WorldWideScience

Sample records for cu cd pb

  1. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn

    DEFF Research Database (Denmark)

    Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernandez Calviño, David

    2014-01-01

    % for Pb2+, 83-84% for Cu2+, 78-84% for Cd2+, 77-83% for Zn2+, and 70-75% for Ni2+, and it was faster for low concentrations, with Pb suffering the highest retention, followed by Cu, Cd, Ni and Zn. The fitting to the Freundlich and Langmuir models was satisfactory. Desorption increased in parallel...

  2. Adsorption of Pb, Cd, Zn, Cu and Hg ions on Formaldehyde and ...

    African Journals Online (AJOL)

    Adsorption of Pb(II), Cd(II), Zn(II), Cu(II) and Hg(II) ions on formaldehyde and Pyridine modified bean husks were determined. The adsorption capacity of formaldehyde modified bean husks (mg/g) was: Pb2+, 5.01; Cd2+, 3.63; Zn2+, 2.18; Hg2+, 1.82; Cu2+, 1.58 and that of pyridine modified bean husk was: Hg2+, 6.92; Cd2+ ...

  3. Assessing the levels of Pb, Cd, Zn and Cu in biscuits and home ...

    African Journals Online (AJOL)

    The modern day busy schedule of an average individual in Nigeria has made the consumption of snacks inevitable. This study assessed the concentrations of Zn, Cu, Pb and Cd in some common snacks sold in two tertiary institutions in Lagos, Nigeria, using Perkin AAS Elmer model 460. The mean levels of Zn, Cu, Pb and ...

  4. Speciation and behaviour of Cd, Pb and Cu in Zuari Estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    George, M.D.

    Dissolved labile and nonlabile forms of Cd, Pb and Cu in Zuari Estuary, Goa, India measured for a period of 14 months showed lowest concentrations during the SW monsoon (June-September) while maximum concentrations were observed during...

  5. Assessment of Cu, Pb, Zn, and Cd in groundwater in areas around ...

    African Journals Online (AJOL)

    The assessment of the concentration of Cu, Pb, Zn and Cd in groundwater in Enyigba is critical because of presence of numerous Pb – Zn lodes and conditions that are capable of mobilizing the metals into groundwater and pedalogical systems. Groundwater forms one of the major sources of potable water in the area.

  6. Heavy metals (Cd, Pb, Cu, Zn) in mudfish and sediments from three ...

    African Journals Online (AJOL)

    Fish tissue from Labeo capensis and sediment core samples from three dams in the Mooi River catchment area were collected and analysed for Cd and Pb by electro-thermal AAS, and for Cu and Zn by flame AAS. The highest Cd concentrations were found in the clay fractions in all three dams, with a range between 66.0 ...

  7. Distribution of various forms of Cd, Pb and Cu in the Wadge Bank region (Arabian Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    George, M.D.

    Labile, nonlabile and particulate forms of Cd,Pb and Cu were determined in 29 water samples collected from a depth of 5 m, from the Wadge Bank area. Labile Cd varied from 0.1 to 0.2 mu g.l-1 while nonlabile fraction was in the range 0.1 to 0.3 mu gl...

  8. Distribution of Pb, Zn, Cd, and Cu within the pulmonate molluse Helix aspersa Mueller

    Energy Technology Data Exchange (ETDEWEB)

    Coughtrey, P.J.; Martin, M.H.

    1976-01-01

    The distribution of Pb, Zn, Cd and Cu throughout the body tissues of Helix aspersa was determined. The digestive gland of the mollusc was shown to be an important store of Pb, Zn and Cd while Cu was found to be more evenly distributed throughout the tissues of the animal. These results are discussed with relation to previous work concerning heavy metal content in molluscs. The selectivity of the digestive gland for Cd was higher than it was for either Pb or Zn and it is suggested that analysis of the digestive gland of molluscs may be useful in studying levels of Cd at different sites. At a contaminated site the levels of Cd in Helix aspersa were shown to be 13 times greater than at a relatively uncontaminated site.

  9. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    Science.gov (United States)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  10. Sequential Extraction of Cu, Cd, Pb and Zn from Soil Around ...

    African Journals Online (AJOL)

    The presence of heavy metals in soil around industrial wastes dump sites restricts their use for agricultural purpose. This study attempts to extract Cu, Cd, Pb and Zn from soils around some selected industrial wastes dump sites in Kaduna. Four dump sites were identified namely Kudenda, Kakuri, Gonigora and Dirkaniya.

  11. Adsorption of Pb, Cd, Zn, Cu and Hg ions on Formaldehyde and ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: Adsorption of Pb(II), Cd(II), Zn(II), Cu(II) and Hg(II) ions on formaldehyde and Pyridine modified bean husks ... for the metal ions were found to be less than unity which indicates that adsorption of metals on bean husks have increased as a ..... lead and cadmium ions from aqueous solution by Caladium bicolor.

  12. Seasonal Variation of Cd, Ni, Cu and Pb in Catfish, Sediment and ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: The variation of some heavy metals Cd, Ni, Cu and Pb was conducted on sediment, cat fish and water samples from four stations in Ipo ... matrix of Ipo stream which include sediment, water and cat fish to determine their ... The composite sediment samples were wet sieved with ambient water by using 63-µm ...

  13. Effects of reduction parameters on the amount of Pb, Zn, Cu and Cd ...

    African Journals Online (AJOL)

    It was found that recrystallization of hematite and melting of the gangue minerals present started at about 1100oC. At about 1150oC, the amount of Pb, Zn, Cd and Cu in the pellets were significantly reduced. Compressive strength measurements also showed that the strength of pellets reduced at 900oC or less were low ...

  14. Assessment of heavy metals (Pb, Cu, Cr, Cd and Fe) in the ...

    African Journals Online (AJOL)

    Assessment of heavy metals (Pb, Cu, Cr, Cd and Fe) in the groundwater wells in the vicinity of Nyanza. Municipal Solid waste in Kigali City- Rwanda. H. Nsengimanaa*, B. Bigirimanab, M. Suwab, A. Mukubwab, W. Debruynb,. N. Kalisaa. aNational University of Rwanda, Faculty of Science, PO Box 117 Butare, Rwanda,.

  15. Determination of the levels of heavy metal (Cu, Fe, Ni, Pb and Cd ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: The aim of this study was to use AAS to determine the levels of concentration (g/kg) of heavy metals: copper (Cu),Iron (Fe), Nickel (Ni), lead (Pb) and. Cadmuim (Cd) uptake by pumpkin (Telfairia occidentalis) leaves cultivated in Pots containing varying concentrations of contaminated soil samples labeled A to E.

  16. Fractionation of Cd, Cu, Ni, Pb, and Zn in floodplain soils from Egypt, Germany and Greece

    Directory of Open Access Journals (Sweden)

    Shaheen S. M.

    2013-04-01

    Full Text Available Trace elements are potentially toxic to human life and the environment. Element toxicity depends on chemical associations in soils. Therefore, determining the chemical form of an element in soils is important to evaluate its mobility and bioavailability. Initial soil development in river floodplains influences soil properties, processes and therefore behavior of trace elements. In this study, three different floodplain soils sampled at three rivers (Nile/Egypt, Elbe/Germany and Penios/Greece were used to link soil development and properties to the geochemical fractions and mobility of some trace elements. Sequential extraction was used to fractionate five trace elements (Cd, Cu, Ni, Pb and Zn into five operationally defined groups: water soluble + exchangeable, carbonate, Fe-Mn oxide, organic, and residual. German soil showed the highest total concentration of the studied elements (except Ni. The Greek soil had the greatest amount of Ni. The residual fraction was the abundant pool for the studied elements examined in the Egyptian and Greek soils while the non-residual fraction was the dominant pool for all elements in the German soil. A significant amount (71- 94% of all elements was present in German soil in the potentially available fraction: non-residual fraction, while the amount of this fraction ranged between 9 and 39 % in Greek soil and between 9 and 34 % in Egyptian soil. These suggest that the potential availability of the studied trace elements was extremely high in German soil compared to the Egyptian and Greek soil. In the German soil, most of the non-residual Cd, Ni and Zn were bounded with the Fe-Mn oxide fraction, while Cu and Pb distributed in the organic fraction. While in the Egyptian and Greek soils Fe-Mn oxide fraction was the abundant pool for the studied elements except for Cd, in which the exchangeable and the carbonate fractions had the greatest amount of Cd. Assuming that mobility and bioavailability of these elements

  17. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta).

    Science.gov (United States)

    Sinhal, V K; Srivastava, Alok; Singh, V P

    2010-05-01

    Phytoextraction is an emerging cost-effective solution for remediation of contaminated soils which involves the removal of toxins, especially heavy metals and metalloids, by the roots of the plants with subsequent transport to aerial plant organs. The aim of the present investigation is to study the effects of EDTA and citric acid on accumulation potential of marigold (Tagetes erecta) to Zn, Cu, Pb, and Cd and also to evaluate the impacts of these chelators (EDTA and citric acid) in combination with all the four heavy metals on the growth of marigold. The plants were grown in pots and treated with Zn (7.3 mg l(-1)), Cu (7.5 mg I(-1)), Pb (3.7 mg l(-1)) and Cd (0.2 mg l(-1)) alone and in combination with different doses of EDTA i.e., 10, 20 and 30 mg l(-1). All the three doses of EDTA i.e., 10, 20 and 30 mg l(-1) significantly increased the accumulation of Zn, Cu, Pb and Cd by roots, stems and leaves as compared to control treatments. The 30 mg l(-1) concentration of citric acid showed reduced accumulation of these metals by root, stem and leaves as compared to lower doses i.e., 10 and 20 mg l(-1). Among the four heavy metals, Zn accumulated in the great amount (526.34 mg kg(-1) DW) followed by Cu (443.14 mg kg(-1) DW), Pb (393.16 mg kg(-1) DW) and Cd (333.62 mg kg(-1) DW) in leaves with 30 mg l(-1) EDTA treatment. The highest concentration of EDTA and citric acid (30 mg l(-1)) caused significant reduction in growth of marigold in terms of plant height, fresh weight of plant, total chlorophyll, carbohydrate content and protein content. Thus EDTA and citric acid efficiently increased the phytoextractability of marigold which can be used to remediate the soil contaminated with these metals.

  18. Electrodialytic removal of Cu, Zn, Pb, and Cd from harbor sediment: Influence of changing experimental conditions

    DEFF Research Database (Denmark)

    Nystrøm, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic remediation (EDR) was used to remove Cu, Zn, Pb, and Cd from contaminated harbor sediment. Extraction experiments were made prior to EDR, and the metal desorption was pH dependent but not liquid-to-solid ratio (L/S) dependent. The desorption order was Cd $GRT Zn $GRT Pb $GRT Cu....... Electrodialytic experiments were made with HCl as desorbing agent in a sediment suspension, which was stirred during EDR. Effects of different current strengths and L/S ratios on the heavy metal removal were investigated on wet and air-dried sediment. The effects of drying the sediment were negligible...... was in an experiment with dry sediment (L/S 8) and a 70 mA applied current that lasted 14 days. These experimental conditions were thereafter used to remediate more strongly contaminated sediments. Regardless of the initial heavy metal concentrations in the sediments, 67-87% Cu, 79-98% Cd, 90-97% Zn, and 91-96% Pb...

  19. Contamination and Health Risks from Heavy Metals (Cd and Pb) and Trace Elements (Cu and Zn) in Dairy Products

    National Research Council Canada - National Science Library

    Hamid Reza Ghafari; Soheil Sobhanardakani

    2017-01-01

    .... This study was carried out to analyze the content of metals (Cd, Cu, Pb, and Zn) in butter and cheese, and evaluates the potential health risks of metals to humans through the consumption of dairy products...

  20. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    Science.gov (United States)

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  1. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    Science.gov (United States)

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mobility of Cd, Pb, Cu, and Cr in some Estonian soil types

    Directory of Open Access Journals (Sweden)

    Irha, Natalya

    2009-09-01

    Full Text Available The sorption capacity of selected heavy metals (Cd, Pb, Cu, Cr to five Estonian soils was evaluated using spiked subsoil samples in laboratory experiments. The experimental sorption data fitted well to the linear Freundlich isotherm. The sorption of metals in subsoil depended on the soil type, e.g., mineral composition. The results indicate that the content of quartz and carbonates is important in affecting the metal sorption capacity of subsoil. On the basis of our data the possibility of penetration in depth and accumulation of mobile metals was evaluated. It was concluded that increase in dissolved Cd and accumulation of other metals in the subsoil of Podzol is expected. The accumulation of Pb could be the main process for soils with a high amount of dolomite.

  3. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India.

    Science.gov (United States)

    Gope, Manash; Masto, Reginald Ebhin; George, Joshy; Hoque, Raza Rafiqul; Balachandran, Srinivasan

    2017-04-01

    Street dust samples were collected from five different types of land use patterns (busy traffic zone, urban residential area, national highways, industrial area and sensitive area) in a medium sized industrial city Asansol, India. The samples were fractionated into ≤53µm and analyzed for potential toxic elements (PTEs) viz. Zn, Cd, Pb and Cu. The mean total concentration of Zn, Cd, Pb and Cu in the urban street dust samples were 192, 0.75, 110 and 132mgkg -1 respectively. Chemical speciation was performed for PTEs to evaluate the bio-available fractions. Cu was mostly associated with organic matter phase while Zn, Pb and Cd with residual phase. Mean mobility factor (MF) for heavy metals in Asansol was Zn (54.6%)>Pb (49.1%)>Cu (25.3%)>Cd (22.7%). Geo-chemical indices such as Enrichment Factor (EF), geo-accumulation index (Igeo) and contamination Factor (CF) were in the order of Pb>Cd>Zn>Cu. Cluster analysis was done to understand the similarities among the sites. The risks of all metals was calculated with mobile fraction, which indicated actual risk due to PTEs was less (HI<1). Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Direct determination of Cd, Cu and Pb in wines and grape juices by thermospray flame furnace atomic absorption spectrometry.

    Science.gov (United States)

    Schiavo, Daniela; Neira, José Y; Nóbrega, Joaquim A

    2008-09-15

    The applicability of thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was evaluated for direct determination of Cu, Cd and Pb in wines and grape juices. The developed procedure does not require preliminary acid digestion of the samples. The optimum conditions for determination of Cu, Cd and Pb in wines were studied and the performance was compared to those typically obtained by flame atomic absorption spectrometry (FAAS). A sample volume of 150 microL was introduced into a heated nickel tube at a flow rate of 0.54 mLmin(-1) and 0.14 molL(-1) HNO(3) was used as sample carrier flowing at 2.5 mLmin(-1) for determining all analytes. The effect of ethanol concentrations on Cu, Cd and Pb absorbance signals were studied. All determinations were carried out by adopting optimized conditions and quantification was based on the standard additions method. Limits of detection (LOD) of 12.9, 1.8 and 5.3 microgL(-1) (n=14) for Cu, Cd and Pb, respectively, were obtained for wine samples (3sigma(blank)/slope, n=14). Relative standard deviations (R.S.D., %) of 2.7, 2.1 and 2.6 for Cu, Cd and Pb, were obtained (n=6) for wine samples. The values determined for grape juice samples were similar to these ones. The analytical throughput was 45 determinations h(-1) and accuracy was checked by addition-recovery experiments.

  5. The CdS/CdSe/ZnS Photoanode Cosensitized Solar Cells Basedon Pt, CuS, Cu2S, and PbS Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Tung Ha Thanh

    2014-01-01

    Full Text Available Highly ordered mesoporous TiO2 modified by CdS, CdSe, and ZnS quantum dots (QDs was fabricated by successive ionic layer adsorption and reaction (SILAR method. The quantity of material deposition seems to be affected not only by the employed deposition method but also and mainly by the nature of the underlying layer. The CdS, CdSe, and ZnS QDs modification expands the photoresponse range of mesoporous TiO2 from ultraviolet region to visible range, as confirmed by UV-Vis spectrum. Optimized anode electrodes led to solar cells producing high current densities. Pt, CuS, PbS, and Cu2S have been used as electrocatalysts on counter electrodes. The maximum solar conversion efficiency reached in this work was 1.52% and was obtained by using Pt electrocatalyst. CuS, PbS, and Cu2S gave high currents and this was in line with the low charge transfer resistances recorded in their case.

  6. Determination of Traces of Pb, Cu and Cd in Seawater around Thane Creek by Anodic Stripping Voltammetry Method.

    Science.gov (United States)

    Maity, Sukanta; Sahu, S K; Pandit, G G

    2017-04-01

    Trace metals (Pb, Cu and Cd) in seawater samples were pre-concentrated for the simultaneous quantitative determination using solvent extraction procedure in the presence of ammonium pyrrolidine dithiocarbamate (APDC) as complexing agent and methyl isobutyl ketone (MIBK) as organic phase and acid exchange back - extraction followed by its determination by Differential Pulse Anodic Stripping Voltammetry (DPASV). Concentrations of Pb, Cu and Cd vary from 3.0 to 9.44 ng/mL, 12.7 to 28.6 ng/mL and 0.31 to 1.21 ng/mL respectively in seawater samples collected from different locations across Thane Creek area, Mumbai, India. Pb, Cu, Cd concentration were observed to be higher in the eastern side of the Thane Creek as it is covered by various industries.

  7. Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils.

    Science.gov (United States)

    Evangelou, Michael W H; Hockmann, Kerstin; Pokharel, Rasesh; Jakob, Alfred; Schulin, Rainer

    2012-10-15

    Annually, more than 400 t Pb and 10 t Sb enter Swiss soils at some 2000 military shooting ranges. After the decommission of military shooting ranges, heavily contaminated soils (>2000 mg kg(-1) Pb) are landfilled or processed by soil washing, whereas for soils with less contamination, alternate strategies are sought. Although the use of military shooting ranges for grazing in Switzerland is common practice, no assessment has been done about the uptake of Sb in plants and its subsequent potential intake by grazing animals. We determined the uptake of Sb, Pb, Cu, Zn and Cd in the aboveground biomass of nine plant species growing on a calcareous (Chur) and a weakly acidic (Losone) military shooting range soil in order to assess if grazing would be safe to employ on decommissioned military shooting ranges. The two soils did not differ in their total concentrations of Cu, Zn, Sb and Cd, they differed however in the total concentration of Pb. Additionally, their physical and chemical properties were significantly different. The accumulation of Zn, Cu, Cd and Pb in the shoots of all nine plant species remained below the Swiss tolerance values for fodder plants (150 mg kg(-1) Zn, 15-35 mg kg(-1) Cu, 40 mg kg(-1) Pb, and 1 mg kg(-1) Cd DW), with the only exception of Pb in Chenopodium album shoots which reached a concentration of 62 mg kg(-1) DW. Antimony concentrations were 1.5-2.6-fold higher in plants growing on the calcareous soil than on the weakly acidic soil. Considering Cu, Zn, Pb, Sb and Cd, all plants, with the exception C. album, would be suitable for grazing on similar shooting range soils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Geospatial Mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban Soil, Cd. Juarez, Chihuahua, Mexico

    Science.gov (United States)

    Amaya, M. A.; Grimida, S. E.; Elkekli, A. R.; Aldouri, R. K.; Benedict, B. A.; Pingitore, N. E., Jr.

    2015-12-01

    Population-based random stratified sampling of the city of Cd. Juarez, Chihuahua, Mexico provided 500 city blocks for study. We collected soil from the public space (where present) in front of each house on a selected block; equal measured small volumes of these were combined to produce a composite sample for analysis. Such composite samples (1) decrease, by an order of magnitude, laboratory processing and analysis costs, and (2) smooth the data to represent blocks as averages of individual houses. Retention of the unanalyzed samples of the individual houses permits their later analysis should the composites suggest further study of individual houses on an anomalous block. Elemental analysis of 10 mg pressed powders was performed on a Panalytical Epsilon5 EDS-XRF, via 8 secondary targets and 12 USGS and NIST multi-element rock standards. The mean and (range) of concentration for Pb was 43 (13-550) ppm; for Cr, 31 (1.8-76); for Cu, 22 (6-550); for Zn 84 (42-415) ppm; for Cd, 1.9 (0.1-6.2); and for Sb, 5.9 (2.7-29). The old urban core of Cd. Juarez was marked by high levels of Pb, Cr, Cu, and Zn, and, to a smaller degree, of Cd and Sb. This pattern mirrors that of contiguous El Paso, Texas, USA, directly across the narrow Rio Grande. Businesses, industrial facilities, transportation (both railroads and highways), traditional "downtown" shopping, and old residential districts cluster in this urban core. A Pb-Cu-Zn smelter, which operated for more than a century until 1999, is present in the US adjacent to the Rio Grande, about two km away from downtown Cd. Juarez. Thus the city has been subject to both traditional metal sources (e.g., leaded gasoline, highway debris) and smelter emissions. The poplation of Cd. Juarez has exploded in the last few decades to some 1.5 million inhabitants due both to natural growth and in-migration from rural districts for economic opportunity. Most of this growth has been accommodated by radial expansion of the city into the surrounding

  9. Heavy Metals (Cu, Pb and Cd) in Water and Angel Fish (Chelmon rostractus) from Batam Coastal, Indonesia

    OpenAIRE

    Ismarti Ismarti; Ramses Ramses; Suheryanto Suheryanto; Fitrah Amelia

    2017-01-01

    Fish play an important role in human nutrition and therefore need to be carefully and routinely monitored to ensure that there are no high levels of heavy metals being transferred to human through their consumption. This study has been carried out to determine level of heavy metals (Cu, Pb, and Cd) in water and angel fish, Chelmon rostractus collected from coast of Batam. We report levels of Cu, Cd and Pb in water and angel fish from Coast Batam using Atomic Absorption Spectroscopy (AAS). Lev...

  10. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Loureiro, Jose M. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: loureiro@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO{sub 3} as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  11. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  12. Essential (Cu) and nonessential (Cd and Pb) metals in ichthyofauna from the coasts of Sinaloa state (SE Gulf of California).

    Science.gov (United States)

    Ruelas-Inzunza, J; Páez-Osuna, F; García-Flores, D

    2010-03-01

    With the aim of giving an overview on concentration and distribution of Cd, Cu, and Pb in fish from the coasts of Sinaloa state (SE Gulf of California), specimens with different feeding habits were collected in five locations. Sampling occurred between June 2003 and March 2004. Metal analyses on fish tissues were made by graphite furnace (Cd, Pb) and flame (Cu) atomic absorption spectrophotometry. Metal concentrations in tissues of carnivorous fish were grouped together and compared with corresponding concentrations in non-carnivorous fish; Cu and Pb levels were significantly (p < 0.05) higher in liver of non-carnivorous species. Though no samples exceeded the maximum level set in international legislation for fish, from the perspective of the public health and considering the legal limits of fishery products for human consumption, Cu concentrations were exceeded (in tissues different from muscle) in four carnivorous and five non-carnivorous species according to the Australian legislation. In the case of Cd, two carnivorous species (Pomadasys leuciscus and Caulolatilus princeps) and one non-carnivorous species (Mugil cephalus), showed concentrations over the maximum level of 2 microg g(-1) dry weight considered in the Mexican legislation. Considering average amounts of fish consumption in Mexico, daily mineral intake (DMI) values for Cu and percentage weekly intake (PWI) of Cd and Pb were estimated; none of the analyzed metals in edible portion of analyzed fish could be detrimental to humans.

  13. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.

    Science.gov (United States)

    Cutillas-Barreiro, Laura; Paradelo, Remigio; Igrexas-Soto, Alba; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodriguez, Esperanza; Garrote, Gil; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2016-09-01

    Bark from Pinus pinaster is one of the most abundant forestry wastes in Europe, and among the proposed technologies for its reutilization, the removal of heavy metals from wastewater has been gaining increasing attention. In this work, we have studied the performance of pine bark for heavy metal biosorption on competitive systems. Pb, Cu, Ni, Zn and Cd sorption and desorption at equilibrium were studied in batch experiments, whereas transport was studied in column experiments. Batch experiments were performed adding simultaneously different concentrations (0.08-3.15mM) of two or more metals in solution to pine bark samples. Column experiments were performed with 10mM solutions of two metals or a 5mM solution of the five metals. In general, the results under competitive conditions were different to those obtained in monoelemental experiments. The multi-metal batch experiments showed the adsorption sequence Pb≈Cu>Cd>Zn>Ni for lower metal doses, Pb>Cu>Cd>Zn>Ni for intermediate doses, and Pb>Cu>Cd≈Zn≈Ni for high metal doses. Desorption followed the sequence Pbadsorption sites on pine bark. The transport experiments produced comparable results to those obtained in the batch experiments, with pine bark retention capacity following the sequence Pb>Cu>Zn>Cd>Ni. The presence of a second metal affected the transport of all the elements studied except Pb, and confirmed the strong influence of Pb and Cu on the retention of the other metals. These results can help to appropriately design decontamination systems using this forestry waste. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Holm, Peter E.; Fantke, Peter

    2015-01-01

    H or soil organic carbon, emission source occasionally has an effect on reactivity of Cd, Co, Cu, Ni, Pb and Zn emitted from various anthropogenic sources followed by aging in the soil from a few years to two centuries. The uncertainties in estimating the age prevent definitive conclusions about...

  15. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora.

    Science.gov (United States)

    Albert, Quentin; Leleyter, Lydia; Lemoine, Mélanie; Heutte, Natacha; Rioult, Jean-Philippe; Sage, Lucile; Baraud, Fabienne; Garon, David

    2018-04-01

    Trace metals cause deterioration of the soil and constitute a major concern for the environment and human health. Bioremediation could be an effective solution for the rectification of contaminated soils. Fungi could play an important role in biodegradation because of the morphology of their mycelium (highly reactive and extensive biological surface) and its physiology (high tolerance to many stresses, production of enzymes and secondary metabolites). Fungi can effectively biosequestrate, or biotransform many organic and inorganic contaminants into a non-bioavailable form. This experiment was designed to evaluate the tolerance and the biosorption abilities of the fungus Absidia cylindrospora against three trace metals: Cadmium (Cd), Copper (Cu), and Lead (Pb). Firstly, the tolerance of the strain was evaluated on metal-enriched malt extract agar (MEA). Secondly, the strain was exposed to trace metals, in a liquid malt extract medium. After 3 or 7 days of exposure, the quantities of absorbed and adsorbed metals were measured with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Biomass production and pH evolution were also evaluated during the test. Our experiment revealed differences between the three metals. In agar medium, Cd and Pb were better tolerated than Cu. In liquid medium, Cd and Pb were mostly absorbed whereas Cu was mostly adsorbed. A. cylindrospora biosorbed 14% of Cu, 59% of Pb and 68% of Cd when exposed for 3 days at 50 mg L-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Risk assessment for Cd, Cu, Pb, and Zn in urban soils: chemical availability as the central concept

    NARCIS (Netherlands)

    Rodrigues, S.R.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M.

    2013-01-01

    To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO(3) (reactive), 0.01 M CaCl(2) (available), and 0.4 M glycine at pH = 1.5, SBET method (oral

  17. Modification of pineapple peel fibre with succinic anhydride for Cu2+, Cd2+ and Pb2+ removal from aqueous solutions.

    Science.gov (United States)

    Hu, Xiuyi; Zhao, Mouming; Song, Guosheng; Huang, Huihua

    2011-01-01

    Research on chemical modification of pineapple peel fibre with succinic anhydride was carried out to create a novel adsorbent for Cu2+, Cd2+ and Pb2+ removal from aqueous solution. After pretreatment with iso-propyl alcohol and NaOH, pineapple peel fibre was modified via reaction with succinic anhydride for introduction of carboxylic functional groups. The modified pineapple peel fibre was characterized with Fourier transform infrared (FTIR) spectroscopy and evaluated for its adsorptive ability for Cu2+, Cd2+ and Pb2+ from synthetic metal solutions. The FTIR analysis proved the introduction of carboxylic functional groups in the backbone of the modified pineapple peel fibre. The modified pineapple peel fibre showed higher adsorptive capacity for Cu2+, Cd2+ and Pb2+ compared with raw pineapple peel and pineapple peel fibre pretreated with iso-propyl alcohol. The adsorption of Cu2+, Cd2+ and Pb2+ on the modified pineapple peel fibre depended on solution pH value, adsorption time and initial metal concentration. The maximum adsorption capacities of the modified fibre were observed at pH 5.4 for Cu2+ (27.68 +/- 0.83 mg g(-1) or 0.44 mmol g(-1)), at pH 7.5 for Cd2+ (34.18 +/- 1.02 mg g(-1) or 0.30 mmol g(-1)) and at pH 5.6 for Pb2+ (70.29 +/- 2.11 mg g(-1) or 0.34 mmol g(-1)) respectively. The adsorption followed the pseudo-second-order kinetics model and the experimental data coincided well with the Langmuir model.

  18. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  19. Kandungan Logam Berat (Hg, Pb, Cd, dan Cu Pada Ikan, Air, dan Sedimen Di Waduk Cirata, Jawa Barat

    Directory of Open Access Journals (Sweden)

    Nandang Priyanto

    2008-06-01

    Full Text Available ABSTRAK Penelitian evaluasi kandungan logam berat pada ikan, air, dan sedimen serta evaluasi kualitas perairan dilakukan di Waduk Cirata, Jawa Barat. Pengambilan sampel dilakukan secara discrete pada 6 stasiun yang mewakili daerah inlet, outlet, dan sentra budidaya ikan (KJA. Waktu pengambilan sampel dilakukan tiga kali yaitu pada bulan Mei, Agustus, dan Nopember 2005. Parameter yang diamati meliputi logam berat (Hg, Pb, Cd, dan Cu, kualitas air (suhu, kecerahan, pH, DO, BOD, dan COD, serta unsur hara (amonia, nitrit, nitrat, sulfida, dan fosfat. Kandungan logam berat diamati dengan menggunakan alat Spektrofotometer Serapan Atom (AAS. Hasil penelitian menunjukkan bahwa secara umum kandungan Hg, Pb, Cd, dan Cu pada berbagai jenis ikan yang ditangkap dari waduk lebih tinggi dibandingkan dalam air, tetapi lebih rendah dibandingkan pada sedimen. Kandungan Hg, Pb, Cd, dan Cu pada ikan masih di bawah ambang batas yang diijinkan. Sementara itu kandungan Hg, Cd, dan Cu dalam air di beberapa stasiun sudah ada yang melebihi ambang batas. Kandungan Hg, Pb, Cd, dan Cu pada sedimen umumnya juga masih di bawah ambang batas yang ditetapkan, kecuali kandungan Hg yang diambil pada bulan Mei di beberapa stasiun melebihi ambang batas yang diijinkan. Hasil pengamatan kualitas air yaitu suhu, pH, kecerahan, DO, BOD, COD, nitrat, dan fosfat umumnya masih dalam kisaran yang dipersyaratkan untuk kegiatan budidaya perikanan sesuai PP No. 82 Tahun 2001 tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air, meskipun COD pada beberapa stasiun yang diamati melebihi ambang batas. Sementara itu, kandungan nitrit, amonia, dan sulfida umumnya sudah melebihi ambang batas yang ditetapkan.

  20. Investigation of Pb, Cd, Cu and Mg Concentrations in Groundwater Resources of Razan Plain

    Directory of Open Access Journals (Sweden)

    S. Sobhan Ardakani

    2015-01-01

    Full Text Available Introduction & Objective: Iran is located in the dry and semi dry regions, thus almost 90% of the required fresh water is exploited from groundwater resources. Due to the increasing pol-lution of water resources, the purpose of this study was evaluation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain and preparing the zoning map using GIS. Materials & Methods: Groundwater samples were collected from 20 selected stations during two seasons in 2012. The samples were filtered (0.45 ?m and maintained cool in polyethyl-ene bottles. The samples were taken for the analysis of cations, the former was acidified with HNO3 to pH lower than 2. Minor elements were determined using ICP-OES. All statistical analyses were performed using the SPSS statistical package. Also, Kriging Method was used to prepare spatial distribution maps of elements in groundwater samples. Results: The results showed that the mean concentrations of Pb, Cd, Cu and Mg in the groundwater samples during the spring were 5.60±0.66, 0.21±0.04, 32.10±2.21 and 6990.0±302.10 ppb, respectively, and the mean concentrations of these elements in the groundwater samples in the summer were 4.86±0.46, 0.30±0.08, 25.55±3.63 and 3654.05±215.65 ppb, respectively. Comparing the mean concentrations of the evaluated metals with WHO permissible limits showed a significant difference (p<0.05. Thus, the mean concentrations of the metals were significantly lower than the permissible limits. Conclusion: Although the groundwater resources of Razan Plain are not currently polluted with heavy metals, long-term excessive use of agricultural inputs and establishment of pollut-ing industries, can pose a threat to groundwater resources of this area. (Sci J Hamadan Univ Med Sci 2015; 21(4:319-329

  1. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.

    Science.gov (United States)

    Wang, He; Jia, Yongfeng

    2017-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. Adsorption (ADS) and coprecipitation (CPT) on amorphous metal hydroxides are important processes, controlling the fates of heavy metals in an aqueous environment. This work studied the bioavailability of Cu, Cd, Ni, and Pb adsorbed on and/or coprecipitated with amorphous iron and iron/aluminum mixed hydroxides to the wetland plant Phragmites australis. After a 13-day treatment, there was an apparent uptake of the heavy metals by the plant, and the amount of metal bioaccumulation was measurably different for different association forms (ADS vs. CPT). The bioaccumulation of Cd associated with Fe0.5Al0.5(OH)3 was greater than that with Fe(OH)3; the adsorbed metals were found to be more bioavailable than the coprecipitated forms for most of the treatments while the aging treatment significantly reduced the bioaccumulation of ADS metals. In the single metal treatment, root metal concentrations in the Fe(OH)3 ADS system followed the order Ni (68 mg kg-1) > Cu (32 mg kg-1) > Cd (28 mg kg-1) > Pb (9 mg kg-1), while the CPT system followed the order of Cu (30 mg kg-1) > Ni (22 mg kg-1) > Pb (9 mg kg-1) > Cd (7 mg kg-1). The order of metal accumulation in a combined metal treatment was similar to that for single metal treatments, but observed Ni concentration declines by 22 and 71 % and Cu and Cd concentrations increase by 30 and 50 % (for CPT and ADS treatments, respectively), while Pb concentrations increased by 30~50 % in both of them. When treated with low-molecular-weight organic acids (LMWOAs), metal desorption, indicative of metal oxide bonding strength and metal bioavailability, was consistent with metal accumulation in the plant.

  2. Water Soluble Cationic Porphyrin Sensor for Detection of Hg2+, Pb2+, Cd2+, and Cu2+

    Directory of Open Access Journals (Sweden)

    Matibur Zamadar

    2016-01-01

    Full Text Available Here we report the sensing properties of the aqueous solution of meso-tetra(N-methyl-4-pyridylporphine tetrachloride (1 for simultaneous detection of toxic metal ions by using UV-vis spectroscopy. Cationic porphyrin 1 displayed different electronic absorptions in UV-vis region upon interacting with Hg2+, Pb2+, Cd2+, and Cu2+ ions in neutral water solution at room temperature. Quite interestingly, the porphyrin 1 showed that it can function as a single optical chemical sensor and/or metal ion receptor capable of detecting two or more toxic metal ions, particularly Hg2+, Pb2+, and Cd2+ ions coexisting in a water sample. Porphyrin 1 in an aqueous solution provides a unique UV-vis sensing system for the determination of Cd2+ in the presence of larger metal ions such as Hg2+, or Pb2+. Finally, the examination of the sensing properties of 1 demonstrated that it can operate as a Cu2+ ion selective sensor via metal displacement from the 1-Hg2+, 1-Pb2+, and 1-Cd2+.

  3. Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands

    Directory of Open Access Journals (Sweden)

    Rajab Abu-El-Halawa

    2017-01-01

    Full Text Available Presently, there is increased attention and focus on heavy metals, which are becoming one of the most serious environmental problems due to their adverse health effects. These toxic heavy metals are not easily degraded and require removal from polluted water to protect people and the environment. The purpose of this work was to prepare two types of dithiocarbamate ligands, one aliphatic (diethyldithiocarbamate and the other aromatic (diphenyldithiocarbamate, and to use them as chelators to remove Pb, Cd, Cu and Zn from polluted water. Dithiocarbamates were selected because they have good binding ability and can precipitate metal ions as complexes. The metal removal efficiency is compared between both ligands and also compared to the efficiency of activated carbon in an adsorption process to remove the same metals. The investigation results indicated that the diphenyldithiocarbamate ligand was more efficient in removing the studied metals than the diethyldithiocarbamate analogues. Additionally, the metal removal efficiency of the diphenyldithiocarbamate ligand was more effective than using the activated carbon method.

  4. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera.

    Science.gov (United States)

    Pavasant, Prasert; Apiratikul, Ronbanchob; Sungkhum, Vimonrat; Suthiparinyanont, Prateep; Wattanachira, Suraphong; Marhaba, Taha F

    2006-12-01

    The sorption of Cu2+, Cd2+, Pb2+, and Zn2+ by a dried green macroalga Caulerpa lentillifera was investigated. The removal efficiency increased with pH. The analysis with FT-IR indicated that possible functional groups involved in metal sorption by this alga were O-H bending, N-H bending, N-H stretching, C-N stretching, C-O, SO stretching, and S-O stretching. The sorption of all metal ions rapidly reached equilibrium within 20min. The sorption kinetics of these metals were governed by external mass transfer and intraparticle diffusion processes. The sorption isotherm followed the Langmuir isotherm where the maximum sorption capacities was Pb2+>Cu2+>Cd2+>Zn2+.

  5. Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus.

    Science.gov (United States)

    Jing, Xiao-Bing; He, Nan; Zhang, Ying; Cao, Yan-Ru; Xu, Heng

    2012-01-01

    The enhanced effect of heavy-metal-mobilizing bacteria on the uptake of Pb, Cu, and Cd by Coprinus comatus from Pb-, Cu-, and Cd-multicontaminated soil was assessed in this study. Thirteen strains, tolerating 800 mg·L(-1) Pb, 200 mg·L(-1) Cu, and 200 mg·L(-1) Cd simultaneously were selected for heavy-metal-solubilizing experiments in soil. The mobilization of heavy metals depended on the characteristics of bacteria and heavy metals. Correlation analysis demonstrated that for Pb solubilization, the acid-producing ability was the most significant factor, while for Cu and Cd, siderophores played a leading role in this process. Four strains, based on their excellent ability to solubilize heavy metal in soil, were applied in pot experiments. The results showed that all strains can promote the growth of C. comatus and meanwhile help mushroom accumulate more heavy metals (Pb, Cd, and Cu). The maximum uptake for total Pb and Cu by C. comatus was observed in inoculations with Bacillus sp. strain JSG1 (2.02- and 2.13-fold, respectively, compared with uninoculated soil), while for Cd, it was recorded in Bacillus sp. strain PB2 treated soil (2.03-fold). Therefore, this work suggests that the mushroom-bacteria interaction can be developed into a novel bioremediation strategy.

  6. Determination of Cd, Pb and Cu in Mandovi estuary by differential pulse anodic stripping voltammetry

    Digital Repository Service at National Institute of Oceanography (India)

    George, M.D.; Sawkar, K.; Reddy, C.V.G.

    0-60% for Pb and 0-80% for Cu. Compared to the reported values from other estuaries, Mandovi estuarine waters have registered a higher concentration of the metals. These high concentrations, to a large extent, are considered to be the effect...

  7. A comparative study on Pb(II), Cd(II), Cu(II)

    African Journals Online (AJOL)

    user

    organic compounds form wastewater (Venema et al., 1998; Fendorf et al., 1997; Heijman et al., 1999, Sen et al., 2002; Glover et al., 2002; O'reilly ... modifying goethite either by pre treating or by doping with other metal ions. Phosphate ...... Binary component sorption of Cu(II) and Pb(II) with activated carbon from. Eucalyptus ...

  8. Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media

    Science.gov (United States)

    Barsbay, Murat; Kavaklı, Pınar Akkaş; Tilki, Serhad; Kavaklı, Cengiz; Güven, Olgun

    2018-01-01

    The main objective of this work is to prepare a renewable cellulosic adsorbent by γ-initiated grafting of poly(glycidyl methacrylate) (PGMA) from cellulose substrate and subsequent modification of PGMA with chelating species, iminodiacetic acid (IDA), for Cd (II), Pb(II) and Cu(II) removal from aqueous media. Modification of PGMA grafted cellulose with IDA in aqueous solution under mild conditions has proceeded efficiently to yield a natural-based and effective porous adsorbent with well-defined properties as provided by the controlled polymerization technique, namely RAFT, applied during the radiation-induced graft copolymerization step and with sufficient degree of IDA immobilization as confirmed by XPS, FTIR, contact angle measurements and elemental analysis. In order to examine the Cd (II), Pb(II) and Cu(II) removing performance of the resulting adsorbent, batch experiments were carried out by ICP-MS. The adsorption capacities were determined as 53.4 mg Cd(II)/g polymer, 52.0 mg Pb(II)/g polymer and 69.6 mg Cu(II)/g polymer at initial feed concentration of 250 ppm, showing the promising potential of the natural-based adsorbent to steadily and efficiently chemisorb toxic metal ions.

  9. Maximum adsorption capacity of Cd, Cu, Pb and Zn of the percolated of landfill in build demolition residue

    Directory of Open Access Journals (Sweden)

    Flávia Mariani Barros

    2010-08-01

    Full Text Available The high toxicity and the cumulative character of heavy metals have been of great concern worldwide, providing a significant increase in the number of studies that aim to develop technologies to remove these potentially noxious substances in the environment. Aiming to study the capacity of the building demolition residue (BDR in removing heavy metals from leached of newly collected solid residue, analyses of metals adsorption were carried out. BDR was used in three granulation fractions (0.5 to 1; 2 to 4 and 4 to 7.5 mm and leachate containing Cu, Cd, Pb and Zn in concentrations ranging from 0.046 to 150, from 0.146 to 200, from 0.135 to 200 and from 17.2 to 9000 mg L-1, respectively. The results allowed to conclude that BDR in the 2 - 4 mm and 4 - 7.5 mm granulation fractions presented the following sequence for the maximum retention capacity: Zn>Pb>Cu>Cd; but for BDR in the 0.5 - 1 mm granulation the sequence was Zn>Cu>Pb>Cd.

  10. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing

    Science.gov (United States)

    Torres, Luis G.; Lopez, Rosario B.; Beltran, Margarita

    Surfactant enhanced soil washing (SESW) was applied to an industrial contaminated soil. A preliminary characterization of the soil regarding the alkaline-earth metals, Na, K, Ca and Mg took values of 2866, 2036, 2783 and 4149 mg/kg. The heavy metals As, Cd, Cu, Pb, Ni and Zn, had values of 4019, 14, 35582, 70, 2603, and 261 mg/kg, respectively. When using different surfactants, high removal of Cu, Ni and Zn were found, and medium removals for Pb, As and Cd. In the case of these three metals, tap water removed more than the surfactant solutions, except for the case of As. There were surfactants with average removals (this is, the removal for all the metals studied) of 67.1% (Tween 80), 64.9% (Surfacpol 14104) and 61.2% (Emulgin W600). There were exceptional removals using Texapon N-40 (83.2%, 82.8% and 86.6% for Cu, Ni and Zn), Tween 80 (85.9, 85.4 and 81.5 for Cd, Zn and Cu), Polafix CAPB (79%, 83.2% and 49.7% for Ni, Zn and As). The worst results were obtained with POLAFIX LO with a global removal of 45%, well below of the average removal with tap water (50.2%).All removal efficiencies are reported for a one step washing using 0.5% surfactant solutions, except for the case of mezquite gum, where a 0.1% solution was employed.

  11. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    Science.gov (United States)

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  12. Experimental and modeling of the electrodialytic and dialytic treatment of a fly ash containing Cd, Cu and Pb

    DEFF Research Database (Denmark)

    Lima, A.T.; Ribeiro, A.B.; Rodriguez-Maroto, J.M.

    2010-01-01

    A one-dimensional model is developed for simulating the electrodialytic and dialytic treatment of a fly ash containing cadmium, copper and lead. Two experimental systems have been used, a column of ash and a stirred ash suspension. The movement of Cd, Cu and Pb has been modeled taking into account...... ionic species in the system, H+ and OH-, proceeding of the electrolysis at the electrodes, Ca2+, CO3 (=), SO4 (=), etc. proceeding from the ash and Na+ and NO3 (-), or citrate and ammonium ions incorporated as electrolyte solutions and/or as agent solution during the ash treatment. The simulation also...

  13. Removal of Pb, Cu, Cd, and Zn Present in Aqueous Solution Using Coupled Electrocoagulation-Phytoremediation Treatment

    Directory of Open Access Journals (Sweden)

    Francisco Ferniza-García

    2017-01-01

    Full Text Available This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.

  14. PB, CD AND CU DISTRIBUTION AND MOBILITY IN MARINE SEDIMENTS FROM TWO PORTS IN LEBANON: BEIRUT ARMY NAVAL PORT AND TRIPOLI FISHING PORT

    Directory of Open Access Journals (Sweden)

    Carine Abi-Ghanem

    2016-06-01

    Full Text Available Abi-Ghanem Carine, Celine Mahfouz, Gaby Khalaf, Elie Najjar, Henri El-Zakhem and Rima Manneh. 2016. Pb, Cd and Cu distribution and mobility in marine sediments from two ports in Lebanon: Beirut army naval port and Tripoli fishing port. Lebanese Science Journal, 17(1: 59-75. Lead, cadmium and copper distribution and mobility in superficial sediments collected from the Beirut army navel port and Tripoli fishing port in Lebanon were studied. Results showed relatively high concentrations of Pb (181.4-518.9μg.g-1, Cd (1.33-6.7μg.g-1, and Cu (141-246.8μg.g-1 in sediments inside the port of Beirut. In Tripoli fishing port, Pb and Cd concentrations in sampled sediments were lower. However, higher Cu concentrations (up to 524.5 μg.g-1 were detected in Tripoli sediments. The extractability of Cd, Pb and Cu from the sediments of Beirut and Tripoli port were studied by applying EDTA 0.05M and CaCl2 0.01M extractions for two extraction times: 1h and 24h. These extractions showed that Cd and Pb were highly mobilized by EDTA. However, only Pb was mobilized by CaCl2 from sediments collected in Beirut military port.

  15. Distribution of Cd, Cu, Fe, Mn, Pb and Zn in selected tissues of juvenile whales stranded in the SE Gulf of California (Mexico).

    Science.gov (United States)

    Ruelas-Inzunza, J; Páez-Osuna, F

    2002-09-01

    With the aim of knowing the concentration and distribution of essential and nonessential metals in selected tissues of whales, analysis of Cd, Cu, Fe, Mn, Pb and Zn were carried out in kidney, liver and muscle of the gray whale Eschrichtius robustus and the sperm whale Physeter catodon. Whales were found stranded in the southeast Gulf of California. Individuals were in a juvenile stage; mean length of whales was 9.3 m for E. robustus and 7 m for P. catodon. Sequence of metal concentrations was Fe>Zn>Cu>Mn>Cd>Pb in E. robustus, and Fe>Zn>Cu>Cd>Mn>Pb in P. catodon. In E. robustus, highest concentrations of Cu, Mn, Pb and Zn (17.2, 19.6, 0.9 and 388 microg g(-1), respectively) were measured in liver, Cd (5.7 microg g(-1)) in kidney and Fe (1009 microg g(-1)) in muscle. In P. catodon, the highest levels of Cu, Fe and Pb (48.6, 5200 and 4.2 microg g(-1), respectively) were found in liver, Cd and Zn (94 and 183 microg g(-1)) in kidney and Mn (8 microg g(-1)) in muscle. Metal concentrations reported here were not considered to contribute to the stranding of specimens.

  16. Trace metals (Cu, Zn, Cd and Pb in juvenile fish from estuarine nurseries along the Portuguese coast

    Directory of Open Access Journals (Sweden)

    Rita P. Vasconcelos

    2011-02-01

    Full Text Available Organic and inorganic pollution can impact organisms directly and affect condition, growth and survival of juvenile fish which use estuaries as nurseries, and thereby affect marine adult populations quantitatively and qualitatively. Trace element contamination (Cu, Zn, Cd, Pb in juveniles of commercial fish Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax collected in putative nurseries of the main Portuguese estuaries (with diverse intensities and sources of anthropogenic pressures was determined via atomic absorption spectrometry. Contamination was significantly different among species. Similar levels of contamination were found among estuaries, except for D. vulgaris. Cu and Zn concentrations ranged from 1.0 to 2.1 and 14 to 59 μg g-1 muscle dry weight respectively; while Cd and Pb concentrations were very low. The results indicate that juvenile migration to off-shore habitats is associated with low export of contamination, and no particular estuary increases the potential contamination of adult stocks. This knowledge is of the utmost importance in view of the ecological and economical value of these species and their use of estuarine areas as nurseries.

  17. Experimental analysis of the simultaneous uptake of the heavy metals Cd, Hg, Pb, Cu, Zn, Se in the sporophore of mushrooms. Versuche ueber die simultane Aufnahme der Schwermetalle Cd, Hg, Pb, Cu, Zn und Se in Pilzfruchtkoerper

    Energy Technology Data Exchange (ETDEWEB)

    Suehs, K.

    With mushrooms of the species Agaricus bisporus and Boletus badius the simultaneous uptake of the heavy metals Cd, Hg, Pb, Cu, Zn, and Se from soil to the sporophore was studied. To avoid misleadingly overrated enrichmentfactors when comparing the heavy metal contents of dried mushrooms and soils, a so-called transfer factor TF[sub v] which is related to the volume is put to discussion here, this factor takes account of the relatively small amount of dry matter in mushrooms and of the different composition (that means specific weight) of the soils in question. With help of these transfer factors the conclusion is derived, that essential elements show a better enrichment behaviour than biologically superfluous heavy metals, at least this is true with the insignificantly contaminated soils we investigated. With Cd as an example of a ''superfluous'' element it is shown that there is a strict proportionality of Cd concentrations in the mushrooms and the corresponding soils, thus producing a constant transfer factor. Apart from this the uptake of copper into the mushrooms is promoted (growth of the transfer factor) by a larger Cd supply, whereas the other elements under investigation (even the classical antagonist Zn) are not significantly affected. Furthermore there is evidence that with increasing heavy metal concentration (Cd) first the fructification of the thallus is supported and moreover, that increasing age of this primary fungus corresponds with an increase of heavy metals in the mushrooms. (orig.)

  18. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.

    Science.gov (United States)

    Shipley, Heather J; Engates, Karen E; Grover, Valerie A

    2013-03-01

    Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.

  19. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.

    Science.gov (United States)

    Yang, Xing; Liu, Jingjing; McGrouther, Kim; Huang, Huagang; Lu, Kouping; Guo, Xi; He, Lizhi; Lin, Xiaoming; Che, Lei; Ye, Zhengqian; Wang, Hailong

    2016-01-01

    Biochar is a carbon-rich solid material derived from the pyrolysis of agricultural and forest residual biomass. Previous studies have shown that biochar is suitable as an adsorbent for soil contaminants such as heavy metals and consequently reduces their bioavailability. However, the long-term effect of different biochars on metal extractability or soil health has not been assessed. Therefore, a 1-year incubation experiment was carried out to investigate the effect of biochar produced from bamboo and rice straw (at temperatures ≥500 °C) on the heavy metal (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) extractability and enzyme activity (urease, catalase, and acid phosphatase) in a contaminated sandy loam paddy soil. Three rates (0, 1, and 5%) and two mesh sizes (biochar applications were investigated. After incubation, the physicochemical properties, extractable heavy metals, available phosphorus, and enzyme activity of soil samples were analyzed. The results demonstrated that rice straw biochar significantly (P biochar significantly (P biochar application rate increased. The heavy metal extractability was significantly (P biochar resulted in the greatest reductions of extractable Cu and Zn, 97.3 and 62.2%, respectively. Both bamboo and rice straw biochar were more effective at decreasing extractable Cu and Pb than removing extractable Cd and Zn from the soil. Urease activity increased by 143 and 107% after the addition of 5% coarse and fine rice straw biochars, respectively. Both bamboo and rice straw biochars significantly (P biochar had greater potential as an amendment for reducing the bioavailability of heavy metals in soil than that of the bamboo biochar. The impact of biochar treatment on heavy metal extractability and enzyme activity varied with the biochar type, application rate, and particle size.

  20. Essential trace (Zn, Cu, Mn and toxic (Cd, Pb, Cr elements in the liver of birds from Eastern Poland

    Directory of Open Access Journals (Sweden)

    Komosa A.

    2012-01-01

    Full Text Available We have focused our study on the concentrations of essential heavy metals (Zn, Cu and Mn and non-essential trace metals (Pb, Cd and Cr in the livers of birds from Eastern Poland. The largest mean amount of Zn - as much as 279 mg/kg dry mass (d.m. - was found in mute swans. However, only in one of the analysed buzzard specimens the concentration of Zn, found to be 664 mg/kg d.m., exceeded the level indicative of poisoning for this element. Birds specializing in catching rodents accumulated Mn in their livers in a very narrow range of concentrations, around 5.0 mg/kg d.m. on average. The range of mean Mn concentrations (around 6.5 mg/kg d.m. was also found to be narrow for piscivorous birds. The highest mean levels of Pb were found in mute swans (2.7 mg/kg d.m., and the highest levels of Cd (2.0 mg/kg d.m. for rooks. Concentrations of total Cr above detection level were found in 22 specimens (53.7%, and concentration values were highest for rooks. Analyses showed that the concentrations of biogenic elements did not exceed the levels indicative of poisoning (except in one specimen. The study demonstrated that lead shots remain a hazard to water ecosystems. Pb, Cd and Cr levels in the livers of omnivorous and piscivorous species indicate the permanent presence of these elements in the environment and may confirm the thesis about the growing role of electronic waste, including metallic e-waste, in the emission of the total amount of contamination with these elements.

  1. Study of the ambient air metallic elements Cr, Cu, Zn, Cd and Pb at HAF sampling sites.

    Science.gov (United States)

    Fang, Guor-Cheng; Kuo, Yu-Chen; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Wen-Chuan

    2017-08-01

    This study characterized diurnal variations in the compositions of total suspended particulates (TSP) and dry deposits of particulates from ambient air, and the metallic elements that are contained in them at harbor, airport and farmland (HAF) sampling sites from August, 2013 to July, 2014. Two-way ANOVA of the amounts of metallic elements in the TSP and dry deposits was carried out in all four seasons at the HAF sampling sites. The metallic elements Cr and Cu originated in local emission sources at the airport. Metallic elements Zn and Pb originated in local emission sources at the harbor. Finally, metallic element Cd originated in local emissions form farmland. The following results were also obtained. (1) The metallic composition of the TSP differed significantly from that of the dry deposits in all four seasons at the harbor and farmland sampling sites, but not at the airport sampling site. (2) High correlations coefficients were found between the amounts of metallic elements Cr and Cu in the TSP and those in the dry deposits at the airport sampling site. (3) Pb was present in the TSP and the dry deposits at the harbor sampling site.

  2. Determination of mobile form contents of Zn, Cd, Pb and Cu in soil extracts by combined stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Nedeltcheva, T. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria)]. E-mail: nedel@uctm.edu; Atanassova, M. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria); Dimitrov, J. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria); Stanislavova, L. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria)

    2005-01-10

    The amount of mobile forms of Zn, Pb, Cd and Cu in extracts obtained by treating soil samples with ammonium nitrate were determined by an appropriate combination of anodic and cathodic stripping voltammetry with hanging mercury drop electrode. Every analysis required three mercury drops: on the first one, zinc was determined; on the second, cadmium and lead; on the third, copper was determined. Zinc, lead and cadmium were determined by conventional differential-pulse anodic stripping voltammetry. For copper determination, adsorptive differential-pulse cathodic stripping voltammetry with amalgamation using chloride ions as a complexing agent was applied. The standard deviation of the results was from 1 to 10% depending on the metal content in the sample. Voltammetric results were in good agreement with the AAS analysis. No microwave digestion of soil extracts was necessary.

  3. [Measurement and comparison of Zn, Fe, Cu, Mn, Cr, Pb and Cd in rabbit liver of high-adipose group and normal group].

    Science.gov (United States)

    Wu, Yun-Kai; Cao, Hong; Mao, Chang-Jie; Gu, Zhi-Hong; Wang, Yuan

    2012-11-01

    The objective of the present paper is to explore the experimental changes in the content of Zn, Fe, Cu, Mn, Cr, Pb and Cd in white rabbit liver with atherosclerosis disease. The method is to reproduce white rabbit liver with atherosclerosis disease by a high-fat diet, and then measure the Zn, Fe, Cu, Mn, Cr, Pb and Cd content with atomic absorption spectrometry. Results show that the Zn, Fe, Cu, Mn, Cr, Pb and Cd contents in the fodders of the normal group are 137.6, 362.3, 14.39, 9.599 mg x kg(-1) and 159.3, 355.0, 290.0 microg x kg(-1), and 86.09, 277.1, 11.07, 5.366 mg x kg(-1) and 115.2, 286.0, 210.5 microg x kg(-1), in high-adipose group. It was concluded that Zn, Fe, Cu, Mn, Cr, Pb and Cd contents in white rabbit liver decline, which may have something to do with the intake of foods and the abnormalities of lipoprotein metabolism.

  4. Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: A case study for Brazilian yogurt.

    Science.gov (United States)

    de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio

    2018-02-01

    A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg-1; 34±3 to 899±7ngg-1; <8.3 to 12±1ngg-1; and <35.4 to 210±16ngg-1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of Cd, Cr, Cu, Ni, and Pb in selected cosmetic products from Jordanian, Sudanese, and Syrian markets.

    Science.gov (United States)

    Massadeh, A M; El-Khateeb, M Y; Ibrahim, S M

    2017-08-01

    There is no sufficient data that evaluate heavy metal content in cosmetic products in Jordan as well as Sudan and Syria. This study aims to assess metal levels which include Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), and Lead (Pb) in cosmetic products. These elements have draft limits because they are identified as potential impurities and are known to be toxic. This study aims to provide information to the population that may be beneficial to public health. Samples were collected from different brands obtained from markets in Jordan, Sudan, and Syria. Some of the selected cosmetic products were eyeliner, eye pencil, mascara, lipstick, powder, face cream, body cream, sun block, Vaseline, and the traditional eye cosmetic (kohl). The heavy metal content in these samples were determined by atomic absorption spectrometry (AAS). Based on analysis of variance analysis, a significant difference in heavy metal levels was found for samples obtained from Jordanian and Sudanese markets. The acid digestion method used in this study was based on procedures recommended by Nnorom et al. with some modifications as follows. (i) A weight of 2.0 g of cosmetic sample was dissolved in a mixture of 6 mL of high quality concentrated 69% nitric acid (HNO3; Merck, Darmstadt, Germany) and 4 mL of concentrated 37% hydrochloric acid (Scharlau, Spain) in a porcelain crucible and heated on a hotplate to near dryness. (ii) An aliquot of 15 mL HNO3 (1.00 M) was added to the digested sample and filtered through a Whatman No. 40 filter paper. (iii) The digested sample was transferred quantitatively into a 25 mL volumetric flask and then diluted with deionized water. (iv) Each digested sample was evaporated at 70 °C to about 1 mL and transferred into a polyethylene flask and diluted with 25 mL deionized water. (v) Blank was treated in the same procedure. In Jordan the concentration ranges of heavy metals in the collected samples were: Cd (0.03-0.10 μg/g), Cr (0.0-1.00

  6. Contamination and Health Risks from Heavy Metals (Cd and Pb and Trace Elements (Cu and Zn in Dairy Products

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghafari

    2017-08-01

    Conclusion: Considering the serious contamination of some brands of butter and cheese by Cu and Pb, a control of heavy metals and trace elements levels during the whole production processing of dairy products must be applied.

  7. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Nastasović, Aleksandra B., E-mail: anastaso@chem.bg.ac.rs [University of Belgrade, Institute of Chemistry Technology and Metallurgy, Department of Chemistry, Department of Microelectronic Technologies, Njegoševa 12, Belgrade (Serbia); Ekmeščić, Bojana M. [University of Belgrade, Institute of Chemistry Technology and Metallurgy, Department of Chemistry, Department of Microelectronic Technologies, Njegoševa 12, Belgrade (Serbia); and others

    2016-11-01

    Highlights: • Macroporous PGME-deta sorption potential for Pb(II), Cd(II) and Cu(II) was studied. • Sorption kinetics obeyed pseudo-second order model. • Maximal Pb(II), Cd(II) and Cu(II) sorption capacities were 164, 152 and 120 mg g{sup −1}. • AFM indicates that metal sorption changes the size and morphology of PGME-deta. • XPS suggests complexation through the formation of Me−O and Me−N bonds in PGME-deta. - Abstract: The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  8. Simultaneous determination of speciation parameters of Cu, Pb, Cd and Zn in model solutions of Suwannee River fulvic acid by pseudopolarography

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Parthasarathi; Fasfous, Ismail I.; Chakrabarti, Chuni L. [Carleton University, Ottawa-Carleton Chemistry Institute, Department of Chemistry, Ottawa, ON (Canada); Murimboh, John [Acadia University, Department of Chemistry, Wolfville, NS (Canada)

    2007-05-15

    There is a growing awareness of the importance of quantitative determinations of speciation parameters of the trace metals Cu, Zn, Cd and Pb in aqueous samples containing chemically heterogeneous humic substances, especially when they are present together, interacting with one another and competing for specific binding sites of the humic substances. Such determinations require fundamental knowledge and understanding of these complex interactions, gained through basic laboratory-based studies of well-characterized humic substances in model solutions. Since the chemical heterogeneity of humic substances plays an important role in the thermodynamics (stability) and kinetics (lability) of trace metal competition for humic substances, a metal speciation technique such as pseudopolarography that can reveal the special, distinctive nature of metal complexation is required, and it was therefore used in this study. A comparison of the heterogeneity parameters ({gamma}) for Zn(II), Cd(II), Pb(II) and Cu(II) complexes in model solutions of Suwannee River fulvic acid (SRFA) shows that {gamma}{sub Cd}>{gamma}{sub Zn}>{gamma}{sub Pb}>{gamma}{sub Cu}, suggesting that SRFA behaves as a relatively homogeneous complexant for Zn(II) and Cd(II), whereas it behaves as a relatively heterogeneous complexant for Pb(II) and an even more heterogeneous complexant for Cu(II) under the experimental conditions used. The order of values of logK{sup *} (from the differential equilibrium function, DEF) for the trace metals at pH 5.0 follow the sequence: logK{sup *}{sub Cu}>logK{sup *}{sub Pb}>logK{sup *}{sub Zn}>logK{sup *}{sub Cd} These results are in good agreement with the literature values. The results of this work suggest the possibility of simultaneously determining several metals in a sample in a single experiment, and hence in a shorter time than required for multiple experiments. (orig.)

  9. Transport, fate and speciation of heavy metals (Pb, Zn, Cu, Cd) in mine drainage: geochemical modeling and anodic stripping voltammetric analysis.

    Science.gov (United States)

    Yun, S T; Jung, H B; So, C S

    2001-07-01

    The maximum concentrations (ppb) of heavy metals in the mine drainage (pH: down to 3.3) of Chonam-ri creek in the abandoned Kwangyang gold-silver mine, South Korea, are 22600 Zn, 2810 Cu, 182 Cd, and 109 Pb. A small, limestone-infused retention pond, about 440 meters downstream from the waste dump, plays an important role in the removal of heavy metals: the factors of reduction for Zn, Cu, Cd, and Pb are 12, 24, 14, and 14, respectively. This is due to the pH increase (up to >5.4) accompanying adsorption onto and/or coprecipitation with Fe- and Al-hydroxides (goethite and gibbsite). From the waste dump to the pond, heavy metal concentrations also progressively decrease due to pH increase. Geochemical modeling (using the computer code WATEQ4F) predicts that free aqueous metal ions are dominant (mostly >70% for Cu and Zn, and >60% for Pb and Cd) in samples collected upstream from the pond, whereas complexing with sulfate, carbonate and hydroxyl ions becomes important in the samples collected downstream. The comparison between the concentrations of electrochemically labile species (determined by Anodic Stripping Voltammetry) and the result of computer modeling shows that Cd and Zn are present predominantly as labile inorganic species throughout the whole range of the creek. However, Cu and Pb in the samples collected downstream from the pond largely form electrochemically inert species (possibly, metal-organic complexes). The above results indicate that the retention pond is effective in reducing the toxicity of heavy metals, especially Cu and Pb.

