd, Cu, Pb, and Zn) was evaluated in biochars derived from sugarcane bagasse (SB), eucalyptus forest residues (CE), castor meal (CM), green coconut pericarp (PC), and water hyacinth (WH) as candidate materials for the treatment of contaminated waters and soils. Solid-liquid distribution coefficients depended strongly on the initial metal concentration, with K d,max values mostly within the range 10(3)-10(4) L kg(-1). For all biochars, up to 95 % removal of all the target metals from water was achieved. The WH biochar showed the highest K d,max values for all the metals, especially Cd and Zn, followed by CE (for Cd and Pb) and PC (for Cd, Pb, and Zn). Sorption data were fitted satisfactorily with Freundlich and linear models (in the latter case, for the low concentration range). The sorption appeared to be controlled by cationic exchange, together with specific surface complexation at low metal concentrations. The low desorption yields, generally less than 5 %, confirmed that the sorption process was largely irreversible and that the biochars could potentially be used in decontamination applications.

  5. Stabilization of Pb and Cu in contaminated soils using (nano)oxides - a preliminary study

    Science.gov (United States)

    Komárek, Michael; Michálková, Zuzana; Vaněk, Aleš

    2013-04-01

    Chemical stabilization techniques (the application of various stabilizing amendments, which by chemical means reduces contaminant mobility, bioavailability and bioaccessibility) have shown to be possible less destructive alternatives to conventional remediation options. Most stabilization techniques aim at rendering less available the metal(loid) fractions that can pose significant environmental and/or toxicological risks and protecting the functionality of the soil environment. Nano-particulate oxides (particle size of 1-100 nm) are important scavengers of contaminants in soils and due to their reactive and relatively large specific surface area, engineered oxide nanoparticles are promising materials for the remediation of soils contaminated with inorganic pollutants. However, studies assessing the efficiency of these amendments in contaminated soils are still rather scarce. Therefore, the aim of this work is to evaluate the stabilization efficiency of four (nano)oxides (maghemite, magnetite, gibbsite and amorphous Mn oxide (AMO)) in two soils contaminated with Cu (400 mg/kg; pH 3.6) and Pb (1500 mg/kg; pH 5.5), respectively, using chemical extraction methods (CaCl2, EDTA and the BCR sequential extraction) and direct sampling of soil solution using rhizons. The results suggest that the application of the oxides did not influence the pH of the soils, with the only exception of the AMO, which increased the pH and resulted into the formation of MnCO3 on the oxide surface (data from SEM and XRD). Additionally, the high reactivity of the oxides led to increased DOC concentrations originating from the dissolved soil organic matter, especially in the case of the AMO. The AMO was also the most efficient stabilizing amendment for Cu (most significant decrease in Cu in soil solution, in the exchangeable fraction and CaCl2/EDTA extracts), promoted by the pH increase. Despite their lower particle size, maghemite, magnetite and gibbsite were less efficient; although partial

  6. Structural, electronic, and elastic properties of CuFeS2: first-principles study

    Science.gov (United States)

    Zhou, Meng; Gao, Xiang; Cheng, Yan; Chen, Xiangrong; Cai, Lingcang

    2015-03-01

    The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 µB per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 ± 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.

  7. A Comparative Kinetics Study between Cu/SSZ-13 and Fe/SSZ-13 SCR Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Wang, Yilin; Kollar, Marton; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2015-11-09

    Cu- and Fe/SSZ-13 catalysts with the same Cu(Fe)/Al ratios are synthesized using the same parent SSZ-13 starting material. The catalytic performance for both fresh and hydrothermally aged catalysts is tested with NO and NH3 oxidation, and standard SCR reactions under steady-state conditions, and standard and fast SCR under temperature-programmed conditions. For standard SCR, Cu/SSZ-13 shows much better low-temperature performance which can be explained by NH3-inhibition of Fe/SSZ-13. During hydrothermal aging, both catalysts undergo dealumination but Fe/SSZ-13 dealuminates more severely. For aged catalysts, Cu/SSZ-13 gains oxidation activities due to formation of CuOx. However, Fe/SSZ-13 loses oxidation activities although formation of FeOx clusters and FeAlOx species also occur. Because of such physical properties differences, aged Cu/SSZ-13 loses while Fe/SSZ-13 maintains high-temperature SCR selectivities. A physical mixture of aged catalysts provides stable SCR performance in a wide temperature range and is able to decrease N2O formation at high reaction temperatures. This suggests that Fe/SSZ-13 can be used as a cocatalyst for Cu/SSZ-13 for transportation applications. During temperature-programmed SCR reactions, weak hysteresis is found during standard SCR due to NH3 inhibition. For fast SCR, hysteresis caused by NH4NO3 inhibition is much more significant. NH4NO3 deposition is greatly enhanced by Brønsted and Lewis acidity of the catalysts.

  8. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  9. Influence of Pb-rich phases of precursor powder on microstructural evolution in the silver-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox superconducting tapes

    DEFF Research Database (Denmark)

    Chen, X.P.; Grivel, Jean-Claude; Li, M.Y.;

    2010-01-01

    The influence of Pb-rich phases of precursor powder on microstructural evolution during the first heat treatment of the silver-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox ((Bi,Pb)-2223/Ag) superconducting tapes was studied by means of in situ synchrotron X-ray diffraction. Three monofilament tapes were fabricat...

  10. Cu-Zn-Pb multi isotopic characterization of a small watershed (Loire river basin, France)

    Science.gov (United States)

    Desaulty, A. M.; Millot, R.; Perret, S.; Bourrain, X.

    2015-12-01

    Combating metal pollution in surface water is a major environmental, public health and economic issue. Knowledge of the behavior of metals, such as copper (Cu), zinc (Zn) and lead (Pb) in sediments and dissolved load, is a key factor to improve the management of rivers. Recent advances in mass spectrometry related to the development of MC-ICPMS allow to analyze the isotopic composition of these elements, and previous studies show the effectiveness of isotopic analyses to determine the anthropogenic sources of pollution in environment. The goal of this study is to use the Cu-Zn-Pb multi-isotopic signature to track the pollutions in surface water, and to understand the complex processes causing the metals mobilization and transport in environment. More particularly we investigate the mechanisms of distribution between the dissolved load and particulate load, known to play an important role in the transport of metals through river systems. As case study, we chose a small watershed, poorly urbanized in the Loire river basin. Its spring is in a pristine area, while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. First a sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Then to simulate a lot of potential natural and anthropogenic modifications of environmental conditions, we made sequential extraction protocol using various reagents on the sediments. Isotopic analyzes were performed also on the various extracting solutions. Isotopic ratios were measured using a Neptune MC-ICPMS at the BRGM, after a protocol of purification for Zn and Cu. The results showed that, these isotopic systematics reveal important informations about the mechanists of mobilization and transport of metals through river systems. However experiments performed under laboratory conditions will be necessary

  11. Nerita chameleon as Biomonitoring Agent for Pb, Cd, Cu and Zn in Malaysian Intertidal Rocky Shore Environment

    Directory of Open Access Journals (Sweden)

    Mohd Fuad Miskon

    2015-06-01

    Full Text Available Pb, Cd, Cu and Zn in the soft tissue of Nerita chameleon from particular rocky shore sites along the east coast of Peninsular Malaysia were investigated. Samples were measured using ICP-MS with standard configuration. The metal accumulation patterns indicate consistent enrichment of essential metals. Locations with relatively high concentrations of the contaminant metals Pb, Cd and Cu are related to their close proximity to industrial activities and urban sites. Comparison with maximum permissible limits of toxic metals in food indicated the values were well within safety levels.

  12. One pot synthesis of Pb S/Cu{sub 2}S core-shell nanoparticles and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, T.; Gomez, I., E-mail: maria.gomez@uanl.edu.mx [Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Pedro de Alba, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2014-07-01

    The synthesis of Pb S/Cu{sub 2}S core-shell nanoparticles with emission on the visible range and with improved luminescence properties was carried out by the colloidal solution-phase growth method by using simple stabilizers such as trisodium citrate and 3-mercaptopropionic acid. The core shell arrangement for particles with different crystalline structure was achieved, in addition this is the first report related to the synthesis Pb S/C{sub 2}S core-shell system. The data obtained from absorption spectra, Pl spectra, and HRTEM image provided direct proof of the formation of Pb S core with size around 11 nm and Cu{sub 2}S shell of 5 nm thickness. According to the UV-vis absorption and Pl spectrum the optical characteristics observed in the synthesized material correspond to a Pb S/Cu{sub 2}S system that has a higher confinement effect than the pure Pb S nanoparticles. The Q Y was improved in 15% from Pb S/C{sub 2}S nanoparticles. The estimated band (Homo-Lumo) alignment determined by C V measurements corresponds to a type-I core shell arrangement. The synthesized material was studied with different techniques. The size and dispersion of the particles were determined by ultraviolet-visible (UV-Vis), photoluminescence and quantum yield, Dynamic Light Scattering method and X-ray diffraction with copper radiation (λ = 0.15418 nm). (Author)

  13. Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China

    Science.gov (United States)

    Chen, Wei Terry; Zhou, Mei-Fu; Gao, Jian-Feng; Hu, Ruizhong

    2015-10-01

    Fe-Cu deposits in the Kangdian Fe-Cu metallogenic province, SW China, are hosted in Paleoproterozoic meta-volcanic-sedimentary sequences and are spatially associated with coeval mafic intrusions. Several well-known examples are the giant Lala, Dahongshan, and Yinachang deposits. They have a common paragenetic sequence of an early Fe-oxide stage associated with sodic alteration and a late Cu-sulfide stage associated with potassic-carbonate alteration. Magnetite dominates the Fe-oxide stage of these deposits but is also present in the Cu-sulfide stage of the Lala deposit. This study uses trace element compositions of magnetite to examine the nature and origin of the ore-forming fluids. The magnetite has variable concentrations of Ti, Al, Mg, Mn, Si, V, Cr, Ca, Co, Ni, Sc, Zn, Cu, Mo, Sn, and Ga, which are thought to have been controlled mainly by fluid compositions and/or intensive parameters (e.g., temperature and oxygen fugacity ( fO2)). Fluid-rock interaction and coprecipitating mineral phases appear to be less important in controlling the magnetite compositions. Magnetite grains in the Fe-oxide stage of the Lala and Dahongshan deposits have comparable trace element compositions and were likely precipitated from chemically similar fluids. High Ni contents of magnetite in both deposits, coupled with previous isotopic data and the fact that the two deposits are spatially associated with coeval mafic intrusions, strongly suggest that the ore-forming fluids were genetically related to the mafic magmas that formed the intrusions. Magnetite grains in the Fe-oxide stage of the Yinachang deposit have much lower V and Ni but higher Sn and Mo contents than those of the Lala and Dahongshan deposits and are thus thought to have precipitated from more oxidized and Mo-Sn-rich fluids that may have evolved from relatively felsic magmas. Magnetite grains from the Cu-sulfide and Fe-oxide stages of the Lala deposit are broadly similar in composition, but those in the Cu

  14. Fe and Co nanostructures embedded into the Cu(100) surface: Self-Organization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, S. V., E-mail: kolesnikov@physics.msu.ru; Klavsyuk, A. L.; Saletsky, A. M. [Moscow State University, Faculty of Physics (Russian Federation)

    2015-10-15

    The self-organization and magnetic properties of small iron and cobalt nanostructures embedded into the first layer of a Cu(100) surface are investigated using the self-learning kinetic Monte Carlo method and density functional theory. The similarities and differences between the Fe/Cu(100) and the Co/Cu(100) are underlined. The time evolution of magnetic properties of a copper monolayer with embedded magnetic atoms at 380 K is discussed.

  15. Photoluminescence and semiconducting behavior of Fe, Co, Ni and Cu implanted in heavy metal oxide glasses

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2016-07-01

    Full Text Available Transition metal ions (0.5 wt% of Fe2O3, CoO, NiO or CuO doped heavy metal oxide glasses having chemical composition of 60PbO·20Bi2O3·20 MxOy mol% (where MxOy = B2O3 or SiO2 or P2O5 were prepared by conventional melt annealing method. Combined optical and photoluminescence properties have been measured and employed to evaluate the prepared glassy samples. From the absorption edge data, the values of the optical band gap Eopt, Urbach energy (ΔE and refractive index were calculated to estimate semiconducting behavior. Photoluminescence and values of the optical energy gap were found to be dependent on the glass composition. The variations of the photoluminescence intensity, values of optical band gap, Urbach energy and refractive index gave an indication to use the prepared glasses for design of novel functional optical materials with higher optical performance.

  16. Effect of CuF2 on the Synthesis and Superconducting Properties of (Bi,Pb)2Sr2Ca2Cu3O10 Bulk Ceramic Samples

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Andersen, Niels Hessel

    2013-01-01

    Bulk polycrystalline samples with Bi1.72Pb0.34Sr1.87Ca1.91Cu3.13O9.83−x F x (0.00≤x≤0.51) were prepared by a solid-state route using CuF2 as a fluorine source. CuF2 was introduced in the precursor powders either by direct mixing with the other starting reagents or by addition to precalcined precu...

  17. Removal of remazol yellow from aqueous solution using Fe-Cu and Fe-Ni nanoscale oxides and their carbonaceous composites.

    Science.gov (United States)

    Trujillo-Reyes, Jésica; Sánchez-Mendieta, Víctor; Solache-Ríos, Marcos José; Colín-Cruz, Arturo

    2012-01-01

    Fe-Cu and Fe-Ni nanoscale oxides and their carbonaceous composites (C/Fe-Cu and C/Fe-Ni, 75/25 wt.%; C/Fe-Cu and C/Fe-Ni 95/5 wt.%), made from pyrolysis of sewage sludge, have been evaluated to remove remazol yellow textile dye from aqueous solution. The kinetic and sorption isotherms experimental results were best fitted to the pseudo-second-order kinetic and Langmuir-Freundlich isotherm models, which indicates that the sorption mechanism may be chemisorption onto heterogeneous surfaces. Fe-Ni and Fe-Cu nanoscale oxides adsorption capacities were 157.8 mg/g and 117.6 mg/g, resulting in nearly 83% and 70% of dye removal, respectively, using 100 mg/L of initial dyestuff concentration and 10 mg of each material. The adsorption capacities of Fe-Cu, Fe-Ni oxides and C/FCu 75/25%, C/Fe-Ni 75/25% composites provide better results at pH between 3 and 5. In addition, three sorption-desorption cycles using 30% H2O2 solution and distilled water were performed: sorption efficiencies for all materials decreased after each cycle; nevertheless, Fe-Cu and Fe-Ni nanoscale oxides were the best materials for the removal of remazol yellow dye.

  18. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells

    Science.gov (United States)

    Chen, Lung-Chieh; Chen, Cheng-Chiang; Liang, Kai-Chieh; Chang, Sheng Hsiung; Tseng, Zhong-Liang; Yeh, Shih-Chieh; Chen, Chin-Ti; Wu, Wen-Ti; Wu, Chun-Guey

    2016-09-01

    Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from 300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially produced perovskite solar cells.

  19. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Jensen, Pernille Erland

    2009-01-01

    Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution...... level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10......% was desorbed at pH 2.5 from one soil, whereas in another soil 60% Pb was desorbed at this pH. Sequential extraction was made and the soils in which a high percentage of Pb was found in the residual phase (adsorbed strongest) was also the soils where less Pb was desorbed at low pH in the desorption experiments...

  20. Geomaterials related to photovoltaics: a nanostructured Fe-bearing kuramite, Cu3SnS4

    Science.gov (United States)

    Di Benedetto, Francesco; Bencistà, Ilaria; D'Acapito, Francesco; Frizzera, Silvia; Caneschi, Andrea; Innocenti, Massimo; Lavacchi, Alessandro; Montegrossi, Giordano; Oberhauser, Werner; Romanelli, Maurizio; Dittrich, Herbert; Pardi, Luca A.; Tippelt, Gerold; Amthauer, Georg

    2016-09-01

    The successful synthesis of nanoparticles of Fe-bearing kuramite, (Cu,Fe)3SnS4, is reported in this study. Nanocrystalline powders were obtained through a mild, environmentally friendly and scalable solvothermal approach, in a single run. The sample was the object of a multidisciplinary investigation, including X-ray diffraction and absorption, scanning electron microscopy and microanalysis, electron paramagnetic resonance, diffuse reflectance and Mössbauer spectroscopy as well as SQUID magnetometry. The nanoparticles consist of pure Fe-bearing kuramite, exhibiting tetragonal structure. The valence state of the metal cations was assessed to be Cu+, Sn4+ and Fe3+. The material presents a band gap value of 1.6 eV, which is fully compatible with solar cell applications. The uptake of Fe by nanokuramite opens a compositional field where the physical properties can be tuned. We thus foster the application of Fe-bearing nanokuramite for photovoltaics and energy storage purposes.

  1. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils.

    Science.gov (United States)

    Khan, Waheed Ullah; Ahmad, Sajid Rashid; Yasin, Nasim Ahmad; Ali, Aamir; Ahmad, Aqeel

    2017-06-03

    The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.

  2. Spin-Polarized Electron Injection in Co/Cu/Fe Sandwich Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Shou-Guo; CHEN Yan-Xue; WANG Zhi-He; CHEN Qiang; XIE Shi-Jie; MEI Liang-Mo

    2000-01-01

    A material asymmetry Co/Cu/Fe junction structure has been prepared for studying the spin-polarized electron injection at 77K. The sample performance was demonstrated to be analogous to that of a bipolar transistor. The maximal value of the output pulse voltage between Cu and Fe layers could reach the order of severalμV when the bias current between Co and Cu layers was 10μA. The interface roughness, photograph of material, magnetic loop and injection characteristic curves have been measured. Some important points on this topic have been discussed.

  3. [Speciation analysis of trace elements Cu, Fe and Zn in serum by flame atomic absorption spectrophotometry].

    Science.gov (United States)

    Hu, Jun; Chang, Yao-Ming; Gao, Shuang-Bin; Hai, Chun-Xu; Li, Jin-Sheng; Xie, Xiao-Ping

    2008-03-01

    Since biological functions of the elements are generally different, depending on their chemical forms, chemical speciation analysis is really important in metallomics research. Thus, multielement analysis and chemical speciation of the elements in serum were carried out in the present work. A hyphenated technique was developed for high-throughput speciation analysis of the copper, iron and zinc in serum by molecular biology technology and flame atomic absorption spectrophotometry (AAS). Here, Cu, Fe and Zn in serum were classifyied as the forms of combination and non-combination. The serum protein was precipitated by 60% concentration of ethanol under hypothermy. The forms of combination of Cu, Fe and Zn in serum which combined with proteins were in precipitations, and the forms of non-combination of Cu, Fe and Zn in serum, which were free ions, were in supernatant. The total amount of Cu, Fe and Zn in serum and the amount of the forms of non-combination of Cu, Fe and Zn were analyzed by AAS. The amount of the forms of combination of Cu, Fe and Zn was obtained by calculation. The detection limit of Cu in serum by the method is around and 9.84 x 10(-3) microg x mL(-1). For Fe and Zn, the detection limit is about 2.76 x 10(-2) microg x mL(-1) and 1.06 x 10(-3) microg x mL(-1), respectively. The percentage recovery of trace elements Cu, Fe and Zn by the proposed procedure is in the range 95.0%-101.0%, 95.0%-102.0% and 95.0%-103.0%, respectively. The relative standard deviation (RSD) of trace elements Cu, Fe and Zn in the serum is in the range 1.88%-2.26%, 0.56%-1.59% and 0.34%-1.36%, respectively. Speciation of trace elements Cu, Fe and Zn in the serum of SD rat were analyzed by the method.

  4. Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures

    Science.gov (United States)

    Mohamed Basith, N.; Judith Vijaya, J.; John Kennedy, L.; Bououdina, M.

    2013-09-01

    Pure CuO and Fe-doped CuO nanostructures with different weight ratios (0.5, 1.0, 1.5, and 2.0 at wt% of Fe) were synthesized via the microwave combustion method. The synthesized samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). XRD patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure and also confirmed that Fe ions successfully incorporated into CuO crystal lattice by occupying Cu ionic sites. Interestingly, the morphology was found to change considerably from nanoflowers to nano-rod and disk-shaped then to nanoparticles with the variation of Fe content. The optical band gap calculated using DRS was found to be 2.8 eV for pure CuO and increases up to 3.4 eV with increasing ‘Fe’ content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures are found to be room temperature ferromagnetism (RTF) with an optimum value of saturation magnetization at 2.0 wt% of Fe-doped CuO, i.e. 1.2960×10-3 emu/g.

  5. Preparation and oxygen permeation properties of SrFe(Cu)O3-δ dense ceramic membranes

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Tingting Wang; Xinfa Dong; Weiming Lin

    2009-01-01

    Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3-δ were prepared by solid-state reaction method.The crystal structure,oxygen nonstoichiometry,and phase stability of the materials were studied by TGA and XRD.Oxygen permeation fluxes through these membranes were studied at operating temperature ranging from 750 to 950 ℃.Results showed that doping Cu in SrFeO3-δ compound had a significant effect on the formation of single-phased perovskite structure.For SrFe1-xCuxO3-δ series materials,the oxygen nonstoichiometry and the oxygen permeation flux increased considerably with the increase of Cu-doping content (x = 0.1-0.3).The sintering property of the membrane decreased significantly when the Cu substitution amount reached 40%.SrFe0.7CU0.3O3-δ showed high oxygen permeation flux,but SrCuO2 and Sr2Fe2O5 phases formed in the compound after oxygen permeation test induced cracks in the membrane.

  6. PREPARATION OF NANO-CRYSTALLINE Fe-Cu THIN FILMS AND THEIR MAGNETIC PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    X.F.Bi; S.K.Gong; H.B.Xu; K.I.Arai

    2002-01-01

    Fe-Cu thin films of 0.2μm in thickness with different Cu contents were prepared byusing r.f. magnetron sputtering onto glass substrate. The effect of sputtering param-eters, including Ar gas pressure and input rf power, on the structure and magneticproperties was investigated. It was found that when the power is lower than 70W,the structure of the films remained single bcc-Fe phase with Cu solubility of up to50at.%. TEM observations for the bcc-Fe phase showed that the grain size was inthe nanometer range of less than 20nm. The coercivity of Fe-Cu films was largelyaffected by not only Ar gas pressure but also rf power, and reached about 2.5Oe in thepressure of 0.67-6.67Pa and in the power of less than 100W. In addition, saturationmagnetization, with Cu content less than 60at.%, was about proportional to the con-tent of bcc-Fe. When Cu content was at 60at.%, however, saturation magnetizationwas much smaller than its calculation value.

  7. Preparation of nanometer FeCuP alloy and its application in decomposition of PH3

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new ternary Fe-based alloy catalyst FeCuP applied to decompose PH3 was prepared with low-cost material by chemical reduction deposition method. The properties of it were characterized by XRD, ICP and SEM. Its catalytic activity on the decomposition of PH3 and the decomposition conditions were studied. FeCuP alloy exhibits high thermal stabilities and high catalytic activity. Using it as catalyst, the decomposition temperature of phosphine decreases from over 800 ℃ to 400-500 ℃. The decomposition rate of phosphine achieved 100%.

  8. Atomic-partial vibrational density of states of i-AlCuFe quasicrystals

    CERN Document Server

    Parshin, P P; Brand, R A; Dianoux, A J; Calvayrac, Y

    2002-01-01

    We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al sub 6 sub 2 Cu sub 2 sub 5 sub . sub 5 Fe sub 1 sub 2 sub . sub 5. The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)

  9. Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation

    CERN Document Server

    Becquart, C S

    2003-01-01

    Cu plays an important role in the embrittlement of pressure vessel steels under radiation and entities containing both Cu atoms and vacancies seem to appear as a consequence of displacement cascades. The characterisation of the stability as well as the migration of small Cu-vacancy complexes is thus necessary to understand and simulate the formation of these entities. For instance, cascade ageing studied by kinetic Monte Carlo or by rate theory models requires a good characterisation of such complexes which are parameters for these methods. We have investigated, by ab initio calculations based on the density functional theory, point defects and small defects in dilute FeCu alloys. The structure of small Cu clusters and Cu-vacancy complexes has been determined, as well as their formation and binding energies. Their relative stability is discussed. Vacancy migration energies in the presence of Cu atoms have been calculated and analysed. All the results are compared to the figures obtained with empirical interat...

  10. Ferroelectric behaviour of microwave sintered iron deficient PbFe12O19-δ

    Science.gov (United States)

    Prathap, S.; Naidu, K. Chandra Babu; Madhuri, W.

