WorldWideScience

Sample records for ct reconstruction estimation

  1. Motion estimation and compensation in dynamic spiral CT reconstruction

    International Nuclear Information System (INIS)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St.

    2004-01-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  2. Motion estimation and compensation in dynamic spiral CT reconstruction; Estimation et compensation de mouvement en reconstruction dynamique de tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St

    2004-07-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  3. Estimating local noise power spectrum from a few FBP-reconstructed CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Rongping, E-mail: rongping.zeng@fda.hhs.gov; Gavrielides, Marios A.; Petrick, Nicholas; Sahiner, Berkman; Li, Qin; Myers, Kyle J. [Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring, Maryland 20993 (United States)

    2016-01-15

    Purpose: Traditional ways to estimate 2D CT noise power spectrum (NPS) involve an ensemble average of the power spectrums of many noisy scans. When only a few scans are available, regions of interest are often extracted from different locations to obtain sufficient samples to estimate the NPS. Using image samples from different locations ignores the nonstationarity of CT noise and thus cannot accurately characterize its local properties. The purpose of this work is to develop a method to estimate local NPS using only a few fan-beam CT scans. Methods: As a result of FBP reconstruction, the CT NPS has the same radial profile shape for all projection angles, with the magnitude varying with the noise level in the raw data measurement. This allows a 2D CT NPS to be factored into products of a 1D angular and a 1D radial function in polar coordinates. The polar separability of CT NPS greatly reduces the data requirement for estimating the NPS. The authors use this property and derive a radial NPS estimation method: in brief, the radial profile shape is estimated from a traditional NPS based on image samples extracted at multiple locations. The amplitudes are estimated by fitting the traditional local NPS to the estimated radial profile shape. The estimated radial profile shape and amplitudes are then combined to form a final estimate of the local NPS. We evaluate the accuracy of the radial NPS method and compared it to traditional NPS methods in terms of normalized mean squared error (NMSE) and signal detectability index. Results: For both simulated and real CT data sets, the local NPS estimated with no more than six scans using the radial NPS method was very close to the reference NPS, according to the metrics of NMSE and detectability index. Even with only two scans, the radial NPS method was able to achieve a fairly good accuracy. Compared to those estimated using traditional NPS methods, the accuracy improvement was substantial when a few scans were available

  4. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    International Nuclear Information System (INIS)

    Wang, Jing; Gu, Xuejun

    2013-01-01

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  5. Task-based detectability in CT image reconstruction by filtered backprojection and penalized likelihood estimation

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Grace J. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Department of Biomedical Engineering, Johns Hopkins University, Baltimore Maryland 21205 (Canada); Stayman, J. Webster; Zbijewski, Wojciech [Department of Biomedical Engineering, Johns Hopkins University, Baltimore Maryland 21205 (United States); Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-08-15

    Purpose: Nonstationarity is an important aspect of imaging performance in CT and cone-beam CT (CBCT), especially for systems employing iterative reconstruction. This work presents a theoretical framework for both filtered-backprojection (FBP) and penalized-likelihood (PL) reconstruction that includes explicit descriptions of nonstationary noise, spatial resolution, and task-based detectability index. Potential utility of the model was demonstrated in the optimal selection of regularization parameters in PL reconstruction. Methods: Analytical models for local modulation transfer function (MTF) and noise-power spectrum (NPS) were investigated for both FBP and PL reconstruction, including explicit dependence on the object and spatial location. For FBP, a cascaded systems analysis framework was adapted to account for nonstationarity by separately calculating fluence and system gains for each ray passing through any given voxel. For PL, the point-spread function and covariance were derived using the implicit function theorem and first-order Taylor expansion according toFessler [“Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomography,” IEEE Trans. Image Process. 5(3), 493–506 (1996)]. Detectability index was calculated for a variety of simple tasks. The model for PL was used in selecting the regularization strength parameter to optimize task-based performance, with both a constant and a spatially varying regularization map. Results: Theoretical models of FBP and PL were validated in 2D simulated fan-beam data and found to yield accurate predictions of local MTF and NPS as a function of the object and the spatial location. The NPS for both FBP and PL exhibit similar anisotropic nature depending on the pathlength (and therefore, the object and spatial location within the object) traversed by each ray, with the PL NPS experiencing greater smoothing along directions with higher noise. The MTF of FBP

  6. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  7. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  8. Estimation of diastolic filling pressure with cardiac CT in comparison with echocardiography using tissue doppler imaging: Determination of optimal CT reconstruction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji Sun; Suh, Jon; Lee, Heon [Soonchunhyang University Hospital Bucheon, Bucheon (Korea, Republic of); Lee, Bora [Dept. of Biostatistics, Soonchunhyang University College of Medicine, Seoul (Korea, Republic of); Lee, Soo Jeong [Terarecon Korea, Seoul (Korea, Republic of); Jou, Sung Shick [Dept. of Radiology, Soonchunhyang University Hospital Cheonan, Cheonan (Korea, Republic of); Lim, Hyun Kyung [Dept. of Radiology, Soonchunhyang University Hospital Seoul, Seoul (Korea, Republic of)

    2017-08-01

    To determine the optimal CT image reconstruction parameters for the measurement of early transmitral peak velocity (E), early peak mitral septal tissue velocity (E′), and E / E′. Forty-six patients underwent simultaneous cardiac CT and echocardiography on the same day. Four CT datasets were reconstructed with a slice thickness/interval of 0.9/0.9 mm or 3/3 mm at 10 (10% RR-interval) or 20 (5% RR-interval) RR-intervals. The E was calculated by dividing the peak transmitral flow (mL/s) by the corresponding mitral valve area (cm{sup 2}). E′ was calculated from the changes in the left ventricular length per cardiac phase. E / E′ was then estimated and compared with that from echocardiography. For assessment of E / E′, CT and echocardiography were more strongly correlated (p < 0.05) with a slice thickness of 0.9 mm and 5% RR-interval (r = 0.77) than with 3 mm or 10% RR-interval. The diagnostic accuracy of predicting elevated filling pressure (E / E′ ≥ 13, n = 14) was better with a slice thickness of 0.9 mm and 5% RR-interval (87.0%) than with 0.9 mm and 10% RR-interval (71.7%) (p = 0.123) and significantly higher than that with a slice thickness of 3 mm with 5% (67.4%) and 10% RR-interval (63.0%), (p < 0.05), respectively. Data reconstruction with a slice thickness of 0.9 mm at 5% RR-interval is superior to that with a slice thickness of 3 mm or 10% RR-interval in terms of the correlation of E / E′ between CT and echocardiography. Thin slices and frequent sampling also allow for more accurate prediction of elevated filling pressure.

  9. Reconstruction of limited-angle dual-energy CT using mutual learning and cross-estimation (MLCE)

    Science.gov (United States)

    Zhang, Huayu; Xing, Yuxiang

    2016-03-01

    Dual-energy CT (DECT) imaging has gained a lot of attenuation because of its capability to discriminate materials. We proposes a flexible DECT scan strategy which can be realized on a system with general X-ray sources and detectors. In order to lower dose and scanning time, our DECT acquires two projections data sets on two arcs of limited-angular coverage (one for each energy) respectively. Meanwhile, a certain number of rays from two data sets form conjugate sampling pairs. Our reconstruction method for such a DECT scan mainly tackles the consequent limited-angle problem. Using the idea of artificial neural network, we excavate the connection between projections at two different energies by constructing a relationship between the linear attenuation coefficient of the high energy and that of the low one. We use this relationship to cross-estimate missing projections and reconstruct attenuation images from an augmented data set including projections at views covered by itself (projections collected in scanning) and by the other energy (projections estimated) for each energy respectively. Validated by our numerical experiment on a dental phantom with rather complex structures, our DECT is effective in recovering small structures in severe limited-angle situations. This DECT scanning strategy can much broaden DECT design in reality.

  10. Evaluation of penalized likelihood estimation reconstruction on a digital time-of-flight PET/CT scanner for 18F-FDG whole-body examinations.

    Science.gov (United States)

    Lindström, Elin; Sundin, Anders; Trampal, Carlos; Lindsjö, Lars; Ilan, Ezgi; Danfors, Torsten; Antoni, Gunnar; Sörensen, Jens; Lubberink, Mark

    2018-02-15

    Resolution and quantitative accuracy of positron emission tomography (PET) are highly influenced by the reconstruction method. Penalized likelihood estimation algorithms allow for fully convergent iterative reconstruction, generating a higher image contrast while limiting noise compared to ordered subsets expectation maximization (OSEM). In this study, block-sequential regularized expectation maximization (BSREM) was compared to time-of-flight OSEM (TOF-OSEM). Various strengths of noise penalization factor β were tested along with scan durations and transaxial field of views (FOVs) with the aim to evaluate the performance and clinical use of BSREM for 18 F-FDG-PET-computed tomography (CT), both in quantitative terms and in a qualitative visual evaluation. Methods: Eleven clinical whole-body 18 F-FDG-PET/CT examinations acquired on a digital TOF PET/CT scanner were included. The data were reconstructed using BSREM with point spread function (PSF) recovery and β 133, 267, 400 and 533, and TOF-OSEM with PSF, for various acquisition times/bed position (bp) and FOVs. Noise, signal-to-noise ratio (SNR), signal-to-background ratio (SBR), and standardized uptake values (SUVs) were analysed. A blinded visual image quality evaluation, rating several aspects, performed by two nuclear medicine physicians complemented the analysis. Results: The lowest levels of noise were reached with the highest β resulting in the highest SNR, which in turn resulted in the lowest SBR. Noise equivalence to TOF-OSEM was found with β 400 but produced a significant increase of SUV max (11%), SNR (22%) and SBR (12%) compared to TOF-OSEM. BSREM with β 533 at decreased acquisition (2 min/bp) was comparable to TOF-OSEM at full acquisition duration (3 min/bp). Reconstructed FOV had an impact on BSREM outcome measures, SNR increased while SBR decreased when shifting FOV from 70 to 50 cm. The visual image quality evaluation resulted in similar scores for reconstructions although β 400 obtained the

  11. SU-E-T-143: Effect of X-Ray and Cone Beam CT Reconstruction Parameters On Estimation of Bone Volume of Mice Used in Aging Research

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.

  12. Research of ART method in CT image reconstruction

    International Nuclear Information System (INIS)

    Li Zhipeng; Cong Peng; Wu Haifeng

    2005-01-01

    This paper studied Algebraic Reconstruction Technique (ART) in CT image reconstruction. Discussed the ray number influence on image quality. And the adopting of smooth method got high quality CT image. (authors)

  13. Filtered backprojection proton CT reconstruction along most likely paths

    Energy Technology Data Exchange (ETDEWEB)

    Rit, Simon; Dedes, George; Freud, Nicolas; Sarrut, David; Letang, Jean Michel [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Universite Lyon 1, Centre Leon Berard, 69008 Lyon (France)

    2013-03-15

    Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not accounted for. The authors propose to account for an estimate of the most likely path of protons in a filtered backprojection (FBP) reconstruction algorithm. Methods: The energy loss of protons is first binned in several proton radiographs at different distances to the proton source to exploit the depth-dependency of the estimate of the most likely path. This process is named the distance-driven binning. A voxel-specific backprojection is then used to select the adequate radiograph in the distance-driven binning in order to propagate in the pCT image the best achievable spatial resolution in proton radiographs. The improvement in spatial resolution is demonstrated using Monte Carlo simulations of resolution phantoms. Results: The spatial resolution in the distance-driven binning depended on the distance of the objects from the source and was optimal in the binned radiograph corresponding to that distance. The spatial resolution in the reconstructed pCT images decreased with the depth in the scanned object but it was always better than previous FBP algorithms assuming straight line paths. In a water cylinder with 20 cm diameter, the observed range of spatial resolutions was 0.7 - 1.6 mm compared to 1.0 - 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in shorter 200 Degree-Sign scans. Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection reconstruction using most likely path estimates of protons. The improvement in spatial resolution combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms makes this new algorithm a candidate of choice for clinical pCT.

  14. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  15. Parallel CT image reconstruction based on GPUs

    International Nuclear Information System (INIS)

    Flores, Liubov A.; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2014-01-01

    In X-ray computed tomography (CT) iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions from a small number of projections. However, in practice, these methods are not widely used due to the high computational cost of their implementation. Nowadays technology provides the possibility to reduce effectively this drawback. It is the goal of this work to develop a fast GPU-based algorithm to reconstruct high quality images from under sampled and noisy projection data. - Highlights: • We developed GPU-based iterative algorithm to reconstruct images. • Iterative algorithms are capable to reconstruct images from under sampled set of projections. • The computer cost of the implementation of the developed algorithm is low. • The efficiency of the algorithm increases for the large scale problems

  16. Fast parallel algorithm for CT image reconstruction.

    Science.gov (United States)

    Flores, Liubov A; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2012-01-01

    In X-ray computed tomography (CT) the X rays are used to obtain the projection data needed to generate an image of the inside of an object. The image can be generated with different techniques. Iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions and from a small number of projections. Their use may be important in portable scanners for their functionality in emergency situations. However, in practice, these methods are not widely used due to the high computational cost of their implementation. In this work we analyze iterative parallel image reconstruction with the Portable Extensive Toolkit for Scientific computation (PETSc).

  17. Iterative reconstruction reduces abdominal CT dose

    International Nuclear Information System (INIS)

    Martinsen, Anne Catrine Trægde; Sæther, Hilde Kjernlie; Hol, Per Kristian; Olsen, Dag Rune; Skaane, Per

    2012-01-01

    Objective: In medical imaging, lowering radiation dose from computed tomography scanning, without reducing diagnostic performance is a desired achievement. Iterative image reconstruction may be one tool to achieve dose reduction. This study reports the diagnostic performance using a blending of 50% statistical iterative reconstruction (ASIR) and filtered back projection reconstruction (FBP) compared to standard FBP image reconstruction at different dose levels for liver phantom examinations. Methods: An anthropomorphic liver phantom was scanned at 250, 185, 155, 140, 120 and 100 mA s, on a 64-slice GE Lightspeed VCT scanner. All scans were reconstructed with ASIR and FBP. Four readers evaluated independently on a 5-point scale 21 images, each containing 32 test sectors. In total 672 areas were assessed. ROC analysis was used to evaluate the differences. Results: There was a difference in AUC between the 250 mA s FBP images and the 120 and 100 mA s FBP images. ASIR reconstruction gave a significantly higher diagnostic performance compared to standard reconstruction at 100 mA s. Conclusion: A blending of 50–90% ASIR and FBP may improve image quality of low dose CT examinations of the liver, and thus give a potential for reducing radiation dose.

  18. Accelerated Compressed Sensing Based CT Image Reconstruction.

    Science.gov (United States)

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  19. Accelerated Compressed Sensing Based CT Image Reconstruction

    Directory of Open Access Journals (Sweden)

    SayedMasoud Hashemi

    2015-01-01

    Full Text Available In X-ray computed tomography (CT an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  20. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  1. Superiority of CT imaging reconstruction on Linux OS

    International Nuclear Information System (INIS)

    Lin Shaochun; Yan Xufeng; Wu Tengfang; Luo Xiaomei; Cai Huasong

    2010-01-01

    Objective: To compare the speed of CT reconstruction using the Linux and Windows OS. Methods: Shepp-Logan head phantom in different pixel size was projected to obtain the sinogram by using the inverse Fourier transformation, filtered back projection and Radon transformation on both Linux and Windows OS. Results: CT image reconstruction using the Linux operating system was significantly better and more efficient than Windows. Conclusion: CT image reconstruction using the Linux operating system is more efficient. (authors)

  2. Impact of iterative reconstruction on CT coronary calcium quantification

    DEFF Research Database (Denmark)

    Kurata, Akira; Dharampal, Anoeshka; Dedic, Admir

    2013-01-01

    We evaluated the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on the coronary artery calcium (CAC) score by computed tomography (CT).......We evaluated the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on the coronary artery calcium (CAC) score by computed tomography (CT)....

  3. Experimental validation of incomplete data CT image reconstruction techniques

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Hsiao, M.L.; Tam, K.C.

    1989-01-01

    X-ray CT inspection of large metal parts is often limited by x-ray penetration problems along many of the ray paths required for a complete CT data set. In addition, because of the complex geometry of many industrial parts, manipulation difficulties often prevent scanning over some range of angles. CT images reconstructed from these incomplete data sets contain a variety of artifacts which limit their usefulness in part quality determination. Over the past several years, the authors' company has developed 2 new methods of incorporating a priori information about the parts under inspection to significantly improve incomplete data CT image quality. This work reviews the methods which were developed and presents experimental results which confirm the effectiveness of the techniques. The new methods for dealing with incomplete CT data sets rely on a priori information from part blueprints (in electronic form), outer boundary information from touch sensors, estimates of part outer boundaries from available x-ray data, and linear x-ray attenuation coefficients of the part. The two methods make use of this information in different fashions. The relative performance of the two methods in detecting various flaw types is compared. Methods for accurately registering a priori information with x-ray data are also described. These results are critical to a new industrial x-ray inspection cell built for inspection of large aircraft engine parts

  4. Clinical investigation of flat panel CT following middle ear reconstruction: a study of 107 patients

    Energy Technology Data Exchange (ETDEWEB)

    Zaoui, K. [University Hospital Heidelberg, Ruprecht Karls University, Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg (Germany); Kromeier, J. [St. Josefs Hospital, RkK, Department of Radiology, Freiburg (Germany); Neudert, M.; Beleites, T.; Zahnert, T. [University Hospital Dresden, Technical University, Department of Otorhinolaryngology, Head and Neck Surgery, Dresden (Germany); Laszig, R.; Offergeld, C. [University Hospital Freiburg, Albert Ludwigs University, Department of Otorhinolaryngology, Head and Neck Surgery, Freiburg (Germany)

    2014-03-15

    After middle ear reconstruction using partial or total ossicular replacement prostheses (PORP/TORP), an air-bone gap (ABG) may persist because of prosthesis displacement or malposition. So far, CT of the temporal bone has played the main role in the diagnosis of reasons for postoperative insufficient ABG improvement. Recent experimental and clinical studies have evaluated flat panel CT (fpCT) as an alternative imaging technique that provides images with high isovolumetric resolution, fewer metal-induced artefacts and lower irradiation doses. One hundred and seven consecutive patients with chronic otitis media with or without cholesteatoma underwent reconstruction by PORP (n = 52) or TORP (n = 55). All subjects underwent preoperative and postoperative audiometric testing and postoperative fpCT. Statistical evaluation of all 107 patients as well as the sole sub-assembly groups (PORP or TORP) showed a highly significant correlation between hearing improvement and fpCT-determined prosthesis position. FpCT enables detailed postoperative information on patients with middle ear reconstruction. FpCT is a new imaging technique that provides immediate feedback on surgical results after reconstructive middle ear surgery. Specific parameters evaluated by fpCT may serve as a predictive tool for estimated postoperative hearing improvement. Therefore this imaging technique is suitable for postoperative quality control in reconstructive middle ear surgery. (orig.)

  5. Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory

    International Nuclear Information System (INIS)

    Hu, Zhanli; Zou, Jing; Gui, Jianbao; Zheng, Hairong; Xia, Dan

    2013-01-01

    Dental CT is the most appropriate and accurate device for preoperative evaluation of dental implantation. It can demonstrate the quantity of bone in three dimensions (3D), the location of important adjacent anatomic structures and the quality of available bone with minimal geometric distortion. Nevertheless, with the rapid increase of dental CT examinations, we are facing the problem of dose reduction without loss of image quality. In this work, backprojection-filtration (BPF) and Feldkamp–Davis–Kress (FDK) algorithm was applied to reconstruct the 3D full image and region-of-interest (ROI) image from complete and truncated circular cone-beam data respectively by computer-simulation. In addition, the BPF algorithm was evaluated based on the 3D ROI-image reconstruction from real data, which was acquired from our developed circular cone-beam prototype dental CT system. The results demonstrated that the ROI-image quality reconstructed from truncated data using the BPF algorithm was comparable to that reconstructed from complete data. The FDK algorithm, however, created artifacts while reconstructing ROI-image. Thus it can be seen, for circular cone-beam dental CT, reducing scanning angular range of the BPF algorithm used for ROI-image reconstruction are helpful for reducing the radiation dose and scanning time. Finally, an analytical method was developed for estimation of the ROI projection area on the detector before CT scanning, which would help doctors to roughly estimate the total radiation dose before the CT examination. -- Highlights: ► BPF algorithm was applied by using dental CT for the first time. ► A method was developed for estimation of projection region before CT scanning. ► Roughly predict the total radiation dose before CT scans. ► Potential reduce imaging radiation dose, scatter, and scanning time

  6. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms

    International Nuclear Information System (INIS)

    Khawaja, Ranish Deedar Ali; Singh, Sarabjeet; Otrakji, Alexi; Padole, Atul; Lim, Ruth; Nimkin, Katherine; Westra, Sjirk; Kalra, Mannudeep K.; Gee, Michael S.

    2015-01-01

    Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT. (orig.)

  7. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, Ranish Deedar Ali; Singh, Sarabjeet; Otrakji, Alexi; Padole, Atul; Lim, Ruth; Nimkin, Katherine; Westra, Sjirk; Kalra, Mannudeep K.; Gee, Michael S. [MGH Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT. (orig.)

  8. Reconstruction CT imaging of the hypopharynx and the larynx

    International Nuclear Information System (INIS)

    Okuno, Tetsuji; Fujimura, Akiko; Murakami, Yasushi; Shiga, Hayao

    1986-01-01

    The multiplanar reconstruction CT imaging of the hypopharynx and the larynx was performed on a total of 20 cases: 8 with laryngeal carcinomas, 6 with hypopharyngeal carcinomas, 4 with vocal cord paralyses due to various causes, 1 with laryngeal amyloidosis, 1 with inflammatory granuloma of the hypopharynx. Coronal, segittal, and parasagittal reconstruction images were obtained from either 1 or 2 mm overlapping axial scans with 4 or 5 mm slice thickness (3 cases) using 5 sec scan times during queit breathing. In 15 cases with coronal reconstruction imaging, the anatomical derangements of the laryngopharyngeal structures especially along the undersurface of the true vocal cord to the false cord level, the lateral wall of the pyriform sinus, and the paraglottic space were demonstrated more clearly than the axial CT imaging. In 5 cases with sagittal reconstruction imaging, the vertical extension of the lesions through the anterior commisure was more clearly depicted than the axial CT imaging. In 8 cases with parasagittal reconstruction imaging, which is along the vocal fold or across the aryepiglottic fold, pathological changes along the aryepiglottic fold, the arytenoid-corniculate cartilage complex, and the tip of the pyriform sinus were more clearly demonstrated than the axial CT imaging. In determining the feasibility of conservation surgery of the larynx and the hypopharynx, reconstruction CT imaging is recommended as the diagnostic procedure of a choice, which would supplement the findings of the routine axial CT imaging. (author)

  9. Iterative CT reconstruction via minimizing adaptively reweighted total variation.

    Science.gov (United States)

    Zhu, Lei; Niu, Tianye; Petrongolo, Michael

    2014-01-01

    Iterative reconstruction via total variation (TV) minimization has demonstrated great successes in accurate CT imaging from under-sampled projections. When projections are further reduced, over-smoothing artifacts appear in the current reconstruction especially around the structure boundaries. We propose a practical algorithm to improve TV-minimization based CT reconstruction on very few projection data. Based on the theory of compressed sensing, the L-0 norm approach is more desirable to further reduce the projection views. To overcome the computational difficulty of the non-convex optimization of the L-0 norm, we implement an adaptive weighting scheme to approximate the solution via a series of TV minimizations for practical use in CT reconstruction. The weight on TV is initialized as uniform ones, and is automatically changed based on the gradient of the reconstructed image from the previous iteration. The iteration stops when a small difference between the weighted TV values is observed on two consecutive reconstructed images. We evaluate the proposed algorithm on both a digital phantom and a physical phantom. Using 20 equiangular projections, our method reduces reconstruction errors in the conventional TV minimization by a factor of more than 5, with improved spatial resolution. By adaptively reweighting TV in iterative CT reconstruction, we successfully further reduce the projection number for the same or better image quality.

  10. Brachytherapy reconstruction using orthogonal scout views from the CT

    International Nuclear Information System (INIS)

    Perez, J.; Lliso, F.; Carmona, V.; Bea, J.; Tormo, A.; Petschen, I.

    1996-01-01

    Introduction: CT assisted brachytherapy planning is demonstrating to have great advantages as external RT planning does. One of the problems we have found in this approach with the conventional gynecological Fletcher applicators is the high amount of artefacts (ovoids with rectal and vessical protections) in the CT slice. We have introduced a reconstruction method based on scout views in order to avoid this problem, allowing us to perform brachytherapy reconstruction completely CT assisted. We use a virtual simulation chain by General Electric Medical Systems. Method and discussion: Two orthogonal scout views (0 and 90 tube positions) are performed. The reconstruction method takes into account the virtual position of the focus and the fact that there is only divergence in the transverse plane. Algorithms developed for sources as well as for reference points localisation (A, B, lymphatic Fletcher trapezoid, pelvic wall, etc.) are presented. This method has the following practical advantages: the porte-cassette is not necessary, the image quality can be improved (it is very helpful in pelvic lateral views that are critical in conventional radiographs), the total time to get the data is smaller than for conventional radiographs (reduction of patient motion effects) and problems that appear in CT-slice based reconstruction in the case of strongly curved intrauterine applicators are avoided. Even though the resolution is smaller than in conventional radiographs it is good enough for brachytherapy. Regarding the CT planning this method presents the interesting feature that the co-ordinate system is the same for the reconstruction process that for the CT-slices set. As the application can be reconstructed from scout views and the doses can be evaluated on CT slices it is easier to correlate the dose values obtained for the traditional points with those provided by the CT information

  11. Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm

    Science.gov (United States)

    Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.

    2017-03-01

    Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.

  12. Reconstructing misaligned x-ray CT data

    Energy Technology Data Exchange (ETDEWEB)

    Divin, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-24

    Misalignment errors for x-ray computed tomography (CT) systems can manifest as artifacts and a loss of spatial and contrast resolution. To mitigate artifacts, significant effort is taken to determine the system geometry and minimizing any residual error in the system alignment. This project improved our ability to post-correct data which was acquired on a misaligned CT system.

  13. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  14. Pulmonary sequestration: diagnosis with three dimensional reconstruction using spiral CT

    International Nuclear Information System (INIS)

    Nie Yongkang; Zhao Shaohong; Cai Zulong; Yang Li; Zhao Hong; Zhang Ailian; Huang Hui

    2003-01-01

    Objective: To evaluate the role of three dimensional (3D) reconstruction using spiral CT in the diagnosis of pulmonary sequestration. Methods: Ten patients with pulmonary sequestration were analyzed. The diagnoses were confirmed by angiography in 2 patients, by operation in 2 patients, and by CT angiography in 6 patients. All patients were examined with Philips SR 7000 or GE Lightspeed Plus scanner. CT images were transferred to a workstation and 3D reconstruction was performed. All images were reviewed and analyzed by two radiologists. Results: Among 10 patients, the pulmonary sequestration was in the right lower lobe in 1 patient and in the left lower lobe in 9 patients. Anomalous systemic arteries originated from thoracic aorta in 8 patients and from celiac artery in 2 patients. On plain CT scan, there were 4 patients with patchy opacities, 3 patients with hilar mass accompanying vascular engorgement and profusion in adjacent parenchyma, 2 patients with finger-like appendage surrounded by hyper-inflated lung, and 1 patient with lung mass-like lesion. Enhanced CT revealed anomalous systemic arteries in 9 patients and drainage vein in 7 patients. Maximum intensity projection (MIP) and curvilinear reconstruction could depict the abnormal systemic artery and drainage vein in sequestration. Surface shadow display (SSD) and volume rendering (VR) could delineate the anomalous systemic artery. Conclusion: 3D reconstruction with enhanced spiral CT can depict anomalous systemic artery and drainage vein and it is the first method of choice in diagnosing pulmonary sequestration

  15. Iterative CT reconstruction with correction for known rigid motion

    Energy Technology Data Exchange (ETDEWEB)

    Nuyts, Johan [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine; Kim, Jung-Ha; Fulton, Roger [Sydney Univ., NSW (Australia). School of Physics; Westmead Hospital, Sydney (Australia). Medical Physics

    2011-07-01

    In PET/CT brain imaging, correction for motion may be needed, in particular for children and psychiatric patients. Motion is more likely to occur in the lengthy PET measurement, but also during the short CT acquisition patient motion is possible. Rigid motion of the head can be measured independently from the PET/CT system with optical devices. In this paper, we propose a method and some preliminary simulation results for iterative CT reconstruction with correction for known rigid motion. We implemented an iterative algorithm for fully 3D reconstruction from helical CT scans. The motion of the head is incorporated in the system matrix as a view-dependent motion of the CT-system. The first simulation results indicate that some motion patterns may produce loss of essential data. This loss precludes exact reconstruction and results in artifacts in the reconstruction, even when motion is taken into account. However, by reducing the pitch during acquisition, the same motion pattern no longer caused artifacts in the motion corrected image. (orig.)

  16. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose

    International Nuclear Information System (INIS)

    Haggerty, Jay E.; Smith, Ethan A.; Dillman, Jonathan R.; Kunisaki, Shaun M.

