WorldWideScience

Sample records for ctfe m400h polychlorotrifluoroethylenes

  1. Electromechanical properties of relaxor ferroelectric P(VDF-TrFE-CFE)-P(VDF-CTFE) blends.

    Science.gov (United States)

    Gorny, Lee J; Lu, Sheng-Guo; Liu, Sheng; Lin, Minren

    2013-03-01

    Electromechanical properties of the relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)] terpolymer blended with a small amount of poly(vinylidene fluoride-chlorotrifluoroethylene) [P(VDF-CTFE)] copolymer, which possesses a much higher elastic modulus than that of the neat terpolymer, were investigated. It was observed that the presence of small amount of P(VDF-CTFE) does not affect the microstructure of the crystalline phase. However, the uniaxially stretched blended films show a slight increase in the crystallinity and increased or similar induced polarization at high electric fields compared with the neat terpolymer, likely caused by the interface effect. Consequently, for blends with P(VDF-CTFE) less than 5 wt%, the transverse strains S1 along the stretching direction for uniaxially stretched blended films are nearly the same as those of neat P(VDF-TrFE-CFE), whereas the elastic modulus along the S1-direction increases with the P(VDF-CTFE) content. As a result, the blended films exhibit a higher elastic energy density and electromechanical coupling factor k31 compared with the neat terpolymer.

  2. P(CTFE-VAc-MAH)的合成%Synthesis of chlorotrifluoroethylene-vinyl acetate-maleic anhydride copolymer

    Institute of Scientific and Technical Information of China (English)

    刘敏; 卓虎; 侯丽华; 张书香

    2013-01-01

      要: 以超临界CO2为反应介质,制备了三氟氯乙烯(CTFE)-乙酸乙烯酯(VAc)-马来酸酐(MAH)共聚物[P(CTFE-VAc-MAH)]。考察了单体配比对聚合反应及聚合物结构、性能的影响,研究了聚合物的自乳化性能及交联反应。结果表明:在m(VAc)/m(CTFE)为6∶14的聚合体系中,增加MAH单体的比例,聚合物颗粒逐渐减小,产物中的氟含量逐渐降低;通过溶液法可使P(CTFE-VAc-MAH)共聚物形成自乳化乳液,乳胶粒的粒径随着聚合物中MAH比例的增大而变小;此共聚物在一定条件下可与多元醇或多元胺类发生交联反应。%The chlorotrifluoroethylene (CTFE)-vinyl acetate (VAc)-maleic anhydride (MAH) copolymer [P(CTFE-VAc-MAH)] was produced in supercritical carbon dioxide. The effect of monomer ratio on the polymerization and the structure and properties of the polymer was investigated, and the self-emulsifying property and the cross-linking reaction of the polymer were studied. The results show that the polymer particles become smaller and the fluorine content in the polymer gets lower gradually with increasing the amount of MAH monomer when the mass ratio of VAc to CTFE is 6∶14. P(CTFE-VAc-MAH) self-emulsifying latex can be obtained by solution method, and the sizes of the latex particles become smaller with the increase in the content of MAH in the polymer. The polymer can take place the cross-linking reaction with polyamine and polyol on certain conditions.

  3. Effect of non-solvent additives on the morphology, pore structure, and direct contact membrane distillation performance of PVDF-CTFE hydrophobic membranes.

    Science.gov (United States)

    Zheng, Libing; Wu, Zhenjun; Zhang, Yong; Wei, Yuansong; Wang, Jun

    2016-07-01

    Four common types of additives for polymer membrane preparation including organic macromolecule and micromolecule additives, inorganic salts and acids, and the strong non-solvent H2O were used to prepare poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) hydrophobic flat-sheet membranes. Membrane properties including morphology, porosity, hydrophobicity, pore size and pore distribution were investigated, and the permeability was evaluated via direct contact membrane distillation (DCMD) of 3.5g/L NaCl solution in a DCMD configuration. Both inorganic and organic micromolecule additives were found to slightly influence membrane hydrophobicity. Polyethylene glycol (PEG), organic acids, LiCl, MgCl2, and LiCl/H2O mixtures were proved to be effective additives to PVDF-CTFE membranes due to their pore-controlling effects and the capacity to improve the properties and performance of the resultant membranes. The occurrence of a pre-gelation process showed that when organic and inorganic micromolecules were added to PVDF-CTFE solution, the resultant membranes presented a high interconnectivity structure. The membrane prepared with dibutyl phthalate (DBP) showed a nonporous surface and symmetrical cross-section. When H2O and LiCl/H2O mixtures were also used as additives, they were beneficial for solid-liquid demixing, especially when LiCl/H2O mixed additives were used. The membrane prepared with 5% LiCl+2% H2O achieved a flux of 24.53kg/(m(2)·hr) with 99.98% salt rejection. This study is expected to offer a reference not only for PVDF-CTFE membrane preparation but also for other polymer membranes.

  4. Preparation Process and Dielectric Properties of Ba(0.5)Sr(0.5)TiO3-P(VDF-CTFE) Nanocomposites

    Science.gov (United States)

    Zhang, Lin; Wu, Peixuang; Li, Yongtang; Cheng, Z. -Y.; Brewer, Jeffrey C.

    2014-01-01

    Ceramic-polymer 0-3 nanocomposites, in which nanosized Ba(0.5)Sr(0.5)TiO3 (BST) powders were used as ceramic filler and P(VDF-CTFE) 88/12 mol% [poly(vinylidene fluoridechlorotrifluoroethylene)] copolymer was used as matrix, were studied over a concentration range from 0 to 50 vol.% of BST powders. It is found that the solution cast composites are porous and a hot-press process can eliminate the porosity, which results in a dense composite film. Two different configurations used in the hot-press process are studied. Although there is no clear difference in the uniformity and microstructure of the composites prepared using these two configurations, the composite prepared using one configuration exhibit a higher dielectric constant with a lower loss. For the composite with 40 vol. BST, a dielectric constant of 70 with a loss of 0.07 at 1 kHz is obtained at room temperature. The composites exhibit a lower dielectric loss than the polymer matrix at high frequency. However, at low frequency, the composites exhibit a higher loss than the polymer matrix due to a low frequency relaxation process that appears in the composites. It is believed that this relaxation process is related to the interfacial layer formed between BST particle and the polymer matrix. The temperature dependence of the dielectric property of the composites was studied. It is found that the dielectric constant of these composites is almost independent of the temperature over a temperature range from 20 to 120 C. Key words: A. Polymer-matrix composites (PMCs); B. Electrical Properties; E. Casting; E. Heat treatment; Dielectric properties.