  10. Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards.

    Science.gov (United States)

    Xue, Mianqiang; Yang, Yichen; Ruan, Jujun; Xu, Zhenming

    2012-01-03

    The crush-pneumatic separation-corona electrostatic separation production line provides a feasible method for industrialization of waste printed circuit boards (PCBs) recycling. To determine the potential environmental contamination in the automatic line workshop, noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line have been evaluated in this paper. The mean noise level in the workshop has been reduced from 96.4 to 79.3 dB since the engineering noise control measures were employed. Noise whose frequency ranged from 500 to 1000 Hz is controlled effectively. The mass concentrations of TSP and PM(10) in the workshop are 282.6 and 202.0 μg/m(3), respectively. Pb (1.40 μg/m(3)) and Cu (1.22 μg/m(3)) are the most enriched metals in TSP samples followed by Cr (0.17 μg/m(3)) and Cd (0.028 μg/m(3)). The concentrations of Cu, Pb, Cr, and Cd in PM(10) are 0.88, 0.56, 0.12, and 0.88 μg/m(3), respectively. Among the four metals, Cr and Pb are released into the ambience of the automatic line more easily in the crush and separation process. Health risk assessment shows that noncancerous effects might be possible for Pb (HI = 1.45), and noncancerous effects are unlikely for Cr, Cu, and Cd. The carcinogenic risks for Cr and Cd are 3.29 × 10(-8) and 1.61 × 10(-9), respectively. It indicates that carcinogenic risks on workers are relatively light in the workshop. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCBs recycling industry.

  11. Pollution of soils (Pb, Cd, Cr, Zn, Cu, Ni) along the ring road of Wrocław (Poland)

    Science.gov (United States)

    Hołtra, Anna; Zamorska-Wojdyła, Dorota

    2017-11-01

    The concentrations of metallic pollution in soils and plants along the ring road of Wrocław, Poland, have been determined. Environmental samples were collected from the surface layer of the profile within 2-3 m from the edge of the road. The analysis of metals (Pb, Cd, Cr, Zn, Cu and Ni) has been carried out through FAAS and GFAAS methods. The mineralizates of soils and plants were prepared in HNO3, 65% supra pure, using the Microwave Digestion System. The pH and conductivity of the soil solutions were measured to evaluate their active and exchangeable acidity and the salinity of the soils. The index of the enrichment of soils in metals (Wn) and the bioaccumulation coefficient (WB) have been determined. Also, histograms of the frequency of the occurrence of metals in the environmental samples and the Pearson's correlation coefficients were presented. The results of metal concentrations in soils were compared to the geochemical background in uncontaminated soils of Poland. The assessment of the results in the soils was also made relative to the standard, according to the Polish Ministry of Environment Regulation from September 1st, 2016. During the assessment of the bioaccumulation coefficients of metals in plants a reference was made to the content of undesirable substances in feed in agreement with the Polish Ministry of Agriculture and Rural Development Regulation from January 23rd, 2007.

  12. CONTRIBUTIONS TO THE STUDY OF HEAVY METALS DISTRIBUTION (Zn, Pb, Cd, Bi, Cu IN SOME SOILS FROM GIURGEU MOUNTAINS

    Directory of Open Access Journals (Sweden)

    D. Bulgariu

    2005-10-01

    Full Text Available In this paper are presented the results of mineralogical and geochemical studies, realized for few soils from Giurgeu Mountains, which have as main purpose the distribution and mobility interpretation of minor elements (Cd, Cu, Pb, Zn, Bi in studied soil samples. The determination of fixed fractions and mobile fractions weight, at total contents of studied elements, and relative association of these elements with main mineral and organic components of soil samples, was realized on the basis of results obtained by sequential solid/ liquid extraction. The same, we try to use the correlation establish between metallic ions contents, as indicators of mineral paragenesis (the genetic type and formation conditions. The obtained results are agree with the results of similar studies from literature and they, underline of some interesting aspects about of distribution and migration of heavy metals in soils: (1 exist of some selectivity in heavy metals distribution in mineral components from soils, correlated with reciprocals geochemical affinities between speciation forms of metals and mineral components, in a given pedogeochemical context; (2 the heavy metals distribution between solid phases and soil solution are realized in competitive regime, and the inter-phases equilibrium evolution are thermodynamic and kinetics controlled by the solid/ liquid interfaces processes; (3 the fast elementary processes and local fluctuations of physic-chemical parameters are the main factors which controlled the inter-phases transfer ratio and the evolution direction of equilibriums of heavy metals distribution.

  13. Solid phase extraction of Cd, Pb, Ni, Cu, and Zn in environmental samples on multiwalled carbon nanotubes.

    Science.gov (United States)

    Yilmaz, Erkan; Soylak, Mustafa

    2014-09-01

    A simple and sensitive solid phase extraction (SPE) method on multiwalled carbon nanotubes (MWCNTs) is presented for the determination of cadmium, lead, nickel, copper, and zinc at trace levels combined with flame atomic absorption spectrometry. The effects of parameters like pH, sample volume, sample and eluent flow rates, eluent concentration, and volume and type of eluent on the recovery of trace elements was examined. The metals retained on the nanotube at pH 6.5 as α-benzoin oxime complexes were eluted by 10 mL 2 M HNO3 in acetone. The influence of matrix ions on the developed method was also evaluated. The preconcentration factor of the method was found to be 50. The detection limits for Cd(II), Pb(II), Ni(II), Cu(II), and Zn(II) were found as 1.7, 5.5, 6.0, 2.3, and 2.4 μg L(-1), respectively. To test the accuracy of the method, the method was applied to TMDA-70 fortified lake water and Spinach 1570A standard reference materials. Addition recovery studies were applied to tap water and cracked wheat samples, and determination of the analyte elements was carried out in some food samples with good results.

  14. Simultaneous determination of Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ by using second-derivative spectrophotometry method.

    Science.gov (United States)

    Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin

    2011-09-01

    A new method of simultaneous determination of Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ is proposed here by using the second-derivative spectrophotometry method. In pH=10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL(-1) for Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+, respectively. The molar absorptivity of these color systems were 1.38×10(5), 1.01×10(5), 3.24×10(5), 1.07×10(5) and 1.29×10(5)Lmol(-1)cm(-1). The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  15. Enriquecimiento, disponibilidad y contaminación de metales traza (Cd, Cu, Pb y Zn en sedimentos de lagunas urbanas de Concepción-Chile Enrichment, availability and contamination of trace metals (Cd, Cu, Pb and Zn in sediments of urban lagoons in Concepción, Chile

    Directory of Open Access Journals (Sweden)

    Elizabeth González Sepúlveda

    2009-01-01

    Full Text Available Trace metals (Cd, Cu, Pb and Zn enrichment, availability and contamination in superficial sediments of three interconnected urban lagoons localized in Concepción-Chile, were evaluated. According to the results of geochemical fracctionation analysis, Cu and Pb are rather associated with oxi-hydroxides, Cd is associated with exchangeable and carbonates fraction, while Zn is mainly associated with organic, oxi-hydroxides and residual fraction. The estimation of the availability percentages indicate that Cu is the most mobile metal and the less mobile is the Cd. An evaluation of the geo-accumulation index and urban industrial pollution allowed to classify the studied zone as moderately to highly contaminated.

  16. Seasonal concentrations of some heavy metals (Cd, Pb, Zn, and Cu) in Ulva rigida J. Agardh (Chlorophyta) from Dardanelles (Canakkale, Turkey).

    Science.gov (United States)

    Ustunada, Mehtap; Erduğan, Hüseyin; Yılmaz, Selehattin; Akgul, Rıza; Aysel, Veysel

    2011-06-01

    In this study, changes in heavy metal accumulation in U. rigida J. Agardh taxon and seawater have been investigated with respect to different stations and seasons. For this purpose, the severity of heavy metal pollution in the Dardanelles has been presented through the determination of Cu, Pb, Zn, and Cd concentrations in U. rigida macroalgae and seawater taken seasonally from the stations located on six different regions on the strait. While the metal concentrations in alga specimens were found to be high in spring and winter in all stations; the metal concentrations in the seawater, particularly the Pb concentration, were found to be high in all seasons.

  17. Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gohel, Jignasa V.; Jana, A.K.; Singh, Mohit [Sardar Vallabhbhai National Institute of Technology, Chemical Engineering Department, Surat, Gujarat (India)

    2017-08-15

    A novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films synthesized by low-cost process. The properties of ZnO are also enhanced by doping and co-doping. It is also compared with quantum-dot co-sensitization. Optical properties, crystal structure, morphology, and photocurrent are characterized by UV-Vis spectroscopy, XRD, SEM, and solar simulator, respectively. The bandgap is interestingly reduced highly to 2.6 eV for Ag co-doped Cu:ZnO. It is unprecedentedly reduced to 2.1 eV and even 1.97 eV for CdS and PbS-Hg QD-sensitized thin films, respectively. An exceptionally enhanced photocurrent of 17.1 mA/cm{sup 2} is achieved with PbS-Hg-co-sensitized CdS-sensitized Cu:ZnO thin film. This is an excellent achievement, which highly supports the potential of low-cost solar conversion. (orig.)

  18. Determination of Cd, Pb, Zn and Cu in Sediment Compartments by Sequential Extraction and Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (ID-ICP-MS

    Directory of Open Access Journals (Sweden)

    Gardolinski Paulo C. F. C.

    2002-01-01

    Full Text Available Trace concentrations of Cd, Cu, Pb and Zn in four different sediment fractions extracted in sequence were determined by isotope dilution inductively coupled mass spectrometry (IDICPMS. The metals from each fraction were extracted following the sequential extraction procedure recommended by the Bureau Commun de Référence (BCR of the Commission of the European Communities. As an alternative to external calibration, the elements were quantified by spiking the extracted solutions with 112Cd, 63Cu, 208Pb and 66Zn and application of isotope dilution. The proposed approach was applied to a sample collected from a lake and two standard reference materials, NIST2704 river sediment from the National Institute of Standards & Technology and the BCR-277 estuarine sediment. Detection limits, for each extracted solution, varied from 0.31 to 0.53 mug L¹ for Cd, 0.92 to 2.9 mug L¹ for Cu, 0.22 to 1.1 mug L¹ for Pb and 1.3 to 7.6 mug L¹ for Zn. The sum of the metals concentration in the different fractions was compatible with 95% confidence level found amounts obtained with complete digestion of the samples and with the certified values of the standard reference materials.

  19. Soluble/insoluble (dilute-HCl-extractable fractionation of Cd, Pb and Cu in Antarctic snow and its relationship with metal fractionations in the aerosol

    Directory of Open Access Journals (Sweden)

    Annibaldi A.

    2013-04-01

    Full Text Available A chemical fractionation methodology for determination of the (water soluble and the insoluble (dilute-HCl-extractable fractions of Cd, Pb and Cu in Antarctic snow was set-up and verified for the additivity of the two fractions detected. Molten samples were filtrated and the water-insoluble fraction was extracted by dilute ultrapure HCl (pH ~1.5. Metal determinations were carried out in the two fractions by square wave anodic stripping voltammetry. The total metal concentrations in samples collected in the 2000–2001 austral summer in a clean area (Faraglione Camp in the neighbourhood of the Mario Zucchelli Italian Station were of the order of Cd 10-20 pg g−1, Pb 20–40 pg g−1, Cu 60–120 pg g−1 with an approximate equidistribution between soluble and insoluble fractions. These fractionations compare well (and show a quite consistent temporal trend with those observed in the aerosol samples collected in the same area/period and confirm the close relationship between metal distributions in snow/ice and in the aerosol. At the station metal concentrations increase due to anthropic contribution and the distribution changes with Cd predominantly present in the soluble fraction (~80%, while Pb and Cu are more concentrated in the insoluble fraction, 70–80% and ~70%, respectively.

  20. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    Science.gov (United States)

    Nastasović, Aleksandra B.; Ekmeščić, Bojana M.; Sandić, Zvjezdana P.; Ranđelović, Danijela V.; Mozetič, Miran; Vesel, Alenka; Onjia, Antonije E.

    2016-11-01

    The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  1. Levels of Cd (II, Mn (II, Pb (II, Cu (II, and Zn (II in Common Buzzard (Buteo buteo from Sicily (Italy by Derivative Stripping Potentiometry

    Directory of Open Access Journals (Sweden)

    P. Licata

    2010-01-01

    Full Text Available The purpose of this study was to determine the concentrations of heavy metals (Cd, Pb, Cu, Mn, and Zn in different organs (liver, kidney, muscle, lung, skin, and feathers of buzzards (Buteo buteo, utilized as a “biological indicator” for environmental contamination, from different areas of Sicily and to investigate the relationships between birds sex, age, and weight and metal levels in these samples. All samples of common buzzards were collected at the “Recovery Center of Wild Fauna” of Palermo, through the Zooprophilactic Institute. Potentiometric stripping analysis (PSA was used to determine the content of Cd(II, Cu(II, Mn(II, Pb(II, and Zn(II in bird tissues. For toxic metals, the highest levels of Pb were in liver and those of Cd in lung; Zn levels were higher than Cu and Mn in all tissues analyzed. The concentrations in liver, lung, kidney, and muscle could be considered as an indicative of chronic exposure to metals while the presence of metals in skin could be consequential to storing and elimination processes. The found concentrations of metals in the studied matrices required a highly sensitive method for their determination and a simple sample preparation procedure, and the proposed method was well suited for this purpose.

  2. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).

    Science.gov (United States)

    Jha, Vinay Kumar; Matsuda, Motohide; Miyake, Michihiro

    2008-12-15

    Composite materials of activated carbon and zeolite have been prepared successfully by activating coal fly ash (CFA) by fusion with NaOH at 750 degrees C in N(2) followed by hydrothermal treatments under various conditions. Uptake experiments for Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were performed with the materials thus obtained from CFA. Of the various composite materials, that were obtained by hydrothermal treatment with NaOH solution (ca. 4M) at 80 degrees C (a composite of activated carbon and zeolite X/faujasite) proved to be the most suitable for the uptake of toxic metal ions. The relative selectivity of the present sorbents for the various ions was Pb(2+)>Cu(2+)>Cd(2+)>Ni(2+), with equilibrium uptake capacities of 2.65, 1.72, 1.44 and 1.20mmol/g, respectively. The sorption isotherm was a good fit to the Langmuir isotherm and the sorption is thought to progress mainly by ion exchange with Na(+). The overall reaction is pseudo-second order with rate constants of 0.14, 0.17, 0.21 and 0.20Lg/mmol min for the uptake of Pb(2+), Cu(2+), Cd(2+) and Ni(2+), respectively.

  3. Effects of Crop Straw Returning with Lime on Activity of Cu, Zn, Pb and Cd in Paddy Soil

    Directory of Open Access Journals (Sweden)

    NI Zhong-ying

    2017-05-01

    Full Text Available Crop straw returning is an important measure for increasing soil carbon fixation and soil fertility in China, but it also may result in some risk of raising activity of heavy metals in the soil. In order to understand the effects of different sources of crop straw on heavy metals activity in soil with different pollution levels, and to take appropriate measures to prevent the activation of heavy metals in the soil, both pot and field experiments were carried out to study the effects of crop straw returning with lime on activity of Cu, Zn, Pb and Cd in paddy soil. The experiments were carried out in the soils with both light and heavy pollution of heavy metals. In the pot experiment, three straws, including rice straw with heavy pollution of heavy metals, rice straw with light pollution of heavy metals, and rape straw with light pollution of heavy metals, were tested. Two dosages of lime(0 kg·hm-2 and 750 kg·hm-2were applied. Field experiment had three treatments, ie., control without application of straw and lime, straw returning and straw returning + lime. Soil available heavy metals, accumulation of heavy metals in rice grain, and chemical forms of soil heavy metals were dynamical monitored. The results showed that crop straw returning increased significantly the concentrations of dissolved organic carbon and water soluble heavy metals in paddy soils at the early stage of experiment (in first 20 days. The increase in water soluble heavy metals in the soil with heavy pollution of heavy metals was most obvious as compared with the control treatment. After 60th day of the experiment, the effects of straw returning on the activity of heavy metals in the soil decreased gradually with the time, and became no obvious. The concentrations of water soluble heavy metals in the soil treated with rape straw was generally lower than that of rice straw, while those in the soil treated with heavy pollution of rice straw was higher than low pollution of rice

  4. SWASV speciation of Cd, Pb and Cu for the determination of seawater contamination in the area of the Nicole shipwreck (Ancona coast, Central Adriatic Sea).

    Science.gov (United States)

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe

    2011-12-01

    The study reports for the first time on the heavy metal contamination of the waters surrounding a shipwreck lying on the sea floor. Square wave anodic stripping voltammetry has been used for a survey of the total and dissolved Cd, Pb and Cu contents of the seawater at the site of the sinking of the Nicole M/V (Coastal Adriatic Sea, Italy). Results show that the hulk has a considerable impact as regards all three metals in the bottom water, especially for the particulate fraction concentrations, which increased by factors of ≈ 9 (Cd), ≈ 3 (Pb) and ≈ 5 (Cu). The contaminated plume extended downstream for about 2 miles. Much lower contamination was observed for dissolved bottom concentrations; nevertheless Pb (0.56 ± 0.03 nmol/L) is higher than the Italian legal limits established for 2015 and Cd (0.23 ± 0.03 nmol/L) is very close the limit of Cd will be exceeded if the hulk is not removed. Copyright © 2011. Published by Elsevier Ltd.

  5. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  6. Distribution of Cd, Pb and Cu between dissolved fraction, inorganic particulate and phytoplankton in seawater of Terra Nova Bay (Ross Sea, Antarctica) during austral summer 2011-12.

    Science.gov (United States)

    Illuminati, S; Annibaldi, A; Romagnoli, T; Libani, G; Antonucci, M; Scarponi, G; Totti, C; Truzzi, C

    2017-10-01

    During the austral summer 2011-2012, the metal quotas of Cd, Pb and Cu in the phytoplankton of Terra Nova Bay (TNB, Antarctica) were measured for the first time. Evolution of all the three metal distributions between dissolved and particulate fractions during the season was also evaluated. Metal concentrations were mainly affected by the dynamic of the pack ice melting and phytoplankton activity. In mid-December when TNB area was covered by a thick pack ice layer and phytoplankton activity was very low, all the three metals were present mainly in their dissolved species. When the pack ice started to melt and the water column characteristics became ideal (i.e. moderate stratification, ice free area), the phytoplankton bloom occurred. Cd showed a nutrient-type behaviour with dissolved and particulate fractions mainly influenced by phytoplankton activity. Cd quota showed a mean value of 0.12 ± 0.07 nmol L -1 (30-100% of the total particulate). Also Cu showed a nutrient-type behaviour, with its quota in phytoplankton varying between 0.08 and 2.1 nmol L -1 (20-100% of the total particulate). Pb features the typical distribution of a scavenged element with very low algal content (0.03 ± 0.02 nmol L -1 , representing 20-50% of the total particulate). The vertical distribution of this element was influenced by several factors (e.g. pack ice melting, atmospheric inputs), the phytoplankton activity affecting Pb behaviour only partially. Metal:C ratios provide valuable information on the biological requirements for Cd, Pb and Cu, leading us to better understand their biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Children's health risk assessment based on the content of toxic metals Pb, Cd, Cu and Zn in urban soil samples of Podgorica, Montenegro.

    Science.gov (United States)

    Mugoša, Boban; Djurović, Dijana; Pirnat, Aleksandra; Bulat, Zorica; Barjaktarović-Labović, Snežana

    2015-09-01

    Due to their low tolerance to pollutants and hand-to-mouth pathways the health risk is very high in children's population. The aim of this study was to evaluate risk to children's health based on the content of heavy metals in urban soil samples from Podgorica, Montenegro. This study included the investigation of several toxic metals such as Pb, Cd, Cu and Zn in soil samples from public parks and playgrounds. Sampling was conducted in a period October-November, 2012. Based on cluster analysis, soil samples were divided into two groups related to similarity of metal content at examinated locations: the group I--near by recreational or residential areas of the city, and the group II--near traffic roads. Concentration of toxic metals, in urban soil samples were determined by a graphite furnace atomic absorption spectrometry (Pb and Cd) and by inductively coupled plasma optical emission spectrometry technique after microwave digestion. Due to exposure to urban soil, non-cancerogenic index hazardous index (HI) for children was estimated using 95th percentile values of total metal concentration. The value of the total (ingestion, dermal and inhalation) HI is calculated for maximum, minimum and the average concentration of metals for children. Mean concentrations of Pb, Cd, Cu and Zn in the surface layer of the studied urban soils were 85.91 mg/kg, 2.8 mg/kg and 52.9 mg/kg and 112.5 mg/kg, respectively. Samples from group II showed higher metal content compared to group I. Urbanization and traffic are the main sources of pollution of the urban soils of Podgorica. Most of the samples (93.5%) had a high Pb content, 12.9% of the samples had a higher content of Cd, while Cu and Zn were within the limits prescribed by national legislation. At one location the level of security for lead is HI = 0.8 and very closed to maximum acceptable value of 1. It is probably the result of intensive traffic near by. All metals investigated showed relatively higher concentrations at sites

  8. Phytoremediation efficiency of pondweed (Potamogeton crispus in removing heavy metals (Cu, Cr, Pb, As and Cd from water of Anzali wetland

    Directory of Open Access Journals (Sweden)

    Hajar Norouznia

    2014-09-01

    Full Text Available Plant-based remediation (i.e. phytoremediation is one of the most significant eco-sustainable techniques to cope with devastating consequences of pollutants. In the present study, the potential of a wetland macrophyt (i.e. Potamogeton crispus for the phytoremediation of heavy metals (i.e. Cu, Cr, Pb, As and Cd in the Anzali wetland was evaluated. The results showed that P. crispus tends to accumulate notable amounts of Cu, Cr, Pb, As and Cd according to their assayed concentrations as follows: 8.2 µg g-1 dw, 0.97 µg g-1 dw, 6.04 µg g-1 dw, 2.52 µg g-1 dw and 0.34 µg g-1 dw, respectively. Further accurate perception of the phytoremediation efficiency were conducted using both bioconcentration factor and translocation factor. The average of the highest bioconcentration factors was presented in a descending order as: 2.9×103, 1.9×103, 1.17×103, 0.68×103 and 0.46×103 for the Cu, Cr, Pb, Cd and As, respectively. Based on the results, P. crispus presents high potential to absorb all the alluded metals except for As and partly Cd. Correspondingly, the mean values of translocation factor were reported in the range of 0.41 to 2.24. Eventually, relying on the observed findings, the results support the idea that P. crispus species would be employed as the prospective candidate for the phytoremediation processes in Anzali wetland.

  9. Cu(I), Ag(I), Cd(II), and Pb(II) binding to biomolecules studied by perturbed angular correlation of $\\gamma$-rays (PAC) spectroscopy

    CERN Multimedia

    Metal ions display diverse functions in biological systems and are essential components in both protein and nucleic acid structure and function, and in control of biochemical reaction paths and signalling. Similarly, metal ions may be used to control structure and function of synthetic biomolecules, and thus be a tool in the design of molecules with a desired function. In this project we address a variety of questions concerning both the function of metal ions in natural systems, in synthetic biomolecules, and the toxic effect of some metal ions. All projects involve other experimental techniques such as NMR, EXAFS, UV-Vis, fluorescence, and CD spectroscopies providing complementary data, as well as interpretation of the experimental data by quantum mechanical calculations of spectroscopic properties. The isotopes to be employed in the proposal are the following: $^{111m}$Cd, $^{111}$Ag, $^{199m}$Hg, $^{204m}$Pb, $^{61}$Cu, $^{68m}$Cu

  10. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    of this technique that reaches figures of merit equivalent to Inductively coupled plasma mass spectrometry (ICP-MS). Herein is presented an overview of recent advances and applications of (ETAAS) for the determination of As, Cd, Cu, Hg and Pb in biological samples drawn from studies over the last decade.

  11. Evaluation of Pb, Cu, Zn, Cd, Ni and Fe levels in Rosmarinus officinalis labaiatae (Rosemary) medicinal plant and soils in selected zones in Jordan.

    Science.gov (United States)

    El-Rjoob, Abdul-Wahab O; Massadeh, Adnan M; Omari, Mohammad N

    2008-05-01

    The concentration of heavy metals including Pb, Cu, Zn, Cd, Ni and Fe in different parts of Rosmarinus officinalis medicinal plant grown in Jordan were evaluated. Medicinal plant samples and soil samples were collected from three different zones in Jordan (Irbid, Al-Mafraq and Ma'an). Samples were analyzed by atomic absorption spectrometry (AAS) after chemical treatments using acid digestion procedures. Heavy metal levels in washed and unwashed in each part of R. officinalis were analyzed and compared statistically. Results show that concentrations of investigated heavy metals were varied from plant part to another part of R. officinalis. For example, Pb, Zn, Cu and Cd in most parts of R. officinalis in the three zones were concentrated in the following order: flowers, leaves, stems, whereas Pb, Ni and Fe were concentrated in order as follows: leaves, flowers and stems. Heavy metal concentrations in soil samples was evaluated and correlated with their levels in R. officinalis. Two standard reference materials of plant (SRM 1790a; spinach leaves and CRM 281; rye grass) and one standard reference materials of soil (GBW 07406) were examined to validate the method used. Results show that high recoveries were obtained.

  12. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.

    Science.gov (United States)

    Chandra, Ram; Yadav, Sangeeta

    2011-07-01

    A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater.

  13. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components.

    Science.gov (United States)

    Leung, H M; Duzgoren-Aydin, N S; Au, C K; Krupanidhi, S; Fung, K Y; Cheung, K C; Wong, Y K; Peng, X L; Ye, Z H; Yung, K K L; Tsui, M T K

    2017-04-01

    The objective of this study is to evaluate the current status of heavy metal concentrations in constructed wetland, Shaoguan (Guangdong, China). Sediments, three wetland plants (Typha latifolia, Phragmites australis, and Cyperus malaccensis), and six freshwater fish species [Carassius auratus (Goldfish), Cirrhinus molitorella (Mud carp), Ctenopharyngodon idellus (Grass carp), Cyprinus carpio (Wild common carp), Nicholsicypris normalis (Mandarin fish), Sarcocheilichthys kiangsiensis (Minnows)] in a constructed wetland in Shaoguan were collected and analyzed for their heavy metal compositions. Levels of Pb, Zn, Cu, and Cd in sediments exceeded approximately 532, 285, 11, and 66 times of the Dutch Intervention value. From the current study, the concentrations of Pb and Zn in three plants were generally high, especially in root tissues. For fish, concentrations of all studied metals in whole body of N. mormalis were the highest among all the fishes investigated (Pb 113.4 mg/kg, dw; Zn 183.1 mg/kg, dw; Cu 19.41 mg/kg, dw; 0.846 mg/kg, dw). Heavy metal accumulation in different ecological compartments was analyzed by principle component analysis (PCA), and there is one majority of grouped heavy metals concentration as similar in composition of ecological compartment, with the Cd concentration quite dissimilar. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation by constructed wetland is still in early stage and needs more attention in gene manipulation area.

  14. Analysis of Zn, Cd, As, Cu, Pb, and Fe in snails as bioindicators and soil samples near traffic road by ICP-OES.

    Science.gov (United States)

    Massadeh, Adnan M; Alomary, Ahmed A; Mir, Sayeeda; Momani, Fouad A; Haddad, Hazem I; Hadad, Yazen A

    2016-07-01

    Snails are used as biological indicators of the environment pollution for heavy metals. Living snail samples were collected from different sites at the city of Irbid-Jordan and classified according to their morphological features including Helix pelasga, Eobania vermiculata, Xeropicta derbentina, Oychilus, Xerocrassa seetzenii, Xerocrassa simulata, and Pila. Zn, Cd, As, Cu, Pb, and Fe levels were measured by inductively coupled plasma-optical emission spectroscopy. Results indicated that metal concentrations in all snail shell samples were with an average and range for Zn 22.4 (6.5-105.5) μg g(-1), Cd 7.8 (0.4-48.1) μg g(-1), As 25.9 (0.7-248.5) μg g(-1), Cu 15.1 (1.6-69.0) μg g(-1), Pb 0.4 (0.2-1.7) μg g(-1), and Fe 119.6 (14.0-1102.0) μg g(-1), whereas, in soil samples, the average and range for Zn 204.0 (12.0-709.0) μg g(-1), Cd 5.7 (0.2-39.5) μg g(-1), As 3.2 (1.8-5.2) μg g(-1), Cu 22.1 (2.3-77.4) μg g(-1), Pb 0.2 (0.1-0.3) μg g(-1), and Fe 242.4 (25.0-680.0) μg g(-1).

  15. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb(2+), Cd(2+) and Cu(2+) ions preconcentration.

    Science.gov (United States)

    Kalinke, Cristiane; Mangrich, Antonio Sálvio; Marcolino-Junior, Luiz H; Bergamini, Márcio F

    2016-11-15

    Biochar is a carbonaceous material similar produced by pyrolysis of biomass under oxygen-limited conditions. Pyrolysis temperature is an important parameter that can alters biochar characteristics (e.g. surface area, pore size distribution and surface functional groups) and affects it efficacy for adsorption of several probes. In this work, biochar samples have been prepared from castor oil cake using different temperatures of pyrolysis (200-600°C). For the first time, a voltammetric procedure based on carbon paste modified electrode (CPME) was used to investigate the effect of temperature of pyrolysis on the adsorptive characteristics of biochar for Pb(II), Cd(II) and Cu(II) ions. Besides the electrochemical techniques, several characterizations have been performed to evaluate the physicochemical properties of biochar in function of the increase of the pyrolysis temperature. Results suggest that biochar pyrolized at 400°C (BC400) showed a better potential for ions adsorption. The CPME modified with BC400 showed better relative current signal with adsorption affinity: Pb(II)>Cd(II)>Cu(II). Kinetic studies revealed that the pseudo-second order model describes more accurately the adsorption process suggesting that the surface reactions control the adsorption rate. Values found for amount adsorbed were 15.94±0.09; 4.29±0.13 and 2.38±0.39μgg(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Simultaneous removal of aqueous Zn(2+), Cu(2+), Cd(2+), and Pb(2+) by zeolites synthesized from low-calcium and high-calcium fly ash.

    Science.gov (United States)

    Ji, X D; Ma, Y Y; Peng, S H; Gong, Y Y; Zhang, F

    2017-10-01

    In this study, zeolites were synthesized from low-calcium (LCZ) and high-calcium (HCZ) fly ash, respectively. Subsequently, the zeolites were tested for their removal effectiveness for four aqueous cations, namely, Zn(2+), Cu(2+), Cd(2+), and Pb(2+), as a function of contact time, pH value, adsorbent dosage, and initial concentration of heavy metals. Both zeolites were characterized by X-ray diffraction, X-ray fluorescence spectrometry, scanning electron microscopy, specific surface area, and cation exchange capacity. The results show that HCZ mainly consists of an unnamed zeolite (Na6[AlSiO4]6·4H2O), whereas LCZ mainly consists of faujasite-type zeolite. The optimum sorption conditions were pH = 6.0; adsorbent dosage = 1.0 g·L(-1); temperature = 25 °C; contact time = 100 min; and initial heavy metal concentration = 100 mg·L(-1). The sorption kinetics of the four aqueous cations on both LCZ and HCZ followed the pseudo-second-order kinetic model, and the sorption isotherm data fitted well with the Langmuir isotherm model. For LCZ, the maximum adsorption capacities of Zn(2+), Cu(2+), Cd(2+), and Pb(2+) were 155.76, 197.86, 123.76, and 186.22 mg·g(-1), respectively. For HCZ, the values were 154.08, 183.15, 118.91, and 191.94 mg·g(-1), respectively. The zeolites were regenerated by NaCl solution (1 mol·L(-1)) and showed high removal efficiency. In conclusion, zeolites produced by fly ash are promising materials for removing Zn(2+), Cu(2+), Cd(2+), and Pb(2+) from wastewater.

  17. Nonequilibrium leaching behavior of metallic elements (Cu, Zn, As, Cd, and Pb) from soils collected from long-term abandoned mine sites.

    Science.gov (United States)

    Kim, Juhee; Hyun, Seunghun

    2015-09-01

    Leaching of metallic elements (Cu, Zn, As, Cd, and Pb) from two mine-impacted soils (DY and BS) was evaluated by batch decant-refill and seepage flow experiments. During eight consecutive leaching steps, aqueous As concentrations remained relatively constant (approx. 1.6 and 0.1 mg L(-)(1) for DY and BS, respectively), while Cu (0.01-3.2 mg L(-1)), Zn (0.2-42 mg L(-1)), and Cd (0.004-0.3 mg L(-1)) were quickly reduced. The reduction of Pb concentration (0.007-0.02 mg L(-1) and 0.2-0.9 mg L(-1) for DY and BS, respectively) was much lesser. This pattern was well-explained by the biphasic leaching model by allocating a large fast leaching fraction (ffast>0.2) for Cu, Zn, and Cd while a negligible ffast for As and Pb (elements in column effluents, mass export through first-flush and steady-state concentration were elevated under slow seepage, with the greatest impact observed for As. Element export was enhanced after flow interruption, especially under fast seepage. A transient drop in As export in slow seepage was likely due to sorption back to soil phase during the quiescent period. The ratio of Fe(2+)/Fe(3+) and SO4(2-) concentration, related to the dissolution of sulfide minerals, were also seepage rate-dependent. The results of batch and column studies imply that the leachate concentration will be enhanced by initial seepage and will be perturbed after quiescent wetting period. The conversion from kinetically leachable pool to readily leachable pool is likely responsible for nonequilibrium metal leaching from the long-term abandoned mine soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    Science.gov (United States)

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (EH) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The CdS/CdSe/ZnS Photoanode Cosensitized Solar Cells Basedon Pt, CuS, Cu2S, and PbS Counter Electrodes

    OpenAIRE

    Tung Ha Thanh; Dat Huynh Thanh; Vinh Quang Lam

    2014-01-01

    Highly ordered mesoporous TiO2 modified by CdS, CdSe, and ZnS quantum dots (QDs) was fabricated by successive ionic layer adsorption and reaction (SILAR) method. The quantity of material deposition seems to be affected not only by the employed deposition method but also and mainly by the nature of the underlying layer. The CdS, CdSe, and ZnS QDs modification expands the photoresponse range of mesoporous TiO2 from ultraviolet region to visible range, as confirmed by UV-Vis spectrum. Optimized ...

  20. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    Science.gov (United States)

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl2. Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl2-and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p metal concentrations (p metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Heavy metals (Cd, Cu, V, Pb in rainwater in the most influence area of the coal mine in La Guajira, Colombia

    Directory of Open Access Journals (Sweden)

    CARLOS JULIO DORIA ARGUMEDO

    2017-05-01

    Full Text Available To measure the influence of coal mining activities on air quality in northern Colombia, a first approach was made to assess pollution by measuring the levels of the heavy metals Cu, Cd, V and Pb in 21 samples of rainfall over a one year period, by the electrothermal atomic absorption spectrometry technique. The average concentrations of metals in the study area in wet precipitation were: Cu 23.47 ± 13.97µg/L, Cd 4.72 ± 3.29µg/L y V 11.25 ± 6.75µg/L. The results suggest that the atmosphere is not polluted by Pb, but mining activities (excavation and blasting, combustion of fossil fuels, crude oil and gas oil, and vehicular traffic sources may significantly affect the presence and the levels of the other studied metals. Contamination in the area makes rain water infringe the quality standards, both nationally and internationally, since the parameters of pH and Cd exceed the permissible limits, therefore it is not suitable for human consumption.

  2. Protein-directed solution-phase green synthesis of BSA-conjugated M(x)Se(y) (M = Ag, Cd, Pb, Cu) nanomaterials.

    Science.gov (United States)

    Huang, Peng; Bao, Le; Yang, Dapeng; Gao, Guo; Lin, Jing; Li, Zhiming; Zhang, Chunlei; Cui, Daxiang

    2011-05-02

    Bovine serum albumin (BSA)-conjugated M(x)Se(y) (M = Ag, Cd, Pb, Cu) nanomaterials with different shapes and sizes were synthesized in water at room temperature by a protein-directed, solution-phase, green synthetic method. The method features very low energy consumption and nontoxic reagents with high yields of concentrated nanoparticles. The obtained bioconjugated nanoparticles have good dispersibility, bioactivity, and biocompatibility. In addition, various functional groups of protein on the surface of the nanocrystals are suitable for further biological interactions or couplings, which is very important for further biological applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Drinking water interlaboratory ring test. Part IV. Results of some cationic analytes. Al, Zn, Cd, Cr, Pb, Ni, Mn, Fe, Cu and V; Circuito interlaboratorio Unichim sulle acque potabili. Parte IV. Risultati di alcuni cationi metallici. Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu e V

    Energy Technology Data Exchange (ETDEWEB)

    Cavaterra, E.; Divo, C.; Bottazzini, N. [Unichim, Milan (Italy); Alava, F. [Bergamo Ambiente e Servizi, Bergamo (Italy); Bettinelli, M. [Electric Power Production Company, Piacenza (Italy); Bonfiglioli, F. [Azienda Mediterranea Gas e Acqua SpA, Genoa (Italy)

    2002-01-01

    In this paper results of statistical treatment of experimental data obtained in some cycles of an interlaboratory ring test of content of Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu and V in drinking water are reported. Means, variances and parameters of precision and accuracy of some analytical techniques and methods employed by laboratories participating to the ring test will be reported and discussed. [Italian] Nel presente lavoro vengono riportati i risultati dell'elaborazione statistica dei dati sperimentali ottenuti in alcuni cicli del circuito interlaboratorio e relativi ai seguenti cationi metallici: Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu e V. Vengono riportati e discussi i valori medi e la varianza ed infine i dati di accuratezza e precisione delle tecniche o metodi d'analisi impiegati dai laboratori partecipanti al circuito.

  4. Cd, Pb and Cu in spring waters of the Sibylline Mountains National Park (Central Italy, determined by square wave anodic stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Truzzi C.

    2013-04-01

    Full Text Available Square wave anodic stripping voltammetry (SWASV was used to determine Cd, Pb and Cu in spring waters of the Sibylline Mountains National Park, Central Italy. Samples were collected from three different areas of the Park (Mount Bove North, Mount Bove South and Springs of River Nera during the period 2004-2011. Physical-chemical parameters were also determined to obtain a general characterization of the waters. Very low metal concentrations were observed (i.e., Cd 1.3±0.4 ng L-1, Pb 13.8±5.6 ng L-1, Cu 157±95 ng L-1, well below the legal limits and also below the medians of known Italian and European data. Comparing the three areas it was noted that waters from the area of the Nera Springs are the poorest in heavy metals and the richest in minerals, that conversely the waters of Mt. Bove North are the richest in heavy metals and the poorest in mineral salts, and finally that intermediate values both for heavy metals and mineral salts were observed for the waters of Mt. Bove South.

  5. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge.

    Science.gov (United States)

    Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An

    2018-01-01

    For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.

  6. Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum

    Directory of Open Access Journals (Sweden)

    Jaber SALEHZADEH

    2013-11-01

    Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of metal pollution is slow and interminable, as these metal ions are non bio-degradable. The adsorption capacity of Xanthium Pensylvanicum towards metal ions such as Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+, was studied. The adsorption capacity was performed by batch experiments as a function of process parameters (such as sorption time and pH. Experimental results showed that the removal percentages increasing of metal ions at pH=4, initial concentration of metal ions 10 mg/L, and after 90 min of shaking was: Zn2+ < Cd2+ < Cu2+ < Pb2+ < Ni2+ < Fe3+ < Co2+.

  7. Comprehensive risk assessment and source identification of selected heavy metals (Cu, Cd, Pb, Zn, Hg, As) in tidal saltmarsh sediments of Shuangtai Estuary, China.

    Science.gov (United States)

    Liu, Chang-Fa; Li, Bing; Wang, Yi-Ting; Liu, Yuan; Cai, Heng-Jiang; Wei, Hai-Feng; Wu, Jia-Wen; Li, Jin

    2017-10-06

    Heavy metals do not degrade and can remain in the environment for a long time. In this study, we analyzed the effects of Cu, Cd, Pb, Zn, Hg, and As, on environmental quality, pollutant enrichment, ecological hazard, and source identification of elements in sediments using data collected from samples taken from Shuangtai tidal wetland. The comprehensive pollution indices were used to assess environmental quality; fuzzy similarity analysis and geoaccumulation index were used to analyze pollution accumulation; correlation matrix, principal component analysis, and clustering analysis were used to analyze pollution source; environmental risk index and ecological risk index were used to assess ecological risk. The results showed that the environmental quality was either clean or almost clean. Pollutant enrichment analysis showed that the four sub-regions had similar pollution-causing metals to the background values of the soil element of the Liao River Plain, which were ranked according to their similarity. Source identification showed that all the elements were correlated. Ecological hazard analysis showed that the environmental risk index in the study area was less than zero, posing a low ecological risk. Ecological risk of the six elements was as follows: As > Cd > Hg > Cu > Pb > Zn.

  8. Atmospheric deposition of Pb, Cu, Ni, As, Sb, V, Cr, Co, Cd and Zn recorded in the Misten peat bog (Hautes-Fagnes, Belgium) during the Industrial Revolution

    Science.gov (United States)

    Allan, M.; Le Roux, G.; De Vleeschouwer, F.; Mattielli, N.; Fagel, N.

    2012-04-01

    A 40 cm peat core was studied from ombrotrophic bog in Western Europe (Misten bog, Hautes-Fagnes, Belgium). Trace metal and metalloid content (TM) and Pb isotopes were analysed by Q-ICP-MS and MC-ICP-MS, respectively. We focused our attention to a selected number of TM according to their specific enrichment (i.e. Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn). Our aims were: 1) to investigate TM mobility; 2) to determine TM accumulation rates and 3) to link TM accumulation rates with established histories of anthropogenic atmospheric emission. According to 210Pb and 14C data the studied peat core section covered the last two centuries. The general agreement in TM concentration and flux profiles suggested that all TM (except Zn and Cd), were immobile in the Misten peat bog. The temporal increase of TM fluxes between the inception of the Industrial Revolution and the present vary by a factor of 5 to 50 according to TM. The maximum fluxes of TM were found between 1991 and 1995 AD. The coal consumption and metallurgical activities were the predominant source of pollution. The historical TM profiles in the Misten peat profile are in agreement with other European records, reflecting the influence of regional European pollution.

  9. Different binding modes of Cu and Pb vs. Cd, Ni, and Zn with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Schijf, Johan; Christenson, Emily A.; Potter, Kailee J.

    2015-07-01

    The solution speciation in seawater of divalent trace metals (Cd, Cu, Ni, Pb, Zn) is dominated by strong, ostensibly metal-specific organic ligands that may play important roles in microbial metal acquisition and/or detoxification processes. We compare the effective stabilities of these metal-organic complexes to the stabilities of their complexes with a model siderophore, desferrioxamine B (DFOB). While metal-DFOB complexation has been studied in various dilute but often moderately coordinating media, for the purpose of this investigation we measured the stability constants in a non-coordinating background electrolyte at seawater ionic strength (0.7 M NaClO4). Potentiometric titrations of single metals (M) were performed in the presence of ligand (L) at different M:L molar ratios, whereupon the stability constants of multiple complexes were simultaneously determined by non-linear regression of the titration curves with FITEQL, using the optimal binding mode for each metal. Cadmium, Ni, and Zn, like trivalent Fe, sequentially form a bi-, tetra-, and hexadentate complex with DFOB as pH increases, consistent with their coordination number of 6 and regular octahedral geometry. Copper has a Jahn-Teller-distorted square-bipyramidal geometry whereas the geometry of Pb is cryptic, involving a range of bond lengths. Supported by a thermodynamic argument, our data suggest that this impedes binding of the third hydroxamate group and that the hexadentate Cu-DFOB and Pb-DFOB complex identified in earlier reports may instead be a deprotonated tetradentate complex. Absence of the hexadentate complex promotes the formation of a dinuclear (bidentate-tetradentate) complex, M2HL2+, albeit not for Pb in 0.7 M NaCl, evidently due to extensive complexation with chloride. Stabilities of the hexadentate Ni-DFOB, Zn-DFOB, and the tetradentate Pb-DFOB complex are nearly equal, yet about 2 orders of magnitude higher and 4 orders of magnitude lower than those of the hexadentate Cd-DFOB and

  10. Sílica quimicamente modificada com os grupos p-anisidina, p-fenitidina e p-fenilenodiamina usada como adsorvente para Pb2+, Cu2+, Cd2+ e Ni2+ em soluções aquosa e etanólica Silica chemically modified with p-anisidine, p-phenytidine and p-phenylenediamine groups used as adsorbent for Pb2+, Cu2+, Cd2+ and Ni2+ in aqueous and ethanol solutions

    Directory of Open Access Journals (Sweden)

    Rossana B. C. Vilar

    2008-01-01

    Full Text Available Silica gel was chemically modified with the aromatic amines p-anisidine, p-phenytidine and p-phenylenediamine, using grafting reactions. The resulting modified silicas were characterized by infrared spectroscopy and N2 adsorption/desorption isotherms. The organic groups were covalently immobilized in a monolayer form. These modified silicas were investigated as adsorbents for Pb2+, Cu2+, Cd2+ and Ni2+ in aqueous and ethanol solutions. In a general way, the adsorption capacity values for all adsorbents presented the following sequence: Pb2+ >> Cu2+ @Cd2+ @ Ni2+. Adsorption studies for all adsorbents, in competitive medium, showed better selectivity for Cu2+ and Pb2+ in aqueous medium and for Pb2+ in ethanol solution. Desorption studies were carried out using HCl and HNO3 as eluents.

  11. Bioaccumulation of metals (Cd, Cu, Ni, Pb and Zn) in suspended cultures of blue mussels exposed to different environmental conditions

    DEFF Research Database (Denmark)

    Maar, Marie; Larsen, Martin Mørk; Tørring, Ditte Bruunshøj

    2015-01-01

    corresponding to Good Ecological Status (GES) in the European Union Water Framework Directive (WFD) and in future climate change scenarios (higher metal concentrations and higher temperatures). For this purpose, GES is interpreted as good chemical status for the metals using the Environmental Quality Standards...... targets for Cd, Ni and Pb are not protective with respect to marine mussel production and probably should be reduced for marine waters. Climate changes may increase the metal contamination of mussels, but not to any critical level at the relatively unpolluted study sites. In conclusion, WFD targets should......Farming of suspended mussels is important for generating high protein food and animal feed or for removing nutrients in eutrophic systems. However, the harvested mussels must not be severely contaminated by pollutants posing a potential health risk for the consumers. The present study estimated...

  12. Assessment of oxidative stress and bioaccumulation of the metals Cu, Fe, Zn, Pb, Cd in the polychaete Perinereis gualpensis from estuaries of central Chile.

    Science.gov (United States)

    Gaete, Hernán; Álvarez, Manuel; Lobos, Gabriela; Soto, Eulogio; Jara-Gutiérrez, Carlos

    2017-11-01

    The estuaries of the Aconcagua and Maipo Rivers of central Chile are receptors of residues that contain metals from anthropic activities including agriculture, mining and smelters, which have different levels in the two basins. This study postulates that the exposition to metals is different in the two estuaries and that their sediments contain bioavailable chemical agents that produce oxidative stress. The aim of the study was to evaluate the effect of estuarine sediments on the polychaete Perinereis gualpensis using oxidative stress biomarkers and to determine the metal concentrations in sediments and their accumulation in P. gualpensis. Sediments and organisms were collected in December 2015 and January 2016 in the estuaries. The Catapilco estuary was used as control, since its basin has little anthropic activity. The metal concentrations of Fe Cu, Pb, Zn and Cd were determined in tissues of the organisms and in sediments. The granulometry, conductivity, redox potential, pH and organic matter in sediments were determined, as well as catalase activity and lipid peroxidation. The results show that the concentrations of metals in sediments were higher in the estuary of the Aconcagua River: Cu: 48 ± 2μgg-1; Fe: 154 ± 19mgg-1, Pb: 20 ± 3μgg-1 and Zn: 143 ± 20μgg-1. In tissues, Pb and Fe were higher in the estuary of the Maipo River, while Cd was detected only in the Catapilco River mouth. Catalase activity was greater in the estuary of the Aconcagua River and lipid peroxidation in the estuary of the Catapilco River. Significant regressions were found between biomarkers of oxidative stress and metal concentrations in tissues of P. gualpensis. In conclusion, the sediments of the studied estuaries contain bioavailable chemical agents that provoke oxidative stress in P. gualpensis, which may be a risk for the benthic communities of these ecosystems. This species is proposed to monitor metals bioavailability and oxidative stress in estuarine sediments. Copyright

  13. Concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, and Zn in uruguayan rice determined by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mario E. Rivero Huguet

    2011-04-01

    Full Text Available The United Nations General Assembly declared the year 2004 the International Year of Rice and the concept "Rice is life". The largest nutritional problems occurring globally are protein-energy malnutrition, and Ca, Fe, I, Zn, and vitamin A deficiency. In this report, 49 rice samples (Oryza sativa L. were digested by dry ashing in order to determine As, Cd, Cr, and Pb by ETA-AAS; while Ca, Co, Cu, Fe, K, Mg, Mo, Mn, Na, Ni, and Zn were determined by FAAS; and Hg by CV-AAS using microwave-assisted decomposition. The following concentration ranges were obtained for Ca (9.1-15 mg/100 g, Cd (2.30-4.12 µg/kg, Co (41-60 µg/kg, Cu (1.33-180 mg/kg, Fe (4.41-7.15 mg/kg, K (167-217 mg/100 g, Mg (45-121 mg/100 g, Mo (0.52-0.97 mg/kg, Mn (5.45-25.4 mg/kg, Na (0.95-2.50 mg/100g, Ni (0.53-0.72 mg/kg, and Zn (5.86-12.6 mg/kg. Mean recoveries of elements from fortified rice were: 87±12% for As, 95.3±8.9% for Ca, 106.2±7.7% for Cd, 103.3±6.5% for Co, 89.4±8.1% for Cr, 99.3±4.6% for Cu, 103±10% for Fe, 96.3±9.3% for Hg, 95.4±12% for K, 98.3±8.0% for Mg, 93.4±7.8% for Mo, 95.3±9.9% for Mn, 89±12% for Na, 90.3±9.7% for Ni, 91.2±5.5% for Pb and 92.0±9.4% for Zn. The concentrations of the minerals and microelements studied fall within the typical range of rice grown around the world. Potassium was the most abundant mineral, followed by Mg and Ca; among microelements, the concentrations of Cu, Fe, Mo, Mn, Na, and Zn in rice were outstanding. It was also found that the milling process highly affects the K, Mg, Mn, Na, and Zn concentrations, while it has little influence on Ca, Co, Cu, and Fe. On the other hand, there is a loss of Ca, Fe, and Mn during the parboiling process. Recent studies have shown the potential to exploit the genetic variation of rice seeds with regard to the concentration of some minerals (Ca, Fe, Zn, etc. without affecting yield or adding new traits. All rice samples tested showed lower levels of As, Cd, Hg, and Pb in comparison

  14. The determination of Cd, Cu and Pb in potable water and plant material by flame-AAS after on-line preconcentration of DDTP-NH{sub 4} metal complexes on a C{sub 18} column

    Energy Technology Data Exchange (ETDEWEB)

    Sella, S.M. [Univ. Federal Fluminense, Niteroi, Rio de Janeiro (Brazil). Dept. of Analytical Chemistry; Avila, A.K. [Univ. Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro (Brazil). Dept. of Analytical Chemistry; Campos, R.C. [Pontificia Univ. Catolica do Rio de Janeiro (Brazil). Dept. of Chemistry

    1999-07-01

    An on-line preconcentration method, based on complex formation with ammonium diethyldithiphosphate (DDTP-NH{sub 4}) and sorption on a C{sub 18}-bonded silica reversed phase sorbent, for the determination of Pb, Cd and Cu in potable water and biological samples was investigated. Preconcentration factors of 25; 38 and 86 and detection limits of 7, 3 and 7 {micro}g/L for Pb, Cd and Cu, respectively, were obtained, with sample throughputs of 26, 38 and 29 samples/h. The system was efficient at low pH ranges and good agreement between found and certified values was observed in the analysis of certified reference materials.

  15. Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land)

    Energy Technology Data Exchange (ETDEWEB)

    Annibaldi, A.; Truzzi, C.; Illuminati, S.; Bassotti, E.; Scarponi, G. [Polytechnic University of Marche - Ancona, Department of Marine Science, Ancona (Italy)

    2007-02-15

    Eight PM10 aerosol samples were collected in the vicinity of the ''Mario Zucchelli'' Italian Antarctic Station (formerly Terra Nova Bay Station) during the 2000-2001 austral summer using a high-volume sampler and precleaned cellulose filters. The aerosol mass was determined by differential weighing of filters carried out in a clean chemistry laboratory under controlled temperature and humidity. A two-step sequential extraction procedure was used to separate the water-soluble and the insoluble (dilute-HCl-extractable) fractions. Cd, Pb and Cu were determined in the two fractions using an ultrasensitive square wave anodic stripping voltammetric (SWASV) procedure set up for and applied to aerosol samples for the first time. Total extractable metals showed maxima at midsummer for Cd and Pb and a less clear trend for Cu. In particular, particulate metal concentrations ranged as follows: Cd 0.84-9.2 {mu}g g{sup -1} (average 4.7 {mu}g g{sup -1}), Pb 13.2-81 {mu}g g{sup -1} (average 33 {mu}g g{sup -1}), Cu 126-628 {mu}g g{sup -1} (average 378 {mu}g g{sup -1}). In terms of atmospheric concentration, the values were: Cd 0.55-6.3 pg m{sup -3} (average 3.4 pg m{sup -3}), Pb 8.7-48 pg m{sup -3} (average 24 pg m{sup -3}), Cu 75-365 pg m{sup -3} (average 266 pg m{sup -3}). At the beginning of the season the three metals appear widely distributed in the insoluble (HCl-extractable) fraction (higher proportions for Cd and Pb, 90-100%, and lower for Cu, 70-90%) with maxima in the second half of December. The soluble fraction then increases, and at the end of the season Cd and Pb are approximately equidistributed between the two fractions, while for Cu the soluble fraction reaches its maximum level of 36%. Practically negligible contributions are estimated for crustal and sea-spray sources. Low but significant volcanic contributions are estimated for Cd and Pb ({proportional_to}10% and {proportional_to}5%, respectively), while there is an evident although not

  16. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies

    Science.gov (United States)

    Lasheen, Mohamed R.; Ammar, Nabila S.; Ibrahim, Hanan S.

    2012-02-01

    Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd 2+, Cu 2+ and Pb 2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm -1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.

  17. Development, validation and accreditation of a method for the determination of Pb, Cd, Cu and As in seafood and fish feed samples.

    Science.gov (United States)

    Psoma, A K; Pasias, I N; Rousis, N I; Barkonikos, K A; Thomaidis, N S

    2014-05-15

    A rapid, sensitive, accurate and precise method for the determination of Pb, Cd, As and Cu in seafood and fish feed samples by Simultaneous Electrothermal Atomic Absorption Spectrometry was developed in regard to Council Directive 333/2007EC and ISO/IEC 17025 (2005). Different approaches were investigated in order to shorten the analysis time, always taking into account the sensitivity. For method validation, precision (repeatability and reproducibility) and accuracy by addition recovery tests have been assessed as performance criteria. The expanded uncertainties based on the Eurachem/Citac Guidelines were calculated. The method was accredited by the Hellenic Accreditation System and it was applied for an 8 years study in seafood (n=202) and fish feeds (n=275) from the Greek market. The annual and seasonal variation of the elemental content and correlation among the elemental content in fish feeds and the respective fish samples were also accomplished. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails.

    Science.gov (United States)

    Scheifler, R; Ben Brahim, M; Gomot-de Vaufleury, A; Carnus, J-M; Badot, P-M

    2003-01-01

    Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.

  19. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    Science.gov (United States)

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (wetlands.

  20. Origen y comportamiento de Cd, Cr, Cu, Pb y Zn en el subsistema acuífero de la Plana de Castellón

    Directory of Open Access Journals (Sweden)

    Morell, I.

    1996-12-01

    Full Text Available A study on Cd, Cr, Cu, Pb and Zn concentrations in Castellón Plain aquifer has been carried out in order to know if the industrial activity of this zone affects to the groundwater quality. Adsorption processes and relative migration velocity of these metals through the soils of this zone have also been studied. Metal concentrations in the aquifer are lower than those expected in an area with an intense industrial activity. It can be due to the fact that these metals show high adsorption coefficients in the soils and very low migration velocities through them, so it is no probable that the metals from the waste-waters reach the aquifer, or they take some time to reach it.En el presente trabajo se estudia la concentración de Cd, Cr, Cu, Pb y Zn en el acuífero de la Plana de Castellón, para conocer si la actividad industrial de la zona afecta a la calidad de las aguas subterráneas. Asimismo se estudian los procesos de adsorción y velocidad de migración de dichos metales en suelos de la zona. Las concentraciones de metales en el acuífero son más bajas de lo que cabría esperar, dada la intensa actividad industrial de la zona. Ello puede ser debido a que, dado que los metales presentan altos coeficientes de adsorción en los suelos y una velocidad de migración a través de los mismos muy reducida, no parece probable que dichos elementos procedentes de vertidos de aguas residuales lleguen a alcanzar el acuífero, o, en todo caso, tardarán muchos años en hacerlo, ya que el suelo actúa reteniéndolos y retrasando su llegada al mismo.

  1. Influence of the heavy metals Pb, Cd, Zn, Mn, Cu, Hg and Be on the glutathione-S-transferases of rat liver. Einfluss der Schwermetalle Pb, Cd, Zn, Mn, Cu, Hg und Be auf die Glutathion-S-Transferasen der Rattenleber

    Energy Technology Data Exchange (ETDEWEB)

    Hosny Abd El-Fadil, I.H.

    1988-07-04

    The aim of this study was to explore the influence of the heavy metal salts Pb-acetate, CdCl[sub 2], ZnSO[sub 4], MnCl[sub 2], CuCl, HgNO[sub 3], and BeSO[sub 4] on the two glutathione S-transferase (GST) isoenzymes glutathione S-epoxide transferase and glutathione S-aryltransferase after addition of these salts to rat liver enzyme preparations. Rat liver enzyme preparations were also investigated after pretreatment of the animals with these salts. (orig./VT).

  2. Soil attenuation of the seepage potential of metallic elements (Cu, Zn, As(V), Cd, and Pb) at abandoned mine sites: A batch equilibrium sorption and seepage column study.

    Science.gov (United States)

    Kim, Juhee; Hyun, Seunghun

    2017-10-05

    Soil attenuation of off-site leaching potential of metallic elements at the two abandoned mine sites was investigated using batch sorption and layered column studies. In batch study, the leachate concentration-specific sorption (Kd*) by downgradient clean soils was in the order of Pb>Cu>Cd>Zn>As for DY site and Pb>As>Cu>Cd>Zn for BS site. In the layered (mine+clean) soil column, element elution was significantly reduced (e.g., no initial flush, retarded peak arrival, and lower peak concentration) while sulfate elution can be an indicator of the dissolution of sulfur-bearing minerals in mine soils. The greatest reduction was observed for Pb and Cu while the lowest was for Cd (2-19%) and Zn (6-51%), consistent with the batch data. Both the reduced elution at slow seepage and concentration drop after flow interruption support the time-limited propensity. In column segments, the sorptive elements (Cu, Pb, and As) were dominantly found in the inlet while less sorptive ones (Zn and Cd) in the outlet. Both batch and column data suggest that the element leaching with mine leachate movement can be greatly attenuated by the interactions with the surrounding downgradient soil during the seepage process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yantasee, Wassana; Charnhattakorn, Budsarakum; Fryxell, Glen E.; Lin, Yuehe; Timchalk, Charles; Addleman, Raymond S.

    2008-05-21

    Electrochemical sensors have great potential for environmental monitoring of toxic metal ions in waters due to their portability, field-deployability and excellent detection limits. However, electrochemical sensors employing mercury-free approaches are normally suffered from metal binding competition and fouling by organic substances and surfactants in natural waters, thus tedious sample pretreatments such as wet ashing are needed. In this work, we have developed mercury-free sensors by coating a composite of thiol self-assembled monolayers on mesoporous supports (SH-SAMMS) and Nafion on glassy carbon electrodes. With a combined benefit of SH-SAMMS as outstanding metal preconcentrator and Nafion as antifouling binder, the sensors could detect 2.5 ppb of Cd and 0.5 ppb of Pb in river water, Hanford groundwater, and seawater after 3 and 6 minutes of preconcentration and without sample pretreatment. They could also detect 2.5 ppb of Cd, Pb, and Cu simultaneously after 5 minutes of preconcentration. The electrodes have long life time and excellent single and inter-electrode reproducibility (%RSD of 5 after 8 consecutive measurements). Unlike SAMMS-carbon paste electrodes, the SAMMS-Nafion electrodes were not fouled in samples containing albumin. Successful detection of Cd in human urine was also demonstrated. Other factors including pH effect, diffusion resistance, and Tl interference on the metal detection at SAMMS-Nafion electrodes were studied. With the ability to reliably detect low metal concentration ranges without sample pretreatment and fouling, the SAMMS-Nafion composite sensors have the potential to become the next generation metal analyzers for environmental and bio- monitoring of toxic metals.

  4. Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) binding to Suwannee River Fulvic Acid

    NARCIS (Netherlands)

    Chakraborty, P.; Chakrabarti, C.L.

    2008-01-01

    This is a study of trace metal competition in the complexation of Pb(II) by well-characterized humic substances, namely Suwannee River Fulvic Acid (SRFA) in model solutions. It was found that Cu(II) seems to compete with Pb(II) for strong binding sites of SRFA when present at the same concentration

  5. Study of Fe, Zn, Cu, Cd, Pb concentrations in liver, kidney and muscle tissue of cow and sheep marketed in Hamedan in 2011

    Directory of Open Access Journals (Sweden)

    S Sobhanardakani

    2012-11-01

    Full Text Available Importance of heavy metals in food safety and detrimental effects of their high concentrations in food stuff is well documented. In this study, concentrations of Fe, Zn, Cu, Cd and Pb in kidney, liver and muscle tissues of cow and sheep at Hamedan retails were evaluated. A total number of 180 samples was assessed for the amount of heavy metals as ppb in wet weight. For this, wet-digestion method was used to determine the concentration of given elements by ICP (Varian ES-710. Results showed that the highest concentration of heavy metals was determined in the liver and kidney samples, while the lowest concentration was found in muscle tissue. Among the heavy metals, Fe in cow’s liver had the highest concentration (25507±879 ppb and Cd in muscle tissue of sheep has the lowest concentration (192±54 ppb. In overall, accumulation of heavy metals in tissues of cows was higher than sheep. Statistical comparison of accumulated metals concentration in various tissues of these two animal groups showed significant difference (P

  6. Forest Soil Pollution with Heavy Metals (Pb, Zn, Cd, and Cu in the Area of the “French Mines” on the Medvednica Mountain, Republic of Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Perković

    2017-01-01

    Full Text Available Background and Purpose: This paper deals with the results of the investigation of the selected heavy metal contents in forest soil in the region of an abandoned mine. The analysis of the forest ecosystem soil on the Medvednica Mountain was conducted in the region of the so-called “French Mines” (FM. The elements selected for analyses were cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn because of their toxicological characteristics. Material and Methods: In the investigated area - five entrances of the FM - composite topsoil samples (0–5 cm were taken. Those samples were compared to the control samples which were taken outside the area affected by mines. The soil samples were analysed for the following parameters: pH, particle size distribution, organic C content and pseudo-total mass fractions of the selected heavy metals. The heavy metals were determined by atomic emission spectrometry with inductively coupled plasma (ICP-MS. Results and Conclusion: The results reveal that the soil is locally polluted, i.e. the highest mass fraction values of these four heavy metals were found in the area of the FM. Average pseudo-total fraction of Cd in the analysed topsoil samples was in the range of 0.17–4.41 mg·kg−1 (median: 0.97 mg·kg−1. Cu was found in the range of 4.54–1260 mg·kg−1 (median: 45.7 mg·kg−1. In the case of Zn, mass fraction values were found in the range of 36.8–865 mg·kg−1 (median: 137 mg·kg−1. Finally, average values of the pseudo-total fraction of Pb were found in the range of 58.4–12000 mg·kg−1 (median: 238 mg·kg−1. The results reveal that mining activities leave consequences on soil for a long time.