    2016-05-01

    PbFe12-xO19-δ (x= 0, 0.25, 0.50, 0.75 & 0.1) ceramics are synthesized via sol-gel auto-combustion technique and sintered at a temperature of 900°C for 45 min. using microwave furnace. The XRD confirms the M-type hexagonal phase and the crystallite size arefound to be varying between 11-45 nm. High dielectric constant (ɛr) of 140.09 and low loss (tan δ) of 0.057 are noticed at 5 MHz which makes these hexaferrites suitable for high capacity condenser and low electric noise device manufacturing applications.

  11. Fe/Pb layered system A detailed study of the 'genuine' superconductor/ferromagnet proximity effect

    CERN Document Server

    Lázár, L

    2000-01-01

    This thesis is structured as follows. Chapter 2 gives a short introduction to supercon-ductivity and ferromagnetism, the coexistence of these two phenomena in bulk and thin films with examples from literature, and finally the relevant theoretical models for theF/S proximity effects are presented. In chapter 3 and 4 the sample preparation, the experimental techniques and the setups are described. The results for the Fe/Pb system arepresented and discussed in chapter 5. In chapter 6 is given a summary of all results as well as an outlook of what can be done further.

  12. Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles

    Science.gov (United States)

    Anandan, S.; Selvamani, T.; Prasad, G. Guru; M. Asiri, A.; J. Wu, J.

    2017-06-01

    In this research, inverse spinel copper ferrite nanoparticles (CuFe2O4 NPs) were synthesized via citrate-nitrate combustion method. The crystal structure, particle size, morphology and magnetic studies were investigated using various instrumental tools to illustrate the formation of the inverse spinel structure. Mossbauer spectrometry identified Fe is located both in the tetrahedral and octahedral site in the ratio (40:60) and the observed magnetic parameters values such as saturation magnetization (Ms = 20.62 emu g-1), remnant magnetization (Mr = 11.66 emu g-1) and coercivity (Hc = 63.1 mTesla) revealed that the synthesized CuFe2O4 NPs have a typical ferromagnetic behaviour. Also tested CuFe2O4 nanoparticles as a photocatalyst for the decolourisation of methylene blue (MB) in the presence of peroxydisulphate as the oxidant.

  13. Carbon dioxide and water adsorption on highly epitaxial Delafossite CuFeO2 thin film

    Science.gov (United States)

    Rojas, S.; Joshi, T.; Borisov, P.; Sarabia, M.; Lederman, D.; Cabrera, A. L.

    2015-03-01

    Thermal programmed desorption (TPD) of CO2 and H2O from a 200 nm thick CuFeO2 Delafossite surface was performed in a standard UHV chamber, The CuFeO2 thin film grown using Pulsed Laser Deposition (PLD) over an Al2O3 (0001) substrate with controlled O2 atmosphere resulted with highly epitaxial crystal structure. The adsorption/desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide interacts with CuFeO2 forming Fe carbonates compounds on its surface. Hydroxides were also formed on the surface due to water presence. Using TPD data, Arrhenius plots for CO2 and water desorption were done and activation energy for desorption was obtained. Funds FONDECyT 1130372; Thanks to P. Ferrari.

  14. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    Science.gov (United States)

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  15. Interaction Kinetics between Sn-Pb Solder Droplet and Au/Ni/Cu Pad

    Institute of Scientific and Technical Information of China (English)

    Fuquan LI; Chunqing WANG; Yanhong TIAN

    2006-01-01

    The interfacial phenomena of the Sn-Pb solder droplet on Au/Ni/Cu pad are investigated. A continuous AuSn2and needle-like AuSn4 are formed at the interface after the liquid state reaction (soldering). The interfacial reaction between the solder and Au layer continues during solid state aging with AuSn4 breaking off from the interface and felling into the solder. The kinetics of Au layer dissolution and diffusion into the solder during soldering and aging is analyzed to elucidate intermetallic formation mechanism at the solder/Au pad interface.The concentration of Au near the solder/pad interface is identified to increase and reach the solubility limit during the period of liquid state reaction. During solid state reaction, the thickening of Au-Sn compound is mainly controlled by element diffusion.

  16. Structure and age of the Cerro de Pasco Cu-Zn-Pb-Ag deposit, Peru

    Science.gov (United States)

    Cheney, E. S.

    1991-04-01

    The world-famous Cu-Zn-Pb-Ag deposit at Cerro de Pasco, Peru, consists of texturally massive pyrite, texturally massive sphalerite-galena-pyrite, and veins containing pyrite and enargite. Historically the deposit has been considered to be the hydrothermal product of the adjacent Miocene volcanic and intrusive complex (locally known as the “Vent”). However, both the texturally massive sulfides of the deposit and the pre-Miocene strata are cut by the Longitudinal fault, one of the largest faults in the district, but the Vent is not. Imbrication by the Longitudinal fault zone (duplex structures) has thickened the deposit so that it is amenable to open-pit mining. Dikes and pyrite-enargite veins pass from the Vent into the massive sulfides; fragments of massive pyrite occur in the Vent. Thus, no matter what their origin, the texturally massive sulfides are older and, therefore, genetically unrelated to the Vent.

  17. Critical Analysis on the Structural and Magnetic Properties of Bulk and Nanocrystalline Cu-Fe-O

    Directory of Open Access Journals (Sweden)

    D. Paul Joseph

    2010-01-01

    Full Text Available Nanocrystalline and bulk samples of “Fe”-doped CuO were prepared by coprecipitation and ceramic methods. Structural and compositional analyses were performed using X-ray diffraction, SEM, and EDAX. Traces of secondary phases such as CuFe2O4, Fe3O4, and α-Fe2O3 having peaks very close to that of the host CuO were identified from the Rietveld profile analysis and the SAED pattern of bulk and nanocrystalline Cu0.98Fe0.02O samples. Vibrating Sample Magnetometer (VSM measurements show hysteresis at 300 K for all the samples. The ferrimagnetic Neel transition temperature ( was found to be around 465°C irrespective of the content of “Fe”, which is close to the value of cubic CuFe2O4. High-pressure X-Ray diffraction studies were performed on 2% “Fe”-doped bulk CuO using synchrotron radiation. From the absence of any strong new peaks at high pressure, it is evident that the secondary phases if present could be less than the level of detection. Cu2O, which is diamagnetic by nature, was also doped with 1% of “Fe” and was found to show paramagnetic behavior in contrast to the “Fe” doped CuO. Hence the possibility of intrinsic magnetization of “Fe”-doped CuO apart from the secondary phases is discussed based on the magnetization and charge state of “Fe” and the host into which it is substituted.

  18. Impedance Spectroscopic Studies of BiFeO3-Pb(ZrTi)O3 Nanocomposites

    Science.gov (United States)

    Choudhary, R. N. P.; Barik, Subrat K.; Katiyar, R. S.

    BiFeO3-Pb(ZrTi)O3 [i.e., (Bi1-xPbx)(Fe1-xZr0.6xTi0.4x)O3 (x = 0.15, 0.25, 0.40, 0.50)] nanocomposites were synthesized using mechanical activation followed by a solid-state reaction technique. The dielectric parameters (capacitance, dissipation factor D, impedance Z and phase angle Φ) of all the samples were measured in a wide range of frequencies (1 kHz-1 MHz) and temperatures (300-630 K) in air atmosphere using an impedance analyzer with low signal amplitude of 500 mV. Electrical properties of the compounds were studied using a complex impedance spectroscopy (CIS) technique. The frequency dependence of electrical data was analyzed in the framework of conductivity and modulus formalisms. AC conductivity spectrum obeys Jonscher's universal power law.

  19. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface

    Science.gov (United States)

    Pawlak, Rémy; Kisiel, Marcin; Klinovaja, Jelena; Meier, Tobias; Kawai, Shigeki; Glatzel, Thilo; Loss, Daniel; Meyer, Ernst

    2016-11-01

    Motivated by the striking promise of quantum computation, Majorana bound states (MBSs) in solid-state systems have attracted wide attention in recent years. In particular, the wavefunction localisation of MBSs is a key feature and is crucial for their future implementation as qubits. Here we investigate the spatial and electronic characteristics of topological superconducting chains of iron atoms on the surface of Pb(110) by combining scanning tunnelling microscopy and atomic force microscopy. We demonstrate that the Fe chains are mono-atomic, structured in a linear manner and exhibit zero-bias conductance peaks at their ends, which we interpret as signature for a MBS. Spatially resolved conductance maps of the atomic chains reveal that the MBSs are well localised at the chain ends (≲25 nm), with two localisation lengths as predicted by theory. Our observation lends strong support to use MBSs in Fe chains as qubits for quantum-computing devices.

  20. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Jensen, Pernille Erland

    2009-01-01

    . It was evident that Cu, Pb, and Zn started to desorb at a higher pH from calcareous soils than from soils with low carbonate content. The mechanism responsible for this is co-precipitation of heavy metals in the carbonates. When the carbonates are dissolved at a relatively high pH of about 5, the co......Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution...... level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10...

  1. Retention and distribution of Cu, Pb, Cr, and Zn in a full-scale hybrid constructed wetland receiving municipal sewage

    NARCIS (Netherlands)

    Xiao, H.W.; Zhang, S.L.; Zhai, J.; He, Q.; Mels, A.R.; Ning, K.J.; Liu, J.

    2013-01-01

    This study was conducted to investigate the retention and distribution of Cu, Pb, Cr, and Zn in a hybrid constructed wetland (CW) that consists of both vertical baffled flow wetlands (VBFWs) and horizontal subsurface flow wetlands (HSSFs) with unique flow regimes and oxygen distribution. The heavy

  2. Bioaccumulation of Pb, Cd, Cu, and Cr by Porphyridium cruentum (S.F. Gray Nägeli

    Directory of Open Access Journals (Sweden)

    Tri Retnaningsih Soeprobowati

    2013-06-01

    Full Text Available The red microalgae Porphyridium cruentum (S.F. Gray Nägeli usually was used as feeds, a pigment for food and cosmetic, and antiviral activity that might be became industrial interest. Similar to another microalgae, P. cruentum has an ability to remediate heavy metals pollution, however research on it still limited. This research was conducted in order to find out the the accumulation of Pb, Cd, Cr, and Cu on the P. cruentum. A laboratory experiment were developed with different concentrations. Based on this research, P. cruentum with the treatment of 1 mg/L had reduced higher Cu, Pb, Cd, and Cr concentrations rather than 3 and 5 mg/L concentrations, respectively. This was also similar to the BCF, that in day 8 in order of Cu > Cr > Cd > Pb, respectively; however, in day 15 was Cu > Pb > Cd > Cr. The length of treatment influenced BCF value. P. cruentum was good for bioremediation of heavy metal pollution, with the advantage of the short of accumulation time.

  3. Retention and distribution of Cu, Pb, Cr, and Zn in a full-scale hybrid constructed wetland receiving municipal sewage

    NARCIS (Netherlands)

    Xiao, H.W.; Zhang, S.L.; Zhai, J.; He, Q.; Mels, A.R.; Ning, K.J.; Liu, J.

    2013-01-01

    This study was conducted to investigate the retention and distribution of Cu, Pb, Cr, and Zn in a hybrid constructed wetland (CW) that consists of both vertical baffled flow wetlands (VBFWs) and horizontal subsurface flow wetlands (HSSFs) with unique flow regimes and oxygen distribution. The heavy m

  4. Stopping Power of Al, Cu, Ag, Au, Pb, and U for 5-18-MeV Protons and Deuterons

    DEFF Research Database (Denmark)

    Sørensen, H.; Andersen, Hans Henrik

    1973-01-01

    High energy protons and deuterons of energies between 9 and 18 MeV have been used to extend earlier measurements of the stopping power of Al, Cu, Ag and Au and the stopping powers of Pb and U in the range 5-18 MeV have been determined for the first time. Mean excitation potentials have been...

  5. Competitive adsorption of Cd, Cu, Hg and Pb by agricultural soils of the Changjiang and Zhujiang deltas in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soils can often be contaminated simultaneously by more than one heavy metal. The sorption-desorption behavior of a metal in a soil will be affected by the presence of other metals. Therefore, selective retention and competitive adsorption of the soils to heavy metals can affect their availability and movement through the soils. In this study, the simultaneous competitive adsorption of four heavy metals (Cd, Cu, Hg, and Pb) on ten agricultural soils collected from the Changjiang and Zhujiang deltas,China was assessed. The results showed that the competition affected the behavior of heavy metal cations in such a way that the soils adsorbed less Cd and Hg, and more Pb and Cu with increasing total metal concentrations, regardless of the molar concentration applied. As the applied concentrations increased, Pb and Cu adsorption increased, while Cd and Hg adsorption decreased.The adsorption sequence most found was Pb>Cu>Hg>Cd. The maximum adsorption capacity for the heavy metal cations was calculated, and affected markedly by soil properties. The results suggest that Hg and Cd have higher mobility associated to the lower adsorption and that Pb and Cu present the opposite behavior. Significant correlations were found between the maximum adsorption capacity of the metals and pH value and exchangeable acid, suggesting that soil pH and exchangeable acid were key factors controlling the solubility and mobility of the metals in the agricultural soils.

  6. Risk assessment for Cd, Cu, Pb, and Zn in urban soils: chemical availability as the central concept

    NARCIS (Netherlands)

    Rodrigues, S.R.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M.

    2013-01-01

    To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO(3) (reactive), 0.01 M CaCl(2) (available), and 0.4 M glycine at pH = 1.5, SBET method (oral bioac

  7. Risk assessment for Cd, Cu, Pb, and Zn in urban soils: chemical availability as the central concept

    NARCIS (Netherlands)

    Rodrigues, S.R.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M.

    2013-01-01

    To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO(3) (reactive), 0.01 M CaCl(2) (available), and 0.4 M glycine at pH = 1.5, SBET method (oral bioac

  8. Geology, mineralogy and fluid inclusion data from the Arapucan Pb Zn Cu Ag deposit, Canakkale, Turkey

    Science.gov (United States)

    Orgün, Yüksel; Gültekin, Ali Haydar; Onal, Ayten

    2005-07-01

    The Arapucan Pb-Zn-Cu-Ag deposit occurs as hydrothermal veins in diabase and altered Triassic metasandstones adjacent to calc-alkaline intrusive igneous rocks. The deposit is an important commercial source of base metal in northwestern Turkey. Potential by-products are silver and gold. The geology of the area includes a Paleozoic metamorphic basement, Triassic sedimentary rocks with carbonate blocks, Tertiary granitoids and Neogene volcanics. The mineral assemblage includes galena, quartz, calcite, sphalerite, chalcopyrite and pyrite as well as minor bismuthinite, tetrahedrite, pyrolusite, hematite, scheelite, malachite, magnetite, limonite and rutile. Silver is associated with tetrahedrite. Early hydrothermal activity was responsible for the formation of three hypogene alteration types of decreasing intensity: silicification, sericitization and argillic alteration. These alteration styles show a rough spatial zonation. The ore stage clearly postdates hydrothermal alteration, as indicated by the occurrence of ore minerals in vuggy cavities and fractures in silica bodies. The deposit contains evidence of at least two periods of hypogene mineralization separated by a period of faulting. In addition to Pb, Zn, Cu, Ag and Au, the ores contain substantial quantities of W, Bi, Sb and Te. Average δ 34S values for galena and pyrite are -3.95 and -2.24‰, respectively, suggesting an igneous source for both the sulphur and metals. However, geological and geochemical interpretations suggest that at least some of the metals were leached from the metasandstones and diabases. Fluid inclusions in main-stage sphalerite homogenize at 229-384 °C with salinities ranging from 1.7 to 18.5 eq.wt% NaCl. The deposits formed as the result of the interaction of two aqueous fluids: a higher-salinity fluid (probably magmatic) and a dilute meteoric fluid. The narrow range of δ 34S (galena and pyrite) values (-5.2 to -1.2‰ CDT) suggests that the sulphur source of the hydrothermal fluids

  9. Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils.

    Science.gov (United States)

    Rennert, Thilo; Rabus, Widar; Rinklebe, Jörg

    2017-04-01

    Central European floodplain soils are often contaminated with potentially toxic metals. The prediction of their aqueous concentrations is a prerequisite for an assessment of environmental concerns. We tested the aqueous concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) derived from multi-surface adsorption modelling (on hydrous iron, aluminum and manganese oxides, clay and soil organic matter) against those analyzed in situ in the soil solution of four horizons of floodplain soils at the Elbe River, Germany. The input data for the reactive metals were derived from a seven-step sequential extraction scheme or from extraction with 0.43 M nitric acid (HNO3) and evaluated in four modelling scenarios. In all scenarios, measured and modelled concentrations were positively related, except partially for Pb. Close reproduction of the measured data was obtained using measured data of accompanying cations and anions together with amounts of reactive metals from both the sequential extraction or from 0.43 M HNO3 extraction, except for Cu, which was often strongly overestimated, and partially Cd. We recommend extraction with 0.43 M HNO3 to quantify reactive metals in soil because the modelling results were metal-specific with better or equal results using the single extractant, the application of which is also less laborious. Approximations of ion concentrations and water contents yielded similar results. Modelled solid-phase speciation of metals varied with pH and differed from that from sequential extraction. Multi-surface modelling may be an effective tool to predict both aqueous concentrations and solid-phase speciation of metals in soil.

  10. Modelling removal mechanisms of Pb, Cu, Zn and Cd in acidic groundwater during the neutralization by ambient surface and ground waters

    Science.gov (United States)

    Paulson, Anthony J.; Balistrieri, Laurie S.

    1999-01-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.

  11. Characterization and adsorption performance of Pb(II) on CuO nanorods synthesized by the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Arfaoui, Lobna; Kouass, Salah [Laboratoire des matériaux utiles, Institut National de Recherche et d' Analyse Physico-Chimique (INRAP) Sidi Thabet, 2020 Tunis (Tunisia); Dhaouadi, Hassouna, E-mail: dhaouadihassouna@yahoo.fr [Laboratoire Matériaux Traitement et Analyse, Institut National de Recherche et d' Analyse Physico-Chimique (INRAP) Sidi Thabet, 2020 Tunis (Tunisia); Jebali, Raouf [Laboratoire des matériaux utiles, Institut National de Recherche et d' Analyse Physico-Chimique (INRAP) Sidi Thabet, 2020 Tunis (Tunisia); Touati, Fathi [Laboratoire Matériaux Traitement et Analyse, Institut National de Recherche et d' Analyse Physico-Chimique (INRAP) Sidi Thabet, 2020 Tunis (Tunisia)

    2015-10-15

    Highlights: • The nanorods of CuO were synthesized by a hydrothermal route without any surfactant. • X-ray diffraction showed monoclinic structure with space group C{sub 2/c}. • The nanorods show relatively high adsorption capacity for the removal of Pb(II). • The adsorption kinetics could be fitted well by the pseudo-second-order model. • The equilibrium data can be fitted well using the Langmuir isotherm model - Abstract: Copper oxide (CuO) nanorods were synthesized by hydrothermal method. The detailed structural, compositional and optical characterization of this material was also evaluated with XRD, FT-IR, EDS, and UV–vis spectroscopy, which confirmed that the obtained nanorods are well-crystallized CuO and possess good optical properties. SEM and TEM studies revealed that the as-synthesized CuO nanorods are uniform with an average diameter of 17 nm. The adsorption activity of the CuO nanostructures was studied. The adsorption results showed that the CuO nanorods are an effective and efficient adsorbent for the removal of Pb(II) ions. The influence of various operational parameters such as the pH of the solution, the contact time and the initial concentrations were also studied and the results were discussed. The estimated maximum lead ion adsorption capacity of the CuO nanorods was found to be 188.67 mg g{sup −1} at an optimum pH of 6.

  12. Oxidation of two ternary Fe-Cu-5Al alloys in 1×105 Pa pure oxygen at 700 ℃

    Institute of Scientific and Technical Information of China (English)

    XIANG Jun-huai; NIU Yan; WU Wei-tao; LIU Guo-dong

    2006-01-01

    The oxidation of two two-phase ternary Fe-Cu-Al alloys containing about 5% Al(mole fraction),one Fe-rich and one Cu-rich,were studied at 700 ℃ in 1×105 Pa pure oxygen. The Fe-rich alloy (Fe-15Cu-5Al) shows two quasi-parabolic stages,with a large increase of the parabolic rate constant after about 4 h. The presence of 5% Al does not change greatly the oxidation rate of Fe-15Cu-5Al with respect to a binary Fe-Cu alloy of similar composition,which was quite different from the situation of the same alloys oxidized at 800 ℃. Oxidation of Fe-15Cu-5Al at 700 ℃ produced an outer layer of iron oxides and an inner layer containing a mixture of copper metal,iron and aluminium oxide. On the contrary,the Cu-rich Fe-85Cu-5Al alloy presents a rather irregular kinetic behavior,with formation of an inner continuous alumina thin layer and a rather irregular outer layer. The outer layer with a rather irregular thickness was mainly composed of a matrix of copper oxides plus some aluminium and iron oxides presenting in the deep part of the layer at certain locations. As a result of the formation of a protective alumina layer,the presence of 5% Al greatly reduced the oxidation rate of Fe-85Cu-5Al with respect to a binary Fe-Cu alloy of similar composition,which was also quite different from the situation of the same alloys oxidized at 800 ℃. Moreover,the oxidation rate at 700 ℃ of the Fe-85Cu-5Al alloy was much lower than that of Fe-15Cu-5Al alloy due to the same reason..

  13. Water pollution by Cu and Pb can adversely affect mallard embryonic development.

    Science.gov (United States)

    Kertész, Virág; Bakonyi, Gábor; Farkas, Beáta

    2006-09-01

    The effects of heavy metal pollutants on aquatic birds have been widely studied in ecotoxicological investigations; however, the predominant focus has been on the postnatal period of life. Limited information on the adverse effects of metals to bird eggs is available. The possible toxic effects of lead and copper were studied in mallard eggs. After the accidental severe heavy metal pollution of the Tisa river (Hungary) in March 2000, these metals were detected in the highest concentration in both the water and the sediment, reaching far beyond acceptable concentrations. Pb treatment (2.9 mg/L) significantly increased the rate of mortality after a single immersion of the eggs into polluted water for 30 min. The rate of dead embryos significantly increased after the combined exposure to Cu and Pb (0.86 and 2.9 mg/L, respectively) both in the single- (once for 30 min) and in the multiple- (10s daily during first trimester of incubation) immersion groups. It was concluded that elevated metal concentrations similar to those found in the Tisa river after the tailing dam failure may cause toxic effects (mortality and teratogenicity) upon exposure of mallard eggs.

  14. Nucleation and evolution of dynamic damage at Cu/Pb interfaces using molecular dynamics

    Science.gov (United States)

    Fensin, S. J.; Valone, S. M.; Cerreta, E. K.; Gray, G. T.; Shao, S.

    2017-01-01

    For ductile metals, the process of dynamic fracture occurs through nucleation, growth and coalescence of voids. For high purity single-phase metals, it has been observed by numerous investigators that voids tend to heterogeneously nucleate at grain boundaries and all grain boundaries are not equally susceptible to void nucleation. However, for materials of engineering significance, especially those with second phase particles, it is less clear if the type of bi-metal interface between the two phases will affect void nucleation and growth. To approach this problem in a systematic manner two bi-metal interfaces between Cu and Pb have been investigated: {111} and {100}. Qualitative and quantitative analysis of the collected data from molecular dynamics shock and spall simulations suggests that Pb becomes disordered during shock compression and is the preferred location for void nucleation under tension. Despite the interfaces being aligned with the spall plane (by design), they are not the preferred location for void nucleation irrespective of interface type.

  15. Physical properties of nanostructured (PbSx(CuS1−x composite thin films grown by successive ionic layer adsorption and reaction method

    Directory of Open Access Journals (Sweden)

    A.U. Ubale

    2016-03-01

    Full Text Available Nanostructured ternary semiconducting (PbSx(CuS1−x thin films were grown on glass substrates by successive ionic layer adsorption and reaction (SILAR technique at room temperature. The structural, morphological and optical characterizations of the films were carried out by X-ray diffraction, scanning electron microscopy and UV–Vis spectrophotometer respectively. The structural studies revealed that, (PbSx(CuS1−x films are nanocrystalline in nature and have mixed phase of cubic PbS and hexagonal CuS. The optical absorption measurements showed that band gap energy of (PbSx(CuS1−x can be engineered between 2.57 and 2.28 eV by varying compositional parameter ‘x’. The room temperature dc dark electrical resistivity of PbS film is found to be 28.85 Ωcm and it decreases when content of Cu in composite increases and becomes 0.05 Ωcm for pure CuS. The thermo-emf measurements showed that the as deposited (PbSx(CuS1−x films are of n-type. The water angle contact measurements of (PbSx(CuS1−x, revealed that, films are hydrophilic in nature and it could be advantageous in electrochemical application.