  5. Surface Modification of Halogenated Polymers. 7. Local Reduction of Poly(tetrafluoroethylene) and Poly(chlorotrifluoroethylene) by a Scanning Electrochemical Microscope in the Feedback Mode.

    Science.gov (United States)

    Combellas, Catherine; Ghilane, Jalal; Kanoufi, Frédéric; Mazouzi, Driss

    2004-05-20

    Fluoropolymers have been reduced locally by the radical anion of a redox mediator electrogenerated at a microelectrode operating in the configuration of a scanning electrochemical microscope. Approach curves with different redox mediators were used to investigate the reduction mechanism of the fluoropolymer. Different factors are discussed, such as the monomer reduction mechanism, the kinetic control by the surface modification growth, and the conductivity of the modified surface. The fluoropolymers' reduction parallels the trends observed in organic electrochemistry in solution within the haloalkane series.

  6. Effect of coupling agents on the dielectric properties and energy storage of Ba0.5Sr0.5TiO3/P(VDF-CTFE nanocomposites

    Directory of Open Access Journals (Sweden)

    Peixuan Wu

    2017-07-01

    Full Text Available Dielectric materials with high electric energy density and low dielectric loss are critical for electric applications in modern electronic and electrical power systems. To obtain desirable dielectric properties and energy storage, nanocomposites using Ba0.5Sr0.5TiO3 (BST as the filler and poly(vinylidene fluoride-chlorotrifluoroethylene as the matrix material are prepared with a uniform microstructure by using a newly developed process that combines the bridge-linked action of a coupling agent, solution casting, and a hot-pressing method. When a proper amount of coupling agent is used to modify the surface of the nanoparticles, the composite exhibits a higher dielectric constant and a more uniform microstructure. A dielectric constant of 95, dielectric loss of 0.25, and energy density of 2.7 J/cm3 is obtained in the nanocomposite with 30 vol.% of BST and 15 wt.% of coupling agent. The results suggest that the energy storage ability of the composites could be improved by the surface modification of the fillers and from the interface compatibility between the fillers and the polymer matrix.

  7. Ionic Liquids in Electro-active Devices (ILED)

    Science.gov (United States)

    2013-12-12

    chlorotrifluoroethylene)] (P(VDF-CTFE)) and poly(vinylidene fluoride-trifluoroethylene- chlorofluoroethylene) (P(VDF-TrFE- CFE ), for ionic polymer actuators. P...VDF-CTFE) and (P(VDF-TrFE- CFE ) are known as ferroelectric EAPs that can be operated under high voltage. Since Poly(methyl methacrylate) (PMMA) has a...TrFE- CFE ), the cross-linked P(VDF- CTFE)/PMMA blends are also studied and compared with those of the perfluorosulfonate ionomers. Figure 3 shows the

  8. Nanomaterials Commercialization Center

    Science.gov (United States)

    2013-02-01

    PSU. The:: lirsl are terpolymers of vinylidene fluoride (VDP). trit1uoroethy lene ( l’rfi’E), and chlorofluorocthylcnc ( CFE ) or...OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS (cont’d) Acronym Description TrFE Trifluoroethylene CFE Chlorofluoroethylene CTFE

  9. Elastocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer

    Science.gov (United States)

    Yoshida, Yukihiro; Yuse, Kaori; Guyomar, Daniel; Capsal, Jean-Fabien; Sebald, Gael

    2016-06-01

    The elastocaloric properties of poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] terpolymer were directly characterized using an infrared imaging camera. At a strain of 12%, a reversible adiabatic temperature variation of 2.15 °C was measured, corresponding to an isothermal entropy variation of 21.5 kJ m-3 K-1 or 11 J kg-1 K-1. In comparison with other elastocaloric materials, P(VDF-TrFE-CTFE) appears to represent a trade-off between the large required stresses in shape memory alloys and the large required strains in natural rubber. The internal energy of the P(VDF-TrFE-CTFE) polymer was found to be independent of the strain, resulting in complete conversion of the mechanical work into heat, as for pure elastomeric materials. The elastocaloric effect therefore originates from a pure entropic elasticity, which is likely to be related to the amorphous phase of the polymer only.

  10. Ferroelectric polymers for electrical energy storage

    Science.gov (United States)

    Claude, Jason W.

    The energy storage properties of vinylidene fluoride based fluoropolymers were explored. Energy density is a function of a materials permittivity and electrical breakdown strength. High values of each of these parameters are desirable for a high energy density and were explored in various fluoropolymer systems. Copolymers containing vinylidene fluoride (VDF), chlorofluoroethylene (CTFE), and trifluoroethylene (TrFE) were synthesized by a two-step approach beginning with the copolymerization of VDF and CTFE and the subsequent hydrogenation of the CTFE units to TrFE to create the terpolymer P(VDF-CTFE-TrFE). By changing the chemical composition of the fluoropolymers, the permittivity was varied from 12 to 50 due to changes in the crystal phase that converted the polymers from paraelectric to ferroelectric materials. The electrical breakdown mechanisms of a single copolymer composition of P(VDF-CTFE) was studied as a function of molecular weight and temperature. Energy density and breakdown strength increased as molecular weight increased and temperature decreased. An electromechanical breakdown mechanism was responsible for failure at 25°C while a thermal breakdown mechanism operated at -35°C which was below the glass transition of the material. In between at -15°C, a combination of the two mechanisms was found to operate. Electromechanical breakdown was also found to operate in a copolymer system with a fixed amount of VDF and varying amounts of TrFE and CTFE. The molecular weights were identical for all the polymers. Maxwell stress is the primary contributor to the electromechanical stress in polymers with a high amount the CTFE. Electrostrictive stress due to a crystal phase change at high electric fields is a major contributor to the electromechanical stress in polymers containing a high amount of TrFE. Energy density and electrical breakdown strength increased with increasing amounts of TrFE. Nanometer sized silica particles were incorporated into a P(VDF-CTFE

  11. Effect of Oxide Nanoparticles on Thermal and Mechanical Properties of Electrospun Separators for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Marco Zaccaria

    2012-01-01

    Full Text Available This study reports the fabrication and characterization of poly(ethylene oxide (PEO and poly(vinylidenefluoride-co-chlorotrifluoroethylene (PVDF-CTFE nanofibrous separators for lithium-ion batteries loaded with different amounts of fumed-silica and tin oxide nanoparticles. Membrane morphological characterization (SEM, TEM showed the presence of good-quality nanofibres containing nanoparticles. Thermal degradation and membrane mechanical properties were also investigated, and a remarkable effect of nanoparticle addition on membrane mechanical properties was found. In particular, PEO membranes were strengthened by the addition of metal oxide, whereas PVDF-CTFE membranes acquired ductility.