    2015-01-01

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (<1 year) with congenital lung lesions was performed. CT examinations were reviewed to document the type of lung lesion, vascular anatomy, image noise measurements and image reconstruction method. CTDI vol was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P < 0.0001). Mean SSDE was different among groups (P = 0.003; FBP = 7.35 mGy, ASiR = 1.89 mGy, MBIR = 1.49 mGy). Congenital lung lesions can be adequately characterized in infants using iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose. (orig.)

  17. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, Jay E.; Smith, Ethan A.; Dillman, Jonathan R. [University of Michigan Health System, Section of Pediatric Radiology, Department of Radiology, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States); Kunisaki, Shaun M. [University of Michigan Health System, Section of Pediatric Surgery, Department of Surgery, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States)

    2015-07-15

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (<1 year) with congenital lung lesions was performed. CT examinations were reviewed to document the type of lung lesion, vascular anatomy, image noise measurements and image reconstruction method. CTDI{sub vol} was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P < 0.0001). Mean SSDE was different among groups (P = 0.003; FBP = 7.35 mGy, ASiR = 1.89 mGy, MBIR = 1.49 mGy). Congenital lung lesions can be adequately characterized in infants using iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose. (orig.)

  18. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    Science.gov (United States)

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of

  19. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    International Nuclear Information System (INIS)

    Didier, Ryne A.; Vajtai, Petra L.; Hopkins, Katharine L.

    2015-01-01

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI vol ). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI vol . Reduced CTDI vol was achieved primarily by reductions in effective tube current-time product (mAs eff ) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI vol , size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI vol was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI vol and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  20. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Didier, Ryne A. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Vajtai, Petra L. [Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Hopkins, Katharine L. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States)

    2014-07-05

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI{sub vol}). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI{sub vol}. Reduced CTDI{sub vol} was achieved primarily by reductions in effective tube current-time product (mAs{sub eff}) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI{sub vol}, size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI{sub vol} was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI{sub vol} and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  1. Application of three-dimensional CT reconstruction cranioplasty

    International Nuclear Information System (INIS)

    Yan Shuli; Yun Yongxing; Wan Kunming; Qiu Jian

    2011-01-01

    Objective: To study the application of three-dimensional CT reconstruction in cranioplasty. Methods: 46 patients with skull defect were divided into two group. One group underwent CT examination and three-dimensional reconstruction, and then the Titanium nets production company manufactured corresponding titanium meshes were shaped those data before the operation. The other group received traditional operation in which titanium meshes were shaped during operation. The average time of operation were compared. Results: The average time of operation of the first group is 86.6±13.6 mins, and that of the second group is 115±15.0 mins. The difference of average operation time between the two groups was statistically significant. Conclusion: Three-dimensional CT reconstruction techniques contribute to shorten the average operation time, reduce the intensity of neurosurgeon's work and the patien's risk. (authors)

  2. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  3. Parametric boundary reconstruction algorithm for industrial CT metrology application.

    Science.gov (United States)

    Yin, Zhye; Khare, Kedar; De Man, Bruno

    2009-01-01

    High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly

  4. Two-and three-dimensional CT reconstruction

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.

    1990-01-01

    This paper determines the optimal imaging sequence for creating two- and three-dimensional (2D/3D) skeletal reconstructions from CT data. A cadaver femur, a bone phantom, and a surgically created fracture were scanned with varying protocols to determine the optimal protocol for creating 2D/3D images. The scanning protocols used varying section thickness (2, 4, and 8 mm) as well as scan spacing (2, 3, 4 and 8 mm). All images were reconstructed into 2D data sets with a bicubic interpolation and 3D datasets with volumetric rendering. The results were reviewed by two reviewers to determine the quality of images reconstruction

  5. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  6. GPU accelerated CT reconstruction for clinical use: quality driven performance

    Science.gov (United States)

    Vaz, Michael S.; Sneyders, Yuri; McLin, Matthew; Ricker, Alan; Kimpe, Tom

    2007-03-01

    We present performance and quality analysis of GPU accelerated FDK filtered backprojection for cone beam computed tomography (CBCT) reconstruction. Our implementation of the FDK CT reconstruction algorithm does not compromise fidelity at any stage and yields a result that is within 1 HU of a reference C++ implementation. Our streaming implementation is able to perform reconstruction as the images are acquired; it addresses low latency as well as fast throughput, which are key considerations for a "real-time" design. Further, it is scaleable to multiple GPUs for increased performance. The implementation does not place any constraints on image acquisition; it works effectively for arbitrary angular coverage with arbitrary angular spacing. As such, this GPU accelerated CT reconstruction solution may easily be used with scanners that are already deployed. We are able to reconstruct a 512 x 512 x 340 volume from 625 projections, each sized 1024 x 768, in less than 50 seconds. The quoted 50 second timing encompasses the entire reconstruction using bilinear interpolation and includes filtering on the CPU, uploading the filtered projections to the GPU, and also downloading the reconstructed volume from GPU memory to system RAM.

  7. Preoperative CT angiography reduces surgery time in perforator flap reconstruction

    NARCIS (Netherlands)

    Smit, Jeroen M.; Dimopoulou, Angeliki; Liss, Anders G.; Zeebregts, Clark J.; Kildal, Morten; Whitaker, Iain S.; Magnusson, Anders; Acosta, Rafael

    The use of perforator flaps in breast reconstructions has increased considerably in the past decade. A disadvantage of the perforator flap is difficult dissection, which results in a longer procedure. During spring 2006, we introduced CT angiography (CTA) as part of the diagnostic work-up in

  8. Application of CT three-dimensional reconstruction in elbow injury

    International Nuclear Information System (INIS)

    Liang Wenhua; Qian Li

    2009-01-01

    Objective: To investigate the application of multi-slice spiral CT in fracture of elbow, and to study the value of different methods of the reconstruction. Methods: Thin line cross-section spiral CT scan was carried out in 13 cases with elbow injury, three-dimensional reconstruction was completed later. Several reconstructed image quality to display f the elbow fracture and dislocation were analyzed and compared. Results: 13 cases (17) elbow trauma included humeral media epicondyle fracture, humeral external epicondyle fracture, intercondylar fracture, olecranal fracture and radial head fracture. Among them, X-ray film showed negative in three sites, showed suspect fractures in 2 cases, and only showed single fracture in 2 cases. MPR reconstruction image could not only identify the diagnosis of fracture, but also provide further multi-angle display on fracture line and the extent of articular surface involvement. Surface reconstruction technology could exclude the impact of passive elbow flexion and display elbow injury more intuitively. Conclusion The elbow fracture dislocation could be showed clearly in multi-slice spiral CT, especially for complex fractures, with unmatched advantages compared to X-ray for clinical diagnosis and treatment determination. (authors)

  9. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Touko; Lampinen, Anniina [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Palmu, Kirsi [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); School of Science, Aalto University, Department of Biomedical Engineering and Computational Science, Helsinki (Finland); Reijonen, Vappu; Kortesniemi, Mika [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); Leikola, Junnu [University of Helsinki and Helsinki University Hospital, Department of Plastic Surgery, Helsinki (Finland); Kivisaari, Riku [University of Helsinki and Helsinki University Hospital, Department of Neurosurgery, Helsinki (Finland)

    2015-09-15

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality. (orig.)

  10. Cardiovascular CT angiography in neonates and children : Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    NARCIS (Netherlands)

    Tricarico, Francesco; Hlavacek, Anthony M.; Schoepf, U. Joseph; Ebersberger, Ullrich; Nance, John W.; Vliegenthart, Rozemarijn; Cho, Young Jun; Spears, J. Reid; Secchi, Francesco; Savino, Giancarlo; Marano, Riccardo; Schoenberg, Stefan O.; Bonomo, Lorenzo; Apfaltrer, Paul

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose

  11. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  12. Split-Bregman-based sparse-view CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vandeghinste, Bert; Vandenberghe, Stefaan [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Goossens, Bart; Pizurica, Aleksandra; Philips, Wilfried [Ghent Univ. (Belgium). Image Processing and Interpretation Research Group (IPI); Beenhouwer, Jan de [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Antwerp Univ., Wilrijk (Belgium). The Vision Lab; Staelens, Steven [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Antwerp Univ., Edegem (Belgium). Molecular Imaging Centre Antwerp

    2011-07-01

    Total variation minimization has been extensively researched for image denoising and sparse view reconstruction. These methods show superior denoising performance for simple images with little texture, but result in texture information loss when applied to more complex images. It could thus be beneficial to use other regularizers within medical imaging. We propose a general regularization method, based on a split-Bregman approach. We show results for this framework combined with a total variation denoising operator, in comparison to ASD-POCS. We show that sparse-view reconstruction and noise regularization is possible. This general method will allow us to investigate other regularizers in the context of regularized CT reconstruction, and decrease the acquisition times in {mu}CT. (orig.)

  13. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  14. Direct Reconstruction of CT-based Attenuation Correction Images for PET with Cluster-Based Penalties

    Science.gov (United States)

    Kim, Soo Mee; Alessio, Adam M.; De Man, Bruno; Asma, Evren; Kinahan, Paul E.

    2015-01-01

    Extremely low-dose CT acquisitions for the purpose of PET attenuation correction will have a high level of noise and biasing artifacts due to factors such as photon starvation. This work explores a priori knowledge appropriate for CT iterative image reconstruction for PET attenuation correction. We investigate the maximum a posteriori (MAP) framework with cluster-based, multinomial priors for the direct reconstruction of the PET attenuation map. The objective function for direct iterative attenuation map reconstruction was modeled as a Poisson log-likelihood with prior terms consisting of quadratic (Q) and mixture (M) distributions. The attenuation map is assumed to have values in 4 clusters: air+background, lung, soft tissue, and bone. Under this assumption, the MP was a mixture probability density function consisting of one exponential and three Gaussian distributions. The relative proportion of each cluster was jointly estimated during each voxel update of direct iterative coordinate decent (dICD) method. Noise-free data were generated from NCAT phantom and Poisson noise was added. Reconstruction with FBP (ramp filter) was performed on the noise-free (ground truth) and noisy data. For the noisy data, dICD reconstruction was performed with the combination of different prior strength parameters (β and γ) of Q- and M-penalties. The combined quadratic and mixture penalties reduces the RMSE by 18.7% compared to post-smoothed iterative reconstruction and only 0.7% compared to quadratic alone. For direct PET attenuation map reconstruction from ultra-low dose CT acquisitions, the combination of quadratic and mixture priors offers regularization of both variance and bias and is a potential method to derive attenuation maps with negligible patient dose. However, the small improvement in quantitative accuracy relative to the substantial increase in algorithm complexity does not currently justify the use of mixture-based PET attenuation priors for reconstruction of CT

  15. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    Science.gov (United States)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  16. Spectrotemporal CT data acquisition and reconstruction at low dose

    International Nuclear Information System (INIS)

    Clark, Darin P.; Badea, Cristian T.; Lee, Chang-Lung; Kirsch, David G.

    2015-01-01

    Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D + dual energy + time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction

  17. Algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images

    International Nuclear Information System (INIS)

    Ogino, Takashi; Egawa, Sunao

    1991-01-01

    New algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images were developed. One, designated plane weighting method, is to correct CT value in proportion to the position of the beam element passing through the voxel. The other, designated solid weighting method, is to correct CT value in proportion to the length of the beam element passing through the voxel and the volume of voxel. Phantom experiments showed fair spatial resolution in the transverse direction. In the longitudinal direction, however, spatial resolution of under slice thickness could not be obtained. Contrast resolution was equivalent for both methods. In patient studies, the reconstructed radiotherapy simulation image was almost similar in visual perception of the density resolution to a simulation film taken by X-ray simulator. (author)

  18. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  19. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell; Knutsen, Bjoern Helge; Roeislien, Jo; Olsen, Dag Rune

    2007-01-01

    The purpose of this study is to investigate whether the method of applicator reconstruction and/or the applicator orientation influence the dose calculation to points around the applicator for brachytherapy of cervical cancer with CT-based treatment planning. A phantom, containing a fixed ring applicator set and six lead pellets representing dose points, was used. The phantom was CT scanned with the ring applicator at four different angles related to the image plane. In each scan the applicator was reconstructed by three methods: (1) direct reconstruction in each image (DR) (2) reconstruction in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method was significantly lower (p < 0.05) than for the DR and MPR methods for all but two points. All applicator orientations had similar dose calculation reproducibility. Using library plans for applicator reconstruction gives the most reproducible dose calculation. However, with restrictive guidelines for applicator reconstruction the uncertainties for all methods are low compared to other factors influencing the accuracy of brachytherapy

  20. Evaluation of aortocoronary bypass graft patency by reconstructed CT image

    International Nuclear Information System (INIS)

    Kawakita, Seizaburo; Koide, Takashi; Saito, Yoshio; Yamamoto, Tadao; Iwasaki, Tadaaki

    1982-01-01

    Ten patients were examined in the period of three months from January to March 1981. The patients were operated from 1 month to 7 years before CT. A bypass to the left anterior descending artery (LAD) was grafted in 10 cases, 2 to the right coronary artery (RCA), 4 to an obtuse marginal artery (OM), and 1 to a diagonal artery. Image reconstruction was performed in 10 cases by using an image analytical computer Evaluskop. Appropriate planes for reconstruction were selected by trial and error methods upon observation of CT images. When gained picture of a graft course coincided with surgical records or angiography, the work of building images was concluded. On cross section, grafts to LAD were visualized in all 10 cases: 9 in the entire course and 1 in a proximal part of the graft. Two to RCA, 4 to OM and 1 to a diagonal were also successfully visualized. Reconstruction of graft images succeeded in 9 grafts of 6 cases. The course of a graft could be pursued from the proximal to the distal end adjacent to the cardiac chamber. The picture of a bypass to LAD was visualized in 6 of 10 grafts. Two bypass to RCA could be depicted, and 1 to OM was also found. However 3 to OM and 1 to a diagonal failed to be visualized throughout their courses in reconstructed images. I think that the causes of faillure mainly depended upon the course of the graft. When a graft was running arc-like surrounding the heart chamber, it was very difficult to depict its entire length in reconstructed images, though the graft could be detected in cross sections. These preliminary studies indicated that reconstruction of CT images had some benefits for the pursuit of graft courses. (J.P.N.)

  1. CT reconstruction technique in lumbar intraneuroforaminal disc herniation

    International Nuclear Information System (INIS)

    Volle, E.; Claussen, C.; Kern, A.; Stoltenburg, G.

    1988-01-01

    The CT appearance of the lumbar neural foramina and contents is described in detail and compared to histopathological specimens. Direct axial scans with secondary sagittal, coronal and paraxial reconstruction series of slices of the neuralforamen were derived from lumbar spine examination of fifty normal adults. These normal parameters were then used to evaluate and subdivide 20 patients with disc herniation involving the neuralforamen. The new paraxial reformation was able to show an intraneuroforaminal disc involvement. CT-reformation technique and operative results in intraneuroforaminal disc herniation correspond in 80%. This improvement in preoperative diagnosis demonstrates to the neurosurgeon the full extent of disc herniation and results in an optimized operative approach. (orig.)

  2. CT reconstruction technique in lumbar intraneuroforaminal disc herniation

    Energy Technology Data Exchange (ETDEWEB)

    Volle, E.; Claussen, C.; Kern, A.; Stoltenburg, G.

    1988-04-01

    The CT appearance of the lumbar neural foramina and contents is described in detail and compared to histopathological specimens. Direct axial scans with secondary sagittal, coronal and paraxial reconstruction series of slices of the neuralforamen were derived from lumbar spine examination of fifty normal adults. These normal parameters were then used to evaluate and subdivide 20 patients with disc herniation involving the neuralforamen. The new paraxial reformation was able to show an intraneuroforaminal disc involvement. CT-reformation technique and operative results in intraneuroforaminal disc herniation correspond in 80%. This improvement in preoperative diagnosis demonstrates to the neurosurgeon the full extent of disc herniation and results in an optimized operative approach.

  3. A comparison of linear interpolation models for iterative CT reconstruction.

    Science.gov (United States)

    Hahn, Katharina; Schöndube, Harald; Stierstorfer, Karl; Hornegger, Joachim; Noo, Frédéric

    2016-12-01

    Recent reports indicate that model-based iterative reconstruction methods may improve image quality in computed tomography (CT). One difficulty with these methods is the number of options available to implement them, including the selection of the forward projection model and the penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection step, whereas these options impact image quality. Here, the authors investigate the merits of three forward projection models that rely on linear interpolation: the distance-driven method, Joseph's method, and the bilinear method. The authors' selection is motivated by three factors: (1) in CT, linear interpolation is often seen as a suitable trade-off between discretization errors and computational cost, (2) the first two methods are popular with manufacturers, and (3) the third method enables assessing the importance of a key assumption in the other methods. One approach to evaluate forward projection models is to inspect their effect on discretized images, as well as the effect of their transpose on data sets, but significance of such studies is unclear since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach is to investigate the models in the context they are used, i.e., together with statistical weights and a penalty term. Unfortunately, this approach requires the selection of a preferred objective function and does not provide clear information on features that are intrinsic to the model. The authors adopted the following two-stage methodology. First, the authors analyze images that progressively include components of the singular value decomposition of the model in a reconstructed image without statistical weights and penalty term. Next, the authors examine the impact of weights and penalty on observed differences. Image quality metrics were investigated for 16 different fan-beam imaging scenarios that enabled probing various aspects

  4. Tensor-Based Dictionary Learning for Spectral CT Reconstruction.

    Science.gov (United States)

    Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Yu, Hengyong

    2017-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods.

  5. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    Science.gov (United States)

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  6. Towards an inline reconstruction architecture for micro-CT systems

    International Nuclear Information System (INIS)

    Brasse, David; Humbert, Bernard; Mathelin, Carole; Rio, Marie-Christine; Guyonnet, Jean-Louis

    2005-01-01

    Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 μm. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced acquisition and reconstruction time for screening purposes. We introduce inline acquisition and reconstruction architecture to obtain in real time the 3D attenuation map of the animal fulfilling the three previous requirements. The micro-CT system is based on commercially available x-ray detector and micro-focus x-ray source. The reconstruction architecture is based on a cluster of PCs where a dedicated communication scheme combining serial and parallel treatments is implemented. In order to obtain high performance transmission rate between the detector and the reconstruction architecture, a dedicated data acquisition system is also developed. With the proposed solution, the time required to filter and backproject a projection of 2048 x 2048 pixels inside a volume of 140 mega voxels using the Feldkamp algorithm is similar to 500 ms, the time needed to acquire the same projection

  7. Gamma regularization based reconstruction for low dose CT

    International Nuclear Information System (INIS)

    Zhang, Junfeng; Chen, Yang; Hu, Yining; Luo, Limin; Shu, Huazhong; Li, Bicao; Liu, Jin; Coatrieux, Jean-Louis

    2015-01-01

    Reducing the radiation in computerized tomography is today a major concern in radiology. Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. lowered tube current or voltage values). In this paper we propose a Gamma regularization based algorithm for LDCT image reconstruction. This solution is flexible and provides a good balance between the regularizations based on l 0 -norm and l 1 -norm. We evaluate the proposed approach using the projection data from simulated phantoms and scanned Catphan phantoms. Qualitative and quantitative results show that the Gamma regularization based reconstruction can perform better in both edge-preserving and noise suppression when compared with other norms. (paper)

  8. Optimization of hybrid iterative reconstruction level in pediatric body CT.

    Science.gov (United States)

    Karmazyn, Boaz; Liang, Yun; Ai, Huisi; Eckert, George J; Cohen, Mervyn D; Wanner, Matthew R; Jennings, S Gregory

    2014-02-01

    The objective of our study was to attempt to optimize the level of hybrid iterative reconstruction (HIR) in pediatric body CT. One hundred consecutive chest or abdominal CT examinations were selected. For each examination, six series were obtained: one filtered back projection (FBP) and five HIR series (iDose(4)) levels 2-6. Two pediatric radiologists, blinded to noise measurements, independently chose the optimal HIR level and then rated series quality. We measured CT number (mean in Hounsfield units) and noise (SD in Hounsfield units) changes by placing regions of interest in the liver, muscles, subcutaneous fat, and aorta. A mixed-model analysis-of-variance test was used to analyze correlation of noise reduction with the optimal HIR level compared with baseline FBP noise. One hundred CT examinations were performed of 88 patients (52 females and 36 males) with a mean age of 8.5 years (range, 19 days-18 years); 12 patients had both chest and abdominal CT studies. Radiologists agreed to within one level of HIR in 92 of 100 studies. The mean quality rating was significantly higher for HIR than FBP (3.6 vs 3.3, respectively; p optimal HIR level was used (p optimal for most studies. The optimal HIR level was less effective in reducing liver noise in children with lower baseline noise.

  9. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  10. Potential benefit of the CT adaptive statistical iterative reconstruction method for pediatric cardiac diagnosis

    Science.gov (United States)

    Miéville, Frédéric A.; Ayestaran, Paul; Argaud, Christophe; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2010-04-01

    Adaptive Statistical Iterative Reconstruction (ASIR) is a new imaging reconstruction technique recently introduced by General Electric (GE). This technique, when combined with a conventional filtered back-projection (FBP) approach, is able to improve the image noise reduction. To quantify the benefits provided on the image quality and the dose reduction by the ASIR method with respect to the pure FBP one, the standard deviation (SD), the modulation transfer function (MTF), the noise power spectrum (NPS), the image uniformity and the noise homogeneity were examined. Measurements were performed on a control quality phantom when varying the CT dose index (CTDIvol) and the reconstruction kernels. A 64-MDCT was employed and raw data were reconstructed with different percentages of ASIR on a CT console dedicated for ASIR reconstruction. Three radiologists also assessed a cardiac pediatric exam reconstructed with different ASIR percentages using the visual grading analysis (VGA) method. For the standard, soft and bone reconstruction kernels, the SD is reduced when the ASIR percentage increases up to 100% with a higher benefit for low CTDIvol. MTF medium frequencies were slightly enhanced and modifications of the NPS shape curve were observed. However for the pediatric cardiac CT exam, VGA scores indicate an upper limit of the ASIR benefit. 40% of ASIR was observed as the best trade-off between noise reduction and clinical realism of organ images. Using phantom results, 40% of ASIR corresponded to an estimated dose reduction of 30% under pediatric cardiac protocol conditions. In spite of this discrepancy between phantom and clinical results, the ASIR method is as an important option when considering the reduction of radiation dose, especially for pediatric patients.

  11. CT stereotactic reconstruction of oral cavity interstitial plastic tube implants

    International Nuclear Information System (INIS)

    Crispin, V.; Carrasco, P.; Guardino, C.; Lopez, J.; Chust, M.; Arribas, L.; Mengual, J.; Miragall, E.G.; Hernandez, A.; Carrascosa, M.; Cardenal, R.; Guinot, J.; Casana, M.; Prats, C.

    1996-01-01

    The continuous using of CT images in external RT have made us think of its applications for plastic tube interstitial implants in the oral cavity in order to calculate the dose delivered by an interstitial implant at any point of the image and its relationship with local control and complications. Moreover, the outcoming result of the whole treatment depends on whether the irradiated volume up to a prescribed dose includes the CTV or not. None of these objectives may be achieved through the classical film reconstruction. Although film reconstruction appeared as the only accurate method for these purposes in the early eighties, it does not allow us to calculate doses at critical points or volumes. Therefore possible complications over critical tissues surrounding the radioactive implant cannot be taken into account in a precise way. The use of a stereotactic coordinate system could make CT reconstruction as precise as film reconstruction. As our stereotactic frame can be placed over the patient in 'direct' or 'inverse' positions it is really interesting in the applications we are talking about. We also have used a non invasive standard plexiglass helmet commonly used in stereotactic fractionated irradiations in teletherapy. It fits perfectly the patient's head and avoids any movement of the patient during the CT exam. We do parallel slices, approximately perpendicular to the iridium wires (following the Paris System), covering the whole implant helping ourselves with both bone and implant references. The dose-volume histograms and DNR (dose nonuniformity ratio) index defined by Saw et Al are used for intercomparison between the ortogonal and the stereotactic reconstructions. The existence of a minimum in the DNR curve indicates that there is a reference dose rate for this implant which provides an optimal dose distribution. If we calculate which is the minimum of each method, we find they are very close. So, as both methods give very similar results, we can conclude

  12. Variability in CT lung-nodule volumetry: Effects of dose reduction and reconstruction methods.

    Science.gov (United States)

    Young, Stefano; Kim, Hyun J Grace; Ko, Moe Moe; Ko, War War; Flores, Carlos; McNitt-Gray, Michael F

    2015-05-01

    Measuring the size of nodules on chest CT is important for lung cancer staging and measuring therapy response. 3D volumetry has been proposed as a more robust alternative to 1D and 2D sizing methods. There have also been substantial advances in methods to reduce radiation dose in CT. The purpose of this work was to investigate the effect of dose reduction and reconstruction methods on variability in 3D lung-nodule volumetry. Reduced-dose CT scans were simulated by applying a noise-addition tool to the raw (sinogram) data from clinically indicated patient scans acquired on a multidetector-row CT scanner (Definition Flash, Siemens Healthcare). Scans were simulated at 25%, 10%, and 3% of the dose of their clinical protocol (CTDIvol of 20.9 mGy), corresponding to CTDIvol values of 5.2, 2.1, and 0.6 mGy. Simulated reduced-dose data were reconstructed with both conventional filtered backprojection (B45 kernel) and iterative reconstruction methods (SAFIRE: I44 strength 3 and I50 strength 3). Three lab technologist readers contoured "measurable" nodules in 33 patients under each of the different acquisition/reconstruction conditions in a blinded study design. Of the 33 measurable nodules, 17 were used to estimate repeatability with their clinical reference protocol, as well as interdose and inter-reconstruction-method reproducibilities. The authors compared the resulting distributions of proportional differences across dose and reconstruction methods by analyzing their means, standard deviations (SDs), and t-test and F-test results. The clinical-dose repeatability experiment yielded a mean proportional difference of 1.1% and SD of 5.5%. The interdose reproducibility experiments gave mean differences ranging from -5.6% to -1.7% and SDs ranging from 6.3% to 9.9%. The inter-reconstruction-method reproducibility experiments gave mean differences of 2.0% (I44 strength 3) and -0.3% (I50 strength 3), and SDs were identical at 7.3%. For the subset of repeatability cases, inter-reconstruction

  13. CT-based virtual tracheobronchoscopy in children - comparison with axial CT and multiplanar reconstruction: preliminary results

    International Nuclear Information System (INIS)

    Sorantin, Erich; Lindbichler, Franz; Eber, Ernst; Schimpl, Guenther

    2002-01-01

    Background: 3D post-processing of spiral-CT (S-CT) data using perspective projection allows the generation of virtual views similar to endoscopy. Objective: To evaluate whether simultaneous reading of axial S-CT, multiplanar reconstruction (MPR) and virtual tracheobronchoscopy (VTB) is more precise and accurate than reading of axial S-CT and MPR alone in paediatric patients. Materials and methods: S-CT studies of 15 symptomatic and 4 normal patients were investigated. Two radiologists independently read two sets of images for airway abnormalities: first axial CT and MPR, followed by axial CT, MPR and VTB. A final decision was later made by consensus. All results were compared to fibre-optic bronchoscopy (FTB). Interobserver agreement was used as an indicator of precision for the display technique used. Results: At reading of axial S-CT and MPR an interobserver agreement of 89.5% (κ=0.776, P<0.00103) was found. Based on the consensus decision, a diagnostic accuracy of 89.5% at a sensitivity 86.6% and specificity of 100% (κ=0.776, 95% CI 0.491-1.062, P<0.00103) was achieved. At reporting on axial S-CT, MPR and VTB, all cases were classified correctly by both readers, indicating 100% accuracy, interobserver agreement, sensitivity and specificity (κ=1.00, 95% CI 1.0-1.0, P<0.000258). Conclusions: The simultaneous display of axial S-CT, MPR and VTB raises the precision, accuracy and sensitivity of radiological reports. (orig.)

  14. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    Science.gov (United States)

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. A temporal interpolation approach for dynamic reconstruction in perfusion CT

    International Nuclear Information System (INIS)

    Montes, Pau; Lauritsch, Guenter

    2007-01-01

    This article presents a dynamic CT reconstruction algorithm for objects with time dependent attenuation coefficient. Projection data acquired over several rotations are interpreted as samples of a continuous signal. Based on this idea, a temporal interpolation approach is proposed which provides the maximum temporal resolution for a given rotational speed of the CT scanner. Interpolation is performed using polynomial splines. The algorithm can be adapted to slow signals, reducing the amount of data acquired and the computational cost. A theoretical analysis of the approximations made by the algorithm is provided. In simulation studies, the temporal interpolation approach is compared with three other dynamic reconstruction algorithms based on linear regression, linear interpolation, and generalized Parker weighting. The presented algorithm exhibits the highest temporal resolution for a given sampling interval. Hence, our approach needs less input data to achieve a certain quality in the reconstruction than the other algorithms discussed or, equivalently, less x-ray exposure and computational complexity. The proposed algorithm additionally allows the possibility of using slow rotating scanners for perfusion imaging purposes

  16. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  17. CT image reconstruction system based on hardware implementation

    International Nuclear Information System (INIS)

    Silva, Hamilton P. da; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo; Hormaza, Joel M.; Lopes, Ricardo T.