  16. First principles calculation of stable structure and adhesive strength of plated Ni/Fe(100) or Cu/Fe(100) interfaces

    Institute of Scientific and Technical Information of China (English)

    Ryota NAKANISHI; Koji SUEOKA; Seiji SHIBA; Makoto HINO; Koji MURAKAMI; Ken MURAOKA

    2009-01-01

    A study the with first principles calculation of the interfaces of the Ni layer or Cu layer on the Fe(100) surface formed with metal plating was performed. Ni or Cu atoms were shown to adopt the corresponding position to the bcc structure of the Fe(100) substrate. Other calculations showed that the interfaces of Ni (5 atomic layers)/Fe(100) (5 layers) or Cu (5 atomic layers)/Fe(100) (5 layers) had square lattices. The orientation relationship of Ni/Fe(100) interface corresponds to fcc-Ni(100)//bcc-Fe(100), Ni[011]//Fe[010], and Similar results were obtained for Cu/Fe(100) interfaces. This structure was supported by TEM analysis of plated Ni layer on Fe(100) surfaces. The adhesion strength of the Ni/Fe(100) interface evaluated by first principles calculation was higher than that of the Cu/Fe(100) interface. The experimental results of Hull cell iron plated with Ni or Cu supported the results of the calculation. These results indicate that the first principles calculation, which deals with the ideal interface at the atomic scale, has the potential to evaluate the adhesion strength of metallic material interfaces.

  17. Interactions of core–shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: Consequences for Cu and Pb removal

    Energy Technology Data Exchange (ETDEWEB)

    Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch [Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environment Science, Faculty of Sciences, University of Geneva, 10, route de Suisse, 1290 Versoix (Switzerland); Pinheiro, José Paulo [IBB/CBME, Department of Chemistry and Biochemistry, University of the Algarve, Gambelas Campus, 8005-139 Faro (Portugal); Floriani, Magali [IRSN/DEI/SECRE/LRE CEA Cadarache, 13115 Saint-Paul-Lez-Durance (France); Garcia, Miguel [School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Station 15, CH-1015 Lausanne (Switzerland)

    2013-10-15

    Highlights: • QDs associate with C. metallidurans in time and concentration dependent manner. • 12.9 nm size QDs adhere to the bacterial surface and enter the periplasmic space. • QDs bound significantly Cu and Pb. • QDs increase Cu and Pb content in C. metallidurans during short term exposure. -- Abstract: In the present study we address the interactions of carboxyl-CdSe/ZnS core/shell quantum dots (QDs), as a model of water dispersible engineered nanoparticles, and metal resistant bacteria Cupriavidus metallidurans, largely used in metal decontamination. The results demonstrate that QDs with average hydrodynamic size of 12.9 nm adhere to C. metallidurans. The percentage of bacterial cells displaying QD-fluorescence increased proportionally with contact time and QD concentration in bacterial medium demonstrating the association of QDs with the metal resistant bacteria. No evidence of QD internalization into bacterial cytoplasm was found by transmission electron microscopy with energy dispersive X-ray spectrometry, however QD clusters of sizes between 20 and 50 nm were observed on the bacterial surface and in the bacterial periplasmic compartment; observations consistent with the losses of membrane integrity induced by QDs. The presence of 20 nM QDs induced about 2-fold increase in Cu and Pb uptake fluxes by C. metallidurans exposed to 500 nM Pb or Cu, respectively. Overall, the results of this work suggest that when present in mixture with Cu and Pb, low levels of QDs originating from possible incidental release or QD disposal could increase metal accumulation in metal resistant bacterium.

  18. Accumulation of Zn, Pb, Cu, Cr and Ni in Sediments Between Roots of the Tagus Estuary Salt Marshes, Portugal

    Science.gov (United States)

    Ca çador, Isabel; Vale, Carlos; Catarino, Fernando

    1996-03-01

    Sediment cores of 60 cm length were collected from two Tagus estuary salt marshes. At each salt marsh, samples were taken from a non-vegetated zone and one from each of areas dominated by Halimione portulacoides, Spartina maritimaand Arthrocnemum fruticosum.Cores were sliced in situand, at each sediment layer, redox potential and pH were measured, and the organic matter content (LOI), grain size, and concentrations of Zn, Cu, Pb, Ni and Cr were determined. Sediment between roots and non-vegetated sediments of the same depth (5 -15 cm) were extracted with several acid solutions, and the metal concentrations were compared. Metal residues were determined in roots of vascular plants. Sediment between roots was more oxidative, more acidic and richer in organic matter than non-vegetated sediment. Profiles of Zn, Pb and Cu concentrations in vegetated sediments differed from those recorded in non-vegetated areas: at subsurface layers (where root density is higher), Zn, Pb and Cu were enriched. The percentages of Zn, Pb and Cu removed by acetic acid, nitric acid and DTPA extractions from sediment between roots were much lower than those from non-vegetated sediments, being preferentially linked to the residual fraction. Chromium and Ni behave differently no subsurface enrichment being found and their associations being similar in the two types of sediment. Furthermore, Ni concentrations in roots were much lower than in bulk sediments, while levels of Zn and Pb were similar and Cu values higher. These results point out that plants are an important feature for metal accumulation in salt marshes.

  19. The potential pool of Co, Ni, Cu, Pb and Cd organic complexing ligands in coastal and urban rain waters

    Science.gov (United States)

    Nimmo, Malcolm; Fones, Gary R.

    The detection of dissolved ACSV (adsorptive cathodic stripping voltammetry) Co, Ni, Cu, Cd and Pb in rain waters collected from an urban and a coastal site in the northwest of England is described. The presence of metal complexing organic ligands in rain waters is indicated with an overall percentage of ACSV non - labile dissolved metal of the total dissolved metal fraction ( = %ACSV nl/t) being 33 (33); 28 (35); 26 (32); 33 (25); 27 (34): for Co, Ni, Cu, Cd and Pb, respectively, for the urban site (and coastal site). ACSV metal lability is theoretically defined and is dependent upon the a-coefficient ( β' MAL [AL]) of the added ACSV ligand (AL). No major differences were observed between %ACSV nl/t metal fractions in rain waters collected at the two contrasting sites for all the metals considered. As Cu, Pb, Cd and Ni had values greater than 10 for their Ef crust (crustal enrichment factor), rain water collected from both sites had predominantly anthropic chemical characteristics. The commonality of the aerosol chemical characteristics at the two sites may account for the observed similar (relative to total metal concentrations) proportions of metal organic complexation at the two different sites. The general order of increasing organic associations was Cu = Pb = Ni < Co < Cd, although the analytical log α-coefficients ( β' MAL [AL]) for each metal were different (9.62—Ni; 9.27—Cu; 5.29—Co; 2.15—Pb; 1.13—Cd). Significant correlations were encountered between ACSV non - labile and total dissolved trace metal concentrations of the pooled data from both sites, again an indication of the similarity of the chemical characteristics of the scavenged soluble organic ligands associated with background aerosol material.

  20. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    Science.gov (United States)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  1. Properties of complexes of galactomannan of Leucaena leucocephala and Al3+, Cu2+ and Pb2+.

    Science.gov (United States)

    Lombardi, Simone Cristina; Mercê, Ana Lucia Ramalho

    2003-08-01

    The use of biopolymers in many industrial processes is on the increase. The different interactions of biopolymers and electrolytes either in aqueous solutions or in solid state provide different physico-chemical properties and a simple correlation cannot be established. In this study, in order to determine the properties of the complexes of galactomannan of Leucaena leucocephala (gal) with the metal ions Al3+ and Pb2+, toxic elements and Cu2+, essential, the logs of the binding constants of the complexes formed in the aqueous solutions were calculated. Their rheological properties, their thermal behavior, the infrared characteristics and shape and form of the films formed by those complexes in solid state were also determined. The aqueous solutions properties have shown a better complexation between gal and Al3+. The species distribution diagrams have shown an existence of complex species going from acidic to basic pH values. Infrared spectra have proved the complexations as well as the viscosity studies. Thermal stabilities in general were smaller in the complexed species than in the native biopolymers and the films obtained from aqueous solutions showed for Cu2+ the most different morphology compared to the biopolymer itself. A use can be suggested of this biopolymer in environmental remediations besides its already established industrial uses.

  2. TPR and TPD studies of effects of Cu and Ca promotion on Fe-Zn-based Fischer-Tropsch catalysts

    Indian Academy of Sciences (India)

    Olusola O James; Biswajit Chowdhury; Sudip Maity

    2013-05-01

    Temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) were used to study the effects of Cu and Ca promotion on Fe-Zn-based Fischer-Tropsch catalysts. The reduction temperature for Fe2O3 → Fe3O4 was unaffected by Ca addition but decreased when promoted with Cu. Fe-Zn promoted with Cu and Ca showed even much lower reduction temperature for Fe2O3→Fe3O4. Ca promotion enhances carburization and increases surface acidity and basicity of the Fe-Zn oxide precursor. While Cu inhibits carburization and decreases the surface acidity and basicity of the Fe-Zn oxide precursor. The implications of these effects on the application of catalysts for FT are discussed.

  3. Magnetic order tuned by Cu substitution in Fe1.1-zCuzTe

    Science.gov (United States)

    Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; Lumsden, M. D.; Valdivia, P. N.; Bourret-Courchesne, E.; Gu, Genda; Lee, Dung-Hai; Tranquada, J. M.; Birgeneau, R. J.

    2012-07-01

    We study the effects of Cu substitution in Fe1.1Te, the nonsuperconducting parent compound of the iron-based superconductor, Fe1+yTe1-xSex, utilizing neutron scattering techniques. It is found that the structural and magnetic transitions, which occur at ˜60 K without Cu, are monotonically depressed with increasing Cu content. By 10% Cu for Fe, the structural transition is hardly detectable, and the system becomes a spin glass below 22 K, with a slightly incommensurate ordering wave vector of (0.5-δ, 0, 0.5) with δ being the incommensurability of 0.02, and correlation length of 12 Å along the a axis and 9 Å along the c axis. With 4% Cu, both transition temperatures are at 41 K, though short-range incommensurate order at (0.42, 0, 0.5) is present at 60 K. With further cooling, the incommensurability decreases linearly with temperature down to 37 K, below which there is a first-order transition to a long-range almost-commensurate antiferromagnetic structure. A spin anisotropy gap of 4.5 meV is also observed in this compound. Our results show that the weakly magnetic Cu has a large effect on the magnetic correlations; it is suggested that this is caused by the frustration of the exchange interactions between the coupled Fe spins.

  4. Magnetic orders tuned by Cu substitution in Fe1.1 zCuzTe

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jinsheng [University of California, Berkeley; Xu, Zhijun [Brookhaven National Laboratory (BNL); Xu, Guangyong [Brookhaven National Laboratory (BNL); Lumsden, Mark D [ORNL; Valdivia, P. N. [University of California, Berkeley; Bourret-Courchesne, E. D. [Lawrence Berkeley National Laboratory (LBNL); Gu, Genda [Brookhaven National Laboratory (BNL); Lee, Dunghai [University of California, Berkeley & LBNL; Tranquada, John M. [Brookhaven National Laboratory (BNL); Birgeneau, R. J. [University of California, Berkeley

    2012-01-01

    We study the effects of Cu substitution in Fe1.1Te, the non-superconducting parent compound of the iron-based superconductor, Fe1+yTe1 xSex, utilizing neutron scattering techniques. It is found that the structural and magnetic transitions, which occur at 60 K without Cu, are monotonically depressed with increasing Cu content. By 10% Cu for Fe, the structural transition is hardly detectable, and the system becomes a spin glass below 22 K, with a slightly incommensurate ordering wave vector of (0.48, 0, 0.5), and correlation length of 12 A along the a axis and 9 A along the c axis. With 4% Cu, both transition temperatures are at 41 K, though short-range incommensurate order at (0.42, 0, 0.5) is present at 60 K. With further cooling, the incommensurability decreases linearly with temperature down to 37 K, below which there is a first order transition to a longrange almost-commensurate antiferromagnetic structure. A spin anisotropy gap of 4.5 meV is also observed in this compound. Our results show that the weakly magnetic Cu has large effects on the magnetic correlations; it is suggested that this is caused by the frustration of the exchange interactions between the coupled Fe spins.

  5. Fabrication and Electromagnetic Properties of Conjugated NH2-CuPc@Fe3O4

    Science.gov (United States)

    Yan, Liang; Pu, Zejun; Xu, Mingzhen; Wei, Renbo; Liu, Xiaobo

    2017-10-01

    Conjugated amino-phthalocyanine copper containing carboxyl groups/magnetite (NH2-CuPc@Fe3O4) has been fabricated from FeCl3·6H2O and NH2-CuPc via a simple solvothermal method and its electromagnetic properties investigated. Scanning electron microscopy and transmission electron microscopy revealed that the NH2-CuPc@Fe3O4 was a waxberry-like nanomaterial with NH2-CuPc molecules effectively embedded in the interior of Fe3O4 particles in the form of beads. Introduction of NH2-CuPc effectively improved the complementarity between the dielectric and magnetic losses of the system, resulting in excellent electromagnetic performance. The minimum reflection loss of the as-prepared composite reached -33.4 dB at 7.0 GHz for coating layer thickness of 4.0 mm and bandwidth below -10.0 dB (90% absorption) of up to 3.8 GHz. These results indicate that introduction of NH2-CuPc results in a composite with potential for use as an electromagnetic microwave absorption material.

  6. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    Science.gov (United States)

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  7. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xing-Wu, E-mail: qiuxingwu@126.com [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China); Zhang, Yun-Peng; He, Li [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Liu, Chun-ge [Department of Transportation and Municipal Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China)

    2013-02-05

    Highlights: Black-Right-Pointing-Pointer We use a new method (laser cladding) to prepare high-entropy alloy. Black-Right-Pointing-Pointer We gained small microstructure under rapid solidification condition. Black-Right-Pointing-Pointer We studied corrosion resistance of AlCrFeCuCo high-entropy alloy in two different liquids. - Abstract: The AlCrFeCuCo high-entropy alloys were prepared by the laser cladding method. The microstructure and corrosion resistance property of AlCrFeCuCo high-entropy alloy were researched by scanning electron microscopy, X-ray diffraction and electrochemical workstation. The results show that, under the rapid solidification small microstructure gained, the morphology of AlCrFeCuCo high entropy alloy is simple, the phase mainly compose of FCC and BCC; elements segregated in the alloys; the alloy shows excellent corrosion resistance, along with the increase of the scanning speed, alloy corrosion resistance performance shows a enhancement in the first and then weakened trend. The corrosion resistance performance of AlCrFeCuCo high-entropy alloys in 1 mol/L NaCl solution is better than in 0.5 mol/L H{sub 2}SO{sub 4} solution.

  8. Magnetically Recyclable Fe3O4@His@Cu Nanocatalyst for Degradation of Azo Dyes.

    Science.gov (United States)

    Kurtan, U; Amir, Md; Baykal, A; Sözeri, H; Toprak, M S

    2016-03-01

    Fe3O4@His@Cu magnetic recyclable nanocatalyst (MRCs) was synthesized by reflux method using L-histidine as linker. The composition, structure and magnetic property of the product were characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Fourier Transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry (VSM). Powder XRD, FT-IR and EDAX results confirmed that the as-synthesized products has Fe3O4 with spinel structure and Cu nanoparticles with moderate crystallinity without any other impurities. The surface of the Fe3O4@His nanocomposite was covered by tiny Cu nanoparticles. We examine the catalytic activity of Fe3O4@His@Cu MRCs for the degradation of two azo dyes, methyl orange (MO) and methylene blue (MB) as well as their mixture. The reusability of the nanocatalyst was good and sustained even after 3 cycles. Therefore this innovated Fe3O4@His@Cu MRCs has a potential to be used for purification of waste water.

  9. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  10. Ca, Mg, Zn, Fe, Cu and Mn content of ass’s milk

    Directory of Open Access Journals (Sweden)

    Elisabetta Salimei

    2010-01-01

    Full Text Available The aim of this study was to determine Ca, Mg, Zn, Fe, Cu and Mn content of ass’s milk. Twenty four individual milk samples were collected from 4 lactating asses. During the experi- mental period milk samples were collected every 3 weeks interval, using a milking machine; asses were housed with the foals that were separated from the jennets 3 hours before milking. Milk was analysed for Ca, Mg, Zn, Fe, Cu and Mn content by atomic absorption spectrometry. The concentration mean (±SD of Ca Mg, Zn, Fe, and Cu were respectively 334.61±39.80, 58.46±8.43, 1.99±0.51, 1.15±0.52, 0.16±0.06 mg/kg. Mn was found only at trace level. Iron content of ass’s milk was the most variable ranging from 0.43 to 1.88 mg/kg. Correlation coefficients were positive and significant between Ca and Mg (r=0.63, Zn and Mg (r=0.45, Zn and Fe (r=0.49 and Zn and Cu (r=0.50. In this study, except for Fe, mean concentration of Ca, Mg, Zn, and Cu in ass’s milk was similar to those reported in literature for human milk.

  11. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    Science.gov (United States)

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.

  12. Determination of metals (As, Cu, Fe, and Zn in two fish species from the Miankaleh wetland

    Directory of Open Access Journals (Sweden)

    Alipour Hossein

    2016-06-01

    Full Text Available The objective of this study was to determine the concentrations As, Cu, Fe, and Zn in the livers, gills, and muscles of vobla or Caspian roach, Rutilus caspicus (Yakovlev, and bighead goby, Neogobius gorlap (Iljin, from the Miankaleh wetland. The results showed that metal accumulation in the liver tissues was higher than in the gills and muscles for all metals, and Fe concentration was higher than Zn, Cu, and As in all the tissues studied. The concentrations of As, Cu, Fe, and Zn in the livers, gills, and muscles of bighead goby were higher than in vobla tissues, except for concentrations of As in the muscles. Fe, Cu, and Zn concentrations in the muscles were below the maximum permissible limit of the WHO and the FAO for both species, but the concentration of As in the muscles of both species exceeded the permissible limit proposed by the FAO; thus, human consumption should be limited. The levels of the other metals (Fe, Cu and Zn were completely safe.

  13. Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cazottes, S., E-mail: sophie.cazottes@etu.univ-rouen.fr [Groupe de Physique des Materiaux (GPM), Universite de Rouen, UMR CNRS 6634, Site Universitaire du Madrillet, Avenue de l' Universite, BP 12, 76801 Saint-Etienne du Rouvray Cedex (France); Danoix, F.; Fnidiki, A.; Lemarchand, D. [Groupe de Physique des Materiaux (GPM), Universite de Rouen, UMR CNRS 6634, Site Universitaire du Madrillet, Avenue de l' Universite, BP 12, 76801 Saint-Etienne du Rouvray Cedex (France); Baricco, M. [Dipartimento di Chimica IFM and NIS/INSTM, Universita' di Torino, Via P. Giuria 9, 10125 Torino (Italy)

    2009-04-15

    The microstructure of Cu{sub 80}Fe{sub 10}Ni{sub 10} (at%) granular ribbon was investigated by means of atom probe tomography (APT). A granular system is composed of magnetic precipitates embedded in a non-magnetic matrix. In this ribbon, the magnetic precipitates have a diameter smaller than 5 nm in the as-spun state, and their crystallographic structure is very similar to the one of the matrix, which makes it difficult to characterize them using conventional techniques. Those data are of great importance to understand the magnetic and the transport behaviour of these ribbons. Using atom probe tomography, a 3D reconstruction of the microstructure of the as-spun and annealed ribbons was achieved and a precise characterization of the compositions of the two phases and of the composition profile at interfaces was carried out. In the as-spun state the composition of the matrix is Cu{sub 89}Fe{sub 3}Ni{sub 8}, the one of the precipitates is Cu{sub 30}Fe{sub 40}Ni{sub 30}. Upon annealing, the precipitates get enriched in iron. After annealing at 600 {sup o}C for 24 h, the measured compositions are close to the one predicted by Thermocalc, with Cu{sub 94}Fe{sub 1}Ni{sub 5} for the matrix and Cu{sub 5}Fe{sub 64}Ni{sub 31} for the precipitates.

  14. Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons.

    Science.gov (United States)

    Cazottes, S; Danoix, F; Fnidiki, A; Lemarchand, D; Baricco, M

    2009-04-01

    The microstructure of Cu(80)Fe(10)Ni(10) (at%) granular ribbon was investigated by means of atom probe tomography (APT). A granular system is composed of magnetic precipitates embedded in a non-magnetic matrix. In this ribbon, the magnetic precipitates have a diameter smaller than 5nm in the as-spun state, and their crystallographic structure is very similar to the one of the matrix, which makes it difficult to characterize them using conventional techniques. Those data are of great importance to understand the magnetic and the transport behaviour of these ribbons. Using atom probe tomography, a 3D reconstruction of the microstructure of the as-spun and annealed ribbons was achieved and a precise characterization of the compositions of the two phases and of the composition profile at interfaces was carried out. In the as-spun state the composition of the matrix is Cu(89)Fe(3)Ni(8), the one of the precipitates is Cu(30)Fe(40)Ni(30). Upon annealing, the precipitates get enriched in iron. After annealing at 600 degrees C for 24h, the measured compositions are close to the one predicted by Thermocalc, with Cu(94)Fe(1)Ni(5) for the matrix and Cu(5)Fe(64)Ni(31) for the precipitates.

  15.  Pressure-induced Fe↔Cu cationic valence exchange and its structural consequences: High-pressure studies of delafossite CuFeO2

    Science.gov (United States)

    Xu, W. M.; Rozenberg, G. Kh.; Pasternak, M. P.; Kertzer, M.; Kurnosov, A.; Dubrovinsky, L. S.; Pascarelli, S.; Munoz, M.; Vaccari, M.; Hanfland, M.; Jeanloz, R.

    2010-03-01

    The present high-pressure studies of CuFeO2 to 30 GPa using x-ray diffraction, along with F57e Mössbauer and Fe and CuK -edge x-ray absorption spectroscopy methods, reveal a sequence of intricate structural/electronic-magnetic pressure-induced transitions. The low-pressure R3¯m structure (0-18 GPa) is composed of sheets of FeS=5/23+ ions alternating with layers of O-CuS=01+-O dumbbells, the latter oriented along the c axis. This structure is characterized by an unusual positive d(c/a)/dP . At 18 GPa a structural transition takes place to a more isotropic C2/c structure with the O-CuS=01+-O axis tilted 28° from the c axis and with negative d(c/a)/dP . This transition corroborates with the onset of long-range antiferromagnetic order. Starting at ˜23GPa , with an initial volume reduction in ˜|ΔV/V0|=0.16 , the Cu-Fe bands overlap and this leads to a (CuS=01+FeS=5/23+)→(CuS=1/22+FeS=22+) interionic valence exchange in about 1/3 of the C2/c-CuFeO2 at 27 GPa. As a result: (i) the Cu2+-O becomes fourfold coordinated and is in a new crystallographic structure with space group P3¯m , and (ii) the Néel temperature increases above twofold [TN(CuS=1/22+FeS=22+)≈2.2TN(CuS=01+FeS=5/23+)] . This sequence of transitions is reversible with minimal hysteresis.

  16. Estudio de los mecanismos de activación de la esfalerita con Cu(II y Pb(II

    Directory of Open Access Journals (Sweden)

    Dávila Pulido, G. I.

    2011-08-01

    Full Text Available This article presents results of an experimental study on the sphalerite activation with Cu(II and Pb(II, whose main objective was to investigate the activation mechanisms and to evaluate the magnitude of the hydrophobization achieved with both chemical species. The hydrophobicity acquired by the mineral due to the interaction with the activator and collector (sodium isopropyl xanthate is characterized making use of the contact angle technique. The results show that Cu(II replaces the Zn of the external layers of the mineral, promoting the sulfide (S2– oxidation to produce a mixture of CuS, Cu2S and S°, of hydrophobic nature. The subsequent interaction with xanthate increases the hydrophobicity of the mineral surface. In turn, Pb(II activation of sphalerite is due to the formation of a PbS layer that reacts with xanthate to produce hydrophobic species (e.g., PbX2. It is also observed that the hydrophobicity of sphalerite activated with Pb(II is favored under air atmospheres, as compared to that obtained under nitrogen atmospheres. It is concluded that the hydrophobicity achieved by lead activation may be of the same order of magnitude to that deliverately induced by copper activation.

    Este artículo presenta los resultados de un estudio experimental sobre la activación de esfalerita (ZnS con Cu(II y Pb(II, cuyo objetivo principal consistió en investigar los mecanismos de activación y en evaluar la magnitud relativa de la hidrofobización alcanzada con ambas especies químicas. La hidrofobicidad que la superficie mineral adquiere como resultado de la interacción con los activadores y colectores tipo xantato (ditiocarbonatos alquílicos, R-O-CS2 –, se caracteriza mediante la técnica del ángulo de contacto. Los resultados muestran que el Cu(II es intercambiado por el Zn de las capas exteriores del cristal, promoviendo la oxidación de sulfuro (S2– para producir una mezcla de

  17. Comparative modular analysis of two complex sulfosalt structures: sterryite, Cu(Ag,Cu)3Pb19(Sb,As)22(As-As)S56, and parasterryite, Ag4Pb20(Sb,As)24S58.