  12. Subchronic Studies of Chlorotrifluorethylene

    Science.gov (United States)

    1989-06-01

    Blood)................ 47 4 ABBREVIATIONS ACA Automated Chemistry Analyzer CTFE Chlorotri fl uoroethylene dL Deciliter ECD Electron capture detector F-344...clinical chemistry evaluation were assayed on an Automated Chemistry Analyzer (ACA) (DuPont Company, Wilmington, DE). Selected hematological parameters and

  13. First-principles investigation of high energy density in PVDF copolymers

    Science.gov (United States)

    Ranjan, V.; Lu, Liping; Buongiorno Nardelli, M.; Bernholc, J.

    2008-03-01

    PVDF and its copolymers exhibit excellent electromechanical properties and in the case of PVDF-CTFE also a very high energy density [1]. We have investigated the phase diagram of these systems and can quantitatively explain the observed energy density of PVDF-CTFE as due to a para to ferroelectric phase transition in a disordered, multidomain structure [2]. Our results show that pure PVDF prefers the α phase at zero field. Electric field lowers the free energy of the β phase, resulting in a structural phase transition at a sufficiently high field. Copolymer admixture lowers the critical field and eventually leads to an energetic preference for the β phase even at zero field. For PVDF-CTFE with CTFE content below 17 %, the α phase is still preferred and the field-induced phase transformation reversibly stores large amounts of energy. For PVDF-TeFE, the total energy difference between the two phases is much smaller, resulting in substantially smaller energy density. [1] B. Chu et al., Science 313, 334 (2006). [2] V. Ranjan et al., PRL 99, 047801 (2007).

  14. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Science.gov (United States)

    2010-04-01

    ... ODCs contained in the mixture. For this purpose, a mixture cannot be represented by a chemical formula... chlorotrifluoroethylene (CTFE or 1113), of CFC-113 into CFC-115 and CFC-116, or of carbon tetrachloride into hydrochloric acid during petroleum refining or incineration) is treated as use as a feedstock. On the other hand...

  15. Semicrystalline Ferroelectric Fluoropolymers and Process for Preparing Same

    Science.gov (United States)

    2000-12-05

    or as a combination of two or more comonomers. Preferably, chlorotrifluoroethylene (CTFE) and/or hexafluoropropene (HFP) will be used as the bulky...incorporating reactive comonomers that can be selectively and effectively interconverted to functional groups. The first two approaches are more obvious...oxophilic and more stable to heteroatoms [14,15,21]. In general, both methods have their own concerns and limitations. Some protected functional groups

  16. Surface characterization and platelet adhesion studies on fluorocarbons prepared by plasma-induced graft polymerization.

    Science.gov (United States)

    Lin, J C; Tiong, S L; Chen, C Y

    2000-01-01

    It is believed that the interactions between the biological environment and biomaterial surface are the key factors influencing its biocompatibility. Therefore, plasma processing, which can vary the surface properties without altering the bulk properties, has been considered as one of the important techniques for improving a materials' biocompatibility. In this investigation, plasma-induced grafting polymerization of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE), instead of direct plasma polymerization, was attempted with an aim to improve the substrate blood compatibility. Contact angle measurement indicated both fluorocarbon-grafted Pdyethylenes (PEs) are hydrophobic. Due to the additional fluorine and chlorine atoms on the CTFE chain, the PCTFE-grafted PE exhibited a higher hydrophobicity than the PVDF-grafted one. ESCA analysis has revealed that these two plasma-induced fluorocarbon deposits contain almost no CFx (x > 2) binding on the surface layer, indicating the grafting polymerization mainly follows the free radical mechanism instead of the molecule-highly-fragmented reaction steps commonly seen in the direct plasma polymerization treatment. In addition, ATR-FTIR has shown the surface chemical configuration of these PVDF- and PCTFE-grafted PEs to be very similar to those of the bulk samples of PVDF and PCTFE. The surface roughness decreased after oxygen plasma treatment and was further reduced by VDF and CTFE grafting polymerization. In vitro platelet adhesion testing indicated these two fluorocarbon grafted PEs are less platelet-activating than the nontreated PE control and oxygen plasma activated one.

  17. First-principles simulations of PVDF copolymers with high dielectric energy density: PVDF-HFP and PVDF-BTFE

    Science.gov (United States)

    Dong, Rui; Ranjan, V.; Buongiorno Nardelli, Marco; Bernholc, J.

    2016-07-01

    Phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers with hexafluoropropylene (HFP) and bromotrifluoroethylene (BTFE) are investigated via first-principles simulations and compared to previously studied P(VDF-chlorotrifluoroethylene) (CTFE) data. We find that a nonpolar to polar phase transition induced by an electric field also occurs in HFP and BTFE copolymers and the results for P(VDF-HFP) show good agreement with existing experiments. For P(VDF-BTFE) we show that its nonpolar phase remains the ground state for a substantially larger range of concentrations than for P(VDF-CTFE) and P(VDF-HFP), and predict that a high BTFE concentration copolymer will achieve a significantly higher energy density at low field than P(VDF-CTFE) 9%. The transition pathways connecting the polar and nonpolar phases are also calculated and the energy barriers for the transitions turn out to be similar for the three copolymers, even at different co-monomer concentrations. The similarity of barriers indicates that a mixture of these and related copolymers can be used to optimize the properties of the dielectric, such as energy density, processability, and cost.