    2009-01-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  18. On proton CT reconstruction using MVCT-converted virtual proton projections

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dongxu; Mackie, T. Rockwell; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Morgridge Institute of Research, University of Wisconsin, Madison, Wisconsin 53715 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Oncophysics Institute, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461 (United States)

    2012-06-15

    . If these images are used for treatment planning, the average proton range uncertainty is estimated to be less than 1.5% for an imaging dose in the milligray range. Conclusions: The proposed method can be used to convert x-ray projections into virtual proton projections. The converted proton projections can be blended with existing proton projections or can be used solely for pCT reconstruction, addressing the range limit problem of pCT using current therapeutic proton machines.

  19. On proton CT reconstruction using MVCT-converted virtual proton projections

    International Nuclear Information System (INIS)

    Wang Dongxu; Mackie, T. Rockwell; Tomé, Wolfgang A.

    2012-01-01

    these images are used for treatment planning, the average proton range uncertainty is estimated to be less than 1.5% for an imaging dose in the milligray range. Conclusions: The proposed method can be used to convert x-ray projections into virtual proton projections. The converted proton projections can be blended with existing proton projections or can be used solely for pCT reconstruction, addressing the range limit problem of pCT using current therapeutic proton machines.

  20. The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study.

    Science.gov (United States)

    Vorona, G A; Zuccoli, G; Sutcavage, T; Clayton, B L; Ceschin, R C; Panigrahy, A

    2013-01-01

    Iterative reconstruction techniques facilitate CT dose reduction; though to our knowledge, no group has explored using iterative reconstruction with pediatric head CT. Our purpose was to perform a feasibility study to assess the use of ASIR in a small group of pediatric patients undergoing head CT. An Alderson-Rando head phantom was scanned at decreasing 10% mA intervals relative to our standard protocol, and each study was then reconstructed at 10% ASIR intervals. An intracranial region of interest was consistently placed to estimate noise. Our ventriculoperitoneal shunt CT protocol was subsequently modified, and patients were scanned at 20% ASIR with approximately 20% mA reductions. ASIR studies were anonymously compared with older non-ASIR studies from the same patients by 2 attending pediatric neuroradiologists for diagnostic utility, sharpness, noise, and artifacts. The phantom study demonstrated similar noise at 100% mA/0% ASIR (3.9) and 80% mA/20% ASIR (3.7). Twelve pediatric patients were scanned at reduced dose at 20% ASIR. The average CTDI(vol) and DLP values of the 20% ASIR studies were 22.4 mGy and 338.4 mGy-cm, and for the non-ASIR studies, they were 28.8 mGy and 444.5 mGy-cm, representing statistically significant decreases in the CTDI(vol) (22.1%, P = .00007) and DLP (23.9%, P = .0005) values. There were no significant differences between the ASIR studies and non-ASIR studies with respect to diagnostic acceptability, sharpness, noise, or artifacts. Our findings suggest that 20% ASIR can provide approximately 22% dose reduction in pediatric head CT without affecting image quality.

  1. Fourier-based reconstruction via alternating direction total variation minimization in linear scan CT

    International Nuclear Information System (INIS)

    Cai, Ailong; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2015-01-01

    In this study, we consider a novel form of computed tomography (CT), that is, linear scan CT (LCT), which applies a straight line trajectory. Furthermore, an iterative algorithm is proposed for pseudo-polar Fourier reconstruction through total variation minimization (PPF-TVM). Considering that the sampled Fourier data are distributed in pseudo-polar coordinates, the reconstruction model minimizes the TV of the image subject to the constraint that the estimated 2D Fourier data for the image are consistent with the 1D Fourier transform of the projection data. PPF-TVM employs the alternating direction method (ADM) to develop a robust and efficient iteration scheme, which ensures stable convergence provided that appropriate parameter values are given. In the ADM scheme, PPF-TVM applies the pseudo-polar fast Fourier transform and its adjoint to iterate back and forth between the image and frequency domains. Thus, there is no interpolation in the Fourier domain, which makes the algorithm both fast and accurate. PPF-TVM is particularly useful for limited angle reconstruction in LCT and it appears to be robust against artifacts. The PPF-TVM algorithm was tested with the FORBILD head phantom and real data in comparisons with state-of-the-art algorithms. Simulation studies and real data verification suggest that PPF-TVM can reconstruct higher accuracy images with lower time consumption

  2. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 (United States); Ranallo, F. N. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 (United States); Judy, P. F. [Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Gierada, D. S. [Department of Radiology, Washington University, St. Louis, Missouri 63110 (United States); Fain, S. B., E-mail: sfain@wisc.edu [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 (United States); Department of Biomedical Engineering,University of Wisconsin School of Engineering, Madison, Wisconsin 53706 (United States)

    2014-11-01

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12–100 mA s current–time product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD

  3. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    International Nuclear Information System (INIS)

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.; Gierada, D. S.; Fain, S. B.

    2014-01-01

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12–100 mA s current–time product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD

  4. New reconstruction algorithm in helical-volume CT

    International Nuclear Information System (INIS)

    Toki, Y.; Rifu, T.; Aradate, H.; Hirao, Y.; Ohyama, N.

    1990-01-01

    This paper reports on helical scanning that is an application of continuous scanning CT to acquire volume data in a short time for three-dimensional study. In a helical scan, the patient couch sustains movement during continuous-rotation scanning and then the acquired data is processed to synthesize a projection data set of vertical section by interpolation. But the synthesized section is not thin enough; also, the image may have artifacts caused by couch movement. A new reconstruction algorithm that helps resolve such problems has been developed and compared with the ordinary algorithm. The authors constructed a helical scan system based on TCT-900S, which can perform 1-second rotation continuously for 30 seconds. The authors measured section thickness using both algorithms on an AAPM phantom, and we also compared degree of artifacts on clinical data

  5. Iterative Reconstruction Techniques in Abdominopelvic CT: Technical Concepts and Clinical Implementation.

    Science.gov (United States)

    Patino, Manuel; Fuentes, Jorge M; Singh, Sarabjeet; Hahn, Peter F; Sahani, Dushyant V

    2015-07-01

    This article discusses the clinical challenge of low-radiation-dose examinations, the commonly used approaches for dose optimization, and their effect on image quality. We emphasize practical aspects of the different iterative reconstruction techniques, along with their benefits, pitfalls, and clinical implementation. The widespread use of CT has raised concerns about potential radiation risks, motivating diverse strategies to reduce the radiation dose associated with CT. CT manufacturers have developed alternative reconstruction algorithms intended to improve image quality on dose-optimized CT studies, mainly through noise and artifact reduction. Iterative reconstruction techniques take unique approaches to noise reduction and provide distinct strength levels or settings.

  6. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2013-12-01

    To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all pASIR and UL-ASIR (all pASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.

  7. Task-based optimization of image reconstruction in breast CT

    Science.gov (United States)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  8. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C; Chan, S; Lee, F; Ngan, R [Queen Elizabeth Hospital (Hong Kong); Lee, V [University of Hong Kong, Hong Kong, HK (Hong Kong)

    2016-06-15

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done with FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.

  9. Fast reconstruction of industry CT image based on Wintel and P4 structure

    CERN Document Server

    Su Jian Ping; Zhang Li; Zhao Zi Ran; Gao Wen Huan; Kang Ke Jun

    2002-01-01

    Largescale I-CT is used to inspect large workpiece with high spiral resolution and its reconstructed image is very large. So it often relies on special workstation. Now with the development of P4 CPU and Windows2000, it is possible to reconstruct, deal and display I-CT image on Wintel structure. The authors discuss the possibility and future of this scheme. This is important for the improvement of economical value of I-CT

  10. Low-dose CT image reconstruction using gain intervention-based dictionary learning

    Science.gov (United States)

    Pathak, Yadunath; Arya, K. V.; Tiwari, Shailendra

    2018-05-01

    Computed tomography (CT) approach is extensively utilized in clinical diagnoses. However, X-ray residue in human body may introduce somatic damage such as cancer. Owing to radiation risk, research has focused on the radiation exposure distributed to patients through CT investigations. Therefore, low-dose CT has become a significant research area. Many researchers have proposed different low-dose CT reconstruction techniques. But, these techniques suffer from various issues such as over smoothing, artifacts, noise, etc. Therefore, in this paper, we have proposed a novel integrated low-dose CT reconstruction technique. The proposed technique utilizes global dictionary-based statistical iterative reconstruction (GDSIR) and adaptive dictionary-based statistical iterative reconstruction (ADSIR)-based reconstruction techniques. In case the dictionary (D) is predetermined, then GDSIR can be used and if D is adaptively defined then ADSIR is appropriate choice. The gain intervention-based filter is also used as a post-processing technique for removing the artifacts from low-dose CT reconstructed images. Experiments have been done by considering the proposed and other low-dose CT reconstruction techniques on well-known benchmark CT images. Extensive experiments have shown that the proposed technique outperforms the available approaches.

  11. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun [Philips Healthcare, Cleveland, Ohio 44143 (United States); Wilson, David L., E-mail: dlw@case.edu [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106 (United States)

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit

  12. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (pASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  13. CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Ichikawa, Yasutaka; Kitagawa, Kakuya; Nagasawa, Naoki; Murashima, Shuichi; Sakuma, Hajime

    2013-08-09

    The recently developed model-based iterative reconstruction (MBIR) enables significant reduction of image noise and artifacts, compared with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP). The purpose of this study was to evaluate lesion detectability of low-dose chest computed tomography (CT) with MBIR in comparison with ASIR and FBP. Chest CT was acquired with 64-slice CT (Discovery CT750HD) with standard-dose (5.7 ± 2.3 mSv) and low-dose (1.6 ± 0.8 mSv) conditions in 55 patients (aged 72 ± 7 years) who were suspected of lung disease on chest radiograms. Low-dose CT images were reconstructed with MBIR, ASIR 50% and FBP, and standard-dose CT images were reconstructed with FBP, using a reconstructed slice thickness of 0.625 mm. Two observers evaluated the image quality of abnormal lung and mediastinal structures on a 5-point scale (Score 5 = excellent and score 1 = non-diagnostic). The objective image noise was also measured as the standard deviation of CT intensity in the descending aorta. The image quality score of enlarged mediastinal lymph nodes on low-dose MBIR CT (4.7 ± 0.5) was significantly improved in comparison with low-dose FBP and ASIR CT (3.0 ± 0.5, p = 0.004; 4.0 ± 0.5, p = 0.02, respectively), and was nearly identical to the score of standard-dose FBP image (4.8 ± 0.4, p = 0.66). Concerning decreased lung attenuation (bulla, emphysema, or cyst), the image quality score on low-dose MBIR CT (4.9 ± 0.2) was slightly better compared to low-dose FBP and ASIR CT (4.5 ± 0.6, p = 0.01; 4.6 ± 0.5, p = 0.01, respectively). There were no significant differences in image quality scores of visualization of consolidation or mass, ground-glass attenuation, or reticular opacity among low- and standard-dose CT series. Image noise with low-dose MBIR CT (11.6 ± 1.0 Hounsfield units (HU)) were significantly lower than with low-dose ASIR (21.1 ± 2.6 HU, p standard-dose FBP CT (16.6 ± 2.3 HU, p 70%, MBIR can provide

  14. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  15. Color-coded volume rendering for three-dimensional reconstructions of CT data

    International Nuclear Information System (INIS)

    Rieker, O.; Mildenberger, P.; Thelen, M.

    1999-01-01

    Purpose: To evaluate a technique of colored three-dimensional reconstructions without segmentation. Material and methods: Color-coded volume rendered images were reconstructed from the volume data of 25 thoracic, abdominal, musculoskeletal, and vascular helical CT scans using commercial software. The CT volume rendered voxels were encoded with color in the following manner. Opacity, hue, lightness, and chroma were assigned to each of four classes defined by CT number. Color-coded reconstructions were compared to the corresponding grey-scale coded reconstructions. Results: Color-coded volume rendering enabled realistic visualization of pathologic findings when there was sufficient difference in CT density. Segmentation was necessary in some cases to demonstrate small details in a complex volume. Conclusion: Color-coded volume rendering allowed lifelike visualisation of CT volumes without the need of segmentation in most cases. (orig.) [de

  16. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: an anthropomorphic thoracic phantom study.

    Science.gov (United States)

    Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W

    2014-09-01

    The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.

  17. Assessment of prostate motion during radiotherapy using fiducial markers and CT reconstruction

    International Nuclear Information System (INIS)

    Crook, J.; Salhani, D.; Yang, H.; Deshaies, Y.; Raymond, Y.; Malone, S.; Esche, B.

    1996-01-01

    Purpose: To assess changes in prostate position during a course of pelvic radiotherapy for prostate cancer using fiducial markers and sequential planning CT scans. Methods and Materials: Three gold seeds are implanted in the apex, base and posterior aspect of the prostate under trans-rectal ultrasound guidance prior to initial simulation. In addition, treatment planning CT scans with 5 mm slices through the prostate are obtained at 0 and 40 Gy. Patients are scanned, simulated and treated with full bladder and are positioned using a standard foam leg support from the knees to the ankles. Prostate movement is assessed by two independent methods: [1] Localization of the fiducial markers using orthogonal simulator films taken just prior to the initial and boost stages of treatment and [2] a three-dimensional reconstruction methodology using CT datasets again obtained prior to the initial and boost stages. In both cases, rigid-body transformations of selected bony landmarks were used to eliminate patient movement between simulations and CT scans. For CT reconstruction, high order polynomial extrapolation and Chebychev multi-domain interpolation methods are employed to determine the coordinates of the fiducial markers. Prostatic movement, between initial and boost imaging, is estimated from the variance of the position of the corresponding seeds. Results: At present, seed data is available for sixty (60) patients. An additional nineteen (19) patients were excluded because of suspected seed migration > 3.0 mm or a localization uncertainty > 1.5 mm. The range of movement seen in the lateral direction is -0.25 to 0.48 cm (mean: 0.11, SD: 0.15), in the cranio-caudal direction -1.57 to 0.64 cm (mean: 0.59 SD: 0.48), and in the antero-posterior direction -1.91 to .47 cm (mean: 0.53, SD: 0.39). Results disclosed 53% of the patients with a caudal shift of the prostate > 0.5 cm and 10% > 1.0 cm. Further, 60% of the patients showed a posterior shift > 0.5 cm and 27% > 1.0 cm. CT

  18. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    International Nuclear Information System (INIS)

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-01-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose

  19. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Justin, E-mail: justin.solomon@duke.edu [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Biomedical Engineering and Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  20. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    International Nuclear Information System (INIS)

    Solomon, Justin; Samei, Ehsan

    2014-01-01

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  1. Adaptive statistical iterative reconstruction technology in the application of PET/CT whole body scans

    International Nuclear Information System (INIS)

    Xin Jun; Zhao Zhoushe; Li Hong; Lu Zhe; Wu Wenkai; Guo Qiyong

    2013-01-01

    Objective: To improve image quality of low dose CT in whole body PET/CT using adaptive statistical iterative reconstruction (ASiR) technology. Methods: Twice CT scans were performed with GE water model,scan parameters were: 120 kV, 120 and 300 mA respectively. In addition, 30 subjects treated with PET/CT were selected randomly, whole body PET/CT were performed after 18 F-FDG injection of 3.70 MBq/kg, Sharp IR+time of flight + VUE Point HD technology were used for 1.5 min/bed in PET; CT of spiral scan was performed under 120 kV using automatic exposure control technology (30-210 mA, noise index 25). Model and patients whole body CT images were reconstructed with conventional and 40% ASiR methods respectively, and the CT attenuation value and noise index were measured. Results: Research of model and clinical showed that standard deviation of ASiR method in model CT was 33.0% lower than the conventional CT reconstruction method (t =27.76, P<0.01), standard deviation of CT in normal tissues (brain, lung, mediastinum, liver and vertebral body) and lesions (brain, lung, mediastinum, liver and vertebral body) reduced by 21.08% (t =23.35, P<0.01) and 24.43% (t =16.15, P<0.01) respectively, especially for normal liver tissue and liver lesions, standard deviations of CT were reduced by 51.33% (t=34.21, P<0.0) and 49.54% (t=15.21, P<0.01) respectively. Conclusion: ASiR reconstruction method was significantly reduced the noise of low dose CT image and improved the quality of CT image in whole body PET/CT, which seems more suitable for quantitative analysis and clinical applications. (authors)

  2. Effect of tube current modulation for dose estimation using a simulation tool on body CT examination

    International Nuclear Information System (INIS)

    Kawaguchi, Ai; Matsunaga, Yuta; Kobayashi, Masanao; Suzuki, Shoichi; Matsubara, Kosuke; Chida, Koichi

    2015-01-01

    The purpose of this study was to evaluate the effect of tube current modulation for dose estimation of a body computed tomography (CT) examination using a simulation tool. The authors also compared longitudinal variations in tube current values between iterative reconstruction (IR) and filtered back-projection (FBP) reconstruction algorithms. One hundred patients underwent body CT examinations. The tube current values around 10 organ regions were recorded longitudinally from tube current information. The organ and effective doses were simulated by average tube current values and longitudinal modulated tube current values. The organ doses for the bladder and breast estimated by longitudinal modulated tube current values were 20 % higher and 25 % lower than those estimated using the average tube current values, respectively. The differences in effective doses were small (mean, 0.7 mSv). The longitudinal variations in tube current values were almost the same for the IR and FBP algorithms. (authors)

  3. Model-based Iterative Reconstruction: Effect on Patient Radiation Dose and Image Quality in Pediatric Body CT

    Science.gov (United States)

    Dillman, Jonathan R.; Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Keshavarzi, Nahid; Strouse, Peter J.

    2014-01-01

    Purpose To retrospectively compare image quality and radiation dose between a reduced-dose computed tomographic (CT) protocol that uses model-based iterative reconstruction (MBIR) and a standard-dose CT protocol that uses 30% adaptive statistical iterative reconstruction (ASIR) with filtered back projection. Materials and Methods Institutional review board approval was obtained. Clinical CT images of the chest, abdomen, and pelvis obtained with a reduced-dose protocol were identified. Images were reconstructed with two algorithms: MBIR and 100% ASIR. All subjects had undergone standard-dose CT within the prior year, and the images were reconstructed with 30% ASIR. Reduced- and standard-dose images were evaluated objectively and subjectively. Reduced-dose images were evaluated for lesion detectability. Spatial resolution was assessed in a phantom. Radiation dose was estimated by using volumetric CT dose index (CTDIvol) and calculated size-specific dose estimates (SSDE). A combination of descriptive statistics, analysis of variance, and t tests was used for statistical analysis. Results In the 25 patients who underwent the reduced-dose protocol, mean decrease in CTDIvol was 46% (range, 19%–65%) and mean decrease in SSDE was 44% (range, 19%–64%). Reduced-dose MBIR images had less noise (P > .004). Spatial resolution was superior for reduced-dose MBIR images. Reduced-dose MBIR images were equivalent to standard-dose images for lungs and soft tissues (P > .05) but were inferior for bones (P = .004). Reduced-dose 100% ASIR images were inferior for soft tissues (P ASIR. Conclusion CT performed with a reduced-dose protocol and MBIR is feasible in the pediatric population, and it maintains diagnostic quality. © RSNA, 2013 Online supplemental material is available for this article. PMID:24091359

  4. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT.

    Science.gov (United States)

    Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J

    2014-01-01

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.

  5. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: Initial patient experience

    Energy Technology Data Exchange (ETDEWEB)

    Apfaltrer, Paul, E-mail: paul.apfaltrer@medma.uni-heidelberg.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoendube, Harald, E-mail: harald.schoendube@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Allmendinger, Thomas, E-mail: thomas.allmendinger@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Tricarico, Francesco, E-mail: francescotricarico82@gmail.com [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Department of Bioimaging and Radiological Sciences, Catholic University of the Sacred Heart, “A. Gemelli” Hospital, Largo A. Gemelli 8, Rome (Italy); Schindler, Andreas, E-mail: andreas.schindler@campus.lmu.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Vogt, Sebastian, E-mail: sebastian.vogt@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Sunnegårdh, Johan, E-mail: johan.sunnegardh@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); and others

    2013-02-15

    Objective: To evaluate the effect of a temporal resolution improvement method (TRIM) for cardiac CT on diagnostic image quality for coronary artery assessment. Materials and methods: The TRIM-algorithm employs an iterative approach to reconstruct images from less than 180° of projections and uses a histogram constraint to prevent the occurrence of limited-angle artifacts. This algorithm was applied in 11 obese patients (7 men, 67.2 ± 9.8 years) who had undergone second generation dual-source cardiac CT with 120 kV, 175–426 mAs, and 500 ms gantry rotation. All data were reconstructed with a temporal resolution of 250 ms using traditional filtered-back projection (FBP) and of 200 ms using the TRIM-algorithm. Contrast attenuation and contrast-to-noise-ratio (CNR) were measured in the ascending aorta. The presence and severity of coronary motion artifacts was rated on a 4-point Likert scale. Results: All scans were considered of diagnostic quality. Mean BMI was 36 ± 3.6 kg/m{sup 2}. Average heart rate was 60 ± 9 bpm. Mean effective dose was 13.5 ± 4.6 mSv. When comparing FBP- and TRIM reconstructed series, the attenuation within the ascending aorta (392 ± 70.7 vs. 396.8 ± 70.1 HU, p > 0.05) and CNR (13.2 ± 3.2 vs. 11.7 ± 3.1, p > 0.05) were not significantly different. A total of 110 coronary segments were evaluated. All studies were deemed diagnostic; however, there was a significant (p < 0.05) difference in the severity score distribution of coronary motion artifacts between FBP (median = 2.5) and TRIM (median = 2.0) reconstructions. Conclusion: The algorithm evaluated here delivers diagnostic imaging quality of the coronary arteries despite 500 ms gantry rotation. Possible applications include improvement of cardiac imaging on slower gantry rotation systems or mitigation of the trade-off between temporal resolution and CNR in obese patients.

  6. Postoperative evaluation after anterior cruciate ligament reconstruction: Measurements and abnormalities on radiographic and CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Cheol; Choi, Yun Sun; KIm, Hyoung Seop; Choi, Nam Hong [Nowon Eulji Medical Center, Eulji University, Seoul (Korea, Republic of)

    2016-11-15

    Reconstruction of a ruptured anterior cruciate ligament (ACL) is a well-established procedure for repair of ACL injury. Despite improvement of surgical and rehabilitation techniques over the past decades, up to 25% of patients still fail to regain satisfactory function after an ACL reconstruction. With development of CT imaging techniques for reducing metal artifacts, multi-planar reconstruction, and three-dimensional reconstruction, early post-operative imaging is increasingly being used to provide immediate feedback to surgeons regarding tunnel positioning, fixation, and device placement. Early post-operative radiography and CT imaging are easy to perform and serve as the baseline examinations for future reference.

  7. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    International Nuclear Information System (INIS)

    Brady, Samuel L.; Shulkin, Barry L.

    2015-01-01

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV bw ) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV bw , background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake

  8. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Samuel L., E-mail: samuel.brady@stjude.org [Division of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States); Shulkin, Barry L. [Nuclear Medicine and Department of Radiological Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States)

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  9. The value of spiral CT thin imaging reconstruction in the diagnosis of obstructive jaundice

    International Nuclear Information System (INIS)

    Huang Zhi; Liu Zhang; Yang Chaoxiang; Lin Chengye; Zhang Li; Li Yuxiang; Ma Yunyan; Xiao Haisong; Lu Zhifeng; Wang Bo; Zhou Yunhong

    2009-01-01

    Objective: To approach the value of spiral CT thin imaging reconstruction in the diagnosis of obstructive jaundice in order to improve the correctness of the diagnosis. Methods: Analysis the cases' clinical manifestation and the CT images, who were diagnosed as obstructive jaundice by operation. All of cases had high-resolution computed tomograyhy scan. The thickness and the interval is 5mm, reconstructed the thickness and the interval to 1 mm and 1.5 mm, then send the images to the workstation and MRR were processed. Analysis the date with the pathology. Results: Spiral CT thin imaging reconstruction have 98% and 93% in the accuracy of location and characterization in the obstruction. Conclusion: The spiral CT thin imaging reconstruction is a good method to improve the accuracy of location and characterization in the obstructive jaundice. (authors)

  10. Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization

    International Nuclear Information System (INIS)

    Gu, Renliang; Dogandžić, Aleksandar

    2014-01-01

    We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ℓ 1 -norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented

  11. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT

    Energy Technology Data Exchange (ETDEWEB)

    Gay, F.; Lasalle, S.; Neuenschwander, S.; Brisse, H.J. [Institut Curie, Imaging Department, Paris (France); Pavia, Y.; Pierrat, N. [Institut Curie, Medical Physics Department, Paris (France)

    2014-01-15

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. (orig.)

  12. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT

    International Nuclear Information System (INIS)

    Gay, F.; Lasalle, S.; Neuenschwander, S.; Brisse, H.J.; Pavia, Y.; Pierrat, N.

    2014-01-01

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. (orig.)

  13. Value of multi-slice spiral CT MPVR reconstruction in the diagnosis of acute appendicitis

    International Nuclear Information System (INIS)

    Wang Kang; Zhao Zehua; Wang Zhi; Wang Weizhong; Xu Songsen; Zhang Miao; Liu Wenjin; Zhang Guozhen; Feng Dianxu

    2005-01-01

    Objective: To investigate the value of multi-slice spiral CT MPVR reconstruction in the diagnosis of acute appendicitis. Methods: A total of 39 patients with clinically suspected acute appendicitis underwent surgery from February, 2002 to September, 2003. They were prospectively examined before surgery with routine CT scanning and MPVR reconstruction spiral CT. 31 cases of appendicitis were confirmed after appendectomy. CT scans and surgery-pathology reports were evaluated on a five-grade scale from hyperemic-edematous appendix to abscess (normal appendix: 0 grade). Results: The results of spiral CT MPVR reconstruction were compared with the surgical and pathologic findings at appendectomy, yielding an accuracy of 87.2%, sensitivity of 90.3%, specificity of 75%, positive predictive value of 93.3%, and negative predictive value of 66.7%, respectively. Results of routine CT yielded an accuracy of 38.5%, sensitivity of 38.7%, specificity of 37.5%, positive predictive value of 70.6%, and negative predictive value of 13.6%, respectively. MPVR reconstruction signs of 28 patients with acute appendicitis included enlarged appendix ( > 6 mm) (96.4%), appendicoliths (26.7%), caecal apical thickening (36.7%), periappendiceal inflammation (71.4%), and abscess (10.7%). Conclusion: The use of spiral CT MPVR reconstruction in patients with equivocal clinical presentation suspected of having acute appendicitis can lead to a significant improvement in the preoperative diagnosis and maybe a decrease in surgical-pathologic severity of appendiceal disease. (authors)

  14. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    Directory of Open Access Journals (Sweden)

    Chae Young Lee

    Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  15. Diagnostic value of 3 D CT surface reconstruction in spinal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, S. [Department of Radiology, Univ. of Leipzig (Germany); Dietrich, K. [Department of Radiology, Univ. of Leipzig (Germany); Steinecke, R. [Department of Radiology, Univ. of Leipzig (Germany); Kloeppel, R. [Department of Radiology, Univ. of Leipzig (Germany); Schulz, H.G. [Department of Radiology, Univ. of Leipzig (Germany)

    1997-02-01

    Our purpose was to evaluate the diagnostic value of three-dimensional (3 D) CT surface reconstruction in spinal fractures in comparison with axial and reformatted images. A total of 50 patients with different CT-proven spinal fractures were analysed retrospectively. Based on axial scans and reformatted images, the spinal fractures were classified according to several classifications as Magerl for the thoraco-lumbar and lower cervical spine by one radiologist. Another radiologist performed 3 D CT surface reconstructions with the aim of characterizing the different types of spinal fractures. A third radiologist classified the 3 D CT surface reconstruction according to the Magerl classification. The results of the blinded reading process were compared. It was checked to see in which type and subgroup 3 D surface reconstructions were helpful. Readers one and two obtained the same results in the classification. The 3 D surface reconstruction did not yield any additional diagnostic information concerning type A and B injuries. Indeed, the full extent of the fracture could be easier recognized with axial and reformatted images in all cases. In 10 cases of C injuries, the dislocation of parts of vertebrae could be better recognized with the help of 3 D reconstructions. A 3 D CT surface reconstruction is only useful in rotational and shear vertebral injuries (Magerl type C injury). (orig.). With 4 figs., 1 tab.

  16. Comparison of computational to human observer detection for evaluation of CT low dose iterative reconstruction

    Science.gov (United States)

    Eck, Brendan; Fahmi, Rachid; Brown, Kevin M.; Raihani, Nilgoun; Wilson, David L.