    Science.gov (United States)

    Moëlo, Yves; Guillot-Deudon, Catherine; Evain, Michel; Orlandi, Paolo; Biagioni, Cristian

    2012-10-01

    The crystal structures of two very close, but distinct complex minerals of the lead sulfosalt group have been solved: sterryite, Cu(Ag,Cu)(3)Pb(19)(Sb,As)(22)(As-As)S(56), and parasterryite, Ag(4)Pb(20)(Sb,As)(24)S(58). They are analyzed and compared according to modular analysis. The fundamental building block is a complex column centred on a Pb(6)S(12) triangular prismatic core, with two additional long and short arms. The main chemical and topological differences relate to the short arm, which induces a relative a/4 shift (~2 Å along the elongation parameter) of the constitutive rod layers, as illustrated by distinct cell settings within the same space group (P2(1)/n and P2(1)/c, respectively). Selection of the shortest (i.e. strongest) (Sb,As)-S bonds permitted to enhance the polymeric organization of (Sb,As) atoms with triangular pyramidal coordination. These two quasi-homeotypic structures are expanded derivatives of owyheeite, Ag(3)Pb(10)Sb(11)S(28). The hierarchy of organization levels from zero- to three-dimensional entities is subordinated to building operators, which appear as the driving force for the construction of such complex structures. Minor cations (Ag, Cu) or the As-As pair in sterryite secure the final locking, which favours the formation of one or the other compound.

  18. Interfacial tension studies between Fe-Cu-Ni sulfide and halo-norilsk basalt slag system

    Institute of Scientific and Technical Information of China (English)

    SU Shangguo; Jim Mungall; WANG Jian; GENG Ke

    2005-01-01

    The interfacial tension of the matte/halo-Norilsk basalt slag systems of FeS-Cu2S-Ni3S2 and FeO-FeS were investigated using the sessile drop technique. The results indicate that interfacial tension decreases with increasing copper and nickel contents in the matte of FeS-Cu2S-Ni3S2 system while it increases with increasing oxygen content in the matte of FeO-FeS system. It is inferred from these results that two conditions are critical for the formation of giant Cu-Ni sulfide deposits. One is that mafic-ultramafic parent magma of sulfide deposits should be rich in copper and nickel where due to the low interfacial tension, it is difficult to form sulfide droplet in the early stage of magma evolution. In other words, sulfide liquid conglomeration occurs more difficultly. The other condition is that the magma emplacement should be shallow; and a lot of faults occur in the magma emplacement field. Since oxygen content is high in the environment, interfacial tension is high, which helps sulfide liquid conglomeration and consequently Cu-Ni sulfide deposits form.

  19. Synthesis of a clinoptilolite-Fe system with high Cu sorption capacity.

    Science.gov (United States)

    Doula, Maria K

    2007-03-01

    An iron oxide-clinoptilolite system was synthesized by adding natural clinoptilolite in an iron nitrate solution under strongly basic condition. The newly synthesized material has a red-brown color. A combination of XRD, FTIR and EPR spectroscopies, as well as specific surface area measurements and TG/DSC thermal analyses provided information on the type of Fe species located on the zeolite surface. Clinoptilolite seems to maintain its structure, while Fe(3+) species are in a symmetric environment (Th or Oh). The new material has a noteworthy high value of specific surface area (151 m(2)g(-1)) and is fully iron exchanged (Fe/Al=1.23). Differences in FTIR and TG/DSC spectrograms between the Fe-Clin system and untreated Clin were reported and explained. According to Cu adsorption/desorption experiments, carried out after the synthesis and characterization procedures, the Fe-Clin system is a promising new material since it adsorbs significantly larger Cu concentrations than clinoptilolite. This fact is owed to its high specific surface area and to its high negative surface charge. Desorption of Cu was also examined and it was observed that the Fe-Clin system desorbs smaller Cu amounts than untreated clinoptilolite.

  20. Electronic structure and magnetic properties of PbMO3 (M = Fe, Co, Ni) magnetic perovskites: An ab initio study

    Science.gov (United States)

    Erkişi, Aytaç; Yıldırım, Erdem Kamil; Gökoğlu, Gökhan

    2014-08-01

    We present the electronic, magnetic and structural properties of the magnetic transition metal oxides PbMO3 (M = Fe, Co, Ni) in cubic perovskite structure. The calculations are based on the density functional theory (DFT) within plane-wave pseudopotential method and local spin density approximation (LSDA) of the exchange-correlation functional. On-site Coulomb interaction is also included in calculations (LSDA+U). The systems are considered in ferromagnetic (FM) and G-type antiferromagnetic (G-AFM) order. FM structures are energetically more favored than G-AFM and than non-magnetic states for all the systems studied. The spin-polarized electronic band structures show that all the structures have metallic property in FM order without Hubbard-U interaction (Ueff = 0). However, the inclusion of on-site Coulomb interaction (Ueff = 7 eV) opens a semiconducting gap for majority spin channel of PbFeO3 and of PbNiO3 resulting in a half-metallic character. PbCoO3 system remains as metallic with LSDA+U scheme. Bonding features of all structures are largely determined by the hybridizations between O-p and d-states of transition metal atoms. The partial magnetic moment of Fe atom in PbFeO3 is enhanced by inclusion of Hubbard-U interaction (2.55 μB ⇒ 3.78 μB). Total magnetic moments of half-metallic PbFeO3 and of PbNiO3 compounds are very close to integer values.

  1. Preparation and characterization of epitaxial thin films and patterned nanostructures of Ni/Cu and Fe/Cu

    OpenAIRE

    Corredor, Edna C.

    2012-01-01

    El objetivo del trabajo realizado en esta tesis titulada: Preparation and magnetic characterization of epitaxial thin films and patterned nanostructures of Ni/Cu and Fe/Cu es establecer relaciones entre las propiedades magnéticas de sistemas nanoestructurados y sus dimensiones físicas o factores estructurales que aparecen al reducirse la dimensión espacial a dos, en el caso de películas delgadas, y a una en el caso de elementos patronados. Los sistemas objeto de estudio se caracterizan por se...

  2. Preparation and characterization of epitaxial thin films and patterned nanostructures of Ni/Cu and Fe/Cu

    OpenAIRE

    Corredor Vega, Edna Consuelo; Ciria Remacha, Miguel Ángel; Arnaudas Pontaque, José Ignacio

    2013-01-01

    El objetivo del trabajo realizado en esta tesis titulada: Preparation and magnetic characterization of epitaxial thin films and patterned nanostructures of Ni/Cu and Fe/Cu es establecer relaciones entre las propiedades magnéticas de sistemas nanoestructurados y sus dimensiones físicas o factores estructurales que aparecen al reducirse la dimensión espacial a dos, en el caso de películas delgadas, y a una en el caso de elementos patronados. Los sistemas objeto de estudio se caracterizan por se...

  3. The YBCO-PbS high-temperature superconducting system. Further investigations. [YBaCuO-PbS

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A.K. (Dept. of Applied Physics, GND Univ., Amritsar (India)); Sharma, T.P. (Institute of Advanced Studies, Meerut (India). Dept. of Physics); Shahi, K. (Advanced Centre for Materials Science, IIT, Kanpur (India))

    1993-12-16

    Further investigations on the recently reported YBCO-PbS HTS system are reported. The system is found to have conducting BaPbO[sub 3] as a second phase, which fills the intergrain vacant spaces forming a composite-like microstructure. Thermoanalytical investigations revealed that PbS addition enhances the synthesis of the Y-123-phase and lowers the temperature of partial melting of this phase, which is essential to further reduce the voids. The metallurgical reaction occurring during sintering is also determined and investigated. It is shown that these composite superconducting materials have better normal-state, superconducting, and mechanical properties. (orig.)

  4. The Cu{sub 2}FeTi{sub 3}S{sub 8} and Cu{sub 2}FeZr{sub 3}S{sub 8} compounds: Crystal structure and electroanalytical application

    Energy Technology Data Exchange (ETDEWEB)

    Kormosh, Zh., E-mail: kormosh@univer.lutsk.ua [Department of Analytical Chemistry and Eco-technology, Volyn National University, 13 Voli Ave, 43025 Lutsk (Ukraine); Fedorchuk, A. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, 50 Pekarska St., 79010 Lviv (Ukraine); Wojciechowski, K. [Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Tataryn, N. [Department of Analytical Chemistry and Eco-technology, Volyn National University, 13 Voli Ave, 43025 Lutsk (Ukraine); Parasyuk, O. [Department of Inorganic and Physical Chemistry, Volyn National University, 13 Voli Ave, 43025 Lutsk (Ukraine)

    2011-04-08

    The Cu{sub 2}FeTi{sub 3}S{sub 8} and Cu{sub 2}FeZr{sub 3}S{sub 8} compounds were produced by solid-state synthesis. The crystal structure of the quaternary phases was investigated by X-ray powder method. The compounds are described in the thiospinel structure (space group Fd3-bar m) with the unit cell parameters a = 1.00099(1) nm (Cu{sub 2}FeTi{sub 3}S{sub 8}) and a = 1.03837(2) nm (Cu{sub 2}FeZr{sub 3}S{sub 8}). The atomic parameters were calculated in the isotropic approximation (R{sub I} = 0.0496 and R{sub I} = 0.0422 for Cu{sub 2}FeTi{sub 3}S{sub 8} and Cu{sub 2}FeZr{sub 3}S{sub 8}, respectively). Iron(III)-selective electrodes were prepared using the chalcogenide compounds Cu{sub 2}FeTi{sub 3}S{sub 8} and Cu{sub 2}FeZr{sub 3}S{sub 8}. The electrode function slopes are 52.7 mV/pC for Cu{sub 2}FeTi{sub 3}S{sub 8} and 66.2 mV/pC for Cu{sub 2}FeZr{sub 3}S{sub 8}, the detection limits are 1 x 10{sup -5} M and 2 x 10{sup -5} M respectively. The prepared electrochemical sensors are not sensitive to Cd{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Co{sup 2+}, Mg{sup 2+}, Cr{sup 3+}, and Fe{sup 2+} ions, and were tested in the potentiometric titration of Fe(III) with EDTA solution.

  5. Magnetic ordering of Fe atoms in the YBa2(Cu/0. 95/Fe/0. 05/)3O(7. 01) superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Liubutin, I.S.; Terziev, V.G.; Morozov, O.N. (Institut Kristallografii, Moscow (USSR))

    1990-11-01

    Moessbauer spectroscopy detected the magnetic ordering of Fe atoms in YBa2(Cu/0.95/Fe/0.05/)3O(y) in both the superconducting and the nonsuperconducting states. It is shown that, in the superconducting sample, the superconductivity coexists with magnetic ordering of the Fe atoms in Cu1 nodes. In the nonsuperconducting sample, the Fe atoms in the Cu1 nodes have a magnetic-ordering point (20 K) which is reduced by 10 K upon transition to the superconducting state. 15 refs.

  6. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    Science.gov (United States)

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution.

    Science.gov (United States)

    Sheshmani, Shabnam; Akhundi Nematzadeh, Mehrnaz; Shokrollahzadeh, Soheila; Ashori, Alireza

    2015-09-01

    In the present study, a graphene oxide/chitosan/FeOOH (GO/Ch/FeOOH) nanostructured composite was prepared and used as an adsorbent for the removal of Pb(II) ions from aqueous solution. The nanocomposite was characterized by FT-IR, XRD, and SEM techniques. Several important parameters influencing the adsorption of Pb(II) ions such as pH (3-7), temperature (25-80 °C), shaking speed (150-800 rpm), contact time (10-70 min), and sorbent mass (10-100 mg) were studied. The results showed that, benefiting from the surface property of graphene oxide, the abundant amino and hydroxyl functional groups of chitosan, the adsorbent provides adequate and versatile adsorption for the Pb(II) ions under investigation. The batch adsorption experiments showed that the adsorption of the Pb(II) is considerably dependent on pH of milieu, amount of adsorbent, and contact time. The Freundlich and Langmuir adsorption models were used for the mathematical description of adsorption equilibrium and isotherm constants. Both models were applicable for the description of Pb(II) adsorption isotherm in the concentration range studied. However, Langmuir model showed higher correlation coefficient (R(2)) than Freundlich model. The study suggests that the GO/Ch/FeOOH is a promising nano adsorbent for the removal of Pb(II) ions from aqueous solution.

  8. Adsorption of Pb, Cd to Fe, Mn oxides in natural freshwater surface coatings developed in different seasons.

    Science.gov (United States)

    Dong, De-ming; Yang, Fan; Li, Yu; Hua, Xiu-yi; Lü, Xiao-jun; Zhang, Jing-jing

    2005-01-01

    Metal oxides( Fe, Mn oxides) in natural surface coatings(biofilms and associated minerals) are believed to play a significant role in the fate and transport of trace metal in aquatic environments. Seasonal variation of Fe, Mn oxides and organic materials in surface coatings, which were developed periodically on glass slides in Nanhu Lake, Jilin Province, China over the time frame of three seasons, was investigated in order to understand the influence of metal oxides on Pb and Cd adsorption to heterogeneous surface coating materials (biofilm). Pb and Cd adsorption was measured under controlled laboratory conditions(mineral salts solution with defined speciation, ionic strength 0.05 mol/L, 25 degrees C and pH 6.0). The classical Langmuir adsorption isotherm was applied to estimate equilibrium coefficients of Pb and Cd adsorption to the surface coatings. In general, components in the surface coatings varied greatly with seasons altering and obtained higher concentrations in summer while the content of iron oxides always exceeded that of manganese oxides. Correlation analyses between the maximum adsorption of Pb and Cd and components in the surface coatings developed periodically indicated that Pb phase association with Mn oxides and Cd phase association with Fe oxides as well as Mn oxides were statistically significant. Effect of Mn oxides on Cd adsorption was confirmed in view of its higher content in the surface coatings. The importance of ferromanganese oxides for Pb and Cd adsorption to the natural surface coatings developed in different seasons was evidenced.

  9. Adsorption of Pb, Cd to Fe, Mn oxides in natural freshwater surface coatings developed in different seasons

    Institute of Scientific and Technical Information of China (English)

    DONG De-ming; YANG Fan; LI Yu; HUA Xiu-yi; L(U) Xiao-jun; ZHANG Jing-jing

    2005-01-01

    Metal oxides( Fe, Mn oxides) in natural surface coatings(biofilms and associated minerals) are believed to play a significant role in the fate and transport of trace metal in aquatic environments. Seasonal variation of Fe, Mn oxides and organic materials in surface coatings, which were developed periodically on glass slides in Nanhu Lake, Jilin Province, China over the time frame of three seasons,was investigated in order to understand the influence of metal oxides on Pb and Cd adsorption to heterogeneous surface coating materials(biofilm). Pb and Cd adsorption was measured under controlled laboratory conditions(mineral salts solution with defined speciation, ionic strength 0.05 mol/L, 25℃ and pH 6.0). The classical Langmuir adsorption isotherm was applied to estimate equilibrium coefficients of Pb and Cd adsorption to the surface coatings. In general, components in the surface coatings varied greatly with seasons altering and obtained higher concentrations in summer while the content of iron oxides always exceeded that of manganese oxides. Correlation analyses between the maximum adsorption of Pb and Cd and components in the surface coatings developed periodically indicated that Pb phase association with Mn oxides and Cd phase association with Fe oxides as well as Mn oxides were statistically significant. Effect of Mn oxides on Cd adsorption was confirmed in view of its higher content in the surface coatings. The importance of ferromanganese oxides for Pb and Cd adsorption to the natural surface coatings developed in different seasons was evidenced.

  10. Simultaneous release of Fe and As during the reductive dissolution of Pb-As jarosite by Shewanella putrefaciens CN32.

    Science.gov (United States)

    Smeaton, Christina M; Walshe, Gillian E; Smith, Adrian M L; Hudson-Edwards, Karen A; Dubbin, William E; Wright, Kate; Beale, Andrew M; Fryer, Brian J; Weisener, Christopher G

    2012-12-04

    Jarosites are produced during metallurgical processing, on oxidized sulfide deposits, and in acid mine drainage environments. Despite the environmental relevance of jarosites, few studies have examined their biogeochemical stability. This study demonstrates the simultaneous reduction of structural Fe(III) and aqueous As(V) during the dissolution of synthetic Pb-As jarosite (PbFe(3)(SO(4),AsO(4))(2)(OH)(6)) by Shewanella putrefaciens using batch experiments under anaerobic circumneutral conditions. Fe(III) reduction occurred immediately in inoculated samples while As(V) reduction was observed after 72 h. XANES spectra showed As(III) (14.7%) in the solid phase at 168 h coincident with decreased aqueous As(V). At 336 h, XANES spectra and aqueous speciation analysis demonstrated 20.2% and 3.0% of total As was present as As(III) in the solid and aqueous phase, respectively. In contrast, 12.4% of total Fe was present as aqueous Fe(II) and was below the detection limits of XANES in the solid phase. TEM-EDS analysis at 336 h showed secondary precipitates enriched in Fe and O with minor amounts of As and Pb. Based on experimental data and thermodynamic modeling, we suggest that structural Fe(III) reduction was thermodynamically driven while aqueous As(V) reduction was triggered by detoxification induced to offset the high As(V) (328 μM) concentrations released during dissolution.

  11. Facile synthesis of Fe-incorporated CuO nanoarrays with enhanced electrochemical performance for lithium ion full batteries

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Bojun [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Department of Applied Physics, Wuhan University of Science and Technology, Wuhan, 430065 (China); Qing, Chen; Wang, Hai; Sun, Daming; Wang, Bixiao [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Tang, Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China)

    2015-11-15

    CuO nanoarrays (CNAs) and Fe-incorporated CuO nanoarrays (FCNAs) were fabricated by hydrothermal method. Addition of Fe salt to the reaction mixture allowed the introduction of iron oxide onto the CNAs surface, which was characterized by XPS and HRTEM. Introducing Fe ion into reaction precursor significantly affected not only the morphologies of as-prepared products but also their electrochemical performance as anode for lithium ion full battery. The FCNAs electrodes showed higher specific capacity and better capacity retention at different current densities than that of CNAs. - Highlights: • Fe-incorporated CuO nanoarrays were fabricated by hydrothermal method. • Fe salt in reaction mixture leads to iron oxides forming on the surface of CuO. • Fe-incorporating improves the lithium ion battery performance of CuO anodes.

  12. CuO nanostructures grown by the SILAR method: Influence of Pb-doping on the morphological, structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bayansal, F., E-mail: fbayansal@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, Hatay (Turkey); Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey); Gülen, Y. [Department of Physics, Faculty of Arts and Sciences, Marmara University, İstanbul (Turkey); Şahin, B. [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey); Kahraman, S. [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, Hatay (Turkey); Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey); Çetinkara, H.A. [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey)

    2015-01-15

    Highlights: • CuO nanostructures with Pb-doping by the SILAR method is reported for the first time. • CuO nanostructures of different morphologies were grown by different Pb ratios. • E{sub g} values of the films can be altered by changing Pb doping concentrations. - Abstract: CuO nanostructures with and without Pb were synthesized by the Successive Ionic Layer Adsorption and Reaction method. The films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and ultraviolet–visible spectrophotometry. Scanning electron microscopy results showed that the morphology of the film surface was changed from plate-like to coral-like nanostructures with increasing Pb concentration. The X-ray diffraction patterns showed the monoclinic crystal structure with preferential planes of (1{sup ¯}11) and (1 1 1). Furthermore, ultraviolet–visible spectra showed that the band gap of the films was tailored by Pb doping.

  13. Stabilization of Pb²⁺ and Cu²⁺ contaminated firing range soil using calcined oyster shells and waste cow bones.

    Science.gov (United States)

    Moon, Deok Hyun; Cheong, Kyung Hoon; Khim, Jeehyeong; Wazne, Mahmoud; Hyun, Seunghun; Park, Jeong-Hun; Chang, Yoon-Young; Ok, Yong Sik

    2013-05-01

    Pb(2+) and Cu(2+) contamination at army firing ranges poses serious environmental and health risks to nearby communities necessitating an immediate and prompt remedial action. In this study, a novel mixture of calcined oyster shells (COSs) and waste cow bones (WCBs) was utilized to immobilize Pb(2+) and Cu(2+) in army firing range soils. The effectiveness of the treatment was evaluated based on the Korean Standard leaching test. The treatment results showed that Pb(2+) and Cu(2+) immobilization in the army firing range soil was effective in significantly reducing Pb(2+) and Cu(2+) leachability upon the combined treatment with COS and WCB. A drastic reduction in Pb(2+) (99%) and Cu(2+) leachability (95%) was obtained as compared to the control sample, upon treatment with 5 wt.% COS and 5 wt.% WCB. The combination treatment of COS and WCB was more effective for Pb immobilization, than the treatment with COS or WCB alone. The 5 wt.% COS alone treatment resulted in 95% reduction in Cu(2+) leachability. The SEM-EDX results suggested that Pb(2+) and Cu(2+) immobilization was most probably associated with the formation of ettringite, pozzolanic reaction products and pyromorphite-like phases at the same time.

  14. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders

    2011-01-01

    Cu/TiO2, Fe/TiO2 and heteropoly acid promoted Cu/TiO2, Fe/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR and EPR. The catalysts exhibited only crystalline TiO2 phases with the active metals and promoters in highly dispersed state. The acidic properties...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might...... were studied and compared with the catalytic activity for the selective catalytic reduction (SCR) of NO with ammonia. The SCR activities and acidity values of heteropoly acid promoted catalysts were found to be much higher than unpromoted catalysts. The influence of potassium poisons on the SCR...

  15. Bournonite PbCuSbS3 : Stereochemically Active Lone-Pair Electrons that Induce Low Thermal Conductivity.

    Science.gov (United States)

    Dong, Yongkwan; Khabibullin, Artem R; Wei, Kaya; Salvador, James R; Nolas, George S; Woods, Lilia M

    2015-10-26

    An understanding of the structural features and bonding of a particular material, and the properties these features impart on its physical characteristics, is essential in the search for new systems that are of technological interest. For several relevant applications, the design or discovery of low thermal conductivity materials is of great importance. We report on the synthesis, crystal structure, thermal conductivity, and electronic-structure calculations of one such material, PbCuSbS3 . Our analysis is presented in terms of a comparative study with Sb2 S3 , from which PbCuSbS3 can be derived through cation substitution. The measured low thermal conductivity of PbCuSbS3 is explained by the distortive environment of the Pb and Sb atoms from the stereochemically active lone-pair s(2) electrons and their pronounced repulsive interaction. Our investigation suggests a general approach for the design of materials for phase-change-memory, thermal-barrier, thermal-rectification and thermoelectric applications, as well as other functions for which low thermal conductivity is purposefully sought.

  16. Studies of biosorption of Pb2+, Cd2+ and Cu2+ from aqueous solutions using Adansonia digitata root powders.

    Science.gov (United States)

    Ekere, N R; Agwogie, A B; Ihedioha, J N

    2016-01-01

    The potentials of Adansonia digitata root powders (ADRP) for adsorption of Pb(2+), Cd(2+) and Cu(2+) from aqueous solutions was investigated. Physico-chemical analysis of the adsorbent (ADRP) shows that hydroxyl, carbonyl and amino groups were predominant on the surface of the adsorbent. Scanning Electron Microscope (SEM) image revealed its high porosity and irregular pores in the adsorbent while the Energy Dispersive X-ray Spectrum showed the major element with 53.0% Nitrogen, 23.8% carbon, 9.1% calcium, 7.5% potassium and 6.6% magnesium present. The found optimal conditions were: initial concentration of the metal ions = 0.5 mg/L, pH = 5, contact time = 90 min, adsorbent dose = 0.4 g and particle size = 32 µm. Freundlich isotherm showed good fit for the adsorption of Pb(2+), Cd(2+) and Cu(2+). Dubinin-Radushkevich isotherm revealed that the adsorption processes were physisorption Cd(II) and Cu(II) but chemisorption with respect to Pb(II) ions. The kinetics and thermodynamic studies showed that Pseudo-second order and chemisorptions provided the best fit to the experimental data of Pb (II) ions only. Batch desorption result show that desorption in the acidic media for the metal ions were more rapid and over 90% of the metal ions were recovered from the biomass.