  7. PM2.5 particulates and metallic elements (Ni, Cu, Zn, Cd and Pb) study in a mixed area of summer season in Shalu, Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Xiao, You-Fu; Zhuang, Yuan-Jie; Cho, Meng-Hsien; Huang, Chao-Yang; Tsai, Kai-Hsiang

    2017-08-01

    PM2.5 has become an important environmental issue in Taiwan during the past few years. Moreover, electricity increased significantly during the summertime and TTPP generated by coal burning base is the main electricity provider in central Taiwan. Therefore, summer season has become the main research target in this study. The ambient air concentrations of particulate matter PM2.5 and PM10 collected by using VAPS at a mixed characteristic sampling site were studied in central Taiwan. The results indicated that the average daytime PM2.5 and PM10 particulate concentrations were occurred in May and they were 44.75 and 57.77 µg/m3 in this study. The results also indicated that the average nighttime PM2.5 and PM10 particulate concentrations were occurred in June and they were 38.19 and 45.79 µg/m3 in this study. The average PM2.5/PM10 ratios were 0.7 for daytime, nighttime and 24-h sampling periods in the summer for this study. This value was ranked as the lowest ratios when compared to the other seasons in previous study. Noteworthy, the results further indicated that the metallic element Pb has the mean highest concentrations for 24-h, daytime and nighttime sampling periods when compared to those of the other metallic elements (Ni, Cu, Zn and Cd). The average mean highest metallic Pb concentrations in PM10 were 110.7, 203.0 and 207.2 ng/m3 for 24-h, daytime and nighttime sampling periods in this study. And there were 59.53, 105.2 and 106.6 ng/m3 for Pb in PM2.5 for 24-h, daytime and nighttime sampling periods, respectively. Moreover, the results further indicated that mean metallic element Pb concentrations on PM2.5 and PM10 were all higher than those of the other elements for 24 h, day and nighttime.

  8. Influence of different mineral and Organic pesticide treatments on Cd(II), Cu(II), Pb(II), and Zn(II) contents determined by derivative potentiometric stripping analysis in Italian white and red wines.

    Science.gov (United States)

    Salvo, Francesco; La Pera, Lara; Di Bella, Giuseppa; Nicotina, Mariano; Dugo, Giacomo

    2003-02-12

    This paper deals with the use of derivative potentiometric stripping analysis (dPSA) as a rapid and precise method to determine Cd(II), Cu(II), Pb(II), and Zn(II) levels in red and white wine samples from Sicily, Campania, and Tuscany and to investigate the possible connection between the content of these metals and the pesticide treatments used in vine-growing to control plant diseases and pests. dPSA allowed direct quantitation of heavy metals in acidified wines without any sample pretreatment. Mean recoveries of Cd(II), Cu(II), Pb(II), and Zn(II) ranged from 95.5 to 99.2% for white wine samples and from 96.1 to 100.0% for red wine samples. The obtained results showed that Cd(II) was not found in any sample and that Cu(II), Pb(II), and Zn(II) levels were always lower than the toxicity limits in both fungicide- and water-treated wines. Nevertheless, the contents of metals were increased in samples from organic and inorganic pesticides treatment with respect to the water-treated samples. In particular, quinoxyfen, dinocap-penconazole, and dinocap applications considerably increased Cu(II) and Zn(II) contents in white and red wines. The levels of lead were significantly raised by azoxystrobin and sulfur treatments.

  9. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies

    Directory of Open Access Journals (Sweden)

    E. Igberase

    2017-01-01

    Full Text Available In this investigation, an amino functionalized adsorbent was developed by grafting 4-aminobenzoic acid onto the backbone of cross-linked chitosan beads. The 3 sets of beads including chitosan (CX, glutaraldehyde cross-linked chitosan (CCX, and 4-aminobenzoic acid grafted cross-linked chitosan (FGCX were characterized by FTIR, XRD, SEM, and TGA. The water content and amine concentration of FGCX were determined. The effect of adsorption parameters was studied and the optimum was used for further studies. Equilibrium data was obtained from the adsorption experiment carried out at different initial concentration; the data were applied in isotherm, thermodynamics, and kinetic studies. The Langmuir and Dubinin-Kaganer-Radushkevich (DKR models were successful in describing the isotherm data for the considered metal ions while the Freundlich and Temkin model fit some of the considered metal ions. Pseudo-second-order and intraparticle model described the kinetic data quite well. Thermodynamic parameters such as Gibb’s free energy change (ΔGo, enthalpy change (ΔHo, and entropy change (ΔSo were calculated and the results showed that the adsorption of Pb, Cu, Ni, Zn, and Cd ions onto FGCX is spontaneous and endothermic in nature. Regeneration of the spent adsorbent was efficient for the considered metal ions.

  10. Changes in Morphological Indexes of Young Atlantic Salmon (Salmo salar L. Exposed to hEavy Metal (Zn, Cu, Ni, Cr, Pb, Cd Mixture: an Experimental Study

    Directory of Open Access Journals (Sweden)

    Gintarė Sauliutė

    2016-10-01

    Full Text Available Morphological indexes are indicative of toxicant effects in fish. Unfortunately, morphological parameters [gill-, liver-, kidney-, viscero-, etc., somatic indexes and the integrated condition factor (CF], are usually determined in field studies to assess the general fish condition under effect of multicomponent pollution and did not reflect the effects of specific polluting substances (e.g. heavy metals. The purpose of this study was to experimentally evaluate the effect of priority heavy metal model mixture formed based on Maximum-Allowable-Concentration accepted for Lithuanian receiving water bodies (Zn – 0.1, Cu – 0.01, Ni – 0.01, Cr – 0.01, Pb – 0.005 and Cd – 0.005 mg/L, respectively on condition parameters of one-year-old Atlantic salmon after seven-, fourteen- and twenty eight- day exposure. Significant changes in liver-, kidney- and viscero-somatic indexes were determined, while CF and branchio-somatic-index were found to be not indicative for such kind of the exposure. Correlation analysis between the parameters studied revealed a number of meaningful patterns. The obtained data were compared with the results of the field study in salmonid rivers.

  11. BIOSORPTION OF METAL IONS Pb(II, Cu(II, AND Cd(II ON Sargassum duplicatum IMMOBILIZED SILICA GEL MATRIX

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2010-06-01

    Full Text Available Sargassum duplicatum algae biomass is biological material which has a potency to be used as a biosorbent adsorb metal ions from industrial liquid waste, because it has effective functional group as a ligand. However, the ability of the algae biomass in adsorbing of heavy metal ions has some problem such as; tiny size, low density, and easy to be degradated by other microorganism. In addition, algae biomass can not be used directly in adsorption column for its application as the biosorbent. In order to improve physical and chemical prpperties of algae biomass, it needs to be immobilized on silica gel matrix. Series of experiment have been done, morphology analysis of adsorbent surface was performed by using Scanning Electron Microscopy (SEM and adsorption process to examine the effectiveness of algae biomass immobilized in adsorbing Pb(II, Cu(II, and Cd(II was performed using batch method at 27 °C. Concentration of metal was determined by using Atomic Absorption Spectrophotometer (AAS and identification of functional group was conducted using Spectrophotometer Infrared (IR. Data obtained showed that interacting among metal ions with algae biomass is optimum at a range of 60 minutes. Adsorption energies of metal ions resulted from the interaction of metal ions with the functional group of -C=O group from carboxyl and amide on algae biomass and -Si-OH group from silica were at a range of 21.09-25.05 kJ/mole.   Keywords: biosorption, silica gel, Sargassum duplicatum, immobilization

  12. Measurements of Cd, Cu, Pb and Zn in the lower reaches of major Eurasian arctic rivers using trace metal clean techniques

    Energy Technology Data Exchange (ETDEWEB)

    Guay, Christopher K.H., E-mail: cguay@pmstllc.co [Pacific Marine Sciences and Technology, 3503 Lakeshore Avenue, Suite 5, Oakland, CA 94610 (United States); Zhulidov, Alexander V. [South Russian Regional Centre for Preparation and Implementation of International Projects (CPPI-S), 200/1 Stachki Av., No. 301, Rostov-on-Don 344090 (Russian Federation); Robarts, Richard D. [UNEP GEMS/Water Programme, c/o National Water Research Institute, National Hydrology Research Centre, 11 Innovation Blvd., Saskatoon, Saskatchewan S7N 3H5 (Canada); Zhulidov, Daniel A.; Gurtovaya, Tatiana Yu. [South Russian Regional Centre for Preparation and Implementation of International Projects (CPPI-S), 200/1 Stachki Av., No. 301, Rostov-on-Don 344090 (Russian Federation); Holmes, Robert M. [The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 (United States); Headley, John V. [Aquatic Ecosystem Protection Research Branch, National Water Research Institute, National Hydrology Research Centre, 11 Innovation Blvd., Saskatoon, Saskatchewan S7N 3H5 (Canada)

    2010-02-15

    Concentrations of dissolved and particulate Cd, Cu, Pb and Zn were determined in samples collected in summer 1998 from the lower reaches of six major Eurasian arctic rivers: the Onega, Severnaya Dvina, Mezen, Pechora, Ob and Yenisey. These data comprise some of the earliest measurements of trace metals in Eurasian arctic rivers above the estuaries using recognized clean techniques. Significant (alpha = 0.05) differences were observed among mean concentrations of particulate metals in the individual rivers (F <= 0.006), with highest levels overall observed in the Severnaya Dvina and Yenisey. No significant differences were observed among mean concentrations of dissolved metals in the individual rivers (F = 0.10-0.84). Contributions from anthropogenic sources are suggested by comparison of trace metal ratios in the samples to crustal abundances. These results establish a baseline for assessing future responses of Eurasian arctic river systems to climate-related environmental changes and shifting patterns of pollutant discharge. - We report some of the earliest reliable trace metal data for major Eurasian arctic rivers.

  13. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies

    Science.gov (United States)

    Osifo, P.; Ofomaja, A.

    2017-01-01

    In this investigation, an amino functionalized adsorbent was developed by grafting 4-aminobenzoic acid onto the backbone of cross-linked chitosan beads. The 3 sets of beads including chitosan (CX), glutaraldehyde cross-linked chitosan (CCX), and 4-aminobenzoic acid grafted cross-linked chitosan (FGCX) were characterized by FTIR, XRD, SEM, and TGA. The water content and amine concentration of FGCX were determined. The effect of adsorption parameters was studied and the optimum was used for further studies. Equilibrium data was obtained from the adsorption experiment carried out at different initial concentration; the data were applied in isotherm, thermodynamics, and kinetic studies. The Langmuir and Dubinin-Kaganer-Radushkevich (DKR) models were successful in describing the isotherm data for the considered metal ions while the Freundlich and Temkin model fit some of the considered metal ions. Pseudo-second-order and intraparticle model described the kinetic data quite well. Thermodynamic parameters such as Gibb's free energy change (ΔGo), enthalpy change (ΔHo), and entropy change (ΔSo) were calculated and the results showed that the adsorption of Pb, Cu, Ni, Zn, and Cd ions onto FGCX is spontaneous and endothermic in nature. Regeneration of the spent adsorbent was efficient for the considered metal ions. PMID:28607557

  14. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails

    Energy Technology Data Exchange (ETDEWEB)

    Scheifler, R.; Brahim, M.B.; Gomot-de Vaufleury, A.; Carnus, J.-M.; Badot, P.-M

    2003-04-01

    Helix aspersa snails exposed in field microcosms were used to evaluate metallic trace elements transfer from forest soil amended with composted and liquid sewage sludge. - Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.

  15. Zróżnicowanie zawartości Cd, Pb, Zn i Cu w liściach tytoniu szlachetnego(Nicotiana tabacum l. uprawianegow rejonie Proszowic

    Directory of Open Access Journals (Sweden)

    Artur Szwalec

    2016-12-01

    Full Text Available Celem pracy była ocena zróżnicowania zawartość Cd, Pb, Zn i Cu w tytoniu typu Virginia uprawianym w rejonie Proszowic. Próby roślin i gleb pobierano z pól uprawnych położonych w sołectwach Bobin, Wolwanowice, Kościelec, Mysławczyce oraz Kuchary. Zawartości kadmu, ołowiu, cynku i miedzi oznaczono metodą FAAS na aparacie Solaar M6 firmy Unicam. Badane liście tytoniu cechowały się słabym stopniem kumulacji ołowiu, cynku i miedzi oraz intensywnym stopniem kumulacji kadmu. Stwierdzono dodatnie korelacje pomiędzy zawartościami kadmu i miedzi w glebie a stężeniami tych pierwiastków w liściach tytoniu. Zależność ta jest odwrotna (korelacja ujemna w przypadku cynku. Nie stwierdzono statystycznie istotnej korelacji w odniesieniu do zawartości ołowiu. Analiza wariancji wykazała zróżnicowanie zawartości badanych metali zarówno w liściach, jak i glebach.

  16. Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite.

    Science.gov (United States)

    Chen, Wei-fang; Zhang, Jinghui; Zhang, Xiaomao; Wang, Weiya; Li, Yuxiang

    2016-01-01

    Nano-zero-valent iron/activated carbon (nZVI/AC) composite was evaluated for its effectiveness in the stabilization of Cu, Pb, Cd, and Cr in dredged river sediment. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) were adopted to compare the effects of nZVI/AC dosage, particle size, time duration, and temperature on heavy metal leachability. The results show that leachability dropped considerably with the addition of nZVI/AC and powdered particles in the size of 0.075-0.18 mm was more effective in stabilization than granular ones. Stabilization effect was stable in long-term and robust against changes in temperature. Tessier sequential extraction revealed that heavy metals were associated with solid particle, inorganic or organic matters in sediment. The addition of nZVI/AC was able to convert relatively weakly bound heavy metals into more strongly bound species and thus reduce the bioavailability and toxicity. Also, the standard potential of heavy metals may decide the mechanism of stabilization process.

  17. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn.

    Science.gov (United States)

    Kocoń, Anna; Jurga, Beata

    2017-02-01

    One of the cheapest, environmentally friendly methods for cleaning an environment polluted by heavy metals is phytoextraction. It builds on the uptake of pollutants from the soil by the plants, which are able to grow under conditions of high concentrations of toxic metals. The aim of this work was to assess the possibility of growing and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita cultivated on two different soils contaminated with five heavy metals simultaneously: Cd, Cu, Ni, Pb, and Zn. A 3-year microplot experiment with two perennial energy crops, M. x giganteus and S. hermaphrodita, was conducted in the experimental station of IUNG-PIB in Poland (5° 25' N, 21° 58 'E), in the years of 2008-2010. Miscanthus was found more tolerant to concomitant soil contamination with heavy metals and produced almost double biomass than Sida in all three tested years, independent of soil type. Miscanthus collected greater amount of heavy metals (except for cadmium) in the biomass than Sida. Both energy crops absorb high levels of zinc, lower levels of lead, copper, and nickel, and absorbed cadmium at least, generally more metals were taken from the sandy soil, where plants also yielded better. Photosynthesis net rate of Miscanthus was on average 40% higher compared to Sida. Obtained results indicate that M. x giganteus and S. hermaphrodita can successfully be grown on moderately contaminated soil with heavy metals.

  18. Study on the distributions of Cd, Co, Sr, Zn, Ag, Cu, Pb, Mn and Ni in the eolian sands of the Gavkuni playa (southeast of Isfahan

    Directory of Open Access Journals (Sweden)

    Hamidreza Pakzad

    2014-11-01

    Full Text Available Introduction Heavy metals are continually introduced into hydrosphere, atmosphere and biosphere. These potentially toxic elements can concentrate in sediments in aqueous ecosystems and they can act as pollution sources in particular conditions. Heavy metals mainly concentrate in fine sand particles because of more concentration of heavy minerals in this grain size. The Gavkhuni playa lake with an approximate area of 550 km2 is located at southeast of Isfahan, Iran. The Zayandehrud permanent river and several seasonal rivers flow into this playa. During quaternary, massive volume of sediments in sand and gravel sizes were carried into this area and deposited. These sediments are mainly deposited in the delta of Zayandehrud river (northwest of Gavkhuni playa and northwest of the sand dunes in margin of the Zayandehrud river particularly from Varzaneh to the playa. The megafans surrounding the playa can be partly origin of these sediments. The Gavkhuni playa lake is composed of three major flats namely sand, mud and salt flats. The salt flat forms the major part of the playa. Igneous, metamorphic and sedimentary (mainly carbonates rocks outcrop in the drainage basin of the Gavkhuni playa lake. Schist, gneiss, limestone, shale and andesite are the dominant lithology in this basin. The main objective of this research is to determine the concentrations of Cd, Co, Sr, Zn, Ag, Cu, Pb, Mn and Ni in the eolian sand deposits, the factors influencing the distributions of these elements and also relationship between the heavy metals and the minerals (particularly heavy minerals containing these elements. Material & Methods The eolian sands (sand dunes and sand flats of the Gavkhuni playa were sampled in 15 sampling points from north to south of the playa. Grain size distribution of the sediments were determined through dry sieving method. Heavy minerals were separated and studied through microscopy of the prepared thin and polish sections. The concentration

  19. Determination of uranium isotopes ({sup 235}U, {sup 238}U) and trace elements (Cd, Pb, Cu and As) in bottled drinking water by Icp-SFMS; Determinacion de isotopos de uranio ({sup 235}U, {sup 238}U) y elementos traza (Cd, Pb, Cu y As) en agua embotellada para beber por ICP-SFMS

    Energy Technology Data Exchange (ETDEWEB)

    Lara A, N.; Hernandez M, H.; Romero G, E. T.; Kuri de la C, A.; Perez B, M. A., E-mail: nancy.lara@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    In the present work we propose an optimized method for the quantification of uranium isotopes ({sup 235}U, 2{sup 38}U) and the elements Cd, Pb, Cu and As in bottled water for drinking at trace levels of concentration. Based on the multi-element detection capability, the high sensitivity and resolution that the Mass Spectrometry with Magnetic Sector with Inductively Coupled Plasma Source (Icp-SFMS) technique offers; the high, medium and low resolution analysis conditions for the elements under study were established and optimized using and Element 2/Xr equipment and the 23 multi-elemental Certified Reference Material (CRM). The analysis method was validated using the standard reference material Nist 1643d and CRM mono-elemental s as external standards for the quantification of the analytes. Samples, targets and CRM were acidified with 2% of HNO{sub 3} and analyzed without pretreatment under the established analysis conditions. The results obtained show concentrations of {sup 235}U, {sup 238}U, {sup 111}Cd, {sup 208}Pb, {sup 63}Cu and {sup 75}As in the range of μg L{sup -1}, the linearity obtained from the calibration curves for each element has correlation coefficients < 0.99 in all cases, the accuracy of the method in terms of percent relative standard deviation (RSD %) was less than 5%, the mean recovery rate of Nist 1643d ranged from 96.46% to 101.12%. The optimization of the method guarantees the stability and calibration of the equipment throughout the analysis, as well as the ability to resolve interferences. In conclusion, the method proposed using Icp-SFMS offers the advantages of being fast and simple for the multi-elemental analysis in water at trace levels, with low limits of quantification and detection, with good linearity, accuracy, precision and reproducibility to a degree of reliability of 95%. (Author)

  20. The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin.

    Science.gov (United States)

    Pehlivan, Erol; Altun, Turkan

    2006-06-30

    A gel resin containing sulfonate groups (Dowex 50W) was investigated for its sorption properties towards copper, zinc, nickel, cadmium and lead metal ions. The use of selective ion exchange to recover metals from aqueous solution has been studied. The ion exchange behavior of five metals on Dowex 50W, depending on pH, temperature, and contact time and adsorbate amount was studied. Experimental measurements have been made on the batch sorption of toxic metals from aqueous solutions using cation exchanger Dowex 50W. The maximum recoveries (about 97%) Cu(2+), Zn(2+), Ni(2+), Cd(2+) and (about 80%) Pb(2+) were found at pH ranges 8-9. The amount of sorbed metal ion was calculated as 4.1, 4.6, 4.7, 4.8, and 4.7mequiv./gram dry resin for Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+), respectively. The precision of the method was examined at under optimum conditions. Selectivity increased in the series: Pb>Cd>Cu>Zn>Ni. It has been observed that, selectivity of the -SO(3)H group of the resin increases with atomic number, valance, degree of ionization of the exchanged metals. The equilibrium ion exchange capacity of resin for metal ions was measured and explored by using Freundlich and Langmuir isotherms. Langmuir type sorption isotherm was suitable for equilibrium studies.

  1. The study of various parameters affecting the ion exchange of Cu{sup 2+}, Zn{sup 2+}, Ni{sup 2+}, Cd{sup 2+}, and Pb{sup 2+} from aqueous solution on Dowex 50W synthetic resin

    Energy Technology Data Exchange (ETDEWEB)

    Pehlivan, Erol [Department of Chemical Engineering, Selcuk University, Campus, 42031 Konya (Turkey)]. E-mail: pehlivan@selcuk.edu.tr; Altun, Turkan [Department of Chemical Engineering, Selcuk University, Campus, 42031 Konya (Turkey)

    2006-06-30

    A gel resin containing sulfonate groups (Dowex 50W) was investigated for its sorption properties towards copper, zinc, nickel, cadmium and lead metal ions. The use of selective ion exchange to recover metals from aqueous solution has been studied. The ion exchange behavior of five metals on Dowex 50W, depending on pH, temperature, and contact time and adsorbate amount was studied. Experimental measurements have been made on the batch sorption of toxic metals from aqueous solutions using cation exchanger Dowex 50W. The maximum recoveries (about 97%) Cu{sup 2+}, Zn{sup 2+}, Ni{sup 2+}, Cd{sup 2+} and (about 80%) Pb{sup 2+} were found at pH ranges 8-9. The amount of sorbed metal ion was calculated as 4.1, 4.6, 4.7, 4.8, and 4.7 mequiv./gram dry resin for Pb{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, and Ni{sup 2+}, respectively. The precision of the method was examined at under optimum conditions. Selectivity increased in the series: Pb > Cd > Cu > Zn > Ni. It has been observed that, selectivity of the -SO{sub 3}H group of the resin increases with atomic number, valance, degree of ionization of the exchanged metals. The equilibrium ion exchange capacity of resin for metal ions was measured and explored by using Freundlich and Langmuir isotherms. Langmuir type sorption isotherm was suitable for equilibrium studies.

  2. The effect of mustard gas on salivary trace metals (Zn, Mn, Cu, Mg, Mo, Sr, Cd, Ca, Pb, Rb.

    Directory of Open Access Journals (Sweden)

    Elham Zamani Pozveh

    Full Text Available We have determined and compared trace metals concentration in saliva taken from chemical warfare injures who were under the exposure of mustard gas and healthy subjects by means of inductively coupled plasma optical emission spectroscopy (ICP-OES for the first time. The influence of preliminary operations on the accuracy of ICP-OES analysis, blood contamination, the number of restored teeth in the mouth, salivary flow rate, and daily variations in trace metals concentration in saliva were also considered. Unstimulated saliva was collected at 10:00-11:00 a.m. from 45 subjects in three equal groups. The first group was composed of 15 healthy subjects (group 1; the second group consisted of 15 subjects who, upon chemical warfare injuries, did not use Salbutamol spray, which they would have normally used on a regular basis (group 2; and the third group contained the same number of patients as the second group, but they had taken their regular medicine (Salbutamol spray; group 3. Our results showed that the concentration of Cu in saliva was significantly increased in the chemical warfare injures compared to healthy subjects, as follows: healthy subjects 15.3± 5.45 (p.p.b., patients (group 2 45.77±13.65, and patients (Salbutamol spray; group 3 29 ±8.51 (P <0.02. In contrast, zinc was significantly decreased in the patients, as follows: healthy subjects 37 ± 9.03 (p.p.b., patients (group 2 12.2 ± 3.56, and patients (Salbutamol spray; group 3 20.6 ±10.01 (P < 0.01. It is important to note that direct dilution of saliva samples with ultrapure nitric acid showed the optimum ICP-OES outputs.

  3. Bioavailability of Pb, Zn, Cu, Cd, Ni and Cr in the sediments of the Tessa River: A mining area in the North-West Tunisia

    Science.gov (United States)

    Sebei, Abdelaziz; Helali, Mohamed Amine; Oueslati, Walid; Abdelmalek-Babbou, Chiraz; Chaabani, Fredj

    2018-01-01

    Tessa River is seen as one of the important rivers in Tunisia. Its catchment is known for its agricultural and mining activities, especially the Bougrine and Fedj Lahdhoum mines. Eighteen (18) surface sediments and five (5) water samples were collected from the Tessa River, near these two mining sites. Sediments are essentially sandy (>80%), the most important mineral is quartz (20-73%), then calcite (41%) and dolomites (4%). Heavy metal contents are relatively high near the mining sites, 356 μg g-1 for Pb, 3000 μg g-1 for Zn, and 5 μg g-1 for Cd. These values are lower downstream due to watercourse dilution effects. Other heavy metals: Cu, Ni and Cr, are low, and values are relatively constant in all the studied samples, even near the mining sites. The metals originate from natural sources and not from mining activities. This trend is confirmed by the enrichment factor (EF) where EFNi, EFCu and EFCr are lower or equal to 1, unlike EFPb, EFZn or EFCd where values are much higher (>20). Chemical speciation of these metals does not show any spatial variation. Except for cadmium which is bound to the residual fraction and in the carbonates; all other heavy metals are bound to the five sediment chemical fractions: the residual fraction (>52%), followed by the oxyhydroxides fraction (21%) and carbonates (16%), and finally bound to the organic matter and to the exchangeable fraction (<10%). The bioavailable fraction of the studied heavy metals exceeds 45%, which present risk of toxicity.

  4. Evaluation of the air quality regarding total suspended particles and heavy metals (Pb, Cd, Ni, Cu, Cr) in the Hermosillo city, Sonora, Mexico, during a yearly period; Evaluacion de la calidad del aire respecto de particulas suspendidas totales y metales pesados (Pb, Cd, Ni, Cu, Cr) en la Ciudad de Hermosillo, Sonora, Mexico, durante un periodo anual

    Energy Technology Data Exchange (ETDEWEB)

    Cruz C, M. E.; Quintero N, M. [Universidad Autonoma de Baja California, Instituto de Ingenieria, Campus Mexicali, Calle de la Normal s/n, y Blvd. Benito Juarez, Col. Insurgentes Este, Mexicali, Baja California (Mexico); Gomez A, A.; Varela S, J., E-mail: martincruzcampas@hotmail.com [Universidad de Sonora, Departamento de Ingenieria Quimica y Metalurgia, Blvd. Rosales y Luis Ensina s/n, Edificio 5B, Col. Centro, 83000 Hermosillo, Sonora (Mexico)

    2013-07-01

    In the present study, the air quality of the city of Hermosillo, Sonora, Mexico was assessed considering total suspended particulates (tsp) and heavy metals (Pb, Cd, Ni, Cu, Cr) from June 2001 through May 2002 in three monitoring sites Centro (Mazon), Nor este (CESUES) and Noroeste (CBTIS). The filter-samples used for that purpose were provided by the Air Quality Evaluation and Improvement Program (PEMCA) of the municipality of Hermosillo. The sampling method was based on high volume sampling frequency set every 6 days with non-simultaneous sampling among the three sampling sites. Filters were dissolved for metal determination by acidic-extraction, and then analyzed by flame atomic absorption spectrophotometry. Results indicate that tsp concentrations at Centro and Noroeste sites were frequently higher than the maximum daily permissible level (260 {mu}g/m{sup 3}), while in the three sites the annual average was higher than the maximum annual permissible level (75 {mu}g/m{sup 3}) both established in the standard NOM-024-Ssa-1993 (Ssa 1994a). According to the Air Quality Standard Index (US EPA 1992a), used in Mexico by Air Quality Metropolitan Index (IMECA) the results indicate that the air quality in the city of Hermosillo regarding tsp was placed between no satisfactory and poor. In regard to heavy metals (Pb, Cd, Ni, Cu, Cr), concentrations detected were below the maximum permissible levels and/or criteria taking into account the standard NOM-026-Ssa-1993 (Ssa 1994b), the Who criterion (2000), the European Union criterion (Cec 2003), and the European Environmental Agency criteria (EEA 2004). Such findings would mean that airborne metals are of no concern; however, air quality is still classified as no satisfactory due to high particulate matter concentrations. Keeping air quality parameters monitoring is recommended in order to get extensive data for use in risk studies of air quality and health (morbidity/mortality), as well as topographic conditions

  5. Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin, Gulf of California

    Science.gov (United States)

    Ruelas-Inzunza, J.; Páez-Osuna, F.; Soto, Luis A.

    2005-07-01

    Twenty two specimens of vestimentiferan tube worms Riftia pachyptila were collected from Guaymas Basin. The distribution of ten trace metals in trophosome and vestimentum was investigated. Highest mean concentrations of Co, Cu and Fe were detected in the trophosome; while higher mean levels of Cd, Hg, Mn, Ni, Pb and Zn were measured in the vestimentum. However, the t-student test resulted in significant differences (p<0.05) only in the case of Co. Cd and Fe concentrations in vestimentum increased accordingly with the size of specimens. With respect to vent fluids, extreme uptake seems to be a characteristic of R. pachyptila in the case of Cu and Zn but not for the rest of the analyzed metals. Studies concerning accumulation mechanisms of trace metals in R. pachyptila are needed, particularly on the capacity of this organism to tolerate elevated levels of elements considered as non-essential.

  6. Determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn by Inductively Coupled Plasma Mass Spectroscopy or Flame Atomic Absorption Spectrometry after On-line Preconcentration and Solvent Extraction by Flow Injection System

    Science.gov (United States)

    Bortoli; Gerotto; Marchiori; Mariconti; Palonta; Troncon

    1996-11-01

    The concentrations of Cd, Co, Cu, Mn, Ni, Pb, and Zn in natural and sea waters are too low to be directly determined with by flame atomic absorption spectrometry (FAAS) or graphite furnace atomic absorption spectrometry (GFAAS). Specific sample preparations are requested that make possible the determination of these analytes by preconcentration or extraction. These techniques are affected by severe problems of sample contamination. In this work Cd, Co, Cu, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS) or by atomic absorption spectrometry, in fresh and seawater samples, after on-line preconcentration and following solvent elution with a flow injection system. Bonded silica with octadecyl functional group C18, packed in a microcolumn of 100-μl capacity, was used to collect diethyldithiocarbamate complexes of the heavy metals in aqueous solutions. The metals are complexed with a chelating agent, adsorbed on the C18 column, and eluted with methanol directly in the flow injection system. The methanolic stream can be addressed to FAAS for direct determination of Cu, Ni, and Zn, or collected in a vial for successive analysis by GFAAS. The eluted samples can be also dried in a vacuum container and restored to a little volume with concentrated HNO3 and Milli-Q water for analysis by ICP-MS or GFAAS.

  7. Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode.

    Science.gov (United States)

    Guo, Zhuo; Li, Dong-di; Luo, Xian-Ke; Li, Ya-Hui; Zhao, Qi-Nai; Li, Meng-Meng; Zhao, Yang-Ting; Sun, Tian-Shuai; Ma, Chi

    2017-03-15

    The reduced graphene oxide (RGO) and Chitosan (CS) hybrid matrix RGO-CS were coated onto the glassy carbon electrode (GCE) surface, then, poly-l-lysine films (PLL) were prepared by electropolymerization with cyclic voltammetry (CV) method to prepare RGO-CS/PLL modified glassy carbon electrode (RGO-CS/PLL/GCE) for the simultaneous electrochemical determination of heavy metal ions Cd(II), Pb(II) and Cu(II). Combining the advantageous features of RGO and CS, RGO and CS are used together because the positively charged CS can interact with the negatively changed RGO to prevent their aggregation. Furthermore, CS has many amino groups along its macromolecular chains and possessed strongly reactive with metal ions. Moreover, PLL modified electrodes have good stability, excellent permselectivity, more active sites and strong adherence to electrode surface, which enhanced electrocatalytic activity. The RGO-CS/PLL/GCE was characterized voltammetrically using redox couples (Fe(CN)63-/4-), complemented with electrochemical impedance spectroscopy (EIS). Differential pulse anodic stripping voltammetry (DPASV) has been used for the detection of Cd(II), Pb(II) and Cu(II). The detection limit of RGO-CS/PLL/GCE toward Cd(II), Pb(II) and Cu(II) is 0.01μgL-1, 0.02μgL-1 and 0.02μgL-1, respectively. The electrochemical parameters that exert influence on deposition and stripping of metal ions, such as supporting electrolytes, pH value, deposition potential, and deposition time, were carefully studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    Science.gov (United States)

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  9. Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples.

    Science.gov (United States)

    Siriangkhawut, Watsaka; Grudpan, Kate; Jakmunee, Jaroon

    2011-06-15

    A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L(-1) Zn(II), 5-200 μg L(-1) Cd(II), 10-200 μg L(-1) Pb(II), 20-400 μg L(-1) Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L(-1), respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L(-1) Zn(II), 13 μg L(-1) Cd(II), 13 μg L(-1) Pb(II) and 27 μg L(-1) Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica)

    Energy Technology Data Exchange (ETDEWEB)

    Truzzi, C.; Annibaldi, A.; Illuminati, S.; Bassotti, E.; Scarponi, G. [Polytechnic University of Marche, Ancona (Italy). Department of Marine Science

    2008-09-15

    Square-wave anodic-stripping voltammetry (SWASV) was set up and optimized for simultaneous determination of cadmium, lead, and copper in siliceous spicules of marine sponges, directly in the hydrofluoric acid solution ({proportional_to}0.55 mol L{sup -1} HF, pH {proportional_to}1.9). A thin mercury-film electrode (TMFE) plated on to an HF-resistant epoxy-impregnated graphite rotating-disc support was used. The optimum experimental conditions, evaluated also in terms of the signal-to-noise ratio, were as follows: deposition potential -1100 mV vs. Ag/AgCl, KCl 3 mol L{sup -1}, deposition time 3-10 min, electrode rotation 3000 rpm, SW scan from -1100 mV to +100 mV, SW pulse amplitude 25 mV, frequency 100 Hz, {delta}E{sub step} 8 mV, t{sub step} 100 ms, t{sub wait} 60 ms, t{sub delay} 2 ms, t{sub meas} 3 ms. Under these conditions the metal peak potentials were Cd -654{+-}1 mV, Pb -458 {+-} 1 mV, Cu -198{+-}1 mV. The electrochemical behaviour was reversible for Pb, quasi-reversible for Cd, and kinetically controlled (possibly following chemical reaction) for Cu. The linearity of the response with concentration was verified up to {proportional_to}4 {mu}g L{sup -1} for Cd and Pb and {proportional_to}20 {mu}g L{sup -1} for Cu. The detection limits were 5.8 ng L{sup -1}, 3.6 ng L{sup -1}, and 4.3 ng L{sup -1} for Cd, Pb, and Cu, respectively, with t{sub d}=5 min. The method was applied for determination of the metals in spicules of two specimens of marine sponges (Demosponges) from the Portofino natural reserve (Ligurian Sea, Italy, Petrosia ficiformis) and Terra Nova Bay (Ross Sea, Antarctica, Sphaerotylus antarcticus). The metal contents varied from tens of ng g{sup -1} to {proportional_to}1 {mu}g g{sup -1}, depending on the metal considered and with significant differences between the two sponge species. (orig.)

  11. A numerical transport model for predicting the distributions of Cd, Cu, Ni, Pb and Zn in the southern North Sea: the sensitivity of model results to the uncertainties in the magnitudes of metal inputs

    Science.gov (United States)

    Tappin, A. D.; Burton, J. D.; Millward, G. E.; Statham, P. J.

    1997-10-01

    A new transport model for metals (named NOSTRADAMUS) has been developed to predict concentrations and distributions of Cd, Cu, Ni, Pb and Zn in the southern North Sea. NOSTRADAMUS is comprised of components for water, inorganic and organic suspended particulate matter transport; a primary production module contributes to the latter component. Metal exchange between dissolved (water) and total suspended particulate matter (inorganic + organic) phases is driven by distribution coefficients. Transport is based on an existent 2-D vertically integrated model, incorporating a 35 × 35 km grid. NOSTRADAMUS is largely driven by data obtained during the Natural Environment Research Council North Sea Project (NERC NSP). The sensitivity of model predictions to uncertainties in the magnitudes of metal inputs has been tested. Results are reported for a winter period (January 1989) when plankton production was low. Simulated ranges in concentrations in regions influenced by the largest inflows, i.e. the NE English coast and the Southern Bight, are similar to the ranges in the errors of the concentrations estimated at the northern and southern open sea boundaries of the model. Inclusion of uncertainties with respect to atmospheric (up to ± 54%) and riverine (± 30%) inputs makes little difference to the calculated concentrations of both dissolved and particulate fractions within the southern North Sea. When all the errors associated with the inputs are included there is good agreement between computed and observed concentrations, and that for dissolved and particulate Cd, Cu and Zn, and dissolved Ni and Pb, many of the observations fall within, or are close to, the range of values generated by the model. For particulate Pb, model simulations predict concentrations of the right order, but do not reproduce the large scatter in actual concentrations, with simulated concentrations showing a bias towards lower values compared to those observed. A factor which could have contributed

  12. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase microextraction system

    Energy Technology Data Exchange (ETDEWEB)

    Nomngongo, Philiswa N.; Ngila, J. Catherine, E-mail: jcngila@uj.ac.za

    2014-08-01

    This study reports a simple and efficient method for the determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline samples by inductively coupled plasma mass spectrometry after matrix removal and analyte pre-concentration using hollow fiber-solid phase microextraction (HF–SPME). The optimization of HF-SPME procedure was carried out using two-level full factorial and central composite designs. Four factors (variables), that are, sample solution pH, acceptor phase amount, extraction time and eluent concentration were optimized. Under the optimized experimental conditions, the precision was ≤ 3% (C = 10 μg L{sup −1}, n = 15), limits of detection and quantification ranged from 0.1 to 0.3 μg L{sup −1} and 0.3–0.9 μg L{sup −1}, respectively, and the maximum preconcentration factor was 30. The HF-SPME method was applied for the determination of trace metals in real gasoline and diesel samples. - Highlights: • Hollow fiber solid phase microextraction of metal ions in diesel and gasoline • Use of hollow fiber-supported sol–gel combined with cation exchange resin • Optimization of HF-SPME using multivariate techniques • Determination of Cd, Cu, Fe, Pb and Zn using ICP–MS • Relatively low LOD and LOQ.

  13. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    Science.gov (United States)

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. CHEMICAL SPECIATION OF Pb(II), Cd(II)

    African Journals Online (AJOL)

    Chemical speciation of Pb(II), Cd(II), Hg(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of L-methionine in 0.0-60 % v/v 1,2-propanediol-water mixtures maintaining an ionic strength of 0.16 M at 303 K has been studied pH metrically. The active forms of ligand are LH2+, LH and L-. The predominant species detected are ML, ...

  15. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, Grazyna [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Babczynska, Agnieszka [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Augustyniak, Maria [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Migula, Pawel [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland)]. E-mail: migula@us.edu.pl

    2004-12-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex.

  16. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures.

    Science.gov (United States)

    Xin, Junliang; Huang, Baifei; Yang, Zhongyi; Yuan, Jiangang; Dai, Hongwen; Qiu, Qiu

    2010-03-15

    A pot experiment was conducted to investigate the stability of Cd and/or Pb accumulation in shoot of Cd and Pb pollution-safe cultivars (PSCs), the hereditary pattern of shoot Cd accumulation, and the transfer potentials of Cd and Pb in water spinach (Ipomoea aquatica Forsk.). A typical Cd-PSC, a typical non-Cd-PSC (Cd accumulative cultivar), a hybrid from the former two cultivars, and two typical Cd+Pb-PSCs were grown in seven soils with different concentrations of Cd and Pb. The results showed that concentrations of Cd and Pb in shoot of the PSCs were always lower than the non-PSC and the highest Cd and Pb transfer factors were also always observed in the non-PSC, indicating the stability of the PSCs in Cd and Pb accumulation. Shoot Cd concentration seemed to be controlled by high Cd dominant gene(s) and thus crossbreeding might not minimize Cd accumulation in water spinach. Interaction between Cd and Pb in soils affected the accumulations of the metals in shoot of water spinach. Under middle Cd and Pb treatments, the presence of higher Pb promoted the accumulation of Cd. However, under high Pb treatment, accumulations of Cd and Pb were both restricted. (c) 2009 Elsevier B.V. All rights reserved.

  17. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application.

    Science.gov (United States)

    Moretti, Sarah Mello Leite; Bertoncini, Edna Ivani; Vitti, André César; Alleoni, Luís Reynaldo Ferracciú; Abreu-Junior, Cassio Hamilton

    2016-03-01

    Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.

  18. Comparison of trace element contamination levels (Cu, Zn, Fe, Cd ...

    African Journals Online (AJOL)

    Comparison of trace element contamination levels (Cu, Zn, Fe, Cd and Pb) in the soft tissues of the gastropods Tympanotonus fuscatus fuscatus and Tf radula collected in the Ebrié Lagoon (Côte d'Ivoire): Evidence of the risks linked to linked to lead and.

  19. In vitro antibacterial activity of meclofenamate metal complexes with Cd(II), Pb(II), Co(II), and Cu(II). Crystal structures of [Cd(C14H10NO2Cl2)2∙(CH3OH)]n and [Cu(C14H10NO2Cl2)2(C5H5N)2].

    Science.gov (United States)

    Palacios-Hernández, T; Höpfl, H; Sánchez-Salas, J L; González-Vergara, E; Pérez-Benítez, A; Quiroz-Alfaro, M A; Méndez-Rojas, M A

    2014-10-01

    The synthesis and characterization of five metal complexes derived from sodium meclofenamate (1) are reported: [Cd(C14H10NO2Cl2)2∙(CH3OH)]n∙nCH3OH (6), [Pb(C14H10NO2Cl2)2]n (7), [Co(C14H10NO2Cl2)]n (8), [Cu(C14H10NO2Cl2)]n (9), and [Cu(C14H10NO2Cl2)2(C5H5N)2] (10) (C14H10NO2Cl2=meclofenamate; C5H5N=pyridine). The characterization of the compounds was based on FTIR and UV-visible spectroscopy, mass spectrometry and, in the case of complexes 6 and 10, single crystal X-ray diffraction analysis. For compound 6, the structural analysis revealed a 1-D polymeric chain structure, in which pentagonal planar [Cd(RCOO)2(CH3OH)] units were linked through bridging carboxylate functions of the meclofenamate ligands. The overall coordination environment of the Cd(II) ions was seven-coordinate, since each carboxylate group exhibited a μ3-bridging coordination mode. On the other hand, for complex 10 a discrete mononuclear structure was observed, in which the six-coordinate copper(II) metal atoms were coordinated by two pyridine molecules and the carboxylate functions of two meclofenamate entities, in an anisobidentate coordination mode. The antibacterial activity of compounds 6-9 against four strains of Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram negative (Escherichia coli and Pseudomonas aeruginosa) bacteria was examined, finding that only complex 6 was active. Additionally, it was found that the Co(II) and Cu(II) complexes 8 and 9 showed peroxidase activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II binary complexes of l-methionine in 1,2-propanediol-water mixtures

    Directory of Open Access Journals (Sweden)

    M. Padma Latha

    2007-04-01

    Full Text Available Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-methionine in 0.0-60 % v/v 1,2-propanediol-water mixtures maintaining an ionic strength of 0.16 M at 303 K has been studied pH metrically. The active forms of ligand are LH2+, LH and L-. The predominant species detected are ML, MLH, ML2, ML2H, ML2H2 and MLOH. Models containing different numbers of species were refined by using the computer program MINIQUAD 75. The best-fit chemical models were arrived at based on statistical parameters. The trend in variation of complex stability constants with change in the dielectric constant of the medium is explained on the basis of electrostatic and non-electrostatic forces.

  1. Levels of Cd, Cu, Pb and V in marine sediments in the vicinity of the Single Buoy Moorings (SBM3) at Mina Al Fahal in the Sultanate of Oman.

    Science.gov (United States)

    Al-Husaini, Issa; Abdul-Wahab, Sabah; Ahamad, Rahmalan; Chan, Keziah

    2014-06-15

    Recently in the Sultanate of Oman, there has been a rapid surge of coastal developments. These developments cause metal contamination, which may affect the habitats and communities at and near the coastal region. As a result, a study was conducted to assess the level of metal contamination and its impact on the marine sediments in the vicinity of the Single Buoy Moorings 3 (SBM3) at Mina Al Fahal in the Sultanate of Oman. Marine subtidal sediment samples were collected from six different stations of the SBM3 for the period ranging from June 2009 to April 2010. These samples were then analyzed for their level and distribution of the heavy metals of cadmium (Cd), copper (Cu), lead (Pb) and vanadium (V). Overall, low concentrations of all four heavy metals were measured from the marine sediments, indicating that the marine at SBM3 is of good quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Simultaneous determination of Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe in water samples by differential pulse stripping voltammetry at a hanging mercury drop electrode.

    Science.gov (United States)

    Ghoneim, M M; Hassanein, A M; Hammam, E; Beltagi, A M

    2000-06-01

    A highly sensitive and selective voltammetric procedure is described for the simultaneous determination of eleven elements (Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe) in water samples. Firstly, differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) is used for the direct simultaneous determination of Cd, Pb, Cu, Sb and Bi in 0.1 M HCI solution (pH = 1) containing 2 M NaCl. Then, differential pulse cathodic stripping voltammetry (DPCSV) is used for the determination of Se in the same solution. Zn is subsequently determined by DPASV after raising the pH of the same solution to pH 4. Next, the pH of the medium is raised to pH 8.5 by adding NH3/NH4Cl buffer solution for the determination of Mn by DPASV. Ni and Co are determined in the same solution by differential pulse adsorptive stripping voltammetry (DPAdSV) after adding DMG (1 x 10(-4) M). Finally, 1 x 10(-5) M 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is added to the solution for the determination of Fe by DPAdSV. The optimal conditions are described. Relative standard deviations and relative errors are calculated for the eleven elements at three different concentration levels. The lower detection limits for the investigated elements range from 1.11 x 10(-10) to 1.05 x 10(-9)M, depending on the element determined. The proposed analysis scheme was applied for the determination of these eleven elements in some ground water samples.

  3. Respon Bioakumulator Eceng Gondok (Eichhornia crassipes Terhadap Logam Berat Pb dan Cd di Sungai Pegangsaan Dua

    Directory of Open Access Journals (Sweden)

    Sri Teguh Rahayu

    2014-04-01

    Full Text Available Eichhornia crassipes is one of Indonesia’s wild plant considered as weed. Its presence can disrupt ecosystems in the river. However, it is proven to absorb Pb and Fe. It is also believed that E. crassipescan absorb other metals such as Hg, Zn, Cu and Cd which were belong to the same group as Pb and Fe. In addition to heavy metal sequestration, Eichhornia crassipes can also absorb pesticide residues. This descriptive research was done to determine the bioaccumulator response to Pb and Cd in Pegangsaan Dua river using Inductively Coupled Plasma method. Bioaccumulator response of Eichhornia crassipes were analyzed from the stem. The results of the study also showed that the Eichhornia crassipes plants were able to accumulate heavy metals of Pb and Cd. The organs most potential to absorb Cd and Pb were stem organ with average point 1 of Cd: 0,056 ppm and Pb: 0,5002 ppm, then the average point 2 of Cd: 0,0328 ppm and Pb: 0,0215 ppm, and the average point 3 of Cd: 0.0143 ppm and Pb: 1,293 ppm. In the end, it is suggested that the stem organ could be developed as bioaccumulation agent.

  4. Adsorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead Avena fatua biomass and the effect of these metals on their growth.

    Science.gov (United States)

    Areco, María Mar; Saleh-Medina, Leila; Trinelli, María Alcira; Marco-Brown, Jose Luis; Dos Santos Afonso, María

    2013-10-01

    The biosorption of copper(II), zinc(II), cadmium(II) and lead(II) from aqueous solutions by dead Avena fatua biomass and the effect of these metals on the growth of this wild oat were investigated. Pseudo-first- and second-order and intra-particle diffusion models were applied to describe the kinetic data and to evaluate the rate constants. The adsorption kinetics of all the metals follows a pseudo-second-order model. The adsorption capacity was determined, and the Freundlich and Langmuir models were applied. The experimental data obtained for all the metals are best described by the Langmuir model. A. fatua was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and zeta potential. The results obtained evidence the presence of Zn(II), Cu(II), Cd(II) or Pb(II) on the surface of the weed. The growth of A. fatua was affected by the presence of all metals. The decrease in the growth rate with increasing metal concentration was more noticeable for zinc. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A novel cellulose-dioctyl phthate-baker's yeast biosorbent for removal of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II).

    Science.gov (United States)

    Mahmoud, Mohamed E; Yakout, Amr A; Abed El Aziz, Marwa T; Osman, Maher M; Abdel-Fattah, Tarek M

    2015-01-01

    In this work, dioctyl phthalate (Dop) was used as a highly plasticizing material to coat and link the surface of basic cellulose (Cel) with baker's yeast for the formation of a novel modified cellulose biosorbent (Cel-Dop-Yst). Characterization was accomplished by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric analysis (TGA) and Scanning Electron Microscope (SEM) measurements. The feasibility of using Cel-Dop-Yst biosorbent as an efficient material for removal of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II) ions was explored using the batch equilibrium technique along with various experimental controlling parameters. The optimum pH values for removal of these metal ions were characterized in the range of 5.0-7.0. Cel-Dop-Yst was identified as a highly selective biosorbent for removal of the selected divalent metal ions. The Cel-Dop-Yst biosorbent was successfully implemented in treatment and removal of these divalent metal ions from industrial wastewater, sea water and drinking water samples using a multistage microcolumn technique.

  6. Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: An emphasis on permissible limits and risk assessment of exposure to heavy metals.

    Science.gov (United States)

    Shahbazi, Yasser; Ahmadi, Farhad; Fakhari, Farnoosh

    2016-02-01

    This study was carried out to determine the concentrations of some heavy metals in dairy products, collected from five industrial regions in Iran (n = 250 samples) during winter and summer in 2013. The samples were analyzed using the differential pulse anodic and cathodic stripping voltammetry technique. The obtained ranges of mean Pb, Cd, Cu, Zn and Se were as follow: in raw milk 14.0, 1.11, 427, 571, 2.19 μg kg(-1), in pasteurized milk 9.59, 1.0, 378, 447, 1.78 μg kg(-1), in cheese 14.5, 1.25, 428, 586, 1.68 μg kg(-1), in yoghurt 7.54, 0.99, 399, 431, 1.23 μg kg(-1) and in doogh 7.2, 0.84, 320, 369, 0.99 μg kg(-1), respectively. In nearly all cases the concentrations of the metals were below the international permissible limits and do not pose a health concern for the consumption of milk and dairy products in Iran. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Synthesis and characterization of PbO-CdO nanocomposite and its effect on (Bi,Pb)-2223 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Nabil A.A. [Thamar University, Physics Department, Faculty of Education, Thamar (Yemen); Al-Gaashani, R. [Thamar University, Physics Department, Faculty of Education, Thamar (Yemen); Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Doha (Qatar); Abd-Shukor, R. [Universiti Kebangsaan Malaysia, School of Applied Physics, Bangi, Selangor (Malaysia)

    2017-03-15

    A PbO-CdO nanocomposite-added Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} ((Bi,Pb)-2223) superconductor has been prepared. The effect of the PbO-CdO nanocomposite addition on the transport critical current density (J{sub c}) of (Bi,Pb)-2223 superconductor was investigated. The transition temperature (T{sub c-onset}), zero electrical resistance temperature (T{sub c-R=0}), and J{sub c} of the samples were measured by the four-probe method. Phase formation, structure, and microstructure of samples were investigated. The distribution of nanoparticle size was determined. The results indicated that the PbO-CdO-added samples showed larger grain size and an increased volume fraction of high-T{sub c} phase (Bi-2223) compared to the non-added sample. A slight increase in T{sub c-R=0} of x = 0.15 wt% was observed. J{sub c} of the PbO-CdO nanocomposite-added samples was significantly higher than for the non-added sample. That could be explained by the possibility that the PbO-CdO nanocomposite acts as an effective flux pinning center in (Bi,Pb)-2223. At 77 K, J{sub c} of x = 0.15 wt% added sample was more than 20 times larger than J{sub c} of the non-added sample (x = 0 wt%). A combined effect of enhanced flux pinning, increased fraction of high-T{sub c} phase and improved grain size, which led to increase in the J{sub c} of added samples, is discussed. (orig.)

  8. Evaluation de la contamination de la chaîne trophique par les éléments traces (Cu, Co, Zn, Pb, Cd, U, V et As dans le bassin de la Lufira supérieure (Katanga/RD Congo

    Directory of Open Access Journals (Sweden)

    Katemo Manda, B.

    2010-01-01

    Full Text Available Evaluation of Contamination of the Food Chain by Trace Elements (Cu, Co, Zn, Pb, Cd, U, V and As in the Basin of the Upper Lufira (Katanga/DR Congo. Seven trace elements (Cu, Co, Zn, Cd, Pb, U, V and As were analyzed using a HR ICP-MS in samples of water, plankton, leaves of Phragmites australis, muscle and gills of three fish species (Oreochromis macrochir, Tilapia rendalli, Clarias gariepinus collected in the basin of the upper Lufira. The results indicate a high copper (70.9 ppm and cobalt (32.3 ppm content in the effluent of complex hydrometallurgical Shituru. If contamination of rivers decreases with distance from the pollution source, the values are very high in lake Tshangalele for plankton and leaves of P. australis. For fish, the results indicate that Pb, U, V, Cu, Co and Cd accumulates preferentially in the gills but Zn accumulates more in the muscles. As accumulates in the same order of magnitude in both organs. These results confirm the pollution of the basin by the effluents from Lufira complex hydrometallurgical Shituru.

  9. Use of limestone filler as a sorbent for the removal of As(V), Pb(II), Cu(II), Zn(II) and Cd(II) in contaminated sites

    Science.gov (United States)

    Martinez Sanchez, Maria Jose; Veiga, Jose Manuel; Garcia-Lorenzo, Maria Luz; Hernandez Cordoba, Manuel; Martinez-Lopez, Salvadora; Perez-Sirvent, Carmen

    2017-04-01

    Many of the approaches used to treat soils contaminated by heavy metals are invasive, and do not restore the natural equilibrium of the environment [1]. For this reason, one of procedures used to stabilise heavy metal-contaminated soils in situ is to directly add amendments, which, while they may not totally eliminate toxic elements, help natural retention mechanisms, induce sorption and reduce mobility and bioavailability. In this respect, the use of calcareous materials may be an excellent, eco-friendly way for recovering this type of soils [2], and this communication reports studies made in our laboratory for such a purpose. The influence of different variables in the preparation of mixtures used to stabilize contaminated soils (soil pH, temperature and composition of the contaminated soil / limestone filler) was studied by means of a factorial experimental design. The main interaction effects of the factors obtained on different contaminated soils were used along with the results of the physicochemical and mineralogical characterization in the same data matrix to be analyzed by principal components analysis (PCA). To evaluate the optimal values of the variables, spectroscopic techniques were used to measure the level of leached metals (Pb, Cd, Cu, As, Zn and Fe). The environmental conditions were simulated and controlled by means of a climatic chamber to evaluate simultaneously the processes of geochemical alteration and passivation of the mixture. The results obtained showed that the corresponding factors of the experimental design may be an important source of information to show correlations on some of the most significant variables such as the concentration of metals and, in this way, optimize the use of the in situ stabilizer. [1] H. Genç-Fuhrman, P.S. Mikkelsen, A. Ledin. Water Res 41 (2007) 591-602. [2] C. A. Cravotta, M.K. Trahan. Appl. Geochem 5 (1999) 581-606.

  10. Survey of persistent organochlorine contaminants (PCBs, PCDD/Fs, and PAHs), heavy metals (Cu, Cd, Zn, Pb, and Hg), and arsenic in food samples from Huelva (Spain): levels and health implications.

    Science.gov (United States)

    Bordajandi, Luisa R; Gómez, Gema; Abad, Esteban; Rivera, Josep; Del Mar Fernández-Bastón, María; Blasco, Julián; González, María José

    2004-02-25

    Concentrations of PCBs, PCDDs, and PCDFs, heavy metals (Cu, Cd, Zn, Pb, and Hg), and arsenic have been determined in a great variety of food samples purchased in different markets across the city of Huelva, located in southwestern Spain and under strong industrial activity. All samples analyzed presented concentrations below the maximum allowed by the European Community regarding PCDD/Fs, with the exception of samples within the meat group. An estimation of the daily intake resulted in 1.15 pg of WHO(PCDD/Fs)-TEQ/kg of body weight/day for a 70 kg person and 2.63 pg of WHO-TEQ/kg of body weight/day when PCBs were included, therefore accounting for a similar or even higher percentage than PCDD/Fs and showing the importance of their inclusion in monitoring studies. Meat and meat products, together with vegetable oils and dairy products, were the major food groups contributing to the estimated daily intake. For heavy metals and arsenic, the concentrations found were under the value proposed by European regulations, and estimated daily intakes were well below those proposed by the WHO for all metals investigated. PAHs have been analyzed in food samples from marine origin, values ranging from 8.22 to 71.4 ng/g of fresh weight. Pyrene was the most abundant compound, accounting for >80% in the samples investigated. The most carcinogenic PAHs, such as benzo[a]pyrene and dibenz[a,h]anthracene, were in all cases below the limits of detection. Therefore, the samples analyzed in this survey can be considered as safe with regard to the levels obtained and the in-force legislation.

  11. EXPLORING POSSIBILITIES OF CULTIVATION A UNPOLLUTED PLANT PRODUCE IN Pb AND Cd CONTAMINATED SITES

    Directory of Open Access Journals (Sweden)

    Atanas TOMOV

    2006-02-01

    Full Text Available The control of heavy metals in such way that soil function and product quality are not impeded is a prerequisite to sustainable agriculture. Growing anthropogenic fl uxes of toxic heavy metals in agro-ecosystems affect on purity of farm products and soil fertility. In the article we describe a fi eld experiment – cultivation of potatoes on soil with a medium level of pollution / Zn, Cu, Pb, Cd etc/. We studied the most toxic of them – Pb and Cd; as well as the possibilities for reducing their phytoavailability and accumulation in potatoes tubers, applying soil amendments.

  12. Behavioural and biochemical responses to metals tested alone or in mixture (Cd-Cu-Ni-Pb-Zn) in Gammarus fossarum: From a multi-biomarker approach to modelling metal mixture toxicity.

    Science.gov (United States)

    Lebrun, Jérémie D; Uher, Emmanuelle; Fechner, Lise C

    2017-12-01

    Metals are usually present as mixtures at low concentrations in aquatic ecosystems. However, the toxicity and sub-lethal effects of metal mixtures on organisms are still poorly addressed in environmental risk assessment. Here we investigated the biochemical and behavioural responses of Gammarus fossarum to Cu, Cd, Ni, Pb and Zn tested individually or in mixture (M2X) at concentrations twice the levels of environmental quality standards (EQSs) from the European Water Framework Directive. The same metal mixture was also tested with concentrations equivalent to EQSs (M1X), thus in a regulatory context, as EQSs are proposed to protect aquatic biota. For each exposure condition, mortality, locomotion, respiration and enzymatic activities involved in digestive metabolism and moult were monitored over a 120h exposure period. Multi-metric variations were summarized by the integrated biomarker response index (IBR). Mono-metallic exposures shed light on biological alterations occurring at environmental exposure levels in gammarids and depending on the considered metal and gender. As regards mixtures, biomarkers were altered for both M2X and M1X. However, no additive or synergistic effect of metals was observed comparing to mono-metallic exposures. Indeed, bioaccumulation data highlighted competitive interactions between metals in M2X, decreasing subsequently their internalisation and toxicity. IBR values indicated that the health of gammarids was more impacted by M1X than M2X, because of reduced competitions and enhanced uptakes of metals for the mixture at lower, EQS-like concentrations. Models using bioconcentration data obtained from mono-metallic exposures generated successful predictions of global toxicity both for M1X and M2X. We conclude that sub-lethal effects of mixtures identified by the multi-biomarker approach can lead to disturbances in population dynamics of gammarids. Although IBR-based models offer promising lines of enquiry to predict metal mixture toxicity

  13. Pb and Cu speciation and bioavailability in port wine.

    Science.gov (United States)

    Azenha, M A; Vasconcelos, M T

    2000-11-01

    Information about the speciation of Pb and Cu in different types of Port wines (white, single-year and blended aged red, and young red wines) was gathered to estimate their respective bioavailabilities to man. For this purpose, wines were subjected to in vitro simulated gastrointestinal digestion, and the following properties were studied in the wines and its gastric and intestinal digests: (1) average conditional stability constant (K(av)) of the Cu complexes (by potentiometry), of the strongest Pb complexes (those inert to cathodic voltammetry, K'(av)), and of the respective ligand concentrations (CC or CC(inert)); (2) the distribution of the metal among the different groups of compounds of different molecular weights and/or polarities in the different bands separated by reverse phase high-performance liquid chromatography; (3) the total metal concentration present in the wines and the respective fractions present in the soluble and in the dialyzable fractions of the digest (an estimation of the assimilable fraction). The study showed that the complexing affinity for Pb (expressed by either CC(inert) or K'(av)) of white and very aged red Port wines was lower than for the remainder of the wines. For Cu, the strength of the ligands in the white wines was lower (Pb, CC(inert) was much higher after the digestion than for the untreated wines, whereas the log K'(av) values were approximately 1 order of magnitude lower. These parameters could not be determined for Cu in the gastrointestinal digests. For all of the studied wines the dialyzable fraction of Pb during the intestinal digestion was low (10-22% of the total Pb) and the dialyzable fractions of Cu were close to 50% of the total Cu.

  14. Cumulation of Cu, Zn, Cd, and Mn in Plants of Gardno Lake

    Directory of Open Access Journals (Sweden)

    Trojanowski J.

    2013-04-01

    Full Text Available In the present paper there have been shown the results of research on yhe content of Zn, Cd, Cu, Mn and Pb in chosen plants of Lake Gardno.The biggest concentration of those metals has been observed in Potamogton natans and Elodea canadensis, on average Zn – 34.9, Pb -2.77, Cd – 0.62, Cu – 3.24 and Mn – 257.4 μg g-1. It has been found that the over-ground parts of the plants under analysis cumulate several times less of heavy metals than their roots. The determined enrichment factors enabled the researchers to state that Cu in the examined plants is of natural origin while Mn, Cd and Zn – of anthropogenic origin.