    2014-03-01

    Model observers were created and compared to human observers for the detection of low contrast targets in computed tomography (CT) images reconstructed with an advanced, knowledge-based, iterative image reconstruction method for low x-ray dose imaging. A 5-channel Laguerre-Gauss Hotelling Observer (CHO) was used with internal noise added to the decision variable (DV) and/or channel outputs (CO). Models were defined by parameters: (k1) DV-noise with standard deviation (std) proportional to DV std; (k2) DV-noise with constant std; (k3) CO-noise with constant std across channels; and (k4) CO-noise in each channel with std proportional to CO variance. Four-alternative forced choice (4AFC) human observer studies were performed on sub-images extracted from phantom images with and without a "pin" target. Model parameters were estimated using maximum likelihood comparison to human probability correct (PC) data. PC in human and all model observers increased with dose, contrast, and size, and was much higher for advanced iterative reconstruction (IMR) as compared to filtered back projection (FBP). Detection in IMR was better than FPB at 1/3 dose, suggesting significant dose savings. Model(k1,k2,k3,k4) gave the best overall fit to humans across independent variables (dose, size, contrast, and reconstruction) at fixed display window. However Model(k1) performed better when considering model complexity using the Akaike information criterion. Model(k1) fit the extraordinary detectability difference between IMR and FBP, despite the different noise quality. It is anticipated that the model observer will predict results from iterative reconstruction methods having similar noise characteristics, enabling rapid comparison of methods.

  17. Influence of iterative image reconstruction on CT-based calcium score measurements

    NARCIS (Netherlands)

    van Osch, Jochen A. C.; Mouden, Mohamed; van Dalen, Jorn A.; Timmer, Jorik R.; Reiffers, Stoffer; Knollema, Siert; Greuter, Marcel J. W.; Ottervanger, Jan Paul; Jager, Piet L.

    Iterative reconstruction techniques for coronary CT angiography have been introduced as an alternative for traditional filter back projection (FBP) to reduce image noise, allowing improved image quality and a potential for dose reduction. However, the impact of iterative reconstruction on the

  18. Postoperative assessment of surgical results using three dimensional surface reconstruction CT (3D-CT) in a craniofacial anomaly

    International Nuclear Information System (INIS)

    Nishimura, Jiro; Sato, Kaoru; Nishimoto, Hiroshi; Tsukiyama, Takashi; Fujioka, Mutsuhisa; Akagawa, Tetsuya.

    1988-01-01

    In 1983, Michael W. Vannier and Jeffrey L. Marsh developed a computer method that reconstructs three dimensional (3D) born and soft tissue surfaces, given a high resolution CT scan-series of the facial skeleton. This method has been applied to craniofacial anomalies, basal encephaloceles, and musculoskeletal anomalies. In this study, a postoperative assessment of the craniofacial surgical results has been accomplished using this 3D-CT in 2 children with craniofacial dysmorphism. The authors discuss the advantages of this 3D-CT imaging method in the postoperative assessments of craniofacial anomalies. Results are detailed in the following listing : 1) a postoperative 3D-CT reveals the anatomical details corrected by the craniofacial surgery more precisely and stereographically than conventional radiological methods ; 2) secondary changes of the cranium after the surgery, such as bony formation in the area of the osteotomy and postoperative asymmetric deformities, are detected early by the 3D-CT imaging technique, and, 3) 3D-CT mid-sagittal and top axial views of the intracranial skull base are most useful in postoperative assessments of the surgical results. Basesd on our experience, we expect that three dimensional surface reconstructions from CT scans will become to be used widely in the postoperative assessments of the surgical results of craniofacial anomalies. (author)

  19. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    International Nuclear Information System (INIS)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom

    2015-01-01

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  20. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  1. Application status of three-dimensional CT reconstruction in hepatobiliary surgery

    Directory of Open Access Journals (Sweden)

    JIANG Chao

    2017-02-01

    Full Text Available With the development of imaging technology, three-dimensional CT reconstruction has been widely used in hepatobiliary surgery. Three-dimensional CT reconstruction can divide and reconstruct two-dimensional images into three-dimensional images and clearly show the location of lesion and its relationship with the intrahepatic bile duct system. It has an important value in the preoperative assessment of liver volume, diagnosis and treatment decision-making process, intraoperative precise operation, and postoperative individualized management, and promotes the constant development of hepatobiliary surgery and minimally invasive technology, and therefore, it holds promise for clinical application.

  2. Accuracy improvement of CT reconstruction using tree-structured filter bank

    International Nuclear Information System (INIS)

    Ueda, Kazuhiro; Morimoto, Hiroaki; Morikawa, Yoshitaka; Murakami, Junichi

    2009-01-01

    Accuracy improvement of 'CT reconstruction algorithm using TSFB (Tree-Structured Filter Bank)' that is high-speed CT reconstruction algorithm, was proposed. TSFB method could largely reduce the amount of computation in comparison with the CB (Convolution Backprojection) method, but it was the problem that an artifact occurred in a reconstruction image since reconstruction was performed with disregard to a signal out of the reconstruction domain in stage processing. Also the whole band filter being the component of a two-dimensional synthesis filter was IIR filter and then an artifact occurred at the end of the reconstruction image. In order to suppress these artifacts the proposed method enlarged the processing range by the TSFB method in the domain outside by the width control of the specimen line and line addition to the reconstruction domain outside. And, furthermore, to avoid increase of the amount of computation, the algorithm was proposed such as to decide the needed processing range depending on the number of steps processing with the TSFB and the degree of incline of filter, and then update the position and width of the specimen line to process the needed range. According to the simulation to realize a high-speed and highly accurate CT reconstruction in this way, the quality of the reconstruction image of the proposed method was improved in comparison with the TSFB method and got the same result with the CB method. (T. Tanaka)

  3. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Directory of Open Access Journals (Sweden)

    Ming Yan

    2006-01-01

    Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  4. Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies

    Energy Technology Data Exchange (ETDEWEB)

    Komlosi, Peter; Zhang, Yanrong; Leiva-Salinas, Carlos; Ornan, David; Grady, Deborah [University of Virginia, Department of Radiology and Medical Imaging, Division of Neuroradiology, PO Box 800170, Charlottesville, VA (United States); Patrie, James T.; Xin, Wenjun [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Wintermark, Max [University of Virginia, Department of Radiology and Medical Imaging, Division of Neuroradiology, PO Box 800170, Charlottesville, VA (United States); Centre Hospitalier Universitaire Vaudois, Department of Radiology, Lausanne (Switzerland)

    2014-03-15

    Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40 %/60 % with appropriate noise indices. The weighted volume CT dose index (CTDI{sub vol}), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDI{sub vol} and DLP were lowered by up to 10.9 % (p < 0.001), 17.9 % (p = 0.005), 20.9 % (p < 0.001), and 21.7 % (p = 0.001), respectively, by using ASIR compared with FBP alone. Image quality and noise were similar for both FBP and ASIR. We recommend routine use of iterative reconstruction for neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality. (orig.)

  5. Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies

    International Nuclear Information System (INIS)

    Komlosi, Peter; Zhang, Yanrong; Leiva-Salinas, Carlos; Ornan, David; Grady, Deborah; Patrie, James T.; Xin, Wenjun; Wintermark, Max

    2014-01-01

    Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40 %/60 % with appropriate noise indices. The weighted volume CT dose index (CTDI vol ), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDI vol and DLP were lowered by up to 10.9 % (p < 0.001), 17.9 % (p = 0.005), 20.9 % (p < 0.001), and 21.7 % (p = 0.001), respectively, by using ASIR compared with FBP alone. Image quality and noise were similar for both FBP and ASIR. We recommend routine use of iterative reconstruction for neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality. (orig.)

  6. Adult head CT scans: the uncertainties of effective dose estimates

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Full Text: CT scanning is a high dose imaging modality. Effective dose estimates from CT scans can provide important information to patients and medical professionals. For example, medical practitioners can use the dose to estimate the risk to the patient, and judge whether this risk is outweighed by the benefits of the CT examination, while radiographers can gauge the effect of different scanning protocols on the patient effective dose, and take this into consideration when establishing routine scan settings. Dose estimates also form an important part of epidemiological studies examining the health effects of medical radiation exposures on the wider population. Medical physicists have been devoting significant effort towards estimating patient radiation doses from diagnostic CT scans for some years. The question arises: How accurate are these effective dose estimates? The need for a greater understanding and improvement of the uncertainties in CT dose estimates is now gaining recognition as an important issue (BEIR VII 2006). This study is an attempt to analyse and quantify the uncertainty components relating to effective dose estimates from adult head CT examinations that are calculated with four commonly used methods. The dose estimation methods analysed are the Nagel method, the ImpaCT method, the Wellhoefer method and the Dose-Length Product (DLP) method. The analysis of the uncertainties was performed in accordance with the International Standards Organisation's Guide to the Expression of Uncertainty in Measurement as discussed in Gregory et al (Australas. Phys. Eng. Sci. Med., 28: 131-139, 2005). The uncertainty components vary, depending on the method used to derive the effective dose estimate. Uncertainty components in this study include the statistical and other errors from Monte Carlo simulations, uncertainties in the CT settings and positions of patients in the CT gantry, calibration errors from pencil ionization chambers, the variations in the organ

  7. CT and MRI post-processing reconstructions in maxillo-facial trauma

    International Nuclear Information System (INIS)

    Olszycki, M.; Grzelak, P.; Stanczyk, L.; Kozakiewicz, M.; Arkuszewski, P.

    2004-01-01

    The aim of the study is to evaluate the reliability of CT and MR imaging and their post-processing reconstructions in the cases of facial trauma. CT studies were performed in 34 patients: 13 suspected of sinus fractures, 20 with orbital fractures and 1 with broken supraorbital bone fragment. MR imaging was also performed in 16 of these patients. The CT data were reconstructed in the 2D and 3D mode. The CT and MR images were digitally fused using an own program. The CT and MR images, their reconstructions and their fusion were evaluated according to the quality of visualization of a pathological lesions. Surgery was the method of reference. The reconstructed CT images allowed to recognize properly maxillary-oral fenestration in 5 cases. In 20 patients with orbital fracture, CT 3D reformations visualized well the morphology of the fissure. In 13 of these patients,the small bone fragments and orbital soft tissues prolapsed towards the maxillary sinus were depicted. Among the 16 patients who underwent MR examination, in 6 cases we revealed dislocation of the inferior rectus muscle towards the sinus, whereas in 9 cases MR images clearly excluded this pathology. In 1 patient, the digitally fused CT/MR images allowed to determine the actual position of small bone fragment within the muscle. In 1 patient with broken supraorbital bone fragment, evaluation of the 3D model allowed to exclude communication with intracranial space. In the next 8 patients with maxillo-zygomatic injures, the CT reconstructions did not support the diagnosis. The surgery correlated well with the post-processing CT and CT/MR fused images, contrary to the original CT ones which often were diagnostically insufficient. Spiral CT 2D and 3D-reconstructed images of the face allow to depict clearly the anatomical spatial relationships and the position, course and displacement of fractured fragments; thus, they support the surgery. The MR images of these patients reveal soft tissues clearly. The digital

  8. Estimation of radiation cancer risk in CT-KUB

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bakar, K. A.; Bradley, D. A.; Ang, W. C.; Bahrudin, N. A.; Mhareb, M. H. A.

    2017-08-01

    The increased demand for computed tomography (CT) in radiological scanning examinations raises the question of a potential health impact from the associated radiation exposures. Focusing on CT kidney-ureter-bladder (CT-KUB) procedures, this work was aimed at determining organ equivalent dose using a commercial CT dose calculator and providing an estimate of cancer risks. The study, which included 64 patients (32 males and 32 females, mean age 55.5 years and age range 30-80 years), involved use of a calibrated CT scanner (Siemens-Somatom Emotion 16-slice). The CT exposures parameter including tube potential, pitch factor, tube current, volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded and analyzed using CT-EXPO (Version 2.3.1, Germany). Patient organ doses, including for stomach, liver, colon, bladder, red bone marrow, prostate and ovaries were calculated and converted into cancer risks using age- and sex-specific data published in the Biological Effects of Ionizing Radiation (BEIR) VII report. With a median value scan range of 36.1 cm, the CTDIvol, DLP, and effective dose were found to be 10.7 mGy, 390.3 mGy cm and 6.2 mSv, respectively. The mean cancer risks for males and females were estimated to be respectively 25 and 46 out of 100,000 procedures with effective doses between 4.2 mSv and 10.1 mSv. Given the increased cancer risks from current CT-KUB procedures compared to conventional examinations, we propose that the low dose protocols for unenhanced CT procedures be taken into consideration before establishing imaging protocols for CT-KUB.

  9. Model-based iterative reconstruction and adaptive statistical iterative reconstruction: dose-reduced CT for detecting pancreatic calcification

    International Nuclear Information System (INIS)

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2016-01-01

    Iterative reconstruction methods have attracted attention for reducing radiation doses in computed tomography (CT). To investigate the detectability of pancreatic calcification using dose-reduced CT reconstructed with model-based iterative construction (MBIR) and adaptive statistical iterative reconstruction (ASIR). This prospective study approved by Institutional Review Board included 85 patients (57 men, 28 women; mean age, 69.9 years; mean body weight, 61.2 kg). Unenhanced CT was performed three times with different radiation doses (reference-dose CT [RDCT], low-dose CT [LDCT], ultralow-dose CT [ULDCT]). From RDCT, LDCT, and ULDCT, images were reconstructed with filtered-back projection (R-FBP, used for establishing reference standard), ASIR (L-ASIR), and MBIR and ASIR (UL-MBIR and UL-ASIR), respectively. A lesion (pancreatic calcification) detection test was performed by two blinded radiologists with a five-point certainty level scale. Dose-length products of RDCT, LDCT, and ULDCT were 410, 97, and 36 mGy-cm, respectively. Nine patients had pancreatic calcification. The sensitivity for detecting pancreatic calcification with UL-MBIR was high (0.67–0.89) compared to L-ASIR or UL-ASIR (0.11–0.44), and a significant difference was seen between UL-MBIR and UL-ASIR for one reader (P = 0.014). The area under the receiver-operating characteristic curve for UL-MBIR (0.818–0.860) was comparable to that for L-ASIR (0.696–0.844). The specificity was lower with UL-MBIR (0.79–0.92) than with L-ASIR or UL-ASIR (0.96–0.99), and a significant difference was seen for one reader (P < 0.01). In UL-MBIR, pancreatic calcification can be detected with high sensitivity, however, we should pay attention to the slightly lower specificity

  10. Model-based iterative reconstruction and adaptive statistical iterative reconstruction: dose-reduced CT for detecting pancreatic calcification.

    Science.gov (United States)

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2016-01-01

    Iterative reconstruction methods have attracted attention for reducing radiation doses in computed tomography (CT). To investigate the detectability of pancreatic calcification using dose-reduced CT reconstructed with model-based iterative construction (MBIR) and adaptive statistical iterative reconstruction (ASIR). This prospective study approved by Institutional Review Board included 85 patients (57 men, 28 women; mean age, 69.9 years; mean body weight, 61.2 kg). Unenhanced CT was performed three times with different radiation doses (reference-dose CT [RDCT], low-dose CT [LDCT], ultralow-dose CT [ULDCT]). From RDCT, LDCT, and ULDCT, images were reconstructed with filtered-back projection (R-FBP, used for establishing reference standard), ASIR (L-ASIR), and MBIR and ASIR (UL-MBIR and UL-ASIR), respectively. A lesion (pancreatic calcification) detection test was performed by two blinded radiologists with a five-point certainty level scale. Dose-length products of RDCT, LDCT, and ULDCT were 410, 97, and 36 mGy-cm, respectively. Nine patients had pancreatic calcification. The sensitivity for detecting pancreatic calcification with UL-MBIR was high (0.67-0.89) compared to L-ASIR or UL-ASIR (0.11-0.44), and a significant difference was seen between UL-MBIR and UL-ASIR for one reader (P = 0.014). The area under the receiver-operating characteristic curve for UL-MBIR (0.818-0.860) was comparable to that for L-ASIR (0.696-0.844). The specificity was lower with UL-MBIR (0.79-0.92) than with L-ASIR or UL-ASIR (0.96-0.99), and a significant difference was seen for one reader (P < 0.01). In UL-MBIR, pancreatic calcification can be detected with high sensitivity, however, we should pay attention to the slightly lower specificity.

  11. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  12. Reduction of ring artefacts in high resolution micro-CT reconstructions

    International Nuclear Information System (INIS)

    Sijbers, Jan; Postnov, Andrei

    2004-01-01

    High resolution micro-CT images are often corrupted by ring artefacts, prohibiting quantitative analysis and hampering post processing. Removing or at least significantly reducing such artefacts is indispensable. However, since micro-CT systems are pushed to the extremes in the quest for the ultimate spatial resolution, ring artefacts can hardly be avoided. Moreover, as opposed to clinical CT systems, conventional correction schemes such as flat-field correction do not lead to satisfactory results. Therefore, in this note a simple but efficient and fast post processing method is proposed that effectively reduces ring artefacts in reconstructed μ-CT images. (note)

  13. Can low-dose CT with iterative reconstruction reduce both the radiation dose and the amount of iodine contrast medium in a dynamic CT study of the liver?

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroto; Okada, Masahiro; Hyodo, Tomoko; Hidaka, Syojiro; Kagawa, Yuki; Matsuki, Mitsuru; Tsurusaki, Masakatsu; Murakami, Takamichi, E-mail: murakami@med.kindai.ac.jp

    2014-04-15

    Purpose: To investigate whether low-dose dynamic CT of the liver with iterative reconstruction can reduce both the radiation dose and the amount of contrast medium. Materials and methods: This study was approved by our institutional review board. 113 patients were randomly assigned to one of two groups. Group A/group B (fifty-eight/fifty-five patients) underwent liver dynamic CT at 120/100 kV, with 0/40% adaptive statistical iterative reconstruction (ASIR), with a contrast dose of 600/480 mg I/kg, respectively. Radiation exposure was estimated based on the manufacturer's phantom data. The enhancement value of the hepatic parenchyma, vessels and the tumor-to-liver contrast of hepatocellular carcinomas (HCCs) were compared between two groups. Two readers independently assessed the CT images of the hepatic parenchyma and HCCs. Results: The mean CT dose indices: 6.38/4.04 mGy, the dose-length products: 194.54/124.57 mGy cm, for group A/group B. The mean enhancement value of the hepatic parenchyma and the tumor-to-liver contrast of HCCs with diameters greater than 1 cm in the post-contrast all phases did not differ significantly between two groups (P > 0.05). The enhancement values of vessels in group B were significantly higher than that in group A in the delayed phases (P < 0.05). Two reader's confidence levels for the hepatic parenchyma in the delayed phases and HCCs did not differ significantly between the groups (P > 0.05). Conclusions: Low-dose dynamic CT with ASIR can reduce both the radiation dose and the amount of contrast medium without image quality degradation, compared to conventional dynamic CT without ASIR.

  14. Improved quantitative 90 Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling.

    Science.gov (United States)

    Dewaraja, Yuni K; Chun, Se Young; Srinivasa, Ravi N; Kaza, Ravi K; Cuneo, Kyle C; Majdalany, Bill S; Novelli, Paula M; Ljungberg, Michael; Fessler, Jeffrey A

    2017-12-01

    In 90 Y microsphere radioembolization (RE), accurate post-therapy imaging-based dosimetry is important for establishing absorbed dose versus outcome relationships for developing future treatment planning strategies. Additionally, accurately assessing microsphere distributions is important because of concerns for unexpected activity deposition outside the liver. Quantitative 90 Y imaging by either SPECT or PET is challenging. In 90 Y SPECT model based methods are necessary for scatter correction because energy window-based methods are not feasible with the continuous bremsstrahlung energy spectrum. The objective of this work was to implement and evaluate a scatter estimation method for accurate 90 Y bremsstrahlung SPECT/CT imaging. Since a fully Monte Carlo (MC) approach to 90 Y SPECT reconstruction is computationally very demanding, in the present study the scatter estimate generated by a MC simulator was combined with an analytical projector in the 3D OS-EM reconstruction model. A single window (105 to 195-keV) was used for both the acquisition and the projector modeling. A liver/lung torso phantom with intrahepatic lesions and low-uptake extrahepatic objects was imaged to evaluate SPECT/CT reconstruction without and with scatter correction. Clinical application was demonstrated by applying the reconstruction approach to five patients treated with RE to determine lesion and normal liver activity concentrations using a (liver) relative calibration. There was convergence of the scatter estimate after just two updates, greatly reducing computational requirements. In the phantom study, compared with reconstruction without scatter correction, with MC scatter modeling there was substantial improvement in activity recovery in intrahepatic lesions (from > 55% to > 86%), normal liver (from 113% to 104%), and lungs (from 227% to 104%) with only a small degradation in noise (13% vs. 17%). Similarly, with scatter modeling contrast improved substantially both visually and in

  15. Evaluation of accelerated iterative x-ray CT image reconstruction using floating point graphics hardware

    International Nuclear Information System (INIS)

    Kole, J S; Beekman, F J

    2006-01-01

    Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases

  16. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality - preliminary findings

    International Nuclear Information System (INIS)

    Mieville, Frederic A.; Gudinchet, Francois; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Bochud, Francois O.; Verdun, Francis R.

    2011-01-01

    Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI vol 4.8-7.9 mGy, DLP 37.1-178.9 mGy.cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone. (orig.)

  17. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality - preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Mieville, Frederic A. [University Hospital Center and University of Lausanne, Institute of Radiation Physics, Lausanne (Switzerland); University Hospital Center and University of Lausanne, Institute of Radiation Physics - Medical Radiology, Lausanne (Switzerland); Gudinchet, Francois; Rizzo, Elena [University Hospital Center and University of Lausanne, Department of Radiology, Lausanne (Switzerland); Ou, Phalla; Brunelle, Francis [Necker Children' s Hospital, Department of Radiology, Paris (France); Bochud, Francois O.; Verdun, Francis R. [University Hospital Center and University of Lausanne, Institute of Radiation Physics, Lausanne (Switzerland)

    2011-09-15

    Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI{sub vol} 4.8-7.9 mGy, DLP 37.1-178.9 mGy.cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone. (orig.)

  18. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation

    International Nuclear Information System (INIS)

    Jia Xun; Lou Yifei; Li Ruijiang; Song, William Y.; Jiang, Steve B.

    2010-01-01

    Purpose: Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. Methods: The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. Results: It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of ∼360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. Conclusions: This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.

  19. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.

    Science.gov (United States)

    Jia, Xun; Lou, Yifei; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-04-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of approximately 360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.

  20. Recent advances in iterative reconstruction for clinical SPECT/PET and CT.

    Science.gov (United States)

    Hutton, Brian F

    2011-08-01

    Statistical iterative reconstruction is now widely used in clinical practice and has contributed to significant improvement in image quality in recent years. Although primarily used for reconstruction in emission tomography (both single photon emission computed tomography (SPECT) and positron emission tomography (PET)) there is increasing interest in also applying similar algorithms to x-ray computed tomography (CT). There is increasing complexity in the factors that are included in the reconstruction, a demonstration of the versatility of the approach. Research continues with exploration of methods for further improving reconstruction quality with effective correction for various sources of artefact.

  1. Micro CT based truth estimation of nodule volume

    Science.gov (United States)

    Kinnard, L. M.; Gavrielides, M. A.; Myers, K. J.; Zeng, R.; Whiting, B.; Lin-Gibson, S.; Petrick, N.

    2010-03-01

    With the advent of high-resolution CT, three-dimensional (3D) methods for nodule volumetry have been introduced, with the hope that such methods will be more accurate and consistent than currently used planar measures of size. However, the error associated with volume estimation methods still needs to be quantified. Volume estimation error is multi-faceted in the sense that there is variability associated with the patient, the software tool and the CT system. A primary goal of our current research efforts is to quantify the various sources of measurement error and, when possible, minimize their effects. In order to assess the bias of an estimate, the actual value, or "truth," must be known. In this work we investigate the reliability of micro CT to determine the "true" volume of synthetic nodules. The advantage of micro CT over other truthing methods is that it can provide both absolute volume and shape information in a single measurement. In the current study we compare micro CT volume truth to weight-density truth for spherical, elliptical, spiculated and lobulated nodules with diameters from 5 to 40 mm, and densities of -630 and +100 HU. The percent differences between micro CT and weight-density volume for -630 HU nodules range from [-21.7%, -0.6%] (mean= -11.9%) and the differences for +100 HU nodules range from [-0.9%, 3.0%] (mean=1.7%).

  2. Reconstructions with identical filling (RIF) of the heart: a physiological approach to image reconstruction in coronary CT angiography

    International Nuclear Information System (INIS)

    Reinartz, S.D.; Diefenbach, B.S.; Kuhl, C.K.; Mahnken, A.H.; Allmendinger, T.

    2012-01-01

    To compare image quality in coronary artery computed tomography angiography (cCTA) using reconstructions with automated phase detection and Reconstructions computed with Identical Filling of the heart (RIF). Seventy-four patients underwent ECG-gated dual source CT (DSCT) between November 2009 and July 2010 for suspected coronary heart disease (n = 35), planning of transcatheter aortic valve replacement (n = 34) or evaluation of ventricular function (n = 5). Image data sets by the RIF formula and automated phase detection were computed and evaluated with the AHA 15-segment model and a 5-grade Likert scale (1: poor, 5: excellent quality). Subgroups regarding rhythm (sinus rhythm = SR; arrhythmia = ARR) and potential premedication were evaluated by a per-segment, per-vessel and per-patient analysis. RIF significantly improved image quality in 10 of 15 coronary segments (P < 0.05). More diagnostic segments were provided by RIF regarding the entire cohort (n = 693 vs. 590, P < 0.001) and all of the subgroups (e.g. ARR: n = 143 vs. 72, P < 0.001). In arrhythmic patients (n = 19), more diagnostic vessels (e.g. LAD: n = 10 vs. 3; P < 0.014) and complete data sets (n = 7 vs. 1; P < 0.001) were produced. RIF reconstruction is superior to automatic diastolic non-edited reconstructions, especially in arrhythmic patients. RIF theory provides a physiological approach for determining the optimal image reconstruction point in ECG-gated CT angiography. (orig.)

  3. The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK)

    International Nuclear Information System (INIS)

    Rit, S; Vila Oliva, M; Sarrut, D; Brousmiche, S; Labarbe, R; Sharp, G C

    2014-01-01

    We propose the Reconstruction Toolkit (RTK, http://www.openrtk.org), an open-source toolkit for fast cone-beam CT reconstruction, based on the Insight Toolkit (ITK) and using GPU code extracted from Plastimatch. RTK is developed by an open consortium (see affiliations) under the non-contaminating Apache 2.0 license. The quality of the platform is daily checked with regression tests in partnership with Kitware, the company supporting ITK. Several features are already available: Elekta, Varian and IBA inputs, multi-threaded Feldkamp-David-Kress reconstruction on CPU and GPU, Parker short scan weighting, multi-threaded CPU and GPU forward projectors, etc. Each feature is either accessible through command line tools or C++ classes that can be included in independent software. A MIDAS community has been opened to share CatPhan datasets of several vendors (Elekta, Varian and IBA). RTK will be used in the upcoming cone-beam CT scanner developed by IBA for proton therapy rooms. Many features are under development: new input format support, iterative reconstruction, hybrid Monte Carlo / deterministic CBCT simulation, etc. RTK has been built to freely share tomographic reconstruction developments between researchers and is open for new contributions.

  4. Estimation of skull table thickness with clinical CT and validation with microCT.

    Science.gov (United States)

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.

  5. Estimating cancer risks to adults undergoing body CT examinations

    International Nuclear Information System (INIS)

    Huda, W.; He, W.

    2012-01-01

    The purpose of the study is to estimate cancer risks from the amount of radiation used to perform body computed tomography (CT) examination. The ImPACT CT Patient Dosimetry Calculator was used to compute values of organ doses for adult body CT examinations. The radiation used to perform each examination was quantified by the dose-length product (DLP). Patient organ doses were converted into corresponding age and sex dependent cancer risks using data from BEIR VII. Results are presented for cancer risks per unit DLP and unit effective dose for 11 sensitive organs, as well as estimates of the contribution from 'other organs'. For patients who differ from a standard sized adult, correction factors based on the patient weight and antero-posterior dimension are provided to adjust organ doses and the corresponding risks. At constant incident radiation intensity, for CT examinations that include the chest, risks for females are markedly higher than those for males, whereas for examinations that include the pelvis, risks in males were slightly higher than those in females. In abdominal CT scans, risks for males and female patients are very similar. For abdominal CT scans, increasing the patient age from 20 to 80 resulted in a reduction in patient risks of nearly a factor of 5. The average cancer risk for chest/abdomen/pelvis CT examinations was ∼26 % higher than the cancer risk caused by 'sensitive organs'. Doses and radiation risks in 80 kg adults were ∼10 % lower than those in 70 kg patients. Cancer risks in body CT can be estimated from the examination DLP by accounting for sex, age, as well as patient physical characteristics. (authors)

  6. Radiation dose reduction in CT with adaptive statistical iterative reconstruction (ASIR) for patients with bronchial carcinoma and intrapulmonary metastases.