  18. Achieving high mobility, low-voltage operating organic field-effect transistor nonvolatile memory by an ultraviolet-ozone treating ferroelectric terpolymer

    Science.gov (United States)

    Xiang, Lanyi; Wang, Wei; Xie, Wenfa

    2016-11-01

    Poly(vinylidene fluoride–trifluoroethylene) has been widely used as a dielectric of the ferroelectric organic field-effect transistor (FE-OFET) nonvolatile memory (NVM). Some critical issues, including low mobility and high operation voltage, existed in these FE-OFET NVMs, should be resolved before considering to their commercial application. In this paper, we demonstrated low-voltage operating FE-OFET NVMs based on a ferroelectric terpolymer poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] owed to its low coercive field. By applying an ultraviolet-ozone (UVO) treatment to modify the surface of P(VDF-TrFE-CTFE) films, the growth model of the pentacene film was changed, which improved the pentacene grain size and the interface morphology of the pentacene/P(VDF-TrFE-CTFE). Thus, the mobility of the FE-OFET was significantly improved. As a result, a high performance FE-OFET NVM, with a high mobility of 0.8 cm2 V‑1 s‑1, large memory window of 15.4~19.2, good memory on/off ratio of 103, the reliable memory endurance over 100 cycles and stable memory retention ability, was achieved at a low operation voltage of ±15 V.

  19. Dynamic-tensile-extrusion response of fluoropolymers

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric N [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Gray, George T [Los Alamos National Laboratory

    2009-01-01

    The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.

  20. Synthesis and radiation degradation of vinyl polymers with fluorine: search for improved lithographic resists. [Gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Pittman, C.U. Jr. (Univ. of Alabama, University); Chen, C.Y.; Ueda, M.; Helbert, J.N.; Kwiatkowski, J.H.

    1980-12-01

    Homopolymers of methyl ..cap alpha..-fluoroacrylate (MFA), trifluoroethyl methacrylate (TFEM), and hexafluoroisopropyl methacrylate (HFIM) were prepared, as were their methyl methacrylate (MMA) copolymers. Copolymers of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE) with MMA were also prepared. The radiation susceptibilities of these polymers were measured by the /sup 60/Co ..gamma..-irradiation method, in which molecular weights were measured by membrane osmometry and gel permeation chromatography (GPC). All the copolymers degraded by predominant chain scission except poly(methyl ..cap alpha..-fluoroacrylate), (PMFA), which crosslinks even at low doses (ca. 1 Mrad). The G/sub s/-G/sub x/ and G/sub s/ values of the chain scissioning polymers and copolymers are higher than those of poly(methyl methacrylate) PMMA reference. The high susceptibility of PMFA homopolymer to crosslinking is in contrast to that of poly(methyl ..cap alpha..-chloroacrylate), as we reported earlier. This effect is interpreted as resulting from extensive hydrogen fluoride and polyenyl radical formation, which leads to facile crosslinking. However, incorporation of the MFA monomer unit causes the (22/78) MFA/MMA copolymer to degrade with a larger value of G/sub s/ that PMMA. Apparently a second-order process leads to crosslinking in PMFA and this is retarded in the copolymer. In the homopolymers of HFIM and TFEM and in the HFIM-MMA and TFEM-MMA copolymers the HFIM and TFEM components facilitate degradation with negligible crosslinking. The increased degradation susceptibility of VDF and CTFE copolymers with MMA over that of PMMA is attributed to processes at the VDF or CTFE components (present in smaller concentrations (3 to 5 mole %) than the threshold levels (25 to 50% necessary for significant crosslinking).

  1. Comparative toxicity of halogenated hydrocarbons: Molecular aspects. Final report, 1 January-31 December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, G.G.

    1993-07-13

    The comparative hepatotoxicities of perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA) and the tri-and tetra-oligomers of chloro-trifluoro ethylene (CTFE) have been investigated in the rat and guinea pig. All compounds have been identified as causing hepatomegaly, peroxisome proliferation and cytochrome P4504A1 induction in the rat. The guinea pig is non-responsive to these compounds and the observed liver changes appear to be specific to lower rodent species. The implications of this study are that the above compounds do not represent a health hazard to man.

  2. Transience of plasma surface modification as an adhesion promoter for polychlorotrifluorethylene

    CERN Document Server

    Subramanian, S; Love, B J; Romand, M; Charbonnier, M

    2002-01-01

    Poly(chlorotrifluoroethylene) (PCTFE) and other fluoropolymers are increasingly used as inner layer dielectrics. However, these polymers have low surface energies and correspondingly poor adhesive properties. Results are presented on the use of a low-pressure ammonia plasma to enhance the surface bondability of PCTFE. The plasma modified PCTFE film surfaces were characterized by x-ray photoelectron spectroscopy and contact angle measurements. Surface modified films exhibited improved adhesion to electroless copper deposits (180 deg. peel test) compared to coated PCTFE controls and that underwent no plasma exposure. Annealing studies were conducted between 30 and 100 deg. C to examine the stability of the plasma-modified surfaces. For samples annealed below T sub g , contact angle measurements indicated that the plasma-introduced groups remained bound on the surface for four weeks. For specimens annealed above T sub g , the surface functionalities were absorbed within the bulk and surface rearrangement occurre...

  3. Electric field responsive origami structures using electrostriction-based active materials

    Science.gov (United States)

    Ahmed, Saad; Arrojado, Erika; Sigamani, Nirmal; Ounaies, Zoubeida

    2015-04-01

    The objective of origami engineering is to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. We are investigating the use of P(VDF-TrFE-CTFE), a relaxor ferroelectric terpolymer, to realize origami-inspired folding and unfolding of structures and to actuate so-called action origami structures. To accomplish these two objectives, we have explored different approaches to the P(VDF-TrFECTFE) polymer actuator construction, ranging from unimorph to multilayered stacks. Electromechanical characterization of the terpolymer-based actuators is conducted with a focus on free strain, force-displacement and blocked force. Moreover dynamic thickness strains of P(VDF-TrFE-CTFE) terpolymer at different frequencies ranging from 0.1Hz to 10Hz is also measured. Quantifying the performance of terpolymer-based actuators is important to the design of action origami structures. Following these studies, action origami prototypes based on catapult, flapping butterfly wings and barking fox are actuated and characterization of these prototypes are conducted by studying impact of various parameters such as electric field magnitude and frequency, number of active layers, and actuator dimensions.

  4. On the impact of self-clearing on electroactive polymer (EAP) actuators

    Science.gov (United States)

    Ahmed, Saad; Ounaies, Zoubeida; Lanagan, Michael T.