  15. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    Science.gov (United States)

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  16. Cu-Doped-CdS/In-Doped-CdS Cosensitized Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available Cu-doped-CdS and In-doped-CdS cosensitized (Cu-doped-CdS/In-doped-CdS quantum dot solar cells (QDSCs are introduced here. Different cosensitized sequences, doping ratios, and the thickness (SILAR cycles of Cu-doped-CdS and In-doped-CdS are discussed. Compared with undoped CdS QDSCs, the short circuit current density, UV-Vis absorption spectra, IPCE (monochromatic incident photon-to-electron conversion, open circuit voltage, and so on are all improved. The photoelectric conversion efficiency has obviously improved from 0.71% to 1.28%.

  17. Cu and Pb Adsorption on Some Bentonitic Clays

    OpenAIRE

    İNEL, Oğuz; ALBAYRAK, Fehmi; AŞKIN, Ayşegül

    1998-01-01

    Cu2+ and Pb2+ adsorption isotherms were measured on some clay samples obtained from various regions of Turkey. Also specific surface areas of clays were determined from adsorption data of ortho-phenanthroline(OP). The adsorptions of ions and OP were studied using the batch equilibration technique as a function of adsorbate concentration. The adsorption data, over the whole range of concentrations used, follow the Langmuir adsorption isotherm. The retention capacities of the adsorbates and the...

  18. Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell

    Science.gov (United States)

    Justin Raj, C.; Karthick, S. N.; Park, Songyi; Hemalatha, K. V.; Kim, Soo-Kyoung; Prabakar, K.; Kim, Hee-Je

    2014-02-01

    Single crystalline zinc oxide (ZnO) nanorod array has been used for the fabrication of CdSe/CdS/PbS/ZnO quantum dot sensitized solar cell (QDSSC). The ZnO nanorod array photoanodes are sensitized with consecutive layer of PbS, CdS and CdSe quantum dots by employing simple successive ion layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The performances of the QDSSCs are examined in detail using polysulfide electrolyte with copper sulfide (CuS) counter electrode. The combination of two successive layers of PbS with CdSe/CdS/ZnO shows an improved short circuit current density (12.223 mA cm-2) with a maximum power to conversion efficiency of 2.352% under 1 sun illumination. This enhancement is mainly attributed due to the better light harvesting ability of the PbS quantum dots and make large accumulation of photo-injected electrons in the conduction band of ZnO, and CdSe/CdS layers lower the recombination of photo-injected electrons with the electrolyte, these are well evidenced with the photovoltaic studies and electrochemical impedance spectroscopy.

  19. On the concentration and separation of the trace-elements fe, cu, zn, mn, pb, mo and co : Paper chromatography

    NARCIS (Netherlands)

    Erkelens, P.C. van

    1961-01-01

    Paper chromatographic separations are described by which the minor constituents of biological ashes are separated either into: (Pb) - Mn - Co - (Pb) - Cu - Fe, Mo, Zn; or into: Cu, Mn, Co - Pb - Fe - Mo - Zn.

  20. Synthesis of BiPbSrCaCuO superconductor

    Science.gov (United States)

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  1. Study on the relationship between speciation of heavy metals and their ecotoxicity. I. Toxicity of Cu, Cd, Pb and Zn in seawater to three marine algae in the presence of different complexation agents

    Science.gov (United States)

    Zhang, Manping; Wang, Juying; Bao, Junbo

    1992-09-01

    Heavy metal is a main pollutant in the marine ecosystem, so study on the effect of heavy metal on phytoplankton is important. Algae ( Chaetoceros sp., Dunaliella sp., Dicrateria zhanjiangenis Hu. var. sp.) were laboratory cultured to observe the effect of heavy metals on their growth. The effect of different metal ion concentration, the detoxication effect of complexation agents and the growth of algae in different media and different nutrition levels were studied to evaluate the effect of metal speciation. It is proved that trace amount of heavy metals can stimulate the growth of algae cells but that high concentration is lethal. The sequence of toxicity is Cd2+>Zn2+>Pb2+. In ordinary nutrition conditions, the detoxication sequence of complexation agents to Chaetoceros sp. is EDTA >sodium salicylate>sodium oxalate >sodium citrate>sulfanilic acid>O-phenanthroline. This is in good conformity with the stability constant sequence of these agents with copper and good evidence that toxicity of metal ion is related to its activity and not to its total concentration.

  2. Concentrations of Pb, Zn, and Cu in Taraxacum spp. in relation to urban pollution

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.M.; Lanaras, T.; Sgardelis, S.P.; Pantis, J.D. (Univ. of Thessaloniki (Greece))

    1994-08-01

    The combustion of petroleum fuel and exhaust emissions are major sources of atmospheric pollution in cities which result in the deposition of toxic substances, particularly heavy metals, in the surface layers of soils. Lead in particular enters the environment from the use of tetraethyl lead as an antiknock agent for petrol engines constituting 21% of fine particles emitted from cars burning leaded petrol. Antiwear protectants incorporated in lubricants often contain Cd, Cr, Cu, Hg, Ni, Pb and/or Zn which are also released into the environment by inefficient engines and irresponsible dumping of engine oils. Zn from tyre wear and Cu from diesel engines also add considerably to the environmental metal burden. Lowering of the permitted lead content of petrol and the growing use of unleaded fuel are expected to lead to reductions in the environmental lead burden, however, until unleaded fuel becomes universally accepted lead contamination, particularly of roadside soils and vegetation is a major cause for concern. A direct relationship between car exhaust, the Pb content of needles of Abies alba and reduced growth has been observed and can extend hundreds of metres from major highways. Lead tolerance has been observed in higher plants growing mine waste soils and to a lesser extent on lead-contaminated roadside soils. Automobiles which are responsible for line sources of pollution emissions in rural and suburban areas have a more far-reaching impact on roadside vegetation, already under considerable stress, in urban areas. Information on heavy metal effects on vegetation in urban environments however, are scarce. Modeling and multivariate analysis of a few of the factors involved have provided only limited data related to plant performance in these complex environments. Therefore in this study, the extent of heavy metal pollution by Pb, Zn, Cu and Cd in soils and in dandelion plants in the city of Thessaloniki has been examined. 20 refs., 2 figs., 3 tabs.

  3. New roles for icosahedral clusters in intermetallic phases: micelle-like segregation of Ca-Cd and Cu-Cd interactions in Ca10Cd27Cu2.

    Science.gov (United States)

    Hadler, Amelia B; Harris, Nicholas A; Fredrickson, Daniel C

    2013-11-20

    Despite significant progress in the structural characterization of the quasicrystalline state, the chemical origins of long- and short-range icosahedral order remain mysterious and a subject of debate. In this Article, we present the crystal structure of a new complex intermetallic phase, Ca10Cd27Cu2 (mC234.24), whose geometrical features offer clues to the driving forces underlying the icosahedral clusters that occur in Bergman-type quasicrystals. Ca10Cd27Cu2 adopts a C-centered monoclinic superstructure of the 1/1 Bergman approximant structure, in which [110] layers of Bergman clusters in the 1/1 structure are separated through the insertion of additional atoms (accompanied by substantial positional disorder). An examination of the coordination environments of Ca and Cu (in the ordered regions) reveals that the structure can be viewed as a combination of coordination polyhedra present in the nearest binary phases in the Ca-Cd-Cu compositional space. A notable feature is the separation of Ca-Cd and Cu-Cd interactions, with Bergman clusters emerging as Ca-Cd Friauf polyhedra (derived from the MgZn2-type CaCd2 phase) encapsulate a Cu-Cd icosahedron similar to those appearing in Cu2Cd5. DFT chemical pressure calculations on nearby binary phases point to the importance of this segregation of Ca-Cd and Cu-Cd interactions. The mismatch in atomic size between Cu and Cd leads to an inability to satisfy Ca-Cu and Ca-Cd interactions simultaneously in the Friauf polyhedra of the nearby Laves phase CaCd2. The relegation of the Cu atoms to icosahedra prevents this frustration while nucleating the formation of Bergman clusters.

  4. Nanoporous Xerogel for Adsorption of Pb2+ and Cd2+

    Directory of Open Access Journals (Sweden)

    F. B. Sarand

    2015-07-01

    Full Text Available Classical xerogels are robust, inexpensive and nontoxic materials with low-ordered nanoporous structures. In water streams where the pH is higher than the Point of Zero Charge, the surface of classical xerogels such as tetraethoxy orthosilan (TEOS xerogel is negatively charged. It was assumed that a xerogel can work as a strong adsorbent for metal ions without further modification. Therefore, the capability of TEOS xerogel for adsorption of two heavy metal ions, Pb2+ and Cd2+ , from aqueous solution was studied. The batch experiments revealed that the adsorbent has higher adsorption capacity for Pb2+ (58.82 mg/g and Cd2+ (35.71 mg/g as compared with the reported low-cost adsorbents. Kinetics and thermodynamic studies were employed to explain the adsorption mechanism. It was concluded that the adsorption of both ions on TEOS xerogel obey chemisorption mechanism. However, the reaction of Pb2+ with the adsorbent is thermodynamic controlled and the one of Cd2+ is kinetic controlled.

  5. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Directory of Open Access Journals (Sweden)

    Longbin Huang

    Full Text Available Elevated inorganic phosphate (Pi concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu-lead (Pb-zinc (Zn mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7, the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5, EHM-TD (fresh Cu-stream, high magnetite content and local soil (weathered shale and schist, respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed, oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2, ankerite (Ca(Fe Mg(CO32 and siderite (FeCO3, as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,FeS, ZnS, (Zn,CdS may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  6. Electrical Characterization of Cu Composition Effects in CdS/CdTe Thin-Film Solar Cells with a ZnTe:Cu Back Contact: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. V.; Duenow, J. N.; Kuciauskas, D.; Kanevce, A.; Dhere, R. G.; Young, M. R.; Levi, D. H.

    2012-07-01

    We study the effects of Cu composition on the CdTe/ZnTe:Cu back contact and the bulk CdTe. For the back contact, its potential barrier decreases with Cu concentration while its saturation current density increases. For the bulk CdTe, the hole density increases with Cu concentration. We identify a Cu-related deep level at {approx}0.55 eV whose concentration is significant when the Cu concentration is high. The device performance, which initially increases with Cu concentration then decreases, reflects the interplay between the positive influences and negative influences (increasing deep levels in CdTe) of Cu.

  7. Adsorption of Pb 2+ and Cu2+ ions from aqueous solutions by ...

    African Journals Online (AJOL)

    The removal of heavy metal ions Cu2+ and Pb2+ from aqueous solution using mango tree (Mangifera indica) saw dust as adsorbent under different experimental conditions was investigated. The effects of pH, contact time, temperature, adsorbent dosage and initial metal ion concentrations for the removal of Cu2+ and Pb2+ ...

  8. [Competitive adsorption kinetics of aqueous Pb2+ and Cu2+ on nano-HAP surfaces].

    Science.gov (United States)

    Hu, Tian-tian; Cang, Long; Wang, Yu-jun; Si, You-bin; Zhou, Dong-mei

    2012-08-01

    Competitive adsorption kinetics of aqueous Pb2+ and Cu2+ on Nano-HAP surfaces were investigated by performing the adsorption kinetic experiments and comparing the change of zeta potentials and XRD-map before and after metal adsorption. The results showed that the adsorption quantity of Pb2+ on Nano-HAP was higher than that of Cu2+ in the single system. However, the competitive adsorption of Pb2+ and Cu2+ occurred in the co-existence system of Pb2+ and Cu2+. The adsorption quantity of Cu2+ on Nano-HAP increased, while that of Pb2+ decreased. The X-ray diffraction (XRD) and adsorption quantities of Ca2+ surface analysis indicated that dissolution-precipitation is the primary immobilization mechanism for Pb2+, while surface complexation and electrostatic adsorption account for Cu2+ sequestration. The adsorption quantities of Pb2+ and Cu2+ on Nano-HAP had marked linear relationship with Ca2+ release from Nano-HAP (R2 0.861-0.954). The adsorption kinetics were fitted with the equations of first-order, second-order, parabola, Elovich, double constant equation and LJ function, respectively, in which the second-order and power function kinetics equation fitted the results best. According to above results, the adsorption kinetics of Pb2+ and Cu2+ on Nano-HAP is a complex adsorption processes with both chemical reaction and physical adsorption.

  9. Cd, Zn, Ni and Cu in the Indian Ocean

    NARCIS (Netherlands)

    Saager, Paul M.; Baar, Hein J.W. de; Howland, Robin J.

    1992-01-01

    Vertical profiles of dissolved Cd, Zn, Ni and Cu in the Northwest Indian Ocean (Arabian Sea) exhibit a nutrient type distribution also observed in other oceans. The area is characterized by strong seasonal upwelling and a broad oxygen minimum zone in intermediate waters. However, neither Cd, Zn, Ni

  10. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State Univeristy; Brinkman, Daniel [Arizona State Univeristy; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Dragica, Vasileska [Arizona State Univeristy; Ringhofer, Christian [Arizona State University

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  11. Interactions of core–shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: Consequences for Cu and Pb removal

    Energy Technology Data Exchange (ETDEWEB)

    Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch [Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environment Science, Faculty of Sciences, University of Geneva, 10, route de Suisse, 1290 Versoix (Switzerland); Pinheiro, José Paulo [IBB/CBME, Department of Chemistry and Biochemistry, University of the Algarve, Gambelas Campus, 8005-139 Faro (Portugal); Floriani, Magali [IRSN/DEI/SECRE/LRE CEA Cadarache, 13115 Saint-Paul-Lez-Durance (France); Garcia, Miguel [School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Station 15, CH-1015 Lausanne (Switzerland)

    2013-10-15

    Highlights: • QDs associate with C. metallidurans in time and concentration dependent manner. • 12.9 nm size QDs adhere to the bacterial surface and enter the periplasmic space. • QDs bound significantly Cu and Pb. • QDs increase Cu and Pb content in C. metallidurans during short term exposure. -- Abstract: In the present study we address the interactions of carboxyl-CdSe/ZnS core/shell quantum dots (QDs), as a model of water dispersible engineered nanoparticles, and metal resistant bacteria Cupriavidus metallidurans, largely used in metal decontamination. The results demonstrate that QDs with average hydrodynamic size of 12.9 nm adhere to C. metallidurans. The percentage of bacterial cells displaying QD-fluorescence increased proportionally with contact time and QD concentration in bacterial medium demonstrating the association of QDs with the metal resistant bacteria. No evidence of QD internalization into bacterial cytoplasm was found by transmission electron microscopy with energy dispersive X-ray spectrometry, however QD clusters of sizes between 20 and 50 nm were observed on the bacterial surface and in the bacterial periplasmic compartment; observations consistent with the losses of membrane integrity induced by QDs. The presence of 20 nM QDs induced about 2-fold increase in Cu and Pb uptake fluxes by C. metallidurans exposed to 500 nM Pb or Cu, respectively. Overall, the results of this work suggest that when present in mixture with Cu and Pb, low levels of QDs originating from possible incidental release or QD disposal could increase metal accumulation in metal resistant bacterium.

  12. PENGARUH LOGAM BERAT Cd, Pb TERHADAP PERUBAHAN WARNA BATANG DAN DAUN SAYURAN

    Directory of Open Access Journals (Sweden)

    Hening Widowati

    2011-04-01

    Full Text Available Cd, Pb heavy metal absorption in aquatic vegetables: Genjer (Limnocharis flava, Kangkung air (Ipomoea aquatica Forsk dan Selada air (Nasturtium officinale R. Br, studied to see the relationship with green figure scale. The research objective was to identify the accumulated Cd, Pb in the consumed organ vegetable, and their impacts to the levels of green figure scale. The research was undertaken by planting three kinds of the aquatic vegetables to the contaminated pure Cd,pure Pb media, mixture of Cd and Pb with factorial randomized block design. Data were analyzed by factorial One-Way Anova and further test of Duncan and HSD to see the difference of Cd, Pb and green figure scale, regression and correlation to know the contribution of Cd, Pb in influencing the green figure scale. Variety of vegetables, media, organ, and the interaction influences the accumulation of Cd, Pb and level of green figure scale. There is a relationship between Cd, Pb metal accumulation to the level of green figure scale of the aquatic vegetables, with negative correlation that Cd, Pb decreased the vegetable green figure scale.

  13. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    Science.gov (United States)

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  14. Investigations of Cu, Pb and Zn partitioning by sequential extraction in harbour sediments after electrodialytic remediation

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne

    2010-01-01

    Electrodialytic remediation was used to remove Cu, Zn and Pb from three different contaminated harbour sediments. Electrodialytic experiments lasting 2 and 4 weeks were performed and 48-86% Cu, 74-90% Zn and 62-88% Pb were removed from the different sediments and the removal increased with longer....... Zn and Pb were found in the exchangeable and reducible phases before remediation. Zn was still found in the exchangeable and reducible phases after remediation, whereas most Pb was removed from these phases during electrodialytic remediation....

  15. Remediation of Biological Organic Fertilizer and Biochar in Paddy Soil Contaminated by Cd and Pb

    Directory of Open Access Journals (Sweden)

    MA Tie-zheng

    2015-02-01

    Full Text Available The effect of application of biological organic fertilizer and biochar on the immobilized remediation of paddy soil contaminated by Cd and Pb was studied under the field experiment. The results showed that biological organic fertilizer and biochar increased the soil pH and soil nutrient contents, and reduced the soil available Cd and Pb concentrations significantly. The soil pH had significantly negative correla-tion with the soil available Cd and Pb contents. The application of biological organic fertilizer and biochar decreased Cd and Pb concentration in all parts of the rice plant, with Cd concentration in brown rice decrease by 22.00% and 18.34% and Pb decease in brown rice by 33.46% and 12.31%. The concentration of Cd and Pb in brown rice had significant positive correlation with the soil available Cd and Pb concentra-tions. It was observed that both biological organic fertilizer and biochar had a positive effect on the remediation of paddy soil contaminated by Cd and Pb.

  16. Behaviours of MeCl 2 (Me: Pb and Cd) during thermal treatment of ...

    African Journals Online (AJOL)

    This paper reports the emission behaviours of Pb and Cd during heat treatment of their chloride salts with kaolin-lime and kaolin-lime-silica mixtures. The leaching behaviours of Pb and Cd from the heattreated products are also assessed. The results showed that the addition of lime into kaolin increased the emitted amounts ...

  17. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots

    NARCIS (Netherlands)

    Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria A.

    2014-01-01

    We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells

  18. Colloidal PbSe/CdSe Heteronanocrystals. Atomic configuration, electronic structure and optical properties

    NARCIS (Netherlands)

    Grodzinska, D.

    2012-01-01

    This thesis focuses on the structural characterization and the opto-electronic properties of PbSe/CdSe core/shell QDs and on the structural and morphological evolution of PbSe/CdSe core/shell QDs upon thermal annealing under vacuum.

  19. Pb and Cd Contents in Soil, Water, and Trees at an Afforestation Site, South China.

    Science.gov (United States)

    Pei, Nancai; Chen, Bufeng; Liu, Shuguang

    2015-11-01

    Pb and Cd contents in 13 plantation tree species (leaf and branch components), soil, water (groundwater and river water) at a young (3-5 year-old) seashore afforestation stand were investigated in Nansha district, Guangzhou city in southern China. The results showed that (1) soil, rather than water or trees, had the highest content of both Pb (averagely 48.79 mg/kg) and Cd (0.50 mg/kg), demonstrating that soil might function as a major reservoir for extraneously derived heavy metals; (2) Pb content was higher in branches than in leaves, but Cd content appeared similar in both components, implying possibly different accumulation mechanisms in trees; (3) Pb and Cd appeared to accumulate differently among some tree taxa, whereas almost no significant difference was detected between introduced and indigenous species. The study indicated that trees were potentially useful to remediate sites contaminated with Pb and Cd in the urbanized areas.

  20. Pb dopant induced changes in structural, optical and electrical properties of CdSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jagdish; Tripathi, S.K., E-mail: surya@pu.ac.in

    2015-02-15

    Highlights: • Thin films of Pb doped CdSe are prepared by thermal evaporation technique. • The effect of Pb doping on structural properties has been investigated. • Grain size and PL intensity increases with increases in amount of Pb doping. • Optical band gap and electrical conductivity decreases after Pb doping in CdSe. - Abstract: Thin films of Pb doped CdSe at 1% and 5% dopant concentrations have been prepared by thermal evaporation technique using inert gas condensation method on glass substrates. The effect of Pb doping on structural, optical and electrical properties of CdSe thin films has been studied. Elemental composition of the thin films has been analyzed using Energy Dispersive X-ray analysis (EDX) spectra. Transmission electron microscope (TEM) images show the spherical nature of the nanoparticles. X-ray diffraction spectra indicate the presence of hexagonal phase of CdSe in undoped and Pb doped CdSe thin films, and formation of cubic phase of PbSe with the increase in amount of Pb dopant. A decrease in the band gap with increase in Pb doping in CdSe lattice has been observed due to the formation of band tails in the band gap and increase in crystallite size after doping. The photoluminescence (PL) spectra of thin films have been studied and enhancement in the PL intensity is observed after Pb doping. The dark conductivity of the prepared thin films has also been studied and two types of conduction mechanisms have been observed. Hall measurements indicate change in conduction mechanism from n-type to p-type after Pb doping in CdSe.

  1. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    Science.gov (United States)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  2. Distribution of Cd, Ck, Pb and Zn in Soil and Vegetation Compartments in Stands of Five Boreal Tree Species in N.E. Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Alriksson, A.; Eriksson, H. M. [Swedish University of Agricultural Sciences, Department of Forest Soils (Sweden)

    2001-05-15

    Concentrations and total quantity of cadmium (Cd), cupper (Cu),lead (Pb) and zink (Zn) were determined in biomass and soil compartments in a replicated tree species experiment with 27-yr-old stands growing on former farmland in N.E. Sweden. Sequential extractions of soil samples were performed in order to estimate the exchangeable and an organically bound fraction of each element. The tree species included were Picea abies (L.)H. Karst., Pinus sylvestris L., Pinus contorta Dougl., Larix sibirica Ledeb., and Betula pendula Roth.Tree species influenced the rate of removal of Cu, Pb and Zn in case of stemwood harvesting, and of Cd, Cu and Zn in the case of whole-tree harvesting. B. pendula and P. abies had higher quantities and average concentrations of Zn in the biomass. For all species, >50% of the Zn in the stems was found in the bark. P. abies and L. sibirica had higher quantities of Cu in the biomass than the other species.P. abies and P. contorta had high quantities of Cd in the biomass in relation to the other species. Branches and stembark contained high concentrations of Cd and Pb in relation to foliage and stemwood. Dead branches had especially high concentrations of Pb. The high accumulation rate of Zn in the biomass of B. pendula was related to a low exchangeable amount of Zn in the A horizon. In the superficial centimeters of the A horizon, a depletion similar to that found for Zn was detected for Cu, whereas for Cd and Pb, no correlations were found between quantities of elements in the trees and element pools in the soil.

  3. Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianbing; Chernomordik, Boris D.; Crisp, Ryan W.; Kroupa, Daniel M.; Luther, Joseph M.; Miller, Elisa M.; Gao, Jianbo; Beard, Matthew C.

    2015-07-28

    We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd2+ cation is exchanged for the Pb2+ cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd2+, we also find suitable conditions for the exchange of Zn2+ cations for Pb2+ cations. The cation exchange is anisotropic starting at one edge of the nanocrystals and proceeds along the <111> direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.

  4. Electrochemical processing of high-Tc Bi (Pb)–Sr–Ca–CuO thin films

    Indian Academy of Sciences (India)

    Superconducting thin films of Bi(Pb)–Sr–Ca–CuO system were prepared by depositing the film onto silver substrate by d.c. electrodeposition technique with dimethyl sulphoxide bath in order to examine the effect of Pb addition to the BSCCO system. The films were deposited at the potential of – 0.8 V vs saturated calomel ...

  5. Macronutrient status and speciation of cu, fe, zn and pb in soil ...

    African Journals Online (AJOL)

    Soils at 100m away from the discharge point were regarded as normal or uncontaminated soils, while different extractants were used to determine the levels of Fe, Cu, Zn and Pb. The results showed enrichment of the soils in P, N, Ca, Mg, Na, K due to the application of the POME. Copper, Iron and Pb were predominant in ...

  6. Engineering of electronic and optical properties of PbS thin films via Cu doping

    Science.gov (United States)

    Touati, Baligh; Gassoumi, Abdelaziz; Dobryden, Illia; Natile, Marta Maria; Vomiero, Alberto; Turki, Najoua Kamoun

    2016-09-01

    Copper-doped PbS polycrystalline thin films were deposited by chemical bath deposition by adding small amount of Cu (ysolution = [Cu2+]/[Pb2+]) between 0.5 and 2 at%. The composition, structure, morphology, optical and electrical properties of the films were investigated by means of X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), UV-visible-near infrared (UV-Vis-NIR) spectrophotometry and Hall effect measurements. The XRD studies showed that the undoped films have PbS face centered cubic structure with (111) preferential orientation, while preferential orientation changes to (200) plane with increasing Cu doping concentration. The AFM and SEM measurements indicated that the film surfaces consisted of nanosized grains with pyramidal shape. Optical band gap was blue shifted from 0.72 eV to 1.69 eV with the increase in Cu doping concentration. The film obtained with the [Cu2+]/[Pb2+] ratio equal to 1.5 at% Cu showed the minimum resistivity of 0.16 Ω cm at room temperature and optimum value of optical band gap close to 1.5 eV. 1.5 at% Cu-doped PbS thin films exhibit the best optical and electrical properties, suitable for solar cells applications.

  7. Forest Gaps Inhibit Foliar Litter Pb and Cd Release in Winter and Inhibit Pb and Cd Accumulation in Growing Season in an Alpine Forest.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available The release of heavy metals (such as Pb and Cd from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons.Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia, Masters larch (Larix mastersiana, Mingjiang fir (Abies faxoniana, Alpine azalea (Rhododendron lapponicum, Red birch (Betula albosinensis and Mourning cypress (Sabina saltuaria, was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4.Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze-thaw cycles in winter and appropriate hydrothermal conditions during the growing season, the

  8. On the concentration and separation of the trace-elements Fe, Cu, Zn, Mn, Pb, Mo and Co : III. Paper chromatography

    NARCIS (Netherlands)

    Erkelens, P.C. van

    Paper chromatographic separations are described by which the minor constituents of biological ashes are separated either into: (Pb) --- Mn --- Co --- (Pb) --- Cu --- Fe, Mo, Zn; or into: Cu, Mn, Co --- Pb --- Fe --- Mo --- Zn.

  9. Influence of Zn additions on the interfacial reaction and microstructure of Sn37Pb/Cu solder joints

    Science.gov (United States)

    Qiu, Yu; Hu, Xiaowu; Li, Yulong; Jiang, Xiongxin

    2017-10-01

    The effects of Zn (5 and 10 wt%) additions into Sn37Pb solder and isothermal solid state aging on the interfacial reactions between Sn37Pb- xZn solders and Cu substrates were investigated in this study. It was found that the addition of Zn changed the types and morphologies of interfacial IMC layers during reflowing and thereafter under aging condition. During reflowing, the planar-type Cu5Zn8 compound was the interfacial IMC for Sn37Pb- xZn (5 and 10 wt%) solder, while the scallop-type Cu6Sn5 was the interfacial IMC for Sn37Pb solder. After aging, the final interfacial structure for Sn37Pb-5Zn solder was solder/Cu5Zn8/Cu6(Sn,Zn)5/Cu, while solder/Cu6Sn5/Cu3Sn/Cu for Sn37Pb solder and solder/Cu5Zn8/Cu for Sn37Pb-10Zn solder, respectively. The Kirkendall voids disappeared with Zn addition into Sn37Pb solder. For the Sn37Pb-5Zn/Cu solder joint, the thickness of Cu6(Sn,Zn)5 layer increased, while the thickness of Cu5Zn8 layer decreased with aging time extended to 360 h due to the decomposition of the Cu5Zn8 IMC layer by diffusing Cu and Zn atoms into nether IMC layer, combining Sn atoms diffused from solder matrix to form Cu6(Sn,Zn)5 IMCs. Furthermore, the growth of Cu6Sn5 and Cu3Sn layers for Sn37Pb/Cu solder joint and the total IMC layer at the interface of Sn37Pb- xZn ( x = 0, 5, and 10 wt%) solder with Cu substrate followed the diffusion control mechanism. Compared to the Sn37Pb-5Zn/Cu solder joint, higher Zn concentration depressed the growth of Cu5Zn8 layer for Sn37Pb-10Zn solder. In the end, refining effect on IMC grains was found by the addition of Zn into Sn37Pb solder and the 10 wt% Zn-doping significantly refined the interfacial IMC grains.

  10. Preparation and characterization of the quantum dot quantum well system CdS/CuS/CdS

    Science.gov (United States)

    Chen, Hongming; Huang, Xinfan; Huang, Hong-Bin; Xu, Ling; Xu, Jun; Chen, Kun-Ji; Feng, Duan

    1998-02-01

    The synthesis and the characterization of the quantum dot quantum well (QDQW) system are described. The chemical synthesis and substitution method are used to synthesize the three-layered structure compound CdS/CuS/CdS which consists of a core of the CdS nanocrystal and a well of monolayers of CuS capped by monolayers of CdS acting as the outermost shell. The results of inductive coupled plasma mass spectroscopy (ICP-MS) measurement and the absorption spectra confirm the formation of the three-layered system CdS/CuS/CdS.

  11. Effects of Cu, Zn and Pb Combined Pollution on Soil Hydrolase Activities

    Directory of Open Access Journals (Sweden)

    FENG Dan

    2015-08-01

    Full Text Available To study the relations between soil enzyme activities and heavy metal pollution, the combined effects of Cu, Zn and Pb on the three hydrolase activities, including invertase(IN, urease(Uand alkaline phosphatase(ALPwere investigated via an orthogonal experiment. Results showed as the following: When the concentration of Cu was 400 mg·kg-1, the U and ALP activities were decreased 51% and 44%, separately; When Zn was at 500 mg·kg-1, IN and ALP activities were only decreased 3% and 9%, while U activity was increased; When Pb was at 500 mg·kg-1, IN and U activities were increased, while ALP activity was decreased 13%. As a whole, Cu was considered as the most remarkable influence factor for IN, U and ALP activity regardless of interactions among the heavy metals, Zn came second, and Pb mainly showed activation. Considering interactions, Cu×Zn could significantly influence U activity(P<0.05, effects of Cu×Pb and Cu×Zn on ALP activity were remarkable(95% confidence interval. The response of ALP activity was more sensitive than the other two enzymes. Soil ALP activity might be a sensitive tool for assessing the pollution degree of Cu.

  12. Effects of the microbial siderophore DFO-B on Pb and Cd speciation in aqueous solution.

    Science.gov (United States)

    Mishra, Bhoopesh; Haack, Elizabeth A; Maurice, Patricia A; Bunker, Bruce A

    2009-01-01

    This study investigates the complexation environments of aqueous Pb and Cd in the presence of the trihydroxamate microbial siderophore, desferrioxamine-B (DFO-B) as a function of pH. Complexation of aqueous Pb and Cd with DFO-B was predicted using equilibrium speciation calculation. Synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy at Pb L(III) edge and Cd K edge was used to characterize Pb and Cd-DFO-B complexes at pH values predicted to best represent each of the metal-siderophore complexes. Pb was not found to be complexed measurably by DFO-B at pH 3.0, but was complexed by all three hydroxamate groups to form a totally "caged" hexadentate structure at pH 7.5-9.0. At the intermediate pH value (pH 4.8), a mixture of Pb-DFOB complexes involving binding of the metal through one and two hydroxamate groups was observed. Cd, on the other hand, remained as hydrated Cd2+ at pH 5.0, occurred as a mixture of Cd-DFOB and inorganic species at pH 8.0, and was bound by three hydroxamate groups from DFO-B at pH 9.0. Overall, the solution species observed with EXAFS were consistent with those predicted thermodynamically. However, Pb speciation at higher pH values differed from that predicted and suggests that published constants underestimate the binding constant for complexation of Pb with all three hydroxamate groups of the DFO-B ligand. This molecular-level understanding of metal-siderophore solution coordination provides physical evidence for complexes of Pb and Cd with DFO-B, and is an important first step toward understanding processes at the microbial- and/or mineral-water interface in the presence of siderophores.

  13. Co-contamination of Cu and Cd in paddy fields: Using periphyton to entrap heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiali [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Tang, Cilai [Department of Environmental Engineering, College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002 (China); Wang, Fengwu [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); School of Civil Engineering, East China Jiaotong University, 808 Shuang Gang East Road, Nanchang, Jiangxi 330013 (China); Wu, Yonghong, E-mail: yhwu@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China)

    2016-03-05

    Highlights: • Periphyton was capable of simultaneously entrapping Cu and Cd from paddy fields. • Cu and Cd bioavailability decreased with time after exposure to periphyton. • Periodic adsorption–desorption was the main mechanism used to remove Cd and Cu. • Periphyton was able to adapt to steady accumulation of Cu and Cd. • The inclusion of periphyton will help entrap heavy metals in paddy fields. - Abstract: The ubiquitous native periphyton was used to entrap Cu and Cd from paddy fields. Results showed that Cu- and Cd-hydrate species such as CuOH{sup +}, Cu{sub 2}(OH){sub 2}{sup 2+}, CdOH{sup +}, and Cu{sub 3}(OH){sub 4}{sup 2+} decreased with time in the presence of periphyton. When the initial concentrations of Cu and Cd were 10 mg/L, the heavy metal content in the periphyton fluctuated from 145.20 mg/kg to 342.42 mg/kg for Cu and from 101.75 mg/kg to 236.29 mg/kg for Cd after 2 h exposure. The concentration of Cd in periphytic cells varied from 42.93 mg/kg to 174 mg/kg after 2 h. The dominant periphyton microorganism species shifted from photoautotrophs to heterotrophs during the exposure of periphyton to Cu and Cd co-contamination. Although Cu and Cd could inhibit periphyton photosynthesis and carbon utilization, the periphyton was able to adapt to the test conditions. Cu and Cd accumulation in rice markedly decreased in the presence of periphyton while the number of rice seeds germinating was higher in the periphyton treatments. These results suggest that the inclusion of native periphyton in paddy fields provides a promising buffer to minimize the effects of Cu and Cd pollution on rice growth and food safety.

  14. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland.

    Science.gov (United States)

    Liu, Jianguo; Dong, Yuan; Xu, Hai; Wang, Deke; Xu, Jiakuan

    2007-08-25

    Uptake and distribution of Cd, Pb and Zn by 19 wetland plant species were investigated with experiments in small-scale plot constructed wetlands, into which artificial wastewater dosed with Cd, Pb and Zn at concentrations of 0.5, 2.0 and 5.0mgl(-1) was irrigated. The results showed that the removal efficiency of Cd, Pb and Zn from the wastewater were more than 90%. Generally, there were tens differences among the 19 plant species in the concentrations and quantity accumulations of the heavy metals in aboveground part, underground part and whole plants. The distribution ratios into aboveground parts for the metals absorbed by plants varied also largely from about 30% to about 90%. All the plants accumulated, in one harvest, 19.85% of Cd, 22.55% of Pb and 23.75% of Zn that were added into the wastewater. Four plant species, e.g. Alternanthera philoxeroides, Zizania latifolia, Echinochloa crus-galli and Polygonum hydropiper, accumulated high amounts of Cd, Pb and Zn. Monochoria vaginalis was capable for accumulating Cd and Pb, Isachne globosa for Cd and Zn, and Digitaria sanguinalis and Fimbristylis miliacea for Zn. The results indicated that the plants, in constructed wetland for the treatment of wastewater polluted by heavy metals, can play important roles for removal of heavy metals through phytoextraction. Selection of plant species for use in constructed wetland will influence considerably removal efficiency and the function duration of the wetland.

  15. Cu and Cd Adsorption on Carbon Aerogel and Xerogel

    Directory of Open Access Journals (Sweden)

    Cotet L. C.

    2013-04-01

    Full Text Available Carbon aerogel (CA and xerogel (CX were proposed as new carbon adsorbent materials for Cu and Cd ions from contaminated water (synthetic water samples. These materials were prepared by a sol-gel process that involves a polycondensation of resorcinol and formaldehyde in Na2CO3 catalysis, followed by a drying step, either in supercritical conditions of CO2 to aerogel obtaining or in normal conditions to xerogel obtaining, and a pyrolytic step. Nitrogen adsorption, AFM, SEM, TEM and XRD were used for morpho-structural adsorbent investigation. Cu and Cd ions adsorption experiments were carried out in batch conditions under magnetic stirring. Adsorbent quantity and grain size influence over the adsorption efficiency were considered. Adsorption results expressed as adsorption capacities showed that prepared CA is a better adsorbent than CX. Adsorption capacities up to 14.2 mg g-1 and 8.5 mg g-1 were obtained for Cd2+ and Cu2+ adsorption on CA, respectively.

  16. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xinde [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States); Wahbi, Ammar [Soil Science Department, Faculty of Agriculture, University of Aleppo, Aleppo (Syrian Arab Republic); Ma, Lena, E-mail: lqma@ufl.edu [Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States); Li Bing; Yang Yongliang [National Research Center for Geoanalysis, Beijing 100037 (China)

    2009-05-30

    Considerable research has been done on P-induced Pb immobilization in Pb-contaminated soils. However, application of P to soils contaminated with multiple heavy metals is limited. The present study examined effectiveness of phosphoric acid (PA) and/or phosphate rock (PR) in immobilizing Pb, Cu, and Zn in two contaminated soils. The effectiveness was evaluated using water extraction, plant uptake, and a simple bioaccessibility extraction test (SBET) mimicking metal uptake in the acidic environment of human stomach. The possible mechanisms for metal immobilization were elucidated using X-ray diffraction, scanning electron microscopy, and chemical speciation program Visual MINTEQ. Compared to the control, all P amendments significantly reduced Pb water solubility, phytoavailability, and bioaccessibility by 72-100%, 15-86%, and 28-92%, respectively. The Pb immobilization was probably attributed to the formation of insoluble Pb phosphate minerals. Phosphorus significantly reduced Cu and Zn water solubility by 31-80% and 40-69%, respectively, presumably due to their sorption on minerals (e.g., calcite and phosphate phases) following CaO addition. However, P had little effect on the Cu and Zn phytoavailability; while the acid extractability of Cu and Zn induced by SBET (pH 2) were even elevated by up to 48% and 40%, respectively, in the H{sub 3}PO{sub 4} treatments (PA and PR + PA). Our results indicate that phosphate was effective in reducing Pb availability in terms of water solubility, bioaccessibility, and phytoavailability. Caution should be exercised when H{sub 3}PO{sub 4} was amended to the soil co-contaminated with Cu and Zn since the acidic condition of SBET increased Cu and Zn bioaccessibility though their water solubility was reduced.

  17. Absorbed Pb2+ and Cd2+ Ions in Water by Cross-Linked Starch Xanthate

    National Research Council Canada - National Science Library

    Feng, Kai; Wen, Guohua

    2017-01-01

    ...]-methylenebisacrylamide as a cross-linker. As this kind of cross-linked potato starch xanthate can effectively absorb heavy metal ions, it was dispersed in aqueous solutions of divalent heavy metal ions (Pb2+ and Cd2...

  18. Kandungan Tembaga (Cu dan Timbal (Pb pada Lamun Enhalus accoroides dari Perairan Batam, Kepulauan Riau, Indonesia

    Directory of Open Access Journals (Sweden)

    Ismarti Ismarti

    2017-02-01

    Full Text Available The objective of the present study was to analyze the metal content of copper and lead in Enhalus accoroides seagrass in Batam Island waters. Samples of seagrass (E. accoroides were collected from six locations along the western region of Batam Island then dried and performed with acid destruction. The measurements of Cu and Pb in the samples were conducted by Atomic Absorption Spectrophotometer. The result showed that there was an increasing of copper and lead contaminant level on sample E accoroides during two periods in a year.  The Cu level ranged from 0.63 to 46.1 mg/kg, meanwhile, lead level ranged from  2.14 to 10.52mg/kg respectively. The highest accumulation of copper and lead were recorded on leaves, it was reached 10.81 mg/kg and 5.98mg/kg, respectively. Penelitian ini bertujuan menganalisis kandungan logam tembaga (Cu dan timbal (Pb pada lamun Enhalus accoroides di sepanjang perairan barat Pulau Batam. Sampel lamun dikumpulkan dari enam lokasi  kemudian dikeringkan dan dilakukan destruksi dengan asam. Penentuan kadar logam tembaga dan timbal dalam sampel dilakukan dengan spektrometri serapan atom. Hasil penelitian menunjukan adanya peningkatan kadar logam Cu dan Pb pada sampel lamun E. accoroides selama 2 periode sampling dalam 1 tahun. Kadar logam Cu dan Pb pada lamun secara berturut berada pada rentang 0.63-46.1 mg/kg dan 2.14-10.52mg/kg. Akumulasi logam Cu dan Pb dalam lamun E. accoroides tertinggi pada bagian daun sebanyak 10.81 mg/kg Cu dan 5.98 mg/kg Pb.

  19. Development of a new Pb-free solder: Sn-Ag-Cu

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Chad M. [Iowa State Univ., Ames, IA (United States)

    1995-02-10

    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217°C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  20. Zn, Pb, Cr and Cd concentrations in fish, water and sediment from ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT:. Gills, intestine and muscle samples of O niloticus, water and surface sediments of Azuabie Creek and a central station were collected and analysed for Zn, Pb, Cr and Cd using. AAS model 210VGP Buck Scientific USA. Heavy metal concentrations in fish muscle show high concentration especially Pb which is ...

  1. Bioakumulasi timbal (Pb dan cadmium (Cd pada Lamun Cymodocea serrulata di Perairan Bangka Selatan

    Directory of Open Access Journals (Sweden)

    Suci Puspita Sari

    2017-08-01

    Full Text Available The purpose of this study was to measure the heavy metal content of cadmium (Cd and lead (Pb in water, sediment and seagrass Cymodocea serrulata from Southern Bangka waters. The research was conducted in two locations in South Bangka Regency, namely Desa Pasir Putih and Tanjung Kerasak.The sediments, waters, and seagrass were collected using purposive random sampling method. Measurement of water quality data was in situ. Seagrass sampling is done by transect method. The Cd and Pb contents in the Water, sediments and sea grass samples were analyzed using Atomic Absorption Spectrophotometer (AAS. The results showed that Cd concentration in water was higher than Pb, with the range of between 0.29 to 0.39 mg/l. Pb was higher than Cd in the sediment ranges between 4.74 to 7.68 mg/kg. The highest Cd concentration was detected at the seagrass leaf with a range of 1.76⎼2.44 mg/kg, while the highest Pb concentration at the seagrass roots ranged from 1.94 ⎼ 6.52 mg/kg. The high content of heavy metals Cd and Pb on seagrass sections, when compared to water and sediments, shows that seagrass accumulates metals derived from water and sediment. The Bioconcentration factor (BCF showed that seagrass leaves can accumulate Cd of 6.16 and Pb of 5.31. While The BCF value of the seagrass roots is able to accumulate Cd of 0.53 and metal Pb of 0.55 Penelitian ini bertujuan untuk mengukur kandungan logam berat cadmium (Cd dan timbal (Pb pada air, sedimen dan lamun Cymodocea serrulata. Penelitian dilakukan di 2 lokasi di Kabupaten Bangka Selatan, yaitu Desa Pasir Putih dan Tanjung Kerasak. Metode Penelitian merupakan penelitian survei dengan pendekatan kuantitatif. Sampling dalam penelitian ini meliputi sampling kualitas, pengambilan sampel air, sedimen dan lamun menggunakan metode Purposive Random Sampling. Pengukuran data kualitas air dilakukan secara insitu. Pengambilan sampel lamun dilakukan dengan metode transect. Sampel air, sedimen dan lamun dianalisis

  2. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots

    OpenAIRE

    Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria A.

    2014-01-01

    We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells sensitized with PbS QDs. The significantly enhanced mean electron lifetime and electron diffusion length provide crucial evidence for the higher efficiency of the cell. The average electron lifetime ...

  3. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Austin Kanayo ASIAGWU

    2009-07-01

    Full Text Available An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+ in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solution.

  4. Colloidal CdSe/Cu3P/CdSe nanocrystal heterostructures and their evolution upon thermal annealing.

    Science.gov (United States)

    De Trizio, Luca; De Donato, Francesco; Casu, Alberto; Genovese, Alessandro; Falqui, Andrea; Povia, Mauro; Manna, Liberato

    2013-05-28

    We report the synthesis of colloidal CdSe/Cu(3)P/CdSe nanocrystal heterostructures grown from hexagonal Cu(3)P platelets as templates. One type of heterostructure was a sort of "coral", formed by vertical pillars of CdSe grown preferentially on both basal facets of a Cu(3)P platelet and at its edges. Another type of heterostructure had a "sandwich" type of architecture, formed by two thick, epitaxial CdSe layers encasing the original Cu(3)P platelet. When the sandwiches were annealed under vacuum up to 450 °C, sublimation of P and Cd species with concomitant interdiffusion of Cu and Se species was observed by in situ HR- and EFTEM analyses. These processes transformed the starting sandwiches into Cu2Se nanoplatelets. Under the same conditions, both the pristine (uncoated) Cu(3)P platelets and a control sample made of isolated CdSe nanocrystals were stable. Therefore, the thermal instability of the sandwiches under vacuum might be explained by the diffusion of Cu species from Cu(3)P cores into CdSe domains, which triggered sublimation of Cd, as well as out-diffusion of P species and their partial sublimation, together with the overall transformation of the sandwiches into Cu(2)Se nanocrystals. A similar fate was followed by the coral-like structures. These CdSe/Cu(3)P/CdSe nanocrystals are therefore an example of a nanostructure that is thermally unstable, despite its separate components showing to be stable under the same conditions.

  5. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    Science.gov (United States)

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  6. Distribution of toxic metals, Hg, Cd and Pb in zooplankton along the Indian coasts

    Digital Repository Service at National Institute of Oceanography (India)

    Sengupta, R.; Kureishy, T.W.

    Distribution of toxic metals such as Hg, Cd and Pb in zooplankton is assessed with a view to correlate it with the prevalent environmental conditions along the Indian coast. While Hg could not be detected in zooplankton the concentrations of Cd...

  7. Aqueous CdPbS quantum dots for near-infrared imaging.

    Science.gov (United States)

    Au, Giang H T; Shih, Wan Y; Tseng, S-Ja; Shih, Wei-Heng

    2012-07-11

    Quantum dots (QDs) are semiconducting nanocrystals that have photoluminescent (PL) properties brighter than fluorescent molecules and do not photo-bleach, ideal for in vivo imaging of diseased tissues or monitoring of biological processes. Near-infrared (NIR) fluorescent light within the window of 700-1000 nm, which is separated from the major absorption peaks of hemoglobin and water, has the potential to be detected several millimeters under the surface with minimal interference from tissue autofluorescence. Here we report the synthesis and bioimaging demonstration of a new NIR QDs system, namely, CdPbS, made by an aqueous approach with 3-mercaptopropionic acid (MPA) as the capping molecule. The aqueous-synthesized, MPA-capped CdPbS QDs exhibited an NIR emission in the range of 800-950 nm with x(i) ≥ 0.3, where x(i) denotes the initial Pb molar fraction during the synthesis. Optimal PL performance of the CdPbS QDs occurred at x(i) = 0.7, which was about 4 nm in size as determined by transmission electron microscopy, had a rock salt structure and a quantum yield of 12%. Imaging of CdPbS QDs was tested in membrane staining and transfection studies. Cells transfected with CdPbS QDs were shown to be visible underneath a slab of chicken muscle tissue of up to 0.7 mm in thickness without the use of multiple-photon microscopy.

  8. Aqueous CdPbS quantum dots for near-infrared imaging

    Science.gov (United States)

    Au, Giang H. T.; Y Shih, Wan; Tseng, S.-Ja; Shih, Wei-Heng

    2012-07-01

    Quantum dots (QDs) are semiconducting nanocrystals that have photoluminescent (PL) properties brighter than fluorescent molecules and do not photo-bleach, ideal for in vivo imaging of diseased tissues or monitoring of biological processes. Near-infrared (NIR) fluorescent light within the window of 700-1000 nm, which is separated from the major absorption peaks of hemoglobin and water, has the potential to be detected several millimeters under the surface with minimal interference from tissue autofluorescence. Here we report the synthesis and bioimaging demonstration of a new NIR QDs system, namely, CdPbS, made by an aqueous approach with 3-mercaptopropionic acid (MPA) as the capping molecule. The aqueous-synthesized, MPA-capped CdPbS QDs exhibited an NIR emission in the range of 800-950 nm with xi ≥ 0.3, where xi denotes the initial Pb molar fraction during the synthesis. Optimal PL performance of the CdPbS QDs occurred at xi = 0.7, which was about 4 nm in size as determined by transmission electron microscopy, had a rock salt structure and a quantum yield of 12%. Imaging of CdPbS QDs was tested in membrane staining and transfection studies. Cells transfected with CdPbS QDs were shown to be visible underneath a slab of chicken muscle tissue of up to 0.7 mm in thickness without the use of multiple-photon microscopy.

  9. Cd isotope fractionation during sulfide mineral weathering in the Fule Zn-Pb-Cd deposit, Yunnan Province, Southwest China.

    Science.gov (United States)

    Zhu, Chuanwei; Wen, Hanjie; Zhang, Yuxu; Yin, Runsheng; Cloquet, Christophe

    2017-11-03

    Zinc (Zn)-Lead (Pb) deposits are generally rich in cadmium (Cd), and the weathering of sulfide minerals in such deposits results in large releases of Cd into the environment. From an environmental and public health standpoint, understanding Cd sources and cycling is critical to identifying potential hazards to humans. In this study, the Cd isotope compositions (expressed as δ114/110Cd) of secondary minerals such as anglesite (-0.57±0.03‰; 2S.D.), granular smithsonite (0.04±0.14‰; 2S.D.), layered smithsonite (0.15±0.40‰; 2S.D.), hydrozincite (0.26±0.01‰; 2S.D.) and clay minerals (-0.01±0.06‰; 2S.D.) from the Fule Zn-Pb-Cd deposit, Southwest China, are investigated to better understand the Cd sources and cycling in this area. Combined with our previous study (Zhu et al., 2017), the work herein elucidates the patterns of Cd isotopic fractionation during the formation processes of such secondary minerals and traces the weathering of these minerals into the ecosystem. The δ114/110Cd values of secondary minerals exhibit the following decreasing trend: hydrozincite>large granular smithsonite>small granular smithsonite>anglesite. Although different amounts of Cd were lost during the formation of equally sized samples, no or minor variations in Cd isotopic composition were observed. However, significant isotopic differences were observed between different size fractions. These results demonstrate that the particle size of secondary minerals and weathering products of sulfide significantly influence Cd isotope composition and fractionation during natural weathering. This systematic fractionation provides an initial foundation for the use of Cd isotopes as environmental tracers in ecosystems and in the global Cd isotope budget. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd(ii) and Pb(ii) sorption by δ-MnO2 and ferrihydrite.

    Science.gov (United States)

    van Genuchten, Case M; Peña, Jasquelin

    2016-08-10

    Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(ii) and Pb(ii) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that of the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(ii) and Pb(ii) both bind to birnessite layer vacancies, only Pb(ii) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(ii) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(ii) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(ii) < Cd(ii) < Ni(ii) < Zn(ii) < Cu(ii) < Pb(ii).

  11. TELAAHAN LOGAM BERAT Pb DAN Cd PADA SEDIMEN DI PERAIRAN BARAT LAUT DUMAI – RIAU

    Directory of Open Access Journals (Sweden)

    Syahminan Syahminan

    2015-08-01

    Full Text Available This research was conducted in Dumai sea western waters, Riau Province. Dumai marine waters are part of the territorial waters of Riau that relate directly to the Strait of Malacca, and are at Rupat Strait region, and has a high accessibility of the region, both locally and internationally. Dumai waters is also an estuary waters affected by the activities of the land, and the waters that receive input from various types of waste from various activities in Dumai city and surrounding areas. The research was aimed to knowing the general condition of the Dumai sea western waters, analyzing the content of Pb and Cd in sediments, observing the correlation between organic matter and heavy metal of Pb and Cd, and find out the status of pollution Dumai Sea Western Waters by comparing the results of the analysis with some quality standard countries, The method used is a survey method. Based on the Decree of The Minister of Environment No. 51 of 2004, that the general condition of the Dumai sea western waters still can support the life activities of marine organisms in the waters. The results showed that the concentrations of Pb and Cd in sediments of Dumai is below the threshold value. The results of simple linear regression analysis of heavy metals Pb and Cd with organic matter content showed that the concentration of heavy metals Pb and Cd is not influenced by organic matter content or have a very weak correlation with linear regression equation consecutive y = 0,0834x + 7,7866 and y = -0,001x + 0,0559. The status of pollution of Dumai sea western waters for Pb 8,76 µg/g and Cd 0,04 µg/g still under quality standardsKeywords: Dumai Sea Western Waters, Sediments, Heavy Metal Pb and Cd

  12. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.

    Science.gov (United States)

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-09-05

    The adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite (EP) from aqueous solution were investigated with respect to the changes in pH of solution, adsorbent dosage, contact time and temperature of solution. For the adsorption of both metal ions, the Langmuir isotherm model fitted to equilibrium data better than the Freundlich isotherm model. Using the Langmuir model equation, the monolayer adsorption capacity of EP was found to be 8.62 and 13.39 mg/g for Cu(II) and Pb(II) ions, respectively. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data and the mean free energies of adsorption were found as 10.82 kJ/mol for Cu(II) and 9.12 kJ/mol for Pb(II) indicating that the adsorption of both metal ions onto EP was taken place by chemical ion-exchange. Thermodynamic functions, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were also calculated for each metal ions. These parameters showed that the adsorption of Cu(II) and Pb(II) ions onto EP was feasible, spontaneous and exothermic at 20-50 degrees C. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for both metal ions followed well pseudo-second-order kinetics.

  13. Micronucleus Test, Nuclear Abnormalities and Accumulation of Cu and Cd on Gambusia affinis (Baird & Girard, 1853)

    OpenAIRE

    Güner, Utku; Dilek, Fulya; Muranlı, Gökalp

    2011-01-01

    In the present work the induction of micronuclei (MNi) and nuclear abnormalities (NAs) in erythrocytes and Cu and Cd accumulation in whole body of Gambusia affinis were studied. Fish were exposed to two different Cu and Cd concentrations, 0.1 ppm and 1 ppm, for 1 and 2 weeks periods and to Cu-Cd combination (0.1 ppm Cu + 0.1 ppm Cd) for 2 weeks period using a semi-static renewal system. Micronucleus and nuclear abnormality analysis were carried out on peripheral blood erythrocytes. When fish...

  14. Analisis Kandungan Logam Berat Tembaga (Cu) Dan Timbal (Pb) Pada Sedimen Di Pulau Payung Kabupaten Banyuasin, Sumatera Selatan

    OpenAIRE

    Lyusta, Atik Hendika; Agustriani, Fitri; Surbakti, Heron

    2017-01-01

    Penelitian ini bertujuan untuk mengetahui kandungan logam berat Tembaga (Cu) danTimbal (Pb) pada sedimen di Pulau Payung. Penelitian ini telah dilaksanakan pada bulan Mei-Juli 2014. Metode yang digunakan dalam analisis logam berat adalah Atomic Absorption Spectrophotometry (AAS) sedangkan metode yang digunakan untuk analisis fraksi sedimen adalah pengayakan dan pemipetan. Hasil penelitian didapat bahwa kandungan logam berat Cu lebih tinggi dibandingkan Pb dengan kandungan Cu 2,3-11,6mg/kg dan...

  15. REHABILITASI TANAH SAWAH TERCEMAR LOGAM BERAT Pb DAN Cd MELALUI FITOREMEDIASI

    Directory of Open Access Journals (Sweden)

    Sandra Sukmaning Adji

    2016-09-01

    Full Text Available It is indicated that rice field soil and plants on Rancaekek Bandung is containing heavy metal elements. This research aims to find out rehabilitation method for rice field soil by phytoremediation. Experiment was conducted in greenhouse. Vegetation used for this research were eceng gondok, mendong, akar wangi and haramay. The vegetation treatment was conducted under greenhouse experiments using Complete Randomized Design (CRD. Result showed that the use of vegetation had reduced the volume of Pb and Cd in the soil. Heavy metals are also contained within the roots and the leaves of the indicator plants. Mendong contained the highest concentration of Pb accumulated in its root, while akar wangi was indicated as contained Cd in its roots. Eceng gondok was indicated as containing the highest consentration of Pb and Cd accumulated in its leaves

  16. Simultaneous recovery of heavy metals (Pb, Cd, Zn from diluted solutions by electroextraction technique

    Directory of Open Access Journals (Sweden)

    Smara A.

    2013-04-01

    Full Text Available Cadmium is mainly used in galvanoplasty and stabilisation of plastic materials. It accumulates continuously in soils. The analysis of soil samples gave concrete evidence of increase of concentration of this element during the past centunary [1]. Furthermore Cd and Pb attack selectively the kidneys and the liver with enzymatic troubles. The work has enabaled to put into evidence the contribution of the presence of resin to the conventional electrodialysis process. The optimal conditions for the elimination of Cd++, Zn++ and Pb++ ions were determined. These included influence of resin, imposed current density, flow rate of the feeding solution (diluat, different supporting electrolytes used during the electroextraction (HNO3, HCl and H2SO4 and concentration of the solution to be treated [2-3-4]. Furthermore the competition between the electroextraction of the metallic cations Cd++, Zn++and Pb++ was investigated for different mixtures.

  17. CuTe Nanoparticles/Carbon Nanotubes as Back Contact for CdTe Solar Cells

    Science.gov (United States)

    Li, Chunxiu; Xu, Hang; Li, Kang; Ma, Xiao; Wu, Lili; Wang, Wenwu; Zhang, Jingquan; Li, Wei; Li, Bing; Feng, Lianghuan

    2018-02-01

    The Schottky barrier between the CdTe layer and metal electrode has opposite polarity to the CdS/CdTe cell junction, which can greatly degrade cell performance. Adding a back contact (BC) layer can reduce the Schottky barrier at metal/ p-CdTe interfaces. Paste including CuTe nanoparticles and carbon nanotubes (CuTe NPs/CNTs) was used as a BC in thin-film CdTe solar cells. The effect of the mass of carbon nanotubes (CNTs) in the paste and the BC annealing temperature on cell performance was explored. Cu film and paste including Cu nanoparticles and carbon nanotubes (Cu NPs/CNTs) were fabricated as the BC for CdTe solar cells. The performance of CdTe solar cells based on different kinds of Cu-containing BCs studied. The fill factor and open-circuit voltage ( V OC) of devices with CuTe NPs/CNTs BC were greatly improved by optimizing the mass of CNTs in the paste and the annealing temperature. The carrier concentration in the CdTe layer was improved by one order of magnitude. The CuTe NPs/CNTs BC showed the best effect on cell efficiency for the Cu-containing BC.

  18. Speciation and mobility of volatile heavy metals (Cd, Pb, and Tl) in fly ashes.

    Science.gov (United States)

    Świetlik, Ryszard; Trojanowska, Marzena; Karbowska, Bożena; Zembrzuski, Włodzimierz

    2016-11-01

    Speciation of volatile metals Cd, Pb, and Tl in fly ashes (FAs) produced from burning of hard coal in stocker-fired boilers (SFBs) was studied. Two grain fractions of fly ash collected in a multicyclone and battery cyclone of the systems of dust separation from three SFB units operating in various urban heating plants were analyzed. The characteristic feature of speciation of the three metals was a large share of labile fractions: Cd (av. 46.1 %), Pb (av. 39.8 %), and Tl (av. 21.6 %). The fraction which most clearly reflected the different chemical properties of the investigated metals was the oxidizable fraction: F(4)-Cd-0 %, F(4)-Pb-av. 10.0 %, and F(4)-Tl-av. 30.2 %. The importance of condensation of the volatile metal species on FA particles for shaping speciation of these metals was characterized using the normalized enrichment factor (NEF): Pb (2.3 ± 0.8) > Tl (1.8 ± 0.9) ≈ Cd (1.7 ± 0.6). Speciation of heavy metals may also be important economically, because the level of mobility coefficients (K Cd = 0.46, K Pb = 0.40, and K Tl = 0.22) in the case of fly ashes considerably enriched with toxic metals (Cd 4.8 ± 3.4 mg/kg, Pb 293 ± 210 mg/kg, and Tl 6.3 ± 4.5 mg/kg) may limit their utilization range.

  19. Comparative adsorption of Pb2+and Cd2+by cow manure and its vermicompost.

    Science.gov (United States)

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-08-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g -1 and 38.11 mg g -1 onto CM and 170.65 and 43.01 mg g -1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pre-concentration of Pb, Cd, and Ni in river water using back extraction method

    Science.gov (United States)

    Koesmawati, T. A.; Moelyo, M.; Rizqiani, A.; Tanuwidjaja, S.

    2017-03-01

    Dissolved heavy metals such as Pb, Cd and Ni in natural water can be the source of harmful contaminant for human health and aquatic life in aquatic systems. Particular treatment is needed for low concentration of metals in water samples using Flame Atomic Absorption Spectrophotometer (FAAS) measurement. The sample was collected from Cikapundung River in Siliwangi and Dayeuhkolot, Bandung. Back-extraction procedure was used as an alternative method for pre-concentration in trace metal analysis. Ammonium Pyrrolidine Dithiocarbamate (APDC) and Diethylammonium Diethyldithiocarbamate (DDDC) in Methyl Isobuthyl Ketone (MIBK) were used as chelating agent. In this study, the application of back-extraction procedure using APDC/DDDC chelating agent in MIBK resulted the detection limit of 2.2 μg/L for Pb; 1.6 μg/L for Cd; and 1.0 μg/L for Ni. The result showed that sensitivity was increased 4 times for Pb, 6 times for Ni, and none for Cd. The highest concentration of Pb in Cikapundung River was found 8.0 μg/L. All Ni concentration in water samples were under limit of detection. Method validation was conducted in this study and found that the value of correlation coefficient (r) for Pb, Cd and Ni was 0.9995, 0.9960 and 0.9994, respectively. The recovery value for Pb, Cd and Ni were 112.0, 81.5 and 85.9%, respectively in Cikapundung River, and 119.0, 83.5 and 85.9 %, respectively, in groundwater samples. The value of Relative Standard Deviation (RSD) for Pb, Cd and Ni in Cikapundung River were 2.01, 2.15 and 6.40%, respectively. On the other hand, the value of RSD of Pb, Cd and Ni in groundwater were 2.70, 3.30 and 7.69%, respectively. In conclusion, back-extraction method can be applied as pre-concentration for low concentration of Pb and Ni in river water samples.

  1. Chalcophile elements Hg, Cd, Pb, As in Lake Umbozero, Murmansk Region, Russia

    DEFF Research Database (Denmark)

    Dauvalter, V.A.; Kashulin, N.A.; Lehto, J.

    2009-01-01

    Investigations of Lake Umbozero, the second largest and the deepest lake of the Murmansk Region, were carried out to detect and define biogeochemical patterns of distribution of the chalcophile elements (Hg, Cd, Pb, As) in water, sediments and organs and tissues of whitefishes. Lake Umbozero...... is affected by emissions and effluents from mining and metallurgical enterprises of the Murmansk Region, as well as air pollution of a global character. Surface and near-bottom maxima were found in the distributions of Pb and Cd in the water column. These two maxima appear to be associated with the cyclical...

  2. Comparative effects of Cd and Pb on biochemical response and DNA damage in the earthworm Eisenia fetida (Annelida, Oligochaeta).