  17. Exposure studies of core-shell Fe/Fe(3)O(4) and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard?

    Science.gov (United States)

    Trujillo-Reyes, J; Majumdar, S; Botez, C E; Peralta-Videa, J R; Gardea-Torresdey, J L

    2014-02-28

    Iron and copper nanomaterials are widely used in environmental remediation and agriculture. However, their effects on physiological parameters and nutritional quality of terrestrial plants such as lettuce (Lactuca sativa) are still unknown. In this research, 18-day-old hydroponically grown lettuce seedlings were treated for 15 days with core-shell nanoscale materials (Fe/Fe(3)O(4), Cu/CuO) at 10 and 20mg/L, and FeSO(4)·7H(2)O and CuSO(4)·5H(2)O at 10mg/L. At harvest, Fe, Cu, micro and macronutrients were determined by ICP-OES. Also, we evaluated chlorophyll content, plant growth, and catalase (CAT) and ascorbate peroxidase (APX) activities. Our results showed that iron ions/NPs did not affect the physiological parameters with respect to water control. Conversely, Cu ions/NPs reduced water content, root length, and dry biomass of the lettuce plants. ICP-OES results showed that nano-Cu/CuO treatments produced significant accumulation of Cu in roots compared to the CuSO(4)·5H(2)O treatment. In roots, all Cu treatments increased CAT activity but decreased APX activity. In addition, relative to the control, nano-Cu/CuO altered the nutritional quality of lettuce, since the treated plants had significantly more Cu, Al and S but less Mn, P, Ca, and Mg. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Preparation, processing and tunneling in YBa2Cu3O(7-[delta])-Pb native-barrier structures

    Energy Technology Data Exchange (ETDEWEB)

    Frangi, F.; Dwir, B.; James, J. H.; Gauzzi, A.; Pavuna, D. (Swiss Federal Institute of Technology, Lausanne (Switzerland). Institute of Micro- and Optoelectonics)

    1993-06-15

    In this study, a procedure for the preparation of small (40[times]40[mu]m[sup 2]) window-type YBa2Cu3O(7-[delta])-Pb junctions with YSZ (yttrium-stabilized zirconium-oxide) insulator and native tunnel barrier has been developed. This paper presents the patterning technique of the two electrodes based on photolithography and wet etching. From the device characteristics, the nature of the barrier was found to be semiconducting. The tunneling I-V curves showed a behavior dominated by the Pb gap at 1.3 meV below 7.2 K. The dI/dV curve also showed an additional feature at 5.3 meV, which disappeared above Tc of Pb, and was attributed to longitudinal Pb phonons. Furthermore, another structure at 8.5 meV that persisted at temperatures above the critical temperature of Pb was attributed to the YBa2Cu3O(7-[delta]) gap. 15 refs., 7 figs.

  19. Applying Freundlich, Langmuir and Temkin models in Cu and Pb soil sorption experiments Uso de los modelos de Freundlich, Langmuir y Temkin en experimentos de sorción de Cu y Pb en suelos Aplicação dos modelos de Freundlich, Langmuir e Temkin em ensaios de sorção de Cu e Pb no solo

    Directory of Open Access Journals (Sweden)

    F.A. Vega

    2011-11-01

    Full Text Available

    In acid soils, inputs of Cu and Pb of various origins create a high risk of environmental pollution. For this reason, batch experiments on Cu and Pb sorption and desorption in various horizons of three acid soils were performed on soil pH with 0.01 M NaNO3 as background electrolyte. The objectives were to evaluate Cu and Pb sorption and retention capacity through the Langmuir, Freundlich and Temkin equations parameters fitted to the sorption/desorption data; to determine the coherence of the implications of these parameters; and to estimate the role of various soil characteristics in the Cu and Pb immobilization soil capacity. The results confirmed the suitability of the models parameters for studying Cu and Pb sorption and retention by acid soils. The greatest maximum sorption and retention capacities, indicated by the Langmuir parameter ßL, corresponded to the lowest energy values required for fixation, indicated by the Temkin parameter b’. Together with the Freundlich parameter KF, which indicates sorption and retention capacity, they made it possible to infer that the acid soil component that most influences Cu and Pb immobilization was the organic matter, followed by the Al-oxide content. High organic matter and Al-oxide contents, especially the former, gave rise to a lower energy requirement for the immobilization of metal cations, since they increased the soils’ sorption and retention capacities. Al3+, the dominant cation in the exchange complex in the horizons studied, and K+ are responsible for the influence of CECe on Cu and Pb immobilization in the acid soils studied.

    El aporte de Cu y Pb a través de diversas fuentes a suelos ácidos supone un alto riesgo de contaminación medioambiental. Por ello, usando el método batch y con NaNO3 0,01 M como electrolito de fondo, se llevaron a cabo, al

  20. Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide

    Science.gov (United States)

    Taddee, Chutirat; Kamwanna, Teerasak; Amornkitbamrung, Vittaya

    2016-09-01

    Delafossite CuCr1-xFexO2 (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr1-xFexO2 slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV-visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO2 samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe3+ for Cr3+ produced a mixed effect on the magnetic properties of CuCrO2 delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr1-xFexO2 with a superconducting transition up to 118 K.

  1. Chemical effect on the K shell fluorescence yield of Fe, Mn, Co, Cr and Cu compounds

    Indian Academy of Sciences (India)

    U Turgut

    2004-11-01

    Chemical effects on the K shell fluorescence yields of Fe, Mn, Co, Cr and Cu compounds were investigated. Samples were excited using 59.5 keV energy photons from a 241Am radioisotope source. K X-rays emitted by samples were counted by a Si(Li) detector with a resolution 160 eV at 5.9 keV. Chemical effects on the K shell fluorescence yields (K) for Fe, Mn, Co, Cr and Cu compounds were observed. The values are compared with theoretical, semiempirical fit and experimental ones for the pure elements.

  2. Modeling and analysis of soybean (Glycine max. L Cu/Zn, Mn and Fe superoxide dismutases

    Directory of Open Access Journals (Sweden)

    V. Ramana Gopavajhula

    2013-01-01

    Full Text Available Superoxide dismutase (SOD, EC 1.15.1.1 is an important metal-containing antioxidant enzyme that provides the first line of defense against toxic superoxide radicals by catalyzing their dismutation to oxygen and hydrogen peroxide. SOD is classified into four metalloprotein isoforms, namely, Cu/Zn SOD, Mn SOD, Ni SOD and Fe SOD. The structural models of soybean SOD isoforms have not yet been solved. In this study, we describe structural models for soybean Cu/Zn SOD, Mn SOD and Fe SOD and provide insights into the molecular function of this metal-binding enzyme in improving tolerance to oxidative stress in plants.

  3. Microstructure and Tribological Behaviour of CrCuFeNiTi High Entropy Alloys

    OpenAIRE

    Sobiyi Kehinde; Bodunrin Michael; Akinlabi Esther; Obadele Babatunde

    2016-01-01

    The microstructure, hardness and wear performance of CrCuFeTiNi high entropy alloy were evaluated. The alloy was produced by mixing constituent elements, consolidated and melted using vacuum arc furnace. The X-ray diffraction analysis confirmed that the alloy is composed of FCC and BCC simple phases. The microstructure contains three regions that were rich in Cu, Cr and Fe which resulted from segregation of constituent elements. The Vickers micro hardness of the alloy was determined as HV0.5 ...

  4. Celdas galvánicas. Montaje y comprobación de la celda constituida por los pares Fe(III)/Fe(II)y Cu(II)/Cu.

    OpenAIRE

    Milla González, Miguel

    2013-01-01

    Se dispone de disoluciones de sulfato de cobre(II), sulfato de hierro(II) y nitrato de Fe(III), de un potenciómetro, un puente salino y electrodos de Cu y de grafito. Con las disoluciones citadas, montar una celda galvánica y medir su potencial. Son posibles todas las combinaciones tanto en el compartimento anódico como en el catódico.

  5. [Effects of combined pollution of Cd, Cu and Pb on antioxidant enzyme activities of earthworm in soils].

    Science.gov (United States)

    Wang, Hui; Xie, Xin-Yuan

    2014-07-01

    Recently, soil heavy metal contamination becomes more and more serious in certain areas in China. Adverse effect caused by heavy metals in contaminated soils has been a wide concern for many years. In this study, a bioassay experiment with the earthworm (Eisenia foetida) was conducted to investigate the effects of compound application of Cd, Cu and Pb in soil on surperoxide dismutase (SOD), glutathione S-transferase (GST) and acid phosphatase (AP) activity in earthworms. Through a method of greenhouse soil experiment, this study utilized a uniform design method of three factors and six levels (Cd: 0-15 mg x kg(-1), Cu: 0-175 mg x kg(-1), Pb: 0-600 mg x kg(-1)) to research the physiological property and enrichment characteristics of earthworm in soils with Cd, Cu and Pb compound pollution. The activity of SOD, GST and AP were inhibited significantly under Cd, Cu and Pb compound pollution. And they were impacted by both time and heavy metal contents in the soil. Compared with the control sample, the activity of SOD increased by 7.4% -240.5% in the first eight days under the stress of heavy metals. But owing to the extremely severe stress, it was suppressed and descended by 19.4% -69.7%. Compared with the control sample, the activity of GST increased by 104.3% -217.3% in the first sixteen days under the stress of heavy metals. But owing to the extremely severe stress, it was suppressed and descended by 1.2% - 40.3%. The activity of AP changed over time in a trend of "increase, decrease, increase, decrease". Compared with the control sample, the activity of AP decreased by 9.2% -37.8% in the first eight days, then increased by 37.2% -117.2% in sixteenth days and decreased by 24.3% -34.0% to the last day. The analysis demonstrates that Pb and Cd-Cu-Pb is the dominant factor to the activity of SOD, while Cd and Cu were the dominant factors to the activity of GST and AP.

  6. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    Science.gov (United States)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  7. Assessment of Cu, Pb and Hg Contamination in Bottom Sediments Of Surface Water in XuZhou

    Institute of Scientific and Technical Information of China (English)

    王晓; 韩宝平; 朱雪强

    2004-01-01

    Pollution of heavy metals Cu,Pb and Hg is assessed using geo-accumulation index in this paper. The result shows that the bottom sediments of surface water in Xuzhou is polluted by these heavy metals to deferent degrees, of which the Jinma River is the most serious, and then the Kuihe River, the abandoned Yellow River, and the Jinghang Canal. The Yunlong Lake has also been polluted by Hg. The three kinds of heavy metals in the order of concentration is Hg>Cu>Pb. The pollution degree and the type of element is closely related with industrial structure in Xuzhou.

  8. Effects of Cu Layer Width on the Giant Magneto-impedance Effect in Sandwich FeCuNbCrSiB/Cu/FeCuNbCrSiB Films With a Meander Line Structure%Cu层宽度对弯曲型三明治结构FeCuNbCrSiB/Cu/FeCuNbCrSiB多层膜巨磁阻抗效应的影响

    Institute of Scientific and Technical Information of China (English)

    张亚民; 陈吉安; 周勇; 丁文; 王明军; 高孝裕; 周志敏

    2005-01-01

    采用射频磁控溅射方法和微细加工工艺制备了不同Cu层宽度的弯曲型三明治结构的FeCuNbCrSiB/Cu/FeCuNbCrSiB多层膜,在频率1~40MHz下研究了Cu层宽度对多层膜的纵向和横向巨磁阻抗效应的影响.结果表明,弯曲型三明治结构多层膜的巨磁阻抗率随Cu层宽度的变化具有显著的变化,在频率10MHz、磁场12kA/m下,当Cu层宽度为0.4mm时,纵向、横向巨磁阻抗率分别达-57%、-65%.

  9. Crystal structure of the quaternary compounds CuFe2AlSe4 and CuFe2GaSe4 from X-ray powder diffraction

    Indian Academy of Sciences (India)

    G E Delgado; A J Mora; P Grima-Gallardo; M Muñoz; S Durán; M Quintero; J M Briceño

    2015-08-01

    The crystal structure of the quaternary compounds CuFe2AlSe4 and CuFe2GaSe4, belonging to the system I–II2–III–VI4, were characterized using X-ray powder diffraction data. Both compounds crystallize in the tetragonal space group I42m (No. 121), = 2, with unit cell parameters = 5.609(1) Å, = 10.963(2) Å for CuFe2AlSe4 and = 5.6165(3) Å, = 11.075(1) Å for CuFe2GaSe4. These compounds are isostructural with CuFe2InSe4, and have a normal adamantane stannite structure.

  10. Investigation of Pb, Cd, Cu and Mg Concentrations in Groundwater Resources of Razan Plain

    Directory of Open Access Journals (Sweden)

    S. Sobhan Ardakani

    2015-01-01

    Full Text Available Introduction & Objective: Iran is located in the dry and semi dry regions, thus almost 90% of the required fresh water is exploited from groundwater resources. Due to the increasing pol-lution of water resources, the purpose of this study was evaluation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain and preparing the zoning map using GIS. Materials & Methods: Groundwater samples were collected from 20 selected stations during two seasons in 2012. The samples were filtered (0.45 ?m and maintained cool in polyethyl-ene bottles. The samples were taken for the analysis of cations, the former was acidified with HNO3 to pH lower than 2. Minor elements were determined using ICP-OES. All statistical analyses were performed using the SPSS statistical package. Also, Kriging Method was used to prepare spatial distribution maps of elements in groundwater samples. Results: The results showed that the mean concentrations of Pb, Cd, Cu and Mg in the groundwater samples during the spring were 5.60±0.66, 0.21±0.04, 32.10±2.21 and 6990.0±302.10 ppb, respectively, and the mean concentrations of these elements in the groundwater samples in the summer were 4.86±0.46, 0.30±0.08, 25.55±3.63 and 3654.05±215.65 ppb, respectively. Comparing the mean concentrations of the evaluated metals with WHO permissible limits showed a significant difference (p<0.05. Thus, the mean concentrations of the metals were significantly lower than the permissible limits. Conclusion: Although the groundwater resources of Razan Plain are not currently polluted with heavy metals, long-term excessive use of agricultural inputs and establishment of pollut-ing industries, can pose a threat to groundwater resources of this area. (Sci J Hamadan Univ Med Sci 2015; 21(4:319-329

  11. Induced Ferromagnetism at BiFeO3/YBa2Cu3O7 Interfaces

    OpenAIRE

    Zhu, Jian-Xin; WEN, XIAO-DONG; Haraldsen, J. T.; He, Mi; C. Panagopoulos; Chia, Elbert E. M.

    2014-01-01

    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO3/YBa2Cu3O7 interfaces. By comparing the total energy for various magnetic spin configurations inside BiFe...

  12. Novel La(Fe,Si){sub 13}/Cu composites for magnetic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P. [Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Cohen, Lesley F. [Department of Physics, Imperial College London, London, SW7 2AZ (United Kingdom)

    2012-11-15

    An approach to engineering magnetic refrigerant materials with defined thermal transport properties is demonstrated using the example of high magnetocaloric performance La-Fe-Si alloys. A tunability of up to 300% of the thermal conductivity can be achieved in composites consisting of a La(Fe,Si){sub 13} compound and Cu prepared by electroless copper plating without compromising the magnitude of the magnetocaloric effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Structural and magnetic properties of FeMnx chains (x =1 -6 ) supported on Cu2N /Cu (100)

    Science.gov (United States)

    Choi, Deung-Jang; Robles, Roberto; Gauyacq, Jean-Pierre; Ternes, Markus; Loth, Sebastian; Lorente, Nicolás

    2016-08-01

    Heterogeneous atomic magnetic chains are built by atom manipulation on a Cu2N /Cu (100) substrate. Their magnetic properties are studied and rationalized by a combined scanning tunneling microscopy (STM) and density functional theory (DFT) work completed by model Hamiltonian studies. The chains are built using Fe and Mn atoms ontop of the Cu atoms along the N rows of the Cu2N surface. Here, we present results for FeMnx chains (x =1 -6 ) emphasizing the evolution of the geometrical, electronic, and magnetic properties with chain size. By fitting our results to a Heisenberg Hamiltonian we have studied the exchange-coupling matrix elements J for different chains. For the shorter chains, x ≤2 , we have included spin-orbit effects in the DFT calculations, extracting the magnetic anisotropy energy. Our results are also fitted to a simple anisotropic spin Hamiltonian and we have extracted values for the longitudinal-anisotropy D and transversal-anisotropy E constants. These parameters together with the values for J allow us to compute the magnetic excitation energies of the system and to compare them with the experimental data.

  14. Genesis of Pb-Zn-Cu-Ag Deposits within Permian Carboniferous-Carbonate Rocks in Madina Regency, North Sumatra

    Directory of Open Access Journals (Sweden)

    Bhakti Hamonangan Harahap

    2015-11-01

    Full Text Available Strong mineralized carbonate rock-bearing Pb-Zn-Cu-Ag-(Au ores are well exposed on the Latong River area, Madina Regency, North Sumatra Province. The ore deposit is hosted within the carbonate rocks of the Permian to Carboniferous Tapanuli Group. It is mainly accumulated in hollows replacing limestone in the forms of lensoidal, colloform, veins, veinlets, cavity filling, breccia, and dissemination. The ores dominantly consist of galena (126 000 ppm Pb and sphalerite (2347 ppm Zn. The other minerals are silver, azurite, covellite, pyrite, marcasite, and chalcopyrite. This deposit was formed by at least three phases of mineralization, i.e. pyrite and then galena replaced pyrite, sphalerite replaced galena, and pyrite. The last phase is the deposition of chalcopyrite that replaced sphalerite. The Latong sulfide ore deposits posses Pb isotope ratio of 206Pb/204Pb = 19.16 - 20.72, 207Pb/204Pb = 16.16 - 17.29, and 208Pb/204Pb = 42.92 - 40.78. The characteristic feature of the deposit indicates that it is formed by a sedimentary process rather than an igneous activity in origin. This leads to an interpretation that the Latong deposit belongs to the Sedimentary Hosted Massive Sulfide (SHMS of Mississippi Valley-Type (MVT. The presence of SHMS in the island arc such as Sumatra has become controversial. For a long time, ore deposits in the Indonesian Island Arc are always identical with the porphyry and hydrothermal processes related to arc magmatism. This paper is dealing with the geology of Latong and its base metal deposits. This work is also to interpret their genesis as well as general relationship to the regional geology and tectonic setting of Sumatra.

  15. Genesis of Pb-Zn-Cu-Ag Deposits within Permian Carboniferous-Carbonate Rocks in Madina Regency, North Sumatra

    Directory of Open Access Journals (Sweden)

    Bhakti Hamonangan Harahap

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.167-184Strong mineralized carbonate rock-bearing Pb-Zn-Cu-Ag-(Au ores are well exposed on the Latong River area, Madina Regency, North Sumatra Province. The ore deposit is hosted within the carbonate rocks of the Permian to Carboniferous Tapanuli Group. It is mainly accumulated in hollows replacing limestone in the forms of lensoidal, colloform, veins, veinlets, cavity filling, breccia, and dissemination. The ores dominantly consist of galena (126 000 ppm Pb and sphalerite (2347 ppm Zn. The other minerals are silver, azurite, covellite, pyrite, marcasite, and chalcopyrite. This deposit was formed by at least three phases of mineralization, i.e. pyrite and then galena replaced pyrite, sphalerite replaced galena, and pyrite. The last phase is the deposition of chalcopyrite that replaced sphalerite. The Latong sulfide ore deposits posses Pb isotope ratio of 206Pb/204Pb = 19.16 - 20.72, 207Pb/204Pb = 16.16 - 17.29, and 208Pb/204Pb = 42.92 - 40.78. The characteristic feature of the deposit indicates that it is formed by a sedimentary process rather than an igneous activity in origin. This leads to an interpretation that the Latong deposit belongs to the Sedimentary Hosted Massive Sulfide (SHMS of Mississippi Valley-Type (MVT. The presence of SHMS in the island arc such as Sumatra has become controversial. For a long time, ore deposits in the Indonesian Island Arc are always identical with the porphyry and hydrothermal processes related to arc magmatism. This paper is dealing with the geology of Latong and its base metal deposits. This work is also to interpret their genesis as well as general relationship to the regional geology and tectonic setting of Sumatra.

  16. Charge compensation and magnetic properties in Sr and Cu doped La-Fe perovskites

    Directory of Open Access Journals (Sweden)

    de Julián Fernández C.

    2013-01-01

    Full Text Available Orthorhombic lanthanum orthoferrites La0.8Sr0.2Fe1-yCuyO3-w (y = 0 and 0.10 have been studied using X-rays and neutron powder diffraction (XRPD and NPD, magnetization measurements and 57Fe Mössbauer spectroscopy. Rietveld refinements on XRPD and NPD data show that they adopt an orthorhombic ABO3 perovskite symmetry with La/Sr and Fe/Cu atoms randomly distributed on crystal A and B sites, respectively. The magnetic structure at room temperature is antiferromagnetic, with the Fe/Cu magnetic moments aligned along the a axis. Magnetization curves versus temperature show that the compounds exhibit an overall antiferromagnetic and a weak ferromagnetic behaviour in the range 5-298 K. 57Fe Mössbauer spectroscopy measurements indicate that Fe3+ and Fe5+ ions coexist in both compounds, and the relative percentage of Fe5+ is almost the same at 77 and 170 K, rejecting a charge disproportion mechanism.

  17. A GREENER SYNTHESIS OF CORE (FE, CU)-SHELL (AU, PT, PD AND AG) NANOCRYSTALS USING AQUEOUS VITAMIN C

    Science.gov (United States)

    A greener method to fabricate the novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then add...

  18. Studies on the interaction between 9-fluorenylmethyl chloroformate and Fe3+ and Cu2+ ions: Spectroscopic and theoretical calculation approach

    Science.gov (United States)

    Gu, Zhenyan; Lei, Wu; Shi, Wenyan; Hao, Qingli; Si, Weimeng; Xia, Xifeng; Wang, Fengxiang

    2014-11-01

    The interaction between 9-fluorenylmethyl chloroformate (FMOC-Cl) and Fe3+ and Cu2+ ions was investigated using fluorescence, UV/Vis absorption spectroscopies and theoretical calculation. The optical property of FMOC-Cl was studied in detail in absence and presence of various transition metal ions with particular affinity to Fe3+ and Cu2+ ions. With the fluorescence characteristic band centered at 307 and 315 nm for FMOC-Cl, the introduction of Fe3+ or Cu2+ ions leads to the fluorescence quenching of FMOC-Cl with different shift and intensities of two fluorescent bands. It allows us to differentiate between FMOC-Cl and Fe3+ and Cu2+ ions interaction behavior. The study on fluorescent kinetics confirms that the fluorescence quenching of FMOC-Cl with Fe3+ and Cu2+ ions is based on the formation of non-fluorescent material, that is, static quenching. Further analyses of bond lengths, Mulliken atomic charges and the frontier orbital compositions for FMOC-Cl and its complexes with Fe3+ and Cu2+ ions were carried out. The theoretical calculations prove the fluorescence quenching originates from the formation of coordination bonds between the oxygen atom of the carbonyl group of FMOC-Cl and Fe3+ and Cu2+ ions. The commercially available FMOC-Cl can be used as excellent fluorescent probe toward Fe3+ and Cu2+ ions with high sensitivity.

  19. Lead nitroprusside: A new precursor for the synthesis of the multiferroic Pb{sub 2}Fe{sub 2}O{sub 5,} an anion-deficient perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Diego M. [Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán (Argentina); Nieva, Gladys [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche (Argentina); Franco, Diego G. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche (Argentina); Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC – CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Gómez, María Inés [Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán (Argentina); and others

    2013-08-15

    In order to investigate the formation of multiferroic oxide Pb{sub 2}Fe{sub 2}O{sub 5}, the thermal decomposition of Pb[Fe(CN){sub 5}NO] has been studied. The complex precursor and the thermal decomposition products were characterized by IR and Raman spectroscopy, thermal analysis, powder X-ray diffraction (PXRD), scanning electron microscopy and magnetic measurements. The crystal structure of Pb[Fe(CN){sub 5}NO] was refined by Rietveld analysis. It crystallizes in the orthorhombic system, space group Pnma. The thermal decomposition in air produces highly pure Pb{sub 2}Fe{sub 2}O{sub 5} as final product. This oxide is an anion deficient perovskite with an incommensurate superstructure. The magnetic measurements confirm that Pb{sub 2}Fe{sub 2}O{sub 5} shows a weak ferromagnetic signal probably due to disorder in the perfect antiferromagnetic structure or spin canting. The estimated ordering temperature from the fit of a phenomenological model was 520 K. The SEM images reveal that the thermal decomposition of Pb[Fe(CN){sub 5}NO] produces Pb{sub 2}Fe{sub 2}O{sub 5} with small particle size. - Highlights: • Pb[Fe(CN){sub 5}NO] was synthesized and characterized. • Pb[Fe(CN){sub 5}NO] belongs to orthorhombic crystal system, space group Pnma. • Pb{sub 2}Fe{sub 2}O{sub 5} was obtained by thermal decomposition of Pb[Fe(CN){sub 5}NO]. • Pb{sub 2}Fe{sub 2}O{sub 5} is a weak ferromagnet due to spin canting. • Ordering temperature of Pb{sub 2}Fe{sub 2}O{sub 5} from the fit of a phenomenological model was 520 K. - Graphical abstract: Field cooling (FC) and zero field cooling (ZFC) magnetization curves at H = 10 and 1000 Oe for Pb{sub 2}Fe{sub 2}O{sub 5} obtained at 750 °C. Remnant magnetization after applying H = 1 T, FC procedure at 0.8 Oe. The fitted expression (see text) yield an ordering temperature T{sub o} = 520 K. Display Omitted.