    2017-10-01

    Electroactive polymer (EAP)-based actuators have large potential for a wide array of applications; however, their practical implementation is still a challenge because of the requirement of high driving voltage, which most often leads to premature defect-driven electrical breakdown. Polymer-based capacitors have the ability to clear defects with partial electrical breakdown and subsequent removal of a localized electrode section near the defect. In this study, this process, which is known as self-clearing, is adopted for EAP technologies. We report a methodical approach to self-clear an EAP, more specifically P(VDF-TrFE-CTFE) terpolymer, to delay premature defect-driven electrical breakdown of the terpolymer actuators at high operating electric fields. Breakdown results show that electrical breakdown strength is improved up to 18% in comparison to a control sample after self-clearing. Furthermore, the electromechanical performance in terms of blocked force and free displacement of P(VDF-TrFE-CTFE) terpolymer-based bending actuators are examined after self-clearing and precleared samples show improved blocked force, free displacement and maximum sustainable electric field compared to control samples. The study demonstrates that controlled self-clearing of EAPs improves the breakdown limit and reliability of the EAP actuators for practical applications without impeding their electromechanical performance.

  5. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid

    Directory of Open Access Journals (Sweden)

    Hongzhu Liu

    2017-01-01

    Full Text Available Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE, vinyl acetate (VAc, n-butyl acrylate (BA, Veova 10, and acrylic acid (AA. The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.

  6. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid.

    Science.gov (United States)

    Liu, Hongzhu; Bian, Jiming; Wang, Zhonggang; Hou, Chuan-Jin

    2017-01-22

    Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), n-butyl acrylate (BA), Veova 10, and acrylic acid (AA). The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV) accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.

  7. Europa Propulsion Valve Seat Material Testing

    Science.gov (United States)

    Addona, Brad M.

    2017-01-01

    The Europa mission and spacecraft design presented unique challenges for selection of valve seat materials that met the fluid compatibility requirements, and combined fluid compatibility and high radiation exposure level requirements. The Europa spacecraft pressurization system valves will be exposed to fully saturated propellant vapor for the duration of the mission. The effects of Nitrogen Tetroxide (NTO) and Monomethylhydrazine (MMH) propellant vapors on heritage valve seat materials, such as Vespel SP-1 and Polychlorotrifluoroethylene (PCTFE), were evaluated to determine if an alternate material is required. In liquid system applications, Teflon is the only available compatible valve seat material. Radiation exposure data for Teflon in an air or vacuum environment has been previously documented. Radiation exposure data for Teflon in an oxidizer environment such as NTO, was not available, and it was unknown whether the effects would be similar to those on air-exposed samples. Material testing was conducted by Marshall Space Flight Center (MSFC) and White Sands Test Facility (WSTF) to determine the effects of propellant vapor on heritage seat materials for pressurization valve applications, and the effects of combined radiation and NTO propellant exposure on Teflon. The results indicated that changes in heritage pressurization valve seat materials' properties rendered them unsuitable for the Europa application. The combined radiation and NTO exposure testing of Teflon produced results equivalent to combined radiation and air exposure results.

  8. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives.

    Science.gov (United States)

    Zhu, Wei; Xiao, Jijun; Zhu, Weihua; Xiao, Heming

    2009-05-30

    Molecular dynamics simulations have been performed to investigate well-known energetic material cyclotrimethylene trinitramine (RDX) crystal and RDX-based plastic-bonded explosives (PBXs) with four typical fluorine-polymers, polyvinylidenedifluoride (PVDF), polychlorotri-fluoroethylene (PCTFE), fluorine rubber (F(2311)), and fluorine resin (F(2314)). The elastic coefficients, mechanical properties, binding energies, and detonation performances are obtained for the RDX crystal and RDX-based PBXs. The results indicate that the mechanical properties of RDX can be effectively improved by blending with a small amount of fluorine polymers and the overall effect of fluorine polymers on the mechanical properties of the PBXs along three crystalline surfaces is (001)>(010) approximately (100) and PVDF is regarded to best improve the mechanical properties of the PBXs on three surfaces. The order of the improvement in the ductibility made by the fluorine polymers on different surfaces is (001) approximately (010)>(100). The average binding energies between different RDX crystalline surfaces and different polymer binders are obtained, and the sequence of the binding energies of the PBXs with the four fluorine polymers on the three different surfaces is varied. Among the polymer binders, PVDF is considered as best one for RDX-based PBXs. The detonation performances of the PBXs decrease in comparison with the pure crystal but are superior to those of TNT.

  9. Mode-coupling theory and polynomial fitting functions: a complex-plane representation of dielectric data on polymers.

    Science.gov (United States)

    Eliasson, H

    2001-07-01

    Recently, it has been shown that the higher-order A3 and A4 scenarios of the mode-coupling theory (MCT) are in many cases capable of providing a good description of the complicated dielectric spectra often encountered in polymeric systems. In this paper, more data from dielectric measurements on poly(ethylene terephthalate), poly(vinylidene fluoride), Nylon-66, poly(chlorotrifluoroethylene) (PCTFE), and the polymer gel system poly(acrylonitrile)-ethylene carbonate-propylene carbonate are evaluated within the A4 scenario of the MCT. For all these systems, very good agreement is found between the theoretical and experimental spectra. The data analysis is demonstrated to be facilitated considerably by plotting the data in the complex plane whereby the elliptic functions derived from the theory for the frequency-dependent dielectric function can be replaced by polynomials. For PCTFE, the scaling behavior predicted by the MCT could be verified and the temperature dependences of the extracted scaling parameters were found to be consistent with theory.

  10. Influence of necking propensity on the dynamic-tensile-extrusion response of fluoropolymers

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric N [Los Alamos National Laboratory; Gray Ill, George T [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory

    2009-01-01

    The quasi-static and dynamic responses of two fluoropolymers - polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE) - have been extensively characterized. Here we investigate the influence of the propensity to neck or not between PCTFE and PTFE on their responses under Dynamic-Tensile-Extrusion (Dyn-TenExt). The Dyn-Ten-Ext technique was originally developed for metals and applied to copper and tantalum spheres by Gray, et al. as a tensile corollary to compressive Taylor Cylinder Impact Testing. Under Taylor Cylinder loading both PTFE and PCTFE exhibit a classic three-diameter ductile deformation pattern. The ductile-to-brittle transition in PTFE occurs at 131 m s{sup -1} with a very tight transition range in impact stress of less than 4 m s{sup -1}. Conversely, the ductile-to-brittle transition in PCTFE occurs between 165 and 200 m s{sup -1} with a gradual transition to stochastic crack formation and ultimately failure. Under Dyn-Ten-Ext loading the onset of extrusion occurs above 164 and 259 m s{sup -1} for PTFE and PCTFE respectively.