    Science.gov (United States)

    Li, Mei; Liu, Zhengtao; Xu, Yun; Cui, Yibin; Li, Dingsheng; Kong, Zhiming

    2009-02-01

    There are rising concerns about the hazardous effects of cadmium (Cd) and lead (Pb) on the environment in China. Biochemical and comet assays were conducted on the earthworm Eisenia fetida, a suitable bio-indicator organism for evaluating soil pollution after exposure to two heavy metals, Cd and Pb. Protein content increased at low Cd concentrations (pearthworm was more sensitive to the effects of Cd.

  3. Assessment of the Bioavailability of Cu, Pb, and Zn through Petunia axillaris in Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Lydia Bondareva

    2014-01-01

    Full Text Available Heavy metals are potentially toxic to human life and the environment. Metal toxicity depends on chemical associations in soils. For this reason, determining the chemical form of a metal in soils is important to evaluate its mobility and the potential accumulation. The aim of this examination is to evaluate the accumulation potential of Petunia x hybrida as a flower crop for three metals, namely, copper (Cu, lead (Pb, and nickel (Ni. Trace metals (Zn, Cu, and Pb in the soils were partitioned by a sequential extraction procedure into H2O extractable (F1, 1 M CH3COONa extractable (F2. Chemical fractionation showed that F1 and F2 fraction of the metals were near 1% and residue was the dominant form for Zn, Cu, and Pb in all samples. Using fluorescence method allowed us to estimate condition of the plants by adding metals. As result of plant and soil analysis, we can conclude that Petunia has Cu, Zn, and Ni tolerance and accumulation. Therefore, Petunia has the potential to serve as a model species for developing herbaceous, ornamental plants for phytoremediation.

  4. The effect of Cu on the properties of CdO/Cu/CdO multilayer films for transparent conductive electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Raaif, M.; Mohamed, S.H. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt)

    2017-06-15

    Transparent conductive CdO/Cu/CdO multilayer films were prepared using rf plasma magnetron sputtering and electron beam evaporation techniques. The CdO layers were prepared using rf plasma magnetron sputtering, while the Cu interlayer was prepared by electron beam evaporation technique. The Cu layer thickness was varied between 1 and 10 nm. The structural and optical properties as well as the sheet resistance of the multilayer films were studied. X-ray diffraction measurements revealed the presence of cubic CdO structure and the Cu peak was only observed for the multilayers prepared with 10 nm of Cu. It has been observed that the Cu interlayer thickness has a great influence on the optical and electrical properties of the multilayers. The transmittance of the multilayer films decreased while the reflectance increased with increasing Cu interlayer thickness. The refractive index and the extinction coefficient of the multilayer films were calculated. The estimated optical band gap values were found to be decreased from 2.75 ± 0.02 to 2.40 ± 0.02 eV as the Cu interlayer thickness increased from 1 to 10 nm. The sheet resistance was sensitive to the Cu interlayer thickness and it decreased with increasing Cu interlayer thickness. A sheet resistSSance of 21.7 Ω/sq, an average transmittance (between 700 and 1000 nm) of 77%, and an optical band gap of 2.5 ± 0.02 eV were estimated for the multilayer film with 2 nm Cu layer. The multilayer film with 2 nm Cu layer has the highest figure of merit value of 3.2 x 10{sup -3} Ω{sup -1}. This indicates that the properties of this multilayer film are suitable for transparent conductive electrode applications. (orig.)

  5. CdO necklace like nanobeads decorated with PbS nanoparticles: Room temperature LPG sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, N.B. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); K.A.M.P. & N.K.P. Science College, Pimpalner, Sakri, Dhule, M.S. (India); Baviskar, P.K. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); Ahire, R.R. [S.G. Patil Science, Sakri, Dhule, M.S. (India); Sankapal, B.R., E-mail: brsankapal@gmail.com [Nano Materials and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S. (India)

    2017-04-15

    Simple chemical route has been employed to grow interconnected nanobeads of CdO having necklace like structure through air annealing of cadmium hydroxide nanowires. This nanobeads of n-CdO with high surface area has been decorated with p-PbS nanoparticles resulting in the formation of nano-heterojunction which has been utilized effectively as room temperature liquefied petroleum gas (LPG) sensor. The room temperature gas response towards C{sub 2}H{sub 5}OH, Cl{sub 2}, NH{sub 3}, CO{sub 2} and LPG was investigated, among which LPG exhibits significant response. The maximum gas response of 51.10% is achieved with 94.54% stability upon exposure of 1176 ppm concentration of LPG at room temperature (27 °C). The resulting parameters like gas response, response and recovery time along with stability studies has been studied and results are discussed herein. - Highlights: • Conversion of Cd(OH){sub 2} nanowires to CdO nanonecklace by air annealing at 290 °C. • Decoration of PbS nanoparticles over CdO nanobeads by SILAR method. • Formation of n-CdO/p-PbS nano-heterojunction as room temperature LPG sensor. • Maximum gas response of 51.10% with 94.54% stability.

  6. LEVELS OF As, Pb, Cd AND Fe IN SUSPENDED PARTICULATE ...

    African Journals Online (AJOL)

    DR. AMIN

    elements were observed in Motor Spray Painting (MSP),8528±389 g/m3 and Welding and Panel- beating (WDP) workshops, 11086.8±10644 g/m3. The calculated enrichment factor revealed Cd to be highly enriched in Battery Maintenance and Charging (BMC) and MSP. The enrichment factor of all the elements suggests ...

  7. Correlated process of phase separation and microstructure evolution of ternary Co-Cu-Pb alloy

    Science.gov (United States)

    Yan, N.; Wang, W. L.; Luo, S. B.; Hu, L.; Wei, B.

    2013-11-01

    The phase separation and rapid solidification of liquid ternary Co45Cu42Pb13 immiscible alloy have been investigated under both bulk undercooling and containerless processing conditions. The undercooled bulk alloy is solidified as a vertical two-layer structure, whereas the containerlessly solidified alloy droplet is characterized by core-shell structures. The dendritic growth velocity of primary α(Co) phase shows a power-law relation to undercooling and achieves a maximum of 1.52 m/s at the undercooling of 112 K. The Pb content is always enriched in Cu-rich zone and depleted in Co-rich zone. Numerical analyses indicate that the Stokes motion, solutal Marangoni convection, thermal Marangoni convection, and interfacial energy play the main roles in the correlated process of macrosegregation evolution and microstructure formation.

  8. Levels and geochemical fractions of Cd, Pb and Zn in valley bottom ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-06

    Oct 6, 2008 ... Therefore the determination of metal fractions in solution is very important to understand their behaviour and their mobility capacity to the vegetables grown on them. Sequential extraction procedure was used to speciate Cd, Pb and Zn from eleven locations from the cities of Lagos, Ibadan,. Akure, Ikare ...

  9. Biosorptive removal of Pb 2+ , Cd 2+ and Zn 2+ ions from water by ...

    African Journals Online (AJOL)

    Lagenaria vulgaris (LV) shell was used as a biosorbent for the removal of heavy metal ions, Pb2+, Cd2+ and Zn2+, from aqueous solutions. Experiments were carried out under batch conditions. The effects of contact time, initial pH, temperature and stirring speed on removal efficiency are presented. Sorption of the ...

  10. Comparison of prediction methods for the uptake of As, Cd and Pb in carrot and lettuce

    DEFF Research Database (Denmark)

    Legind, Charlotte Nielsen; Trapp, Stefan

    2010-01-01

    Institute of Public Health and the Environment (RIVM), Hough, and the United States Environmental Protection Agency (US EPA), and the Contaminated Land Exposure Assessment (CLEA) approach were tested. Experimental data were assembled from the BAPPET database and Danish background data of As, Cd and Pb...

  11. Biosorptive removal of Pb2+, Cd2+ and Zn2+ ions from water by ...

    African Journals Online (AJOL)

    2010-09-20

    Sep 20, 2010 ... Lagenaria vulgaris (LV) shell was used as a biosorbent for the removal of heavy metal ions, Pb2+, Cd2+ and Zn2+, from aque- ous solutions. Experiments were carried out under batch conditions. The effects of contact time, initial pH, temperature and stirring speed on removal efficiency are presented.

  12. A note on urinary Cd, Cr, Mn and Pb, in students of the University of ...

    African Journals Online (AJOL)

    A note on urinary Cd, Cr, Mn and Pb, in students of the University of Agriculture Makurdi, Nigeria. GA Odeniran, R Sha'Ato. Abstract. A preliminary investigation of heavy metals exposure of students of the University of Agriculture, Makurdi in Central Nigeria involved AAS analysis of urine from ten (10) of the students (five ...

  13. Evaluation of toxic trace metals Cd and Pb in Arabian Sea waters

    Digital Repository Service at National Institute of Oceanography (India)

    Sanzgiri, S.; Mesquita, A.; Kureishy, T.W.; SenGupta, R.

    An attempt has been made to present a picture of the distribution of toxic trace elements Cd and Pb in the Northern Arabian Sea by applying an improved analytical technique for the detection of dissolved forms of the metals at nanogram levels...

  14. KINETIC AND EQUILIBRIUM STUDIES OF Pb(II) AND Cd(II ...

    African Journals Online (AJOL)

    equilibrium adsorption capacity for lead and cadmium ions were obtained from Freundlich, Langmuir, Temkin and DRK isotherms and the experimental data were found to fit best the Langmuir isotherm with values of 21.28 and 40.00 mg/g for Cd(II) and Pb(II) ions, respectively. The Pseudo-second order kinetics model had ...

  15. A note on urinary Cd, Cr, Mn and Pb, in students of the University of ...

    African Journals Online (AJOL)

    Orbuter

    A preliminary investigation of heavy metals exposure of students of the University of. Agriculture, Makurdi in Central Nigeria ... the concentration of these metals was in the order Mn > C r > Pb > Cd, at levels that raise some concern about the health risks .... Nigeria's future prosperity. REFERENCES. 1. Radwan, M. A. and ...

  16. Levels of As, Pb, Cd and Fe in Suspended Particulate Matter (SPM ...

    African Journals Online (AJOL)

    Suspended Particulate Matter (SPM) collected from three different artisans' workshops was analyzed for As, Cd, Pb and Fe by Atomic Absorption Spectrophotometry (AAS). The range of SPM concentrations for the three workshops was 583-20,166Bg/m3. The highest concentrations of these elements were observed in Motor ...

  17. Biosorption kinetics of Cd (II, Cr (III and Pb (II in aqueous solutions by olive stone

    Directory of Open Access Journals (Sweden)

    M. Calero

    2009-06-01

    Full Text Available A by-product from olive oil production, olive stone, was investigated for the removal of Cd (II, Cr (III and Pb (II from aqueous solutions. The kinetics of biosorption are studied, analyzing the effect of the initial concentration of metal and temperature. Pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models have been used to represent the kinetics of the process and obtain the main kinetic parameters. The results show that the pseudo-second order model is the one that best describes the biosorption of the three metal ions for all the range of experimental conditions investigated. For the three metal ions, the maximum biosoption capacity and the initial biosorption rate increase when the initial metal concentration rises. However, the kinetic constant decreases when the initial metal concentration increases. The temperature effect on biosorption capacity for Cd (II and Cr (III is less significant; however, for Pb (II the effect of temperature is more important, especially when temperature rises from 25 to 40ºC. The biosorption capacity at mmol/g of olive stone changes in the following order: Cr>Cd>Pb. Thus, for an initial concentration of 220 mg/ℓ, a maximum sorption capacity of 0.079 mmol/g for Cr (III, 0.065 mmol/g for Cd (II and 0.028 mmol/g for Pb (II has been obtained.

  18. Adsorption equilibrium isotherms of Pb 2+ , Ni 2+ And Cd 2+ onto ...

    African Journals Online (AJOL)

    This study reports the adsorption equilibrium of lead (Pb2+), nickel (Ni2+) and cadmium (Cd2+) from aqueous solution by chicken's eggshells. The eggshells were collected from within Obafemi Awolowo University, Ile-Ife, Nigeria. They were washed with distilled water, air dried, pulverized, sieved into different particle sizes ...

  19. Stable isotope geochemistry of the Ulldemolins Pb-Zn-Cu deposit (SW Catalonian Coastal Ranges, Spain)

    OpenAIRE

    Vergel, M.M.

    2012-01-01

    The Pb-Zn-Cu deposit of Ulldemolins occurs within the Carboniferous sedimentary series of the southernmost Catalonian Coastal Ranges. It consists of sulphide-bearing calc-silicate assemblages, with epidote, Ca-amphiboles and Ca-garnet, which develop selectively along a dolomicrite bed near the contact with a granite porphyry. Two mineralisation styles can be differentiated: a) banded and b) irregular. Fluid inclusions and stable isotope compositions of sulphur in sulphides (sphalerite, galena...

  20. Desorption of Pb 2+ and Cu 2+ from Nipa palm ( Nypa fruticans ...

    African Journals Online (AJOL)

    The data shows that desorption in all the reagent increased with increase in contact time, reaching 75.3 and 63.7% in acid reagent, 18.9 and 14.06% in basic reagent and 3.35 and 2.44% in distilled water for Pb2+ and Cu2+, respectively, at a contact time of 140 min. The desorption kinetic showed that the release constant, ...

  1. Chemical bath deposition of CdS thin films doped with Zn and Cu

    Indian Academy of Sciences (India)

    Zn- and Cu-doped CdS thin films were deposited onto glass substrates by the chemical bath technique. ZnCl2 and CuCl2 were incorporated as dopant agents into the conventional CdS chemical bath in order to promote the CdS doping process. The effect of the deposition time and the doping concentration on the physical ...

  2. Chemical bath deposition of CdS thin films doped with Zn and Cu

    Indian Academy of Sciences (India)

    Abstract. Zn- and Cu-doped CdS thin films were deposited onto glass substrates by the chemical bath technique. ZnCl2 and CuCl2 were incorporated as dopant agents into the conventional CdS chemical bath in order to promote the CdS doping process. The effect of the deposition time and the doping concentration on the ...

  3. Adsorption of Cu2+ and Pb2+ ion on dolomite powder.

    Science.gov (United States)

    Pehlivan, Erol; Ozkan, Ali Müjdat; Dinç, Salih; Parlayici, Serife

    2009-08-15

    Natural Turkish dolomite was shown to be effective for removing Cu(2+) and Pb(2+) from aqueous solution. Selected information on pH, dose required, initial metal concentration, adsorption capacity of the raw dolomite powder was evaluated for its efficiency in adsorbing metal ions. Dolomite exhibited good Cu(2+) and Pb(2+) removal levels at all initial metal amount tested (0.04-0.32 mmol, 20 mL). It is important to note that the adsorption capacities of the materials in equilibrium vary, depending on the characteristics of the individual adsorbent, the initial concentration of the adsorbate and pH of the solution. One hour was enough for the removal of metal ions from (0.2 mmol in 20 mL) aqueous solution. Effective removal of metal ions was demonstrated at pH values of 5.0. The adsorptive behavior of dolomite was described by fitting data generated from the study of the Langmuir and Freundlich isotherm models. The adsorption capacity of dolomite was found as 8.26 mg for Cu(2+) and 21.74 mg for Pb(2+), respectively, from the calculation of adsorption isotherm equation. More than 85% of studied cations were removed by dolomite from aqueous solution in single step. The mechanism for cations removal by dolomite includes surface complexation and ion exchange.

  4. Exciton dynamics in cation-exchanged CdSe/PbSe nanorods: The role of defects

    Science.gov (United States)

    Lee, Sooho; Wang, Yimeng; Liu, Yawei; Lee, Dongkyu; Lee, Kangha; Lee, Doh C.; Lian, Tianquan

    2017-09-01

    Cation exchange occurs via defect initiated solid-state diffusion, a process that can lead to defect formations. The effect of such inherent defect formation on carrier dynamics of cation-exchanged heterostructures remains poorly understood. Herein, we report exciton dynamics in type II CdSe/PbSe heterostructure nanorods formed via cation exchange. The majority of electrons in CdSe domains decays in 5 ps due to ultrafast carrier trapping. The defect generated by cation exchange can be healed by annealing the as-synthesized CdSe/PbSe heterostructure nanorods. This study suggests a strategy for improving properties of heteronanostructures prepared by cation exchange for applications in photovoltaics and photocatalysis.

  5. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem.

    Science.gov (United States)

    Iskandar, Nur Liyana; Zainudin, Nur Ain Izzati Mohd; Tan, Soon Guan

    2011-01-01

    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.

  6. Determining provenance of marine metal pollution in French bivalves using Cd, Zn and Pb isotopes

    Science.gov (United States)

    Shiel, Alyssa E.; Weis, Dominique; Cossa, Daniel; Orians, Kristin J.

    2013-11-01

    Cadmium, Zn and Pb isotopic compositions (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) have been used to distinguish between natural and anthropogenic sources of these metals in bivalves collected from the coastlines of France (English Channel, Atlantic and Mediterranean coasts). The Cd isotopic signatures (δ114Cd = -1.08‰ to -0.52‰) exhibited by bivalves from the coastlines of France, excluding those from NE France, are within the range of those exhibited by bivalves from the USA East coast (δ114Cd = -1.20‰ to -0.54‰). This indicates the high prevalence of industry, as well as the low natural contributions of Cd from North Atlantic waters in both regions. Thus, the significance of anthropogenic Cd sources is similar. These significant anthropogenic contributions are identified for bivalves with a large range in tissue Cd concentrations. Importantly, French bivalves from the Gironde estuary and Marennes-Oléron basin (regions of historic and modern importance for oyster farming, respectively) exhibited the highest Cd levels of the study. Their Cd isotopic signatures indicate historical smelting emissions remain the primary Cd source despite the cessation of local smelting activities in 1986 and subsequent remedial efforts. No significant variability is observed in the δ66Zn values of the French bivalves (∼0.53‰), with the exception of the much heavier compositions exhibited by oysters from the polluted Gironde estuary (1.19-1.27‰). Lead isotopes do not fractionate during processing like Cd and Zn. They can, therefore, be used to identify emissions from industrial processes and the consumption of unleaded gasoline and diesel fuel as metal sources to French bivalves. Cadmium and Zn isotopes are successfully used here as tracers of anthropogenic processing emissions and are combined with Pb isotope "fingerprinting" techniques to identify metal sources.

  7. Constitutive Behavior of Mixed Sn-Pb/Sn-3.0Ag-0.5Cu Solder Alloys

    Science.gov (United States)

    Tucker, J. P.; Chan, D. K.; Subbarayan, G.; Handwerker, C. A.

    2012-03-01

    During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of Sn-Pb and Sn-Ag-Cu often result from either mixed assemblies or rework. Comprehensive characterization of the mechanical behavior of these mixed solder alloys resulting in a deformationally complete constitutive description is necessary to predict failure of mixed alloy solder joints. Three alloys with 1 wt.%, 5 wt.%, and 20 wt.% Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn-37Pb components mixed with Sn-3.0Ag-0.5Cu. Creep and displacement-controlled tests were performed on specially designed assemblies at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. The observed changes in creep and tensile behavior with Pb additions were related to phase equilibria and microstructure differences observed through differential scanning calorimetric and scanning electron microscopic cross-sectional analysis. As Pb content increased, the steady-state creep strain rates increased, and primary creep decreased. Even 1 wt.% Pb addition was sufficient to induce substantially large creep strains relative to the Sn-3.0Ag-0.5Cu alloy. We describe rate-dependent constitutive models for Pb-contaminated Sn-Ag-Cu solder alloys, ranging from the traditional time-hardening creep model to the viscoplastic Anand model. We illustrate the utility of these constitutive models by examining the inelastic response of a chip-scale package (CSP) under thermomechanical loading through finite-element analysis. The models predict that, as Pb content increases, total inelastic dissipation decreases.

  8. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil.

    Science.gov (United States)

    Yin, Daixia; Wang, Xin; Chen, Can; Peng, Bo; Tan, Changyin; Li, Hailong

    2016-06-01

    Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic

  9. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marin, Paula, E-mail: paulasanchez@uvigo.es [Laboratorio de Ecoloxia Marina (LEM), Universidade de Vigo, Campus Universitario, 36310 Vigo, Galicia (Spain); Santos-Echeandia, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xose Anton [Instituto de Investigacions Marinas, Consejo Superior de Investigaciones Cientificas (CSIC), Eduardo Cabello 6, 36208 Vigo, Galicia (Spain); Beiras, Ricardo [Laboratorio de Ecoloxia Marina (LEM), Universidade de Vigo, Campus Universitario, 36310 Vigo, Galicia (Spain)

    2010-01-31

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L{sub Cu}) than the natural seawater used for their preparation. L{sub Cu} varied from 0.08 {mu}M in natural seawater to 0.3 and 0.5 {mu}M in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC{sub 50} of 0.64 {mu}M, significantly higher than the Cu EC{sub 50} of natural and artificial seawater, which was 0.38 {mu}M. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC{sub 50}. This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC{sub 50}, while L

  10. Excellent magnetocaloric properties in RE2Cu2Cd (RE = Dy and Tm) compounds and its composite materials.

    Science.gov (United States)

    Zhang, Yikun; Yang, Yang; Xu, Xiao; Geng, Shuhua; Hou, Long; Li, Xi; Ren, Zhongming; Wilde, Gerhard

    2016-09-26

    The magnetic properties and magnetocaloric effect (MCE) of ternary intermetallic RE2Cu2Cd (RE = Dy and Tm) compounds and its composite materials have been investigated in detail. Both compounds undergo a paramagnetic to ferromagnetic transition at its own Curie temperatures of TC ~ 48.5 and 15 K for Dy2Cu2Cd and Tm2Cu2Cd, respectively, giving rise to the large reversible MCE. An additionally magnetic transition can be observed around 16 K for Dy2Cu2Cd compound. The maximum values of magnetic entropy change (-ΔSM(max)) are estimated to be 17.0 and 20.8 J/kg K for Dy2Cu2Cd and Tm2Cu2Cd, for a magnetic field change of 0-70 kOe, respectively. A table-like MCE in a wide temperature range of 10-70 K and enhanced refrigerant capacity (RC) are achieved in the Dy2Cu2Cd - Tm2Cu2Cd composite materials. For a magnetic field change of 0-50 kOe, the maximum improvements of RC reach 32% and 153%, in comparison with that of individual compound Dy2Cu2Cd and Tm2Cu2Cd. The excellent MCE properties suggest the RE2Cu2Cd (RE = Dy and Tm) and its composite materials could be expected to have effective applications for low temperature magnetic refrigeration.

  11. Room-Temperature Indentation Creep and the Mechanical Properties of Rapidly Solidified Sn-Sb-Pb-Cu Alloys

    Science.gov (United States)

    Kamal, Mustafa; El-Bediwi, A.; Lashin, A. R.; El-Zarka, A. H.

    2016-05-01

    In this paper, we study the room-temperature indentation creep and the mechanical properties of Sn-Sb-Pb-Cu alloys. Rapid solidification from melt using the melt-spinning technique is applied to prepare all the alloys. The experimental results show that the magnitude of the creep displacement increases with the increase in both time and applied load, and the stress exponent increases with the increase in the copper content in the alloys which happens primarily due to the existence of the intermetallic compounds SbSn and Cu6Sn5. The calculated values of the stress exponent are in the range of 2.82 to 5.16, which are in good agreement with the values reported for the Sn-Sb-Pb-Cu alloys. We have also studied and analyzed the structure, elastic modulus, and internal friction of the Sn-Sb-Pb-Cu alloys.

  12. Synergistically tuning the electrical and thermal transport properties of CdO:Cu thermoelectric ceramics

    Science.gov (United States)

    Fu, Guangsheng; Gao, Linjie; Liu, Ran; Zha, Xinyu; Wang, Jianglong; Wang, Shufang

    2017-07-01

    The thermoelectric performance of CdO ceramics was optimized by synergistically tuning their electrical and thermal transport properties via Cu doping. The introduction of Cu led to an increase in carrier concentration and mobility simultaneously for samples with Cu content less than 3%. An improvement in power factor was obtained due to decreased electrical resistivity and a moderate Seebeck coefficient. A small amount of Cu doping was also verified to be effective in suppressing the heat transfer of CdO ceramics owing to the enhanced phonon scattering from point defects and grain boundaries. Benefiting from the increase in power factor and decrease in thermal conductivity, enhanced ZT values were achieved in all doped samples, indicating that Cu doping is an effective strategy to promote the thermoelectric performance of CdO ceramics.

  13. Fabrication of carbon nanotubes paste electrode for determination of Cd (II) and Pb (II) ions

    Science.gov (United States)

    Le Hai, Tran; Hai, Tran Duy

    2017-09-01

    In this study, the electrode for determination of Cd (II) and Pb (II) was prepared by a paste composition of multi-wall carbon nanotubes (MWCNTs) and paraffin oil as a binder. Effect of MWCNTs/paraffin oil ratio on electrochemical behaviors of the electrodes was investigated. For the characterization of the fabricated MWCNT paste electrodes, the cyclic voltammetry, SEM images, RAMAN and XRD spectroscopy were employed. It was found that the electrode containing 20% (w/w) paraffin oil and 80 % (w/w) MWCNTs exhibited the satisfactory properties through the anodic stripping voltammetry (ASV) results. This electrode showed a reversible redox process with an electrochemical mechanism of controlled diffusion. Furthermore, the ASV results of the prepared electrode revealed a linear response of Pb (II) and Cd (II) concentrations with a detection limit of 6.33 µmol.L-1 and 0.42 µmol.L-1, respectively

  14. The Liquid-Liquid Extraction of Toxic Metals (Cd, Hg and Pb by Calixarenes

    Directory of Open Access Journals (Sweden)

    D. Max Roundhill

    2009-12-01

    Full Text Available Toxic metals (Cd, Hg and Pb are mostly present in the environment due to natural phenomenon and human activities as well. Exposure of these non-essential elements in the environment causes severe effects. They are known to cause problems in humans as well as in aquatic life. In this work, we demonstrate various studies regarding liquid-liquid extraction of selected ions with different functionalized calixarenes. This review article briefly discusses several molecular designs of calixarenes for divalent ion (Cd2+, Hg2+ and Pb2+ recognition; as well as the relationship between structure and selectivity of the macrocycles is elaborated. The article does not, however, attempt to cover all of the different approaches to these toxic metal ions extraction.

  15. Use of flue gas desulfurization gypsum for leaching Cd and Pb in reclaimed tidal flat soil.

    Science.gov (United States)

    Yang, Ping; Li, Xian; Tong, Ze-Jun; Li, Qu-Sheng; He, Bao-Yan; Wang, Li-Li; Guo, Shi-Hong; Xu, Zhi-Min

    2016-04-01

    A soil column leaching experiment was conducted to eliminate heavy metals from reclaimed tidal flat soil. Flue gas desulfurization (FGD) gypsum was used for leaching. The highest removal rates of Cd and Pb in the upper soil layers (0-30 cm) were 52.7 and 30.5 %, respectively. Most of the exchangeable and carbonate-bound Cd and Pb were removed. The optimum FGD gypsum application rate was 7.05 kg·m(-2), and the optimum leaching water amount for the application was 217.74 L·m(-2). The application of FGD gypsum (two times) and the extension of the leaching interval time to 20 days increased the heavy metal removal rate in the upper soil layers. The heavy metals desorbed from the upper soil layers were re-adsorbed and fixed in the 30-70 cm soil layers.

  16. Telescopium telescopium as potential biomonitors of Cu, Zn, and Pb for the tropical intertidal area.

    Science.gov (United States)

    Yap, C K; Noorhaidah, A; Azlan, A; Nor Azwady, A A; Ismail, A; Ismail, A R; Siraj, S S; Tan, S G

    2009-02-01

    The distributions of Cu, Zn, and Pb concentrations in the selected soft tissues (foot, cephalic tentacle, mantle, muscle, gill, digestive caecum, and remaining soft tissues) and shells of the mud-flat snail Telescopium telescopium were determined in snails from eight geographical sites in the south-western intertidal area of Peninsular Malaysia. Generally, the digestive caecum compared with other selected soft tissues, accumulated higher concentration of Zn (214.35+/-14.56 microg/g dry weight), indicating that the digestive caecum has higher affinity for the essential Zn to bind to metallothionein. The shell demonstrated higher concentrations of Pb (41.23+/-1.20 microg/g dry weight) when compared to the selected soft tissues except gill from Kuala Sg. Ayam (95.76+/-5.32 microg/g dry weight). The use of different soft tissues also can solve the problem of defecation to reduce error in interpreting the bioavailability of heavy metals in the intertidal area.

  17. Speciation of binary complexes of Pb(II) and Cd(II) with L ...

    African Journals Online (AJOL)

    Chemical speciation of L-Asparagine complexes of Pb(II) and Cd(II) in presence of (0-50% v/v) dimethyl sulfoxide(DMSO)-water mixtures has been studied potentiometrically at 303.0 K and at an ionic strength of 0.16 mol L-1. The models containing different number of species were refined by using the computer program ...

  18. Chemical Bath Deposition and characterization of CdS – PbS thin ...

    African Journals Online (AJOL)

    Nigerian Journal of Physics ... The optical transmittance of CdS-PbS films is extremely low, in most cases zero within the UV and first half of the visible region but peaked at 49.4% (at λ = 994nm) for the 150oC air-annealed samples and at 44.7% (at λ = 994nm) for the as grown samples in the near infra-red region.

  19. SPECIATION OF BINARY COMPLEXES OF Pb(II) AND Cd(II) WITH ...

    African Journals Online (AJOL)

    ABSTRACT. Chemical speciation of L-Asparagine complexes of Pb(II) and Cd(II) in presence of (0-50% v/v) dimethyl sulfoxide(DMSO)-water mixtures has been studied potentiometrically at 303.0 K and at an ionic strength of 0.16 mol L-1. The models containing different number of species were refined by using the ...

  20. STABILITY OF BINARY COMPLEXES OF Pb(II), Cd(II) AND Hg(II ...

    African Journals Online (AJOL)

    Preferred Customer

    Binary complexes of maleic acid with toxic metal ions such as Pb(II), Cd(II) and Hg(II) have been studied in 0.0-2.5% v/v .... refinement of binary systems, the correction factor and the protonation constants of maleic acid were fixed. .... In order to rely upon the 'best-fit' model for critical evaluation and application under varied.

  1. Adsorption of Cu 2+ , As 3+ and Cd 2+ ions from aqueous solution ...

    African Journals Online (AJOL)

    Activation energies of 8.50, 9.25 and 11.74 kJmol-1 were obtained for the adsorption of Cu2+, As3+ and Cd2+ respectively which also suggest physical adsorption. Sorption of As3+ and Cd2+ from solution onto the eggshell adsorbent was found to follow pseudo-first order mechanism while that of Cu2+ was found to follow ...

  2. Pb and Cd in medicinal plants (Case study: Shirazi thyme, sweet violet, pennyroyal and jujube

    Directory of Open Access Journals (Sweden)

    Masoomeh Karimi

    2016-12-01

    Full Text Available Introduction: Medicinal plants are a major source of drugs for the majority of people in the world. Unfortunately, little data is available on the safety of medicinal plants, especially in terms of heavy metal contamination. Therefore, this study was conducted to evaluate the potential risk of Pb and Cd in Shirazi thyme, sweet violet, pennyroyal and jujube marketed in Hamedan City in 2015. Methods: After preparation of 3 samples of each medicinal plant and acid digestion of the samples according to standard methods, the concentration of elements in samples were determined using atomic absorption spectrophotometer (AAS in 3 replicates. Also, all statistical analyses were performed in the SPSS software. Results: The results showed that the maximum mean concentrations of Pb and Cd in specimens were 1420±30 and 40±30 µg/kg for thyme and viola, respectively. The results of health index for all samples were smaller than one for all samples. Also the mean concentrations of Pb and Cd in all samples were lower than WHO permissible limits. Conclusion: Controlled consumption of medicinal plants has no adverse effects on the consumers’ health. However, given the increased use of pesticides, chemical fertilizers, sewage sludge and wastewater by farmers, it is recommended that medicinal plants be regularly monitored for chemical pollutants especially heavy metals.

  3. Acute toxicity of Hg, Cd, and Pb towards dominant bacterial strains of sequencing batch reactor (SBR).

    Science.gov (United States)

    Zare, Mohammad-Reza; Amin, Mohammad-Mehdi; Nikaeen, Mahnaz; Bina, Bijan; Rahmani, Ayat; Hemmati-Borji, Saeedeh; Rahmani, Hasan

    2015-05-01

    One of the most important factors that affect the operation efficiency of sequencing batch reactor (SBR) technology is bacterial viability and biomass activity. The acute toxicity of three heavy metals to four dominant strains of sequencing batch reactor (Pseudomonas, Aeromonas, Enterobacter, and Bacillus) was investigated using a resazurin bioassay. After exposing the bacterial strains to soluble compound of Hg, Cd, and Pb, at more than five selected concentrations, the median effective concentration (EC50) and the mortality rate values were calculated. Large differences were observed in sensitivities of the four bacterial strains to the metals. Pseudomonas showed the highest sensitivity for Cd (EC₅₀ = 0.06 μmol/L) and Hg (EC₅₀ = 11.75 μmol/L), while Aeromonas showed the highest sensitivity for Pb (EC₅₀ = 48.27 μmol/L). Considering the EC50 test results, it was concluded that Pseudomonas and Aeromonas are excellent and reliable bioindicators for assessing the toxicity of water and wastewaters polluted by Cd, Hg, and Pb. The rapidity (30 min) and simplicity of the resazurin bioassay procedure enable this enzymatic test to be used in toxicity assessment of small and decentralized wastewater treatment plants (WWTPs).

  4. Distribution Characteristics, Concentrations, and Sources of Cd and Pb in Laoxiawan Channel Sediments from Zhuzhou, China.

    Science.gov (United States)

    Chen, Wen-Wen; Zhang, Jian-Xin; Abass, Olusegun-Kazeem; Wen, Xin-Yu; Huang, Huan-Fang; Qu, Cheng-Kai; Qi, Shi-Hua

    2016-06-01

    Twenty sediment cores encompassing surface (0-20 cm) and deeper (50-60 cm) sediment layers were retrieved from the 3000 m-long Laoxiawan Channel, which receives industrial effluents from Zhuzhou City (China). Analytical results showed that cadmium (Cd) concentrations ranged between 115.7-1126.7 and 108.8-2059.3 mg/kg while lead (Pb) values ranged between 234-3000 and 145-4292 mg/kg in the surface and bottom sediments, respectively. The results also indicated that high levels of Cd and Pb were present in the vicinity of the channel mouth and confluence area. Indices for potential ecological risk and geo-accumulation were used to evaluate the environmental effects and intensity of heavy metal pollution over time. High concentrations of Cd and Pb in the bottom sediments of Laoxiawan Channel were mainly associated with wastewater discharge (10(6) m(3)/year). Thus, the Laoxiawan Channel may be an important metal contaminant source for the Xiang River.

  5. Competitive adsorption of Pb and Cd on bacteria-montmorillonite composite.

    Science.gov (United States)

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Huang, Qiaoyun

    2016-11-01

    The characteristics and mechanisms of competitive adsorption of trace metals on bacteria-associated clay mineral composites have never been studied, despite their being among the most common organic-mineral complexes in geological systems. Herein, competitive adsorption of Pb and Cd on Pseudomonas putida-montmorillonite composite was investigated through adsorption-desorption experiment, isothermal titration calorimetry (ITC), and synchrotron micro X-ray fluorescence (μ-XRF). From the experiment, stronger competition was observed on clay mineral than on bacteria-clay composite because more non-specific sites accounted for heavy metal adsorption on clay mineral surface at the studied pH 5. Both competing heavy metals tended to react with bacterial fractions in the composite, which was verified by the higher correlation of Cd (and Pb) with Zn (R2 = 0.41) elemental distribution than with Si (R2 = 0.10). ITC results showed that competitive adsorption exhibited a lower entropy change (ΔS) at the metal-sorbent interfaces compared with single-metal adsorption, revealing that Cd and Pb are bound to the same types of adsorption sites on the sorbent. The competitive effect on bacteria-clay composite was found to be helpful for a better understanding on the fixation, remobilization and subsequent migration of heavy metals in multi-metal contaminated environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Percentage of toxic trace elements; Pb, Cr and Cd in certain plastic toys, Isfahan City

    Directory of Open Access Journals (Sweden)

    F Kavehzadeh

    2006-04-01

    Full Text Available Introduction: Recent investigations have detected the presence of significant levels of heavy metals (chromium, lead and cadmium in toys and other PVC products manufactured for children. In some countries, addition of compounds containing toxic metals to toys are limited or prohibited. Methods: To evaluate the safety of some of the plastic toys in the city of Isfahan with respect to toxic trace metals, pb, cr and cd, 75 samples of three types of toys were collected from the toy shop’s and were digested with acid with the two methods ISIRI and ASTM. The heavy metals were determined using atomic absorption spectrophotometer. Variance analysis and T-test were used for data analysis. Results: The result of the study showed that the products tested contained lead, chromium and cadmium and the highest and lowest concentration were related to Pb and Cd, respectively. The statistical analysis of the samples showed that there are no significant differences between ASTM and ISIRI digestion methods. The study revealed that none of the heavy metals in the toy samples exceeded the recommended standard levels. Highest average concentration of Pb and Cd were related to toys with green color and the highest Cr concentration was related to yellow toys in this study. Conclusion: Extensive studies are required to evaluate the quality of the toys being used by children and the toxic trace elements should be eliminated from the plastic materials used for making toys.

  7. Surface chemistry of Cu/sub x/S and Cu/sub x/S/CdS determined from x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Partain, L.D.; Schneider, R.A.; Donaghey, L.F.; McLeod, P.S.

    1985-06-01

    X-ray photoelectron spectroscopy spectra measured on copper sulfide (Cu/sub x/S) films showed that a thin surface reaction product containing Cu in the +2 valence state was formed on Cu/sub x/S films exposed to air for 46 h at 40 /sup 0/C and 90% relative humidity. An entirely different Cu/sub x/S surface reaction product layer was formed in dry air at 170 /sup 0/C for 30 min and it contained sulfur in the +6 valence state. The copper (Cu) valence state in Cu/sub x/S was not found to be +2 even when the x value was less than 1.9. When the argon sputter-cleaned surface of Cu/sub x/S or Cu/sub x/S/CdS films was exposed to room-temperature air for 10 min, cadmium (Cd) atoms appeared on the Cu/sub x/S surface. X-ray powder diffraction patterns showed that CuO and CdS reacted at 500 /sup 0/C in flowing nitrogen to form Cu/sub 2/S and CdO. This cation exchange between CdS and copper oxide may explain the surface Cd on the Cu/sub x/S films. The standard free energy of reaction between CuO and CdS is positive while that between Cu/sub 2/O and CdS is negative. These results indicate a method for stabilizing Cu/sub x/S/CdS solar cells against degradation.

  8. [Characteristic and ion exchanges during Cu2+ and Cd2+ biosorption by Stenotrophomonas maltophilia].

    Science.gov (United States)

    Bai, Jie-Qiong; Yin, Hua; Ye, Jin-Shao; Peng, Hui; Tang, Li-Tao; He, Bao-Yan; Li, Yue-Peng

    2013-01-01

    The characteristics of Cu2+ and Cd2+ biosorption by Stenotrophomonas maltophilia (S. maltophilia) under different biomass, metal concentration and glutaraldehyde content were studied and the correlations among metal biosorption, NO3- removal and ion release were analyzed. The mechanism was explored through ion biosorption, exchange, conversion and release. The experimental results demonstrated that S. maltophilia was an efficient strain to remove Cu2+ and Cd2+. The biosorption efficiencies of Cu2+ and Cd2+ achieved 96.3% and 83.9%, respectively after dealing with 0.05 mmol x L(-1) aqueous solutions for 120 min with dry biosorbent dosage of 0.2 g x L(-1). Cu2+ and Cd2+ biosorption by S. maltophilia included surface adsorption, transmembrane active transportation, bioaccumulation of NO3- and reduction of NO3- to NO2-. The intracellular transfer and reduction of NO3- to NO2- during biosorption by S. maltophilia were energy-consuming biological processes. It could also promote the release of Cl-, PO4(3-), SO-4(2-), Na+, NH4+, K+ and Ca2+. From FTIR investigation, involvement of various functional groups like acetylamino, hydroxyl and carboxyl in the binding of Cu2+ and Cd2+ was evident. Moreover, XPS results proved that the valence state of Cu2+ and Cd2+ did not changed by biosorption.

  9. NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus

    Energy Technology Data Exchange (ETDEWEB)

    Bankaji, I.; Sleimi, N.; Gómez-Cadenas, A.; Pérez-Clemente, R.M.

    2016-07-01

    The objective of the present work was to evaluate the extent of Cd- and Cu-induced oxidative stress and the antioxidant response triggered in the halophyte species Atriplex halimus after metallic trace elements exposure. Plants were treated for one month with Cd2+ or Cu2+ (400 µM) in the absence or presence of 200 mM NaCl in the irrigation solution. The interaction between salinity and heavy metal stress was analyzed in relation to plant growth, tissue ion contents (Na+, K+ and Mg2+), oxidative damage and antioxidative metabolism. Data indicate that shoot and root weight significantly decreased as a consequence of Cd2+- or Cu2+-induced stress. Metallic stress leads to unbalanced nutrient uptake by reducing the translocation of K+ and Mg2+ from the root to the shoot. The levels of malondialdehyde increased in root tissue when Cd, and especially Cu, were added to the irrigation solution, indicating that oxidative damage occurred. Results showed that NaCl gave a partial protection against Cd and Cu induced toxicity, although these contaminants had distinct influence on plant physiology. It can be concluded that salinity drastically modified heavy metal absorption and improved plant growth. Salinity also decreased oxidative damage, but differently in plants exposed to Cd or Cu stress.

  10. Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Ruecha, Nipapan [Program in Macromolecular Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Rodthongkum, Nadnudda [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Cate, David M. [Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Volckens, John [Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Chailapakul, Orawon, E-mail: orawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); National Center of Excellence for Petroleum, Petrochemicals, Advanced Materials, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Henry, Charles S., E-mail: chuck.henry@colostate.edu [Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2015-05-18

    Highlights: • Detection limits for Zn, Pb, and Cd using ASV were 1, 0.1, and 0.1 μg L{sup −1}, respectively. • G/PANI-modification led to a 3× improvement in signal vs. unmodified electrodes. • ASV on a plastic substrate exhibited better sensitivity than on a paper substrate. • Zn, Pb, and Cd were measured in human serum using method of standard addition. - Abstract: This work describes the development of an electrochemical sensor for simultaneous detection of Zn(II), Cd(II), and Pb(II) using a graphene–polyaniline (G/PANI) nanocomposite electrode prepared by reverse-phase polymerization in the presence of polyvinylpyrrolidone (PVP). Two substrate materials (plastic film and filter paper) and two nanocomposite deposition methods (drop-casting and electrospraying) were investigated. Square-wave anodic stripping voltammetry currents were higher for plastic vs. paper substrates. Performance of the G/PANI nanocomposites was characterized by scanning electron microscopy (SEM) and cyclic voltammetry. The G/PANI-modified electrode exhibited high electrochemical conductivity, producing a three-fold increase in anodic peak current (vs. the unmodified electrode). The G/PANI-modified electrode also showed evidence of increased surface area under SEM. Square-wave anodic stripping voltammetry was used to measure Zn(II), Cd(II), and Pb(II) in the presence of Bi(III). A linear working range of 1–300 μg L{sup −1} was established between anodic current and metal ion concentration with detection limits (S/N = 3) of 1.0 μg L{sup −1} for Zn(II), and 0.1 μg L{sup −1} for both Cd(II) and Pb(II). The G/PANI-modified electrode allowed selective determination of the target metals in the presence of common metal interferences including Mn(II), Cu(II), Fe(III), Fe(II), Co(III), and Ni(II). Repeat assays on the same device demonstrated good reproducibility (%RSD < 11) over 10 serial runs. Finally, this system was utilized for determining Zn(II), Cd(II), and Pb(II) in

  11. The swan mussel (Anodonta cygnea) in Anzali wetland of Iran, a potential biomonitor for Cd and Pb.

    Science.gov (United States)

    Ganjali, Saeed; Mortazavi, Samar

    2014-08-01

    Protecting wetlands from environmental pollution has been of significant importance, as they are the vital habitats for various kinds of birds and animals. This study has aimed to monitor the contamination of Cd and Pb in Anzali wetland, located in the north of Iran using a mussel biomonitor. The contents of Cd and Pb were measured in the surface sediment, the soft tissue, and the shell of A. cygnea. The samples were collected from four sites in the region. The results demonstrated that the shell of A. cygnea can be employed as a precise case for biomonitoring of Cd and Pb, due to the higher biota-sediment accumulation factor and the lower coefficient of variation values found in the shell compared with the soft tissue, and also according to the positive correlation between Cd and Pb levels in the shell of A. cygnea and the sediment.

  12. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    Science.gov (United States)

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu(+2), Hg(+2), Pb(+2), and Zn(+2)). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  13. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan.

    Science.gov (United States)

    Zhu, Yehua; Hu, Jun; Wang, Jianlong

    2012-06-30

    The competitive adsorption of Pb(II), Cu(II) and Zn(II) onto a novel xanthate-modified magnetic chitosan (XMCS) was systematically investigated in single and ternary metal systems. In single system, equilibrium studies showed that the adsorption of Pb(II), Cu(II) and Zn(II) followed the Langmuir model and the maximum adsorption capacities were found to be 76.9, 34.5 and 20.8mg/g, respectively. In ternary system, the combined action of the metals was found to be antagonistic and the metal sorption followed the order of Pb(II)>Cu(II)>Zn(II); the Langmuir isotherm fitted the data of Pb(II) and Cu(II) well while the isotherm data of Zn(II) correlated well with the Freundlich model. The Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS) studies showed that the thiol and amino group participated in the adsorption of Pb(II), Cu(II) and Zn(II). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Activity measurements of Al and Cu in Si-Al-Cu melt at 1273 and 1373 K by the equilibration with molten Pb

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Takeshi [Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: yoshikawa@wood2.mm.t.u-tokyo.ac.jp; Morita, Kazuki [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2006-08-31

    For the effective control of Al introduction to solidified Si during the solidification refining of Si with the Si-Al-based melt for the solar cell material or the LPE Si film growth processes from the Si-Cu-Al solvent, thermodynamic properties of the Si-Al-Cu melt were investigated at 1273 and 1373 K. Activities of Al and Cu in the Si-Al-Cu melt were measured by the equilibration with molten Pb. Also, the excess Gibbs energy of the melt was studied by the ternary regular solution model. The evaluated thermodynamic properties of the Si-Al-Cu melt indicated that Cu addition to the Si-Al melt brings the smaller activity coefficient of Al and is effective for reducing the Al content of solidified Si from the melt more effectively than its dilution effect for Al.

  15. [Response of Nostoc flageliforme cell to Cu2+, Cr2+ and Pb2+ stress].

    Science.gov (United States)

    Guo, Jinying; Shi, Mingke; Zhao, Yanli; Ren, Guoyan; Yi, Junpeng; Niu, Leilei; Li, Juan

    2013-06-04

    This study aimed to investigate the effects of Cu2+, Cr2+ and Pb2+ stress on Nostoc flagelliforme cell. The response of Nostoc flagelliforme cell was analyzed under the stress. The modified BG11 culture medium containing different heavy metal ions of 0, 0.1, 1.0, 10, 100 mg/L was used to cultivate Nostoc flagelliforme cell at 25 degrees C and light intensity of 80 micromol/(m x s). Electrolyte leakage, the activities of superoxide dismutase, the content of malondialdehyde, proline, soluble protein and trehalose were analyzed. Under 1 - 100 mg/L Cu2+, Cr2+ and Pb2+ stress, electrolyte leakage and malondialdehyde contents in Nostoc flagelliforme cell were higher than those in the control group during heavy metal ions stress. Meanwhile, superoxide dismutase activity increased slightly under 10 mg/L, but was lower afterwards. The contents of proline, soluble protein and trehalose increased under 10 mg/L heavy metal ions stress, while declined under extreme heavy metal ions stress (100 mg/L). Nostoc flagelliforme cell has resistance to low heavy metal ions stress, but is damaged badly under extreme heavy metal ions stress.

  16. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms.

    Science.gov (United States)

    Han, Mi-Kyung; Jin, Yingshi; Lee, Da-Hee; Kim, Sung-Jin

    2017-10-26

    In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi₂Te₃, n-type Bi₂Te₃ co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi₂Te₃ were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi₂Te₃ and undoped Bi₂Te₃. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi₂Te₃ rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi₂Te₃ (κtot ~ 1.5 W/m∙K at 300 K) and undoped Bi₂Te₃ (κtot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi₂Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi₂Te3 and its operating temperature can be controlled by co-doping.

  17. Thermoelectric Properties of Bi2Te3: CuI and the Effect of Its Doping with Pb Atoms

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Han

    2017-10-01

    Full Text Available In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi2Te3, n-type Bi2Te3 co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10 were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi2Te3 were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi2Te3 and undoped Bi2Te3. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi2Te3 rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K is slightly lower than that of 1% CuI-doped Bi2Te3 (κtot ~ 1.5 W/m∙K at 300 K and undoped Bi2Te3 (κtot ~ 1.6 W/m∙K at 300 K due to the alloy scattering. The 1% CuI-Pb co-doped Bi2Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi2Te3 and its operating temperature can be controlled by co-doping.

  18. Carrier providers or killers: The case of Cu defects in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Metzger, Wyatt K.; Wei, Su-Huai

    2017-07-24

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cu can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. These findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.

  19. Carrier providers or killers: The case of Cu defects in CdTe

    Science.gov (United States)

    Yang, Ji-Hui; Metzger, Wyatt K.; Wei, Su-Huai

    2017-07-01

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cu can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. These findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.

  20. Determination of Cd and Pb in food slurries by GFAAS using cryogenic grinding for sample preparation.

    Science.gov (United States)

    Santos, D; Barbosa, F; Tomazelli, A C; Krug, F J; Nóbrega, J A; Arruda, M A Z

    2002-06-01

    A simple method combining slurry sampling after cryogenic grinding and the use of a permanent modification of the integrated platform inside the transversely heated graphite atomizer (THGA) was proposed for the determination of Cd and Pb in foods. Potentialities of the cryogenic grinding were evaluated for grinding different materials of difficult homogenization such as high fat and high fiber tissues. Animal and vegetal samples were cut into small pieces and ground in liquid nitrogen for 2 min. Slurries were prepared directly in the autosampler cup after cryogenic grinding by transferring an exact amount of homogeneous powdered material (5-20 mg) to the cup, followed by 1.00 mL of 0.2% (v/v) HNO3 containing 0.04% (v/v) Triton X-100 and sonication for 30 s, before transferring into the platform previously coated with 250 microg W and 200 microg Rh. Use of a tungsten carbide-rhodium permanent modifier combined with NH4H2PO4 conventional modifier improves tube lifetime and increases the pyrolysis temperature for Cd. Homogeneity tests, carried out by comparing the between- and within-batch precision for each kind of sample, showed no significant differences at the 95% confidence level, indicating good homogeneity for 5-20 mg masses. Detection limits were 3.3 ng g(-1) Cd and 75 ng g(-1) Pb for 1% m/v slurries. Results for determination of Cd and Pb in foods slurries were in agreement with those obtained with digested samples, since no statistical differences were found by the paired t-test at the 95% level.

  1. Responses of different Chinese flowering cabbage (brassica parachinensis l.) cultivars to cadmium and lead exposure: screening for Cd + Pb pollution-safe cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Qiu; Yang, Zhongyi; Xin, Junliang; Yuan, Jiangang; Wang, Jianbing; Xin, Guorong [State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou (China); Wang, Yutao [Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, Guangdong (China)

    2011-11-15

    To reduce the potential risks of cadmium (Cd) and lead (Pb) entering the human food chain in vegetables, two pot experiments (Exp. 1 and Exp. 2) were carried out to screen for Cd and Pb pollution-safe cultivars (PSCs) of Chinese flowering cabbage (Brassica parachinensis L.). The three Cd treatments in Exp. 1 (0.114, 0.667, and 1.127 mg kg{sup -1}) showed that Chinese flowering cabbage could easily take up Cd from polluted soils, and there were wide variations in Cd accumulation among different cultivars. The Cd accumulation trait at cultivar level was rather stable under different soil Cd treatments. In Exp. 2, seven cultivars that had been shown in Exp. 1 to be typical high or low accumulators of Cd were selected and six Cd + Pb joint exposure treatments were applied to them. The results showed that there were similar trends of accumulation between Cd and Pb for the tested cultivars, but Pb accumulation by the species was much poorer than that of Cd. It was worth noting that an increase in soil Pb levels significantly (p < 0.01) depressed shoot Cd accumulation. Six cultivars were selected as Cd + Pb PSCs. This study showed that it is feasible to apply a PSC strategy in Chinese flowering cabbage cultivation, to cope with the Cd and Pb contamination commonly found in agricultural soils. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Cu-Zn-Pb multi isotopic characterization of a small watershed (Loire river basin, France)

    Science.gov (United States)

    Desaulty, A. M.; Millot, R.; Perret, S.; Bourrain, X.

    2015-12-01

    Combating metal pollution in surface water is a major environmental, public health and economic issue. Knowledge of the behavior of metals, such as copper (Cu), zinc (Zn) and lead (Pb) in sediments and dissolved load, is a key factor to improve the management of rivers. Recent advances in mass spectrometry related to the development of MC-ICPMS allow to analyze the isotopic composition of these elements, and previous studies show the effectiveness of isotopic analyses to determine the anthropogenic sources of pollution in environment. The goal of this study is to use the Cu-Zn-Pb multi-isotopic signature to track the pollutions in surface water, and to understand the complex processes causing the metals mobilization and transport in environment. More particularly we investigate the mechanisms of distribution between the dissolved load and particulate load, known to play an important role in the transport of metals through river systems. As case study, we chose a small watershed, poorly urbanized in the Loire river basin. Its spring is in a pristine area, while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. First a sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Then to simulate a lot of potential natural and anthropogenic modifications of environmental conditions, we made sequential extraction protocol using various reagents on the sediments. Isotopic analyzes were performed also on the various extracting solutions. Isotopic ratios were measured using a Neptune MC-ICPMS at the BRGM, after a protocol of purification for Zn and Cu. The results showed that, these isotopic systematics reveal important informations about the mechanists of mobilization and transport of metals through river systems. However experiments performed under laboratory conditions will be necessary

  3. Distributions and pollution assessment of heavy metals Pb, Cd and Cr in the water system of Kendari Bay, Indonesia

    Science.gov (United States)

    Armid, A.; Shinjo, R.; Ruslan, R.; Fahmiati

    2017-02-01

    The concentrations of heavy metals Pb, Cd and Cr in the coastal waters of Kendari Bay were analyzed to assess their pollution status. Water samples from 32 sampling points were analyzed for dissolved heavy metals concentrations by using inductively coupled plasma mass spectrometry (ICP-MS). The RSD(%) of each metal was accounted to analyze the diversity of the heavy metals among 32 sampling points. The results demonstrate that the dissolved heavy metal Pb had the highest concentrations (0.009 to 0.549 μg/L, average = 0.210 μg/L) followed by Cr (0.085 to 0.386 μg/L, average = 0.149 μg/L), and Cd (0.001 to 0.015 μg/L, average = 0.008 μg/L). Based on the the RSD values (Pb = 87.8%, Cd = 45.2% and Cr = 41.3%), it is suggested that the antropogenic activities controls the high diversity of concentrations for heavy metal Pb relative to those of Cd and Cr. Comparing the data with the mean oceanic concentrations, only the concentrations of Pb exceed the mean oceanic level (210 folds). Therefore, the water system of Kendari Bay is severely polluted with heavy metal Pb. More management and treatment should be introduced to protect the marine environment in the study area, especially from Pb pollution.

  4. One pot synthesis of Pb S/Cu{sub 2}S core-shell nanoparticles and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, T.; Gomez, I., E-mail: maria.gomez@uanl.edu.mx [Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Pedro de Alba, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2014-07-01

    The synthesis of Pb S/Cu{sub 2}S core-shell nanoparticles with emission on the visible range and with improved luminescence properties was carried out by the colloidal solution-phase growth method by using simple stabilizers such as trisodium citrate and 3-mercaptopropionic acid. The core shell arrangement for particles with different crystalline structure was achieved, in addition this is the first report related to the synthesis Pb S/C{sub 2}S core-shell system. The data obtained from absorption spectra, Pl spectra, and HRTEM image provided direct proof of the formation of Pb S core with size around 11 nm and Cu{sub 2}S shell of 5 nm thickness. According to the UV-vis absorption and Pl spectrum the optical characteristics observed in the synthesized material correspond to a Pb S/Cu{sub 2}S system that has a higher confinement effect than the pure Pb S nanoparticles. The Q Y was improved in 15% from Pb S/C{sub 2}S nanoparticles. The estimated band (Homo-Lumo) alignment determined by C V measurements corresponds to a type-I core shell arrangement. The synthesized material was studied with different techniques. The size and dispersion of the particles were determined by ultraviolet-visible (UV-Vis), photoluminescence and quantum yield, Dynamic Light Scattering method and X-ray diffraction with copper radiation (λ = 0.15418 nm). (Author)

  5. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe PV devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  6. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe photovoltaic devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  7. Effect of aging on the microstructure and shear strength of SnPbAg/Ni-P/Cu and SnAg/Ni-P/Cu solder joints

    Science.gov (United States)

    Ahat, Shawkret; Du, Liguang; Sheng, Mei; Luo, Le; Kempe, Wolfgang; Freytag, Juergen

    2000-09-01

    The effect of aging on the microstructure and shear strength of 62Sn36Pb2Ag/Ni-P/Cu and SnAg/Ni-P/Cu surface mount solder joints was investigated. An intermetallic (IMC) layer of Ni3Sn4 forms at the interface between both solders and the Ni-P barrier layer and it thickens with aging time, with a decrease in the thickness of remaining Ni-P layer. The SnAg solder joint initially has a greater shear force than that of SnPbAg, but it drops dramatically after 250 h aging, and fracture occurs at the Ni-P/Cu interface afterwards, although it initiates in the solder in the initial stage of aging. The fracture in SnAg solder joint may arise from the excessive depletion of Ni characterized by a rapid accumulation of P in the remaining Ni-P layer, which results in a poor adhesion between the Ni-P layer and the Cu substrate. However, for the SnPbAg solder joint, the shear force initially decreases rapidly then asymptotically approaches a minimum, and fracture occurs from inside solder toward the solder/Ni-P interface. SnPbAg solder joint keeps relatively higher shear strength compared to SnAg solder joint after long term aging even though it decreases with aging time.

  8. Effect of Sintering Time on Superconducting Wire Bi-Pb-Sr-Ca-Cu-O With Dopant MgO Sheated Ag Using Powder in Tube Method

    Directory of Open Access Journals (Sweden)

    Hariyati Lubis

    2018-01-01

      DAFTAR PUSTAKA Abbas M.M., Abass L.K and Salman U., (2012, Influences of Sintering Time on the Tc of Bi2-xCuxPb0.3Sr2Ca2Cu3010+ High Temperature Superconductors, Energy Procedia 18, 215-224  Abbas, M.M., Abbas, L.K., Bahedh, H.S. 2015. Superconducting Properties of Bi2-SbxPb0,3Sr1,9Ba0,1Ca2Cu3O10+δ Compounds. Journal of Applied Science Research. 11. 22: 164-172 Darsono, N., Imaduddin, A., Raju, K., Yoon, D.H., (2015, Synthesis and Characterization of Bi1.6Pb0.4Sr2Ca2Cu3O7 Superconducting Oxide by High-Energy Milling, J Supercond Nov Magn. E. Chew,. (2010, Superconducting Transformer Design And Construction, University of Canterbury, Christchurch, New Zealand. March Hamadneh, I., Halim, S. A., dan Lee, C. K., (2006,  Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy Ceramic Superconductor Prepared Via Coprecipitation Method at Different Sintering Time, J. Mater. Sci, 41: 5526-5530. Hermiz G.Y., Aljurani B.A., Beayaty M.A., (2014, Effect of Mn Substitution on the Superconducting Properties of Bi1.7Pb0,3Sr2Ca2-xMnxCu3O10+, International Journal Of Engineering and Advanced Technology (IJEAT. 3. 4: 213-217 John R Hull, (2003, Applications of high-temperature superconductors in power technology, Reports on Progress in Physics, Volume 66, Number 11 Lu, X.Y., Yi, D., Chen, H., Nagata, A. 2016. Effect of Sn, MgO and Ag2O mix-doping on the formation and superconducting properties of Bi-2223 Ag/tapes. Physics Procedia. 81: 129-132 Meretliev Sh., Sadykov K.B., Berkeliev A., (2000, Doping of High Temperature Superconductors, Turk J Phy.24: 39-48 Mohammed, N. H., Ramadhan A., Ali I. A., Ibrahim, I. H., dan Hassan, M. S, (2012, Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2, Materials Sciences and Applications, 3: 224-233. Roumie, M., Marhaba, S., Awad R., Kork M., Hassan I., Mawassi R., (2014, Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi,Pb-2223 Phase, Journal of Supercond Nov Magn, 27: 143-153 Serkan

  9. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    Science.gov (United States)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  10. Ice-core based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the Soviet Union.

    Science.gov (United States)

    Eichler, Anja; Tobler, Leonhard; Eyrikh, Stella; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit

    2014-01-01

    The development of strategies and policies aiming at the reduction of environmental exposure to air pollution requires the assessment of historical emissions. Although anthropogenic emissions from the extended territory of the Soviet Union (SU) considerably influenced concentrations of heavy metals in the Northern Hemisphere, Pb is the only metal with long-term historical emission estimates for this region available, whereas for selected other metals only single values exist. Here we present the first study assessing long-term Cd, Cu, Sb, and Zn emissions in the SU during the period 1935-1991 based on ice-core concentration records from Belukha glacier in the Siberian Altai and emission data from 12 regions in the SU for the year 1980. We show that Zn primarily emitted from the Zn production in Ust-Kamenogorsk (East Kazakhstan) dominated the SU heavy metal emission. Cd, Sb, Zn (Cu) emissions increased between 1935 and the 1970s (1980s) due to expanded non-ferrous metal production. Emissions of the four metals in the beginning of the 1990s were as low as in the 1950s, which we attribute to the economic downturn in industry, changes in technology for an increasing metal recovery from ores, the replacement of coal and oil by gas, and air pollution control.

  11. Pathways toward higher performance CdS/CdTe devices: Te exposure of CdTe surface before ZnTe:Cu/Ti contacting

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, T.A., E-mail: tim.gessert@nrel.gov; Burst, J.M.; Wei, S.-H.; Ma, J.; Kuciauskas, D.; Rance, W.L.; Barnes, T.M.; Duenow, J.N.; Reese, M.O.; Li, J.V.; Young, M.R.; Dippo, P.

    2013-05-01

    Many studies of thin-film CdS/CdTe photovoltaic devices have suggested that performance may be improved by reducing recombination due to Te-vacancy (V{sub Te}), Te antisite (Te{sub Cd}), or Te-interstitial (Te{sub i}) defects. Although formation of these intrinsic defects is likely influenced by CdTe deposition parameters, it may be also coupled to the formation of beneficial cadmium vacancy (V{sub Cd}) defects. In this study, we expose the CdTe surface to Te vapor prior to ZnTe:Cu/Ti contact-interface formation with the goal of reducing V{sub Te} without significantly reducing V{sub Cd}. Initial results show that when this modified contact is used on a CdCl{sub 2}-treated CdS/CdTe device, poorer device performance results. This suggests two things: First, the amount of free-Te available during contact formation (either from chemical etching or Cu{sub x}Te or ZnTe deposition) may be a more important parameter to device performance than previously appreciated. Second, if processes have been used to reduce the effect of V{sub Te} (e.g., oxygen and chlorine additions), adding even a small amount of Te may produce detrimental defects. - Highlights: ► Te exposure of CdS/CdTe back contact reduces device performance. ► Field strength and minority carrier lifetime reduced. ► Calculations suggest formation of Te on Cd antisite defect.

  12. Trends and problems in CdS/Cu/x/S thin film solar cells - A review

    Science.gov (United States)

    Martinuzzi, S.