    Science.gov (United States)

    Schäfer, M-L; Lüdemann, L; Böning, G; Kahn, J; Fuchs, S; Hamm, B; Streitparth, F

    2016-05-01

    To compare the radiation dose and image quality of 64-row chest computed tomography (CT) in patients with bronchial carcinoma or intrapulmonary metastases using full-dose CT reconstructed with filtered back projection (FBP) at baseline and reduced dose with 40% adaptive statistical iterative reconstruction (ASIR) at follow-up. The chest CT images of patients who underwent FBP and ASIR studies were reviewed. Dose-length products (DLP), effective dose, and size-specific dose estimates (SSDEs) were obtained. Image quality was analysed quantitatively by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurement. In addition, image quality was assessed by two blinded radiologists evaluating images for noise, contrast, artefacts, visibility of small structures, and diagnostic acceptability using a five-point scale. The ASIR studies showed 36% reduction in effective dose compared with the FBP studies. The qualitative and quantitative image quality was good to excellent in both protocols, without significant differences. There were also no significant differences for SNR except for the SNR of lung surrounding the tumour (FBP: 35±17, ASIR: 39±22). A protocol with 40% ASIR can provide approximately 36% dose reduction in chest CT of patients with bronchial carcinoma or intrapulmonary metastases while maintaining excellent image quality. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Effects of adaptive statistical iterative reconstruction on radiation dose reduction and diagnostic accuracy of pediatric abdominal CT

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sohi; Kim, Myung-Joon; Lee, Mi-Jung [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Seoul (Korea, Republic of); Yoon, Choon-Sik [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Kim, Dong Wook; Hong, Jung Hwa [Yonsei University College of Medicine, Biostatistics Collaboration Unit, Seoul (Korea, Republic of)

    2014-12-15

    Since children are more radio-sensitive than adults, there is a need to minimize radiation exposure during CT exams. To evaluate the effects of adaptive statistical iterative reconstruction (ASIR) on radiation dose reduction, image quality and diagnostic accuracy in pediatric abdominal CT. We retrospectively reviewed the abdominal CT examinations of 41 children (24 boys and 17 girls; mean age: 10 years) with a low-dose radiation protocol and reconstructed with ASIR (the ASIR group). We also reviewed routine-dose abdominal CT examinations of 41 age- and sex-matched controls reconstructed with filtered-back projection (control group). Image quality was assessed objectively as noise measured in the liver, spleen and aorta, as well as subjectively by three pediatric radiologists for diagnostic acceptability using a four-point scale. Radiation dose and objective image qualities of each group were compared with the paired t-test. Diagnostic accuracy was evaluated by reviewing follow-up imaging studies and medical records in 2012 and 2013. There was 46.3% dose reduction of size-specific dose estimates in ASIR group (from 13.4 to 7.2 mGy) compared with the control group. Objective noise was higher in the liver, spleen and aorta of the ASIR group (P < 0.001). However, the subjective image quality was average or superior in 84-100% of studies. Only one image was subjectively rated as unacceptable by one reviewer. There was only one case with interpretational error in the control group and none in the ASIR group. Use of the ASIR technique resulted in greater than a 45% reduction in radiation dose without impairing subjective image quality or diagnostic accuracy in pediatric abdominal CT, despite increased objective image noise. (orig.)

  8. Effects of adaptive statistical iterative reconstruction on radiation dose reduction and diagnostic accuracy of pediatric abdominal CT

    International Nuclear Information System (INIS)

    Bae, Sohi; Kim, Myung-Joon; Lee, Mi-Jung; Yoon, Choon-Sik; Kim, Dong Wook; Hong, Jung Hwa

    2014-01-01

    Since children are more radio-sensitive than adults, there is a need to minimize radiation exposure during CT exams. To evaluate the effects of adaptive statistical iterative reconstruction (ASIR) on radiation dose reduction, image quality and diagnostic accuracy in pediatric abdominal CT. We retrospectively reviewed the abdominal CT examinations of 41 children (24 boys and 17 girls; mean age: 10 years) with a low-dose radiation protocol and reconstructed with ASIR (the ASIR group). We also reviewed routine-dose abdominal CT examinations of 41 age- and sex-matched controls reconstructed with filtered-back projection (control group). Image quality was assessed objectively as noise measured in the liver, spleen and aorta, as well as subjectively by three pediatric radiologists for diagnostic acceptability using a four-point scale. Radiation dose and objective image qualities of each group were compared with the paired t-test. Diagnostic accuracy was evaluated by reviewing follow-up imaging studies and medical records in 2012 and 2013. There was 46.3% dose reduction of size-specific dose estimates in ASIR group (from 13.4 to 7.2 mGy) compared with the control group. Objective noise was higher in the liver, spleen and aorta of the ASIR group (P < 0.001). However, the subjective image quality was average or superior in 84-100% of studies. Only one image was subjectively rated as unacceptable by one reviewer. There was only one case with interpretational error in the control group and none in the ASIR group. Use of the ASIR technique resulted in greater than a 45% reduction in radiation dose without impairing subjective image quality or diagnostic accuracy in pediatric abdominal CT, despite increased objective image noise. (orig.)

  9. Effects of Different Reconstruction Parameters on CT Volumetric Measurement 
of Pulmonary Nodules

    Directory of Open Access Journals (Sweden)

    Rongrong YANG

    2012-02-01

    Full Text Available Background and objective It has been proven that volumetric measurements could detect subtle changes in small pulmonary nodules in serial CT scans, and thus may play an important role in the follow-up of indeterminate pulmonary nodules and in differentiating malignant nodules from benign nodules. The current study aims to evaluate the effects of different reconstruction parameters on the volumetric measurements of pulmonary nodules in chest CT scans. Methods Thirty subjects who underwent chest CT scan because of indeterminate pulmonary nodules in General Hospital of Tianjin Medical University from December 2009 to August 2011 were retrospectively analyzed. A total of 52 pulmonary nodules were included, and all CT data were reconstructed using three reconstruction algorithms and three slice thicknesses. The volumetric measurements of the nodules were performed using the advanced lung analysis (ALA software. The effects of the reconstruction algorithms, slice thicknesses, and nodule diameters on the volumetric measurements were assessed using the multivariate analysis of variance for repeated measures, the correlation analysis, and the Bland-Altman method. Results The reconstruction algorithms (F=13.6, P<0.001 and slice thicknesses (F=4.4, P=0.02 had significant effects on the measured volume of pulmonary nodules. In addition, the coefficients of variation of nine measurements were inversely related with nodule diameter (r=-0.814, P<0.001. The volume measured at the 2.5 mm slice thickness had poor agreement with the volumes measured at 1.25 mm and 0.625 mm, respectively. Moreover, the best agreement was achieved between the slice thicknesses of 1.25 mm and 0.625 mm using the bone algorithm. Conclusion Reconstruction algorithms and slice thicknesses have significant impacts on the volumetric measurements of lung nodules, especially for the small nodules. Therefore, the reconstruction setting in serial CT scans should be consistent in the follow

  10. Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR).

    Science.gov (United States)

    Vachha, Behroze; Brodoefel, Harald; Wilcox, Carol; Hackney, David B; Moonis, Gul

    2013-12-01

    To compare objective and subjective image quality in neck CT images acquired at different tube current-time products (275 mAs and 340 mAs) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current-time-product (340 mAs; n = 33) or reduced tube-current-time-product (275 mAs, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mAs and 275 mAs. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mAs and 275 mAs. Reduction of tube current from 340 mAs to 275 mAs resulted in an increase in mean objective image noise (p=0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mAs images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mAs CT images reconstructed with FBP (p>0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Angular integration and inter-projection correlation effects in CT reconstruction

    International Nuclear Information System (INIS)

    Crawford, C.R.; Pele, N.J.

    1987-01-01

    CT reconstruction algorithms require snap-shot projections of an object. In order to minimize scan times, CT scanners rotate continuously which, in turn, prevents the acquisition of snap-shot projections. Acquired projections are integrals over angular position and may be correlated inter-projection. This paper shows that angular integration and inter-projection correlation introduce a radially dependent degradation of the spatial resolution and cause the image noise to vary non-linearly with radial position

  12. GPU-accelerated few-view CT reconstruction using the OSC and TV techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri [Montreal Univ., QC (Canada). Dept. de Physique; Hissoiny, Sami [Ecole Polytechnique de Montreal, QC (Canada). Dept. de Genie Informatique et Genie Logiciel; Despres, Philippe [Centre Hospitalier Univ. de Quebec, QC (Canada). Dept. de Radio-Oncologie

    2011-07-01

    The present work proposes a promising iterative reconstruction technique designed specifically for X-ray transmission computed tomography (CT). The main objective is to reduce diagnostic radiation dose through the reduction of the number of CT projections, while preserving image quality. The second objective is to provide a fast implementation compatible with clinical activities. The proposed tomographic reconstruction technique is a combination of the Ordered Subsets Convex (OSC) algorithm and the Total Variation minimization (TV) regularization technique. The results in terms of image quality and computational speed are discussed. Using this technique, it was possible to obtain reconstructed slices of relatively good quality with as few as 100 projections, leading to potential dose reduction factors of up to an order of magnitude depending on the application. The algorithm was implemented on a Graphical Processing Unit (GPU) and yielded reconstruction times of approximately 185 ms per slice. (orig.)

  13. Accelerated gradient methods for total-variation-based CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jakob H.; Hansen, Per Christian [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Informatics and Mathematical Modeling; Jensen, Tobias L.; Jensen, Soeren H. [Aalborg Univ. (Denmark). Dept. of Electronic Systems; Sidky, Emil Y.; Pan, Xiaochuan [Chicago Univ., Chicago, IL (United States). Dept. of Radiology

    2011-07-01

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-intensive methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits prohibitively slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the standard gradient method. (orig.)

  14. A parallel implementation of 3-d CT image reconstruction on a hypercube multiprocessor

    International Nuclear Information System (INIS)

    Chen, C.M.; Lee, S.Y.; Cho, Z.H.

    1990-01-01

    In this paper, the authors describe how image reconstruction in computerized tomography (CT) can be parallelized on a message-passing multiprocessor. In particular, the results obtained from parallel implementation of 3-D CT image reconstruction for parallel beam geometries on the Intel hypercube, iPSC/2, are presented. A two stage pipelining approach is employed for filtering (convolution) and backprojection. The conventional sequential convolution algorithm is modified such that the symmetry of the filter kernel is fully utilized for parallelization. In the backprojection stage, the 3-D incremental algorithm, the authors' recently developed backprojection scheme which is shown to be faster than conventional algorithm, is parallelized

  15. Model-based PSF and MTF estimation and validation from skeletal clinical CT images.

    Science.gov (United States)

    Pakdel, Amirreza; Mainprize, James G; Robert, Normand; Fialkov, Jeffery; Whyne, Cari M

    2014-01-01

    A method was developed to correct for systematic errors in estimating the thickness of thin bones due to image blurring in CT images using bone interfaces to estimate the point-spread-function (PSF). This study validates the accuracy of the PSFs estimated using said method from various clinical CT images featuring cortical bones. Gaussian PSFs, characterized by a different extent in the z (scan) direction than in the x and y directions were obtained using our method from 11 clinical CT scans of a cadaveric craniofacial skeleton. These PSFs were estimated for multiple combinations of scanning parameters and reconstruction methods. The actual PSF for each scan setting was measured using the slanted-slit technique within the image slice plane and the longitudinal axis. The Gaussian PSF and the corresponding modulation transfer function (MTF) are compared against the actual PSF and MTF for validation. The differences (errors) between the actual and estimated full-width half-max (FWHM) of the PSFs were 0.09 ± 0.05 and 0.14 ± 0.11 mm for the xy and z axes, respectively. The overall errors in the predicted frequencies measured at 75%, 50%, 25%, 10%, and 5% MTF levels were 0.06 ± 0.07 and 0.06 ± 0.04 cycles/mm for the xy and z axes, respectively. The accuracy of the estimates was dependent on whether they were reconstructed with a standard kernel (Toshiba's FC68, mean error of 0.06 ± 0.05 mm, MTF mean error 0.02 ± 0.02 cycles/mm) or a high resolution bone kernel (Toshiba's FC81, PSF FWHM error 0.12 ± 0.03 mm, MTF mean error 0.09 ± 0.08 cycles/mm). The method is accurate in 3D for an image reconstructed using a standard reconstruction kernel, which conforms to the Gaussian PSF assumption but less accurate when using a high resolution bone kernel. The method is a practical and self-contained means of estimating the PSF in clinical CT images featuring cortical bones, without the need phantoms or any prior knowledge about the scanner-specific parameters.

  16. Model-based PSF and MTF estimation and validation from skeletal clinical CT images

    International Nuclear Information System (INIS)

    Pakdel, Amirreza; Mainprize, James G.; Robert, Normand; Fialkov, Jeffery; Whyne, Cari M.

    2014-01-01

    Purpose: A method was developed to correct for systematic errors in estimating the thickness of thin bones due to image blurring in CT images using bone interfaces to estimate the point-spread-function (PSF). This study validates the accuracy of the PSFs estimated using said method from various clinical CT images featuring cortical bones. Methods: Gaussian PSFs, characterized by a different extent in the z (scan) direction than in the x and y directions were obtained using our method from 11 clinical CT scans of a cadaveric craniofacial skeleton. These PSFs were estimated for multiple combinations of scanning parameters and reconstruction methods. The actual PSF for each scan setting was measured using the slanted-slit technique within the image slice plane and the longitudinal axis. The Gaussian PSF and the corresponding modulation transfer function (MTF) are compared against the actual PSF and MTF for validation. Results: The differences (errors) between the actual and estimated full-width half-max (FWHM) of the PSFs were 0.09 ± 0.05 and 0.14 ± 0.11 mm for the xy and z axes, respectively. The overall errors in the predicted frequencies measured at 75%, 50%, 25%, 10%, and 5% MTF levels were 0.06 ± 0.07 and 0.06 ± 0.04 cycles/mm for the xy and z axes, respectively. The accuracy of the estimates was dependent on whether they were reconstructed with a standard kernel (Toshiba's FC68, mean error of 0.06 ± 0.05 mm, MTF mean error 0.02 ± 0.02 cycles/mm) or a high resolution bone kernel (Toshiba's FC81, PSF FWHM error 0.12 ± 0.03 mm, MTF mean error 0.09 ± 0.08 cycles/mm). Conclusions: The method is accurate in 3D for an image reconstructed using a standard reconstruction kernel, which conforms to the Gaussian PSF assumption but less accurate when using a high resolution bone kernel. The method is a practical and self-contained means of estimating the PSF in clinical CT images featuring cortical bones, without the need phantoms or any prior knowledge about the

  17. Model-based PSF and MTF estimation and validation from skeletal clinical CT images

    Energy Technology Data Exchange (ETDEWEB)

    Pakdel, Amirreza [Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Mainprize, James G.; Robert, Normand [Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Fialkov, Jeffery [Division of Plastic Surgery, Sunnybrook Health Sciences Center, Toronto, Ontario M4N 3M5, Canada and Department of Surgery, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Whyne, Cari M., E-mail: cari.whyne@sunnybrook.ca [Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Surgery, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3M2 (Canada)

    2014-01-15

    Purpose: A method was developed to correct for systematic errors in estimating the thickness of thin bones due to image blurring in CT images using bone interfaces to estimate the point-spread-function (PSF). This study validates the accuracy of the PSFs estimated using said method from various clinical CT images featuring cortical bones. Methods: Gaussian PSFs, characterized by a different extent in the z (scan) direction than in the x and y directions were obtained using our method from 11 clinical CT scans of a cadaveric craniofacial skeleton. These PSFs were estimated for multiple combinations of scanning parameters and reconstruction methods. The actual PSF for each scan setting was measured using the slanted-slit technique within the image slice plane and the longitudinal axis. The Gaussian PSF and the corresponding modulation transfer function (MTF) are compared against the actual PSF and MTF for validation. Results: The differences (errors) between the actual and estimated full-width half-max (FWHM) of the PSFs were 0.09 ± 0.05 and 0.14 ± 0.11 mm for the xy and z axes, respectively. The overall errors in the predicted frequencies measured at 75%, 50%, 25%, 10%, and 5% MTF levels were 0.06 ± 0.07 and 0.06 ± 0.04 cycles/mm for the xy and z axes, respectively. The accuracy of the estimates was dependent on whether they were reconstructed with a standard kernel (Toshiba's FC68, mean error of 0.06 ± 0.05 mm, MTF mean error 0.02 ± 0.02 cycles/mm) or a high resolution bone kernel (Toshiba's FC81, PSF FWHM error 0.12 ± 0.03 mm, MTF mean error 0.09 ± 0.08 cycles/mm). Conclusions: The method is accurate in 3D for an image reconstructed using a standard reconstruction kernel, which conforms to the Gaussian PSF assumption but less accurate when using a high resolution bone kernel. The method is a practical and self-contained means of estimating the PSF in clinical CT images featuring cortical bones, without the need phantoms or any prior knowledge

  18. Estimating radiation risk induced by CT screening for Korean population

    Science.gov (United States)

    Yang, Won Seok; Yang, Hye Jeong; Min, Byung In

    2017-02-01

    The purposes of this study are to estimate the radiation risks induced by chest/abdomen computed tomography (CT) screening for healthcare and to determine the cancer risk level of the Korean population compared to other populations. We used an ImPACT CT Patient Dosimetry Calculator to compute the organ effective dose induced by CT screening (chest, low-dose chest, abdomen/pelvis, and chest/abdomen/pelvis CT). A risk model was applied using principles based on the BEIR VII Report in order to estimate the lifetime attributable risk (LAR) using the Korean Life Table 2010. In addition, several countries including Hong Kong, the United States (U.S.), and the United Kingdom, were selected for comparison. Herein, each population exposed radiation dose of 100 mSv was classified according to country, gender and age. For each CT screening the total organ effective dose calculated by ImPACT was 6.2, 1.5, 5.2 and 11.4 mSv, respectively. In the case of Korean female LAR, it was similar to Hong Kong female but lower than those of U.S. and U.K. females, except for those in their twenties. The LAR of Korean males was the highest for all types of CT screening. However, the difference of the risk level was negligible because of the quite low value.

  19. Quantitatively assessed CT imaging measures of pulmonary interstitial pneumonia: Effects of reconstruction algorithms on histogram parameters

    International Nuclear Information System (INIS)

    Koyama, Hisanobu; Ohno, Yoshiharu; Yamazaki, Youichi; Nogami, Munenobu; Kusaka, Akiko; Murase, Kenya; Sugimura, Kazuro

    2010-01-01

    This study aimed the influences of reconstruction algorithm for quantitative assessments in interstitial pneumonia patients. A total of 25 collagen vascular disease patients (nine male patients and 16 female patients; mean age, 57.2 years; age range 32-77 years) underwent thin-section MDCT examinations, and MDCT data were reconstructed with three kinds of reconstruction algorithm (two high-frequencies [A and B] and one standard [C]). In reconstruction algorithm B, the effect of low- and middle-frequency space was suppressed compared with reconstruction algorithm A. As quantitative CT parameters, kurtosis, skewness, and mean lung density (MLD) were acquired from a frequency histogram of the whole lung parenchyma in each reconstruction algorithm. To determine the difference of quantitative CT parameters affected by reconstruction algorithms, these parameters were compared statistically. To determine the relationships with the disease severity, these parameters were correlated with PFTs. In the results, all the histogram parameters values had significant differences each other (p < 0.0001) and those of reconstruction algorithm C were the highest. All MLDs had fair or moderate correlation with all parameters of PFT (-0.64 < r < -0.45, p < 0.05). Though kurtosis and skewness in high-frequency reconstruction algorithm A had significant correlations with all parameters of PFT (-0.61 < r < -0.45, p < 0.05), there were significant correlations only with diffusing capacity of carbon monoxide (DLco) and total lung capacity (TLC) in reconstruction algorithm C and with forced expiratory volume in 1 s (FEV1), DLco and TLC in reconstruction algorithm B. In conclusion, reconstruction algorithm has influence to quantitative assessments on chest thin-section MDCT examination in interstitial pneumonia patients.

  20. Quantitatively assessed CT imaging measures of pulmonary interstitial pneumonia: Effects of reconstruction algorithms on histogram parameters

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Hisanobu [Department of Radiology, Hyogo Kaibara Hospital, 5208-1 Kaibara, Kaibara-cho, Tanba 669-3395 (Japan)], E-mail: hisanobu19760104@yahoo.co.jp; Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: yosirad@kobe-u.ac.jp; Yamazaki, Youichi [Department of Medical Physics and Engineering, Faculty of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita 565-0871 (Japan)], E-mail: y.yamazk@sahs.med.osaka-u.ac.jp; Nogami, Munenobu [Division of PET, Institute of Biomedical Research and Innovation, 2-2 MInamimachi, Minatojima, Chu0-ku, Kobe 650-0047 (Japan)], E-mail: aznogami@fbri.org; Kusaka, Akiko [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: a.kusaka@hosp.kobe-u.ac.jp; Murase, Kenya [Department of Medical Physics and Engineering, Faculty of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita 565-0871 (Japan)], E-mail: murase@sahs.med.osaka-u.ac.jp; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: sugimura@med.kobe-u.ac.jp

    2010-04-15

    This study aimed the influences of reconstruction algorithm for quantitative assessments in interstitial pneumonia patients. A total of 25 collagen vascular disease patients (nine male patients and 16 female patients; mean age, 57.2 years; age range 32-77 years) underwent thin-section MDCT examinations, and MDCT data were reconstructed with three kinds of reconstruction algorithm (two high-frequencies [A and B] and one standard [C]). In reconstruction algorithm B, the effect of low- and middle-frequency space was suppressed compared with reconstruction algorithm A. As quantitative CT parameters, kurtosis, skewness, and mean lung density (MLD) were acquired from a frequency histogram of the whole lung parenchyma in each reconstruction algorithm. To determine the difference of quantitative CT parameters affected by reconstruction algorithms, these parameters were compared statistically. To determine the relationships with the disease severity, these parameters were correlated with PFTs. In the results, all the histogram parameters values had significant differences each other (p < 0.0001) and those of reconstruction algorithm C were the highest. All MLDs had fair or moderate correlation with all parameters of PFT (-0.64 < r < -0.45, p < 0.05). Though kurtosis and skewness in high-frequency reconstruction algorithm A had significant correlations with all parameters of PFT (-0.61 < r < -0.45, p < 0.05), there were significant correlations only with diffusing capacity of carbon monoxide (DLco) and total lung capacity (TLC) in reconstruction algorithm C and with forced expiratory volume in 1 s (FEV1), DLco and TLC in reconstruction algorithm B. In conclusion, reconstruction algorithm has influence to quantitative assessments on chest thin-section MDCT examination in interstitial pneumonia patients.

  1. Technique and value of three dimensional reconstruction of stones in the renal pelvis using spiral CT

    International Nuclear Information System (INIS)

    Fink, B.K.; Fink, U.; Pentenrieder, M.; Kohz, P.; Englmeier, H.K.; Schmeller, N.

    1994-01-01

    5 patients with staghorn calculi in the renal pelvis were examined by spiral CT. From the raw data three dimensional reconstructions of the stones were obtained. In all patients it was possible to compare the three dimensional model with the stone following performance of percutaneous lithopaxy and endoscopic removal of the fragments. In all cases the three dimensional reconstruction provided a realistic image of the stones and was of practical value for the urologist for preoperative diagnosis and intraoperative control. (orig.) [de

  2. A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT

    Science.gov (United States)

    Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo

    2016-11-01

    Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.

  3. The use of a neuronavigator in combination with three-dimensional CT reconstruction and angiography

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Eiju; Mayanagi, Yoshiaki (Tokyo Metropolitan Police Hospital (Japan)); Ishii, Shigeo; Yoshimoto, Satonobu; Takakura, Kintomo

    1989-08-01

    A new CT-stereotactic device (navigator) has been developed which translates the operating site into preoperative CT coordination. We applied this system in combination with three-dimensional CT reconstruction and with angiogram. Method: The system consists of a 6-joint robotic arm and a personal computer. It projects the location of the arm tip onto a correlating CT slice with a cursor, which guides a surgeon toward his intracranial target during open surgery. The system translates the tip location into a 3D-CT reconstructed image and an angiogram. The system worked as the core of a multimodality navigation system during surgery. The detection error was less than 5 mm, which proved sufficient for open microsurgery. The system was combined with a 3D-CT reconstruction system. It produces 3D images and cuts off the surface image at the point of the cursor, simulating surgical excision. The navigator controlled the location of the cutting cursor, thus establishing a real-time surgical simulation. When the angiogram was referred to, it became easy to identify bridging veins within a small operating field. Conclusion: The neuronavigator combines various diagnostic images into one data base and effectively guides the surgeon during surgery. (author).

  4. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction.

    Science.gov (United States)

    Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R

    2012-04-01

    To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P ASIR levels of ≥40% (P ASIR levels ≥60% (P ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.

  5. The use of a neuronavigator in combination with three-dimensional CT reconstruction and angiography

    International Nuclear Information System (INIS)

    Watanabe, Eiju; Mayanagi, Yoshiaki; Ishii, Shigeo; Yoshimoto, Satonobu; Takakura, Kintomo.

    1989-01-01

    A new CT-stereotactic device (navigator) has been developed which translates the operating site into preoperative CT coordination. We applied this system in combination with three-dimensional CT reconstruction and with angiogram. Method: The system consists of a 6-joint robotic arm and a personal computer. It projects the location of the arm tip onto a correlating CT slice with a cursor, which guides a surgeon toward his intracranial target during open surgery. The system translates the tip location into a 3D-CT reconstructed image and an angiogram. The system worked as the core of a multimodality navigation system during surgery. The detection error was less than 5 mm, which proved sufficient for open microsurgery. The system was combined with a 3D-CT reconstruction system. It produces 3D images and cuts off the surface image at the point of the cursor, simulating surgical excision. The navigator controlled the location of the cutting cursor, thus establishing a real-time surgical simulation. When the angiogram was referred to, it became easy to identify bridging veins within a small operating field. Conclusion: The neuronavigator combines various diagnostic images into one data base and effectively guides the surgeon during surgery. (author)

  6. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    International Nuclear Information System (INIS)

    Hofmann, Christian; Sawall, Stefan; Knaup, Michael; Kachelrieß, Marc

    2014-01-01

    factor for contrast-resolution plots. Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the authors compare the agreement of the reconstructions with the ground truth by calculating the normalized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash dual source CT scanner (Siemens Healthcare, Forchheim, Germany). Results: The results of the simulation study show that among the compared algorithms AIR achieves the highest resolution and the highest agreement with the ground truth. Compared to the reference FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time achieve a higher resolution by maintaining the edge information from the basis images. These results can be confirmed with the patient data. Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art clinical CT system were processed. It is shown, that generating CT images through the reconstruction of weighting coefficients has the potential to improve the resolution noise trade-off and thus to improve the dose usage in clinical CT

  7. Image quality of iterative reconstruction in cranial CT imaging: comparison of model-based iterative reconstruction (MBIR) and adaptive statistical iterative reconstruction (ASiR).

    Science.gov (United States)

    Notohamiprodjo, S; Deak, Z; Meurer, F; Maertz, F; Mueck, F G; Geyer, L L; Wirth, S

    2015-01-01

    The purpose of this study was to compare cranial CT (CCT) image quality (IQ) of the MBIR algorithm with standard iterative reconstruction (ASiR). In this institutional review board (IRB)-approved study, raw data sets of 100 unenhanced CCT examinations (120 kV, 50-260 mAs, 20 mm collimation, 0.984 pitch) were reconstructed with both ASiR and MBIR. Signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated from attenuation values measured in caudate nucleus, frontal white matter, anterior ventricle horn, fourth ventricle, and pons. Two radiologists, who were blinded to the reconstruction algorithms, evaluated anonymized multiplanar reformations of 2.5 mm with respect to depiction of different parenchymal structures and impact of artefacts on IQ with a five-point scale (0: unacceptable, 1: less than average, 2: average, 3: above average, 4: excellent). MBIR decreased artefacts more effectively than ASiR (p ASiR was 2 (p ASiR (p ASiR. As CCT is an examination that is frequently required, the use of MBIR may allow for substantial reduction of radiation exposure caused by medical diagnostics. • Model-Based iterative reconstruction (MBIR) effectively decreased artefacts in cranial CT. • MBIR reconstructed images were rated with significantly higher scores for image quality. • Model-Based iterative reconstruction may allow reduced-dose diagnostic examination protocols.

  8. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    Science.gov (United States)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  9. Super-resolution reconstruction of 4D-CT lung data via patch-based low-rank matrix reconstruction

    Science.gov (United States)

    Fang, Shiting; Wang, Huafeng; Liu, Yueliang; Zhang, Minghui; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2017-10-01

    Lung 4D computed tomography (4D-CT), which is a time-resolved CT data acquisition, performs an important role in explicitly including respiratory motion in treatment planning and delivery. However, the radiation dose is usually reduced at the expense of inter-slice spatial resolution to minimize radiation-related health risk. Therefore, resolution enhancement along the superior-inferior direction is necessary. In this paper, a super-resolution (SR) reconstruction method based on a patch low-rank matrix reconstruction is proposed to improve the resolution of lung 4D-CT images. Specifically, a low-rank matrix related to every patch is constructed by using a patch searching strategy. Thereafter, the singular value shrinkage is employed to recover the high-resolution patch under the constraints of the image degradation model. The output high-resolution patches are finally assembled to output the entire image. This method is extensively evaluated using two public data sets. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 9.7%-33.4% and the edge width by 11.4%-24.3%, relative to linear interpolation, back projection (BP) and Zhang et al’s algorithm. A new algorithm has been developed to improve the resolution of 4D-CT. In all experiments, the proposed method outperforms various interpolation methods, as well as BP and Zhang et al’s method, thus indicating the effectivity and competitiveness of the proposed algorithm.