  11. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to -55 bold">°C

    Science.gov (United States)

    Gustavsen, Richard L.; Gehr, Russell J.; Bucholtz, Scott M.; Alcon, Robert R.; Bartram, Brian D.

    2012-10-01

    We report a series of shock initiation experiments on PBX 9502 cooled to -55 °C. PBX 9502 consists of 95% dry aminated tri-amino-tri-nitro-benzene (TATB) and 5% poly-chloro-trifluoro-ethylene5 (Kel-F 800) binder. PBX 9502 samples were shock initiated by projectile impact from a two stage gas gun. Buildup to detonation was measured with 10 or more particle velocity gauges embedded at different depths in the sample. Three shock wave trackers measured the position of the shock front with time. Particle velocity vs. time wave-profiles and coordinates for onset of detonation were obtained as a function of the impact stress or pressure. PBX 9502 sample temperatures were monitored using type-E thermocouples, two inside the sample and two on the sample surface. Additional thermocouples were mounted on other parts of the cooling apparatus. Wave profiles from embedded gauges are qualitatively similar to those observed at 23 °C. However, at -55 °C, PBX 9502 is much less sensitive than at 23 °C. For example, at an inpact stress of 15.4 GPa, the distance to detonation at -55 °C is 7.8 mm. At 23 °C, the distance is 4.3 mm.

  12. 共聚改性聚偏氟乙烯材料介电性能研究

    Institute of Scientific and Technical Information of China (English)

    张廷健; 蒋晓利; 李斌; 张建新; 徐厚红

    2014-01-01

    考察了四氟乙烯(TFE)、六氟丙烯(HFP)、三氟氯乙烯(CTFE)3种单体对共聚改性聚偏氟乙烯(PVDF)和四氟乙烯(TFE)含量对PVDF介电性能和电场强度性能的影响.结果表明,TFE的作用最明显,可以降低PVDF的介电常数、介电损耗,同时大幅提高PVDF的电场强度.随着TFE摩尔分数的增加,共聚物的介电强度和介电损耗逐渐降低,达到20%后下降不明显;而电场强度随TFE摩尔分数的增加而增加;当TFE的摩尔分数到30%时,PVDF的介电常数和介电损耗分别降至2.9和0.08,电场强度提高到250 kV/mm,大大提高了PVDF介电材料的耐压性能.

  13. Wave control through soft microstructural curling: bandgap shifting, reconfigurable anisotropy and switchable chirality

    Science.gov (United States)

    Celli, Paolo; Gonella, Stefano; Tajeddini, Vahid; Muliana, Anastasia; Ahmed, Saad; Ounaies, Zoubeida

    2017-03-01

    In this work, we discuss and numerically validate a strategy to attain reversible macroscopic changes in the wave propagation characteristics of cellular metamaterials with soft microstructures. The proposed cellular architecture is characterized by unit cells featuring auxiliary populations of symmetrically-distributed smart cantilevers stemming from the nodal locations. Through an external stimulus (the application of an electric field), we induce extreme, localized, reversible curling deformation of the cantilevers—a shape modification which does not affect the overall shape, stiffness and load bearing capability of the structure. By carefully engineering the spatial pattern of straight (non activated) and curled (activated) cantilevers, we can induce several profound modifications of the phononic characteristics of the structure: generation and/or shifting of total and partial bandgaps, cell symmetry relaxation (which implies reconfigurable wave beaming), and chirality switching. While in this work we discuss the specific case of composite cantilevers with a PDMS core and active layers of electrostrictive terpolymer P(VDF-TrFE-CTFE), the strategy can be extended to other smart materials (such as dielectric elastomers or shape-memory polymers).

  14. The development of compact electroactive polymer actuators suitable for use in full page Braille displays

    Science.gov (United States)

    Gorny, Lee J.; Zellers, Brian C.; Lin, Minren; Liu, Sheng; Zhang, Qiming M.

    2010-04-01

    Piezoceramic actuators, presently used in commercial Braille displays, are limited by the material's relatively small strain and brittle nature. For this reason, it is a challenge to develop full page, compact, graphic Braille displays that are affordable. A newly developed material composed of P(VDF-TrFE-CFE) terpolymer blended with 5% P(VDF-CTFE) electrostrictive actuators exhibits large strains (~5% at 150V/μm), fast actuation (>5 mm/s), and has a relatively high elastic modulus (1.2 GPa). This material exhibits more than double the elastic energy density and a 50% higher modulus of the original electrostrictive terpolymer. Hence, the potential for viable actuators in compact, full page Braille displays is greater than ever, provided actuators can be manufactured reliably in quantity. This talk presents recent work in scaling production of such rolled actuators. Actuators extend .5 mm, are confined to the 2.5 mm grid spacing of conventional Braille text, generate >0.5 N force and operate at less than 200V, thus meeting the primary requirements for a commercialized Braille display. To manufacture these actuators, cast films are stretched using a roll-to-roll zone drawing machine that is capable of producing quantities of 2 μm thick film with high quality. What follows is a discussion of this machine, the roll-to-roll film stretching process and an assessment of the resulting stretched film for use as linear strain actuators, like those used in our Braille cell.

  15. Fabrication of a self-sensing electroactive polymer bimorph actuator based on polyvinylidene fluoride and its electrostrictive terpolymer

    Science.gov (United States)

    Engel, Leeya; Van Volkinburg, Kyle R.; Ben-David, Moti; Washington, Gregory N.; Krylov, Slava; Shacham-Diamand, Yosi

    2016-04-01

    In this paper, we report on the fabrication of a self-sensing electroactive polymer cantilevered bimorph beam actuator and its frequency response. Tip deflections of the beam, induced by applying an AC signal across ferroelectric relaxor polyvinylidene fluoride-trifluoroethylene chlorotrifluoroethylene (P(VDF-TrFE-CTFE)), reached a magnitude of 350μm under a field of ~55MV/m and were recorded externally using a laser Doppler vibrometer (LDV). Deflections were determined simultaneously by applying a sensing model to the voltage measured across the bimorph's integrated layer of piezoelectric polymer polyvinylidene fluoride (PVDF). The sensing model treats the structure as a simple Euler- Bernoulli cantilevered beam with two distributed active elements represented through the use of generalized functions and offers a method through which real time tip deflection can be measured without the need for external visualization. When not being used as a sensing element, the PVDF layer can provide an additional means for actuation of the beam via the converse piezoelectric effect, resulting in bidirectional control of the beam's deflections. Integration of flexible sensing elements together with modeling of the electroactive polymer beam can benefit the developing field of polymer microactuators which have applications in soft robotics as "smart" prosthetics/implants, haptic displays, tools for less invasive surgery, and sensing.