  20. Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus.

    Science.gov (United States)

    Jing, Xiao-Bing; He, Nan; Zhang, Ying; Cao, Yan-Ru; Xu, Heng

    2012-01-01

    The enhanced effect of heavy-metal-mobilizing bacteria on the uptake of Pb, Cu, and Cd by Coprinus comatus from Pb-, Cu-, and Cd-multicontaminated soil was assessed in this study. Thirteen strains, tolerating 800 mg·L(-1) Pb, 200 mg·L(-1) Cu, and 200 mg·L(-1) Cd simultaneously were selected for heavy-metal-solubilizing experiments in soil. The mobilization of heavy metals depended on the characteristics of bacteria and heavy metals. Correlation analysis demonstrated that for Pb solubilization, the acid-producing ability was the most significant factor, while for Cu and Cd, siderophores played a leading role in this process. Four strains, based on their excellent ability to solubilize heavy metal in soil, were applied in pot experiments. The results showed that all strains can promote the growth of C. comatus and meanwhile help mushroom accumulate more heavy metals (Pb, Cd, and Cu). The maximum uptake for total Pb and Cu by C. comatus was observed in inoculations with Bacillus sp. strain JSG1 (2.02- and 2.13-fold, respectively, compared with uninoculated soil), while for Cd, it was recorded in Bacillus sp. strain PB2 treated soil (2.03-fold). Therefore, this work suggests that the mushroom-bacteria interaction can be developed into a novel bioremediation strategy.

  1. Co-adsorption of Cu and Pb on the Si(1 1 1)-(7 × 7) surface: interface formation

    Science.gov (United States)

    Shukrinov, Pavel; Mutombo, Pingo; Cháb, Vladimír.; Prince, K. C.

    2003-06-01

    The adsorption of Cu and Pb atoms on a Si(1 1 1)-7 × 7 surface was studied by means of scanning tunnelling microscopy (STM). After deposition of ⩽0.1 monolayer (ML) of copper on the Pb √3×√3 mosaic phase and a subsequent annealing up to ˜373 K, new objects of a hexagonal shape appear on a surface. They are scattered over the surface and localised next to the mosaic phase islands. The difference between atomically resolved images of filled and empty states suggests strong covalent bonding within a hexagon. Increasing the concentration of Cu atoms leads to an increasing number of hexagons and their agglomeration. Annealing of this surface at a higher temperature (>470 K) leads to the transformation of these hexagonal-like objects and their agglomeration into the pseudo-"5 × 5" structure, commonly observed for the Cu/Si(1 1 1)system. The absence of hexagons at very low Cu concentration demonstrates the presence of a long-range, attractive interaction among Cu atoms and their strong diffusion just above room temperature (RT).

  2. Ages and compositions of primary and secondary allanite from the Lala Fe-Cu deposit, SW China: implications for multiple episodes of hydrothermal events

    Science.gov (United States)

    Chen, Wei Terry; Zhou, Mei-Fu

    2014-08-01

    Numerous Fe-Cu deposits in southwestern China form the Kangdian Iron-Oxide Copper-Gold (IOCG) metallogenic Province. These deposits have a close association of Fe-oxides and Cu-sulfides formed at different stages, which are possibly related to multiple hydrothermal events. In this paper, U-Pb dating and chemical analyses on allanite from different stages of the Lala deposit were used to constrain timing and origin of such events. Allanite occurs as disseminated grains or patches in Fe-Cu ores and is closely associated with chalcopyrite, molybdenite, calcite and minor titanite, postdating magnetite and apatite. High-resolution backscattered electronic (BSE) imaging, electron microprobe compositions and X-ray scanning profiles demonstrate that REE-rich primary allanite was replaced by later, relatively porous and REE-poor secondary allanite. Such a replacement was promoted by interaction between primary allanite and fluid fluxes infiltrating the minerals, following an exchange scheme of REE3+ + Fe2+ → Ca2+ + Al3+. The secondary allanite has higher Fe3+/(Fe3++Fe2+) ratios and U contents, indicating involvement of relatively oxidized fluids during alteration. The alteration has also produced unidentified secondary REE minerals in fractures, indicating re-deposition of some of the removed REEs. The primary and secondary allanites are dated by in situ LA-ICP-MS technique and have U-Pb ages of 1,067 ± 41 Ma and 880-850 Ma, respectively. The ~1.07 Ga primary allanite was contemporaneous with the main Mo-Cu-LREE mineralization with a molybdenite Re-Os age of ~1.08 Ga. The 880-850 Ma secondary allanite is comparable with the Ar-Ar ages (890-830 Ma) of biotite from hosting schists and undeformed sulfide veins occurring throughout the Kangdian Province, suggesting that such an event was possibly syn-deformational and represents a younger hydrothermal event. Occurrences of both primary and secondary allanites suggest that the mineralization may have involved multiple

  3. Bioaccessibility of As and Pb in orchard and urban soils amended with phosphate, Fe oxide and organic matter.

    Science.gov (United States)

    Cai, Meifang; McBride, Murray B; Li, Kaiming; Li, Zhian

    2017-04-01

    Soils historically contaminated in urban and orchard environments by Pb and As were amended separately with organic matter, soluble Ca phosphate, and Fe oxide to determine whether these materials could lower Pb or As bioaccessibility. After 5 years of equilibration in the laboratory, the amended soils and control were tested for bioaccessibility using the standard physiologically based extraction test (PBET). Bioaccessibilities of Pb and As were not substantially reduced relative to the unamended controls after the 5-year period by any of the soil amendments. Gastric bioaccessibility (GB) of Pb was in all cases much greater than gastrointestinal bioaccessibility (GIB) regardless of soil treatment, whereas GB and GIB of As were similar in magnitude for all soils. Both GB and GIB of Pb were greater in the orchard than the urban soil. Electron microprobe investigations identified discrete particulate forms of Pb in the soils by elemental mapping, and energy dispersive spectrometry (EDS) revealed a frequent spatial association of Pb-rich particles with phosphorus. It is suggested that Pb-rich particles in anthropogenically contaminated soils resist chemical transformation into less labile forms despite thermodynamic favorability because of their low surface area and low solubility. This kinetic effect could explain the observed ineffectiveness of amendments in reducing metal bioaccessibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  5. Liquid-liquid extraction of metal ions, DFT and TD-DFT analysis of some 1,2,4-triazole Schiff Bases with high selectivity for Pb(II) and Fe(II)

    Science.gov (United States)

    Khoutoul, Mohamed; Lamsayah, Morad; Al-blewi, Fawzia F.; Rezki, Nadjet; Aouad, Mohamed Reda; Mouslim, Messali; Touzani, Rachid

    2016-06-01

    Liquid-liquid extraction of metal ions using some 1,2,4-triazole Schiff base derivatives as new extractants was studied. Fe2+, Zn2+, Cu2+, Co2+, Cd2+ and Pb2+ were extracted from the aqueous phase into the organic phase and the extractability for each metal ion was determined by atomic absorption. Interestingly, a competitive extraction was also investigated and then examined at different pH in order to explore the effect of the different substituent groups on metal extraction. Accordingly, high selectivity towards Fe2+ (90.1%) and Pb2+ (94.3%) provided respectively by the presence of electron withdrawing group and electron donor group was attained. In addition, geometry optimizations of the ground and excited-states of the ligands in order to get better insight into the geometry and the electronic structure were carried out by means of DFT and TD-DFT calculations.

  6. Comparative investigation of CuFe2O4 nano and microstructures for structural, morphological, optical and magnetic properties

    Science.gov (United States)

    Raja, G.; Gopinath, S.; Raj, R. Azhagu; Shukla, Arun K.; Alhoshan, Mansour S.; Sivakumar, K.

    2016-09-01

    CuFe2O4 nanocrystals were synthesized by the sol-gel method (SGM) and microwave method (MM) by using sucrose as a fuel. The structural, morphological, optical and magnetic properties of the products were determined and characterized in detail by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). The XRD results confirmed the formation of cubic phase CuFe2O4. The formation of CuFe2O4 nano and microstructures were confirmed by HR-SEM. Photoluminescence emissions were determined by PL spectra, respectively. The relatively high saturation magnetization (78.22 emu/g) of CuFe2O4-MM shows that it is ferromagnetic and low saturation magnetization (35.98 emu/g) of CuFe2O4O-SGM confirms the super paramagnetic behavior.

  7. First-Principles Study of the Role of Cu in Improving the Coercivity of Nd-Fe-B Permanent Magnets

    Science.gov (United States)

    Tatetsu, Y.; Tsuneyuki, S.; Gohda, Y.

    2016-12-01

    We study the magnetic and electronic properties of Cu-doped Nd2 Fe14 B /NdOx systems with first-principles calculations in order to understand the roles of Cu in improving the coercivity of Nd-Fe-B permanent magnets. By analyzing the formation energies of several model systems, we find that Cu prefers to be at the interface. We conclude that the Cu addition to Nd-Fe-B magnets is a practical way of not only increasing the anisotropy of Nd atoms at the interface but also of lessening the magnetic coupling between the Nd and Fe atoms. Particularly, substituting Fe at the interface of the main phase with Cu works effectively in terms of improving the magnetic anisotropy in Nd atoms. This may explain the coercivity improvements reported recently.

  8. Anisotropic photoelectric film assembled from mesoporous silica (MS)@CuO@FeS2 composite microspheres for improving photoelectric conversion.

    Science.gov (United States)

    Zong, Jie; Zhu, Yihua; Shen, Jianhua; Yang, Xiaoling; Li, Chunzhong

    2013-07-15

    We report a novel strategy for the fabrication of mesoporous silica (MS)@CuO@FeS2 composite microsphere-based anisotropic films that combine the advantages of the CuO and FeS2 materials to improve photoelectric conversion. This was achieved by aligning MS@CuO@FeS2 composite microspheres in a cross-linked gel under a homogeneous magnetic field. The MS@CuO@FeS2 composite microspheres, which were synthesized by a simple layer-by-layer (LbL) self-assembly technique together with a solvothermal method, can absorb a wide range of light and exhibit ferromagnetic properties. In addition, the resulting MS@CuO@FeS2 composite microsphere-based anisotropic film shows photoelectric anisotropy. Such systems are promising for improving the performance of solar cells.

  9. The CdS/CdSe/ZnS Photoanode Cosensitized Solar Cells Basedon Pt, CuS, Cu2S, and PbS Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Tung Ha Thanh

    2014-01-01

    Full Text Available Highly ordered mesoporous TiO2 modified by CdS, CdSe, and ZnS quantum dots (QDs was fabricated by successive ionic layer adsorption and reaction (SILAR method. The quantity of material deposition seems to be affected not only by the employed deposition method but also and mainly by the nature of the underlying layer. The CdS, CdSe, and ZnS QDs modification expands the photoresponse range of mesoporous TiO2 from ultraviolet region to visible range, as confirmed by UV-Vis spectrum. Optimized anode electrodes led to solar cells producing high current densities. Pt, CuS, PbS, and Cu2S have been used as electrocatalysts on counter electrodes. The maximum solar conversion efficiency reached in this work was 1.52% and was obtained by using Pt electrocatalyst. CuS, PbS, and Cu2S gave high currents and this was in line with the low charge transfer resistances recorded in their case.

  10. Morphological, thermal and optical studies of jute-reinforced PbSrCaCuO-polypropylene composite

    Science.gov (United States)

    Jacob, Reenu; Isac, Jayakumari

    2016-11-01

    New research with modern technologies has always grabbed substantial attention. Conservation of raw materials like natural fibers has helped composite world to explore eco-friendly components. The aim of this paper is to study the potential of jute fiber-reinforced ceramic polymers. Alkali-treated jute fiber has been incorporated in a polypropylene ceramic matrix at different volume fractions. The morphological, thermal and optical studies of jute-reinforced ceramic Pb2Sr2CaCu2O9 (PbSrCaCuO) are studied. Morphological results evidently demonstrate that when the polypropylene ceramic matrix is reinforced with jute fiber, interfacial interaction between the varying proportions of the jute fiber and ceramic composite takes place. TGA and DSC results confirm the enhancement in the thermal stability of ceramic composites reinforced with jute fiber. The UV analysis of the composite gives a good quality measure on the optical properties of the new composite prepared.

  11. UJI TOLERANSI TANAMAN TEMBAKAU (Nicotiana tabacum L. TERHADAP CEKAMAN KADMIUM (Cd, TIMBAL (Pb, DAN TEMBAGA (Cu PADA KULTUR CAIR

    Directory of Open Access Journals (Sweden)

    S Rosidah

    2014-11-01

    Full Text Available Penelitian ini menyelidiki respon fisiologis, anatomis, dan morfologis tanaman tembakau (Nicotiana tabacum L. terhadap cekaman logam berat Cu, Cd, dan Pb. Sampel yang digunakan adalah tembakau umur 3-4 minggu yang dikecambahkan secara in vitro dan kemudian dipapar logam berat selama 14 hari. Desain penelitian yang digunakan yaitu rancangan acak lengkap dengan satu faktor, yaitu konsentrasi logam Cu (0 µM, 50 µM, 100 µM, 150 µM & 200 µM, Cd (0 µM, 50 µM, 100 µM, 200 µM & 300 µM, dan Pb (0 µM, 5 µM, 20 µM, 50 µM & 100 µM. Parameter yang digunakan: pertambahan panjang akar, pertambahan jumlah akar, akumulasi logam dalam akar, lokalisasi penimbunan dalam akar, dan warna daun. Bertambahnya konsentrasi logam menghambat pertumbuhan akar dan menyebabkan deposit logam pada jaringan akar dan gejala klorosis. Hasil uji Atomic Absorbtion Spectrophotometry (AAS menunjukkan semakin besar konsentrasi semakin banyak akumulasi logam pada jaringan akar. Akan tetapi, akumulasi Cd pada konsentrasi 200 µM lebih besar dibanding pada konsentrasi 300 µM. Analisis kualitatif membuktikan bahwa cekaman Cu tidak berpengaruh signifikan terhadap warna daun, sedangkan pada cekaman Cd (100, 150 dan 200 µM dan Pb (150 µM daun mengalami klorosis. Pada konsentrasi logam yang rendah seperti 50 µM Cu, 50 µM Cd, dan 5 µM Pb tidak berbeda nyata dengan kontrol. Dengan demikian disimpulkan bahwa tembakau mampu mentoleransi cekaman logam pada konsentrasi yang rendah.  This research investigated the physiological, anatomical, and morphological responses of tobacco (Nicotiana tabacum L. on stresses of heavy metals Cu, Cd, and Pb. The samples were 3- to 4-week tobacco plants germinated in vitro and then were exposed to heavy metals for 14 days. This study used a completed random design with single factor, i.e. the concentrations of Cu (0 µM, 50 µM, 100 µM, 150 µM & 200 µM, Cd (0 µM, 50 µM, 100 µM, 200 µM & 300 µM, and Pb (0 µM, 5 µM, 20 µM, 50 µM & 100

  12. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera.

    Science.gov (United States)

    Pavasant, Prasert; Apiratikul, Ronbanchob; Sungkhum, Vimonrat; Suthiparinyanont, Prateep; Wattanachira, Suraphong; Marhaba, Taha F

    2006-12-01

    The sorption of Cu2+, Cd2+, Pb2+, and Zn2+ by a dried green macroalga Caulerpa lentillifera was investigated. The removal efficiency increased with pH. The analysis with FT-IR indicated that possible functional groups involved in metal sorption by this alga were O-H bending, N-H bending, N-H stretching, C-N stretching, C-O, SO stretching, and S-O stretching. The sorption of all metal ions rapidly reached equilibrium within 20min. The sorption kinetics of these metals were governed by external mass transfer and intraparticle diffusion processes. The sorption isotherm followed the Langmuir isotherm where the maximum sorption capacities was Pb2+>Cu2+>Cd2+>Zn2+.

  13. Photomagnetism and photoluminescence (PL) of (Pb-Fe-e(-)) complex in lead magnesium niobate-lead titanate (PMN-PT) crystals containing beta-PbO nanoclusters.

    Science.gov (United States)

    Bairavarasu, Sundar R; Edwards, Matthew E; Sastry, Medury D; Kochary, Faris; Kommidi, Praveena; Reddy, B Rami; Lianos, Dimitrios; Aggarwal, Manmohan D

    2008-12-15

    We present electron paramagnetic resonance (EPR)--evidence of photomagnetism under the conditions of in situ green laser illumination (photo-EPR) in lead magnesium niobate-lead titanate, Pb(Mg,Nb)O3-PbTiO3 (PMN-PT), containing nanoparticles/wires of orthorhombic beta-PbO as identified by Raman spectroscopy. Photo-EPR studies of the sample containing beta-PbO, brownish red in color, have shown intense line at g=2.00, and its yield increased when produced in the presence of 7.5 kG external magnetic field suggesting the formation of magnetic polaron. This was identified as due to interaction between Fe3+, photoinduced Pb3+ and unpaired electron trapped at oxygen vacancies. The photoinduced growth and decay of magnetic polaron has shown a non-exponential behavior. Photoluminescence (PL) studies were conducted with excitation at 308 nm (XeCl laser) and also at 454.5, 488 and 514.5 nm using Ar+ laser. The excitation with 308 nm gave broad PL centered at 500 and 710 nm the latter being quite prominent in beta-PbO containing crystals, along with cooperative luminescence at 350 nm involving two emitting centers. The excitation with Ar+ laser lines, close to the electronic absorption in samples containing beta-PbO gave richer and sharp PL emission in red region from the constituents of the magnetic polaron and also intense anti-Stokes emission on excitation with 514.5 nm radiation. This appears to be due to phototransfer optically stimulated luminescence (PT-OSL) involving electron-hole recombination at photoinduced magnetic polaron site.

  14. Effect of Zn, Cu, Cr and Pb Chlorides on the Formation of Tricalcium Aluminate Trisulfate Hydrate

    Institute of Scientific and Technical Information of China (English)

    Wafaa S.Hegazi; Eisa E.Hekal; Essam A.Kishar; Maha R.Mohammed

    2008-01-01

    The effect of addition of Zn,Cu,Pb and Cr chlorides as admixtures on the hydration reaction of the system 3CaO·Al2O3-gypsum with molar ratio 1:3 was studied.Different ratios of each salt were used,namely 0.5%,2% and 4% by weight of the solid mixture.Hydration reaction was carried out at 35℃ for various time intervals from 0.5 h to up to 7 d.Hydration rate of the system 3CaO-Al2O3-CaSO4·2H2O in absence and presence of different salts was studied via the determination of the combined water contents.X-ray diffraction analysis showed that the ettringite was the only hydration product formed in the different mixes.The hydration products were investigated by scanning electron microscopy (SEM) and thermal gravimetric analysis.The results indicated that the rate of formation of ettringite and its microstructure depend on the admixture and its dosage.

  15. Effects of ultrasonic field in pulse electrodeposition of NiFe film on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, R. [Faculty of Engineering, Multimedia University, Cyberjaya Campus, 63100, Cyberjaya (Malaysia); Yow, H.K. [Faculty of Engineering, Multimedia University, Cyberjaya Campus, 63100, Cyberjaya (Malaysia)], E-mail: hkyow@mmu.edu.my; Ong, B.H. [Faculty of Engineering, Multimedia University, Cyberjaya Campus, 63100, Cyberjaya (Malaysia); Manickam, R. [Electronics Faculty, Tyndale Education Group Pte Ltd., 188942 (Singapore); Saaminathan, V. [School of Material Science and Engineering, Nanyang Technological University, 639798 (Singapore); Tan, K.B. [Department of Chemistry, Universiti Putra Malaysia, Serdang, 43400 (Malaysia)

    2009-07-29

    NiFe film was pulse electrodeposited on conductive Cu substrate under galvanostatic mode in the presence of an ultrasonic field. The NiFe film electrodeposited was subjected to structural and surface analyses by X-ray diffraction, energy dispersive X-ray spectroscopy, surface profiling and scanning electron microscopy, respectively. The results show that the ultrasonic field has significantly improved the surface roughness, reduced the spherical grain size in the range from 490-575 nm to 90-150 nm, and increased the Ni content from 76.08% to 79.74% in the NiFe film electrodeposited.

  16. Study of the C-14-contamination potential of C-impurities in CuO and Fe

    NARCIS (Netherlands)

    Vandeputte, K; Moens, L; Dams, R; van der Plicht, Johannes

    1998-01-01

    The carbon concentration in CuO and iron was determined by isolating C. The values were in agreement with results reported in other studies. Contaminating carbon from CuO and Fe was transformed to AMS targets and measured for C-14. C-traces in CuO were shown to be the major contribution to the C-14

  17. Unusual Solidification Behavior of the Suction-Cast Cu-Zr-Al-Y Alloy Doped with Fe

    Science.gov (United States)

    Kozieł, Tomasz; Cios, Grzegorz; Latuch, Jerzy; Pajor, Krzysztof; Bała, Piotr

    2017-04-01

    The effect of iron addition on the microstructure of the Cu-Zr-Al-Y glass-forming alloy was studied. Despite a high superficial cooling rate, small Fe additions (1.5 and 3 pct) induced formation of crystalline CuZr and AlCu2Zr phases on the outer layers of suction-cast rods. As the melt composition near the solid/liquid interface was depleted in Fe, the remaining melt vitrified at a relatively low cooling rate.

  18. Photocatalytic performances and activities of Ag-doped CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhengru, E-mail: zhengruzhu@gmail.com [Research Center of Hydrology and Water Source, School of Urban and Environment, Liaoning Normal University, Dalian, 116029 (China); State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Xinyong; Zhao, Qidong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Yonghua; Sun, Caizhi; Cao, Yongqiang [Research Center of Hydrology and Water Source, School of Urban and Environment, Liaoning Normal University, Dalian, 116029 (China)

    2013-08-01

    Graphical abstract: - Highlights: • CuFe{sub 2}O{sub 4} nanocrystals were synthesized by a co-precipitation method. • Ag/CuFe{sub 2}O{sub 4} catalyst was prepared by the wetness impregnation strategy. • The structural properties of Ag/CuFe{sub 2}O{sub 4} were investigated by XRD, TEM, DRS, and XPS techniques. • Ag/CuFe{sub 2}O{sub 4} has higher photocatalytic activity. - Abstract: In this work, CuFe{sub 2}O{sub 4} nanoparticles were synthesized by a chemical co-precipitation route. The Ag/CuFe{sub 2}O{sub 4} catalyst was prepared based on the CuFe{sub 2}O{sub 4} nanoparticles by the incipient wetness impregnation strategy, which showed excellent photoelectric property and catalytic activity. The structural properties of these samples were systematically investigated by X-ray powder diffraction (XRD), transmission electronic microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) techniques. The photo-induced charge separation in the samples was demonstrated by surface photovoltage (SPV) measurement. The photocatalytic degradation of 4-CP by the Ag/CuFe{sub 2}O{sub 4} and CuFe{sub 2}O{sub 4} samples were comparatively studied under xenon lamp irradiation. The results indicate that the Ag/CuFe{sub 2}O{sub 4} sample exhibited the higher efficiency for the degradation of 4-CP.

  19. sup 119 Sn-Moessbauer spectroscopic study of the single phase of Bi(Pb)-Sr-Ca-Cu(Sn)-O

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Y. (Dept. of Electrical Engineering, Fukuoka Univ. (Japan)); Nishida, T. (Dept. of Chemistry, Kyushu Univ., Fukuoka (Japan)); Katada, M. (Dept. of Chemistry, Tokyo Metropolitan Univ. (Japan)); Deshimaru, Y.; Miura, N.; Yamazoe, N. (Dept. of Materials Science and Tech., Graduate School of Engineering Sciences, Kyushu Univ., Fukuoka (Japan))

    1991-12-01

    Tin-doped samples of the high-Tc (2223) phase of Bi-Pb-Sr-Ca-Cu-O superconductor have been prepared by a conventional sintering method. Sintering conditions were carefully selected to obtain the single high-Tc phase. {sup 119}Sn-Moessbauer spectra have been measured in the temperature range from 4.2 to 300 K. The temperature dependence of the recoilless fraction (f) is well understood by the temperature dependence of the normal phonon. (orig.).