  10. Developing milk industry estimates for dose reconstruction projects

    International Nuclear Information System (INIS)

    Beck, D.M.; Darwin, R.F.

    1991-01-01

    One of the most important contributors to radiation doses from hanford during the 1944-1947 period was radioactive iodine. Consumption of milk from cows that ate vegetation contaminated with iodine is likely the dominant pathway of human exposure. To estimate the doses people could have received from this pathway, it is necessary to reconstruct the amount of milk consumed by people living near Hanford, the source of the milk, and the type of feed that the milk cows ate. This task is challenging because the dairy industry has undergone radical changes since the end of World War 2, and records that document the impact of these changes on the study area are scarce. Similar problems are faced by researchers on most dose reconstruction efforts. The purpose of this work is to document and evaluate the methods used on the Hanford Environmental Dose Reconstruction (HEDR) Project to reconstruct the milk industry and to present preliminary results

  11. Applicability of 3D-CT facial reconstruction for forensic individual identification

    International Nuclear Information System (INIS)

    Rocha, Sara dos Santos; Ramos, Dalton Luiz de Paula; Cavalcanti, Marcelo de Gusmao Paraiso

    2003-01-01

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using cranio metric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10) cranio metric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution. (author)

  12. Applicability of 3D-CT facial reconstruction for forensic individual identification

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Sara dos Santos [Sao Paulo Univ., SP (Brazil). Odontologia Forense; Ramos, Dalton Luiz de Paula [Sao Paulo Univ., SP (Brazil). Dept. of Odontologia Social; Cavalcanti, Marcelo de Gusmao Paraiso [Sao Paulo Univ., SP (Brazil). Dept. de Radiologia

    2003-03-01

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using cranio metric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10) cranio metric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution. (author)

  13. Full dose reduction potential of statistical iterative reconstruction for head CT protocols in a predominantly pediatric population

    Science.gov (United States)

    Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.

    2016-01-01

    Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425

  14. Techniques, clinical applications and limitations of 3D reconstruction in CT of the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Michael M.; Kalra, Mannudeep K.; Sahani, Dushyant V.; Perumpillichira, James J.; Rizzo, Stephania; Saini, Sanjay; Mueller, Peter R. [Massachusetts General Hospital and Harvard Medical School, Boston (United States)

    2004-03-15

    Enhanced z-axis coverage with thin overlapping slices in breath-hold acquisitions with multidetector CT (MDCT) has considerably enhanced the quality of multiplanar 3D reconstruction. This pictorial essay describes the improvements in 3D reconstruction and technical aspects of 3D reconstruction and rendering techniques available for abdominal imaging. Clinical applications of 3D imaging in abdomen including liver, pancreaticobiliary system, urinary and gastrointestinal tracts and imaging before and after transplantation are discussed. In addition, this article briefly discusses the disadvantages of this-slice acquisitions including increasing numbers of transverse images, which must be reviewed by the radiologist.

  15. Techniques, clinical applications and limitations of 3D reconstruction in CT of the abdomen

    International Nuclear Information System (INIS)

    Maher, Michael M.; Kalra, Mannudeep K.; Sahani, Dushyant V.; Perumpillichira, James J.; Rizzo, Stephania; Saini, Sanjay; Mueller, Peter R.

    2004-01-01

    Enhanced z-axis coverage with thin overlapping slices in breath-hold acquisitions with multidetector CT (MDCT) has considerably enhanced the quality of multiplanar 3D reconstruction. This pictorial essay describes the improvements in 3D reconstruction and technical aspects of 3D reconstruction and rendering techniques available for abdominal imaging. Clinical applications of 3D imaging in abdomen including liver, pancreaticobiliary system, urinary and gastrointestinal tracts and imaging before and after transplantation are discussed. In addition, this article briefly discusses the disadvantages of this-slice acquisitions including increasing numbers of transverse images, which must be reviewed by the radiologist

  16. A fast iterative soft-thresholding algorithm for few-view CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junfeng; Mou, Xuanqin; Zhang, Yanbo [Jiaotong Univ., Xi' an (China). Inst. of Image Processing and Pattern Recognition

    2011-07-01

    Iterative soft-thresholding algorithms with total variation regularization can produce high-quality reconstructions from few views and even in the presence of noise. However, these algorithms are known to converge quite slowly, with a proven theoretically global convergence rate O(1/k), where k is iteration number. In this paper, we present a fast iterative soft-thresholding algorithm for few-view fan beam CT reconstruction with a global convergence rate O(1/k{sup 2}), which is significantly faster than the iterative soft-thresholding algorithm. Simulation results demonstrate the superior performance of the proposed algorithm in terms of convergence speed and reconstruction quality. (orig.)

  17. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration

    International Nuclear Information System (INIS)

    Wolthaus, J. W. H.; Sonke, J.-J.; Herk, M. van; Damen, E. M. F.

    2008-01-01

    for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of 'shape differences' was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. Conclusions: We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning

  18. Transthoracic CT-guided biopsy with multiplanar reconstruction image improves diagnostic accuracy of solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Takenaka, Daisuke; Imai, Masatake; Ohbayashi, Chiho; Sugimura, Kazuro

    2004-01-01

    Objective: To evaluate the utility of multiplanar reconstruction (MPR) image for CT-guided biopsy and determine factors of influencing diagnostic accuracy and the pneumothorax rate. Materials and methods: 390 patients with 396 pulmonary nodules underwent transthoracic CT-guided aspiration biopsy (TNAB) and transthoracic CT-guided cutting needle core biopsy (TCNB) as follows: 250 solitary pulmonary nodules (SPNs) underwent conventional CT-guided biopsy (conventional method), 81 underwent CT-fluoroscopic biopsy (CT-fluoroscopic method) and 65 underwent conventional CT-guided biopsy in combination with MPR image (MPR method). Success rate, overall diagnostic accuracy, pneumothorax rate and total procedure time were compared in each method. Factors affecting diagnostic accuracy and pneumothorax rate of CT-guided biopsy were statistically evaluated. Results: Success rates (TNAB: 100.0%, TCNB: 100.0%) and overall diagnostic accuracies (TNAB: 96.9%, TCNB: 97.0%) of MPR were significantly higher than those using the conventional method (TNAB: 87.6 and 82.4%, TCNB: 86.3 and 81.3%) (P<0.05). Diagnostic accuracy were influenced by biopsy method, lesion size, and needle path length (P<0.05). Pneumothorax rate was influenced by pathological diagnostic method, lesion size, number of punctures and FEV1.0% (P<0.05). Conclusion: The use of MPR for CT-guided lung biopsy is useful for improving diagnostic accuracy with no significant increase in pneumothorax rate or total procedure time

  19. CT Imaging of facial trauma. The role of different types of reconstruction. Part II - soft tissues

    International Nuclear Information System (INIS)

    Myga-Porosilo, J.; Sraga, W.; Borowiak, H.; Jackowska, Z.; Kluczewska, E.; Skrzelewski, S.

    2011-01-01

    Background: Injury to facial soft tissues as a complication of skeleton fractures is an important problem among patients with facial trauma. The aim of this work was to assess the value of multiplanar and three-dimensional (3D) reconstruction computed tomography (CT) images obtained by using multi-detector row technology in spiral data acquisition in patients with facial injuries of soft tissue. Material/Methods: Sixty-seven patients diagnosed with injury to the facial skeleton underwent a CT scan with the use of GE Hispeed Qx/i scanner. For each patient: a two-dimensional (2D) multiplanar reconstruction (MPR), maximum intensity projection (MIP), and 3D volume rendering (VR) were conducted. Post-injury lesions of soft tissues were assessed. During the assessment of the post-injury lesions of soft tissues, the following features were evaluated: Extra ocular muscle and fat tissue herniation through fractures in the medial and inferior orbital walls. Fluid in the sinuses and in the nasal cavity. Subcutaneous tissue emphysema. Results: For subcutaneous emphysema and sinus fluid imaging, both the axial and the 2D image reconstruction proved comparably effective. However, 2D reconstructions were superior to transverse plane images with regard to herniations into fractures of the inferior orbital wall. 3D reconstruction has no importance in diagnosing soft tissue injuries. Conclusions: Multiplanar CT reconstructions increase the effectiveness of imaging of orbital tissue herniations, especially in case of fractures in the inferior orbital wall. In suspected soft tissue herniations, as well as prior to surgical treatment, spiral CT with 2D multiplanar reconstructions should be the method of choice. (authors)

  20. Effect of hybrid iterative reconstruction technique on quantitative and qualitative image analysis at 256-slice prospective gating cardiac CT

    International Nuclear Information System (INIS)

    Utsunomiya, Daisuke; Weigold, W. Guy; Weissman, Gaby; Taylor, Allen J.

    2012-01-01

    To evaluate the effect of hybrid iterative reconstruction on qualitative and quantitative parameters at 256-slice cardiac CT. Prospective cardiac CT images from 20 patients were analysed. Paired image sets were created using 3 reconstructions, i.e. filtered back projection (FBP) and moderate- and high-level iterative reconstructions. Quantitative parameters including CT-attenuation, noise, and contrast-to-noise ratio (CNR) were determined in both proximal- and distal coronary segments. Image quality was graded on a 4-point scale. Coronary CT attenuation values were similar for FBP, moderate- and high-level iterative reconstruction at 293 ± 74-, 290 ± 75-, and 283 ± 78 Hounsfield units (HU), respectively. CNR was significantly higher with moderate- and high-level iterative reconstructions (10.9 ± 3.5 and 18.4 ± 6.2, respectively) than FBP (8.2 ± 2.5) as was the visual grading of proximal vessels. Visualisation of distal vessels was better with high-level iterative reconstruction than FBP. The mean number of assessable segments among 289 segments was 245, 260, and 267 for FBP, moderate- and high-level iterative reconstruction, respectively; the difference between FBP and high-level iterative reconstruction was significant. Interobserver agreement was significantly higher for moderate- and high-level iterative reconstruction than FBP. Cardiac CT using hybrid iterative reconstruction yields higher CNR and better image quality than FBP. circle Cardiac CT helps clinicians to assess patients with coronary artery disease circle Hybrid iterative reconstruction provides improved cardiac CT image quality circle Hybrid iterative reconstruction improves the number of assessable coronary segments circle Hybrid iterative reconstruction improves interobserver agreement on cardiac CT. (orig.)

  1. Automated selection of the optimal cardiac phase for single-beat coronary CT angiography reconstruction

    International Nuclear Information System (INIS)

    Stassi, D.; Ma, H.; Schmidt, T. G.; Dutta, S.; Soderman, A.; Pazzani, D.; Gros, E.; Okerlund, D.

    2016-01-01

    Purpose: Reconstructing a low-motion cardiac phase is expected to improve coronary artery visualization in coronary computed tomography angiography (CCTA) exams. This study developed an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. The algorithm uses prospectively gated, single-beat, multiphase data made possible by wide cone-beam imaging. The proposed algorithm differs from previous approaches because the optimal phase is identified based on vessel image quality (IQ) directly, compared to previous approaches that included motion estimation and interphase processing. Because there is no processing of interphase information, the algorithm can be applied to any sampling of image phases, making it suited for prospectively gated studies where only a subset of phases are available. Methods: An automated algorithm was developed to select the optimal phase based on quantitative IQ metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. The algorithm performance was evaluated using two observer studies. Fourteen single-beat cardiac CT exams (Revolution CT, GE Healthcare, Chalfont St. Giles, UK) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Pairwise inter-reader and reader-algorithm agreement was evaluated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC) between the reader and algorithm-selected phases. A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three

  2. CT Imaging of facial trauma. Role of different types of reconstruction. Part I - bones

    International Nuclear Information System (INIS)

    Myga-Porosilo, J.; Sraga, W.; Borowiak, H.; Jackowska, Z.; Kluczewska, E.; Skrzelewski, S.

    2011-01-01

    Background: Injury to the facial skeleton and the adjoining soft tissues is a frequently occurring condition. The main aim of this work was to assess the value of multiplanar and three-dimensional (3D) reconstruction computed tomography (CT) images obtained by using multi-detector row technology in spiral data acquisition in patients with facial skeleton injury. The authors attempted to answer the following questions: Are there particular mechanisms and types of injuries or locations of fractures which can be diagnosed significantly more effectively by conducting additional multiplanar image reconstructions? Do 3D image reconstructions contribute to the diagnostic process, to what extent? Compared to other imaging techniques, is the spiral CT data acquisition a more convenient for the patient and a faster investigation method of diagnosing post-injury lesions involving the facial skeleton? Material/Methods: Sixty-seven patients diagnosed with injury to the facial skeleton were referred for emergent CT scanning. Each patient underwent a CT scan with the use of a GE HiSpeed Qx/i scanner. The scans were conducted with the use of spiral data acquisition technique in the transverse plane. The following secondary image reconstructions were conducted for each patient: a two dimensional (2D) multiplanar reconstruction (MPR), maximum intensity projection (MIP), and 3D volume rendering (VR). Post-injury lesions of the facial skeleton were assessed and the presence of any loose displaced bone fragments was taken into consideration. Results: As far as fracture imaging is concerned, the 2D image reconstruction and volume rendering proved to be the most effective in the majority of locations. 3D image reconstructions proved the most sensitive in most cases of loose displaced bone fragments, except for fine structures such as the ethmoid bone and the inferior orbital wall. Conclusions: 1. Multiplanar computer reconstructions increase the effectiveness of visualisation of

  3. Coronary artery plaques: Cardiac CT with model-based and adaptive-statistical iterative reconstruction technique

    International Nuclear Information System (INIS)

    Scheffel, Hans; Stolzmann, Paul; Schlett, Christopher L.; Engel, Leif-Christopher; Major, Gyöngi Petra; Károlyi, Mihály; Do, Synho; Maurovich-Horvat, Pál; Hoffmann, Udo

    2012-01-01

    Objectives: To compare image quality of coronary artery plaque visualization at CT angiography with images reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model based iterative reconstruction (MBIR) techniques. Methods: The coronary arteries of three ex vivo human hearts were imaged by CT and reconstructed with FBP, ASIR and MBIR. Coronary cross-sectional images were co-registered between the different reconstruction techniques and assessed for qualitative and quantitative image quality parameters. Readers were blinded to the reconstruction algorithm. Results: A total of 375 triplets of coronary cross-sectional images were co-registered. Using MBIR, 26% of the images were rated as having excellent overall image quality, which was significantly better as compared to ASIR and FBP (4% and 13%, respectively, all p < 0.001). Qualitative assessment of image noise demonstrated a noise reduction by using ASIR as compared to FBP (p < 0.01) and further noise reduction by using MBIR (p < 0.001). The contrast-to-noise-ratio (CNR) using MBIR was better as compared to ASIR and FBP (44 ± 19, 29 ± 15, 26 ± 9, respectively; all p < 0.001). Conclusions: Using MBIR improved image quality, reduced image noise and increased CNR as compared to the other available reconstruction techniques. This may further improve the visualization of coronary artery plaque and allow radiation reduction.

  4. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  5. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows.

    Science.gov (United States)

    Brun, Francesco; Massimi, Lorenzo; Fratini, Michela; Dreossi, Diego; Billé, Fulvio; Accardo, Agostino; Pugliese, Roberto; Cedola, Alessia

    2017-01-01

    When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.

  6. Indications for direct multidirectional or multiplanar electronic reconstructions in CT-scanning of the head

    International Nuclear Information System (INIS)

    Kaiser, M.C.; Veiga-Pires, J.A.; Gooskens, R.; Troost, J.

    1982-01-01

    The authors set out to indicate the optimal applications at minimum radiation penalty of both direct multidirectional and multiplanar electronic reconstruction modes in CT-scanning of the head by means of two illustrative case reports of midline congenital tumours. (orig.)

  7. TV-constrained incremental algorithms for low-intensity CT image reconstruction

    DEFF Research Database (Denmark)

    Rose, Sean D.; Andersen, Martin S.; Sidky, Emil Y.

    2015-01-01

    constraint can be guided by an image reconstructed by filtered backprojection (FBP). We apply our algorithm to low-dose synchrotron X-ray CT data from the Advanced Photon Source (APS) at Argonne National Labs (ANL) to demonstrate its potential utility. We find that the algorithm provides a means of edge-preserving...

  8. Minimizing image noise in on-board CT reconstruction using both kilovoltage and megavoltage beam projections

    International Nuclear Information System (INIS)

    Zhang Junan; Yin Fangfang

    2007-01-01

    We studied a recently proposed aggregated CT reconstruction technique which combines the complementary advantages of kilovoltage (kV) and megavoltage (MV) x-ray imaging. Various phantoms were imaged to study the effects of beam orientations and geometry of the imaging object on image quality of reconstructed CT. It was shown that the quality of aggregated CT was correlated with both kV and MV beam orientations and the degree of this correlation depended upon the geometry of the imaging object. The results indicated that the optimal orientations were those when kV beams pass through the thinner portion and MV beams pass through the thicker portion of the imaging object. A special preprocessing procedure was also developed to perform contrast conversions between kV and MV information prior to image reconstruction. The performance of two reconstruction methods, one filtered backprojection method and one iterative method, were compared. The effects of projection number, beam truncation, and contrast conversion on the CT image quality were investigated

  9. Estimates of effective dose in adult CT examinations

    International Nuclear Information System (INIS)

    Mohamed, Mustafa Awad Elhaj.

    2015-12-01

    The goal of study was to estimate effective dose (E) in adult CT examinations for Toshiba X64 slice using CT. Exp version 2.5 software in Sudan. Using of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. lack of optimized protocols could be an additional source of increased dose in developing countries. In order to achieve these objectives, data of CT-scanner has been collected from three hospitals ( ANH, ZSH and MMH). Data collected included equipment information and scan parameters for individual patients, who were used to asses. 300 adult patients underwent head, chest, abdomen-pelvis and peivis CT examinations. The CT1_w , CTD1_vol, DLP, patient effective dos and organ doses were estimated, using CT exposure parameters and CT Exp version 2.5 software. A large variation of mean effective dose and organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scan length. The mean effective dose in this study in the Brain, PNS, Chest, pulmonary, Abdomen-pelvis, Pelvis, KUB and CTU were 3.2 mSv, 2.6 mSv, 18.9 mSv 17.6 mSv 27.1 mSv, 11.2 mSv, 9.6 mSv and 23.7 mSv respectively, and organ equivalent, doses presented in this study in this study for the eye lens (for head), lungs and thymus ( for chest) , liver, kidney and small intest ( for abdomen t-pelvis), bladder, uterus and gonads ( for pelvis), were 62.9 mSv, 39.5 mSv, 34.1 mSv, 53.9 mSv, 52.6 mSv, 58.1 mSv, 37 mSv, and 34.6 mSv, respectively. These values were mostly comparable to and slightly higher than the values of effective doses reported from similar studies the United Kingdom, Tanzania, Australia, Canada and Sudan. It was concluded that patient effective dose and organ doses could be substantially minimized through careful selection of scanning parameters based on clinical indications of study, patient size, and body

  10. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    DEFF Research Database (Denmark)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell

    2007-01-01

    in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method...

  11. Postoperative follow-up study of craniosynostosis using three-dimensional surface reconstruction CT (3D-CT)

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, Hiroshi; Tsukiyama, Takashi; Nishimura, Jiro; Fujioka, Mutsuhisa; Tsubokawa, Takashi.

    1988-12-01

    In 1983, Michael W. Vannier and Jeffrey L. Marsh developed a computer method that reconstructs three-dimensional images from high-resolution CT-scan series of the facial skeleton. This method has been applied to craniofacial anomalies, basal encephalocele, and other skeletal pathologies. In this study, the postoperative assessment of craniofacial surgical results has been accomplished using 3D-CT techniques in craniosynostosis. The results are as follows: (1) Postoperative 3D-CTs reveal the bony anatomical details corrected by the craniofacial surgery more precisely and more stereographically than do conventional radiological techniques. (2) Secondary changes in the cranium after the surgery, such as reossification at the area of osteotomies or postoperative asymmetric skull deformities, are more early detected by the 3D-CT imaging technique than by a craniogram. (3) In 3D-CT images, internal views of the skull, such mid-sagittal, rear internal, or top axial views of the intracranial skull base, are most useful in postoperative assessments of the surgical results and of postoperative secondary changes in the cranium. Based on our experience, we expect that 3D-CT imaging techniques will become more important in the management of craniosynostosis.

  12. Postoperative follow-up study of craniosynostosis using three-dimensional surface reconstruction CT (3D-CT)

    International Nuclear Information System (INIS)

    Nishimoto, Hiroshi; Tsukiyama, Takashi; Nishimura, Jiro; Fujioka, Mutsuhisa; Tsubokawa, Takashi.

    1988-01-01

    In 1983, Michael W. Vannier and Jeffrey L. Marsh developed a computer method that reconstructs three-dimensional images from high-resolution CT-scan series of the facial skeleton. This method has been applied to craniofacial anomalies, basal encephalocele, and other skeletal pathologies. In this study, the postoperative assessment of craniofacial surgical results has been accomplished using 3D-CT techniques in craniosynostosis. The results are as follows: 1) Postoperative 3D-CTs reveal the bony anatomical details corrected by the craniofacial surgery more precisely and more stereographically than do conventional radiological techniques. 2) Secondary changes in the cranium after the surgery, such as reossification at the area of osteotomies or postoperative asymmetric skull deformities, are more early detected by the 3D-CT imaging technique than by a craniogram. 3) In 3D-CT images, internal views of the skull, such mid-sagittal, rear internal, or top axial views of the intracranial skull base, are most useful in postoperative assessments of the surgical results and of postoperative secondary changes in the cranium. Based on our experience, we expect that 3D-CT imaging techniques will become more important in the management of craniosynostosis. (author)

  13. Radiation dose reduction in CT with adaptive statistical iterative reconstruction (ASIR) for patients with bronchial carcinoma and intrapulmonary metastases

    International Nuclear Information System (INIS)

    Schäfer, M.-L.; Lüdemann, L.; Böning, G.; Kahn, J.; Fuchs, S.; Hamm, B.; Streitparth, F.

    2016-01-01

    Aim: To compare the radiation dose and image quality of 64-row chest computed tomography (CT) in patients with bronchial carcinoma or intrapulmonary metastases using full-dose CT reconstructed with filtered back projection (FBP) at baseline and reduced dose with 40% adaptive statistical iterative reconstruction (ASIR) at follow-up. Materials and methods: The chest CT images of patients who underwent FBP and ASIR studies were reviewed. Dose–length products (DLP), effective dose, and size-specific dose estimates (SSDEs) were obtained. Image quality was analysed quantitatively by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurement. In addition, image quality was assessed by two blinded radiologists evaluating images for noise, contrast, artefacts, visibility of small structures, and diagnostic acceptability using a five-point scale. Results: The ASIR studies showed 36% reduction in effective dose compared with the FBP studies. The qualitative and quantitative image quality was good to excellent in both protocols, without significant differences. There were also no significant differences for SNR except for the SNR of lung surrounding the tumour (FBP: 35±17, ASIR: 39±22). Discussion: A protocol with 40% ASIR can provide approximately 36% dose reduction in chest CT of patients with bronchial carcinoma or intrapulmonary metastases while maintaining excellent image quality. - Highlights: • adaptive statistical iterative reconstruction in chest computed tomography scans. • patients with bronchial carcinoma or intrapulmonary metastases. • ASIR studies showed 36% reduction in effective dose compared with the FBP studies. • the qualitative and quantitative image quality was good to excellent in both protocols.

  14. Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation

    Science.gov (United States)

    Dwivedi, Shekhar

    2009-02-01

    Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.

  15. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  16. SU-E-I-86: Ultra-Low Dose Computed Tomography Attenuation Correction for Pediatric PET CT Using Adaptive Statistical Iterative Reconstruction (ASiR™)

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S; Shulkin, B [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2015-06-15

    Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co

  17. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    Science.gov (United States)

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  18. Low-dose X-ray CT reconstruction via dictionary learning.

    Science.gov (United States)

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  19. Reducing Radiation Dose in Adult Head CT using Iterative Reconstruction - A Clinical Study in 177 Patients.

    Science.gov (United States)

    Kaul, D; Kahn, J; Huizing, L; Wiener, E; Grupp, U; Böning, G; Ghadjar, P; Renz, D M; Streitparth, F

    2016-02-01

    To assess how ASIR (adaptive statistical iterative reconstruction) contributes to dose reduction and affects image quality of non-contrast cranial computed tomography (cCT). Non-contrast emergency CT scans of the head acquired in 177 patients were evaluated. The scans were acquired and processed using four different protocols: Group A (control): 120 kV, FBP (filtered back projection) n = 71; group B1: 120 kV, scan and reconstruction performed with 20 % ASIR (blending of 20 % ASIR and 80 % FBP), n = 86; group B2: raw data from group B1 reconstructed using a blending of 40 % ASIR and 60 % FBP, n = 74; group C1: 120 kV, scan and reconstruction performed with 30 % ASIR, n = 20; group C2: raw data from group C1 reconstructed using a blending of 50 % ASIR and 50 % FBP, n = 20. The effective dose was calculated. Image quality was assessed quantitatively and qualitatively. Compared to group A, groups B1/2 and C1/2 showed a significantly reduced effective dose of 40.4 % and 73.3 % (p ASIR makes it possible to reduce radiation significantly while maintaining adequate image quality in non-contrast head CT, which may be particularly useful for younger patients in an emergency setting and in follow-up. ASIR may reduce radiation significantly while maintaining adequate image quality. cCT protocol with 20 % ASIR and 40 %ASIR/60 %FBP blending is adequate for everyday clinical use. cCT protocol with 30 % ASIR and 50 %ASIR/50 %FBP blending is adequate for follow-up imaging © Georg Thieme Verlag KG Stuttgart · New York.

  20. Clinical application of the three-dimensional reconstruction of spiral CT pneumocolon

    International Nuclear Information System (INIS)

    Yu Shenping; Li Ziping; Xu Dasheng; Lin Erjian; Lin Peizhang; Xu Qiaolan

    2000-01-01

    Objective: To evaluate the clinical role of the 3 types of reconstruction of the spiral CT pneumocolon in the diagnosis of colon lesions. Methods: Three types of reconstruction with spiral CT pneumocolon including air cast imaging (ACI), CT virtual endoscopy (CTVE), and multiple planner reconstruction (MPR) in 34 patients with colorectal cancer or polyps were correlated with surgical pathology respectively. Results: Among the 34 patients, 30 was colorectal cancer and 6 was polyps (2 of which in the proximal lumen of 2 colon cancer). (1) Comparison between the 3 types of the spiral CT pneumocolon reconstruction and pathology in colorectal cancer. 1) ACI: tumor patterns: coincide (n =22), anti-coincide (n = 8); tumor extension: coincide (n = 24), anti-coincide (n = 6); tumor size: coincide (n = 28), anti-coincide (n = 2). 2) CTVE: tumor patterns: coincide (n = 26), anti-coincide (n = 4); tumor extension: coincide (n = 25), anti-coincide ( n 5); tumor size: coincide (n = 23), anti-coincide (n = 7). 3) MPR: tumor patterns: coincide (n = 24), anti-coincide (n = 6); tumor extension: coincide (n = 30), anti-coincide (n = 0); tumor size: coincide (n = 26), anti-coincide (n = 4). (2) Comparison between the 3 types of the spiral CT pneumocolon reconstruction and pathology in colorectal polyps: the lesions were displayed in 4 (ACI) and in 6 (CTVE and MPR). Conclusion: (1) For the diagnosis of colorectal cancers: CTVE was the best means to display the tumor patterns, MPR most correct to judge the tumor extension, and ACI most suitable to measure the tumor size. (2) For the diagnosis of colorectal polyps, ACI can be used for oriented diagnosis, CTVE can well display the intra-luminal three-dimensional structure and can be used for characteristic diagnosis, MPR can be used for differential diagnosis

  1. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baiyu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Barnhart, Huiman [Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina 27705 (United States); Richard, Samuel [Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Robins, Marthony [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Colsher, James [Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Department of Biomedical Engineering, and Department of Electronic and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2013-11-15

    Purpose: Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables.Methods: Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision.Results: Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A.Conclusions: The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of

  2. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR).

    Science.gov (United States)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan

    2013-11-01

    Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables. Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision. Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A. The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of accuracy on reconstruction algorithms

  3. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR)

    International Nuclear Information System (INIS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan

    2013-01-01

    Purpose: Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables.Methods: Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision.Results: Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A.Conclusions: The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of

  4. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  5. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  6. [Three dimensional CT reconstruction system on a personal computer].

    Science.gov (United States)

    Watanabe, E; Ide, T; Teramoto, A; Mayanagi, Y

    1991-03-01

    A new computer system to produce three dimensional surface image from CT scan has been invented. Although many similar systems have been already developed and reported, they are too expensive to be set up in routine clinical services because most of these systems are based on high power mini-computer systems. According to the opinion that a practical 3D-CT system should be used in daily clinical activities using only a personal computer, we have transplanted the 3D program into a personal computer working in MS-DOS (16-bit, 12 MHz). We added to the program a routine which simulates surgical dissection on the surface image. The time required to produce the surface image ranges from 40 to 90 seconds. To facilitate the simulation, we connected a 3D system with the neuronavigator. The navigator gives the position of the surgical simulation when the surgeon places the navigator tip on the patient's head thus simulating the surgical excision before the real dissection.