  16. A study of metalized electrode self-clearing in electroactive polymer (EAP) based actuators

    Science.gov (United States)

    Ahmed, Saad; Ounaies, Zoubeida

    2016-04-01

    Electroactive polymer (EAP) based technologies have shown promise in areas such as artificial muscles, actuator, aerospace, medical and soft robotics. Still challenges remain such as low induced forces and defects-driven electrical breakdown, which impede the practical implementation of this technology. Multilayered or stacked configuration can address the low induced force issue whereas self-clearing can be a technique to improve breakdown limit of EAP based actuators. Self-clearing refers to the partial local breakdown of dielectric medium due to the presence of impurities, which in turn results in the evaporation of some of the metalized electrode. After this evaporation, the impurity is cleared and any current path would be safely cut off, which means the actuator continues to perform. It is a widely studied concept in the capacitor community, while it has not been studied much for EAP technologies. In this paper we report a systematic approach to precondition a silver-metalized electroactive polymer (EAP), more specifically P(VDF-TrFE-CTFE) terpolymer, using self-clearing concept. First, we show improvement in the dielectric breakdown strength of EAP based unimorph actuators after pre-clearing the impurities using low electric field (lower than dielectric breakdown of the terpolymer). Inspired by this improvement, we used Weibull statistics to systematically estimate the self-clearing/ preconditioning field needed to clear the defects. Then electrical breakdown experiments are conducted with and without preconditioning the samples to investigate its effect on the breakdown strength of the sample.

  17. Multiscale Simulations of Energy Storage in Polymers

    Science.gov (United States)

    Ranjan, V.; van Duin, A.; Buongiorno Nardelli, M.; Bernholc, J.

    2012-02-01

    Polypropelene is the most used capacitor dielectric for high energy density storage. However, exotic materials such as copolymerized PVDF and, more recently, polythiourea, could potentially lead to an order of magnitude increase in the stored energy density [1,2]. In our previous investigations we demonstrated that PVDF-CTFE possesses non-linear dielectric properties under applied electric field. These are characterized by transitions from non-polar to polar phases that lead enhanced energy density. Recent experiments [3] have also suggested that polythiourea may be another potential system with high energy-density storage and low loss. However, the characteristics of this emerging material are not yet understood and even its preferred crystalline phases are not known. We have developed a multiscale approach to predicting polymer self-organization using the REAX force field and molecular dynamics simulations. We find that polythiourea chains tend to coalesce in nanoribbon-type structures and prefer an anti-polar interchain ordering similar to PVDF. These results suggest a possible role of topological phase transitions in shaping energy storage in this system.[4pt] [1] B. Chu et al, Science 313, 334 (2006).[0pt] [2] V. Ranjan et al., PRL 99, 047801 (2007).[0pt] [3] Q. Zhang, private communication

  18. Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy.

    Science.gov (United States)

    Romanyuk, Konstantin; Costa, Carlos M; Luchkin, Sergey Yu; Kholkin, Andrei L; Lanceros-Méndez, Senentxu

    2016-05-31

    Efficiency of lithium-ion batteries largely relies on the performance of battery separator membrane as it controls the mobility and concentration of Li-ions between the anode and cathode electrodes. Recent advances in electrochemical strain microscopy (ESM) prompted the study of Li diffusion and transport at the nanoscale via electromechanical strain developed under an application of inhomogeneous electric field applied via the sharp ESM tip. In this work, we observed unexpectedly high electromechanical strain developed in polymer membranes based on porous poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and, using it, could study a dynamics of electroosmotic flow of electrolyte inside the pores. We show that, independently of the separator membrane, electric field-induced deformation observed by ESM on wetted membrane surfaces can reach up to 10 nm under a moderate bias of 1 V (i.e., more than an order of magnitude higher than that in best piezoceramics). Such a high strain is explained by the electroosmotic flow in a porous media composed of PVDF. It is shown that the strain-based ESM method can be used to extract valuable information such as average pore size, porosity, elasticity of membrane in electrolyte solvent, and membrane-electrolyte affinity expressed in terms of zeta potential. Besides, such systems can, in principle, serve as actuators even in the absence of apparent piezoelectricity in amorphous PVDF.

  19. Surface Modification of Fluororubber Using Atmospheric Pressure Dielectric Barrier Discharge (DBD)

    Institute of Scientific and Technical Information of China (English)

    TONG Wei; LU Canhui; CAI Yongkun; HUANG Yigang

    2007-01-01

    Fluoride rubber F2311 film, an alternating copolymer of CF2-CFC1 (CTFE) and CH2-CF2 (VF2) components, was treated by atmospheric pressure dielectric barrier discharge (DBD) in air. The surface structure, topography and surface chemistry of the treated F2311 films were characterized by contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), respectively. The experimental results showed that a short time air plasma treatment led to morphological, wettability and chemical changes in the F2311 films. The surface hydrophilicity increased greatly after the plasma treatment, the static water contact angle decreased from 98.6° to 32°, and oxygen containing groups (C=O, O-C=O, etc. ) were introduced. Atomic force microscopy revealed that plasma produced by DBD etched F2311 films obviously. The roughness of the samples increased remarkably with the formation of peaks and valleys on the treated surfaces. The increased surface wettability may be correlated with both the introduction of hydrophilic groups due to air plasma oxidation of the surface and the change in surface morphology etched by DBD.