  20. Concentration of Zn, Cu and Pb in Some Selected Marine Fishes of the Pahang Coastal Waters, Malaysia

    Directory of Open Access Journals (Sweden)

    B. Y. Kamaruzzaman

    2010-01-01

    Full Text Available Problem statement: Heavy metals constitute one of the most hazardous substances that could be accumulated in biota. Fish populations exploited by man often live in coastal area environments that contain high levels of heavy metals, coming from human activities such as industrial and agricultural wastes. A problem to deal when using fishes as biomonitors of heavy metals is the relationship existing between metal concentration and several intrinsic factors of the fish such as organism size, genetic composition and age of fish. Approach: Concentration of Zn, Cu and Pb were determined in eight commercially valuable fish species, Selaroides leptolepis, Euthynnus affinis, Parastromateus niger, Lutjanius malabaricus, Epinephelus sexfasciatus, Rastrelliger kanagurta, Nemipterus japonicus and Megalaspis cordyla from Pahang coastal water. The concentration was measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS. The study focuses on the level of Zn, Cu and Pb in order to assess the environmental pollution by using fishes as an indicator. Results: Concentrations of the heavy metals in examined fish species ranged as follow: Zn 19.27 µg g-1 dry weight; Cu 2.88 µg g-1 dry weight and Pb 0.26 µg g-1 dry weight, respectively. The concentrations of Zn, Cu and Pb were found to follow the order: stomach > muscle > gills. Significant correlations were found between fish weight and heavy metals concentration in the fish organs. Conclusion: The estimated values of all metals in muscles of fish in this study were below the established values. Therefore, it can be concluded that the fish from Pahang coastal water are comparatively clean and do not constitute a risk for human health.

  1. The Effect of Salinity on the Release of Copper (Cu), Lead (Pb) And Zinc (Zn) from Tailing

    OpenAIRE

    Apriani Sulu Parubak; Eko Sugiharto; Mudjiran Mudjiran

    2010-01-01

    The effects of salinity on the release of copper (Cu), lead (Pb) and zinc (Zn) in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV) onto hanging mercury drop electrode (HMDE) and nitric acid 65% as support electroly...

  2. A Study on the Effect of Ni Dopping on Bi-Pb-Sr-Ca-Cu-O System

    OpenAIRE

    ABUKAY, Mustafa TEPE and Doğan

    1998-01-01

    The effect of Ni doping on superconductivity properties of the Bi1.7Pb0.3Sr2Ca2(Cu1-xNix)3Oy system has been investigated by means of x-ray diffraction, ac electrical resistance, ac magnetic susceptibility and critical current measurements. The volume fraction of the 2223 phase decreases with increasing Ni concentration. The zero-resistance temperature and the critical current density are suppressed with Ni substitution.

  3. A Study on the Effect of Ni Dopping on Bi-Pb-Sr-Ca-Cu-O System

    OpenAIRE

    ABUKAY, Mustafa TEPE and Doğan

    2014-01-01

    The effect of Ni doping on superconductivity properties of the Bi1.7Pb0.3Sr2Ca2(Cu1-xNix)3Oy system has been investigated by means of x-ray diffraction, ac electrical resistance, ac magnetic susceptibility and critical current measurements. The volume fraction of the 2223 phase decreases with increasing Ni concentration. The zero-resistance temperature and the critical current density are suppressed with Ni substitution.

  4. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case.

    Science.gov (United States)

    Wang, Fa Yuan; Lin, Xian Gui; Yin, Rui

    2007-05-01

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction.

  5. Mapping of Cu and Pb Contaminations in Soil Using Combined Geochemistry, Topography, and Remote Sensing: A Case Study in the Le’an River Floodplain, China

    Directory of Open Access Journals (Sweden)

    Yin Gao

    2012-05-01

    Full Text Available Heavy metal pollution in soil is becoming a widely concerning environmental problem in China. The aim of this study is to integrate multiple sources of data, namely total Cu and Pb contents, digital elevation model (DEM data, remote sensing image and interpreted land-use data, for mapping the spatial distribution of total Cu and Pb contamination in top soil along the Le’an River and its branches. Combined with geographical analyses and watershed delineation, the source and transportation route of pollutants are identified. Regions at high risk of Cu or Pb pollution are suggested. Results reveal that topography is the major factor that controls the spatial distribution of Cu and Pb. Watershed delineation shows evidence that the streamflow resulting from rainfall is the major carrier of metal pollutants.

  6. The Reaction Mechanism and Rate Constants in the Radiolysis of Fe2+-Cu2+ Solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Sehested, Knud; Rasmussen, O. Lang

    1976-01-01

    Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some...

  7. Preparation and characterization of ultrafine Fe-Cu-based catalysts for CO hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Yunlai Su; Yingli Wang; Zhongmin Liu

    2008-01-01

    The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)3 and Cu(OH)2 were pre-pared in the microemulsion of dodecylbenzenesulfonic acid sodium(S)/n-butanol(A)/toluene(O)/water with V(A)/V(O) = 0.25 and W(A)/W(S)=1.50. This catalyst was characterized by particle size analysis, XRD and TG. The results of particle size analysis showed that Fe(OH)3 particles with a mean size of 17.1 nm and Cu(OH)2 particles with an average size of 6.65 μm were obtained. TG analysis and XRD patterns suggested that 673 K is the optimal calcination temperature. CO hydrogenation produced C+2 OH with a high selectivity above 58 wt% by using the ultrafine particles as catalyst, and the total alcohol yield of 0.250 g·ml-1·h-1 was obtained when the contents of Al2O3 and K were 88.61 wt% and 1.60 wt%, respectively.

  8. MOKE spectroscopy of FePtCu thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, Michael; Smykalla, Lars; Brombacher, Christoph; Schubert, Christian; Albrecht, Manfred; Salvan, Georgeta [Chemnitz University of Technology (Germany)

    2010-07-01

    Since the uniaxial magnetic anisotropy of FePt in its chemically ordered L1{sub 0} phase can reach 10 MJ/m{sup 3} FePt is considered to be a promising material for future magnetic storage devices. In this work Fe{sub 52}Pt{sub 48}(5 nm-x)/Cu(x) bilayers have been sputter deposited at room temperature onto thermally oxidized Si wafers and afterwards annealed to various temperatures between 450 C and 800 C under N{sub 2} atmosphere using a commercial rapid thermal annealing (RTA) setup. The RTA procedure leads to the formation of a ternary FePtCu alloy with pronounced perpendicular magnetic anisotropy. The dependence of both the coercivity and remanence extracted from polar MOKE hysteresis loops at 1.96 eV on the annealing temperature will be discussed with respect to the initial Cu thicknesses of 0.5 nm and 0.9 nm. In addition, MOKE-spectroscopy in the energy range between 1.7 eV and 5.5 eV was performed and a clear dependence on the initial Cu thickness and the annealing temperature is found. In some of the spectra the main spectral feature at around 2 eV exhibits a fine structure, which could be caused by the coexistence of the two crystalline phases and/or by the presence of defect sites.

  9. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration.

    Science.gov (United States)

    Xiong, Zhaokun; Lai, Bo; Yang, Ping; Zhou, Yuexi; Wang, Juling; Fang, Shuping

    2015-10-30

    In order to further compare the degradation capacity of Fe(0) and Fe/Cu bimetallic system under different aeration conditions, the mineralization of PNP under different aeration conditions has been investigated thoroughly. The results show that the removal of PNP by Fe(0) or Fe/Cu system followed the pseudo-first-order reaction kinetics. Under the optimal conditions, the COD removal efficiencies obtained through Fe(0) or Fe/Cu system under different aeration conditions followed the trend that Fe/Cu (air)>Fe/Cu (N2: 0-30 min, air: 30-120 min)>control-Fe (air)>Fe/Cu (without aeration)>Fe/Cu (N2)>control-Fe (N2). It revealed that dissolved oxygen (DO) could improve the mineralization of PNP, and Cu could enhance the reactivity of Fe(0). In addition, the degradation of PNP was further analyzed by using UV-vis, FTIR and GC/MS, and the results suggest that Fe/Cu bimetallic system with air aeration could completely break the benzene ring and NO2 structure of PNP and could generate the nontoxic and biodegradable intermediate products. Meanwhile, most of these intermediate products were further mineralized into CO2 and H2O, which brought about a high COD removal efficiency (83.8%). Therefore, Fe/Cu bimetallic system with air aeration would be a promising process for toxic refractory industry wastewater.

  10. Cu substitution effects on the local magnetic properties of Ba(Fe(1-x)Cu(x))(2)As(2): a site-selective (75)As and (63)Cu NMR study.

    Science.gov (United States)

    Takeda, Hikaru; Imai, Takashi; Tachibana, Makoto; Gaudet, Jonathan; Gaulin, Bruce D; Saparov, Bayrammurad I; Sefat, Athena S

    2014-09-12

    We take advantage of the site-selective nature of the ^{75}As and ^{63}Cu NMR techniques to probe the Cu substitution effects on the local magnetic properties of the FeAs planes in Ba(Fe_{1-x}Cu_{x})_{2}As_{2}. We show that the suppression of antiferromagnetic Fe spin fluctuations induced by Cu substitution is weaker than a naive expectation based on a simple rigid band picture, in which each Cu atom would donate three electrons to the FeAs planes. Comparison between ^{63}Cu and ^{75}As NMR data indicates that spin fluctuations are suppressed at the Cu and their neighboring Fe sites in the tetragonal phase, suggesting the strongly local nature of the Cu substitution effects. We attribute the absence of a large superconducting dome in the phase diagram of Ba(Fe_{1-x}Cu_{x})_{2}As_{2} to the emergence of a nearly magnetically ordered FeAs plane under the presence of orthorhombic distortion.

  11. Sr-Nd-Pb-Hf isotope systematics of the Hugo Dummett Cu-Au porphyry deposit (Oyu Tolgoi, Mongolia)

    Science.gov (United States)

    Dolgopolova, A.; Seltmann, R.; Armstrong, R.; Belousova, E.; Pankhurst, R. J.; Kavalieris, I.

    2013-04-01

    Major and trace element geochemistry including Sr-Nd-Pb-Hf isotopic data are presented for a representative sample suite of Late Devonian to Early Carboniferous plutonic and volcanic rocks from the Hugo Dummett deposit of the giant Oyu Tolgoi porphyry Cu-Au district in South Gobi, Mongolia. Sr and Nd isotopes (whole-rock) show restricted ranges of initial compositions, with positive ɛNdt mainly between + 3.4 and + 7.4 and (87Sr/86Sr)t predominantly between 0.7037 and 0.7045 reflecting magma generation from a relatively uniform juvenile lithophile-element depleted source. Previously dated zircons from the plutonic rocks exhibit a sample-averaged range of ɛHft values of + 11.6 to + 14.5. Depleted-mantle model ages of 420-830 (Nd) and 320-730 Ma (zircon Hf) limit the involvement of pre-Neoproterozoic crust in the petrogenesis of the intermediate to felsic calc-alkaline magmas to, at most, a minor role. Pb isotopes (whole-rock) show a narrow range of unradiogenic initial compositions: 206Pb/204Pb 17.40-17.94, 207Pb/204Pb 15.43-15.49 and 208Pb/204Pb 37.25-37.64, in agreement with Sr-Nd-Hf isotopes indicating the dominance of a mantle component. All four isotopic systems suggest that the magmas from which the large Oyu Tolgoi porphyry system was generated originated predominantly from juvenile material within the subduction-related setting of the Gurvansayhan terrane.

  12. An Assessment of Metals (Pb and Cu Contamination in Bottom Sediment from South China Sea Coastal Waters, Malaysia

    Directory of Open Access Journals (Sweden)

    M. C. Ong

    2009-01-01

    Full Text Available Problem statement: The accumulation of metal contaminants in sediments can pose serious environmental problems to the surrounding areas. Trace metal contamination in sediment could affect the water quality and the bio-assimilation and bioaccumulation of metals in aquatic organisms, resulting in potential long-term implications on human health and ecosystem. Approach: About 154 bottom sediment samples were collected using Smith McIntyre in a transect pattern from South China Sea East Coast coastal water (Terengganu, Pahang and Johor coastal area. The study focused on the levels of Pb and Cu in order to assess the extent of environment pollution and to discuss the origin of these contaminants in the sediment. Results: Results showed that the average concentration of Pb and Cu was 33.70 µg g-1 dry weights and 22.40 µg g-1 dry weights, respectively. Pb and Cu have relatively lower Enrichment Factors (EF value and geo-accumulation (Igeo indices in study area and these analysis validated that elevated heavy metals concentration in most sample are not due to artificial contamination. Conclusion: Overall, geochemistry of the samples showed the effect of both natural and anthropogenic inputs to the catchment, however, natural processes were more dominant than anthropogenic inputs in concentrating metals. Results obtained would help to develop strategies for pollution control and sediment remediation of coastal waters in the South China Sea.

  13. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate

    Energy Technology Data Exchange (ETDEWEB)

    Labanowski, Jerome [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France); Monna, Fabrice [ARTeHIS, UMR 5594 CNRS, Univ. de Bourgogne Centre des Sciences de la Terre, Bat. Gabriel, F-21000 Dijon (France); Bermond, Alain [AgroParis Tech., Laboratoire de Chimie Analytique, 16 rue C. Bernard, 75231 Paris Cedex 05 (France); Cambier, Philippe; Fernandez, Christelle; Lamy, Isabelle [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France); Oort, Folkert van [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France)], E-mail: vanoort@versailles.inra.fr

    2008-04-15

    Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (Q{sub M1}) and less labile (Q{sub M2}). In citrate extractions, total extractability (Q{sub M1} + Q{sub M2}) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar Q{sub M1}/Q{sub M2} ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth. - Kinetically defined metal fractions mimic mobility aspects of heavy metals.

  14. Trace Elements (Pb, Zn, Cu in Blood of Mute Swan (Cygnus olor from the Isonzo River Nature Reserve (Italy

    Directory of Open Access Journals (Sweden)

    G Isani*, M Cipone, G Andreani, E Carpenè, E Ferlizza, K Kravos1 and F Perco1

    2013-11-01

    Full Text Available Lead concentrations in blood of 45 specimens of mute swan from the molting area of the Isonzo River Mouth Nature Reserve (Italy were determined in two consecutive years (2006-2007, some birds were neck ringed to identify their homing behavior. The second sampling included whole body X-ray radiography and Cu and Zn plasma analyses to investigate the health impact of putative Pb exposure. X-ray images of all investigated specimens did not show any radiopacity due to the ingestion of metal bodies. Lead levels (0.08-0.44 g/ml were in the range of those reported for swans living in unpolluted or slightly polluted environments and excluded acute intoxication, as confirmed by clinical investigation. Zinc concentrations ranged between 2.93 and 7.59 g/ml and were one order of magnitude higher than Cu concentrations (0.21-0.42 g/ml. The negative correlation between Pb and Zn concentrations could be indicative of adverse health effects caused by chronic lead exposure. To our knowledge this is the first study reporting Pb, Zn and Cu blood levels, X-ray radiographies and data on the origin of swan populations.

  15. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Sizmur, Tom, E-mail: t.p.sizmur@reading.ac.uk [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom); Palumbo-Roe, Barbara; Watts, Michael J. [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Hodson, Mark E. [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom)

    2011-03-15

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. - Research highlights: > Earthworms increase the mobility and availability of metals and metalloids in soils. > We incubated L. terrestris in three soils contaminated with As, Cu, Pb and Zn. > Earthworms increased the mobility of As, Cu, Pb and Zn in their casts. > The mechanisms for this could be explained by changes in pH or organic carbon. - Lumbricus terrestris change the partitioning of metal(loid)s between soil constituents and increase the mobility of metal(loid)s in casts and pore water.

  16. Nitrilotriacetic acid functionalized Adansonia digitata biosorbent: Preparation, characterization and sorption of Pb (II and Cu (II pollutants from aqueous solution

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2016-11-01

    Full Text Available Nitrilotriacetic acid functionalized Adansonia digitata (NFAD biosorbent has been synthesized using a simple and novel method. NFAD was characterized by X-ray Diffraction analysis technique (XRD, Scanning Electron Microscopy (SEM, Brunauer-Emmett-Teller (BET surface area analyzer, Fourier Transform Infrared spectrometer (FTIR, particle size dispersion, zeta potential, elemental analysis (CHNS/O analyzer, thermogravimetric analysis (TGA, differential thermal analysis (DTA, derivative thermogravimetric analysis (DTG and energy dispersive spectroscopy (EDS. The ability of NFAD as biosorbent was evaluated for the removal of Pb (II and Cu (II ions from aqueous solutions. The particle distribution of NFAD was found to be monomodal while SEM revealed the surface to be heterogeneous. The adsorption capacity of NFAD toward Pb (II ions was 54.417 mg/g while that of Cu (II ions was found to be 9.349 mg/g. The adsorption of these metals was found to be monolayer, second-order-kinetic, and controlled by both intra-particle diffusion and liquid film diffusion. The results of this study were compared better than some reported biosorbents in the literature. The current study has revealed NFAD to be an effective biosorbent for the removal of Pb (II and Cu (II from aqueous solution.

  17. Nitrilotriacetic acid functionalized Adansonia digitata biosorbent: Preparation, characterization and sorption of Pb (II) and Cu (II) pollutants from aqueous solution.

    Science.gov (United States)

    Adewuyi, Adewale; Pereira, Fabiano Vargas

    2016-11-01

    Nitrilotriacetic acid functionalized Adansonia digitata (NFAD) biosorbent has been synthesized using a simple and novel method. NFAD was characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier Transform Infrared spectrometer (FTIR), particle size dispersion, zeta potential, elemental analysis (CHNS/O analyzer), thermogravimetric analysis (TGA), differential thermal analysis (DTA), derivative thermogravimetric analysis (DTG) and energy dispersive spectroscopy (EDS). The ability of NFAD as biosorbent was evaluated for the removal of Pb (II) and Cu (II) ions from aqueous solutions. The particle distribution of NFAD was found to be monomodal while SEM revealed the surface to be heterogeneous. The adsorption capacity of NFAD toward Pb (II) ions was 54.417 mg/g while that of Cu (II) ions was found to be 9.349 mg/g. The adsorption of these metals was found to be monolayer, second-order-kinetic, and controlled by both intra-particle diffusion and liquid film diffusion. The results of this study were compared better than some reported biosorbents in the literature. The current study has revealed NFAD to be an effective biosorbent for the removal of Pb (II) and Cu (II) from aqueous solution.

  18. Removal of Pb(II), Cd(II), Cu(II) and trichloroethylene from water by Nanofer ZVI.

    Science.gov (United States)

    Eglal, Mahmoud M; Ramamurthy, Amruthur S

    2015-01-01

    Zero-valent iron nanoparticle (Nanofer ZVI) is a new reagent due to its unique structure and properties. Images of scanning electron microscopy/electron dispersive spectroscopy (SEM/EDS), transmission electron microscopy and X-ray diffraction revealed that Nanofer ZVI is stable, reactive and has a unique structure. The particles exhibited a spherical shape, a chain-like structure with a particle size of 20 to 100 nm and a surface area between 25-30 m2g(-1). The time interval for particles to agglomerate and settle was between 4-6 h. SEM/EDS Images showed that particle size increased to 2 µm due to agglomeration. Investigation of adsorption and oxidation behavior of Nanofer ZVI used for the removal of Cu(II), Pb(II), Cd(II) ions and trichloroethylene (TCE) from aqueous solutions showed that the optimal pH for Pb(II), Cu(II), Cd(II) and TCE removal were 4.5 and 4.8, 5.0 and 6.5, respectively. Test data were used to form Langmuir and Freundlich isotherms. The maximum contaminant loading was estimated as 270, 170, 110, 130 mg per gram of Nanofer ZVI for Cu(II), Pb(II), Cd(II) and TCE respectively. Removal of metal ions is interpreted in terms of their hydrated ionic radii and their electronegativity. TCE oxidation followed the dechlorination pathway resulting in nonhazardous by-products.

  19. Measurement of Labile Cu, Pb and Their Complexation Capa-city in Yueqing Bay in Zhejiang Province, China

    Institute of Scientific and Technical Information of China (English)

    王正方; 吕海燕; 傅和芳

    2004-01-01

    The complexation capacity of Cu and Pb and their labile and organic contents were determined separately for surface seawater samples from Yueqing Bay. The samples were prepared using Nuclepore filtration method yielding <1.0μm, <0.4μm and <0.2μm particulate water samples. Our data indicated that the <0.2μm colloidal fraction is a major carrier for distribution of copper in seawater. Affinity of Cu to marine microparticles plays an important role in the process. Pb however, tends to be absorbed by >0.2μm particles. The complexation capacity of Pb with <0.2μm particulates was smaller than that with 0.2-1.0μm particulates, and averaged 11.5 and 23.0nmol/L respectively. The results suggested that colloidal particles were responsible for the distribution and concentration of Pb in seawater.

  20. Water Soluble Cationic Porphyrin Sensor for Detection of Hg2+, Pb2+, Cd2+, and Cu2+

    Directory of Open Access Journals (Sweden)

    Matibur Zamadar

    2016-01-01

    Full Text Available Here we report the sensing properties of the aqueous solution of meso-tetra(N-methyl-4-pyridylporphine tetrachloride (1 for simultaneous detection of toxic metal ions by using UV-vis spectroscopy. Cationic porphyrin 1 displayed different electronic absorptions in UV-vis region upon interacting with Hg2+, Pb2+, Cd2+, and Cu2+ ions in neutral water solution at room temperature. Quite interestingly, the porphyrin 1 showed that it can function as a single optical chemical sensor and/or metal ion receptor capable of detecting two or more toxic metal ions, particularly Hg2+, Pb2+, and Cd2+ ions coexisting in a water sample. Porphyrin 1 in an aqueous solution provides a unique UV-vis sensing system for the determination of Cd2+ in the presence of larger metal ions such as Hg2+, or Pb2+. Finally, the examination of the sensing properties of 1 demonstrated that it can operate as a Cu2+ ion selective sensor via metal displacement from the 1-Hg2+, 1-Pb2+, and 1-Cd2+.

  1. Multifractal analysis of the strength of Fe-Cu paragenetic relationships in eastern Tianshan, China

    Science.gov (United States)

    Zhao, Jie; Wang, Wenlei; Cheng, Qiuming

    2016-04-01

    Paragenetic association of elements is a natural and important geological phenomenon reflecting the geochemical behavior of elements during various geo-processes. Because of intrinsic characteristics, different elements of paragenetic association may also be generated. As a result, the respective material sources could be shifted from the original locations, and the strength of paragenetic association of elements could be declined. Therefore, study of paragenetic association of elements can help in locating material source, characterizing migration form, and indicating precipitation conditions. Resulted from complicated and cascade geo-processes, the strength of paragenetic relationship between elements presents variations in space. To examine influences of the strength of paragenetic association of elements on polymetallic mineralization, the current research proposes a data processing procedure that includes non-linear regression and multifractal analysis of the resulting regression coefficients. This procedure is currently tested in the eastern Tianshan mineral district, China, and encouraging results are being derived. In this research, geographically weighted regression (GWR), which is a non-linear statistical method, is used to examine the relationship between Fe and Cu concentrations in eastern Tianshan mineral district, China. This local regression method allows calculation of coefficients for Fe and Cu concentrations at every individual location. Therefore, the variation of the strength of Fe-Cu paragenetic association across the study area can be derived. Furthermore, a multifractal method, spectrum-area (S-A) analysis is applied to the regression coefficient map in order to delineate locations strong associated with Fe-Cu mineralization. Anomalies indicating very strong paragenetic association are separated from background. In addition, noise indicating locations with strong paragenetic relationships but that are not suitable for Fe-Cu mineralization are

  2. Multi-metal interactions between Cd, Cu, Ni, Pb and Zn in water flea Daphnia magna, a stable isotope experiment.

    Science.gov (United States)

    Komjarova, I; Blust, R

    2008-11-11

    Metal interaction effects were investigated in Daphnia magna during a simultaneous exposure to essential (Cu, Ni and Zn) and non-essential (Cd and Pb) metals at environmentally relevant concentrations using a stable isotope technique. The metals were applied in the following concentration ranges: 0.0125-0.2 microM for (106)Cd, 0.025-0.25 microM for (65)Cu and (204)Pb, 0.1-1.25 microM for (62)Ni and (67)Zn. Cadmium and copper exhibited a suppressing effect on the uptake rates of all other metals present in the mixture with the exception to lead at all studied concentrations. The effect was already pronounced at low Cd and Cu concentrations and reached a maximum at the higher concentrations. Nickel and zinc showed weaker interactions with cadmium and between each other, while having no effect on copper and lead uptake. There was a high degree of correlation between Cd, Ni and Zn uptake rates indicating that these metals share in part common uptake or interaction pathways. Moreover, a significant correlation between Zn and Cu uptake processes suggests that more than one mechanism is involved in Zn accumulation since Cu is known to interact with Na uptake sites. The uptake of lead was marked by a high initial rate, but the uptake process reached saturation within 24 h. Cd applied at a concentration of 0.2 microM was the only metal which affected the lead uptake process by stimulation of the Pb uptake. Added to the medium at a concentration of 0.25 microM, lead in turn, increased copper uptake. Current work illustrates that metal interactions are significant and occur at low environmentally realistic concentrations affecting bioavailability of both toxic and essential metals.