  7. Correlation of conventional simulation x-ray films and CT images for HDR-brachytherapy catheters reconstruction

    International Nuclear Information System (INIS)

    Rajendran, M.; Reddy, K.D.; Reddy, R.M.; Reddy, J.M.; Reddy, B.V.N.; Kiran Kumar; Gopi, S.; Dharaniraj; Janardhanan

    2002-01-01

    In order to plan a brachytherapy implant, it is imperative that implant reconstruction is done accurately. The purpose of this paper is to evaluate whether implant reconstruction done with transverse CT images is comparable to reconstruction done with conventional x-ray films

  8. Diagnosis of small posterior fossa stroke on brain CT: effect of iterative reconstruction designed for brain CT on detection performance

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Taihei; Yoshida, Morikatsu; Yokoyama, Koichi [Amakusa Medical Center, Department of Radiology, Amakusa, Kumamoto (Japan); Nakaura, Takeshi; Hirata, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2017-09-15

    In this study, we aimed to determine whether iterative model reconstruction designed for brain CT (IMR-neuro) would improve the accuracy of posterior fossa stroke diagnosis on brain CT. We enrolled 37 patients with ischaemic stroke in the posterior fossa and 37 patients without stroke (controls). Using axial images reconstructed using filtered back-projection (FBP) and IMR-neuro, we compared the CT numbers in infarcted areas, image noise in the pons, and contrast-to-noise ratios (CNRs) of infarcted and non-infarcted areas on scans subjected to IMR-neuro and FBP. To analyse the performance of hypo-attenuation detection, we used receiver-operating characteristic (ROC) curve techniques. The image noise was significantly lower (2.2 ± 0.5 vs. 5.1 ± 0.9 Hounsfield units, p < 0.01) and the difference in CNR between the infarcted and non-infarcted areas was significantly higher with IMR-neuro than with FBP (2.2 ± 1.7 vs. 4.0 ± 3.6, p < 0.01). Furthermore, the average area under the ROC curve was significantly higher with IMR-neuro (0.90 vs. 0.86 for FBP, p = 0.04). IMR-neuro yielded better image quality and improved hypo-attenuation detection in patients with ischaemic stroke. (orig.)

  9. Diagnosis of small posterior fossa stroke on brain CT: effect of iterative reconstruction designed for brain CT on detection performance

    International Nuclear Information System (INIS)

    Inoue, Taihei; Yoshida, Morikatsu; Yokoyama, Koichi; Nakaura, Takeshi; Hirata, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki; Harada, Kazunori

    2017-01-01

    In this study, we aimed to determine whether iterative model reconstruction designed for brain CT (IMR-neuro) would improve the accuracy of posterior fossa stroke diagnosis on brain CT. We enrolled 37 patients with ischaemic stroke in the posterior fossa and 37 patients without stroke (controls). Using axial images reconstructed using filtered back-projection (FBP) and IMR-neuro, we compared the CT numbers in infarcted areas, image noise in the pons, and contrast-to-noise ratios (CNRs) of infarcted and non-infarcted areas on scans subjected to IMR-neuro and FBP. To analyse the performance of hypo-attenuation detection, we used receiver-operating characteristic (ROC) curve techniques. The image noise was significantly lower (2.2 ± 0.5 vs. 5.1 ± 0.9 Hounsfield units, p < 0.01) and the difference in CNR between the infarcted and non-infarcted areas was significantly higher with IMR-neuro than with FBP (2.2 ± 1.7 vs. 4.0 ± 3.6, p < 0.01). Furthermore, the average area under the ROC curve was significantly higher with IMR-neuro (0.90 vs. 0.86 for FBP, p = 0.04). IMR-neuro yielded better image quality and improved hypo-attenuation detection in patients with ischaemic stroke. (orig.)

  10. Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based Iterative Reconstruction Method using Coordinate Descent Optimization for CT Imaging Investigations.

    Science.gov (United States)

    Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael

    2018-06-01

    To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric

  11. The role of 3D Helical CT in the reconstructive treatment of maxillofacial cancers

    International Nuclear Information System (INIS)

    De Rosa, V.; Ziviello, M.; Ionna, F.; Mozzillo, N.; Parascandolo, S.

    2000-01-01

    Purpose of this work is to investigate the role of Helical CT and the usefulness of three-dimensional (3D) imaging for pre-operative planning and follow-up of reconstructive maxillofacial surgery with alloplastic material in neoplastic disease involving this region. From 1996 to 1999 eleven patients were examined with Helical CT and 3D images for planning of maxillofacial plastic and reconstructive surgery for advanced cancer of this anatomically complex region. A 3D-modulated titanium mesh (100%) or micro nets was used to rebuild the anterior surface of maxillary bone and the orbital floor. The mesh was cut to the appropriate size and shape and curved where necessary. Within the residual sinusal cavity a siliconed filling was used surmounting an acrylic prosthesis with dental arch to rebuild the palate. A rehydrated bovine pericardium was affixed and moduled on the borders in two cases only. Three-dimensionally reconstructed CT images were obtained preoperatively and at least 6 months postoperatively in all patients. The images were generated on a computer workstation using the shaded surface display (SSD) software with threshold values ranging 425 to 630 HU, and a more closed window for the imaging of titanium mesh/bone interface in the post surgical follow-up. It was obtained an excellent complete spatial depiction of maxillo facial region both before and after surgery, with no artefacts so important as to affect the 3D reconstruction process and the image quality. Together with the head-neck surgical team it could be worked for preoperative planning through CT scans by different 3D points of view. The 3D reconstructed follow-up scans showed good filling of the defect in the area where the titanium mesh had been used. Then efficacious bone modelling and good biocompatibility of the alloplastic material were seen in all patients, with no inflammatory reactions. Titanium is a well-known material, which is widely used for cranioplasty. It is a radiolucent, non

  12. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  13. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    International Nuclear Information System (INIS)

    Lin, Yuan; Samei, Ehsan

    2014-01-01

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  14. Appearance of bony lesions on 3-D CT reconstructions: a case study in variable renderings

    Science.gov (United States)

    Mankovich, Nicholas J.; White, Stuart C.

    1992-05-01

    This paper discusses conventional 3-D reconstruction for bone visualization and presents a case study to demonstrate the dangers of performing 3-D reconstructions without careful selection of the bone threshold. The visualization of midface bone lesions directly from axial CT images is difficult because of the complex anatomic relationships. Three-dimensional reconstructions made from the CT to provide graphic images showing lesions in relation to adjacent facial bones. Most commercially available 3-D image reconstruction requires that the radiologist or technologist identify a threshold image intensity value that can be used to distinguish bone from other tissues. Much has been made of the many disadvantages of this technique, but it continues as the predominant method in producing 3-D pictures for clinical use. This paper is intended to provide a clear demonstration for the physician of the caveats that should accompany 3-D reconstructions. We present a case of recurrent odontogenic keratocyst in the anterior maxilla where the 3-D reconstructions, made with different bone thresholds (windows), are compared to the resected specimen. A DMI 3200 computer was used to convert the scan data from a GE 9800 CT into a 3-D shaded surface image. Threshold values were assigned to (1) generate the most clinically pleasing image, (2) produce maximum theoretical fidelity (using the midpoint image intensity between average cortical bone and average soft tissue), and (3) cover stepped threshold intensities between these two methods. We compared the computer lesions with the resected specimen and noted measurement errors of up to 44 percent introduced by inappropriate bone threshold levels. We suggest clinically applicable standardization techniques in the 3-D reconstruction as well as cautionary language that should accompany the 3-D images.

  15. Reconstructing the CT number array from gray-level images and its application in PACS

    Science.gov (United States)

    Chen, Xu; Zhuang, Tian-ge; Wu, Wei

    2001-08-01

    Although DICOM compliant computed tomography has been prevailing in medical fields nowadays, there are some incompliant ones, from which we could hardly get the raw data and make an apropos interpretation due to the proprietary image format. Under such condition, one usually uses frame grabbers to capture CT images, the results of which could not be freely adjusted by radiologists as the original CT number array could. To alleviate the inflexibility, a new method is presented in this paper to reconstruct the array of CT number from several gray-level images acquired under different window settings. Its feasibility is investigated and a few tips are put forward to correct the errors caused respectively by 'Border Effect' and some hardware problems. The accuracy analysis proves it a good substitution for original CT number array acquisition. And this method has already been successfully used in our newly developing PACS and accepted by the radiologists in clinical use.

  16. Automatic selection of optimal systolic and diastolic reconstruction windows for dual-source CT coronary angiography

    International Nuclear Information System (INIS)

    Seifarth, H.; Puesken, M.; Wienbeck, S.; Maintz, D.; Heindel, W.; Juergens, K.U.; Fischbach, R.

    2009-01-01

    The aim of this study was to assess the performance of a motion-map algorithm that automatically determines optimal reconstruction windows for dual-source coronary CT angiography. In datasets from 50 consecutive patients, optimal systolic and diastolic reconstruction windows were determined using the motion-map algorithm. For manual determination of the optimal reconstruction window, datasets were reconstructed in 5% steps throughout the RR interval. Motion artifacts were rated for each major coronary vessel using a five-point scale. Mean motion scores using the motion-map algorithm were 2.4 ± 0.8 for systolic reconstructions and 1.9 ± 0.8 for diastolic reconstructions. Using the manual approach, overall motion scores were significantly better (1.9 ± 0.5 and 1.7 ± 0.6, p 90% of cases using either approach. Using the automated approach, there was a negative correlation between heart rate and motion scores for systolic reconstructions (ρ = -0.26, p 80 bpm (systolic reconstruction). (orig.)

  17. Whole-body CT for lymphoma staging: Feasibility of halving radiation dose and risk by iterative image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M., E-mail: mathias.meyer@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Klein, S.A., E-mail: stefan.klein@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Brix, G., E-mail: gbrix@bfs.de [Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany); Fink, C., E-mail: Christian.Fink@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Pilz, L., E-mail: lothar.pilz@medma.uni-heidelberg.de [Department of Biostatistics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Jafarov, H., E-mail: Hashim.Jafarov@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Hofmann, W.K., E-mail: w.k.hofmann@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoenberg, S.O., E-mail: Stefan.Schoenberg@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); and others

    2014-02-15

    Objectives: Patients with lymphoma are at higher-risk of secondary malignancies mainly due to effects of cancer therapy as well as frequent radiological surveillance. We thus aimed to investigate the objective and subjective image quality as well as radiation exposure and risk of full-dose standard (FDS), full-dose iterative (FDI), and half-dose iterative (HDI) image reconstruction in patients with lymphoma. Material and methods: In 100 lymphoma patients, contrast-enhanced whole-body staging was performed on a dual-source CT. To acquire full-dose and half-dose CT data simultaneously, the total current-time product was equally distributed on both tubes operating at 120 kV. HDI reconstructions were calculated by using only data from one tube. Quantitative image quality was assessed by measuring image noise in different tissues of the neck, thorax, and abdomen. Overall diagnostic image quality was assessed using a 5-point Likert scale. Radiation doses and risks were estimated for a male and female reference person. Results: For all anatomical regions apart from the lungs image noise was significantly lower and the overall subjective image quality significantly better when using FDI and HDI instead of FDS reconstruction (p < 0.05). For the half-dose protocol, the risk to develop a radiation-induced cancer was estimated to be less than 0.11/0.19% for an adult male/female. Conclusions: Image quality of FDI and more importantly of HDI is superior to FDS reconstruction, thus enabling to halve radiation dose and risk to lymphoma patients.

  18. Cardiovascular CT angiography in neonates and children: Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    International Nuclear Information System (INIS)

    Tricarico, Francesco; Hlavacek, Anthony M.; Schoepf, U.J.; Ebersberger, Ullrich; Nance, John W.; Vliegenthart, Rozemarijn; Cho, Young Jun; Spears, J.R.; Secchi, Francesco; Savino, Giancarlo; Marano, Riccardo; Bonomo, Lorenzo; Schoenberg, Stefan O.; Apfaltrer, Paul

    2013-01-01

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. (orig.)

  19. Cardiovascular CT angiography in neonates and children: Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tricarico, Francesco [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Catholic University of the Sacred Heart, ' ' A. Gemelli' ' Hospital, Department of Bioimaging and Radiological Sciences, Rome (Italy); Hlavacek, Anthony M. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Children' s Hospital, Medical University of South Carolina, Division of Pediatric Cardiology, Charleston, SC (United States); Schoepf, U.J. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Children' s Hospital, Medical University of South Carolina, Division of Pediatric Cardiology, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Ebersberger, Ullrich [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Heart Centre Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Nance, John W. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Vliegenthart, Rozemarijn [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); University Medical Centre Groningen/University of Groningen, Centre for Medical Imaging - North East Netherlands, Department of Radiology, Groningen (Netherlands); Cho, Young Jun [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Konyang University School of Medicine, Department of Radiology, Daejeon (Korea, Republic of); Spears, J.R. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Secchi, Francesco [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Milan School of Medicine IRCCS Policlinico San Donato, Department of Medical and Surgical Sciences, Radiology Unit, Milan (Italy); Savino, Giancarlo; Marano, Riccardo; Bonomo, Lorenzo [Catholic University of the Sacred Heart, ' ' A. Gemelli' ' Hospital, Department of Bioimaging and Radiological Sciences, Rome (Italy); Schoenberg, Stefan O. [University Medical Centre Mannheim, Medical Faculty Mannheim - Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany); Apfaltrer, Paul [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); University Medical Centre Mannheim, Medical Faculty Mannheim - Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany)

    2013-05-15

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. (orig.)

  20. Clinical application of helical CT 3D reconstruction for the dental orthopaedics

    International Nuclear Information System (INIS)

    Han Benyi; Jiang Xiaolu; Li Hongru

    2005-01-01

    Objective: To evaluate the clinical application of helical CT 3D reconstruction technique in the dental orthopaedics. Methods: The helical CT was performed with 3.0 mm slice thickness and 1.0 pitch in 41 patients with dental orthopaedics. The 3D reconstructions, including maximum intensity projection (MIP), surface shaded display (SSD), and multiplanar reconstructions (MPR), were made for all the cases. Results: Thirty-seven of the 41 patients showed malalignment, tilt, rotation, overlap of the teeth and the different space between the longitudinal axes of the teeth. Twenty-five cases of them have shown 36 buried teeth in all. The axial images covered all the information. SSD demonstrated the external contours and entire morphologies of the teeth and the mandible with the relationship of the teeth alignment and the mandible. MIP clearly manifested the full view and the longitudinal alignment of the teeth. Among the 36 buried teeth, there were 29 palatally and 7 labially presented teeth, and they were morphologically delineated on MIP through various angles. Conclusion: The helical CT 3D reconstruction is a new technique to display the stereoscopic configuration of teeth. The combination of axial images and MIP, SSD, and MPR provides valuable anatomic and diagnostic information helpful for the surgeons to structure and determine the treatment protocol for the dental orthopaedics. (authors)

  1. Reconstruction of Cochlea Based on Micro-CT and Histological Images of the Human Inner Ear

    Directory of Open Access Journals (Sweden)

    Christos Bellos

    2014-01-01

    Full Text Available The study of the normal function and pathology of the inner ear has unique difficulties as it is inaccessible during life and, so, conventional techniques of pathologic studies such as biopsy and surgical excision are not feasible, without further impairing function. Mathematical modelling is therefore particularly attractive as a tool in researching the cochlea and its pathology. The first step towards efficient mathematical modelling is the reconstruction of an accurate three dimensional (3D model of the cochlea that will be presented in this paper. The high quality of the histological images is being exploited in order to extract several sections of the cochlea that are not visible on the micro-CT (mCT images (i.e., scala media, spiral ligament, and organ of Corti as well as other important sections (i.e., basilar membrane, Reissner membrane, scala vestibule, and scala tympani. The reconstructed model is being projected in the centerline of the coiled cochlea, extracted from mCT images, and represented in the 3D space. The reconstruction activities are part of the SIFEM project, which will result in the delivery of an infrastructure, semantically interlinking various tools and libraries (i.e., segmentation, reconstruction, and visualization tools with the clinical knowledge, which is represented by existing data, towards the delivery of a robust multiscale model of the inner ear.

  2. Implementation techniques and acceleration of DBPF reconstruction algorithm based on GPGPU for helical cone beam CT

    International Nuclear Information System (INIS)

    Shen Le; Xing Yuxiang

    2010-01-01

    The derivative back-projection filtered algorithm for a helical cone-beam CT is a newly developed exact reconstruction method. Due to its large computational complexity, the reconstruction is rather slow for practical use. General purpose graphic processing unit (GPGPU) is an SIMD paralleled hardware architecture with powerful float-point operation capacity. In this paper,we propose a new method for PI-line choice and sampling grid, and a paralleled PI-line reconstruction algorithm implemented on NVIDIA's Compute Unified Device Architecture (CUDA). Numerical simulation studies are carried out to validate our method. Compared with conventional CPU implementation, the CUDA accelerated method provides images of the same quality with a speedup factor of 318. Optimization strategies for the GPU acceleration are presented. Finally, influence of the parameters of the PI-line samples on the reconstruction speed and image quality is discussed. (authors)

  3. Methods of X-ray CT image reconstruction from few projections

    International Nuclear Information System (INIS)

    Wang, H.

    2011-01-01

    To improve the safety (low dose) and the productivity (fast acquisition) of a X-ray CT system, we want to reconstruct a high quality image from a small number of projections. The classical reconstruction algorithms generally fail since the reconstruction procedure is unstable and suffers from artifacts. A new approach based on the recently developed 'Compressed Sensing' (CS) theory assumes that the unknown image is in some sense 'sparse' or 'compressible', and the reconstruction is formulated through a non linear optimization problem (TV/l1 minimization) by enhancing the sparsity. Using the pixel (or voxel in 3D) as basis, to apply the CS framework in CT one usually needs a 'sparsifying' transform, and combines it with the 'X-ray projector' which applies on the pixel image. In this thesis, we have adapted a 'CT-friendly' radial basis of Gaussian family called 'blob' to the CS-CT framework. The blob has better space-frequency localization properties than the pixel, and many operations, such as the X-ray transform, can be evaluated analytically and are highly parallelizable (on GPU platform). Compared to the classical Kaisser-Bessel blob, the new basis has a multi-scale structure: an image is the sum of dilated and translated radial Mexican hat functions. The typical medical objects are compressible under this basis, so the sparse representation system used in the ordinary CS algorithms is no more needed. 2D simulations show that the existing TV and l1 algorithms are more efficient and the reconstructions have better visual quality than the equivalent approach based on the pixel or wavelet basis. The new approach has also been validated on 2D experimental data, where we have observed that in general the number of projections can be reduced to about 50%, without compromising the image quality. (author) [fr

  4. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    International Nuclear Information System (INIS)

    Ren, Qingguo; Dewan, Sheilesh Kumar; Li, Ming; Li, Jianying; Mao, Dingbiao; Wang, Zhenglei; Hua, Yanqing

    2012-01-01

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI vol ) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique

  5. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  6. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus

    2010-01-01

    -invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy......, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and computed tomography (CT) are used to communicate the actual image data created by the modalities. Care must be taken for data security...

  7. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?

    International Nuclear Information System (INIS)

    Pan, Xiaochuan; Sidky, Emil Y; Vannier, Michael

    2009-01-01

    Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scanners has remained virtually constant for the past 25 years—the reconstruction algorithm. Fundamental advances have been made in the solution of inverse problems, especially tomographic reconstruction, but these works have not been translated into clinical and related practice. The reasons are not obvious and seldom discussed. This review seeks to examine the reasons for this discrepancy and provides recommendations on how it can be resolved. We take the example of field of compressive sensing (CS), summarizing this new area of research from the eyes of practical medical physicists and explaining the disconnection between theoretical and application-oriented research. Using a few issues specific to CT, which engineers have addressed in very specific ways, we try to distill the mathematical problem underlying each of these issues with the hope of demonstrating that there are interesting mathematical problems of general importance that can result from in depth analysis of specific issues. We then sketch some unconventional CT-imaging designs that have the potential to impact on CT applications, if the link between applied mathematicians and engineers/physicists were stronger. Finally, we close with some observations on how the link could be strengthened. There is, we believe, an important opportunity to rapidly improve the performance of CT and related tomographic imaging techniques by addressing these issues. (topical review)

  8. Novel iterative reconstruction method with optimal dose usage for partially redundant CT-acquisition

    Science.gov (United States)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Allmendinger, T.; Klotz, E.; Stierstorfer, K.; Flohr, T.

    2015-11-01

    In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta. Examples: in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high. In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR ‘source’ image data, while maintaining their resolution. It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J). We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR). Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover

  9. Novel iterative reconstruction method with optimal dose usage for partially redundant CT-acquisition

    International Nuclear Information System (INIS)

    Bruder, H; Raupach, R; Sunnegardh, J; Allmendinger, T; Klotz, E; Stierstorfer, K; Flohr, T

    2015-01-01

    In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta.Examples: in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high.In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR ‘source’ image data, while maintaining their resolution.It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J).We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR).Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover spatial

  10. Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR)

    Energy Technology Data Exchange (ETDEWEB)

    Vachha, Behroze, E-mail: bvachha@partners.org [Neuroradiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114 (United States); Brodoefel, Harald; Wilcox, Carol; Hackney, David B.; Moonis, Gul [Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215 (United States)

    2013-12-01

    Purpose: To compare objective and subjective image quality in neck CT images acquired at different tube current–time products (275 mA s and 340 mA s) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Materials and methods: HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current–time-product (340 mA s; n = 33) or reduced tube-current–time-product (275 mA s, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mA s and 275 mA s. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Results: Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mA s and 275 mA s. Reduction of tube current from 340 mA s to 275 mA s resulted in an increase in mean objective image noise (p = 0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mA s images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mA s CT images reconstructed with FBP (p > 0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Conclusion: Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality.

  11. Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR)

    International Nuclear Information System (INIS)

    Vachha, Behroze; Brodoefel, Harald; Wilcox, Carol; Hackney, David B.; Moonis, Gul

    2013-01-01

    Purpose: To compare objective and subjective image quality in neck CT images acquired at different tube current–time products (275 mA s and 340 mA s) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Materials and methods: HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current–time-product (340 mA s; n = 33) or reduced tube-current–time-product (275 mA s, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mA s and 275 mA s. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Results: Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mA s and 275 mA s. Reduction of tube current from 340 mA s to 275 mA s resulted in an increase in mean objective image noise (p = 0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mA s images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mA s CT images reconstructed with FBP (p > 0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Conclusion: Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality

  12. Born iterative reconstruction using perturbed-phase field estimates.

    Science.gov (United States)

    Astheimer, Jeffrey P; Waag, Robert C

    2008-10-01

    A method of image reconstruction from scattering measurements for use in ultrasonic imaging is presented. The method employs distorted-wave Born iteration but does not require using a forward-problem solver or solving large systems of equations. These calculations are avoided by limiting intermediate estimates of medium variations to smooth functions in which the propagated fields can be approximated by phase perturbations derived from variations in a geometric path along rays. The reconstruction itself is formed by a modification of the filtered-backpropagation formula that includes correction terms to account for propagation through an estimated background. Numerical studies that validate the method for parameter ranges of interest in medical applications are presented. The efficiency of this method offers the possibility of real-time imaging from scattering measurements.

  13. Spiral CT of the pancreas. The value of small field-of-view targeted reconstruction

    International Nuclear Information System (INIS)

    Nishiharu, T.; Yamashita, Y.; Ogata, I.; Sumi, S.; Mitsuzaki, K.; Takahashi, M.

    1998-01-01

    Purpose: To compare the value of a retrospective targeted high-resolution spiral CT to the standard reconstruction technique in the assessment of pancreatic diseases. Material and methods: Spiral CT pancreatic images of a standard-size reconstruction protocol were compared prospectively with those of a retrospective targeted high-spatial-resolution reconstruction protocol in 30 patients. Prior to clinical evaluation, a phantom study was performed to evaluate the spatial resolution and signal-to-noise ratio of both protocols. Results: The high-resolution protocol achieved a good signal-to-noise ratio with acceptable spatial resolution. Phantom studies revealed increased image noise (+17%) with an increase in spatial resolution (+100%). In patients studied with the high-resolution protocol, the increase in noise was not significant but there was a marked improvement in the definition of small details. Conclusion: Images obtained with a targeted high-spatial-resolution reconstruction protocol showed superior lesion definition and vascular opacification compared with those obtained with a standard-size reconstruction protocol. This technique may have potential in the evaluation of small pancreatic abnormalities. (orig.)

  14. Improvement of image quality and dose management in CT fluoroscopy by iterative 3D image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, Oliver S.; Kupitz, Dennis; Powerski, Maciej; Mohnike, Konrad; Ricke, Jens [University Hospital Magdeburg, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Wybranski, Christian [University Hospital Magdeburg, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Cologne (Germany); Pech, Maciej [University Hospital Magdeburg, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Medical University of Gdansk, Second Department of Radiology, Gdansk (Poland); Amthauer, Holger [University Hospital Magdeburg, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Charite, Department of Nuclear Medicine, Berlin (Germany)

    2017-09-15

    The objective of this study was to assess the influence of an iterative CT reconstruction algorithm (IA), newly available for CT-fluoroscopy (CTF), on image noise, readers' confidence and effective dose compared to filtered back projection (FBP). Data from 165 patients (FBP/IA = 82/74) with CTF in the thorax, abdomen and pelvis were included. Noise was analysed in a large-diameter vessel. The impact of reconstruction and variables (e.g. X-ray tube current I) influencing noise and effective dose were analysed by ANOVA and a pairwise t-test with Bonferroni-Holm correction. Noise and readers' confidence were evaluated by three readers. Noise was significantly influenced by reconstruction, I, body region and circumference (all p ≤ 0.0002). IA reduced the noise significantly compared to FBP (p = 0.02). The effect varied for body regions and circumferences (p ≤ 0.001). The effective dose was influenced by the reconstruction, body region, interventional procedure and I (all p ≤ 0.02). The inter-rater reliability for noise and readers' confidence was good (W ≥ 0.75, p < 0.0001). Noise and readers' confidence were significantly better in AIDR-3D compared to FBP (p ≤ 0.03). Generally, IA yielded a significant reduction of the median effective dose. The CTF reconstruction by IA showed a significant reduction in noise and effective dose while readers' confidence increased. (orig.)

  15. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Komatsu, Shuhei; Kandatsu, Susumu; Yashiro, Tomoyasu; Baba, Masayuki

    2006-01-01

    The combination-weighted Feldkamp algorithm (CW-FDK) was developed and tested in a phantom in order to reduce cone-beam artefacts and enhance cranio-caudal reconstruction coverage in an attempt to improve image quality when utilizing cone-beam computed tomography (CBCT). Using a 256-slice cone-beam CT (256CBCT), image quality (CT-number uniformity and geometrical accuracy) was quantitatively evaluated in phantom and clinical studies, and the results were compared to those obtained with the original Feldkamp algorithm. A clinical study was done in lung cancer patients under breath holding and free breathing. Image quality for the original Feldkamp algorithm is degraded at the edge of the scan region due to the missing volume, commensurate with the cranio-caudal distance between the reconstruction and central planes. The CW-FDK extended the reconstruction coverage to equal the scan coverage and improved reconstruction accuracy, unaffected by the cranio-caudal distance. The extended reconstruction coverage with good image quality provided by the CW-FDK will be clinically investigated for improving diagnostic and radiotherapy applications. In addition, this algorithm can also be adapted for use in relatively wide cone-angle CBCT such as with a flat-panel detector CBCT

  16. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    International Nuclear Information System (INIS)

    Sattler, Bernhard; Lee, John A.; Lonsdale, Markus; Coche, Emmanuel

    2010-01-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  17. Accelerated gradient methods for total-variation-based CT image reconstruction

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Jensen, Tobias Lindstrøm; Hansen, Per Christian

    2011-01-01

    incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping...... reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton’s method. The simple gradient method has much lower memory requirements, but exhibits slow convergence...