  20. Modifications in optical and structural properties of PMMA/PCTFE blend films as a function of PCTFE concentration

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J., E-mail: jtripathi00@gmail.com [Dept. of Physics, ISLE, IPS Academy, Indore (India); Sharma, A. [Dept. of Physics, Manipal University Jaipur, Jaipur (India); Tripathi, S. [UGC-DAE Consortium for Scientific Research, Indore (India); Bisen, R. [Dept. of Physics, ISLE, IPS Academy, Indore (India); Agrawal, A. [Dept. of Elect. and Commun., Global Engineering College, Jabalpur (India)

    2017-06-15

    The poly (methyl methacrylate) (PMMA) polymer blend films were prepared by solution casting method with varying PolyChloroTriFluoroEthylene (PCTFE) concentrations (1–5 wt %). The crystallinity, bonding behavior and disorder in the films were investigated with X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV–visible and ellipsometry techniques, while surface morphology was studied using Atomic force microscopy (AFM). The nanocrystalline nature of PMMA is seen to be preserved in the blends although there are clear indications of bond modifications. The addition of PCTFE results in the improvement of overall crystallinity of the films via the interaction among PMMA and degraded PCTFE molecules when the films are casted from diluted solutions. In agreement, corresponding disorder in terms of Urbach energy shows a decreasing trend upon inclusion of more and more PCTFE molecules. Micro-Raman spectra are dominated by fluorescence background, which is proposed as arising from degraded PCTFE. Supporting this, FTIR spectra also shows modifications in bonding as a function of PCTFE percentage, but this bond modification is not enough to produce refractive index variation in the sample, which is dominated by the host PMMA contribution for all the PCTFE concentrations. The study suggests the useful range of PCTFE concentration in which PMMA host properties can be modified for optimizing optical and structural properties without much degradation of PCTFE. - Highlights: • PMMA blend films with varying PCTFE concentrations (1–5 wt%) were prepared. • Nanocrystalline nature of PMMA is preserved in spite of bond modifications. • Addition of PCTFE results in improvement of overall crystallinity of the films. • Urbach energy shows a decreasing Disorder upon inclusion of more PCTFE molecules. • FTIR spectra show bond modifications without changing refractive index.

  1. Phase Transitions as a Novel Mechanism for High-Speed Energy Storage

    Science.gov (United States)

    Bernholc, Jerry

    2013-03-01

    In many energy applications there is an urgent need to store and quickly discharge large amounts of electrical energy. Since capacitors can be discharged far quicker than batteries and fuel cells, they have much higher power densities. At present, highly insulating polymers with large breakdown fields, such as polypropylene, are the dielectrics of choice in high-power capacitors. However, their energy densities are quite low because of small dielectric constants. Ferroelectric polymers from the PVDF family have significantly larger dielectric constants, yet their energy densities are still rather low. This can be traced to early saturation of their displacement fields with the applied electric field, and to somewhat lower breakdown fields. However, an admixture of a small amount of another polymer, such as CTFE, results in a dramatic increase in the stored energy. We show that this highly non-linear increase in the energy density is due to the formation of disordered nanodomains with different copolymer concentrations, which undergo first-order non-polar to polar phase transitions with an increase of the applied field. The resulting energy density profile reproduces well the experimental data, while its variation with co-polymer concentration and distribution suggest avenues for additional substantial improvements in the stored energy. Most recently, we have identified a low-activation-energy pathway for these successive phase transformations. It provides further confirmation of the viability of the suggested energy storage mechanism and also enables fine-tuning of the kinetics of energy release by informed choices of suitable co-polymers. In collaboration with V. Ranjan, L. Yu, M. Buongiorno Nardelli and R. Dong.

  2. Process Optimization of P(VDF-TrFE)-BaTiO3 Nanocomposites for Storage Capacitor Applications

    KAUST Repository

    Almadhoun, Mahmoud N.

    2011-07-11

    Increasing demands for efficient energy storage in microelectronics has pushed the scientific community towards finding suitable materials that can effectively deliver high pulse power in miniaturized systems. Polymer-ceramic composites are considered to be one possible solution towards the fabrication of high energy density capacitors, whether as embedded capacitors or gate insulators in organic field effect transistors (OFETs). Selecting high permittivity ceramics mixed with polymers with high breakdown field strengths would be the wisest approach towards enhancing energy storage. As such, novel ferroelectric polymers such as P(VDF-TrFE-CTFE) are being developed and researched, all displaying record dielectric values (K > 50) as promising candidates for high energy density composite capacitors (> 25 J/cm3). However, much work is still needed to understand the interaction mechanisms between the phases. We aim to seek an understanding of the processing challenges, especially in terms of fabricating thin film ferroelectric polymers and their application in nanocomposite capacitors while effectively maintaining optimized performance when embedded in flexible electronics. A process for synthesizing high performance P(VDF-TrFE) thin films is developed realizing the importance of controlling several process parameters to achieve high quality devices. Electrical and physicochemical characterization demonstrate how the performance of the polymer films improves with prolonged annealing periods by allowing sufficient time for solvent evaporation, crystallization and preferential-orientation of the crystallites. The polymer P(VDF-TrFE) is then used as a host material with barium titanate (BTO) nanoparticles below 100 nm (K = 150) as a ceramic filler in nanocomposite films. Facile surface modification by hydroxylation proved to be essential in the performance of the devices in terms of leakage current. A decrease of approximately 2 orders of magnitude in current leakage is

  3. The First 24 Years of Reverse Monte Carlo Modelling, Budapest, Hungary, 20-22 September 2012

    Science.gov (United States)

    Keen, David A.; Pusztai, László

    2013-11-01

    structure of the plastic crystalline and liquid phases of CBr2Cl2: neutron diffraction and reverse Monte Carlo modellingSzilvia Pothoczki1, László Temleitner, Luis Carlos Pardo, Gabriel Julio Cuello, Muriel Rovira-Esteva and Josep Lluis Tamarit Insights into the determination of molecular structure from diffraction data using a Bayesian algorithmA Henao, M Rovira-Esteva, A Vispa, J Ll Tamarit, E Guardia and L C Pardo Nanostructure determination from the pair distribution function: a parametric study of the INVERT approachMatthew J Cliffe and Andrew L Goodwin Empirical potential structure refinement of semi-crystalline polymer systems: polytetrafluoroethylene and polychlorotrifluoroethyleneA K Soper, K Page and A Llobet spinvert: a program for refinement of paramagnetic diffuse scattering dataJoseph A M Paddison, J Ross Stewart and Andrew L Goodwin Inter-molecular correlations in liquid Se2Br2Hironori Shimakura, Yukinobu Kawakita, Koji Ohara, László Pusztai, Yuiko Wakisaka and Shin'ichi Takeda RMCgui: a new interface for the workflow associated with running Reverse Monte Carlo simulationsMartin T Dove and Gary Rigg