    1982-03-01

    The methods currently used to fabricate CdS/CuS solar cells are reviewed, along with comparisons of the effects on performance of the various preparation techniques. Attention is given to thermal evaporation, sputter, and chemical spray formation of the CdS layers, noting that most experience is presently with the evaporative and spray processes. CuS layers are formed in dip or wet process chemiplating, electroplating, vacuum deposition in flash and sputter modes, solid state reaction, or spray deposition. Any of the CuS film techniques can be used with any of the CdS layer processes, while spraying and sputtering are noted to offer the best alternatives for industrial production. Band profiles, I-V characteristics, photocurrent levels, and capacitance-voltage characteristics are outlined for the differently formed cells, and CdS/CuS and CdZnS/CuS cells are concluded to exhibit the highest performance features. Areas of improvement necessary to bring the cells to commercial status are discussed.

  13. Absorbed Pb2+ and Cd2+ Ions in Water by Cross-Linked Starch Xanthate

    Directory of Open Access Journals (Sweden)

    Kai Feng

    2017-01-01

    Full Text Available A cross-linked starch xanthate was prepared by graft copolymerization of acrylamide and sodium acrylate onto starch xanthate using potassium persulfate and sodium hydrogen sulfite initiating system and N,N′-methylenebisacrylamide as a cross-linker. As this kind of cross-linked potato starch xanthate can effectively absorb heavy metal ions, it was dispersed in aqueous solutions of divalent heavy metal ions (Pb2+ and Cd2+ to investigate their absorbency by the polymer. Factors that can influence absorbency were investigated, such as the ratio of matrix to monomers, the amount of initiator and cross-linker, pH, and the concentration of metal ions. Results were reached and conclusion was drawn that the best synthetic conditions for the polymer adsorbing Pb2+ and Cd2+ were as follows: the quality ratio of matrix to monomers was 1 : 12 and 1 : 11, the amount of initiator was 2.4% and 3.2% of matrix, and the amount of cross-linker was 12 mg and 13 mg. When the initial concentration of ions was 10 mg/L, the highest quantities of adsorption of Pb2+ and Cd2+ were 47.11 mg/g and 36.55 mg/g. Adsorption mechanism was discussed by using Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, Energy Dispersive X-Ray Spectroscopy (EDS test, and adsorption kinetic simulation.

  14. Analysis of Pb, Cd, Cr and Ni concentrations in types of cabbage marketed in Hamedan City

    Directory of Open Access Journals (Sweden)

    S Sobhanardakani

    2015-02-01

    Full Text Available Today, due to the accumulation of heavy metals in vegetables irrigated with wastewater and treated with sewage sludge has become increasing concern in the field of food safety and health of consumers. Therefore this study was conducted for analysis of Pb, Cd, Cr and Ni concentrations of 3 types of cabbage marketed in Hamedan City during 2013. For this purpose after buying 30 samples of each species of cabbage and then acid digestion of the samples according to standard methods, elements (Pb, Cd, Cr and Ni were determined using ICP-OES (Varian, 710-ES, Australia. All statistical analyses were performed using the SPSS statistical package. The results showed that mean concentrations of Pb, Cd, Cr and Ni in Cabbage samples were 15.53±3.43, 59.33±5.35, 2.22±1.61 and 14.97±2.83 mg/kg, respectively; mean concentrations of these elements in red cabbage samples were 23.03±5.89, 37.53±4.21, 13.33±3.24 and 15.03±3.04 mg/kg, respectively; and mean concentrations of elements in broccoli samples were 8.00±3.63, 45.90±5.86, 8.20±3.39 and 16.93±3.08 mg/kg, respectively. Also comparison of the mean concentrations of evaluated metals in specimens with FAO/WHO permissible limits showed that significant difference (p

  15. Comparative studies on Pb and Cd levels in parasites of terrestrial and aquatic animals

    Energy Technology Data Exchange (ETDEWEB)

    Sures, B.; Taraschewski, H. [Univ. Karlsruhe (Germany). Zoologisches Institut-Okologie

    1995-12-31

    Several fish parasites (Acanthocephala, Cestoda, Nematoda) and organs of their respective intermediate and final hosts were analyzed for heavy metals by electrothermal atomic absorption spectrometry (ET-AAS). Pb and Cd were also quantified in the liver fluke Fasciola hepatica as well as in different organs of the large intestinal roundworm Ascaris suum. The levels of these heavy metals in the parasites were compared to those of muscle, liver, kidney and intestine of the respective definitive hosts cattle and swine obtained from a slaughter house. Most parasites accumulated significantly higher levels of metals than their final hosts. This was most conspicuous in acanthocephalans which contained up to 3 {times} 10{sup 3} fold more lead than the muscle of their fish hosts and up to 1.1 {times} 10{sup 4} more lead than the water surrounding the fish. In these helminths cadmium was enriched up to 400 fold compared to the muscle of the fish and up to 2.7 {times} 10{sup 4} compared to the water. In contrast to the accumulation capacity of adult acanthocephalans their larvae contained about 30 to 180 times less Pb and Cd. Thus, the predominant accumulation of both metals appears in the adult worms. The cestodes of fish and the liver flukes of cattle accumulated the metals up to 200 fold compared to the muscle of their hosts. The nematodes did not contain higher levels of the metals than their hosts. Thus, parasites, especially acanthocephalans, seem to be sensitive bioindicators of Pb and Cd in their environments.

  16. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Jensen, Pernille Erland

    2009-01-01

    level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10......Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution......% was desorbed at pH 2.5 from one soil, whereas in another soil 60% Pb was desorbed at this pH. Sequential extraction was made and the soils in which a high percentage of Pb was found in the residual phase (adsorbed strongest) was also the soils where less Pb was desorbed at low pH in the desorption experiments...

  17. Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: Performance and mechanisms

    Science.gov (United States)

    Chen, Gongning; Shah, Kinjal J.; Shi, Lin; Chiang, Pen-Chi

    2017-07-01

    A synthetic mineral adsorbent (SMA) was prepared by mechanochemical treatments of a solid-state mixture containing illite, wollastonite, gypsum, limestone and dolomite powder at a molar ration of 1:1:1:12:3. The XRD patterns revealed that many newly-generated minerals, namely montmorillonite, laumonite and gismondine (zeolite facies), grossular, gehlenite and calcium silicate were observed in SMA residual after full hydration. The potential of SMA for the removal of Cd(II) and Pb(II) ions from aqueous solution was investigated by batch mode. The effects of pH, concentration of adsorbate, contact time, SMA concentration and temperature on adsorption performance of SMA for Cd(II) and Pb(II) over SMA were studied. The results indicate that the adsorption process was found to follow pseudo-second-order kinetic model and Freundlich isotherm model. The maximum monolayer capacity obtained from the Langmuir isotherm at 25 °C was 47.0 and 143.3 mg g-1 for Cd(II) and Pb(II) ions, respectively. The adsorbed Cd(II) and Pb(II) can hardly be recovered at pH 3.0 but can completely recovered at pH 1.0 and 0.5, respectively. Ion exchange of Cd(II) and Pb(II) for Ca2+ was found to be the principal mechanism in the removal of Cd(II) and Pb(II) from aqueous solution by SMA, followed by adsorption and precipitation. From the investigation, it is concluded that SMA could be a useful environment-friendly, inexpensive and effective tool for removal of high amounts of toxic Cd(II) and Pb(II) ions from aquatic ecosystems.

  18. A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil.

    Science.gov (United States)

    Kim, Hyuck Soo; Seo, Byoung-Hwan; Kuppusamy, Saranya; Lee, Yong Bok; Lee, Jae-Hwang; Yang, Jae-E; Owens, Gary; Kim, Kwon-Rae

    2018-02-01

    The efficiency of gypsum, as a dissolved organic carbon (DOC) coagulator, for the simultaneous immobilization of two heavy metals (Cd and Pb) and one metalloid (As) in agricultural soils near an abandoned mining site was examined. The agricultural soil was defined as long-term contaminated as As (1540mgkg-1), Cd (55mgkg-1) and Pb (1283mgkg-1) concentrations exceeded the Korean guideline values for As (25mgkg-1), Cd (4mgkg-1), and Pb (200mgkg-1). Gypsum was incorporated into the contaminated soil at 3% (w/w). In comparison two commonly using immobilizing agents (lime and compost), together with a mixture (lime+gypsum) were also included in the pot trial for the cultivation of two medical plants (A. gigas and A. macrocephala) and to evaluate the effectiveness of gypsum on As, Cd and Pb immobilization. The results showed that even though pH change-induced immobilizing agents such as lime were more effective than gypsum at immobilizing Cd and Pb, addition of gypsum also effectively reduced heavy metal phytoavailability as indicated by decreases in the concentration of Cd and Pb in medicinal plants. Furthermore, gypsum and gypsum+ lime were also most effective in reducing As concentrations in both plants studied. This was mainly attributed to significant decreases in soil DOC (48-64%) when gypsum and gypsum+lime were applied to the soil. Consequently, it was concluded that enhanced DOC coagulation with gypsum, could be considered as a promising technique for the immobilization of both metals (Cd and Pb) and metalloids (As) in agricultural soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea.

    Science.gov (United States)

    Nam, Dong-Ha; Lee, Doo-Pyo

    2006-03-15

    This study was aimed at evaluating the lead (Pb) and cadmium (Cd) contamination status using resident pigeons from rural (island), central urban (Seoul), and four industrial complex areas in Korea with varying traffic density as well as atmospheric metal pollution records. We also discussed the results with respect to metal exposure trends in urban area after introduction of lead-free gasoline in Korea. Mean concentrations of Pb and Cd in bone and kidney of pigeons from Seoul were comparable to those from industrial complex areas and were about 15-20 times those at the reference site. This suggests that exposure to metals in the urban environment is as high as in the industrial areas. Lead and Cd concentrations in lungs of pigeons from Seoul were significantly higher by more than three times in 2000 than in 1991 (p atmospheric metal levels decreased. Ingestion may be more important than inhalation in exposing pigeons to Pb and Cd in this study.

  20. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils.

    Science.gov (United States)

    Khan, Waheed Ullah; Ahmad, Sajid Rashid; Yasin, Nasim Ahmad; Ali, Aamir; Ahmad, Aqeel

    2017-06-03

    The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.

  1. Pb(II), Cd(II) and Zn(II) adsorption on low grade manganese ore ...

    African Journals Online (AJOL)

    Low grade manganese ore (LMO) of Orissa containing 58.37% SiO2, 25.05% MnO2, 8.8% Al2O3, and 5.03% Fe2O3 as the main constituents was taken to study its adsorption behaviour for Pb(II), Cd(II) and Zn(II) from aqueous solutions. The XRD studies showed the crystalline phases to be quartz, ß-MnO2, d-MnO2 and ...

  2. Interaction of the water soluble fraction of MSW-composts with Pb(II) and Cu(II) ions.

    Science.gov (United States)

    Castaldi, Paola; Demurtas, Daniela; Silvetti, Margherita; Deiana, Salvatore; Garau, Giovanni

    2017-05-01

    In this study we report on the interactions between the water-soluble fraction (WSF) of two municipal solid waste composts (C1- and C2-WSF) with Pb(II) and Cu(II) ions at pH 4.5. The Me(II) addition to the compost-WSFs led to the formation of soluble Me(II)-organic complexes (as highlighted by FT-IR spectroscopy), and to a decrease of the trace metals' solubility, which was greater for Pb(II) than Cu(II). This was due to the formation of insoluble Me(II) complexes involving the water-soluble organic carbon (WSOC) and the inorganic anions within both WSFs [1.10 and 0.62 mmol L-1 and 2.06 and 0.42 mmol L-1 of Pb(II) and Cu(II) precipitated from C1- and C2-WSF respectively, when 6.4 mmol L-1 Me(II) was added]. A loss of WSOC from both WSFs, i.e. ∼13% and <5%, was detected in the systems containing 6.4 mmol L-1 Pb(II) and Cu(II) respectively. A significant contribution in the formation of Pb(II) precipitates was also due to phosphate, chloride and sulphate anions, since their concentrations in the WSF decreased of 80, 25 and 90%, respectively, after the addition of 6.4 mmol L-1 Pb(II). A decrease of phosphate anions in both WSFs (∼30%) was found in the systems containing Cu(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optical and structural characterization of CdS/ZnS and CdS:Cu(2+) /ZnS core-shell nanoparticles.

    Science.gov (United States)

    Murugadoss, G; Kumar, M Rajesh

    2014-09-01

    Core-shell CdS/ZnS (Zn 0.025-0.125 M) and CdS:Cu(2+) (1%)/ZnS nanoparticles were successfully synthesized using a chemical method. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR TEM), photoluminescence (PL) and UV/Visible (UV/Vis) techniques were used to characterize the novel CdS/ZnS and CdS:Cu(2+) /ZnS core-shell nanoparticles. All absorption peaks of the synthesized samples were highly blue-shifted from the bulk CdS and ZnS. Very narrow and symmetric PL emission was observed in the yellow region for core-shell CdS/ZnS. Furthermore, the PL emission of CdS/ZnS was tuned into orange region by incorporate the Cu ion into the core CdS lattice. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Removal of lead from the industrial and synthetic Cu-Pb-Fe alloy with argon barbotage

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2012-01-01

    Full Text Available Results of research on removal of lead from synthetic and industrial Cu-Pb-Fe alloy with argon barbotage are presented. For examinations was taken a synthetic alloy and industrial alloy coming “Glogow II” Copperworks. As basic research equipment was used a pipe resistance furnace enabling heating of samples up to 1 473 K. Examinations were made in 2 test series. The 1 series was performed on the synthetic alloy, while in 2 series was used an industrial alloy. All series were conducted at 1 473 K and with gas fl ow 5,55•10-6, 6,94•10-6, 8,33•10-6, 9,72•10-6 m3•s-1.

  5. Fabrication and characterization of (Bi,Pb)-Sr-Ca-Cu-O (2223) bars

    Energy Technology Data Exchange (ETDEWEB)

    Chudzik, M.P.; Polzin, B.J.; Thayer, R.; Picciolo, J.J.; Fisher, B.L.; Lanagan, M.T.

    1996-08-01

    Bulk bars for current lead applications were fabricated from (Bi,Pb)- Sr-Ca-Cu-O (Bi-2223) for low thermal conductivity and high critical current. Bars measuring 17.8 cm in length were made by uniaxially pressing Bi-2223 powder of controlled (1.7/0.34)223 and (1.8/0.4)223 phase composition. The bulk bars were densified by subjecting them to a schedule of alternate liquid-phase sintering and cold isostatic pressing. Liquid phase sintering temperatures were optimized from differential thermal analysis and microstructure morphology. Phase purity and microstructure were evaluated by x-ray diffraction and scanning electron microscopy. Low-resistance silver contacts were applied to the bars by hot-pressing at 820{degrees}C and 3 MPa. Critical current densities {approx} 1000 A/cm{sup 3} (critical currents of 750 A at 77 K in self-field conditions) were achieved.

  6. Microstructural discovery of Al addition on Sn–0.5Cu-based Pb-free solder design

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jahyun; Lee, Changsoo [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Hong, Sung Jea [MK Electron Co., Ltd., Yongin Cheoin-gu 316-2 (Korea, Republic of); Kim, Keun-Soo, E-mail: keunsookim@hoseo.edu [Department of Display Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-11-25

    It is important to develop Pb-free solder alloys suitable for automotive use instead of traditional Sn–Pb solder due to environmental regulations (e.g., Restriction of Hazardous Substances (RoHS)). Al addition has been spotlighted to enhance solder properties. In this study, we investigated the microstructural change of Sn–0.5Cu wt.% based Pb-free solder alloys with Al addition (0.01–0.05 wt.%). The small amount of Al addition caused a remarkable microstructural change. The Al was favored to form Cu–Al intermetallic compounds inside the solder matrix. We identified the Cu–Al intermetallic compound as Cu{sub 33}Al{sub 17}, which has a rhombohedral structure, using EPMA and TEM analyses. This resulted in refined Cu{sub 6}Sn{sub 5} networks in the Sn–0.5Cu based solder alloy. In addition, we conducted thermal analysis to confirm its stability at a high temperature of approximately 230 °C, which is the necessary temperature range for automotive applications. The solidification results were substantiated thermodynamically using the Scheil solidification model. We can provide criteria for the minimum aluminum content to modify the microstructure of Pb-free solder alloys. - Graphical abstract: The minor Al additions refined eutectic Cu{sub 6}Sn{sub 5} IMC networks on the Sn–0.5Cu based solder alloys. The microstructure was dramatically changed with the minor Al addition. - Highlights: • We observed dramatic microstructure-change with Al additions. • We defined Cu{sub 33}Al{sub 17} IMC with Al additions using TEM analysis. • We investigated grain refinement with Al additions using EBSD. • We discussed the refinement based on Scheil solidification model.

  7. Structure and charge localization in Pb2Sr2Tb1-xCaxCu3O8 for x=0.0 and 0.5

    DEFF Research Database (Denmark)

    Jørgensen, J.-E.; Andersen, N.H.

    1994-01-01

    The crystal structure refinements of Pb2Sr2Tb1-xCaxCu3O8 for x=0.0 and 0.5 was performed as a constrained refinement in space group Pi and bond valency sums for the cations were calculated from the interatomic distances. Ca-doping causes an oxidation of Pb in the PbO layers but no oxidation of Cu...

  8. Removal of Cu{sup 2+} and Pb{sup 2+} ions using CMC based thermoresponsive nanocomposite hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Oezkahraman, Bengi [Faculty of Engineering, Chemical Engineering Department, Hitit University, Corum (Turkey); Acar, Isil; Emik, Serkan [Faculty of Engineering, Chemical Engineering Department, Istanbul University, Avcilar-Istanbul (Turkey)

    2011-07-15

    In this study, carboxymethylcellulose (CMC) based thermoresponsive nanocomposite hydrogel was synthesized for the removal of Cu{sup 2+} and Pb{sup 2+} ions from aqueous solutions. To prepare nanocomposite hydrogel, graft copolymerization of N-isopropyl acrylamide (NIPAm) and acrylic acid (AA) onto CMC was carried out in Na-montmorillonite (MMT)/water suspension media and ammonium persulfate (APS) used as initiator. The chemical structures of hydrogels were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction spectroscopy (XRD). Lower critical solution temperature (LCST), pH responsivity, swelling, and deswelling properties of the hydrogels were also examined. In addition competitive and non-competitive removal of Cu{sup 2+} and Pb{sup 2+} studies were carried out. According to heavy metal sorption studies results, removal capacities of nanocomposite hydrogel for both metal ions were found to be higher than those of pure hydrogel. The analyzed adsorption data showed that the adsorption process of Cu{sup 2+} and Pb{sup 2+} could be explained by pseudo-second order kinetic model. Moreover, according to competitive sorption studies, it is found to be that both hydrogels are more selective to Cu{sup 2+} ion rather than Pb{sup 2+}. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Stopping Power of Al, Cu, Ag, Au, Pb, and U for 5-18-MeV Protons and Deuterons

    DEFF Research Database (Denmark)

    Sørensen, H.; Andersen, Hans Henrik

    1973-01-01

    High energy protons and deuterons of energies between 9 and 18 MeV have been used to extend earlier measurements of the stopping power of Al, Cu, Ag and Au and the stopping powers of Pb and U in the range 5-18 MeV have been determined for the first time. Mean excitation potentials have been...

  10. Studies on the Effect pH on the Sorption of Pb(II) and Cu(II) ions from ...

    African Journals Online (AJOL)

    The effect of pH on the sorption of Pb2+ and Cu2+ ion onto Nypa fruticans Wurmb biomass was investigated. Initial pH value of 2, 5, 7, 9, and 12 were used for this study with varying initial concentrations of metal ions. The experimental results were analyzed in terms of Langmuir, Freundlich and Flory-Huggins isotherms.

  11. Retention and distribution of Cu, Pb, Cr, and Zn in a full-scale hybrid constructed wetland receiving municipal sewage

    NARCIS (Netherlands)

    Xiao, H.W.; Zhang, S.L.; Zhai, J.; He, Q.; Mels, A.R.; Ning, K.J.; Liu, J.

    2013-01-01

    This study was conducted to investigate the retention and distribution of Cu, Pb, Cr, and Zn in a hybrid constructed wetland (CW) that consists of both vertical baffled flow wetlands (VBFWs) and horizontal subsurface flow wetlands (HSSFs) with unique flow regimes and oxygen distribution. The heavy

  12. On the concentration and separation of the trace-elements Fe, Cu, Zn, Mn, Pb, Mo and Co : Solvent Extraction

    NARCIS (Netherlands)

    Erkelens, P.C. van

    1961-01-01

    Extractions with acetylacetone and diethyldithiocarbamate are described. Through the successive application of these reagents the constituents of biological ashes are concentrated and separated into the groups: (1) MoO4-2, (2) Fe+3, Cu+2 , (3) Mn+2, (4) Zn+2, (5) Pb+2, (6) Co+3 and (7)Na+, K+, Ca+2,

  13. Interaction of super high frequency radiation with superconducting Bi(Pb)-Sr-Ca-Cu-O thin-film structures

    Science.gov (United States)

    Bondar, V. D.; Vasyliv, M. Ya.; Davydov, V. M.; Lutsiv, R. V.; Pustylnik, O. D.; Khymenko, O. A.

    2002-05-01

    High temperature superconducting thin films Bi(Pb)-Sr-Ca-Cu-O system were obtained by RFmagnetron ion-plasma sputtering. The detecting bridge-like elements 100-500 mkm wide have been fabricated with laser scribing. The detecting effect was investigated in super high frequency radiation field of 137 GHz.

  14. A study on adsorption of Pb(II), Cr(Ш) and Cu(II) from aqueous ...

    African Journals Online (AJOL)

    Peanut husk has been used in this work for removing Pb(II), Cr(Ш) and Cu(II) from aqueous solution. Batch adsorption studies were carried out under different pH, initial concentration of metal ions, interfering metal ions, time and temperature. Adsorption was poor in strongly acidic solution but was improved in alkaline ...

  15. PROFIL LOGAM BERAT Cd, Cr (VI DAN Pb PADA LOKASI BERBEDA DI PROVINSI LAMPUNG SERTA BIOAKUMULASINYA PADA TANAMAN PANGAN

    Directory of Open Access Journals (Sweden)

    Hening Widowati

    2015-11-01

    Full Text Available The heavy metal profile analysis of Cd, Cr(VI and Pb in the different location in Lampung Province and their bioaccumulation to crops has been conducted. The aims were finding out the difference of metal accumulation in the different pollutant area and determining how it happened to the vegetables surrounding, which were kangkoong and spinach. The research methods were purposive sampling in the different location in Lampung Province, namely 1 highlands, 2 paddy fields, 3 road sides and 4industrial areas. Based on the results, it is found that the highest metal concentration of Cd, Cr(VI and Pb are in the industrial area. Commonly, the value of BCFo-w (0,12-2,00 is higher than BCF¬o-s (0,01-0,18 which shows that there is low metal accumulation of Cd, Cr(VI and Pb in kangkoong and spinach. Furthermore, the BCF value of Cd and Cr(VI are higher compared to Pb.  Keywords: Logam berat, Cd, Cr(VI, Pb,bioakumulasi.

  16. Impact of spiked concentrations of Cd, Pb, As and Zn in growth medium on elemental uptake of Nasturtium officinale (Watercress).

    Science.gov (United States)

    Gounden, Denisha; Kisten, Kimona; Moodley, Roshila; Shaik, Shakira; Jonnalagadda, Sreekantha B

    2016-01-01

    This study is aimed at investigating the impact of water quality on the uptake and distribution of three non-essential and toxic elements, namely, As, Cd and Pb in the watercress plant to assess for metal toxicity. The plant was hydroponically cultivated under greenhouse conditions, with the growth medium being spiked with varying concentrations of As, Cd and Pb. Plants that were harvested weekly for elemental analysis showed physiological and morphological symptoms of toxicity on exposure to high concentrations of Cd and Pb. Plants exposed to high concentrations of As did not survive and the threshold for As uptake in watercress was established at 5 ppm. Translocation factors were low in all cases as the toxic elements accumulated more in the roots of the plant than the edible leaves. The impact of Zn on the uptake of toxic elements was also evaluated and Zn was found to have an antagonistic effect on uptake of both Cd and Pb with no notable effect on uptake of As. The findings indicate that phytotoxicity or death of the watercress plant would prevent it from being a route of human exposure to high concentrations of As, Cd and Pb in the environment.

  17. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar.

    Science.gov (United States)

    Xu, Xiaoyun; Cao, Xinde; Zhao, Ling; Wang, Hailong; Yu, Hongran; Gao, Bin

    2013-01-01

    Biochar derived from waste biomass is now gaining much attention for its function as a biosorbent for environmental remediation. The objective of this study was to determine the effectiveness of biochar as a sorbent in removing Cd, Cu, and Zn from aqueous solutions. Biochar was produced from dairy manure (DM) at two temperatures: 200 °C and 350 °C, referred to as DM200 and DM350, respectively. The obtained biochars were then equilibrated with 0-5 mM Cu, Zn or Cd in 0.01 M NaNO(3) solution for 10 h. The changes in solution metal concentrations after sorption were evaluated for sorption capacity using isotherm modeling and chemical speciation Visual MINTEQ modeling, while the solid was collected for species characterization using infrared spectroscopy and X-ray elemental dot mapping techniques. The isotherms of Cu, Zn, and Cd sorption by DM200 were better fitted to Langmuir model, whereas Freundlich model well described the sorption of the three metals by DM350. The DM350 were more effective in sorbing all three metals than DM200 with both biochars had the highest affinity for Cu, followed by Zn and Cd. The maximum sorption capacities of Cu, Zn, and Cd by DM200 were 48.4, 31.6, and 31.9 mg g(-1), respectively, and those of Cu, Zn, and Cd by DM350 were 54.4, 32.8, and 51.4 mg g(-1), respectively. Sorption of the metals by the biochar was mainly attributed to their precipitation with PO(4)(3-) or CO(3)(2-) originating in biochar, with less to the surface complexation through -OH groups or delocalized π electrons. At the initial metal concentration of 5 mM, 80-100 % of Cu, Zn, and Cd retention by DM200 resulted from the precipitation, with less than 20 % from surface adsorption through phenonic -OH complexation. Among the precipitation, 20-30 % of the precipitation occurred as metal phosphate and 70-80 % as metal carbonate. For DM350, 75-100 % of Cu, Zn, and Cd retention were due to the precipitation, with less than 25 % to surface adsorption through complexation of

  18. HEAVY METALS (Ni, Cu, Zn AND Cd CONTENT IN SERUM OF RAT FED GREEN MUSSELS

    Directory of Open Access Journals (Sweden)

    Muhammad Yudhistira Azis

    2015-11-01

    Full Text Available Green mussel (Perna viridis can playing role as bio-indicator or biomonitoring agent for heavy-metalcontaminations in the sea. In this research, the concentrations of four elements Ni, Cu, Zn and Cd in P. viridis and in the serum of rat which orally feed by P. viridis were determined by Atomic Absorption Spectrometry (AAS following dry acid digestion. Parameter analysis was evaluated by determining confidence limit for the obtained results. The result showed that there was a sequence of heavy-metal content in green mussels sample and laboratory rats serum, such as Ni < Cd < Cu < Zn. Keywords: heavy metals, green mussels, laboratory rats serum, AAS

  19. Optical band gap energy and ur bach tail of CdS:Pb2+ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, M.; Juarez, H.; Pacio, M. [Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue. (Mexico); Gutierrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Mathew, X., E-mail: osporti@yahoo.mx [UNAM, Instituto de Energias Renovables, Temixco, Morelos (Mexico)

    2016-11-01

    Pb S-doped CdS nano materials were successfully synthesized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Ur bach rule. The diffraction X-ray show that the size of crystallites is in the ∼33 nm to 12 nm range. The peaks belonging to primary phase are identified at 2θ = 26.5 degrees Celsius and 2θ = 26.00 degrees Celsius corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 degrees Celsius is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 2θ = 13.57, 15.9 degrees Celsius correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ∼0.4 eV. (Author)

  20. Effects of grinding and shaking on Cd, Pb and Zn distribution in anthropogenically impacted soils.

    Science.gov (United States)

    Waterlot, Christophe; Bidar, Géraldine; Pruvot, Christelle; Douay, Francis

    2012-08-30

    The effects of grinding size and shaking process on the results of Cd (cadmium), Pb (lead) and Zn (zinc) distribution measurements three agricultural and three kitchen garden soils highly contaminated by past atmospheric fallout of two lead and zinc smelters in northern France were studied. The physico-chemical parameters and pseudo-total concentration of metals within these soils were determined. The fractionation of metals was performed in triplicate, using the procedure recommended by the Standards, Measurements and Testing program (SM&T), on each air-dried soil sample, ground to pass through 2-mm, 0.315-mm and 0.250-mm sieves and using a reciprocating or rotary shaker. The samples were analysed by flame or electrothermal absorption atomic spectrometry using a self-reversal background system. For both shaking processes, the grinding size had no effect on the fractionation of metals in contaminated agricultural soils. In contrast, using a reciprocating shaker, the fractionation of metals in the kitchen garden samples sieved at extraction. For all grinding sizes, the fractionation of the three metals contained in the contaminated kitchen garden soil samples was successfully achieved. Nevertheless, some discrepancies from samples sieved at extraction procedure steps. The best results were obtained for samples sieved at extraction procedure could be adopted for the Cd-, Pb- and Zn-partitioning in contaminated kitchen garden soils with high-level anthropogenic sources. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Optical and structural properties of CdS:Pb{sup 2+} nano crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, R.; Portillo, O; Chaltel, L.; Zamora, M.; Lazcano, M.; Hernandez, G. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Materials Science Laboratory, Apdo. Postal 1067, 72001 Puebla, Puebla (Mexico); Chavez, M.; Juarez, H.; Pacio, M.; Rubio, E., E-mail: osporti@yahoo.mx [Universidad Autonoma de Puebla, CIDS-ICUAP, 72001 Puebla, Puebla (Mexico)

    2015-07-01

    The goal of this work is to study the effects of doping on structural, morphological and optical properties of CdS thin films as a function of Pb{sup 2+} concentration. Thus, nanoparticles were synthesized by chemical bath and a thickness decrease of ∼575-200 nm range was observed. In Fourier transform infrared spectroscopy, all the samples showed a sharp stretching mode observed at ∼1384 cm{sup -1} corresponding to the vibration mode of CO{sub 3}{sup -2}. X-ray diffraction studies show that the size of crystallites is in the ∼33-12 nm range. The peaks belonging to primary phase are identified at the 2θ = 26.5 grades and 2θ = 26.00 grades, corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 grades is observed. Likewise peaks at 2θ = 13.57, 15.91 grades correspond to lead perchlorate thiourea. The optical, absorption, and transmission properties of the films were determined by UV-Vis spectrophotometry, optical energy gap was found to range from 2.1 to 2.4 eV. Raman spectroscopy on doped films showed a shifting of these modes that can be attributed to strain, stress effects, defects, phonon confinement, and variation in phonon relaxation with grain size. (Author)

  2. Physical properties of nanostructured (PbSx(CuS1−x composite thin films grown by successive ionic layer adsorption and reaction method

    Directory of Open Access Journals (Sweden)

    A.U. Ubale

    2016-03-01

    Full Text Available Nanostructured ternary semiconducting (PbSx(CuS1−x thin films were grown on glass substrates by successive ionic layer adsorption and reaction (SILAR technique at room temperature. The structural, morphological and optical characterizations of the films were carried out by X-ray diffraction, scanning electron microscopy and UV–Vis spectrophotometer respectively. The structural studies revealed that, (PbSx(CuS1−x films are nanocrystalline in nature and have mixed phase of cubic PbS and hexagonal CuS. The optical absorption measurements showed that band gap energy of (PbSx(CuS1−x can be engineered between 2.57 and 2.28 eV by varying compositional parameter ‘x’. The room temperature dc dark electrical resistivity of PbS film is found to be 28.85 Ωcm and it decreases when content of Cu in composite increases and becomes 0.05 Ωcm for pure CuS. The thermo-emf measurements showed that the as deposited (PbSx(CuS1−x films are of n-type. The water angle contact measurements of (PbSx(CuS1−x, revealed that, films are hydrophilic in nature and it could be advantageous in electrochemical application.

  3. Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+).

    Science.gov (United States)

    Zhang, Jianguo; Provis, John L; Feng, Dingwu; van Deventer, Jannie S J

    2008-09-15

    Alkali activation of fly ash by sodium silicate solutions, forming geopolymeric binders, provides a potential means of treating wastes containing heavy metals. Here, the effects on geopolymer structure of contamination of geopolymers by Cr(VI), Cd(II) and Pb(II) in the forms of various nitrate and chromate salts are investigated. The addition of soluble salts results in a high extent of dispersal of contaminant ions throughout the geopolymer matrix, however very little change in geopolymer structure is observed when these materials are compared to their uncontaminated counterparts. Successful immobilization of these species will rely on chemical binding either into the geopolymer gel or into other low-solubility (silicate or aluminosilicate) phases. In the case of Pb, the results of this work tentatively support a previous identification of Pb(3)SiO(5) as a potential candidate phase for hosting Pb(II) within the geopolymer structure, although the data are not entirely conclusive. The addition of relatively low levels of heavy metal salts is seen to have little effect on the compressive strength of the geopolymeric material, and in some cases actually gives an increase in strength. Sparingly soluble salts may undergo some chemical conversion due to the highly alkaline conditions prevalent during geopolymerization, and in general are trapped in the geopolymer matrix by a simple physical encapsulation mechanism. Lead is in general very effectively immobilized in geopolymers, as is cadmium in all except the most acidic leaching environments. Hexavalent chromium is problematic, whether added as a highly soluble salt or in sparingly soluble form.

  4. Estudio de los mecanismos de activación de la esfalerita con Cu(II y Pb(II

    Directory of Open Access Journals (Sweden)

    Dávila Pulido, G. I.

    2011-08-01

    Full Text Available This article presents results of an experimental study on the sphalerite activation with Cu(II and Pb(II, whose main objective was to investigate the activation mechanisms and to evaluate the magnitude of the hydrophobization achieved with both chemical species. The hydrophobicity acquired by the mineral due to the interaction with the activator and collector (sodium isopropyl xanthate is characterized making use of the contact angle technique. The results show that Cu(II replaces the Zn of the external layers of the mineral, promoting the sulfide (S2– oxidation to produce a mixture of CuS, Cu2S and S°, of hydrophobic nature. The subsequent interaction with xanthate increases the hydrophobicity of the mineral surface. In turn, Pb(II activation of sphalerite is due to the formation of a PbS layer that reacts with xanthate to produce hydrophobic species (e.g., PbX2. It is also observed that the hydrophobicity of sphalerite activated with Pb(II is favored under air atmospheres, as compared to that obtained under nitrogen atmospheres. It is concluded that the hydrophobicity achieved by lead activation may be of the same order of magnitude to that deliverately induced by copper activation.

    Este artículo presenta los resultados de un estudio experimental sobre la activación de esfalerita (ZnS con Cu(II y Pb(II, cuyo objetivo principal consistió en investigar los mecanismos de activación y en evaluar la magnitud relativa de la hidrofobización alcanzada con ambas especies químicas. La hidrofobicidad que la superficie mineral adquiere como resultado de la interacción con los activadores y colectores tipo xantato (ditiocarbonatos alquílicos, R-O-CS2 –, se caracteriza mediante la técnica del ángulo de contacto. Los resultados muestran que el Cu(II es intercambiado por el Zn de las capas exteriores del cristal, promoviendo la oxidación de sulfuro (S2– para producir una mezcla de

  5. Effects of Different Doping Ratio of Cu Doped CdS on QDSCs Performance

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2015-01-01

    Full Text Available We use the successive ionic layer adsorption and reaction (SILAR method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.

  6. Enhanced removal of Cd(II) and Pb(II) by composites of mesoporous carbon stabilized alumina

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weichun [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China); Tang, Qiongzhi; Wei, Jingmiao; Ran, Yajun [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chai, Liyuan [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China); Wang, Haiying, E-mail: haiyw25@163.com [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China)

    2016-04-30

    Graphical abstract: - Highlights: • Mesoporous carbon stabilized alumina was prepared by one-pot hard-templating method. • MC/Al{sub 2}O{sub 3} showed excellent performance for Cd(II) and Pb(II) adsorption. • Enhanced adsorption was due to the high surface area and special functional groups. - Abstract: A novel adsorbent of mesoporous carbon stabilized alumina (MC/Al{sub 2}O{sub 3}) was synthesized through one-pot hard-templating method. The adsorption potential of MC/Al{sub 2}O{sub 3} for Cd(II) and Pb(II) from aqueous solution was investigated compared with the mesoporous carbon. The results indicated the MC/Al{sub 2}O{sub 3} showed excellent performance for Cd(II) and Pb(II) removal, the adsorption capacity reached 49.98 mg g{sup −1} for Cd(II) with initial concentration of 50 mg L{sup −1} and reached 235.57 mg g{sup −1} for Pb(II) with initial concentration of 250 mg L{sup −1}, respectively. The kinetics data of Cd(II) adsorption demonstrated that the Cd(II) adsorption rate was fast, and the removal efficiencies with initial concentration of 10 and 50 mg L{sup −1} can reach up 99% within 5 and 20 min, respectively. The pseudo-second-order kinetic model could describe the kinetics of Cd(II) adsorption well, indicating the chemical reaction was the rate-controlling step. The mechanism for Cd(II) and Pb(II) adsorption by MC/Al{sub 2}O{sub 3} was investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy (FTIR), and the results indicated that the excellent performance for Cd(II) and Pb(II) adsorption of MC/Al{sub 2}O{sub 3} was mainly attributed to its high surface area and the special functional groups of hydroxy-aluminum, hydroxyl, carboxylic through the formation of strong surface complexation or ion-exchange. It was concluded that MC/Al{sub 2}O{sub 3} can be recognized as an effective adsorbent for removal of Cd(II) and Pb(II) in aqueous solution.

  7. Quantifying the signature of the industrial revolution from Pb and Cd isotopes in the Susquehanna Shale Hills Critical Zone Observatory

    Science.gov (United States)

    Ma, L.; Herndon, E.; Jin, L.; Sanchez, D.; Brantley, S. L.

    2013-12-01

    Anthropogenic forcings have dominated metal cycling in many environments. During the period of the industrial revolution, mining and smelting of ores and combustion of fossil fuels released non-negligible amounts of potentially toxic metals such as Pb, Cd, Mn, and Zn into the environment. The extent and fate of these metal depositions in soils during that period however, have not been adequately evaluated. Here, we combine Pb isotopes with Cd isotopes to trace the sources of metal pollutants in a small temperate watershed (Shale Hills) in Pennsylvania. Previous work has shown that Mn additions to soils in central PA was caused by early iron production, as well as coal burning and steel making upwind. Comparison of the Pb and Cd concentrations in the bedrock and soils from this watershed show that Pb and Cd in soils at Shale Hills are best characterized by addition profiles, consistent with atmospheric additions. Three soil profiles at Shale Hills on the same hillslope have very similar anthropogenic Pb inventories. Pb isotope results further reveal that the extensive use of local coals during iron production in early 19th century in Pennsylvania is most likely the anthropogenic Pb source for the surface soils at Shale Hills. Pb concentrations and isotope ratios were used to calculate mass balance and diffusive transport models in soil profiles. The model results further reveal that during the 1850s to 1920s, coal burning in local iron blasting furnaces significantly increased the Pb deposition rates to 8-14 μg cm-2 yr-1, even more than modern Pb deposition rates derived from the use of leaded gasoline in the 1940s to 1980s. Furthermore, Cd has a low boiling point (~760 °C) and easily evaporates and condenses. The evaporation and condensation processes could generate systematic mass-dependent isotope fractionation between Cd in coal burning products and the naturally occurring Cd in the sulfide minerals of coals. This fractionation indicates that Cd isotopes can

  8. Influence of Cd impurity on the electronic properties of CuAlO{sub 2} delafossite: first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lalic, M.V.; Carbonari, A.W.; Saxena, R.N.; Moralles, M.; Mestnik-Filho, J. [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil)]. E-mail: jmestnik@net.ipen.br

    2002-06-10

    We report on first-principles band-structure calculations of the semiconducting CuAlO{sub 2} delafossite compound in the pure form and also with Cd impurity occupying either a Cu or Al position. The computational tool was a full-potential linear augmented plane-wave method, with the generalized gradient approximation accounting for the exchange and correlation effects. The changes caused by the presence of Cd are studied by the analysis of the electronic structure and the electric field gradient (EFG) in both Cd-doped and pure CuAlO{sub 2} systems. Good agreement between the calculated and measured EFGs at Cd substituting for Cu or Al atoms in CuAlO{sub 2} indicates that the calculations were able to correctly describe the ground state of the system containing the impurity. It is shown that a specific hybridization scheme, involving Cu (and Cd) s and d{sub z{sup 2}} orbitals and neighbouring O p{sub z} orbitals, takes place at the Cu sites in CuAlO{sub 2} as proposed earlier. The results of the calculations indicate that the Cd-doped system changes its electrical properties when Cd replaces Cu atoms (producing an n-type semiconductor), but not when it substitutes for Al atoms. (author)

  9. CdS nanowires decorated with Cu{sub 2}O nanospheres: Synthesis, formation process and enhanced photoactivity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Dong, Hailiang; Jia, Husheng; Xu, Bingshe; Yu, Chunyan; Zhang, Zhuxia, E-mail: zhangzhuxia@tyut.edu.cn

    2015-09-25

    Highlights: • Novel CdS/Cu{sub 2}O heterostructural composites were synthesized by a two-step chemical method. • A formation process of CdS/Cu{sub 2}O heterostructural composites. • The CdS/Cu{sub 2}O heterostructural composites were found to have superior photocatalytic performance and stability. - Abstract: CdS/Cu{sub 2}O heterostructural materials were successfully synthesized by a solvent-thermal process followed by a chemical bath deposition process. Structures and morphologies of the obtained CdS/Cu{sub 2}O composites were characterized by XRD, SEM, and TEM; the experimental results indicate that the surface of CdS nanowires (NWs) is decorated with spherical Cu{sub 2}O whose diameter ranges from 100 to 200 nm. Through crystal shape-evolution, the formation process of these hierarchical nanostructures was rationally proposed. Briefly, in the chemical bath deposition process, Cu(OH){sub 2} colloids generate firstly, and then the colloids transform into nanobelts after adding ascorbic acid (AA). With the reaction time further increasing, nanobelts aggregate together to form the hierarchical nanospheres on the surface of CdS NWs. The photoactivity of CdS/Cu{sub 2}O composite for methyl orange (MO) photodegradation was investigated in detail. The obtained high photocatalytic efficiency can be attributed to the heterojunction structure, which results in the efficient separation of photo-generated electrons and holes.

  10. Superior Photocurrent of Quantum Dot Sensitized Solar Cells Based on PbS : In/CdS Quantum Dots

    Directory of Open Access Journals (Sweden)

    Zongbo Huang

    2015-01-01

    Full Text Available PbS : In and CdS quantum dots (QDs are sequentially assembled onto a nanocrystalline TiO2 film to prepare a PbS : In/CdS cosensitized photoelectrode for QD sensitized solar cells (QDSCs. The results show that PbS : In/CdS QDs have exhibited a significant effect in the light harvest and performance of the QDSC. In the cascade structure of the electrode, the reorganization of energy levels between PbS and TiO2 forms a stepwise structure of band-edge levels which is advantageous to the electron injection into TiO2. Energy conversion efficiency of 2.3% is achieved with the doped electrode, under the illumination of one sun (AM1.5, 100 mW cm2. Besides, a remarkable short circuit current density (up to 23 mA·cm−2 is achieved in the resulting PbS : In/CdS quantum dot sensitized solar cell, and the related mechanism is discussed.

  11. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    Science.gov (United States)

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Investigation of Cu-doping effects in CdTe solar cells by junction photoluminescence with various excitation wavelengths

    Science.gov (United States)

    Okamoto, Tamotsu; Shiina, Yasuyoshi; Okamoto, Shota

    2017-08-01

    Cu-doping effects and a CdS x Te1- x mixed crystal layer in CdS/CdTe solar cells were investigated on the basis of the photoluminescence (PL) of the CdS/CdTe junction using excitation lights incident on the glass substrate side (junction PL) with various excitation wavelengths. In the Cu-doped CdS/CdTe solar cells, broad emissions at 910-950 nm, which were probably caused by donor-acceptor pair (DAP) emission between CuCd acceptors and ClTe donors, were observed. The intensity of the junction PL markedly increased owing to the Cu doping. This result suggests that the intensity of junction PL is relevant to the conversion efficiency of CdTe solar cells. Furthermore, the PL peak energy increased with increasing excitation wavelength. This result indicates that the CdS x Te1- x mixed crystal layer is formed in the CdS/CdTe interface, and that the S composition decreased from the CdS/CdTe interface to the rear.

  13. Influence of mechanical activation on the leaching of non-ferrous metals from a CuPbZn complex concentrate

    Directory of Open Access Journals (Sweden)

    Godoèíková Erika

    2000-09-01

    Full Text Available The aim of study was to research the procedures of copper, lead and zinc leaching from CuPbZn complex sulphide concentrate during the intervention of mechanical activation.Mechanical activation belongs to innovative procedures, which intensifies technological processes by means of creation of new surfaces and making defective structure of solid phase. Mechanical impact on the solid phase is a suitable procedure to ensure the mobility of its structure elements and to accumulate the mechanical energy that is later used in following processes of leaching.This paper deals with the intensification of the chloride and thiourea leaching of copper, lead and zinc from a CuPbZn complex concentrate of Hodruša-Hámre (Slovak deposit by using the mechanical activation in an attritor. Ferric chloride and thiourea were used as leaching reagents. The leaching of the concentrate with ferric chloride solution afforded 23 % recovery of Cu, 99 % of Pb and 28 % of Zn. 9 % recovery of Cu, 17 % of Pb and 3 % of Zn were achieved by the leaching with thiourea. Thus results showed that the extraction of Cu, Zn and also Pb in the case of thiourea leaching was low. The use of milling in the attritor as an innovation method of pretreatment leads to the structural degradation and increasing the surface area of the investigated concentrate from the original value of 0.18 m2g-1 to the maximum value of 4.67 m2g-1. This fact manifested itself in the subsequent process of extraction of Cu, Pb and Zn into the chloride and thiourea solutions. Our results indicate more effective leaching of pretreated concentrate in the chloride medium with recoveries of 84 % Zn and 100 % Pb. In thiourea, the recoveries for Zn and Pb were low, however 99 % Cu can be recovered. In regard to the economy, the extraction of Cu, Pb and Zn was studied in this work with the aspect of minimal energy consumption during milling. The maximum recoveries of non-ferrous metals in the solutions of ferric chloride

  14. PENENTUAN KANDUNGAN LOGAM Cd DAN Cu DALAM PRODUK IKAN KEMASAN KALENG SECARA SPEKTROFOTOMETRI SERAPAN ATOM (SSA

    Directory of Open Access Journals (Sweden)

    Hellna Tehubijuluw

    2013-05-01

    Full Text Available Determination of cadmium and copper concentration of canned fish have been done. Some canned fished were taken away from three mercks circulating in a market and marked as RS (the 1st sample, NF(2nd sample, and CP(3rd sample. The aim of this research is to determine of  cadmium (Cd and copper (Cu content of canned fish and to compare the content with the standard limit regulated by the Directorate General of Drug and Food Control No: 03725/B/SK/VII/89. Determination of metal concentration was conducted using  atomic absorption spectrophotometer (AAS. It was found that Cd concentrations of RS and  NF samples are 0.1969 mg/kg and0.0448 mg/kg, respecively while for  CP it was not detected. For Cu concentrations of  RS, NF, and CP are 3.3303 mg/kg, 4.6130 mg/kg, 3.3047 mg/kg  respectively. The results indicated that the samples of the canned fishes  have been contaminated with Cd and Cu metals although the levels of those metals are still lower than  the maximum limit regulated by the Directorate General of Drug and Food Control No: 03725/B/SK/VII/89 where the maximum limit for Cd and  Cu are 0,2 mg.kg and 5.0 mg/kg respectively.

  15. Thermodynamic studies on the adsorption of Cu2+, Ni2+ and Cd2+ ...

    African Journals Online (AJOL)

    The structure of Ca-based bentonite (Ca-Bn), TEPA-Bn and TEPA-Bn after adsorbing Cu2+,Ni2+,Cd2+ had been characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and simultaneous thermal gravimetric/differential thermal gravimetric (TG/DTG) analysis. The TEPA had been intercalated ...

  16. Preparation and Antimicrobial Screeningof Cu (II, Ni (II, Zn (II Cd (II Complexes

    Directory of Open Access Journals (Sweden)

    R. M. Desai

    2006-01-01

    Full Text Available The metal complexes of Ni(II, Cu(II, Zn(II Cd(II with organic ligands viz Hydrazine hydrate, 1,2-N,N'-Bisammonium thiocarbamoyl ethane and 1,4-N,N'-Bisammonium thiocarbamoyl benzene have been prepared. These ligands and metal complexes of dithiocarbamates were screened for their antimicrobial activity against various microbs.

  17. pH dependence of sorption of Cd , Zn , Cu and Cr on crude water ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-12-04

    Dec 4, 2006 ... pH dependence of sorption of Cd. 2+. , Zn. 2+. , Cu. 2+ and Cr. 3+ on crude water and sodium chloride extracts of. Moringa stenopetala and Moringa oleifera. Sajidu, S. M. I.1, Henry, E. M. T.2*, Persson, I.3, Masamba, W. R. L.1, Kayambazinthu, D.4. 1Department of Chemistry, Chancellor College, University ...

  18. Levels Of Mn, Fe, Ni, Cu, Zn And Cd, In Effluent From A Sewage ...

    African Journals Online (AJOL)

    This study reports the results of preliminary investigation of heavy metal levels-Ni, Cd, Fe, Zn, Cu and Mn; pH; temperature and electrical conductivity in effluents from a sewage treatment oxidation pond and its receiving stream. The heavy metal concentrations were determined with Inductively Coupled Plasma-Mass ...

  19. Cd(II and Pb(II complexes of the polyether ionophorous antibiotic salinomycin

    Directory of Open Access Journals (Sweden)

    Tanabe Makoto

    2011-09-01

    Full Text Available Abstract Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II ions in in vivo experiments, despite so far no Pb(II-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II and lead(II. Results New metal(II complexes of the polyether ionophorous antibiotic salinomycin with Cd(II and Pb(II ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa undergoes a reaction with heavy metal(II ions to form [Cd(Sal2(H2O2] (1 and [Pb(Sal(NO3] (2, respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock

  20. Comparison of In doped and In, Pb co-doped Cd{sub 0.9}Zn{sub 0.1}Te

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, Yasir, E-mail: yasirzaman31@yahoo.com; Jie, Wanqi; Wang, Tao; Xu, Lingyan; He, Yihui; Xu, Yadong; Zha, Gangqiang; Guo, Rongrong; Fu, Xu

    2015-08-01

    In doped CdZnTe (CdZnTe:In) and In and Pb co-doped CdZnTe (CdZnTe:In,Pb) single crystals were comparatively studied by using thermally stimulated current (TSC) and photoluminescence (PL) measurements. The resistivity for both the wafers was found in the region of 10{sup 9}–10{sup 10} Ωcm; however, In doped CdZnTe crystals had seven different traps, but In and Pb co-doped CdZnTe crystals had thirteen different traps. PL spectra showed that neutral acceptor exciton (A{sup 0}, X) and neutral donor exciton (D{sup 0}, X) had higher PL intensity for In and Pb co-doped CdZnTe crystals than in the case of CdZnTe: In, while the donor–acceptor pair (DAP) had lower PL intensity for In doped CdZnTe crystals than co-doped CdZnTe:(In,Pb). Channel numbers of CdZnTe:In were also found higher as compared to co-doped CdZnTe:(In,Pb). The comparative analysis showed that CdZnTe:In had better detector performance than co-doped CdZnTe:(In,Pb). - Highlights: • Comparison of In doped and In, Pb co-doped Cd{sub 0.9}Zn{sub 0.1}Te. • Resistivity for the two different wafers is in the region 10{sup 9}–10{sup 10} Ω cm. • In and Pb co-doped CdZnTe have thirteen different traps, which are almost double of CdZnTe:In. • Channel numbers of CdZnTe:In are higher compared to co-doped CdZnTe:(In,Pb) reflecting better detector performance. • Charge collection efficiency is much better for In doped CdZnTe compared to In and Pb co-doped CdZnTe.

  1. Electrochemical method for improving the spectral response of CdS/Cu/sub 2/S heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Camarero, E.; Arjona, F.; Fatas, E.

    1984-10-01

    The effect on the stoichiometry of a copper sulphide electrode of short-circuiting the Cu/Cusub(aq)/sup 2 +//Cusub(2-delta)S/In galvanic cell for different times has been studied. This treatment has been carried out on the copper sulphide layer of CdS/Cu/sub 2/S solar cells prepared by different methods. The resulting changes of the spectral short circuit current and the I-V characteristics of the cells have been recorded. Remarkable increases in open circuit voltage, short circuit current, and fill factor have been observed as a consequence of any transformation that increases the proportion of copper in the copper sulphide films. Thus, this treatment could be a suitable method of improving the efficiency of CdS/Cu/sub 2/S solar cells.

  2. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.

    Science.gov (United States)

    Chen, Zheng; Williams, Paul N; Zhang, Hao

    2013-09-01

    The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: μg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids.

  3. Applying Freundlich, Langmuir and Temkin models in Cu and Pb soil sorption experiments Uso de los modelos de Freundlich, Langmuir y Temkin en experimentos de sorción de Cu y Pb en suelos Aplicação dos modelos de Freundlich, Langmuir e Temkin em ensaios de sorção de Cu e Pb no solo

    Directory of Open Access Journals (Sweden)

    F.A. Vega

    2011-11-01

    Full Text Available

    In acid soils, inputs of Cu and Pb of various origins create a high risk of environmental pollution. For this reason, batch experiments on Cu and Pb sorption and desorption in various horizons of three acid soils were performed on soil pH with 0.01 M NaNO3 as background electrolyte. The objectives were to evaluate Cu and Pb sorption and retention capacity through the Langmuir, Freundlich and Temkin equations parameters fitted to the sorption/desorption data; to determine the coherence of the implications of these parameters; and to estimate the role of various soil characteristics in the Cu and Pb immobilization soil capacity. The results confirmed the suitability of the models parameters for studying Cu and Pb sorption and retention by acid soils. The greatest maximum sorption and retention capacities, indicated by the Langmuir parameter ßL, corresponded to the lowest energy values required for fixation, indicated by the Temkin parameter b’. Together with the Freundlich parameter KF, which indicates sorption and retention capacity, they made it possible to infer that the acid soil component that most influences Cu and Pb immobilization was the organic matter, followed by the Al-oxide content. High organic matter and Al-oxide contents, especially the former, gave rise to a lower energy requirement for the immobilization of metal cations, since they increased the soils’ sorption and retention capacities. Al3+, the dominant cation in the exchange complex in the horizons studied, and K+ are responsible for the influence of CECe on Cu and Pb immobilization in the acid soils studied.

    El aporte de Cu y Pb a través de diversas fuentes a suelos ácidos supone un alto riesgo de contaminación medioambiental. Por ello, usando el método batch y con NaNO3 0,01 M como electrolito de fondo, se llevaron a cabo, al

  4. Reverse micelle-derived Cu-doped Zn(1-x)Cd(x)S quantum dots and their core/shell structure.

    Science.gov (United States)

    Kim, Jong-Uk; Kim, Young Kwan; Yang, Heesun

    2010-01-01

    Reverse micelle chemistry-derived Cu-doped Zn(1-x)Cd(x)S quantum dots (QDs) with the composition (x) of 0, 0.5, 1 are reported. The Cu emission was found to be dependent on the host composition of QDs. While a dim green/orange emission was observed from ZnS:Cu QDs, a relatively strong red emission could be obtained from CdS:Cu and Zn(0.5)Cd(0.5)S:Cu QDs. Luminescent properties of undoped QDs versus Cu-doped ones and quantum yields of alloyed ZnCdS versus CdS QDs are compared and discussed. To enhance Cu-related red emission of CdS:Cu and Zn(0.5)Cd(0.5)S:Cu core QDs, core/shell structured QDs with a wider band gap of ZnS shell are also demonstrated.

  5. A facile synthesis and spectral characterization of Cu2+ doped CdO/ZnS nanocomposite

    Science.gov (United States)

    Joyce Stella, R.; Thirumala Rao, G.; Babu, B.; Pushpa Manjari, V.; Reddy, Ch. Venkata; Shim, Jaesool; Ravikumar, R. V. S. S. N.

    2015-06-01

    A facile two-step method is demonstrated for the preparation of Cu2+ doped CdO/ZnS nanocomposite. Systematic investigations like X-ray diffraction (XRD), Scanning electron microscopy (SEM) with EDS, transmission electron microscopy (TEM), FT-IR, electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and magnetic studies are carried out for the prepared material. From powder XRD, the nanocomposites are comprised for cubic phase of both CdO and ZnS in a close contact with each other. The ground state wave function of dopant ions has been estimated from EPR studies. Optical and EPR data confirm that doped Cu2+ions occupy rhombically distorted octahedral sites with the host material. Due to doping, band gap has been changed and blue shifts occurred in PL. Magnetic measurements indicate a possible ferromagnetic response, associated to the exchange interaction between local spin-polarized electrons of Cu2+ ions and conductive electrons. The magnetic properties of Cu2+ doped CdO/ZnS nanocomposite has been investigated using vibrating sample magnetometer given as magnetization and hysteresis (M-H) curve. The magnetization curve with noticeable coercivity of M-H loop clearly indicate the existence of ferromagnetic ordering in Cu2+ doped CdO/ZnS nanocomposite at room temperature. According to the Ruderman-Kittel-Kasuya-Yosida (RKKY) theory, the exchange interaction between local spin-polarized electrons (such as the electrons of Cu2+ ions) and conductive electrons is the main cause that leads to the ferromagnetism. Coercivity (Hc) of the field is about 98 Oe, saturationmagnetization (Ms) and remnant magnetization (Mr) of present sample is estimated to be 15.8×10-3 and 1.43×10-3 emu/g respectively. The ferromagnetism observed in the prepared material is not commencing with other impurities but expected to be intrinsic.

  6. Chemical bath deposition and characterization of PbS – Cu S thin ...

    African Journals Online (AJOL)

    PbS and PbS - CuxS thin films have been deposited on glass substrates using the chemical bath deposition (CBD) technique. The PbS was deposited from alkaline solution of lead nitrate, thioacetamide, ammonia and triethanolamine that was used as the complexing agent. The as-grown PbS was used as substrate to ...

  7. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine.

    Science.gov (United States)

    Park, Jin Hee; Chon, Hyo-Taek

    2016-06-01

    Bacteria have the ability to bind heavy metals on their cell wall. Biosorption is a passive and energy-independent mechanism to adsorb heavy metals. The efficiency of heavy metal biosorption can vary depending on several factors such as the growth phase of bacteria, solution pH, and existence of competitive heavy metals. In this study, Exiguobacterium sp. isolated from farmland soil near a mine site were used, and optimal conditions for Cd biosorption in solution were investigated. As bacterial growth progressed, Cd biosorption increased, which is attributed to changes in the structure and composition of the cell wall during bacterial growth. The biosorption process was rapid and was completed within 30 min. Cadmium biosorption was highest at pH 7 due to the dissociation of hydrogen ions and the increase of negative charges with increasing pH. In the mixed metal solution of Cd, Pb, and Zn, the amount of biosorption was in the order of Pb>Cd>Zn while in a single metal solution, the order was Cd≥Pb>Zn. The maximum adsorption capacity for Cd by the isolated bacteria was 15.6 mg/g biomass, which was calculated from the Langmuir isotherm model. Different adsorption efficiencies under various environmental conditions indicate that, to control metal mobility, the conditions for biosorption should be optimized before applying bacteria. The results showed that the isolated bacteria can be used to immobilize metals in metal-contaminated wastewater.

  8. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    Science.gov (United States)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  9. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil.

    Science.gov (United States)

    Shen, Xin; Huang, Dao-You; Ren, Xue-Fei; Zhu, Han-Hua; Wang, Shuai; Xu, Chao; He, Yan-Bing; Luo, Zun-Chang; Zhu, Qi-Hong

    2016-03-01

    Crop straw biochar incorporation may be a sustainable method of amending soil, but feedstock-related Cd and Pb content is a major concern. We investigated the effects of heavy metal-rich (RC) and -free biochar (FC) on the phytoavailability of Cd and Pb in two acidic metalliferous soils. Biochar significantly increased soil pH and improved plant growth. Pb in soil and plant tissues significantly decreased after biochar application, and a similar pattern was observed for Cd after FC application. RC significantly increased NH4NO3-extractable Cd in both lightly contaminated (YBS) and heavily contaminated soils (RS). The Cd content of plants grown on YBS increased, whereas it decreased on RS. The Cd and Pb input-output balance suggested that RC application to YBS might induce a soil Cd accumulation risk. Therefore, identifying heavy metal contamination in biochar is crucial before it is used as a soil amendment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Nanoscale heterogeneity as remnant hexagonal-type local structures in shocked Cu-Pb and Zr

    Science.gov (United States)

    Tayal, Akhil; Conradson, Steven D.; Batuk, Olga N.; Fensin, Saryu; Cerreta, Ellen; Gray, George T.; Saxena, Avadh

    2017-09-01

    Extended X-ray absorption fine structure spectroscopy was used to determine the local structure in: (1) Zr that had undergone quasistatic elongation; (2) Zr that had undergone plastic deformation by shock at pressures above and below the ω-phase transformation; and (3) shocked Cu that contained a few percent of insoluble Pb. Below the transition pressure, Zr samples showed only general disorder as increases in the widths of the Zr-Zr pair distributions. Above this pressure, Zr that was a mixture of the original hcp and the high pressure ω-phase when measured by diffraction showed two sets of peaks in its distribution corresponding to these two phases. Some of the ones from the ω-phase were at distances substantially different from those calculated from the diffraction pattern, although they are still consistent with small domains exhibiting stacking faults associated with hexagonal-type structural components exhibiting variability in the [0001] basal plane spacing. A similar result, new pairs at just over 3 and 4 Å consistent with hexagonal-type stacking faults in addition to the original fcc structure, is found in shocked Cu despite the absence of a second diffraction pattern and peak pressures being far below those expected to induce an fcc to hcp transition. This result, therefore, demonstrates that the correlation between high strain rates and reduced stacking fault energy continues down to the length scale of atom pairs. These findings are significant as: (1) a microscopic description of the behavior of systems far from equilibrium; (2) a demonstration of the importance of strain rate at short length scales; and (3) a bridge between the abruptness of macroscopic pressure-induced phase transitions and the continuity of martensitic ones over their fluctuation region in terms of the inverse relationship between the length scale of the martensitic texture, manifested here as ordered lattice distortions and the lower pressure at which such texture first appears

  11. Real-time observation of nanoscale topological transitions in epitaxial PbTe/CdTe heterostructures

    Directory of Open Access Journals (Sweden)

    H. Groiss

    2014-01-01

    Full Text Available The almost completely immiscible PbTe/CdTe heterostructure has recently become a prototype system for self-organized quantum dot formation based on solid-state phase separation. Here, we study by real-time transmission electron microscopy the topological transformations of two-dimensional PbTe-epilayers into, first, a quasi-one-dimensional percolation network and subsequently into zero-dimensional quantum dots. Finally, the dot size distribution coarsens by Ostwald ripening. The whole transformation sequence occurs during all stages in the fully coherent solid state by bulk diffusion. A model based on the numerical solution of the Cahn-Hilliard equation reproduces all relevant morphological and dynamic aspects of the experiments, demonstrating that this standard continuum approach applies to coherent solids down to nanometer dimensions. As the Cahn-Hilliard equation does not depend on atomistic details, the observed morphological transformations are general features of the model. To confirm the topological nature of the observed shape transitions, we developed a parameter-free geometric model. This, together with the Cahn-Hilliard approach, is in qualitative agreement with the experiments.