  3. Effect of Fe and Cu on Electrochemical Characteristics of Low-Co AB5 Type Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhu Xilin; Zhou Yu; Chong Fayao; Li Xiaochun; Pan Weilin

    2004-01-01

    In order to further reduce the cost of AB5 type rare earth-based hydrogen storage alloy, a low-Co AB5 type hydrogen storage alloy were by substituting Co with Cu and Fe.The characteristics of these alloys have been investigated by means of XRD, PCT, and measurement of electrochemical capacity and cycle life.The test results show that the effect of these two kinds of substituting elements on discharge capacity is CuFe, and the cycle life is on the contrary.Both of them have no distinct influence on activity speed, but activity speed increases with the decrease of Co.By the order way, the high discharge rate characteristics rise with the addition of Cu and decreasing of Co.

  4. EFFECT OF COPPER ON PASSIVITY AND CORROSION BEHAVIOR OF FE-XC-5CU ALLOY

    Directory of Open Access Journals (Sweden)

    M. Ferhat

    2014-06-01

    Full Text Available The correlation between corrosion behavior rate of annealed Fe-xC-5Cu alloys and their microstructure and phase composition is presented. The metallurgical analyses, including, X-Ray diffraction (XRD, the scanning electron microscopy (SEM with energy dispersive analysis (EDX, and induction hardening characterization are conducted to study the Fe-C-Cu alloys. Corrosion parameters in H2SO4 1N solution have been established by carrying out electrochemical studies such as potentiodynamic (Tafel polarization and linear polarization, LP and electrochemical impedance spectroscopy (EIS. The coupled effect copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process.

  5. EFFECT OF COPPER ON PASSIVITY AND CORROSION BEHAVIOR OF FE-XC-5CU ALLOY

    Directory of Open Access Journals (Sweden)

    M. Ferhat

    2015-07-01

    Full Text Available The correlation between corrosion behavior rate of annealed Fe-xC-5Cu alloys and their microstructure and phase composition is presented. The metallurgical analyses, including, X-Ray diffraction (XRD, the scanning electron microscopy (SEM with energy dispersive analysis (EDX, and induction hardening characterization are conducted to study the Fe-C-Cu alloys. Corrosion parameters in H2SO4 1N solution have been established by carrying out electrochemical studies such as potentiodynamic (Tafel polarization and linear polarization, LP and electrochemical impedance spectroscopy (EIS. The coupled effect copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process.

  6. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, L. [CEA, DEN, Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, F-91191 Gif sur Yvette (France)], E-mail: laure.martinelli@cea.fr; Balbaud-Celerier, F.; Terlain, A. [CEA, DEN, Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, F-91191 Gif sur Yvette (France); Delpech, S. [CNRS, UMR 7575 Ecole Nationale superieure de Chimie de Paris, Laboratoire d' Electrochimie et de Chimie Analytique, 11 rue Pierre et Marie Curie 75231 Paris (France); Santarini, G. [CEA, Cabinet du Haut-Commisaire, F-91191 Gif sur Yvette (France); Favergeon, J.; Moulin, G. [CNRS, centre de recherche de Royallieu FRE CNRS 2833, Laboratoire Roberval, 20529-60205 Compiegne (France); Tabarant, M. [CEA, DEN, Service de Chimie Physique, F- 91191 Gif sur Yvette (France); Picard, G. [CNRS, UMR 7575 Ecole Nationale superieure de Chimie de Paris, Laboratoire d' Electrochimie et de Chimie Analytique, 11 rue Pierre et Marie Curie 75231 Paris (France)

    2008-09-15

    This paper is the first part of a global study on the oxidation process of a Fe-9Cr-1Mo martensitic steel (T91) in static liquid Pb-Bi. It focuses on the oxygen transport mode across the oxide scale. The oxide layer has a duplex structure composed of an internal Fe-Cr spinel layer and an external magnetite layer. Oxygen 18 tracer experiments are performed: they show that the magnetite layer grows at the Pb-Bi/ oxide interface whereas the Fe-Cr spinel layer grows at the metal/oxide interface. Oxygen seems to diffuse across the oxide scale dissolved inside nanometric lead penetrations called nano-channels. Specific experiments are performed to characterize the nano-channels.

  7. More Cu, more problems: Decreased CO2 conversion ability by Cu-doped La0.75Sr0.25FeO3 perovskite oxides

    Science.gov (United States)

    Daza, Yolanda A.; Maiti, Debtanu; Hare, Bryan J.; Bhethanabotla, Venkat R.; Kuhn, John N.

    2016-06-01

    The effect of Cu doping on the conversion of CO2 to CO was investigated on H2-reduced La0.75Sr0.25FeO3 perovskite oxides. Six La0.75Sr0.25Fe1 -YCuYO3 perovskites, labeled Cu100*Y (with Y = 0, 0.10, 0.25, 0.50, 0.75, and 1) were synthesized and characterized through X-ray diffraction (XRD), temperature-programmed oxygen vacancy formation, and temperature-programmed reduction (TPR). The incorporation of Cu facilitates the formation of oxygen vacancies at lower temperatures but also increased the instability of the perovskite. DFT simulations suggested that the Cu10 sample is favored to produce oxygen vacancies compared to Cu0 and Cu25 samples, which was consistent with experimental oxygen vacancy formation results. For the Cu0, Cu10, and Cu25 samples, temperature-programmed CO2 conversion (TPO-CO2) after isothermal H2-reduction at 450 °C and post-reduction XRD were performed to evaluate the ability of the materials to convert CO2 at low temperatures and to identify the crystalline phases active in the reaction. The peak conversion of CO2 to CO was achieved 30 °C lower on the Cu10 sample versus the Cu0, but less CO was produced, due to a decreased re-oxidation activity of the Cu-doped samples. CO production was inhibited in the Cu25 sample, likely due to a combined effect of poor CO2 dissociative chemisorption energies on metallic Cu and increased thermodynamic stability of the oxygen vacant perovskites. Control experiments (Cu deposited onto La0.75Sr0.25FeO3) indicated the stability of the copper-containing perovskite oxides phases was the primary limiting factor preventing CO formation from CO2.

  8. Effect of Ag addition on the as-cast microstructure of Cu-8 wt.% Fe in situ composites

    Energy Technology Data Exchange (ETDEWEB)

    Xie Zhixiong [State Key Laboratory of Metal Matrix Composites, Shanghai JiaoTong University, 800 Dong Chuan Road, Shanghai 200240 (China); Gao Haiyan, E-mail: gaohaiyan@sjtu.edu.c [State Key Laboratory of Metal Matrix Composites, Shanghai JiaoTong University, 800 Dong Chuan Road, Shanghai 200240 (China); Lu Qin; Wang Jun; Sun Baode [State Key Laboratory of Metal Matrix Composites, Shanghai JiaoTong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2010-10-22

    Research highlights: {yields} Ag addition refines the primary Fe dendrites. {yields} Ag inhibits the solubility of Fe in Cu matrix at high temperature. {yields} Refinement mechanism is explained by wetting properties between Cu-Ag and {gamma}-Fe. - Abstract: Ternary copper-based composites consisting of Cu, 8 wt.% Fe and 0.1-6 wt.% Ag were prepared by inductive melting and casting. The effect of Ag addition on the as-cast microstructure was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The results show that the primary Fe dendrites in the as-cast microstructure are refined significantly with the presence of Ag. Contact angle between Cu-Ag alloy and {gamma}-Fe was measured using sessile drop technique to investigate the refinement mechanism of the primary Fe dendrites. In addition, the effect of Ag addition on the dissolution of Fe atoms in the Cu matrix at high temperature was investigated by means of energy dispersive X-ray spectroscopy (EDS). The results show that the presence of Ag inhibits the solubility of Fe in the Cu matrix at high temperature.

  9. Enhanced magnetocrystalline anisotropy of Fe30Co70 nanowires by Cu additives and annealing

    Science.gov (United States)

    Palmero, Ester M.; Salikhov, Ruslan; Wiedwald, Ulf; Bran, Cristina; Spasova, Marina; Vázquez, Manuel; Farle, Michael

    2016-09-01

    The use of 3d transition metal-based magnetic nanowires (NWs) for permanent magnet applications requires large magnetocrystalline anisotropy energy (MAE), which in combination with the NWs’ magnetic shape anisotropy yields magnetic hardening and an enhancement of the magnetic energy product. Here, we report on the significant increase in MAE by 125 kJ m-3 in Fe30Co70 NWs with diameters of 20-150 nm embedded in anodic aluminum oxide templates by adding 5 at.% Cu and subsequent annealing at 900 K. Ferromagnetic resonance (FMR) reveals that this enhancement of MAE is twice as large as the enhancement of MAE in annealed, but undoped NWs. X-ray diffraction (XRD) analysis suggests that upon annealing the immiscible Cu in FeCo NWs causes a crystal reorientation with respect to the NW axis with a considerable distortion of the bcc FeCo lattice. This strain is most likely the origin of the strongly enhanced MAE.

  10. Ferromagnetism of Fe{sub 86}Mn{sub 14-y}Cu{sub y} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Franca, F. [DF-UDESC, Joinville, CEP 89223-100, SC (Brazil); Paduani, C. [DF-UFSC, Florianopolis, CEP 88040-900, SC (Brazil)]. E-mail: paduani@fisica.ufsc.br; Krause, J.C. [DCET-URI, Santo Angelo, CEP 98802-470, RS (Brazil); Ardisson, J.D. [CDTN, Belo Horizonte, CEP 30123-970, MG (Brazil); Yoshida, M.I. [DQ-ICEX-UFMG, Belo Horizonte, CEP 31270-901, MG (Brazil); Schaf, J. [IF-UFRGS, Porto Alegre, CEP 91501-970, RS (Brazil)

    2007-01-01

    The magnetic properties of disordered Fe{sub 86}Mn{sub 14-y}Cu{sub y} alloys were investigated with several experimental techniques. The results of X-ray diffraction showed that these alloys are single phase with the A2 (BCC) structure. These are ferromagnetic alloys at room temperature, and the Curie temperature decreases with the increase of the Cu content. An abrupt loss of magnetization was observed below T{sub C} at a temperature which increases with the reduction of the Mn content in the alloys. The addition of manganese enhances the solubility of copper in iron matrix and retains the BCC structure in iron-rich alloys. The behavior of the magnetization with temperature and its composition dependence indicate that an antiferromagnetic coupling is expected between the Fe and Mn atoms. The magnetic moments of both Fe and Mn atoms are expected to vary strongly with composition in these alloys.

  11. Anomalous grain growth in nanocrystalline Fe73.5Cu1Nb3Su13.5B9 alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1997-01-01

    The grain growth of the FeSi phase during the crystallization process of the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy was studied using transmission electron microscopy and x-ray diffractometry. An anomalous grain growth behaviour of the FeSi phase in the samples annealed in temperature range from 74...

  12. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing

    Science.gov (United States)

    Torres, Luis G.; Lopez, Rosario B.; Beltran, Margarita

    Surfactant enhanced soil washing (SESW) was applied to an industrial contaminated soil. A preliminary characterization of the soil regarding the alkaline-earth metals, Na, K, Ca and Mg took values of 2866, 2036, 2783 and 4149 mg/kg. The heavy metals As, Cd, Cu, Pb, Ni and Zn, had values of 4019, 14, 35582, 70, 2603, and 261 mg/kg, respectively. When using different surfactants, high removal of Cu, Ni and Zn were found, and medium removals for Pb, As and Cd. In the case of these three metals, tap water removed more than the surfactant solutions, except for the case of As. There were surfactants with average removals (this is, the removal for all the metals studied) of 67.1% (Tween 80), 64.9% (Surfacpol 14104) and 61.2% (Emulgin W600). There were exceptional removals using Texapon N-40 (83.2%, 82.8% and 86.6% for Cu, Ni and Zn), Tween 80 (85.9, 85.4 and 81.5 for Cd, Zn and Cu), Polafix CAPB (79%, 83.2% and 49.7% for Ni, Zn and As). The worst results were obtained with POLAFIX LO with a global removal of 45%, well below of the average removal with tap water (50.2%).All removal efficiencies are reported for a one step washing using 0.5% surfactant solutions, except for the case of mezquite gum, where a 0.1% solution was employed.

  13. Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) binding to Suwannee River Fulvic Acid

    NARCIS (Netherlands)

    Chakraborty, P.; Chakrabarti, C.L.

    2008-01-01

    This is a study of trace metal competition in the complexation of Pb(II) by well-characterized humic substances, namely Suwannee River Fulvic Acid (SRFA) in model solutions. It was found that Cu(II) seems to compete with Pb(II) for strong binding sites of SRFA when present at the same concentration

  14. Effect of MnCuFe{sub 2}O{sub 4} content on magnetic and dielectric properties of poly (O-Phenylenediamine)/MnCuFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kannapiran, Nagarajan [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Muthusamy, Athianna, E-mail: muthusrkv@gmail.com [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Chitra, Palanisamy [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India)

    2016-03-01

    Poly o-phenylenediamine (PoPD)/MnCuFe{sub 2}O{sub 4} nanocomposites with three different ratios of MnCuFe{sub 2}O{sub 4} (10%, 20%, 30% w/w) were synthesized by in-situ oxidative chemical polymerization method ammonium persulphate used as oxidant, while MnCuFe{sub 2}O{sub 4} nanoparticles was prepared by auto-combustion method. The structure, morphology and magnetic properties of synthesized PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites were characterized by FT-IR, UV–visible absorption spectra, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Vibrating sample magnetometer (VSM). FTIR spectra and XRD were confirmed the formation of the PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites. The morphology of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites is visualized through SEM and TEM. The spherical morphology of the PoPD was confirmed using SEM analysis. Dielectric properties of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites at different temperatures have been performed in the frequency range of 50 Hz–5 MHz. The optical absorption experiments of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites reveal that the direct transition with an energy band gap is around 2 eV. - Highlights: • Green synthesis of PoPD (the polymerization carried out only in aqueous medium) by in-situ chemical polymerization method. • For the first time, PoPD incorporated with MnCuFe{sub 2}O{sub 4} with lesser particle size. • The auto combustion reaction, support to achieve less particle size. • Ferrite content affects the magnetic properties of the nanocomposites.

  15. Coagulation-flocculation as pre-treatment for micro-scale Fe/Cu/O3 process (CF-mFe/Cu/O3) treatment of the coating wastewater from automobile manufacturing.

    Science.gov (United States)

    Xiong, Zhaokun; Cao, Jinyan; Yang, Dan; Lai, Bo; Yang, Ping

    2017-01-01

    A coagulation-flocculation as pre-treatment combined with mFe/Cu/O3 (CF-mFe/Cu/O3) process was developed to degrade the pollutants in automobile coating wastewater (ACW). In coagulation-flocculation (CF) process, high turbidity removal efficiency (97.1%) and low COD removal efficiency (10.5%) were obtained under the optimal conditions using Al2(SO4)3·18H2O and CaO. The effluent of CF process (ECF) was further disposed by mFe/Cu/O3 process, and its key operating parameters were optimized by batch experiments. Optimally, COD removal efficiency of ECF obtained by the mFe/Cu/O3 process (i.e., 87.6% after 30 min treatment) was much higher than those of mFe/Cu alone (8.3%), ozone alone (46.6%), and mFe/Cu/air (6.1%), which confirms the superiority of the mFe/Cu/O3 process. In addition, the analysis results of UV-vis, excitation-emission matrix (EEM) fluorescence spectra and GC/MS further confirm that the phenol pollutants of ECF had been effectively decomposed or transformed after CF-mFe/Cu/O3 process treatment. Meanwhile, B/C ratio of ACW increased from 0.19 to 0.56, which suggests the biodegradability was improved significantly. Finally, the operating cost of CF-mFe/Cu/O3 process was about 1.83 USD t(-1) for ACW treatment. Therefore, the combined process is a promising treatment technology for the coating wastewater from automobile manufacturing.

  16. Lead Isotopic Composition and Lead Source of the Huogeqi Cu-Pb-Zn Deposit, Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiaoqing; ZHANG Qian; HE Yuliang; ZHU Chaohui

    2006-01-01

    The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies are stratiform. In the past twenty years, many Chinese geologists have conducted researches on the Huogeqi Cu-Pb-Zn deposit, but there has been still a controversy on its origin. Some advocate that the deposit is of sedimentary-metamorphic reworking origin, some hold that it is of sea-floor SEDEX origin, and others have a preference for magmatic superimposition origin. The crux of the controversy is that there is no common understanding about the source of ore-forming materials. In this paper, the Pb isotopic compositions of regional Achaean-Early Proterozoic basement rocks, various types of sedimentarymetamorphic rocks and volcanic rocks in the mining district, Late Proterozoic and Hercynian magmatic rocks are introduced and compared with the ore-lead composition, so as to constrain the source of the ore lead. The result indicates that (1) sulfides in the ores have homogeneous Pb isotopic compositions, showing a narrow variation range. Their 206Pb/204Pb ratios are within a range of 17.027-17.317; 207pb/204pb ratios, 15.451-15.786 and 208Pb/204pb ratios, 36.747-37.669; (2) the Pb isotopic compositions of the regional Achaean-Early Proterozoic basement rocks are characteristic of the old Pb isotopic composition at the early-stage evolution of the Earth, which varies over a wider range,reflecting significant differences in Pb isotopic compositions of the ores. All this indicates that the source of ore lead has no bearing on the basement rocks; (3) the sedimentary-metamorphic rocks in the mining district are characterized by highly variable and more radiogenic Pb isotopic compositions and their Pb isotopic ratios are obviously higher than those of ores, demonstrating that ore lead did not result from metamorphic reworking of these rocks; (4) Pb isotopic compositions of Late Proterozoic diorite-gabbro and

  17. The metallomics approach: use of Fe(II) and Cu(II) footprinting to examine metal binding sites on serum albumins.

    Science.gov (United States)

    Duff, Michael R; Kumar, Challa V

    2009-11-01

    Metal binding to serum albumins is examined by oxidative protein-cleavage chemistry, and relative affinities of multiple metal ions to particular sites on these proteins were identified using a fast and reliable chemical footprinting approach. Fe(ii) and Cu(ii), for example, mediate protein cleavage at their respective binding sites on serum albumins, in the presence of hydrogen peroxide and ascorbate. This metal-mediated protein-cleavge reaction is used to evaluate the binding of metal ions, Na(+), Mg(2+), Ca(2+), Al(3+), Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ce(3+) to albumins, and the relative affinities (selectivities) of the metal ions are rapidly evaluated by examining the extent of inhibition of protein cleavage. Four distinct systems Fe(II)/BSA, Cu(II)/BSA, Fe(II)/HSA and Cu(II)/HSA are examined using the above strategy. This metallomics approach is novel, even though the cleavage of serum albumins by Fe(II)/Cu(II) has been reported previously by this laboratory and many others. The protein cleavage products were analyzed by SDS PAGE, and the intensities of the product bands quantified to evaluate the extent of inhibition of the cleavage and thereby evaluate the relative binding affinities of specific metal ions to particular sites on albumins. The data show that Co(II) and Cr(III) showed the highest degree of inhibition, across the table, followed by Mn(II) and Ce(III). Alakali metal ions and alkaline earth metal ions showed very poor affinity for these metal sites on albumins. Thus, metal binding profiles for particular sites on proteins can be obtained quickly and accurately, using the metallomics approach.

  18. Removal of Cd2+ and Cu2+ ions from aqueous solution by using Fe-Fe3O4/graphene oxide as a novel and efficient adsorbent

    Science.gov (United States)

    Le, Giang H.; Ha, Anh Q.; Nguyen, Quang K.; Nguyen, Kien T.; Dang, Phuong T.; Tran, Hoa T. K.; Vu, Loi D.; Nguyen, Tuyen V.; Lee, Gun D.; Vu, Tuan A.

    2016-10-01

    The nano Fe-Fe3O4/graphene oxide (GO) was successfully synthesized by the precipitation method and followed by chemical reduction using FeCl3 as iron sources and NaBH4 as reducing agent. The products were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), BET, x-ray photoelectron spectroscopy (XPS) and VMS. From the obtained XRD and XPS results, it revealed the formation of both Fe and Fe3O4 nano particles on GO surface. TEM images showed that both Fe3O4/GO and Fe-Fe3O4/GO had small particle size of 10-20 nm and uniform size distribution. Fe3O4/GO and Fe-Fe3O4/GO were used as adsorbents for removal of Cd2+ and Cu2+ ions from aqueous solution. Maximum adsorption capacity (Q max) of Fe-Fe3O4/GO for Cu2+ and Cd2+ are 90.0 mg g-1 and 108.6 mg g-1, respectively. These values are much higher as compared to those of Fe3O4/GO as well as those reported in the literature. Additionally, this novel adsorbent can be reused by washing with diluted Hcl solution and easily recovered by applying the magnetic field. The Cd2+ adsorption isotherm fits better for the Langmuir model that of the Freundlich model and it obeys the pseudo-second order kinetic equation.

  19. A Novel Ternary CoFe2O4/CuO/CoFe2O4 as a Giant Magnetoresistance Sensor

    Directory of Open Access Journals (Sweden)

    Ramli

    2016-12-01

    Full Text Available This paper reports the results of a study relating to the synthesis of a novel ternary CoFe2O4/CuO/CoFe2O4 thin film as a giant magnetoresistance (GMR sensor. The CoFe2O4/CuO/CoFe2O4 thin film was prepared onto silicon substrate via DC magnetron sputtering with the targets facing each other. X-ray diffraction was used to determine the structure of the thin film and a 4-point method was used to measure the MR ratio. The GMR ratio is highly dependent on the ferrimagnetic (CoFe2O4 and nonmagnetic (CuO layer thickness. The maximum GMR ratio at room temperature obtained in the CoFe2O4/CuO/CoFe2O4 thin film was 70% when the CoFe2O4 and the CuO layer had a thickness of 62.5 nm and 14.4 nm respectively.

  20. Speciation and fractionation of heavy metals in soil experimentally contaminated with Pb, Cd, Cu and Zn together and effects on soil negative surface charge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Speciation of heavy metals in soil subsamplesexperimentally loaded with Pb, Cd, Cu and Zn in orthogonal designwas investigated by sequential extraction, and operationallydefined as water-soluble and exchangeable(SE), weakly specificadsorbed(WSA), Fe and Mn oxides-bound(OX) and organic-bound(ORG).The results show that speciation of heavy metals in the soilsubsamples depended on their kinds. About 90% of Cd and 75% of Znexisted in soil subsamples in the SE fraction. Lead and Cu existedin soil subsamples as SE, WSA and OX fractions simultaneously,although SE was still the major fraction. Organic-bound heavymetals were not clearly apparent in all the soil subsamples. Theconcentration of some heavy metal speciation in soil subsamplesshowed good correlation with ionic impulsion of soil, especiallyfor the SE fraction. Continuous saturation of soil subsamples with0.20 mol/L NH4Cl, which is the first step for determination of thenegative surface charge of soil by the ion retention method, resulted in desorption of certain heavy metals from the soil. Itwas found that the percentage desorption of heavy metals from soilsubsamples depended greatly on pH, the composition and originalheavy metal content of the soil subsamples. However, most of theheavy metals in the soil subsamples were still retained aftermultiple saturation. Compared with the parent soil, the negativesurface charge of soil subsamples loaded with heavy metals did notshow differ significantly from that of the parent one bystatistical analysis. Heavy metals existed in the soil subsamplesmainly as exchangeable and precipitated simultaneously.

  1. Study of Cu-doping effects on magnetic properties of Fe-doped ZnO by first principle calculations

    Indian Academy of Sciences (India)

    A El Amiri; H Lassri; M Abid; E K Hlil

    2014-06-01

    Using ab initio calculations on Zn0.975–Fe0.025CuO ( = 0, 0.01, 0.02, 0.05), we study the variations of magnetic moments vs Cu concentration. The electronic structure is calculated by using the Korringa–Kohn–Rostoker (KKR) method combined with coherent potential approximation (CPA). We show that the total magnetic moment and magnetic moment of Fe increase on increasing Cu content. From the density of state (DOS) analysis, we show that Cu-induced impurity bands can assure, by two mechanisms, the enhancement of Fe magnetic moment in Zn0.975–Fe0.025CuO.

  2. Solid s