  12. Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume.

    Science.gov (United States)

    Moreno, T; Querol, X; Pey, J; Minguillón, M C; Pérez, N; Alastuey, A; Bernabé, R M; Blanco, S; Cárdenas, B; Eichinger, W; Salcido, A; Gibbons, W

    2008-03-01

    We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.

  13. Genesis of Pb-Zn-Cu-Ag Deposits within Permian Carboniferous-Carbonate Rocks in Madina Regency, North Sumatra

    Directory of Open Access Journals (Sweden)

    Bhakti Hamonangan Harahap

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.167-184Strong mineralized carbonate rock-bearing Pb-Zn-Cu-Ag-(Au ores are well exposed on the Latong River area, Madina Regency, North Sumatra Province. The ore deposit is hosted within the carbonate rocks of the Permian to Carboniferous Tapanuli Group. It is mainly accumulated in hollows replacing limestone in the forms of lensoidal, colloform, veins, veinlets, cavity filling, breccia, and dissemination. The ores dominantly consist of galena (126 000 ppm Pb and sphalerite (2347 ppm Zn. The other minerals are silver, azurite, covellite, pyrite, marcasite, and chalcopyrite. This deposit was formed by at least three phases of mineralization, i.e. pyrite and then galena replaced pyrite, sphalerite replaced galena, and pyrite. The last phase is the deposition of chalcopyrite that replaced sphalerite. The Latong sulfide ore deposits posses Pb isotope ratio of 206Pb/204Pb = 19.16 - 20.72, 207Pb/204Pb = 16.16 - 17.29, and 208Pb/204Pb = 42.92 - 40.78. The characteristic feature of the deposit indicates that it is formed by a sedimentary process rather than an igneous activity in origin. This leads to an interpretation that the Latong deposit belongs to the Sedimentary Hosted Massive Sulfide (SHMS of Mississippi Valley-Type (MVT. The presence of SHMS in the island arc such as Sumatra has become controversial. For a long time, ore deposits in the Indonesian Island Arc are always identical with the porphyry and hydrothermal processes related to arc magmatism. This paper is dealing with the geology of Latong and its base metal deposits. This work is also to interpret their genesis as well as general relationship to the regional geology and tectonic setting of Sumatra.

  14. Effect of heavy metals on plants. II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni, and Tl

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.W.; Bazzaz, F.A.; Rolfe, G.L.

    1975-08-01

    Corn and sunflower plants were grown in hydroponic culture and treated with various levels of Pb, Cd, Ni, and Tl salts. Net photosynthesis, transpiration and toxic metal ion concentration of leaf material and total plant biomass was measured. Tl was found to be the most toxic to new photosynthesis and growth of both species followed in order by Cd, Ni, and Pb. (auth)

  15. TiO{sub 2} flower-like nanostructures decorated with CdS/PbS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trenczek-Zajac, Anita, E-mail: anita.trenczek-zajac@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Kusior, Anna; Lacz, Agnieszka; Radecka, Marta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, Katarzyna [AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2014-12-15

    Highlights: • TiO{sub 2} flower-like nanostructures were prepared with the use of Ti foil and 30% H{sub 2}O{sub 2}. • QDs of CdS and PbS were deposited using the SILAR method. • The SILAR method makes it possible to control the size of QDs. • Band gap energy of CdS was found to be 2.35 eV. • Sensitization of TiO{sub 2} with CdS or PbS improves the photoelectrochemical properties. - Abstract: Flower-like nanostructures of TiO{sub 2} were prepared by immersing Ti foil in 30% H{sub 2}O{sub 2} at 80 °C for times varying from 15 to 240 min. Upon annealing at 450 °C in an Ar atmosphere, the received amorphous samples crystallized in an anatase structure with rutile as a minority phase. SEM images revealed that partially formed flowers were present at the surface of the prepared samples as early as after 15 min of immersion. The size of the individual flowers increased from 400–800 nm after 15 min of reaction to 2.5–6.0 μm after 240 min. It was also found that surface is very rough and surface development is considerable. After 45 min of immersion, the nanoflowers were sensitized with CdS and PbS quantum dots (QDs-CdS/QDs-PbS) deposited using the SILAR method from water- and methanol-based precursor solutions at different concentrations (0.001–0.1 M). QDs-CdS crystallized in the hawleyite structure, while QDs-PbS in the galena form. SEM analysis showed the tendency of quantum dots to agglomerate at high concentrations of the precursor in water-based solutions. QDs obtained from methanol-based solutions were uniformly distributed. The produced QDs-PbS were smaller than QDs-CdS. Based on the optical reflectance spectra, the band-gap energies of TiO{sub 2} nanostructures with and without QDs were calculated to be 3.32 eV for flower-like TiO{sub 2} nanostructures and 2.35 eV for QDs-CdS. The photoelectrochemical behaviour of nanoflowers was found to improve significantly after the deposition of QDs-CdS.

  16. Heavy Metals Pollution and Pb Isotopic Signatures in Surface Sediments Collected from Bohai Bay, North China

    Science.gov (United States)

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as “the unpolluted” level, while Ni, Cu, and Pb were ranked as “unpolluted to moderately polluted” level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for 206Pb/207Pb and from 2.456 to 2.482 for 208Pb/207Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources. PMID:24982926

  17. Effects of Cd, Zn or Pb stress in Populus alba berolinensis on the development and reproduction of Lymantria dispar.

    Science.gov (United States)

    Jiang, Dun; Yan, Shanchun

    2017-09-26

    In order to investigate the effects of heavy metal stress on woody plant defense against phytophagous insects, we studied development and reproduction traits of the gypsy moth, Lymantria dispar that were separately fed with leaves plucked from poplar seedlings (Populus alba berolinensis) grown in either non-contaminated soil (control), Cd-contaminated soil (1.5 mg/kg), Zn-contaminated soil (500 mg/kg) or Pb-contaminated soil (500 mg/kg). The results showed that feeding on Cd or Pb stressed poplar leaves significantly decreased L. dispar larval weights, body lengths and head capsule widths, pupal weights and female fecundity, and delayed the duration of larval development. Similar effects from the Zn stressed poplar leaves were also observed on all the above mentioned variables except male pupal weight and larval development duration that showed no differences from the control. Cd, Zn, or Pb stressed poplar leaves had no significant effects on L. dispar larval survival, pupation and emergence rates; in fact, both larval survival and pupation rates reached 100%. These results suggest that Cd, Zn or Pb stress in P. alba berolinensis might help the trees defend against the defoliator, however; L. dispar may in turn have an effective detoxification mechanism for lessening the effects of plant-mediated defenses and heavy metals in leaves on larval survival, pupation and eclosion.

  18. Betel-nut Peel as an Adsorbent in the Removal of Cd, Cr and Pb from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Nur-E-Alam Siddique

    2012-12-01

    Full Text Available The ability of Betel-nut Peel BP, an agricultural waste material, for the removal of chromium (Cr3+, cadmium (Cd2+ and lead (Pb2+ from aqueous solution has been investigated. In the batch tests experimental parameters were studied, including solution pH, contact time, adsorbent dose, initial solution volume of metal ions and initial metal ions concentration. The adsorbent exhibited good sorption potential at pH 4.0. Maximum removal of Cr, Cd and Pb (96-98.0 % with (60 mg/ mL of sorbent was observed at 10 mg/L sorbate concentration. Removal of about 50-60% occurred in 50 min, and equilibrium was attained at around 90 min for all the three metal ions. The functional groups (C=O, S=O, −OH present on the carbon surface of BP were responsible for the adsorption of metal ions. The adsorption parameters were analyzed using both the Freundlich and Langmuir models. The value of KF is large and 1/n is 0.1-0.69, indicating that BP has high adsorption capacities for Cr3+, Cd2+ and Pb2+. The desorption studies were carried out using HCl. Maximum desorptions of 72% for Cd and Pb and 67% for Cr were attained with 6M HCl.

  19. Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil.

    Science.gov (United States)

    Divisekara, T; Navaratne, A N; Abeysekara, A S K

    2018-02-03

    Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one of the causative factors of Chronic Kidney Disease of unknown aetiology (CKDu) prevalent in some parts of Sri Lanka. The effect of commercial glyphosate on the adsorption and desorption of Cd(II) and Pb(II) ions on selective paddy soil studied using batch experiments, over a wide concentration range, indicates that the Langmuir adsorption isotherm model is obeyed at low initial metal ion concentrations while the Freundlich adsorption isotherm model obeys at high metal ion concentrations in the presence and absence of glyphosate. For all cases, adsorption of both Cd(II) and Pb(II) ions obeys pseudo second order kinetics, suggesting that initial adsorption is a chemisorption process. In the presence of glyphosate formulation, the extent of adsorption of Cd(II) and Pb(II) ions on soil is decreased, while their desorption is increased at high concentrations of glyphosate. Low concentrations of glyphosate formulation do not significantly affect the desorption of metal ions from soil. Reduction of adsorption leads to enhance the concentration of Cd(II) and Pb(II) ions in the aqueous phase when in contact with soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Penelitian migrasi logam-logam Cd, Zn, Pb, dan Hg pada plastik polyethylene (PE kemas susu segar

    Directory of Open Access Journals (Sweden)

    Supraptiningsih Supraptiningsih

    1992-08-01

    Full Text Available It has been carried out an analyse of Cd, Zn, Pb, Hg, metal in plastic polyethylene container for fresh milk namely are sack plastics, bottle plastics and bucket plastics. Plastics sample is prepared by SII. 0771 – 83 : “Jerigen Plastik Poliolefin untuk air Minum dengan Kapasitas Bersih 20 Liter” Analyse of metal is done by atomic absorption spectrophometer (AAS. Test result indicates that in sample plastic containers are not contain Hg metal, but it contain Cd, Zn, and Pb. It happened migration of Cd and Pb metal from plastic container to fresh milk that contact. Cd, metal migration is approximately 0,0000 – 0,0184 ppm for hours time contact and approximately 0,0000 – 0,0284 ppm for eight hours time contact. Pb metal migration is approximately 0,0000 – 0,0480 ppm for four hours time contact and approximately 0,0000 – 0,0677 ppm for eight hour time contact. The migration is very small so that sample plastic containers can be used for fresh milk.

  1. Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Tuzen, Mustafa [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey)], E-mail: mtuzen@gop.edu.tr

    2008-03-21

    The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the green alga (Ulva lactuca) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by U. lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of U. lactuca biomass for Pb(II) and Cd(II) ions was found to be 34.7 mg/g and 29.2 mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 10.4 kJ/mol for Pb(II) biosorption and 9.6 kJ/mol for Cd(II) biosorption, indicating that the biosorption of both metal ions was taken place by chemisorption. The calculated thermodynamic parameters ({delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o}) showed that the biosorption of Pb(II) and Cd(II) ions onto U. lactuca biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.

  2. Lethal critical body residues as measures of Cd, Pb, and Zn bioavailability and toxicity in the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Conder, J.M.; Lanno, R.P. [Oklahoma State Univ., Dept. of Zoology, Stillwater, OK (United States)

    2003-07-01

    Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective. The objectives of this research were to: i) develop LD{sub 50}s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD{sub 50} for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods. Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. (orig.)

  3. Competitive Adsorption of Cd(II), Cr(VI), and Pb(II) onto Nanomaghemite: A Spectroscopic and Modeling Approach.

    Science.gov (United States)

    Komárek, Michael; Koretsky, Carla M; Stephen, Krishna J; Alessi, Daniel S; Chrastný, Vladislav

    2015-11-03

    A combined modeling and spectroscopic approach is used to describe Cd(II), Cr(VI), and Pb(II) adsorption onto nanomaghemite and nanomaghemite coated quartz. A pseudo-second order kinetic model fitted the adsorption data well. The sorption capacity of nanomaghemite was evaluated using a Langmuir isotherm model, and a diffuse double layer surface complexation model (DLM) was developed to describe metal adsorption. Adsorption mechanisms were assessed using X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. Pb(II) adsorption occurs mainly via formation of inner-sphere complexes, whereas Cr(VI) likely adsorbs mainly as outer-sphere complexes and Cd(II) as a mixture of inner- and outer-sphere complexes. The simple DLM describes well the pH-dependence of single adsorption edges. However, it fails to adequately capture metal adsorption behavior over broad ranges of ionic strength or metal-loading on the sorbents. For systems with equimolar concentrations of Pb(II), Cd(II), and Cr(VI). Pb(II) adsorption was reasonably well predicted by the DLM, but predictions were poorer for Cr(VI) and Cd(II). This study demonstrates that a simple DLM can describe well the adsorption of the studied metals in mixed sorbate-sorbent systems, but only under narrow ranges of ionic strength or metal loading. The results also highlight the sorption potential of nanomaghemite for metals in complex systems.

  4. Determination of Cu, Pb, Fe, and Zn in plant component polymers of a hyperaccumulating plant.

    Science.gov (United States)

    Kobayashi, Fumihisa; Maki, Teruya; Nakamura, Yoshitoshi; Ueda, Kazumasa

    2005-12-01

    Phytoremediation is an innovative technology that utilizes the natural properties of plants to remediate hazardous waste sites. For more cost-effective phytoremediation, it is important to utilize a hyperaccumulating plant after phytoremediation, i.e. the recovery of valuable metals and the production of useful materials. In this work, the determination of metals in plant component polymers in a fern, Athyrium yokoscense, as a hyper-accumulating plant was established using steam explosion, Wayman's extraction method, and ICP emission spectrometry. After A. yokoscense plants were treated by steam explosion, the steam-exploded A. yokoscense were separated into four plant component polymers, ie. water-soluble material fraction, holocellulose fraction, methanol-soluble lignin fraction, and residual lignin fraction. The concentrations of Cu, Pb, Fe, and Zn in these plant component polymers and the dry weights of plant component polymers were measured. These analytical process determining metals in the plants will contribute to not only the evaluation and the efforts of phytoremediation using a hyperaccumulating plant, but also to the development of more effective phytoremediation.

  5. Morphological, thermal and optical studies of jute-reinforced PbSrCaCuO-polypropylene composite

    Science.gov (United States)

    Jacob, Reenu; Isac, Jayakumari

    2016-11-01

    New research with modern technologies has always grabbed substantial attention. Conservation of raw materials like natural fibers has helped composite world to explore eco-friendly components. The aim of this paper is to study the potential of jute fiber-reinforced ceramic polymers. Alkali-treated jute fiber has been incorporated in a polypropylene ceramic matrix at different volume fractions. The morphological, thermal and optical studies of jute-reinforced ceramic Pb2Sr2CaCu2O9 (PbSrCaCuO) are studied. Morphological results evidently demonstrate that when the polypropylene ceramic matrix is reinforced with jute fiber, interfacial interaction between the varying proportions of the jute fiber and ceramic composite takes place. TGA and DSC results confirm the enhancement in the thermal stability of ceramic composites reinforced with jute fiber. The UV analysis of the composite gives a good quality measure on the optical properties of the new composite prepared.

  6. Geometrical frustration in a new S = \\xBD distorted check-board lattice PbCuTeO5

    Science.gov (United States)

    Chilakalapudi, S. P.; Shahee, Aga; Mahajan, A. V.; Srinath, S.; Koteswararao, B.

    2017-05-01

    Geometrical frustration, arising from the unsatisfying magnetic bonds in peculiar magnetic materials, leads to the emergence of a variety of ground states ranging from exotic disordered (quantum spin liquid) to unusual magnetic ordered states. We have prepared and studied the magnetic properties of a novel quantum magnet PbCuTeO5, whose structure suggests that it has 2D distorted check-board lattice. A large antiferromagnetic Curie-Weiss temperature of -165 K and a spin freezing temperature Tf = 6 K are observed in the magnetic data. Our results suggest that PbCuTeO5 is a new frustrated quantum magnet with a large frustration parameter f = θCW/Tf > 27.

  7. Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India.

    Science.gov (United States)

    Kamala-Kannan, Seralathan; Prabhu Dass Batvari, B; Lee, Kui Jae; Kannan, N; Krishnamoorthy, R; Shanthi, K; Jayaprakash, M

    2008-04-01

    The concentrations of three heavy metals chromium (Cr), cadmium (Cd) and lead (Pb) were examined in water, sediment and green algae (Ulva lactuca); collected from six different stations at Pulicat Lake, which receives effluents from industries located in North Chennai Coastal region. Concentrations of Cd (64.21 microg g(-1)) and Cr (28.51 microg g(-1)) were found to be high in sediment, whereas in green algae concentration of Pb (8.32 microg g(-1)) was higher than water and sediment samples. The relative abundance of these heavy metals in U. lactuca and sediment were found to be in the order Cd>Cr>Pb, whereas in water the ratio was found to be Cr>Pb>Cd. The seasonal variations in Cd and Pb followed a similar pattern in both seaweeds and sediments, but not in water samples. Spearman correlation coefficient study showed no significant correlation in the concentration of metals in U. lactuca, water and sediment samples.

  8. Elevated CO2increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils.

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping; Chang, Yafei

    2016-11-01

    Glomalin-related soil protein (GRSP), which contains glycoproteins produced by arbuscular mycorrhizal fungi (AMF), as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic materials, is generally categorized into two fractions: easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP). GRSP plays an important role in soil carbon (C) sequestration and can stabilize heavy metals such as lead (Pb), cadmium (Cd), and manganese (Mn). Soil contamination by heavy metals is occurring in conjunction with rising atmospheric CO 2 in natural ecosystems due to human activities. However, the response of GRSP to elevated CO 2 combined with heavy metal contamination has not been widely reported. Here, we investigated the response of GRSP to elevated CO 2 in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Elevated CO 2 (700 μmol mol -1 ) significantly increased T- and EE- GRSP concentrations in soils contaminated with Cd, Pb or Cd + Pb. GRSP contributed more carbon to the rhizosphere soil organic carbon pool under elevated CO 2  + heavy metals than under ambient CO 2 . The amount of Cd and Pb bound to GRSP was significantly higher under elevated (compared to ambient) CO 2 ; and elevated CO 2 increased the ratio of GRSP-bound Cd and Pb to total Cd and Pb. However, available Cd and Pb in rhizosphere soil under increased elevated CO 2 compared to ambient CO 2 . The combination of both metals and elevated CO 2 led to a significant increase in available Pb in rhizosphere soil compared to the Pb treatment alone. In conclusion, increased GRSP produced under elevated CO 2 could contribute to sequestration of soil pollutants by adsorption of Cd and Pb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing

    Energy Technology Data Exchange (ETDEWEB)

    Moon, B.M.; Lalevic, B. (Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, P. O. Box 909, Piscataway, New Jersey 08855-0909 (US)); Kear, B.H.; McCandlish, L.E. (Department of Mechanics and Materials Science, Rutgers, The State University of New Jersey, P. O. Box 909, Piscataway, New Jersey 08855-0909); Safari, A.; Meskoob, M. (Department of Ceramic Science and Engineering, Rutgers, The State University of New Jersey, P. O. Box 909, Piscataway, New Jersey 08855-0909)

    1989-10-02

    A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 {degree}C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K ({ital T}{sub {ital c}}(zero)=105 K). A detailed study of various processing techniques has been carried out.

  10. High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing

    Science.gov (United States)

    Moon, B. M.; Lalevic, B.; Kear, B. H.; McCandlish, L. E.; Safari, A.; Meskoob, M.

    1989-10-01

    A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 °C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K [Tc(zero)=105 K]. A detailed study of various processing techniques has been carried out.

  11. Electrochemiluminescent detection of Pb{sup 2+} by graphene/gold nanoparticles and CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Guo, Linqing; Li, Jiao; Kang, Tianfang; Cheng, Shuiyuan

    2016-12-01

    Highlights: • An ECL sensor was fabricated based on the distance dependent between CdSe QDs and gold nanoparticles. • The ssDNA strands rich in G bases adopt the G4 conformation when Pb{sup 2+} is present in detection system. • AuNPs/RGO composite improved the performance of electron transfer of sensor. • The ECL sensor was used to detect Pb{sup 2+} concentration in an actual water sample with high sensitivity and selectivity. - Abstract: A highly sensitive electrochemiluminescent detection method for lead ions (Pb(II)) was fabricated based on the distance-dependent quenching of the electrochemiluminescence from CdSe quantum dots by nanocomposites of graphene and gold nanoparticles. Graphene/gold nanoparticles were electrochemically deposited onto a glassy carbon electrode through the constant potential method. Thiol-labeled DNA was then assembled on the surface of the electrode via gold−sulfur bonding, following which the amino-labeled terminal of the DNA was linked to carboxylated CdSe quantum dots by the formation of amide bonds. The 27-base aptamer was designed with two different domains: the immobilization and detection sequences. The immobilization sequence was paired with 12 complementary bases and immobilized on the gold electrode; the single-stranded detection sequence, rich in G bases, formed a G-quadruplex (G4) structure in the presence of Pb{sup 2+}. The formation of G4 shortens the distance between the CdSe quantum dots and the Au electrode, which decreases the electrochemiluminescent intensity in a linear fashion, proportional to the concentration of Pb(II). The linear range of the sensor was 10{sup −10} to 10{sup −8} mol/L (R = 0.9819) with a detection limit of 10{sup −10} mol/L. This sensor detected Pb(II) in real water samples with satisfactory results.

  12. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil.

    Science.gov (United States)

    Kulikowska, Dorota; Gusiatin, Zygmunt Mariusz; Bułkowska, Katarzyna; Kierklo, Katarzyna

    2015-10-01

    Although commercially available biosurfactants are environmentally friendly and effectively remove heavy metals from soil, they are costly. Therefore, this study investigated whether inexpensive humic substances (HS) from sewage sludge compost could effectively remove copper (Cu) and cadmium (Cd) from highly contaminated sandy clay loam (S1) and clay (S2). The optimum HS concentration and pH were determined, as well process kinetics. Under optimum conditions, a single washing removed 80.7% of Cu and 69.1% of Cd from S1, and 53.2% and 36.5%, respectively, from S2. Triple washing increased removal from S1 to almost 100% for both metals, and to 83.2% of Cu and 88.9% of Cd from S2. Triple washing lowered the potential ecological risk (Er(i)) of the soils, especially the risk from Cd. HS substances show potential for treating soils highly contaminated with heavy metals, and HS from other sources should be tested with these and other contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Thermally-restorable optical degradation and the mechanism of current transport in Cu2S-CdS photovoltaic cells

    Science.gov (United States)

    Fahrenbruch, A. L.; Bube, R. H.

    1974-01-01

    The photovoltaic properties of single-crystal Cu2S-CdS heterojunctions have been investigated as a function of heat treatment by detailed measurements of the dependence of short-circuit current on photon energy, temperature, and the state of optical degradation or enhancement. A coherent picture is formulated for the relationship between enhancement and optical degradation, and their effect on the transport of short-circuit photoexcited current and dark, forward-bias current in the cell. Optical degradation in the Cu2S-CdS cell is shown to be closely identical to optical degradation of lifetime in a homogeneous CdS:Cd:Cu crystal, indicating that the CdS:Cu layer near the junction interface controls carrier transport in the cell. It is proposed that both the photoexcited short-circuit current and the dark, forward-bias current are controlled by a tunneling-recombination process through interface states.

  14. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Xu, Chao; Chen, Hao-Xiang; Xiang, Qian; Zhu, Han-Hua; Wang, Shuai; Zhu, Qi-Hong; Huang, Dao-You; Zhang, Yang-Zhu

    2018-01-01

    Soil amendments, such as biochar, have been used to enhance the immobilization of heavy metals in contaminated soil. A pot experiment was conducted to immobilize the available cadmium (Cd) and lead (Pb) in soil using peanut shell biochar (PBC) and wheat straw biochar (WBC), and to observe the accumulation of these heavy metals in rice (Oryza sativa L.). The application of PBC and WBC led to significantly higher pH, soil organic carbon (SOC), and cation exchange capacity (CEC) in paddy soil, while the content of MgCl2-extractable Cd and Pb was lower than that of untreated soil. MgCl2-extractable Cd and Pb showed significant negative correlations with pH, SOC, and CEC (p biochar to contaminated paddy soil led to reductions of 40.4-45.7 and 68.6-79.0%, respectively, in the content of MgCl2-extractable Cd and Pb. PBC more effectively immobilized Cd and Pb than WBC. Sequential chemical extractions revealed that biochar induced the transformation of the acid-soluble fraction of Cd to oxidizable and residual fractions, and the acid-soluble fraction of Pb to reducible and residual fractions. PBC and WBC clearly inhibited the uptake and accumulation of Cd and Pb in rice plants. Specially, when compared to the corresponding concentrations in rice grown in control soils, 5% PBC addition lowered Cd and Pb concentrations in grains by 22.9 and 12.2%, respectively, while WBC addition lowered them by 29.1 and 15.0%, respectively. Compared to Pb content, Cd content was reduced to a greater extent in grain by PBC and WBC. These results suggest that biochar application is effective for immobilizing Cd and Pb in contaminated paddy soil, and reduces their bioavailability in rice. Biochar could be used as a soil amendment for the remediation of soils contaminated with heavy metals.

  15. Aging effects on the microstructure, surface characteristics and wettability of Cu pretinned with Sn-Pb solders

    Energy Technology Data Exchange (ETDEWEB)

    Linch, Heidi Sue [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study investigates effects of aging in air and argon at 170 C on Cu coupons which were pretinned with 75Sn-25Pb, 8Sn-92Pb, and 5Sn-95Pb solders. Coatings were applied using electroplating or hot dipping techniques. The coating thickness was controlled between 3 to 3μm and the specimens were aged for 0 hours, 2 hours, 24 hours and 2 weeks. Wetting balance tests were used to evaluate the wettability of the test specimens. Microstructural development was evaluated using X-ray diffraction, energy dispersive X-ray and Auger spectroscopy, as well as optical and scanning electron microscopy. The wetting behavior of the test specimens is interpreted with respect to observed microstructural changes and as a function of aging time, solder composition, and processing conditions.

  16. Cd, Ni, Cr and Pb distribution in biosolid pellets used as soil amendment

    Science.gov (United States)

    Jordán, Manuel M.; Rincón-Mora, Beatriz; Belén Almendro-Candel, María; Navarro Pedreño, Jose; Gómez Lucas, Ignacio; Bech, Jaume; Roca, Nuria; Pardo, Francisco

    2016-04-01

    The application of biosolids to a soil is a method that offers important benefits (Navarro et al. 2003). The transport and application costs are quite low (mostly if they are dehydrated biosolids or pellets) if soils are located near a wastewater treatment plant. It is possible to recycle nutrients (N, P, and K) and organic matter by improving the physical and chemical characteristics of the soil and by reducing the fertilizer costs. However, the use of biosolids may also has several problems, such as the presence of quantities of metals that could be toxic for plants or could contaminate ground-waters after being leached. Heavy metals are one of the most serious environmental pollutants because of its high toxicity, abundance and easy accumulation by plant (Soriano-Disla et al. 2014; Rosen and Chen 2014). Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of biosolids is subject to rigorous controls within the European Union. The present study was designed to examine the partition of selected heavy metals in biosolid pellets, and also to relate the distribution patterns of these metals. Samples were collected from the treatment of urban wastewater at the drying grounds of a wastewater processing plant. The samples correspond to biosolids with humidities below 20% and are representative of the three horizons within the pile: the isolation surface (H1), the mesophilous area (H2), and the thermophilous area (H3). Biosolid aggregates were placed in a pellet press and then compacted. Total content of metals was determined following microwave digestion and analysed by ICP/MS. Triplicate samples were weighed in polycarbonate centrifuge tubes and sequentially extracted. The distribution of chemical forms of Cd, Ni, Cr, and Pb in the biosolids was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible, and residual forms. The

  17. Lead (Pb2+ and cadmium (Cd2+ inhibit the dipsogenic action of central beta-adrenergic stimulation by isoproterenol

    Directory of Open Access Journals (Sweden)

    J.B. Fregoneze

    1997-03-01

    Full Text Available We have previously demonstrated that acute third ventricle injections of both Pb2+ and Cd2+ impair the dipsogenic response elicited by three different situations: dehydration and central cholinergic or angiotensinergic stimulation. ß-Adrenergic activation is part of the multifactorial integrated systems operating in drinking behavior control in the central nervous system. In the present study acute third ventricle injections of Pb2+ (3, 30 and 300 pmol/rat or Cd2+ (0.3, 3 and 30 pmol/rat blocked the dipsogenic response induced by third ventricle injections of isoproterenol (ISO; 160 nmol/rat in a dose-dependent manner. Normohydrated animals receiving ISO + NaAc (sodium acetate or saline (controls displayed a high water intake after 120 min (ISO + saline = 5.78 ± 0.54 ml/100 g; ISO + NaAc = 6.00 ± 0.6 ml/100 g. After the same period, animals receiving ISO but pretreated with PbAc at the highest dose employed (300 pmol/rat drank 0.78 ± 0.23 ml/100 g while those receiving ISO and pretreated with the highest dose of CdCl2 (30 pmol/rat presented a water intake of 0.7 ± 0.30 ml/100 g. Third ventricle injections of CdCl2 (3 nmol/rat or PbAc (3 nmol/rat did not modify food intake in rats deprived of food for 24 h. Thus, general central nervous system depression explaining the antidipsogenic action of the metals can be safely excluded. It is concluded that both Pb2+ and Cd2+ inhibit water intake induced by central ß-adrenergic stimulation

  18. Biosorption of Cd(II) and Pb(II) onto brown seaweed, Lobophora variegata (Lamouroux): kinetic and equilibrium studies.

    Science.gov (United States)

    Jha, Bhavanath; Basha, Shaik; Jaiswar, Santlal; Mishra, Biswajit; Thakur, Mukund C

    2009-02-01

    The present work deals with the biosorption performance of raw and chemically modified biomass of the brown seaweed Lobophora variegata for removal of Cd(II) and Pb(II) from aqueous solution. The biosorption capacity was significantly altered by pH of the solution delineating that the higher the pH, the higher the Cd(II) and Pb(II) removal. Kinetic and isotherm experiments were carried out at the optimal pH 5.0. The metal removal rates were conspicuously rapid wherein 90% of the total sorption occurred within 90 min. Biomass treated with CaCl(2) demonstrated the highest potential for the sorption of the metal ions with the maximum uptake capacities i.e. 1.71 and 1.79 mmol g(-1) for Cd(II) and Pb(II), respectively. Kinetic data were satisfactorily manifested by a pseudo-second order chemical sorption process. The process mechanism consisting of both surface adsorption and pore diffusion was found to be complex. The sorption data have been analyzed and fitted to sorption isotherm of the Freundlich, Langmuir, and Redlich-Peterson models. The regression coefficient for both Langmuir and Redlich-Peterson isotherms were higher than those secured for Freundlich isotherm implying that the biosorption system is possibly monolayer coverage of the L. variegata surface by the cadmium and lead ions. FT-IR studies revealed that Cd(II) and Pb(II) binding to L. variegata occurred primarily through biomass carboxyl groups accompanied by momentous interactions of the biomass amino and amide groups. In this study, we have observed that L. variegata had maximum biosorption capacity for Cd(II) and Pb(II) reported so far for any marine algae.

  19. Trace Elements (Pb, Zn, Cu in Blood of Mute Swan (Cygnus olor from the Isonzo River Nature Reserve (Italy

    Directory of Open Access Journals (Sweden)

    G Isani*, M Cipone, G Andreani, E Carpenè, E Ferlizza, K Kravos1 and F Perco1

    2013-11-01

    Full Text Available Lead concentrations in blood of 45 specimens of mute swan from the molting area of the Isonzo River Mouth Nature Reserve (Italy were determined in two consecutive years (2006-2007, some birds were neck ringed to identify their homing behavior. The second sampling included whole body X-ray radiography and Cu and Zn plasma analyses to investigate the health impact of putative Pb exposure. X-ray images of all investigated specimens did not show any radiopacity due to the ingestion of metal bodies. Lead levels (0.08-0.44 g/ml were in the range of those reported for swans living in unpolluted or slightly polluted environments and excluded acute intoxication, as confirmed by clinical investigation. Zinc concentrations ranged between 2.93 and 7.59 g/ml and were one order of magnitude higher than Cu concentrations (0.21-0.42 g/ml. The negative correlation between Pb and Zn concentrations could be indicative of adverse health effects caused by chronic lead exposure. To our knowledge this is the first study reporting Pb, Zn and Cu blood levels, X-ray radiographies and data on the origin of swan populations.

  20. Nitrilotriacetic acid functionalized Adansonia digitata biosorbent: Preparation, characterization and sorption of Pb (II and Cu (II pollutants from aqueous solution

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2016-11-01

    Full Text Available Nitrilotriacetic acid functionalized Adansonia digitata (NFAD biosorbent has been synthesized using a simple and novel method. NFAD was characterized by X-ray Diffraction analysis technique (XRD, Scanning Electron Microscopy (SEM, Brunauer-Emmett-Teller (BET surface area analyzer, Fourier Transform Infrared spectrometer (FTIR, particle size dispersion, zeta potential, elemental analysis (CHNS/O analyzer, thermogravimetric analysis (TGA, differential thermal analysis (DTA, derivative thermogravimetric analysis (DTG and energy dispersive spectroscopy (EDS. The ability of NFAD as biosorbent was evaluated for the removal of Pb (II and Cu (II ions from aqueous solutions. The particle distribution of NFAD was found to be monomodal while SEM revealed the surface to be heterogeneous. The adsorption capacity of NFAD toward Pb (II ions was 54.417 mg/g while that of Cu (II ions was found to be 9.349 mg/g. The adsorption of these metals was found to be monolayer, second-order-kinetic, and controlled by both intra-particle diffusion and liquid film diffusion. The results of this study were compared better than some reported biosorbents in the literature. The current study has revealed NFAD to be an effective biosorbent for the removal of Pb (II and Cu (II from aqueous solution.

  1. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Sizmur, Tom, E-mail: t.p.sizmur@reading.ac.uk [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom); Palumbo-Roe, Barbara; Watts, Michael J. [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Hodson, Mark E. [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom)

    2011-03-15

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. - Research highlights: > Earthworms increase the mobility and availability of metals and metalloids in soils. > We incubated L. terrestris in three soils contaminated with As, Cu, Pb and Zn. > Earthworms increased the mobility of As, Cu, Pb and Zn in their casts. > The mechanisms for this could be explained by changes in pH or organic carbon. - Lumbricus terrestris change the partitioning of metal(loid)s between soil constituents and increase the mobility of metal(loid)s in casts and pore water.

  2. Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+and methyl orange removal from water

    Science.gov (United States)

    Chen, Yu; Peng, Jingdong; Xiao, Huan; Peng, Huanjun; Bu, Lingli; Pan, Ziyu; He, Yan; Chen, Fang; Wang, Xiang; Li, Shiyu

    2017-10-01

    Hydrotalcite-like compound (HTlc) which contained lanthanum cation was prepared successfully. The title compound was characterized by thermogravimetry analysis, element analysis, X-ray fluorescence, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, as well as specific surface area. The study sought to investigate the adsorption of heavy metals and dye (Pb2+, Cu2+ and methyl orange) in aqueous solution on Ben-HTlc. For optimization of adsorption behavior of the three elements, the pH value, contact time, adsorbate concentration were optimized. As for Pb2+, Cu2+ and methyl orange (MO), the single-component adsorption generally reached the maximum quantity in first 20 min and their respective adsorption capacities were 384.6 mg g-1, 156.3 mg g-1 and 333.3 mg g-1 (pH = 6.5 ± 0.1), the adsorption affinities were in the following sequence Pb2+ > MO > Cu2+. The repeated adsorption and regeneration studies showed the promising application of Ben-HTlc. The breakthrough experimental consequence had shown that the synthesized Ben-HTlc could efficiently remove heavy metals and dye from water, suggesting the potential utilization of Ben-HTlc in pollutants removal.

  3. Mapping of Cu and Pb Contaminations in Soil Using Combined Geochemistry, Topography, and Remote Sensing: A Case Study in the Le’an River Floodplain, China

    Directory of Open Access Journals (Sweden)

    Yin Gao

    2012-05-01

    Full Text Available Heavy metal pollution in soil is becoming a widely concerning environmental problem in China. The aim of this study is to integrate multiple sources of data, namely total Cu and Pb contents, digital elevation model (DEM data, remote sensing image and interpreted land-use data, for mapping the spatial distribution of total Cu and Pb contamination in top soil along the Le’an River and its branches. Combined with geographical analyses and watershed delineation, the source and transportation route of pollutants are identified. Regions at high risk of Cu or Pb pollution are suggested. Results reveal that topography is the major factor that controls the spatial distribution of Cu and Pb. Watershed delineation shows evidence that the streamflow resulting from rainfall is the major carrier of metal pollutants.

  4. Mapping of Cu and Pb contaminations in soil using combined geochemistry, topography, and remote sensing: a case study in the Le'an River floodplain, China.

    Science.gov (United States)

    Chen, Yiyun; Liu, Yaolin; Liu, Yanfang; Lin, Aiwen; Kong, Xuesong; Liu, Dianfeng; Li, Xiran; Zhang, Yang; Gao, Yin; Wang, Dun

    2012-05-01

    Heavy metal pollution in soil is becoming a widely concerning environmental problem in China. The aim of this study is to integrate multiple sources of data, namely total Cu and Pb contents, digital elevation model (DEM) data, remote sensing image and interpreted land-use data, for mapping the spatial distribution of total Cu and Pb contamination in top soil along the Le'an River and its branches. Combined with geographical analyses and watershed delineation, the source and transportation route of pollutants are identified. Regions at high risk of Cu or Pb pollution are suggested. Results reveal that topography is the major factor that controls the spatial distribution of Cu and Pb. Watershed delineation shows evidence that the streamflow resulting from rainfall is the major carrier of metal pollutants.

  5. Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method

    Directory of Open Access Journals (Sweden)

    Tamara Zalewska

    2015-01-01

    Full Text Available The article presents data on heavy metal – Hg, Pb, Cd and Zn – distribution in the layers of marine sediments from the off-shore areas of the southern Baltic Sea: Gdańsk Deep, SE Gotland Basin and Bornholm Deep. Depth profiles of metal concentrations were converted to time-based profiles using the 210Pb dating method and verified by 137Cs distribution in the vertical profile. The linear sedimentation rates in the Gdańsk Deep and SE Gotland Basin are similar, 0.18 cm yr−1 and 0.14 cm yr−1, respectively, while the region of the Bornholm Deep is characterized by a greater sedimentation rate: 0.31 cm yr−1. Regarding anthropogenic pressure, Gdańsk Deep receives the largest share among the analyzed regions. The maximal metal concentrations detected in this area were Zn – 230 mg kg−1, Pb – 77 mg kg−1, Cd – 2.04 mg kg−1 and Hg – 0.27 mg kg−1. The least impact of anthropogenic pressure was noticeable in SE Gotland Basin. The combination of sediment dating with the analysis of vertical distribution of heavy metals in sediments benefited in the determination of target metal concentrations used in environmental status assessments. Reference values of heavy metal concentrations in marine sediments were determined as: Zn – 110 mg kg−1, Pb – 30 mg kg−1, Cd – 0.3 mg kg−1 and Hg – 0.05 mg kg−1 from the period of minor anthropogenic pressure. Basing on the determined indices: enrichment factor (EF, geoaccumulation indicator (Igeo and contamination factor (CF the status of marine environment was assessed regarding the pollution with heavy metals.

  6. Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil.

    Science.gov (United States)

    Kumarathilaka, Prasanna; Ahmad, Mahtab; Herath, Indika; Mahatantila, Kushani; Athapattu, B C L; Rinklebe, Jörg; Ok, Yong Sik; Usman, Adel; Al-Wabel, Mohammad I; Abduljabbar, Adel; Vithanage, Meththika

    2017-12-29

    Presence of organic and inorganic acids influences the release rates of trace metals (TMs) bound in contaminated soil systems. This study aimed to investigate the influence of bioenergy waste biochar, derived from Gliricidia sepium (GBC), on the proton and ligand-induced bioavailability of Pb and Cu in a shooting range soil (17,066mg Pb and 1134mg Cu per kg soil) in the presence of inorganic (sulfuric, nitric, and hydrochloric) and organic acids (acetic, citric, and oxalic). Release rates of Pb and Cu in the shooting range soil were determined under different acid concentrations (0.05, 0.1, 0.5, 1, 5, and 10mM) and in the presence/absence of GBC (10% by weight of soil). The dissolution rates of Pb and Cu increased with increasing acid concentrations. Lead was preferentially released (2.79×10 -13 to 8.86×10 -13 molm -2 s -1 ) than Cu (1.07×10 -13 to 1.02×10 -13 molm -2 s -1 ) which could be due to the excessive Pb concentrations in soil. However, the addition of GBC to soil reduced Pb and Cu dissolution rates to a greater extent of 10.0 to 99.5% and 15.6 to 99.5%, respectively, under various acid concentrations. The increased pH in the medium and different adsorption mechanisms, including electrostatic attractions, surface diffusion, ion exchange, precipitation, and complexation could immobilize Pb and Cu released by the proton and ligands in GBC amended soil. Overall, GBC could be utilized as an effective soil amendment to immobilize Pb and Cu in shooting range soil even under the influence of soil acidity. Copyright © 2017. Published by Elsevier B.V.

  7. Ulva rigida’daki Ağır Metal (Pb, Cu, Zn ve Fe) Düzeyleri (Dardanel, Çanakkale)

    OpenAIRE

    Özden, Serkan; TUNÇER, Sezginer

    2015-01-01

    This study aims to determine the some heavy metal (Pb, Cu, Zn and Fe) concentrations in Ulva rigida at Çanakkale Strait (Dardanelles) to understand of the sea pollution. U. rigida has been collected from five different stations and in six seasonal periods between 2009 and 2013 years. Fe has the highest value heavy metal in this alge species. Mean seasonal results are arranged as: Fe > Zn > Cu > Pb. Heavy metal concentrations determined in U. rigida at five stations, respectively in G...

  8. Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu

    Science.gov (United States)

    Fang, J. S.; Lin, L. Y.; Wu, C. L.; Cheng, Y. L.; Chen, G. S.

    2017-11-01

    The effects of additives to an acidic electrolyte for electrochemical deposition of copper film to prevent corrosion of the Co/SiO2/Si substrate have been investigated. A sacrificial Pb layer was formed by underpotential deposition (UPD), then a Cu layer was prepared using surface-limited redox replacement (SLRR) to exchange the UPD-Pb layer in an acidic copper electrolyte with trisodium citrate, sodium perchlorate, and ethylenediamine as additives. The additives significantly affected the replacement of UPD-Pb by Cu and prevented galvanic corrosion of the Co/SiO2/Si substrate in the acidic Cu electrolyte. The results showed that both sodium perchlorate and ethylenediamine reduced the corrosion of the Co substrate and resulted in Cu film with low electrical resistivity. However, residual Pb was present in the Cu film when using trisodium citrate, as the citrate ions slowed copper displacement. The proposed sequential UPD-Pb and SLRR-Cu growth method may enable electrochemical deposition for fabrication of Cu interconnects on Co substrate from acidic Cu electrolyte.

  9. Determination of Cd and Pb in fruit juice, bottled tea, condiments and dried fish samples using ICP-MS

    Directory of Open Access Journals (Sweden)

    Danica Angeline Dimaya

    2013-06-01

    Full Text Available Metals like cadmium (Cd and lead (Pb are introduced in the environment through natural processes and anthropogenic activities and may end up being present in food, where these metals may pose health risks. A method suitable for the simultaneous determination of Cd and Pb in various matrices of foodstuffs was validated and applied to different samples including fruit juice, bottled iced tea, several types of condiments, and in edible tissues of dried f ish locally produced in the Philippines. Fruit juice and bottled iced tea samples were filtered prior to quantif ication of metals using inductively coupled plasma mass spectrometry (ICP-MS. Condiments and dried f ish samples were mineralized using microwave-assisted nitric acid digestion before subsequent metal detection with ICP-MS. The method was validated usingcer tif ied reference materials DORM 3 and NIST 1643e, and evaluation of recovery of spiked samples. The method was linear in the concentration range 0.01 to 500μg L-1 with correlation coeff icients of 0.999 for both analytes. The estimated detection limits were 0.060 μgL-1 and 0.186 μgL-1 for Cd and Pb, respectively. The determined levels of Cdin fruit juice were in the range 0.06 ± 0.01 to 0.67 ± 0.01 μgL-1, and Pb was detected in only one sample at 0.37 ± 0.02μgL-1. For the bottled iced tea samples, Cd was detected in only one sample (0.13 ± 0.02 μgL-1 while none of the samples had detectable Pb concentration. For the condiments, the determined Cd levels were in the range 0.83 ± 0.06 to 306.13 ± 2.52μgL-1, whereas, the determined Pb levels were in the range 2.14 ± 0.38 to 67.45 ± 7.76μgL-1. For the dried fish samples, the Cd levels determined were in the range 2.00 ± 0.21 to 231.67 ± 5.32 μg kg-1 and that for Pb were in the range 2.38 ± 0.70 to 113.29 ± 2.25 μg kg-1. These determined levels in different foodstuffs highlight the need for routine monitoring of these contaminants.

  10. Photoelectric properties by interface effect of organic/inorganic(CuPc/PbTe) multilayer prepared by pulsed laser deposition and thermal evaporation

    CERN Document Server

    Lee, H Y; Choi, B C; Jeong, J H; Tabata, H; Kawai, T

    1999-01-01

    Highly crystallized CuPc/PbTe multilayer are prepared at substrate temperature from room temperature to 300 .deg. C by pulsed laser deposition and thermal evaporation method. From the measurement of AFM image, these all film exhibits composed of round grains and flat matrix. For observation the interface effect of multilayer, we measured the transverse current-voltage characteristics in the dark and under illumination. The photocarrier is generated in the CuPc layer and the electron-hole pairs are separated by the steep incline of the potential near the CuPc/PbTe interface. The CuPc/PbTe multilayers in the in-plane current-voltage curve exhibit larger photoconduction effect than that of CuPc single layer.

  11. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    Science.gov (United States)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between

  12. Cu doping concentration effect on the physical properties of CdS thin films obtained by the CBD technique

    Science.gov (United States)

    Albor Aguilera, M. L.; Flores Márquez, J. M.; Remolina Millan, A.; Matsumoto Kuwabara, Y.; González Trujillo, M. A.; Hernández Vásquez, C.; Aguilar Hernandez, J. R.; Hernández Pérez, M. A.; Courel-Piedrahita, M.; Madeira, H. T. Yee

    2017-08-01

    Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) semiconductors are direct band gap materials; when these types of material are used in solar cells, they provide efficiencies of 22.1% and 12.6%, respectively. Most traditional fabrication methods involve expensive vacuum processes including co-evaporation and sputtering techniques, where films and doping are conducted separately. On the other hand, the chemical bath deposition (CBD) technique allows an in situ process. Cu-doped CdS thin films working as a buffer layer on solar cells provide good performing devices and they may be deposited by low cost techniques such as chemical methods. In this work, Cu-doped CdS thin films were deposited using the CBD technique on SnO2:F (FTO) substrates. The elemental analysis and mapping reconstruction were conducted by EDXS. Morphological, optical and electrical properties were studied, and they revealed that Cu doping modified the CdS structure, band-gap value and the electrical properties. Cu-doped CdS films show high resistivity compared to the non-doped CdS. The appropriate parameters of Cu-doped CdS films were determined to obtain an adequate window or buffer layer on CIGS and CZTS photovoltaic solar cells.

  13. The role of Cd and Ga in the Cu(In,Ga)S{sub 2}/CdS heterojunction studied with X-ray spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benjamin E.

    2010-08-15

    Photovoltaic cells with the structure Glass/Mo/Cu(In,Ga)S{sub 2}/CdS/i-ZnO/n+-ZnO are currently among the most successful and promising thin-layer solar cells. In this system, the Cu(In,Ga)S{sub 2} (CIS) acts as the absorber, the CdS as the buffer layer and the ZnO as the window layer. The goal of this work is the investigation of the Cu(In,Ga)S{sub 2}/CdS semiconductor heterojunction both as a component of the solar cell and as a separate material system. The characteristics of this junction were investigated both during junction formation through chemical bath deposition (CBD) and after the junction was completed. It is currently thought that the Cu(In,Ga)S{sub 2}/CdS junction is responsible for several different properties of the solar cell: lattice matching and band offset optimization between the absorber and window layer and chemical passivation of the absorber surface by the CBD-CdS process on CIS which acts to reduce the surface defect density. The Cd may also pin the Fermi Level on the CIS surface or cause a type inversion of the absorber surface from p-type to n-type. In order to investigate the junction several new methods were used along side the conventional methods of X-ray, Ultraviolet and Inverse Photoelectron Spectroscopy. These were Near-UV Constant Final State Yield Spectroscopy for the measurement of the valence band offset at the interface between CIS and CdS and Near Edge X-ray Absorption Fine Structure to follow the development of the Cu(In,Ga)S{sub 2} conduction band edge with increasing Ga concentration. Additionally, the advantages and disadvantages of the established and new methods were compared and discussed. It was discovered that the deposition of CdS neither pins the Fermi Level on the CIS surface at a position important for the solar cell, nor does it dope the absorber surface, although the deposition does lead to the formation of a Cd-containing CIS surface layer (CIS:Cd). Because this surface layer is not soluble in HCl it cannot

  14. Photoinduced features of energy bandgap in quaternary Cu2CdGeS4 crystals

    Science.gov (United States)

    Brik, M. G.; Kityk, I. V.; Parasyuk, O. V.; Myronchuk, G. L.

    2013-12-01

    The quaternary chalcogenide crystal Cu2CdGeS4 was studied both experimentally and theoretically in the present paper. Investigations of polarized fundamental absorption spectra demonstrated a high sensitivity to external light illumination. The photoinduced changes were studied using a cw 532 nm green laser with energy density about 0.4 J cm-2. The spectral maximum of the photoinduced anisotropy was observed at spectral energies equal to about 1.4 eV (energy gap equal to about 1.85 eV) corresponding to maximal density of the intrinsic defect levels. Spectroscopic measurements were performed for polarized and unpolarized photoinducing laser light to separate the contribution of the intrinsic defect states from that of the pure states of the valence and conduction bands. To understand the origin of the observed photoinduced absorption near the fundamental edge, the benchmark first-principles calculations of the structural, electronic, optical and elastic properties of Cu2CdGeS4 were performed by the general gradient approximation (GGA) and local density approximation (LDA) methods. The calculated dielectric function and optical absorption spectra exhibit some anisotropic behavior (shift of the absorption maxima in different polarizations) within the 0.15-0.20 eV energy range not only near the absorption edge; optical anisotropy was also found for the deeper inter-band transition spectral range. Peculiar features of chemical bonds in Cu2CdGeS4 were revealed by studying the electron density distribution. Possible intrinsic defects are shown to affect the optical absorption spectra considerably. Pressure effects on the structural and electronic properties were modeled by optimizing the crystal structure and calculating all relevant properties at elevated hydrostatic pressure. The first estimations of the bulk modulus (69 GPa (GGA) or 91 GPa (LDA)) and its pressure derivative for Cu2CdGeS4 are also reported.

  15. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    Science.gov (United States)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson

  16. Optically induced second-harmonic generation in CdI sub 2 -Cu layered nanocrystals

    CERN Document Server

    Voolless, F; Hydaradjan, W

    2003-01-01

    A large enhancement (up to 0.40 pm V sup - sup 1) of the second-order optical susceptibility was observed in CdI sub 2 -Cu single-layered nanocrystals for the Nd:YAG fundamental laser beam lambda = 1.06 mu m. The Cu impurity content and nanolayer thickness of the cleaved layers (about several nanometres) play a crucial role in the observed effect. The temperature dependence of the optical second-harmonic generation (SHG) together with its correlation with Raman spectra of low-frequency modes indicate a key role for the UV-induced anharmonic electron-phonon interactions in the observed effect. The maximal output UV-induced SHG was achieved for a Cu content of about 0.5% and at liquid helium temperatures.

  17. Origin of epithermal Ag-Au-Cu-Pb-Zn mineralization in Guanajuato, Mexico

    Science.gov (United States)

    Mango, Helen; Arehart, Greg; Oreskes, Naomi; Zantop, Half

    2014-01-01

    The Guanajuato epithermal district is one of the largest silver producers in Mexico. Mineralization occurs along three main vein systems trending dominantly northwest-southeast: the central Veta Madre, the La Luz system to the northwest, and the Sierra system to the east. Mineralization consists dominantly of silver sulfides and sulfosalts, base metal sulfides (mostly chalcopyrite, galena, sphalerite, and pyrite), and electrum. There is a broad zonation of metal distribution, with up to 10 % Cu+Pb+Zn in the deeper mines along the northern and central portions of the Veta Madre. Ore occurs in banded veins and breccias and as stockworks, with gangue composed dominantly of quartz and calcite. Host rocks are Mesozoic sedimentary and intrusive igneous rocks and Tertiary volcanic rocks. Most fluid inclusion homogenization temperatures are between 200 and 300 °C, with salinities below 4 wt.% NaCl equivalent. Fluid temperature and salinity decreased with time, from 290 to 240 °C and from 2.5 to 1.1 wt.% NaCl equivalent. Relatively constant fluid inclusion liquid-to-vapor ratios and a trend of decreasing salinity with decreasing temperature and with increasing time suggest dilution of the hydrothermal solutions. However, evidence of boiling (such as quartz and calcite textures and the presence of adularia) is noted along the Veta Madre, particularly at higher elevations. Fluid inclusion and mineralogical evidence for boiling of metal-bearing solutions is found in gold-rich portions of the eastern Sierra system; this part of the system is interpreted as the least eroded part of the district. Oxygen, carbon, and sulfur isotope analysis of host rocks, ore, and gangue minerals and fluid inclusion contents indicate a hydrothermal fluid, with an initial magmatic component that mixed over time with infiltrating meteoric water and underwent exchange with host rocks. Mineral deposition was a result of decreasing activities of sulfur and oxygen, decreasing temperature, increasing p

  18. Role of estuarine natural flocculation process in removal of Cu, Mn, Ni, Pb and Zn

    Directory of Open Access Journals (Sweden)

    S. Hassani

    2017-04-01

    Full Text Available The flocculation of dissolved heavy metals is a process which has an important effect on decreasing the concentration of the colloidal elements during estuarine mixing of river water and sea or ocean water. During this important process, a large amount of colloidal elements change into particles in the form of flock and the dissolved loads decline. This study is performed to evaluate the mechanism of self-purification of heavy metals in Sardabroud's estuary. For this purpose, the effect of salinity (varying from 1 to 8.5‰ on the removal efficiency of colloidal metals (copper, zinc, lead, nickel and magnesium by flocculation process during mixing of Sardabroud River water and the Caspian Sea water was explored. The flocculation rate of Ni (25% > Zn (18.59% > Cu (16.67% > Mn(5.83% > Pb(4.86%  indicates that lead and manganese have relatively conservative behavior but nickel, zinc and copper have non-conservative behavior during Sardabroud River’s estuarine mixing. The highest removal efficiencies were obtained between salinities of 1 to 2.5%. Due to flocculation process, annual discharge of dissolved zinc, copper, lead, manganese and nickel release into the Caspian Sea via Sardabroud River would reduce from 44.30 to 36.06 ton/yr, 3.41 to 2.84 ton/yr, 10.22 to 9.7 ton/yr, 8.52 to 7.8 ton/yr and 3.41 to 2.56 ton/yr, respectively. Statistical analysis shows that the flocculation rate of Nickel is highly controlled by redox potential and dissolved oxygen. Moreover, it is found that total dissolved solid, salinity, electrical conductivity and potential of hydrogen do not have a significant influence in flocculation of studied metals.

  19. Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies

    Science.gov (United States)

    Cain, D.; Croteau, M.-N.; Luoma, S.

    2011-01-01

    Consumption of periphyton is a potentially important route of metal exposure to benthic invertebrate grazers. The present study examined the bioaccumulation kinetics of dissolved and dietary Cd and Cu in five species of mayflies (class Insecta). Artificial stream water and benthic diatoms were separately labeled with enriched stable metal isotopes to determine physiological rate constants used by a biokinetic bioaccumulation model. The model was employed to simulate the effects of metal partitioning between water and food, expressed as the bioconcentration factor (BCF), as well as ingestion rate (IR) and metal assimilation efficiency of food (AE), on the relative importance of water and food to metal bioaccumulation. For all test species, the contribution of dietary uptake of Cd and Cu increased with BCF. For a given BCF, the contribution of food to the body burden increased with kuf, the metal uptake rate constant from food that combined variation in IR and AE. To explore the relative importance of water and diet exposure routes under field conditions, we used estimated site-specific aqueous free-ion concentrations to model Cd and Cu accumulation from aqueous exposure, exclusively. The predicted concentrations accounted for less than 5% of the observed concentrations, implying that most bioaccumulated metal was acquired from food. At least for the taxa considered in this study, we conclude that consumption of metal-contaminated periphyton can result in elevated metal body burdens and potentially increase the risk of metal toxicity. ?? 2011 SETAC.

  20. Crystal Phase Transitions in the Shell of PbS/CdS Core/Shell Nanocrystals Influences Photoluminescence Intensity

    Science.gov (United States)

    2014-01-01

    We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS-shell of PbS/CdS core/shell nanocrystals formed by cationic exchange. The chemical composition profile of the core/shell nanocrystals with different dimensions is determined by means of anomalous small-angle X-ray scattering with subnanometer resolution and is compared to X-ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thickness. PMID:25673918

  1. Metal-resistant microorganisms and metal chelators synergistically enhance the phytoremediation efficiency of Solanum nigrum L. in Cd- and Pb-contaminated soil.

    Science.gov (United States)

    Gao, Yang; Miao, Chiyuan; Wang, Yafeng; Xia, Jun; Zhou, Pei

    2012-06-01

    The effects of metal-resistant microorganisms and metal chelators on the ability of Solanum nigrum L. to accumulate heavy metals were investigated. In the presence of multiple metal contaminants (Cd and Pb), citric acid (CA) significantly enhanced the biomass and Cd accumulation of S. nigrum, but these conditions decreased the accumulation of Pb. Application of Cd- or Pb-resistant microorganisms improved the ability of S. nigrum to accumulate heavy metals and increased plant yield, but the effects of microorganisms on phytoextraction were smaller than the effects of CA. When plants were grown in the presence of Cd contamination, the co-application of CA and metal-resistant strains enhanced biomass by 30-50% and increased Cd accumulation by 25-35%. However, these conditions decreased Pb accumulation in the presence of Pb pollution. S. nigrum could tolerate a combination of Cd and Pb pollution. In the presence of CA and the metal-resistant microorganisms, the plants were able to acquire 15-25% more Cd and 10-15% more Pb than control plants. We propose that the synergistic combination of plants, microorganisms and chelators can enhance phytoremediation efficiency in the presence of multiple metal contaminants.

  2. Single and competitive adsorption of Cd(II and Pb(II ions from aqueous solutions onto industrial chili seeds (Capsicum annuum waste

    Directory of Open Access Journals (Sweden)

    Nahum A. Medellin-Castillo

    2017-03-01

    Full Text Available In this work, the single and binary adsorption of Cd(II and Pb(II onto industrial chili seeds (CS (Capsicum annuum from aqueous solutions was investigated as a possible low-cost biosorbent for the removal of toxic heavy metals from aqueous solutions. The dependence of the adsorption capacity of CS on the solution pH and temperature, and the presence of competitive metal were also studied in detail. The adsorption equilibrium experiments of Cd(II and Pb(II on CS were conducted in a batch adsorber. The Freundlich and Langmuir isotherm models were fitted to the single adsorption equilibrium data and the latter provided a better fit. Moreover, it was found that the adsorption capacity of CS towards Cd(II and Pb(II ions was greatly increased by increasing the solution pH. The effect of the pH was attributed to the electrostatic interaction between the negatively charged CS surface and the Cd2+ and Pb2+ cations in the aqueous solution. The adsorption capacity was slightly increased by raising the temperature because the adsorption of Cd(II or Pb(II ions on CS was an endothermic process. The experimental binary adsorption data were satisfactorily interpreted using the modified Langmuir multicomponent isotherm and the competitive adsorption of Cd(II-Pb(II on CS revealed that the affinity of Pb(II for CS was more than 5 times higher than that of Cd(II.

  3. Study of contaminated soils of the abandoned Pb, Zn, Cd Jebel Ressas mine tailings (North eastern Tunisia)

    Science.gov (United States)

    Souissi, R.; Munoz, M.; Souissi, F.; Courjault-Radé, P.; Ben Mammou, A.

    2012-04-01

    Under semi-arid climatic conditions, Pb, Zn and Cd bearing particles are carried by wind and water from the flotation tailing heaps of the former Pb-Zn mine of Jebel Ressas towards the surrounding agricultural areas. The risk of ecotoxicity depends on the phytoaccessible fraction of metals which is closely related to their physico-chemical and biological environment. The objective of this study is to assess the contamination of soils surrounding the waste dumps and to estimate the bioaccessible fraction of metals present in these soils. These silty soils are mainly composed of calcite (45 % CaCO3) and clays. Metal bearing minerals are hemimorphite (Zn4Si2O72H2O), cerussite (PbCO3), and smithsonite (ZnCO3). The flotation tailings display high amounts of Zn, Pb and Cd, averaging 7.11%, 2.30% and 290 mg.kg-1, respectively. The concentrations found in soils reach 6.3% Zn, 2.3% Pb and 290 mg.kg-1 Cd. Such results show that the soils in the mining area are highly contaminated by heavy metals coming from the mining wastes.Analyses of samples taken between surface and bedrock show that Pb and Zn may reach concentrations as high as 900 mg / kg two meters below surface. Three types of simple extraction tests (deionized water, HCl solution at pH 2.8 and a mixture of organic acids (low-molecular-weight organic acids (LMWOAs) at pH 2.8) were performed to assess the phytoaccessibility of Zn, Pb and Cd in two contaminated soil samples collected within the study area. The results of extraction with deionized water showed that only Zn is mobile with 1.50 to 2.92 mg.kg-1 released from soil. During the extraction with HCl 1.32 to 1.63 mg.kg-1 of Pb are released. The extraction with LMWOAs resulted in a much greater leaching of all heavy metals. Indeed, 900 to1500 mg.kg-1 Zn, 33 to 40 mg.kg-1 Pb and 3.5 to 2.01 mg.kg-1 Cd, have been released respectively. Thus, the mobility of these metals is as follows: Zn (2.2%) > Cd (1%) > Pb (0.2%). As a result, the mobilization of contaminants by

  4. A macroalgae-based biotechnology for water remediation: Simultaneous removal of Cd, Pb and Hg by living Ulva lactuca.

    Science.gov (United States)

    Henriques, Bruno; Rocha, Luciana S; Lopes, Cláudia B; Figueira, Paula; Duarte, A C; Vale, Carlos; Pardal, M A; Pereira, E

    2017-04-15

    Metal uptake from contaminated waters by living Ulva lactuca was studied during 6 days, under different relevant contamination scenarios. In mono-metallic solutions, with concentrations ranging from 10 to 100 μg L-1 for Hg, 10-200 μg L-1 for Cd, and 50-1000 μg L-1 for Pb, macroalgae (500 mg L-1, d.w.) were able to remove, in most cases 93-99% of metal, allowing to achieve water quality criteria regarding both surface and drinking waters. In multi-metallic solutions, comprising simultaneously the three metals, living macroalgae still performed well, with Hg removal (c.a. 99%) not being significantly affected by the presence of Cd and Pb, even when those metals were in higher concentrations. Removal efficiencies for Cd and Pb varied between 57 and 96%, and 34-97%, respectively, revealing an affinity of U. lactuca toward metals: Hg > Cd > Pb. Chemical quantification in macroalgae, after bioaccumulation assays demonstrated that all Cd and Hg removed from solution was really bound in macroalgae biomass, while only half of Pb showed to be sorbed on the biomass. Overall, U. lactuca accumulated up to 209 μg g-1 of Hg, up to 347 μg g-1 of Cd and up to 1641 μg g-1 of Pb, which correspond to bioconcentration factors ranging from 500 to 2200, in a dose-dependent accumulation. Pseudo-first order, pseudo-second order and Elovich models showed a good performance in describing the kinetics of bioaccumulation, in the whole period of time. In the range of experimental conditions used, no mortality was observed and U. lactuca relative growth rate was not significantly affected by the presence of metals. Results represent an important contribution for developing a macroalgae-based biotechnology, applied for contaminated saline water remediation, more "green" and cost-effective than conventional treatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Phenazine containing indeno-furan based colorimetric and “on–off” fluorescent sensor for the detection of Cu{sup 2+} and Pb{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Komal; Khurana, Jitender M., E-mail: jmkhurana1@yahoo.co.in

    2015-11-15

    A new fluorescent sensor 10a,15a-dihydroxy-10aH-benzo[a]indeno[2′,1′:4,5]furo[2,3-c]phenazin-15 (15aH)-one (1) based on the combination of phenazine and indenofuran moieties was designed and synthesized. Structure of the synthesized sensor has been confirmed by X-ray crystallographic analysis. Absorption and emission spectra of 1 has been studied in solvents of different polarity. The solvent effect on the spectral properties of 1 has been investigated by using the Lippert–Mataga and Reichardt–Dimroth methods. It exhibits high sensitivity and selectivity towards Cu{sup 2+} and Pb{sup 2+} ions over other metal ions by fluorescence quenching. Sensor 1 exhibited a visible color change from light orange to pink, and yellow in the presence of Cu{sup 2+} and Pb{sup 2+}, respectively. The fluorescence of the 1-Cu{sup 2+}/Pb{sup 2+} complexes can be reversibly restored to that of the uncomplexed ligand by using EDTA. Binding stoichiometry and mechanism of Cu{sup 2+} and Pb{sup 2+} ions detection have been investigated. The linear range for the synthesized sensor was found to be 1×10{sup −6}–6.31×10{sup −5} M with detection limit of 1.3×10{sup −6} M. Theoretical calculations were employed to understand the sensing mechanism of the sensors towards Cu{sup 2+}. - Highlights: • A new indeno-furan based “on–off” sensor for detection of Cu{sup 2+} and Pb{sup 2+} has been synthesized. • 1 shows naked-eye visible color changes upon interaction with Cu{sup 2+} and Pb{sup 2+}. • The complex formation of 1 with Cu{sup 2+} and Pb{sup 2+} could be reversed by addition of EDTA.

  6. Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate.

    Science.gov (United States)

    Laus, Rogério; de Fávere, Valfredo Tadeu

    2011-10-01

    In this study, chitosan (CTS) was crosslinked with both epichlorohydrin (ECH) and triphosphate (TPP), by covalent and ionic crosslinking reactions, respectively. The resulting adsorbent (CTS-ECH-TPP) was characterized by SEM, CHN, EDS, FT-IR and TGA analyses, and tested for metal adsorption. The adsorbent was used in batch experiments to evaluate the adsorption of Cu(II) and Cd(II) ions in single and binary metal solutions. In single metal solutions the maximum adsorption capacities for Cu(II) and Cd(II) ions, obtained by Langmuir model, were 130.72 and 83.75 mg g⁻¹, respectively. Adsorption isotherms for binary solutions showed that the presence of Cu(II) decreased Cd(II) adsorption due to a significant competition effect, that is, the adsorbent was selective towards Cu(II) rather than Cd(II). Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Investigations of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder alloys as replacement for Sn-Pb solder

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.N. [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong (China)]. E-mail: eeycchan@cityu.edu.hk; Rizvi, M.J. [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Jillek, W. [Department of EFI, Georg Simon Ohm University of Applied Science, 10 Wassertorstrasse, 90489 Nuernberg (Germany)

    2005-09-01

    The interfacial reactions of Sn-Zn based solders and a Sn-Ag-Cu solder have been compared with a eutectic Sn-Pb solder. During reflow soldering different types of intermetallic compounds (IMCs) are found at the interface. The morphologies of these IMCs are quite different for different solder compositions. As-reflowed, the growth rates of IMCs in the Sn-Zn based solder are higher than in the Sn-Ag-Cu and Sn-Pb solders. Different types of IMCs such as {gamma}-Cu{sub 5}Zn{sub 8}, {beta}-CuZn and a thin unknown Cu-Zn layer are formed in the Sn-Zn based solder but in the cases of Cu/Sn-Pb and Cu/Sn-Ag-Cu solder systems Cu{sub 6}Sn{sub 5} IMC layers are formed at the interface. Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn interfacial IMCs are formed in the early stages of 10 min reflow due to the limited supply of Sn from the Sn-Pb solder. The spalling of Cu-Sn IMCs is observed only in the Sn-Ag-Cu solder. The size of Zn platelets is increased with an increase of reflow time for the Cu/Sn-Zn solder system. In the case of the Sn-Zn-Bi solder, there is no significant increase in the Zn-rich phases with extended reflow time. Also, Bi offers significant effects on the wetting, the growth rate of IMCs as well as on the size and distribution of Zn-rich phases in the {beta}-Sn matrix. No Cu-Sn IMCs are found in the Sn-Zn based solder during 20 min reflow. The consumption of Cu by the solders are ranked as Sn-Zn-Bi > Sn-Ag-Cu > Sn-Zn > Sn-Pb. Despite the higher Cu-consumption rate, Bi-containing solder may be a promising candidate for a lead-free solder in modern electronic packaging taking into account its lower soldering temperature and material costs.

  8. The age of Au-Cu-Pb-bearing veins in the poly-orogenic Ubendian Belt (Tanzania): U-Th-total Pb dating of hydrothermally altered monazite

    Science.gov (United States)

    Kazimoto, Emmanuel Owden; Schenk, Volker; Appel, Peter

    2015-01-01

    The age of gold-copper-lead mineralization in the Katuma Block of the Ubendian Belt remains controversial because of the lack of radiometric ages that correlate with the age of tectonothermal events of this poly-orogenic belt. Previous studies reported whole rock and mineral Pb-Pb ages ranging between 1,660 and 720 Ma. In this study, we report U-Th-total Pb ages of monazite from hydrothermally altered metapelites that host the Au-Cu-Pb-bearing veins. Three types of chemically and texturally distinct types of monazite grains or zones of grains were identified: monazite cores, which yielded a metamorphic age of 1,938 ± 11 Ma ( n = 40), corresponding to known ages of a regional metamorphic event, deformation and granitic plutonism in the belt; metamorphic overgrowths that date a subsequent metamorphic event at 1,827 ± 10 Ma ( n = 44) that postdates known eclogite metamorphism (at ca. 1,880 Ma) in the belt; hydrothermally altered poikilitic monazite, formed by dissolution-precipitation processes, representing the third type of monazite, constrain the age of a hydrothermal alteration event at 1,171 ± 17 Ma ( n = 19). This Mesoproterozoic age of the hydrothermal alteration coincides with the first amphibolite grade metamorphism of metasediments in the Wakole Block, which adjoins with a tectonic contact the vein-bearing Katuma Block to the southwest. The obtained distinct monazite ages not only constrain the ages of metamorphic events in the Ubendian Belt, but also provide a link between the metamorphism of the Wakole metasediments and the generation of the hydrothermal fluids responsible for the formation of the gold-copper-lead veins in the Katuma Block.

  9. A theoretical study of perovskite CsXCl3 (X=Pb, Cd) within first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ilyas, Bahaa M., E-mail: bahaastring@gmail.com [Department of Physics, University Of Dohuk (Iraq); Elias, Badal H. [Laboratory of Theoretical Physics, Department of Physics, Faculty of Sciences, University of Dohuk (Iraq)

    2017-04-01

    The structural, elastic, electronic, optical acoustic and thermodynamic properties of the cubic perovskite CsPbCl{sub 3} and CsCdCl{sub 3} unit cell, were studied using an ultra-soft pseudopotential plane wave, the Trouiller-Martins-Functional was utilized to perform these calculations. The study was implemented within both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). the Generalized Gradient Approximation (GGA) scheme proposed by van Leeuwen-Baerends which is the same as the Perdew-Wang 92 functional have been carried out to preform our calculations. As for the Local Density Approximation (LDA) the Teter-Pade parametrization (4/93) was implemented which is the same as Perdew-Wang that in its turn reproduces the Ceperley-Alder-Functional. The computed GGA/LDA-lattice parameter for both CsCdCl{sub 3} and CsPbCl{sub 3} is in an exquisite agreement with the experimental and theoretical results. The energy band structure shows that CsCdCl{sub 3} is Γ–R indirect band gap insulator, while CsPbCl{sub 3} is an insulator with a direct band gap Γ–Γ separating the valence bands from the conduction bands, which shows metallic nature after pressure 30 GPa. A hybridization exists between Pb-p states and Cl-p states for CsPbCl{sub 3}, and Cd-p states and Cs-p states for the CsCdCl{sub 3} in the valence bonding region. Optimization of both cell shape (geometry) volume were investigated as pressure of 0–20 GPa and 0–40 GPa for the CsCdCl{sub 3} and CsPbCl{sub 3} respectively. The Pressure dependence of cubic perovskite elastic constants, Young modulus, bulk and shear moduli, Lame’s constants, elastic anisotropy factor, elastic wave velocities, phonon dispersion, Debye temperature and the density of states of CsXCl{sub 3} (X=Pb, Cd) were theoretically calculated and compared with the other available theoretical results. The above elastic constants reveal the fact that both compounds are stable and show nature of ductility. For

  10. How contamination sources and soil properties can influence the Cd and Pb bioavailability to snails.

    Science.gov (United States)

    Pauget, Benjamin; Gimbert, Frédéric; Coeurdassier, Mickael; Druart, Coline; Crini, Nadia; de Vaufleury, Annette

    2016-02-01

    To better understand the fate of metals in the environment, numerous parameters must be studied, such as the soil properties and the different sources of contamination for the organisms. Among bioindicators of soil quality, the garden snail (Cantareus aspersus) integrates multiple sources (e.g. soil, plant) and routes (e.g. digestive, cutaneous) of contamination. However, the contribution of each source on metal bioavailability and how soil properties influence these contributions have never been studied when considering the dynamic process of bioavailability. Using accumulation kinetics, this study showed that the main assimilation source of Cd was lettuce (68%), whereas the main source of Pb was the soil (90%). The plant contribution increased in response to a 2-unit soil pH decrease. Unexpectedly, an increase in the soil contribution to metal assimilation accompanied an increase in the organic matter (OM) content of the soil. For both metals, no significant excretion and influence of source on excretion have been modelled either during exposure or depuration. This study highlights how the contribution of different sources to metal bioavailability changes based on changes in soil parameters, such as pH and OM, and the complexity of the processes that modulate metal bioavailability.

  11. Human biomonitoring for Cd, Hg and Pb in blood of inhabitants of the Sacco Valley (Italy

    Directory of Open Access Journals (Sweden)

    Sonia D'Ilio

    2013-03-01

    Full Text Available INTRODUCTION. The Sacco Valley (Lazio, Italy is characterized by high density population and several industrial chemical productions that during the time had led to a substantial amount of by-products. The result was a severe environmental pollution of the area and in particular of the river Sacco. In 1991, the analysis of water and soils samples of three industrial landfills revealed the presence of organochlorine compounds and heavy metals. A research project named "Health of residents living in Sacco Valley area", coordinated by the regional Department of Epidemiology, was undertaken and financed to evaluate the state of health of the population living near those polluted areas. MATERIALS AND METHODS. Cd, Hg and Pb were quantified in 246 blood samples of potentially exposed residents of the Sacco Valley by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS. RESULTS. Individuals who agreed to be sampled did not exhibit high levels of the elements. The distance from the river does not seem to be directly connected with the elements levels in blood. The contribution of these contaminants to the total intake due to ingestion of food was difficult to evaluate. The unclear trend of data would require a characterization of the polluted site with environmental sampling of different matrices.

  12. Internal oxidation of ag-Y1Ba2Cu3,-Bi2Sr2Ca1Cu2 and -Bi(1. 8)Pb(0. 3)Sr2Ca2Cu3 alloys, and their resulting superconducting properties. Ag-Y1Ba2Cu3, -Bi2Sr2Ca1Cu2, -Bi(1. 8)Pb(0. 3)Sr2Ca2Cu3 gokin no naibu sanka to sono chodendo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Numazawa, T.; Kimura, H.; Kimura, T.; Fukamachi, M. (National Research Inst. for Metals, Tsukuba, Ibaraki (Japan))

    1994-02-20

    Concerning wire rods for magnets and materials for magnetic shielding, etc. using oxide superconducting substances, studies and development are being made for making the above materials to be composite materials using Ag. In this study, concerning the solute composition of Ag-based alloys, Y1Ba2Cu3, Bi2Sr2Ca1Cu2, and Bi(1.8)Pb(0.3)Sr2Ca2Cu3 have been selected imaging the 123 phase at the Y system, and the 2212 low Tc phase as well as the 2223 high Tc phase at the Bi system. And oxide superconducting substances have been made precipitated in Ag by internal oxidation and thermal treatment of the dissolved alloys compound of Ag-Y1Ba2Cu3, Ag-Bi2Sr2Ca1Cu2, and Ag-Bi(1.8)Pb(0.3)Sr2Ca2Cu3, and its superconducting properties have been studied. Thereby electroconducting paths have been formed by the precipitated oxide superconducting substances and the critical current, though at a low value, has been attained. Also the composition of the above oxide superconducting substances has been image-analyzed from the observation result with an electron beam probe X-ray microanalyzer. With regard to the Ag-Bi(1.8)Pb(0.3)Sr2Ca2Cu3 alloy, precipitation of the single phase of the 2223 phase has not been able to obtain by thermal treatment. 11 refs., 8 figs.

  13. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.

    Science.gov (United States)

    El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R

    2013-07-05

    The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.

  14. Photon radiation effects on CdS/CuInSe2 thin film solar cells

    Science.gov (United States)

    Dursch, H.; Chen, W.; Rusell, D.

    1985-01-01

    The unknown tolerance of CuInSe2 cells to proton irradiation, was tested. It was shown that CdS/CuInSe2 solar cells have an inherent tolerance to irradiation by 1 MeV electrons up to at least 2 x 10 to the 16th power electrons/sq cm. Eleven, unencapsulated, 1 sq cm cells deposited on alumina substrates were irradiated with 1 MeV protons at normal incidence. The cells were exposed to six fluences ranging from 2.5 x 10 to the 10th power protons/sq cm to 5.0 x 10 to the 13th power protons/sq cm. After each interval of exposure, the cells were removed from the radiation chamber to undergo current/voltage characterization. It is shown that none of the cells electrical characteristics exhibited any degradation up to and including a fluence of 1 x 10 to the 11th power protons/sq cm. At fluences greater than this, the damage to the CuInSe2 cells V sub oc and fill factor (FF) was more severe than that exhibited by the Isc. The CuInSe2 cells proved to be approximately a factor of 50 more resistant to 1 MeV proton irradiation than silicon or gallium arsenide cells. Annealing of a CuInSe2 cell at 225 deg C for 6 minutes restored it to within 95% of its initial efficiency.

  15. Cation effect investigation on electronic structure, magnetic and optical properties of Li{sub 2}Pb{sub 2}CuB{sub 4}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhihua, E-mail: zhyang@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices for Special Enviornment of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40–1 South Beijing Road, Urumqi 830011 (China); Huang, Xuchu; Liu, Qiong; Hou, Dianwei; Zhang, Bingbing; Huang, Shengshi [Key Laboratory of Functional Materials and Devices for Special Enviornment of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40–1 South Beijing Road, Urumqi 830011 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Pan, Shilie; Yang, Yun; Zhang, Min [Key Laboratory of Functional Materials and Devices for Special Enviornment of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40–1 South Beijing Road, Urumqi 830011 (China)

    2015-02-02

    Highlights: • Cation effects on optical and magnetic properties are investigated. • Cu–O groups have a crucial role in the local magnetic moment, optical anisotropy. • Pb cations give a non-ignorable contribution to the optical anisotropy. • Li hinders the construction of the long-range magnetic order. - Abstract: Effect of cations on the magnetic and optical properties of Li{sub 2}Pb{sub 2}CuB{sub 4}O{sub 10} has been explored. It is shown that Li{sub 2}Pb{sub 2}CuB{sub 4}O{sub 10} is a paramagnetic material due to the absence of the exchange way between magnetic active units around copper ions, although a local magnetic moment about 1.59 μ{sub B} exists around Cu–O. Li{sub 2}Pb{sub 2}CuB{sub 4}O{sub 10} exhibits a UV absorption edge of 356 nm which attributes to electronic transition between Cu, B and O. It reveals that the birefringence of Li{sub 2}Pb{sub 2}CuB{sub 4}O{sub 10} is about 0.06 at 1064 nm which is mainly due to the arrangement of quasi-plane units of CuB{sub 4}O{sub 10}. The roles of lithium, copper, and lead are discussed and clarified in the magnetic and optical properties.

  16. Electrochemical Study of Carbon Nanotubes/Nanohybrids for Determination of Metal Species Cu2+ and Pb2+ in Water Samples

    Directory of Open Access Journals (Sweden)

    Andréa Claudia Oliveira Silva

    2016-01-01

    Full Text Available The use of nanomaterials, such as nanoparticles and nanotubes, for electrochemical detection of metal species has been investigated as a way of modifying electrodes by electrochemical stripping analysis. The present study develops a new methodology based on a comparative study of nanoparticles and nanotubes with differential pulse anodic stripping voltammetry (DPASV and examines the simultaneous determination of copper and lead. The glassy carbon electrode modified by gold nanoparticles demonstrated increased sensitivity and decreased detection limits, among other improvements in analytical performance data. Under optimized conditions (deposition potential −0.8 V versus Ag/AgCl; deposition time, 300 s; resting time, 10 s; pulse amplitude, 50 mV; and voltage step height, 4 mV, the detection limits were 0.2279 and 0.3321 ppb, respectively, for determination of Pb2+ and Cu2+. The effects of cations and anions on the simultaneous determination of metal ions do not exhibit significant interference, thereby demonstrating the selectivity of the electrode for simultaneous determination of Pb2+ and Cu2+. The same method was also used to determine Cu2+ in water samples.

  17. Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent

    Science.gov (United States)

    Ibrahim, Hanan S.; Ammar, Nabila S.; Soylak, Mustafa; Ibrahim, Medhat

    2012-10-01

    Possible usages of dried water hyacinth as biosorbent for metal ions were investigated. A model describing the plant is presented on density functional theory DFT and verified experimentally with FTIR. The model shows that water hyacinth is a mixture of cellulose and lignin. Dried shoot and root were found as good sorbent for Cd(II) and Pb(II) at optimum dosage of 5.0 g/l and pH 5.0; equilibrium time was attained within 30-60 min. The removal using root and shoot were nearly equal and reached more than 75% for Cd and more than 90% for Pb. Finally the second-order kinetics was the applicable model. Hydrogen bonds of reactive functional groups like COOH play the key role in the removal process.

  18. Mass spectrometry and potentiometry studies of Pb(II)-, Cd(II)- and Zn(II)-cystine complexes.

    Science.gov (United States)

    Furia, Emilia; Aiello, Donatella; Di Donna, Leonardo; Mazzotti, Fabio; Tagarelli, Antonio; Thangavel, Hariprasad; Napoli, Anna; Sindona, Giovanni

    2014-01-21

    Cd(II)-, Pb(II)- and Zn(II)-cystine complexes were investigated by potentiometric and different mass spectrometric (MS) methodologies. Laser desorption mass spectrometry has provided both the composition and structure of metal-cystine complexes according to the speciation models proposed on the basis of the potentiometric data. Detection of neutral complexes was achieved by protonation or electrochemical reduction during mass spectrometric experiments. The redox activity of metal-cystine complexes was confirmed by laser desorption and charge transfer matrix assisted laser assisted MS experiments, which allowed us to observe the formation of complexes with a reduction of cystine. The stoichiometry of Cd(II)-, Pb(II)- and Zn(II)-cystine complexes was defined by observing the isotopic pattern of the investigated compound. The results suggest that interaction occurs through the carboxylate group of the ligand.

  19. Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles.

    Science.gov (United States)

    Fan, Chunzhen; Li, Kan; Li, Juexiu; Ying, Diwen; Wang, Yalin; Jia, Jinping

    2017-03-15

    In this paper, tetraethylenepentamine (TEPA) modified chitosan/CoFe2O4 particles were prepared for comparative and competitive adsorption of Cu(II) and Pb(II) in single and bi-component aqueous solutions. The characteristics results of SEM, FTIR and XRD indicated that the adsorbent was successfully fabricated. The magnetic property results manifested that the particles with saturation magnetization value of 63.83emug-1 would have a fast magnetic response. The effects of experimental parameters including contact time, pH value, initial metal ions concentration and coexisting ions on single and bi-component adsorption were investigated. The results revealed that the adsorption kinetic was followed pseudo-second-order kinetic model, indicating that chemical adsorption was the rate-limiting step. Sorption isotherms were also determined in single and bi-component solutions with different mass ratio of Cu(II) to Pb(II) (Cu(II)/Pb(II)) and fitted using Langmuir and Freundlich isotherm models. A better fit for Cu(II) and Pb(II) adsorption were obtained with Langmuir model, with a maximum sorption capacity of 168.067 and 228.311mgg-1 for Cu(II) and Pb(II) in single component solution, 139.860 and 160.256mgg-1 in bi-component solution (Cu(II)/Pb(II)=1:1), respectively. The present results suggest that TEPA modified chitosan/CoFe2O4 particles are feasible and satisfactory adsorbent for efficient removal of Cu(II) and Pb(II) ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. 36 Évaluation des risques de pollution en métaux lourds (Hg, Cd, Pb ...

    African Journals Online (AJOL)

    PR BOKO

    Évaluation des risques de pollution en métaux lourds (Hg, Cd, Pb, Co, Ni, Zn) des eaux et des sédiments de l'estuaire du fleuve Konkouré (Rep. de Guinée). Gbago ONIVOGUI1, 3,*, Saidouba BALDE2, Kande BANGOURA3 et Mamadou Kabirou BARRY4. 1Laboratory Bioactive Lipids and Health, Jiangnan University, Food ...

  1. Bismuth-dispersed xerogel-based composite films for trace Pb(II) and Cd(II) voltammetric determination.

    Science.gov (United States)

    Dimovasilis, Panagiotis A; Prodromidis, Mamas I

    2013-03-26

    We report for the first time the synthesis of bismuth-modified (3-mercaptopropyl) trimethoxysilane (MPTMS) and its application for the determination of lead and cadmium by anodic stripping voltammetry. Xerogels made from bismuth-modified MPTMS and mixtures of it with tetraethoxysilane, under basic conditions (NH3·H2O), were characterized with scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and electrochemical methods. Bismuth-modified xerogels were mixed with 1.5% (v/v) Nafion in ethanol and applied on glassy carbon electrodes. During the electrolytic reductive deposition step, the bismuth compound on the electrode surface was reduced to metallic bismuth. The target metal cations were simultaneously reduced to the respective metals and were preconcentrated on the electrode surface by forming an alloy with bismuth. Then, an anodic voltammetric scan was applied in which the metals were oxidized and stripped back into the solution; the voltammogram was recorded and the stripping peak heights were related to the concentration of Cd(II) and Pb(II) ions in the sample. Various key parameters were investigated in detail and optimized. The effect of potential interferences was also examined. Under optimum conditions and for preconcentration period of 4 min, the 3σ limit of detection was 1.3 μg L(-1) for Pb(II) and 0.37 μg L(-1) for Cd(II), while the reproducibility of the method was 4.2% for lead (n=5, 10.36 μg L(-1) Pb(II)) and 3.9% for cadmium (n=5, 5.62 μg L(-1) Cd(II)). Finally, the sensors were applied to the determination of Cd(II) and Pb(II) ions in water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA.

    Science.gov (United States)

    Arnason, John G; Fletcher, Barbara A

    2003-01-01

    Sediments of the Patroon Creek watershed (33 km(2)) are known to contain significant concentrations of heavy metals derived from two industrial sites within the watershed. Mercury Refining, Inc (Mereco) has stored and recycled Hg from 1955 to the present day, and National Lead Industries (NLI) manufactured aircraft components containing Cd, Pb, and U from 1958 to 1984. Here we present the first record of heavy metal deposition as preserved in a 3-m long sediment core collected in 1999 from Patroon Reservoir, a small water body (1.3 ha) downstream of the industrial sites. Bulk sediment samples were collected from the core at 0.05-m intervals and analyzed for total Cd, Pb, and U by ICP-MS and total Hg by CVAAS. Total Hg increases from less than 1 mg kg(-1) (dw) below 1.68 m, to a maximum of 6.2 mg kg(-1) at 0.80 m, and then declines to the sediment-water interface. Total Cd, Pb, and U concentrations increase abruptly above 1.68 m to maximum values of 25, 320, and 3600 mg kg(-1) (dw), respectively, and then decline gradually upwards. By correlating metal profiles with industrial history, we conclude that the 1.68 m horizon was deposited no earlier than 1958, the beginning of aircraft component manufacturing at NLI. The average, apparent sedimentation rate within the reservoir has a minimum value of approximately 0.04 m year(-1) for the 41-year period from 1958 to 1999. In the interval 0--1.68 m, average concentrations of Cd, Hg, Pb, and U are 1.69, 1.50, 461, and 13 mg kg(-1), respectively. These levels are comparable with other lake, reservoir and stream sediments that have been moderately to severely impacted by industrial pollution and are above levels expected to be detrimental to aquatic organisms.

  3. An Investigation on Cd and Pb Concentrations of Soils around the Kurdistan Cement Factory in Western Iran

    Directory of Open Access Journals (Sweden)

    Eisa Solgi

    2015-07-01

    Full Text Available    Heavy metals, e.g. Cd and Pb emit and release into the environment during cement production and are deposited into soils. This research was carried out to determine the concentration and spatial distribution of trace elements in top soils around the Kurdistan Cement Factory, west of Iran in order to evaluate the effect of cement factory on the environment. Twenty-four soil samples were collected from surface soils around the factory. Cadmium and lead concentrations in soil samples were determined using acid extraction procedure and atomic absorption spectrophotometric methods. Soils were sampled in four directions of north, south, west and east of cement factory and at intervals of 400 m to 800 m distance from the factory. Ordinary kriging technique in ArcGIS was performed to map the spatial patterns of heavy metals. The results showed that concentrations of Pb and Cd were weakly correlated with each other indicating these metals in soils may be from the different pollution source. No distinct spatial trends of Pb with its low accumulation in the soils demonstrate that Pb content was mainly influenced by soil factors. The spatial pattern of the cadmium showed that the cement factory emission has an impact on the soil’s cadmium content, since the highest level in area close to the cement factory. Estimated Pollution Load Index (PLI showed that the soils around the factory were practically uncontaminated by metals. 

  4. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy.

    Science.gov (United States)

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-10

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n-type 9.104 × 10-3 mol % PbI₂-doped PbTe TE legs and the Ag0.32Cu0.43In0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm² was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators.

  5. Comparative study of simultaneous removal of As, Cu, and Pb using different combinations of electrokinetics with bioleaching by Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Kim, Hyun-A; Lee, Keun-Young; Lee, Byung-Tae; Kim, Soon-Oh; Kim, Kyoung-Woong

    2012-11-01

    Different designs of electrokinetics were applied to simultaneously remove arsenic, copper, and lead from contaminated soils. Single electrokinetics (control) resulted in superior removal efficiencies for Cu (73.5%) and Pb (88.5%), though the removal of As (3.11%) was relatively little. Sequential bioelectrokinetics of bioleaching with Acidithiobacillus ferrooxidans and electrokinetics enhanced the removal of As (25%), while Pb exhibited a significant decrease in removal efficiency (10.6%), due to the formation of insoluble compounds. In order to improve the overall performance, integrated bioelectrokinetics was designed by inoculating A. ferrooxidans into the electrolyte after 5 or 15 days of electrokinetics. Lead (75.8%) and copper (72%) were effectively removed through electrokinetics, after which arsenic (35%) was more efficiently removed by bioleaching-enhanced electrokinetics. A pilot-scale experiment indicated that integrated bioelectrokinetics is an effective means of remediation of soils contaminated with multiple heavy metals and arsenic. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Rhamnolipid stabilized nano-chlorapatite: Synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment.

    Science.gov (United States)

    Wan, Jia; Zeng, Guangming; Huang, Danlian; Hu, Liang; Xu, Piao; Huang, Chao; Deng, Rui; Xue, Wenjing; Lai, Cui; Zhou, Chengyun; Zheng, Kaixuan; Ren, Xiaoya; Gong, Xiaomin

    2018-02-05

    Phosphate (P) compounds are usually used as chemical amendment for in situ remediation of heavy metal polluted sediment. However, the low deliverability, weak utilization and potential risk of eutrophication inhibit the application of most P materials. Therefore, rhamnolipid (Rha), a kind of anionic biosurfactant which has algicidal activity, was employed in this study to synthesize a new kind of nano-chlorapatite (nClAP) for Pb and Cd immobilization. Characterization results showed that the Rha stablized nClAP (Rha-nClAP) was uniformly distributed in suspensions within about 5nm. Experimental data demonstrated that the combination of Rha and nClAP could greatly enhance the Pb- and Cd-immobilization efficiencies, promoting their transformation from labile fractions to stable fractions through precipitation or adsorption processes, especially when the Rha approached to its critical micelle concentration. And Rha-nClAP could also decrease both the TCLP-leachable Pb and Cd with maximum reduction efficiencies of 98.12% and 96.24%, respectively, which also presented concentration dependence of Rha. Changes of available phosphorus implied the dissolution of nClAP during the treatment and the detection of organic matter demonstrated that the microorganisms may involve in the remediation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluation of Mobility, Bioavailability and Toxicity of Pb and Cd in Contaminated Soil Using TCLP, BCR and Earthworms

    Directory of Open Access Journals (Sweden)

    Maria Luiza F. M. Kede

    2014-11-01

    Full Text Available The objective of the present study was to investigate the reduction of mobility, availability and toxicity found in soil contaminated with lead (Pb and cadmium (Cd from Santo Amaro Municipality, Bahia, Brazil using two combined methods, commonly tested separately according to the literature: metal mobilization with phosphates and phytoextraction. The strategy applied was the treatment with two sources of phosphates (separately and mixed followed by phytoremediation with vetiver grass (Vetiveria zizanioides (L.. The treatments applied (in triplicates were: T1—potassium dihydrogen phosphate (KH2PO4; T2—reactive natural phosphate fertilizer (NRP and; T3—a mixture 1:1 of KH2PO4 and NRP. After this step, untreated and treated soils were planted with vetiver grass. The extraction procedures and assays applied to contaminated soil before and after the treatments included metal mobility test (TCLP; sequential extraction with BCR method; toxicity assays with Eisenia andrei. The soil-to-plant transfer factors (TF for Pb and Cd were estimated in all cases. All treatments with phosphates followed by phytoremediation reduced the mobility and availability of Pb and Cd, being KH2PO4 (T1 plus phytoremediation the most effective one. Soil toxicity however, remained high after all treatments.

  8. Eisenia fetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Udovic, Metka [Centre for Soil and Environmental Science, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Sl-1000 Ljubljana (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.s [Centre for Soil and Environmental Science, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Sl-1000 Ljubljana (Slovenia)

    2010-08-15

    Remediation by means of soil leaching with ethylenediaminetetraacetic acid (EDTA) is capable of extracting the most labile soil fractions, leaving the residual metals in biologically non-available forms. We evaluated the feasibility of the standardized earthworm (Eisenia fetida) avoidance test for assessing the efficiency of soil remediation of Pb, Zn and Cd polluted soil. Chemical extraction tests (six-step sequential extraction, toxicity characteristic leaching procedure, physiologically based extraction test, diethylenediaminepentaacetic acid extraction) indicated that the mobility, oral bioaccessibility and phytoavailability of Pb, Zn and Cd were consistently reduced. However, the avoidance test showed no significant avoidance of polluted soil in favor of that which had been remediated. Pb, Zn and Cd accumulation in E. fetida mirrored the decreasing pattern of metal potential bioavailability gained by leaching the soil with increasing EDTA concentrations. The calculated bioaccumulation factors indicated the possibility of underestimating the metal bioavailability in soil using chemical extraction tests. - Tests with indicator organisms should be used for a more meaningful and holistic assessment of metal biological availability in polluted and remediated soil.

  9. Pb and Cd bioaccumulations in the habitat and preys of red-crowned cranes (Grus japonensis) in Zhalong Wetland, Northeastern China.

    Science.gov (United States)

    Luo, Jinming; Yin, Xiongrui; Ya, Yajie; Wang, Yongjie; Zang, Shuying; Zhou, Xia

    2013-12-01

    Pb and Cd concentrations in the habitat and preys of the red-crowned crane (i.e., reed rhizomes and three typical aquatic animal families (Perccottus glehni Dybowski, Carassius auratus Linnaeus, and Viviparidae)) were analyzed to examine the impact of these hazards on red-crowned cranes in northeastern China. Results indicated that Pb and Cd concentrations in the preys of the red-crowned cranes were elevated via food chain. Most of the detected Pb and Cd contents in the sediments were above the natural background level, ranging from 9.85 to 129.72 ppm and 1.23 to 10.63 ppm (dry weight), respectively. Cd geo-accumulation index at all sites were larger than 3, even reached 5.22, suggesting serious pollution in this region. Three common water animal families were detected to contain heavy metals, following the order of increasing concentrations: primary consumers (i.e., Viviparidae and Carassius auratus Linnaeus) Pb and Cd concentrations in the buffer zone are significantly higher than in the core area and being elevated in the food chain. The molten feathers of the red-crowned cranes showed the highest toxic metal concentrations of Pb (2.09 to 5.81 ppm) and Cd (1.42 to 3.06 ppm) compared with the feces produced by cranes and residual eggshell left by water fowls. Exceptionally high Pb and Cd concentrations in the cranes and their preys were thought to be associated with their habitat.

  10. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China: A case study of orogenic-type Pb-Zn systems

    Science.gov (United States)

    Zhang, Li; Zheng, Yi; Chen, YanJing

    2012-04-01

    The Tiemurt Pb-Zn-Cu deposit is hosted in a Devonian volcanic-sedimentary basin of the Altay orogenic belt, and is thus interpreted to have formed by sea-floor hydrothermal exhalation in previous studies. Our investigation discovered that the deposit is not stratiform or stratabound, but structure-controlled instead. The hydrothermal ore-forming process can be divided into the early, middle and late stage, represented by pyrite-quartz, polymetallic sulfide-quartz and carbonate-quartz veinlets, respectively. The early-stage veins and contained minerals are structurally deformed and brecciated, suggesting a compressional or transpressional tectonic regime. The middle-stage veinlets intrude and infill the fissures of the early-stage assemblages, and show no deformation, suggesting a tensional shear setting. The late-stage veinlets mostly infill open-space fissures that crosscut veins and replacements formed in the earlier stages. Four types of fluid inclusions (FIs), including aqueous (type W), carbonic-aqueous (type C), pure carbonic (type PC) and solid-bearing (type S), are identified at the Tiemurt deposit. The early-stage minerals contain the C- and W-type primary FIs that are totally homogenized at temperatures of 330-390 °C with low salinities of 0.8-11.9 wt.% NaCl eqv.; whilst the late-stage quartz or calcite contains only the W-type FIs with homogenization temperatures of 118-205 °C, and salinities of 1.4-3.4 wt.% NaCl eqv. This indicates that the ore fluid system evolved from CO2-rich, probably metamorphic to CO2-poor, meteoric fluids; and that a significant CO2-escape must have occurred. All the four types of FIs can be only observed in the middle-stage minerals, and even in a microscopic domain of a crystal, representing an association trapped from a boiling fluid system. These FIs homogenize at temperatures ranging from 270 to 330 °C, with two salinity clusters of 1.9-14.5 and 37.4-42.4 wt.% NaCl eqv., respectively. This implies that metal precipitation

  11. The Effect of Salinity on the Release of Copper (Cu, Lead (Pb And Zinc (Zn from Tailing

    Directory of Open Access Journals (Sweden)

    Apriani Sulu Parubak

    2010-06-01

    Full Text Available The effects of salinity on the release of copper (Cu, lead (Pb and zinc (Zn in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV onto hanging mercury drop electrode (HMDE and nitric acid 65% as support electrolyte. The limit of detection for this method 0.60 µg/L, 0.150 µg/L and 0.238 µg/L for copper, lead and iMc respectively. The stripping solution of 300/00 salinity with pH= 7.85, conductivity= 46.62 mS/cm gives the amounts of released metals as follows :14.867 µg/L Cu, 0.976 µg/L Pb and 6.224 µg/L Zn. These results are higher as compared with the results from 15 0/00 salinity with pH= 7.66, conductivity= 23.22 mS/cm that give released metals of Cu= 7.988 µg/L, Pb= 0.311 µg/L and Zn= 4.699 µg/L. the results from ANOVA suggest that this is due to different in salinity of the solution. It also found that the conductivity does not give any effect. It can be concluded that the higher salinity will that give higher concentration or released metals.

  12. Short-term temporal variations in speciation of Pb, Cu, Zn and Sb in a shooting range runoff stream.

    Science.gov (United States)

    Heier, Lene Sørlie; Meland, Sondre; Ljønes, Marita; Salbu, Brit; Strømseng, Arnljot Einride

    2010-05-01

    This study was designed to explore the changes in physico-chemical forms of Pb, Cu, Zn and Sb in a stream draining a contaminated shooting range, located at Steinsjøen in the South-Eastern part of Norway, during a period of 21days. To obtain information on the element species distribution, an interphased size and charge fractionation system was applied, where membrane filtration (0.45microm) and ultrafiltration using hollow fibre (nominal cut off 10kDa) were performed prior to charge fractionation using chromatography (cationic and anionic exchange resins). The results show that Pb mainly was present as particulate and colloidal high molecular mass (HMM) species, Cu as colloidal (HMM) and low molecular mass (LMM) species, while Sb and Zn were mainly present as LMM species. The total element concentrations of Pb, Cu, Zn and Sb were positively correlated to water flow and dissolved organic carbon (DOC), suggesting these are important factors in controlling the run-off of the investigated elements in this catchment. During episodes of higher water flow, the increase in element concentration was mainly in the colloidal fraction. Partial redundancy analysis (pRDA) revealed that variations in pH, HMM organic carbon (HMM OC) and LMM organic carbon (LMM OC) explained 47% of the variation in size distribution of the elements, while variations in precipitation and water flow explained 48% of the variation in the charge distribution of the elements. The variation in concentrations during the period varied by a factor of 4, also stressing the importance of frequent sampling opposed to spot sampling in environmental surveys and risk assessments. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Retention and distribution of Cu, Pb, Cr, and Zn in a full-scale hybrid constructed wetland receiving municipal sewage.

    Science.gov (United States)

    Xiao, Haiwen; Zhang, Shengli; Zhai, Jun; He, Qiang; Mels, Adriaan; Ning, Kejia; Liu, Jie

    2013-01-01

    This study was conducted to investigate the retention and distribution of Cu, Pb, Cr, and Zn in a hybrid constructed wetland (CW) that consists of both vertical baffled flow wetlands (VBFWs) and horizontal subsurface flow wetlands (HSSFs) with unique flow regimes and oxygen distribution. The heavy metal concentrations in water, sediments, and plant tissues in the hybrid CW were analysed. The removal of heavy metals from the water stream in the monitoring period was not statistically significant. Metal concentrations in the sediments generally decreased along the wastewater treatment process. The reductive anaerobic condition in the VBFW may promote the sulphate reduction and form highly insoluble Cu, Pb, and Zn sulphides, resulting in the higher concentration of the bivalent cations in the VBFW sediments than the corresponding values in the HSSF; however, the aerobic and anoxic environments in the HSSF enhanced the removal of Cr with the co-precipitation of iron and manganese oxides, and their hydroxides. Metal concentrations in plant tissues were not significantly influenced by the concentrations in sediments, while roots contained statistically higher metal concentrations than stems and leaves. The sediments stored 94.01, 86.31, 95.85, and 89.51% of the total Cu, Pb, Cr, and Zn retained in the hybrid CW system, respectively, while only small fractions (<10%) were accumulated in the harvestable macrophyte tissues. It is important to clean not only the accessible sediments in free water surface tank and ponds but also the embedded sediments in vegetated beds for the sustainable removal of heavy metals.

  14. Synthesis and Microstructure Properties of (Bi,Pb2Sr2Ca1Cu2Oy Ceramic Superconductor

    Directory of Open Access Journals (Sweden)

    nurmalita .

    2015-11-01

    Full Text Available Properties of (Bi, Pb2Sr2Ca1Cu2Oy ceramic superconductors were prepared by the melt textured growth methods in order to investigate the effects of the slow cooling time on the microstructur.  Phase analyses of the samples by X-ray diffraction (XRD has been carried out to assess the effects of the slow cooling time. From XRD analyses, the addition to the sample of  the slow cooling time degrades formation of the high-Tc Bi-2212 phase. The possible reasons for the observed degradation in the microstructure properties due to the slow cooling time addition were discussed.

  15. Analysis of different modeling approach at determining of backward extrusion force on AlCu5PbBi material

    Directory of Open Access Journals (Sweden)

    B. Barišić

    2008-10-01

    Full Text Available The goal of the paper is to present an outline of different modeling approach at determining of backward extrusion force on AlCu5PbBi material and to compare them with experimental obtained results. Stochastic modeling in the paper is based on the statistic processing of central composite experimental design i.e. in this investigations central composite circumscribed (CCC design. The numerical modeling is based on the finite element method (FEM using ABAQUS 6.4.1. Explicit software.

  16. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...... of the concrete. The Cl content in MSWI fly ash is also too high and will cause corrosion problems in reinforced concrete. The possibility of removing some of the unwanted heavy metals (Cu and Pb) together with Cl from an MSWI fly ash suspended in water using an electrodialytic separation method was investigated...

  17. Performance of silica aerogels modified with amino functional groups in PB(II) and CD(II) removal from aqueous solutions

    National Research Council Canada - National Science Library

    Faghihian, Hossein; Nourmoradi, Heshmatollah; Shokouhi, Maryam

    2012-01-01

    The adsorption behavior of Pb(II) and Cd(II) ions in aqueous solutions on silica aerogels modified with amino propyl triethoxysilane was investigated as a function of pH, contact time, adsorbate concentration and adsorbent dose...

  18. The average concentrations of As, Cd, Cr, Hg, Ni and Pb in residential soil and drinking water obtained from springs and wells in Rosia Montana area.

    Data.gov (United States)

    U.S. Environmental Protection Agency — The average concentrations of As, Cd, Cr, Hg, Ni and Pb in n=84 residential soil samples, in Rosia Montana area, analyzed by X-ray fluorescence spectrometry are...

  19. Structural, optical, and catalytic properties of undoped and CdS doped CuO-ZnO nanoparticles

    Science.gov (United States)

    Younas, Naeem; Farrukh, Muhammad Akhyar; Ali, Shaista; Ditta, Maryam Allah; Adnan, Rohana

    2017-11-01

    The structural, optical and catalytic properties of undoped (CuO-ZnO) and CdS doped CuO-ZnO (CdS/CuO-ZnO) nanoparticles were studied. The blue shifting of optical band gap in CuO-ZnO nanoparticles as compared to their respective bulk oxides (CuO: 1.21-1.5 eV, ZnO: 3.37 eV) was observed as 3.9 eV, while red shifting after doping of CdS was found from 3.9 to 3.7 eV. The angle of diffraction and FWHM values were used to observe crystallite phase and to calculate crystallite size (using Scherer and Williamson-Hall equations) and other parameters like strain, dislocation density and bond length of nanoparticles. The particle size of CuO-ZnO and CdS/CuO-ZnO nanoparticles using transmission electron microscopy (TEM) was found 12.54 and 6.93 nm, respectively. It was concluded that decrease in particle size cause red shifting which increase the catalytic efficiency of nanoparticles.

  20. Cd, Cu, Zn, Se, and metallothioneins in two amphibians, Necturus maculosus (Amphibia, Caudata) and Bufo bufo (Amphibia, Anura).

    Science.gov (United States)

    Dobrovoljc, Katarina; Falnoga, Ingrid; Žnidarič, Magda Tušek; Mazej, Darja; Ščančar, Janez; Bulog, Boris

    2012-12-01

    The accumulation of cadmium, its affinity for metallothioneins (MTs), and its relation to copper, zinc, and selenium were investigated in the experimental mudpuppy Necturus maculosus and the common toad Bufo bufo captured in nature. Specimens of N. maculosus were exposed to waterborne Cd (85 μg/L) for up to 40 days. Exposure resulted in tissue-dependent accumulation of Cd in the order kidney, gills > intestine, liver, brain > pancreas, skin, spleen, and gonads. During the 40-day exposure, concentrations increased close to 1 μg/g in kidneys and gills (0.64-0.95 and 0.52-0.76; n = 4), whereas the levels stayed below 0.5 in liver (0.14-0.29; n = 4) and other organs. Cd exposure was accompanied by an increase of Zn and Cu in kidneys and Zn in skin, while a decrease of Cu was observed in muscles and skin. Cytosol metallothioneins (MTs) were detected as Cu,Zn-thioneins in liver and Zn,Cu-thioneins in gills and kidney, with the presence of Se in all cases. After exposure, Cd binding to MTs was clearly observed in cytosol of gills as Zn,Cu,Cd-thionein and in pellet extract of kidneys as Zn,Cu,Cd-thioneins. The results indicate low Cd storage in liver with almost undetectable Cd in liver MT fractions. In field trapped Bufo bufo (spring and autumn animals), Cd levels were followed in four organs and found to be in the order kidney > liver (0.56-5.0 μg/g >0.03-0.72 μg/g; n = 11, spring and autumn animals), with no detectable Cd in muscle and skin. At the tissue level, high positive correlations between Cd, Cu, and Se were found in liver (all r > 0.80; α = 0.05, n = 5), and between Cd and Se in kidney (r = 0.76; n = 5) of autumn animals, possibly connected with the storage of excess elements in biologically inert forms. In the liver of spring animals, having higher tissue level of Cd than autumn ones, part of the Cd was identified as Cu,Zn,Cd-thioneins with traces of Se. As both species are special in having liver Cu levels higher than

  1. Analytisch-chemische aspecten van de bepaling van As, Ca, Cd, Sb, Sn, Pb, Zn in MVS-filterdestruaten met ICP-MS

    NARCIS (Netherlands)

    Velde-Koerts T van der; Lesquillier AI; Ritsema R; LAC

    1995-01-01

    In dit onderzoek werd een ICP-MS-methode ontwikkeld voor de bepaling van Ca, Zn, As, Cd, Sb, Sn en Pb in filterdestruaten. De onderste analysegrens is 30 ng/l Sb, 60 ng/l Cd, 200 ng/l As, 300 ng/l Sn, 400 ng/l Pb, 4 mug/l Zn en 20 mug/l Ca ; de precisie is beter dan 7% RSD voor Ca, 4% RSD voor

  2. The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L.

    Science.gov (United States)

    Zheng, Ruilun; Li, Cui; Sun, Guoxin; Xie, Zubin; Chen, Jie; Wu, Juying; Wang, Qinghai

    2017-08-11

    Biochar produced from rice straw (RC) and maize stalk (MC) was amended to the heavy metal-contaminated soil to investigate the effects of different biochar feedstock and particle size (fine, moderate, coarse) on the accumulation of Cd, Zn, Pb, and As in Brassica chinensis L. (Chinese cabbage). The concentrations of Cd, Zn, and Pb in shoot were decreased by up to 57, 75, and 63%, respectively, after biochar addition (4%). Only MC decreased As concentration in B. chinensis L. shoots by up to 61%. Biochar treatments significantly decreased NH4NO3-extractable concentrations of Cd, Zn, and Pb in soil by 47-62, 33-66, and 38-71%, respectively, yet increased that of As by up to 147%. Amendment of RC was more effective on immobilizing Cd, Zn, and Pb, but mobilizing soil As, than MC. A decrease in biochar particle size greatly contributed to the immobilization of Cd, Zn, and Pb in soil and thereby the reduction of their accumulations in B. chinensis L. shoots, especially RC. Increases in soil pH and extractable P induced by biochar addition contributed to the sequestration of Cd, Zn, and Pb and the mobilization of As. Shoot biomass, root biomass, and root system of B. chinensis L. were enhanced with biochar amendments, especially RC. This study indicates that biochar addition could potentially decrease Cd, Zn, Pb, and As accumulations in B. chinensis L., and simultaneously increase its yield. A decrease in biochar particle size is favorable to improve the immobilization of heavy metals (except As). The reduction in Cd, Zn, Pb, and As levels in B. chinensis L. shoots by biochar amendment could be mainly attributed to a function of heavy metal mobility in soil, plant translocation factor, and root uptake.

  3. Assessment of Individual and Combined Toxicities of Four Non-Essential Metals (As, Cd, Hg and Pb in the Microtox Assay

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-03-01

    Full Text Available Although most researches with non-essential metals (NEMs have been done with single or individual metals, in reality, organisms are often exposed to multiple contaminants at the same time through the air, food and water. In this study, we tested the toxicity of four NEMs, As, Cd, Pb, and Hg, individually and as a composite mixture using the microtox bioassay. This assay uses the reduction of bioluminescence of the bacterium Vibrio fischeri as a measure of toxicity. The concentrations of each chemical in the mixture were based on multiples of their maximum contaminant levels (MCLs set by the U.S. EPA. The highest concentration of exposure was 20 times the MCL, which translated into 200, 100, 40 and 300 ppb for As, Cd, Hg and Pb, respectively. The ratio for the mixture from these concentrations was 10:5:2:15 for As, Cd, Hg and Pb, respectively. Among the individual metals tested, the ranking of toxicity was Hg>Pb>Cd>As based on the EC50 values of 109, 455, 508 and 768 ppb for Hg, Pb, Cd and As, respectively. The EC50 for the composite mixture was 495% MCL which translated into nominal concentrations of 49, 25, 10 and 74 ppb for As, Cd, Hg, and Pb, respectively. Overall, the EC50 value of each NEM within the mixture was lower than the EC50 of the individual chemical; an evidence of synergism for the mixture. The individual toxic units (TU were 0.06, 0.05, 0.09, and 0.16 for As, Cd Hg, and Pb, respectively and the summed toxic unit (TU was 0.37 (less than 1. This study provides needed scientific data necessary for carrying out complete risk assessment of As, Cd, Hg, and Pb mixtures of some priority compounds.

  4. Analisis Kandungan Logam Berat Merkuri (Hg), Timbal (Pb) Dan Kadmium (Cd) Pada Ikan Baung (Hemiarius Stornii) Yang Diperoleh Dari Sungai Kahayan Kalimantan Tengah

    OpenAIRE

    budiarti, aqnes; susanti, rini yeni

    2008-01-01

    Gold mining waste and other human being's rubbish containing heavy metal thrown into the water would be contaminating river. This condition will push to the bio-magnification and bio-accumulation under water living. The measured variables were Mercury (Hg), Lead (Pb) and Cadmium (Cd) content which were concentrated in Baung fish body. The researched environment parameters were Mercury (Hg), Lead (Pb) and Cadmium (Cd) containing in the water and the rate of DO, BOD and COD. Block model was use...

  5. The heavy metal ions (Cu2+, Zn2+, Cd+) toxic compounds influence on triticale plants growth

    Science.gov (United States)

    Brezoczki, V. M.; Filip, G. M.

    2017-05-01

    The presence of the heavy metals toxic compounds (CuSO4 · 5H2O, ZnSO4 · 7H2O and 3CdSO4·8H2O) in water and soil can be observed by their negative effects on the germination and growth process for different vegetable (barley, oat, maize) who are used for human and animal consumption. This paper it aims the determination of germination and growth inhibition negative effects for triticale plants in the heavy metals ions presence by ecotoxicological laboratory tests. The triticale plants was chosen for their different characteristics to the other grasses respectively: a very good resistance for a wide range of diseases, an accelerated growth and a very good tolerance for aluminum ions presents in acid soils. The determinations were conducted step by step, first, we put the triticale grains in contact with the heavy metal solutions with different concentration then for 3 days we noticed the triticale germination inhibition effects and finally we noticed the growth inhibition process for triticale plants respectively in 7th and 9th day from the start of the experiment. At the end of the tests we can conclude that the triticale roots have a very great sensibility to a CuSO4 solutions compared to the effects for their stalks. A positive effect for triticale stalks we can see for low CuSO4 solution concentrations thus for 5 mg Cu/l the growth is 19,44%. A positive effect for triticale roots it can see for low ZnSO4 solution concentrations so for 5 - 15 mg Zn/l the growth is 24,4%. In the presence of the CdSO4 solution all the processes are inhibited (germination and growth for triticale plants) even for a low concentrations for this toxic.

  6. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd(2+) and Pb(2+) removal by mango peel waste.

    Science.gov (United States)

    Iqbal, Muhammad; Saeed, Asma; Zafar, Saeed Iqbal

    2009-05-15

    Mango peel waste (MPW) was evaluated as a new sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution. The maximum sorption capacity of Cd(2+) and Pb(2+) was found to be 68.92 and 99.05mgg(-1), respectively. The kinetics of sorption of both metals was fast, reaching at equilibrium in 60min. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of Cd(2+) and Pb(2+). Chemical modification of MPW for blocking of carboxyl and hydroxyl groups showed that 72.46% and 76.26% removal of Cd(2+) and Pb(2+), respectively, was due to the involvement of carboxylic group, whereas 26.64% and 23.74% was due to the hydroxyl group. EDX analysis of MPW before and after metal sorption and release of cations (Ca(2+), Mg(2+), Na(+), K(+)) and proton H(+) from MPW with the corresponding uptake of Cd(2+) and Pb(2+) revealed that the main mechanism of sorption was ion exchange. The regeneration experiments showed that the MPW could be reused for five cycles without significant loss in its initial sorption capacity. The study points to the potential of new use of MPW as an effective sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution.

  7. Evaluation of Adsorption Capacity of Montmorillonite and Aluminium-pillared Clay for Pb2+, Cu2+ and Zn2.

    Science.gov (United States)

    Humelnicu, Doina; Ignat, Maria; Suchea, Mirela

    2015-01-01

    Adsorption capacity of the two adsorbents was investigated as a function of contact time between adsorbent and heavy metal ions solutions, the initial heavy metals concentration of the synthetic wastewater, pH value, temperature and adsorbent mass. Preliminary experiments at different pH values between 2.0 and 7.0 were performed, and were observed that maximum adsorption occurs at pH 5 for copper (q(max) = 92.59 mg · g(–1)), 6.0 for lead (qmax = 97.08 mg · g(–1)) and 6.5 for zinc ions (q(max) = 73.52 mg · g(–1)), respectively. The sorption capacity of studied adsorbents for Pb(2+), Cu(2+) and Zn(2+) was calculated using Langmuir and Freundlich models. Thermodynamic parameters – enthalpy change (ΔH(0)), entropychange (ΔS(0)) and free energy (ΔG(0)) – were calculated for predicting the nature of adsorption. Scanning electron micrograph(SEM) revealed changes in the surface morphology of the adsorbent as a result of heavy metal ions adsorption.EDS characterization confirmed qualitatively the presence of adsorbed species in the samples. On the basis of the obtained results the adsorption it was proposed an ordered adsorption: Pb(2+), Cu(2+) and Zn(2+), on the sorbents we investigated.

  8. The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests.

    Science.gov (United States)

    Li, Yi; Demisie, Walelign; Zhang, Ming-kui

    2013-07-01

    The bioaccessibility of soil heavy metals is the solubility of soil heavy metals in synthetic human digestive juice, which is usually determined using in vitro digestion test. To reveal the effects of digestive enzymes on soil heavy metals bioaccessibility, three representative in vitro digestion tests, Simple Bioaccessibility Extraction Test (SBET), Physiologically Based Extraction Test (PBET), and Simple Gastrointestinal Extraction Test (SGET), were chosen. The bioaccessibility of soil Cu, Zn, and Pb in each method were respectively evaluated with and without digestive enzymes, and the differences were compared. The results showed that the effects of digestive enzymes varied with different methods and elements. Because of digestive enzymes addition, the environmental change from acid gastric phase to neutral intestinal phase of PBET did not result in apparently decrease of the bioaccessibility of soil Cu. However, the solubility of soil Zn and Pb were pH-dependent. For SGET, when digestive enzymes were added, its results reflected more variations resulting from soil and element types. The impacts of digestive enzymes on heavy metal dissolution are mostly seen in the intestinal phase. Therefore, digestive enzyme addition is indispensable to the gastrointestinal digestion methods (PBET and SGET), while the pepsin addition is not important for the methods only comprised of gastric digestion (SBET).

  9. Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose.

    Science.gov (United States)

    Xu, Qinghua; Wang, Yulu; Jin, Liqiang; Wang, Yu; Qin, Menghua

    2017-10-05

    A novel nanocomposite based on black wattle (BW) tannin and nanocellulose was prepared and applied in heavy metal ions adsorptive removal from aqueous solutions. Firstly, nanocrystalline cellulose was oxidized by sodium periodate to get dialdehyde nanocellulose (DANC). BW tannin was then covalently immobilized onto DANC, which was used as both the matrix and crosslinker, to obtain tannin-nanocellulose (TNCC) composite. The resulting nanocomposite was characterized using FTIR, AFM, and TG. The successful immobilization was confirmed by the chromogenic reaction between FeCl3 and TNCC and FT-IR analysis. AFM images revealed that TNCC was ellipsoidal particles with lengths ranging from 100-400nm. Zeta potential measurement showed that TNCC was negative charged at a pH range from 1-12. Compared to the original tannin, the thermal stability of TNCC was slightly increased by the addition of nanocellulose. TNCC demonstrated the maximum adsorption efficiency at pH2 for Cr(VI) and pH 6 for Cu(II) and Pb(II), respectively. The adsorption for these three metal ions followed pseudo second-order kinetics, indicating the chemisorption nature. The adsorption isotherms all fitted well with the Sips model, and the calculated maximum adsorption capacities were 51.846mgg(-1), 53.371mgg(-1) and 104.592mgg(-1) for Cu(II), Pb(II) and Cr (VI), respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The effect of silver doping on the critical current density of Bi-Pb-Sr-Ca-Cu-O ceramic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zargar Shoushtari, M.; Bahrami, Amir; Farbod, Mansoor [Department of Physics, College of Science, Shahid Chamran University, Ahvaz (Iran)

    2006-09-15

    In this research, the effect of silver doping on Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} ceramic superconductor has been investigated. The solid-state reaction method and two different silver doping methods has been used, namely, doping during making processes of samples (batch 1) and doping after making Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} superconductor (batch 2). We observed that by adding silver to BPSCCO compound, partial melting temperature of the compound is decreased. The critical current density (J{sub c}) in both batches is affected by Ag doping. The investigation of SEM images of samples has shown that the all surfaces of the samples are porous and the grains are plate like. It seems that the BPSCCO grains in batch 1 samples are coated with silver but in the samples of batch 2, the silver also sits between the BPSCCO grains. The XRD patterns studies indicated that the silver peaks form separate phase and also by adding silver to BSCCO, the BPSCCO peaks do not show considerable shift. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

    Science.gov (United States)

    Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P

    2009-02-15

    In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.

  12. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Phragmites australis Artificial Floating Wetlands

    Directory of Open Access Journals (Sweden)

    Xiaofeng Huang

    2017-01-01

    Full Text Available Contamination of heavy metals would threaten the water and soil resources; phytoremediation can be potentially used to remediate metal contaminated sites. We constructed the Phragmites australis artificial floating wetlands outside the Qingcaosha Reservoir in the Yangtze Estuary. Water characteristic variables were measured in situ by using YSI Professional Pro Meter. Four heavy metals (copper, zinc, lead, and chromium in both water and plant tissues were determined. Four heavy metals in estuary water were as follows: 0.03 mg/Kg, 0.016 mg/Kg, 0.0015 mg/Kg, and 0.004 mg/Kg. These heavy metals were largely retained in the belowground tissues of P. australis. The bioaccumulation (BAF and translation factor (TF value of four heavy metals were affected by the salinity, temperature, and dissolved oxygen. The highest BAF of each metal calculated was as follows: Cr (0.091 in winter > Cu (0.054 in autumn > Pb (0.016 in summer > Zn (0.011 in summer. Highest root-rhizome TF values were recorded for four metals: 6.450 for Cu in autumn, 2.895 for Zn in summer, 7.031 for Pb in autumn, and 2.012 for Cr in autumn. This indicates that the P. australis AFW has potential to be used to protect the water of Qingcaosha Reservoir from heavy metal contamination.

  13. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Phragmites australis Artificial Floating Wetlands.

    Science.gov (United States)

    Huang, Xiaofeng; Zhao, Feng; Yu, Gao; Song, Chao; Geng, Zhi; Zhuang, Ping

    2017-01-01

    Contamination of heavy metals would threaten the water and soil resources; phytoremediation can be potentially used to remediate metal contaminated sites. We constructed the Phragmites australis artificial floating wetlands outside the Qingcaosha Reservoir in the Yangtze Estuary. Water characteristic variables were measured in situ by using YSI Professional Pro Meter. Four heavy metals (copper, zinc, lead, and chromium) in both water and plant tissues were determined. Four heavy metals in estuary water were as follows: 0.03 mg/Kg, 0.016 mg/Kg, 0.0015 mg/Kg, and 0.004 mg/Kg. These heavy metals were largely retained in the belowground tissues of P. australis. The bioaccumulation (BAF) and translation factor (TF) value of four heavy metals were affected by the salinity, temperature, and dissolved oxygen. The highest BAF of each metal calculated was as follows: Cr (0.091 in winter) > Cu (0.054 in autumn) > Pb (0.016 in summer) > Zn (0.011 in summer). Highest root-rhizome TF values were recorded for four metals: 6.450 for Cu in autumn, 2.895 for Zn in summer, 7.031 for Pb in autumn, and 2.012 for Cr in autumn. This indicates that the P. australis AFW has potential to be used to protect the water of Qingcaosha Reservoir from heavy metal contamination.

  14. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Pongrac, Paula [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Kump, Peter [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Necemer, Marijan [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)]. E-mail: marjana.regvar@bf.uni-lj.si

    2006-01-15

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. - Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox with arbuscular mycorrhizal fungi resulted in improved nutrient and reduced Cd and Zn uptake.

  15. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)]. E-mail: katarina.vogel@uni-lj.si; Drobne, Damjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)

    2005-01-01

    Significant hyperaccumulation of Zn, Cd and Pb in field samples of Thlaspi praecox Wulf. collected from a heavy metal polluted area in Slovenia was found, with maximal shoot concentrations of 14590 mg kg{sup -1} Zn, 5960 mg kg{sup -1} Cd and 3500 mg kg{sup -1} Pb. Shoot/root ratios of 9.6 for Zn and 5.6 for Cd show that the metals were preferentially transported to the shoots. Shoot bioaccumulation factors exceeded total soil Cd levels 75-fold and total soil Zn levels 20-fold, further supporting the hyperaccumulation of Cd and Zn. Eighty percent of Pb was retained in roots, thus indicating exclusion as a tolerance strategy for Pb. Low level colonisation with arbuscular mycorrhizal fungi (AMF) of a Paris type was observed at the polluted site, whereas at the non-polluted site Arum type colonisation was more common. To our knowledge this is the first report of Cd hyperaccumulation and AMF colonisation in metal hyperaccumulating T