  18. CT coronary angiography: Influence of different cardiac reconstruction intervals on image quality and diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Department of Radiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)], E-mail: marc.dewey@charite.de; Teige, Florian [Department of Radiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany); Rutsch, Wolfgang [Department of Cardiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)], E-mail: wolfgang.rutsch@charite.de; Schink, Tania [Department of Medical Biometry, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)], E-mail: peter.martus@charite.de; Hamm, Bernd [Department of Radiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)

    2008-07-15

    Purpose: To prospectively analyze image quality and diagnostic accuracy of different reconstruction intervals of coronary angiography using multislice computed tomography (MSCT). Materials and methods: For each of 47 patients, 10 ECG-gated MSCT reconstructions were generated throughout the RR interval from 0 to 90%, resulting in altogether 470 datasets. These datasets were randomly analyzed for image quality and accuracy and compared with conventional angiography. Statistical comparison of intervals was performed using nonparametric analysis for repeated measurements to account for clustering of arteries within patients. Results: Image reconstruction intervals centered at 80, 70, and 40% of the RR interval resulted (in that order) in the best overall image quality for all four main coronary vessels. Eighty percent reconstructions also yielded the highest diagnostic accuracy of all intervals. The combination of the three best intervals (80, 70, and 40%) significantly reduced the nondiagnostic rate as compared with 80% alone (p = 0.005). However, the optimal reconstruction interval combination achieved significantly improved specificities and nondiagnostic rates (p < 0.05). The optimal combination consisted of 1.7 {+-} 0.9 reconstruction intervals on average. In approximately half of the patients (49%, 23/47) a single reconstruction was optimal. In 18 (38%), 3 (6%), and 3 (6%) patients one, two, and three additional reconstruction intervals were required, respectively, to achieve optimal quality. In 28% of the patients the optimal combination consisted of reconstructions other than the three best intervals (80, 70, and 40%). Conclusion: Multiple image reconstruction intervals are essential to ensure high image quality and accuracy of CT coronary angiography.

  19. Estimating effective doses to children from CT examinations

    International Nuclear Information System (INIS)

    Heron, J.C.L.

    2000-01-01

    Full text: Assessing doses to patients in diagnostic radiology is an integral part of implementing optimisation of radiation protection. Sources of normalised data are available for estimating doses to adults undergoing CT examinations, but for children this is not the case. This paper describes a simple method for estimating effective doses arising from paediatric CT examinations. First the effective dose to an adult is calculated, having anatomically matched the scanned regions of the child and the adult and also matched the irradiation conditions. A conversion factor is then applied to the adult effective dose, based on the region of the body being scanned - head, upper or lower trunk. This conversion factor is the child-to-adult ratio of the ratios of effective dose per entrance air kerma (in the absence of the patient) at the FAD. The values of these conversion factors were calculated by deriving effective dose per entrance air kerma at the FAD for new-born, 1, 5, 10, 15 and adult phantoms using four projections (AP, PA, left and right laterals) over a range of beam qualities and FADs.The program PCXMC was used for this purpose. Results to date suggest that the conversion factors to give effective doses for children undergoing CT examinations of the upper trunk are approximately 1.3, 1.2, 1.15, 1.1 and 1.05 for ages 0, 1, 5, 10 and 15 years respectively; CT of the lower trunk - 1.4, 1.3, 1.2, 1.2, 1.1; and CT of the head - 2.3, 2.0, 1.5, 1.3, 1.1. The dependence of these factors on beam quality (HVL from 4 to 10 mm Al) is less than 10%, with harder beams resulting in slightly smaller conversion factors. Dependence on FAD is also less than 10%. Major sources of uncertainties in the conversion factors include matching anatomical regions across the phantoms, and the presence of beam divergence in the z-direction when deriving the factors. The method described provides a simple means of estimating effective doses arising from paediatric CT examinations with

  20. Development of a method to estimate organ doses for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Antonios E., E-mail: apapadak@pagni.gr; Perisinakis, Kostas; Damilakis, John [Department of Medical Physics, University Hospital of Heraklion, Faculty of Medicine, University of Crete, P.O. Box 1352, Iraklion, Crete 71110 (Greece)

    2016-05-15

    Purpose: To develop a method for estimating doses to primarily exposed organs in pediatric CT by taking into account patient size and automatic tube current modulation (ATCM). Methods: A Monte Carlo CT dosimetry software package, which creates patient-specific voxelized phantoms, accurately simulates CT exposures, and generates dose images depicting the energy imparted on the exposed volume, was used. Routine head, thorax, and abdomen/pelvis CT examinations in 92 pediatric patients, ranging from 1-month to 14-yr-old (49 boys and 43 girls), were simulated on a 64-slice CT scanner. Two sets of simulations were performed in each patient using (i) a fixed tube current (FTC) value over the entire examination length and (ii) the ATCM profile extracted from the DICOM header of the reconstructed images. Normalized to CTDI{sub vol} organ dose was derived for all primary irradiated radiosensitive organs. Normalized dose data were correlated to patient’s water equivalent diameter using log-transformed linear regression analysis. Results: The maximum percent difference in normalized organ dose between FTC and ATCM acquisitions was 10% for eyes in head, 26% for thymus in thorax, and 76% for kidneys in abdomen/pelvis. In most of the organs, the correlation between dose and water equivalent diameter was significantly improved in ATCM compared to FTC acquisitions (P < 0.001). Conclusions: The proposed method employs size specific CTDI{sub vol}-normalized organ dose coefficients for ATCM-activated and FTC acquisitions in pediatric CT. These coefficients are substantially different between ATCM and FTC modes of operation and enable a more accurate assessment of patient-specific organ dose in the clinical setting.

  1. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    Science.gov (United States)

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 m

  2. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    International Nuclear Information System (INIS)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng; Fung, Russell; Zhu Chun; Miao Jianwei; Mao Yu; Khatonabadi, Maryam; DeMarco, John J.; McNitt-Gray, Michael F.; Osher, Stanley J.

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  3. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    International Nuclear Information System (INIS)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X

    2015-01-01

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed

  4. Projector and backprojector for iterative CT reconstruction with blobs using CUDA

    Energy Technology Data Exchange (ETDEWEB)

    Bippus, Rolf-Dieter; Koehler, Thomas; Bergner, Frank; Brendel, Bernhard; Proksa, Roland [Philips Research Laboratories, Hamburg (Germany); Hansis, Eberhard [Philips Healthcare, Nuclear Medicine, San Jose, CA (United States)

    2011-07-01

    Using blobs allows modeling the CT system's geometry more correctly within an iterative reconstruction framework. However their application comes with an increased computational demand. This led us to use blobs for image representation and a dedicated GPU hardware implementation to counteract their computational demand. Making extensive use of the texture interpolation capabilities of CUDA and implementing an asymmetric projector/backprojector pair we achieve reasonable processing times and good system modeling at the same time. (orig.)

  5. Determination of optimal parameters for three-dimensional reconstruction images of central airways using helical CT

    International Nuclear Information System (INIS)

    Hirose, Takahumi; Akata, Soichi; Matsuno, Naoto; Nagao, Takeshi; Abe, Kimihiko

    2002-01-01

    Three-dimensional (3D) image reconstruction of central airways using helical CT requires several user-defined parameters that exceed the requirements of conventional CT. The purpose of this study was to evaluate the optimal parameters for 3D images of central airways using helical CT. In our experimental study using a piglet immediately after sacrifice, 3D images of the central airway were evaluated with changes of 3D imaging parameters, such as detector collimation (1, 2, 3 and 6 mm), table speed (1, 2, 3 and 5 mm/sec), tube electric current (50, 100, 150, 200 and 250 mA), reconstruction interval (0.3, 0.5, 1, 2 and 3 mm), algorithm (mediastinum and lung) and interpolation method (180 deg and 360 deg). To minimize detector collimation, table speed, and reconstruction interval could provide the best 3D images of the central airway. Stair-step artifacts could also be reduced with a slow table speed. However, decreasing the collimation and table speed decreases not only the effective section thickness but also the scan coverage that can be achieved with a helical CT. For routine diagnosis, we conclude that optimal parameters for 3D images of the central airway are to minimize the table speed necessary to cover the volume of interest and to set detector collimation to 1/2 of the table speed. The reconstruction intervals should also be selected at up to 1/2 of the detector collimation, but with trade-offs of increased image processing time, data storage requirements, and physician time for image review. Regarding to tube electric current, 200 mA or more was necessary. Pixel noise increased with the algorithm for the lung. The 180 deg interpolation is better than 360 deg interpolation due to thin effective section thickness. (author)

  6. Diagnostic value of multiplanar reconstruction in CT recognition of lumbar spinal disorders

    International Nuclear Information System (INIS)

    Im, S. K.; Choi, J. H.; Kim, C. H.; Sohn, M. H.; Lim, K. Y.; Choi, K. C.

    1984-01-01

    The computer tomography is useful in evaluation of bony structures and adjacent soft tissues of the lumbar spine. Recently, the multiplanar reconstruction of lumbar spine of CT of significant value for the anatomical localization and for the myelographic and surgical correlation. We observed 177 cases of lumbar spine CT, who complains of spinal symptom, during the period from Dec. 1982 to Aug. 1984. The results were as follows: 1. The sex distribution of cases were 113 males and 44 females. The CT diagnosis showed 152 cases of herniated lumbar disc, 15 cases of degenerative disease, 5 cases of spine tbc., 3 cases of spine trauma and 2 cases of meningocele. 2. CT findings of herniated disc were as follows: focal protrusion of posterior disc margin and obliteration of anterior epidural fat in all cases, indentation on dural sac in 92 cases (60.5%) soft tissue mass in epidural fat in 85 cases (55.9%), compression or displacement of nerve root sheath in 22 cases(14.4%). 3. Sites of herniated lumbar disc were at L4-L5 level in 100 cases(59.1%) and at L5-S1 level in 65 cases (38.4%). Location of it were central type in 70 cases(41.1%), left-central type in 46 cases (27.2%), right-central type in 44 cases(26.0%) and lateral type in 9 cases (5.1%). 4. The sagittal reconstruction images were helpful in evaluating neural foramina, size of disc bluge into spinal canal, especially at L5-S1, and patients with spondylolisthesis. The coronal reconstruction images were the least informative, although they contributed to the evaluation of lumbar nerve roots of course, the axial CT scans were the most sensitive and specific.

  7. Preliminary study on helical CT algorithms for patient motion estimation and compensation

    International Nuclear Information System (INIS)

    Wang, G.; Vannier, M.W.

    1995-01-01

    Helical computed tomography (helical/spiral CT) has replaced conventional CT in many clinical applications. In current helical CT, a patient is assumed to be rigid and motionless during scanning and planar projection sets are produced from raw data via longitudinal interpolation. However, rigid patient motion is a problem in some cases (such as in the skull base and temporal bone imaging). Motion artifacts thus generated in reconstructed images can prevent accurate diagnosis. Modeling a uniform translational movement, the authors address how patient motion is ascertained and how it may be compensated. First, mismatch between adjacent fan-beam projections of the same orientation is determined via classical correlation, which is approximately proportional to the patient displacement projected onto an axis orthogonal to the central ray of the involved fan-beam. Then, the patient motion vector (the patient displacement per gantry rotation) is estimated from its projections using a least-square-root method. To suppress motion artifacts, adaptive interpolation algorithms are developed that synthesize full-scan and half-scan planar projection data sets, respectively. In the adaptive scheme, the interpolation is performed along inclined paths dependent upon the patient motion vector. The simulation results show that the patient motion vector can be accurately and reliably estimated using their correlation and least-square-root algorithm, patient motion artifacts can be effectively suppressed via adaptive interpolation, and adaptive half-scan interpolation is advantageous compared with its full-scale counterpart in terms of high contrast image resolution

  8. Influence of model based iterative reconstruction algorithm on image quality of multiplanar reformations in reduced dose chest CT

    International Nuclear Information System (INIS)

    Barras, Heloise; Dunet, Vincent; Hachulla, Anne-Lise; Grimm, Jochen; Beigelman-Aubry, Catherine

    2016-01-01

    Model-based iterative reconstruction (MBIR) reduces image noise and improves image quality (IQ) but its influence on post-processing tools including maximal intensity projection (MIP) and minimal intensity projection (mIP) remains unknown. To evaluate the influence on IQ of MBIR on native, mIP, MIP axial and coronal reformats of reduced dose computed tomography (RD-CT) chest acquisition. Raw data of 50 patients, who underwent a standard dose CT (SD-CT) and a follow-up RD-CT with a CT dose index (CTDI) of 2–3 mGy, were reconstructed by MBIR and FBP. Native slices, 4-mm-thick MIP, and 3-mm-thick mIP axial and coronal reformats were generated. The relative IQ, subjective IQ, image noise, and number of artifacts were determined in order to compare different reconstructions of RD-CT with reference SD-CT. The lowest noise was observed with MBIR. RD-CT reconstructed by MBIR exhibited the best relative and subjective IQ on coronal view regardless of the post-processing tool. MBIR generated the lowest rate of artefacts on coronal mIP/MIP reformats and the highest one on axial reformats, mainly represented by distortions and stairsteps artifacts. The MBIR algorithm reduces image noise but generates more artifacts than FBP on axial mIP and MIP reformats of RD-CT. Conversely, it significantly improves IQ on coronal views, without increasing artifacts, regardless of the post-processing technique

  9. Reducing radiation dose in adult head CT using iterative reconstruction. A clinical study in 177 patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, D. [Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiology; Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiation Oncology; Kahn, J.; Huizing, L.; Wiener, E.; Grupp, U.; Boening, G.; Streitparth, F. [Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiology; Ghadjar, P. [Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiation Oncology; Renz, D.M. [Jena University Hospital (Germany). Dept. of Radiology

    2016-02-15

    To assess how ASIR (adaptive statistical iterative reconstruction) contributes to dose reduction and affects image quality of non-contrast cranial computed tomography (cCT). Non-contrast emergency CT scans of the head acquired in 177 patients were evaluated. The scans were acquired and processed using four different protocols: Group A (control): 120 kV, FBP (filtered back projection) n=71; group B1: 120 kV, scan and reconstruction performed with 20 % ASIR (blending of 20 % ASIR and 80 % FBP), n=86; group B2: raw data from group B1 reconstructed using a blending of 40 % ASIR and 60 % FBP, n=74; group C1: 120 kV, scan and reconstruction performed with 30 % ASIR, n=20; group C2: raw data from group C1 reconstructed using a blending of 50 % ASIR and 50 % FBP, n=20. The effective dose was calculated. Image quality was assessed quantitatively and qualitatively. Compared to group A, groups B1/2 and C1/2 showed a significantly reduced effective dose of 40.4 % and 73.3 % (p < 0.0001), respectively. Group B1 and group C1/2 also showed significantly reduced quantitative and qualitative image quality parameters. In group B2, quantitative measures were comparable to group A, and qualitative scores were lower compared to group A but higher compared to group B1. Diagnostic confidence grading showed groups B1/2 to be adequate for everyday clinical practice. Group C2 was considered acceptable for follow-up imaging of severe acute events such as bleeding or subacute stroke. Conclusion: Use of ASIR makes it possible to reduce radiation significantly while maintaining adequate image quality in non-contrast head CT, which may be particularly useful for younger patients in an emergency setting and in follow-up.

  10. Reducing radiation dose in adult head CT using iterative reconstruction. A clinical study in 177 patients

    International Nuclear Information System (INIS)

    Kaul, D.; Charite School of Medicine and University Hospital, Berlin; Kahn, J.; Huizing, L.; Wiener, E.; Grupp, U.; Boening, G.; Streitparth, F.; Ghadjar, P.; Renz, D.M.

    2016-01-01

    To assess how ASIR (adaptive statistical iterative reconstruction) contributes to dose reduction and affects image quality of non-contrast cranial computed tomography (cCT). Non-contrast emergency CT scans of the head acquired in 177 patients were evaluated. The scans were acquired and processed using four different protocols: Group A (control): 120 kV, FBP (filtered back projection) n=71; group B1: 120 kV, scan and reconstruction performed with 20 % ASIR (blending of 20 % ASIR and 80 % FBP), n=86; group B2: raw data from group B1 reconstructed using a blending of 40 % ASIR and 60 % FBP, n=74; group C1: 120 kV, scan and reconstruction performed with 30 % ASIR, n=20; group C2: raw data from group C1 reconstructed using a blending of 50 % ASIR and 50 % FBP, n=20. The effective dose was calculated. Image quality was assessed quantitatively and qualitatively. Compared to group A, groups B1/2 and C1/2 showed a significantly reduced effective dose of 40.4 % and 73.3 % (p < 0.0001), respectively. Group B1 and group C1/2 also showed significantly reduced quantitative and qualitative image quality parameters. In group B2, quantitative measures were comparable to group A, and qualitative scores were lower compared to group A but higher compared to group B1. Diagnostic confidence grading showed groups B1/2 to be adequate for everyday clinical practice. Group C2 was considered acceptable for follow-up imaging of severe acute events such as bleeding or subacute stroke. Conclusion: Use of ASIR makes it possible to reduce radiation significantly while maintaining adequate image quality in non-contrast head CT, which may be particularly useful for younger patients in an emergency setting and in follow-up.

  11. The completeness condition and source orbits for exact image reconstruction in 3D cone-beam CT

    International Nuclear Information System (INIS)

    Mao Xiping; Kang Kejun

    1997-01-01

    The completeness condition for exact image reconstruction in 3D cone-beam CT are carefully analyzed in theory, and discussions about some source orbits which fulfill the completeness condition are followed

  12. Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm

    Science.gov (United States)

    Wang, Yuzhu; Rahman, Sheik S.; Arns, Christoph H.

    2018-03-01

    X-ray computed tomography (μ-CT) is considered to be the most effective way to obtain the inner structure of rock sample without destructions. However, its limited resolution hampers its ability to probe sub-micro structures which is critical for flow transportation of rock sample. In this study, we propose an innovative methodology to improve the resolution of μ-CT image using neighbour embedding algorithm where low frequency information is provided by μ-CT image itself while high frequency information is supplemented by high resolution scanning electron microscopy (SEM) image. In order to obtain prior for reconstruction, a large number of image patch pairs contain high- and low- image patches are extracted from the Gaussian image pyramid generated by SEM image. These image patch pairs contain abundant information about tomographic evolution of local porous structures under different resolution spaces. Relying on the assumption of self-similarity of porous structure, this prior information can be used to supervise the reconstruction of high resolution μ-CT image effectively. The experimental results show that the proposed method is able to achieve the state-of-the-art performance.

  13. Reconstruction of financial networks for robust estimation of systemic risk

    International Nuclear Information System (INIS)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-01-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks

  14. Reconstruction of financial networks for robust estimation of systemic risk

    Science.gov (United States)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-03-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks.

  15. Multislice helical CT (MSCT) for mid-facial trauma: optimization of parameters for scanning and reconstruction

    International Nuclear Information System (INIS)

    Dammert, S.; Funke, M.; Obernauer, S.; Grabbe, E.; Merten, H.A.

    2002-01-01

    Purpose: To determine the optimal scan parameters in multislice helical CT (MSCT) of the facial bone complex for both axial scanning and multiplanar reconstructions. Material and Methods: An anthropomorphic skull phantom was examined with a MSCT. Axial scans were performed with continuously increasing collimations (4 x 1.25 - 4 x 2.5 mm), tube current (20 - 200 mA) and table speeds (3.75 mm/rot. and 7.5 mm/rot.). Multiplanar reconstructions in coronal and parasagittal planes with different reconstruction increment and slice thickness were evaluated in terms of image noise, contour artifacts and visualisation of anatomical structures. Results: The best image quality was obtained with a collimation of 4 x 1.25 mm and a - table speed of 3.75 mm/rot. A reconstruction increment of 0.6 mm achieved the best time to image quality relation. With these parameters the bone structures were depicted in an optimal way without artifacts. The tube current could be reduced to 50 mA without significant loss of image quality. The optimized protocol was used for regular routine examinations in patients with facial trauma (n = 66). Conclusions: Low-dose MSCT using thin collimation, low table speed and small reconstruction increments provides excellent data for both axial images and multiplanar reconstructions in patients with facial trauma. An additional examination in coronal orientation is therefore no longer necessary. (orig.) [de

  16. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vaishnav, J. Y., E-mail: jay.vaishnav@fda.hhs.gov; Jung, W. C. [Diagnostic X-Ray Systems Branch, Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Popescu, L. M.; Zeng, R.; Myers, K. J. [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  17. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    International Nuclear Information System (INIS)

    Vaishnav, J. Y.; Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.

    2014-01-01

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality

  18. Optimal reconstructed section thickness for the detection of liver lesions with multidetector CT

    International Nuclear Information System (INIS)

    Soo, G.; Lau, K.K.; Yik, T.; Kutschera, P.

    2010-01-01

    Aim: To evaluate the impact of different reconstructed section thicknesses on liver lesion detection using multidetector computed tomography (CT). Methods: Fifty-three patients were examined using a 16-section CT machine with axial reconstructions provided at 2.5, 5, 7.5, and 10 mm section thicknesses. Images of different reconstructed section thicknesses from different patients were presented in random order to three independent, blinded radiologists for review at multiple sessions. All images were then reviewed by three radiologists in a common session. Consensus was reached following review of the previous interpretation results and results of follow-up imaging regarding the number of true liver lesions (n = 101) for comparison. Results: Mean detection rates were as follows: 93/101 lesions detected with the 2.5 mm section thickness, 98/101 lesions detected at the 5 mm section thickness, 78/101 lesions detected at the 7.5 mm section thickness, and 54/101 lesions detected at the 10 mm section thickness. Lesions missed at the 2.5 mm section thickness were due to masking by image noise. There was particular difficulty detecting subcapsular lesions and lesions adjacent to fissures or the gall bladder at the 7.5 mm and 10 mm section thicknesses. Conclusion: The optimal reconstructed section thickness for lesion detection in the liver was 5 mm.

  19. SART-Type Half-Threshold Filtering Approach for CT Reconstruction.

    Science.gov (United States)

    Yu, Hengyong; Wang, Ge

    2014-01-01

    The [Formula: see text] regularization problem has been widely used to solve the sparsity constrained problems. To enhance the sparsity constraint for better imaging performance, a promising direction is to use the [Formula: see text] norm (0 < p < 1) and solve the [Formula: see text] minimization problem. Very recently, Xu et al. developed an analytic solution for the [Formula: see text] regularization via an iterative thresholding operation, which is also referred to as half-threshold filtering. In this paper, we design a simultaneous algebraic reconstruction technique (SART)-type half-threshold filtering framework to solve the computed tomography (CT) reconstruction problem. In the medical imaging filed, the discrete gradient transform (DGT) is widely used to define the sparsity. However, the DGT is noninvertible and it cannot be applied to half-threshold filtering for CT reconstruction. To demonstrate the utility of the proposed SART-type half-threshold filtering framework, an emphasis of this paper is to construct a pseudoinverse transforms for DGT. The proposed algorithms are evaluated with numerical and physical phantom data sets. Our results show that the SART-type half-threshold filtering algorithms have great potential to improve the reconstructed image quality from few and noisy projections. They are complementary to the counterparts of the state-of-the-art soft-threshold filtering and hard-threshold filtering.

  20. SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT

    International Nuclear Information System (INIS)

    Wu, P; Mao, T; Gong, S; Wang, J; Niu, T; Sheng, K; Xie, Y

    2016-01-01

    Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimization trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R

  1. SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Mao, T; Gong, S; Wang, J; Niu, T [Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Sheng, K [Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA (United States); Xie, Y [Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong (China)

    2016-06-15

    Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimization trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R

  2. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yinghua [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Hacker, Timothy A.; Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Van Lysel, Michael S.; Speidel, Michael A., E-mail: speidel@wisc.edu [Department of Medical Physics and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  3. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    International Nuclear Information System (INIS)

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.

    2014-01-01

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  4. Oxygen transport properties estimation by DSMC-CT simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche - Via G. Amendola, 122 - 70125 Bari (Italy); Frezzotti, Aldo; Ghiroldi, Gian Pietro [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa, 34 - 20156 Milano (Italy)

    2014-12-09

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.

  5. Reconstruction of a cone-beam CT image via forward iterative projection matching

    International Nuclear Information System (INIS)

    Brock, R. Scott; Docef, Alen; Murphy, Martin J.

    2010-01-01

    Purpose: To demonstrate the feasibility of reconstructing a cone-beam CT (CBCT) image by deformably altering a prior fan-beam CT (FBCT) image such that it matches the anatomy portrayed in the CBCT projection data set. Methods: A prior FBCT image of the patient is assumed to be available as a source image. A CBCT projection data set is obtained and used as a target image set. A parametrized deformation model is applied to the source FBCT image, digitally reconstructed radiographs (DRRs) that emulate the CBCT projection image geometry are calculated and compared to the target CBCT projection data, and the deformation model parameters are adjusted iteratively until the DRRs optimally match the CBCT projection data set. The resulting deformed FBCT image is hypothesized to be an accurate representation of the patient's anatomy imaged by the CBCT system. The process is demonstrated via numerical simulation. A known deformation is applied to a prior FBCT image and used to create a synthetic set of CBCT target projections. The iterative projection matching process is then applied to reconstruct the deformation represented in the synthetic target projections; the reconstructed deformation is then compared to the known deformation. The sensitivity of the process to the number of projections and the DRR/CBCT projection mismatch is explored by systematically adding noise to and perturbing the contrast of the target projections relative to the iterated source DRRs and by reducing the number of projections. Results: When there is no noise or contrast mismatch in the CBCT projection images, a set of 64 projections allows the known deformed CT image to be reconstructed to within a nRMS error of 1% and the known deformation to within a nRMS error of 7%. A CT image nRMS error of less than 4% is maintained at noise levels up to 3% of the mean projection intensity, at which the deformation error is 13%. At 1% noise level, the number of projections can be reduced to 8 while maintaining

  6. Systematic Error in Lung Nodule Volumetry : Effect of Iterative Reconstruction Versus Filtered Back Projection at Different CT Parameters

    NARCIS (Netherlands)

    Willemink, Martin J.; Leiner, Tim; Budde, Ricardo P. J.; de Kort, Freek P. L.; Vliegenthart, Rozemarijn; van Ooijen, Peter M. A.; Oudkerk, Matthijs; de Jong, Pim A.

    2012-01-01

    OBJECTIVE. Iterative reconstruction potentially can reduce radiation dose compared with filtered back projection (FBP) for chest CT. This is especially important for repeated CT scanning, as is the case in patients with indeterminate lung nodules. It is currently unknown whether absolute nodule

  7. Renal Tumor Cryoablation Planning. The Efficiency of Simulation on Reconstructed 3D CT Scan

    Directory of Open Access Journals (Sweden)

    Ciprian Valerian LUCAN

    2010-12-01

    Full Text Available Introduction & Objective: Nephron-sparing surgical techniques risks are related to tumor relationships with adjacent anatomic structures. Complexity of the renal anatomy drives the interest to develop tools for 3D reconstruction and surgery simulation. The aim of the article was to assess the simulation on reconstructed 3D CT scan used for planning the cryoablation. Material & Method: A prospective randomized study was performed between Jan. 2007 and July 2009 on 27 patients who underwent retroperitoneoscopic T1a renal tumors cryoablation (RC. All patients were assessed preoperatively by CT scan, also used for 3D volume rendering. In the Gr.A, the patients underwent surgery planning by simulation on 3D CT scan. In the Gr.B., patients underwent standard RC. The two groups were compared in terms of surgical time, bleeding, postoperative drainage, analgesics requirement, hospital stay, time to socio-professional reintegration. Results: Fourteen patients underwent preoperative cryoablation planning (Gr.A and 13 patients underwent standard CR (Gr.B. All parameters analyzed were shorter in the Gr.A. On multivariate logistic regression, only shortens of the surgical time (138.79±5.51 min. in Gr.A. vs. 140.92±5.54 min in Gr.B. and bleeding (164.29±60.22 mL in Gr.A. vs. 215.38±100.80 mL in Gr.B. achieved statistical significance (p<0.05. The number of cryoneedles assessed by simulation had a 92.52% accuracy when compared with those effectively used. Conclusions: Simulation of the cryoablation using reconstructed 3D CT scan improves the surgical results. The application used for simulation was able to accurately assess the number of cryoneedles required for tumor ablation, their direction and approach.

  8. Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnert, Georg; Sterzer, Sergej; Kahraman, Deniz; Dietlein, Markus; Drzezga, Alexander; Kobe, Carsten [University Hospital of Cologne, Department of Nuclear Medicine, Cologne (Germany); Boellaard, Ronald [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Scheffler, Matthias; Wolf, Juergen [University Hospital of Cologne, Lung Cancer Group Cologne, Department I of Internal Medicine, Center for Integrated Oncology Cologne Bonn, Cologne (Germany)

    2016-02-15

    In oncological imaging using PET/CT, the standardized uptake value has become the most common parameter used to measure tracer accumulation. The aim of this analysis was to evaluate ultra high definition (UHD) and ordered subset expectation maximization (OSEM) PET/CT reconstructions for their potential impact on quantification. We analyzed 40 PET/CT scans of lung cancer patients who had undergone PET/CT. Standardized uptake values corrected for body weight (SUV) and lean body mass (SUL) were determined in the single hottest lesion in the lung and normalized to the liver for UHD and OSEM reconstruction. Quantitative uptake values and their normalized ratios for the two reconstruction settings were compared using the Wilcoxon test. The distribution of quantitative uptake values and their ratios in relation to the reconstruction method used were demonstrated in the form of frequency distribution curves, box-plots and scatter plots. The agreement between OSEM and UHD reconstructions was assessed through Bland-Altman analysis. A significant difference was observed after OSEM and UHD reconstruction for SUV and SUL data tested (p < 0.0005 in all cases). The mean values of the ratios after OSEM and UHD reconstruction showed equally significant differences (p < 0.0005 in all cases). Bland-Altman analysis showed that the SUV and SUL and their normalized values were, on average, up to 60 % higher after UHD reconstruction as compared to OSEM reconstruction. OSEM and HD reconstruction brought a significant difference for SUV and SUL, which remained constantly high after normalization to the liver, indicating that standardization of reconstruction and the use of comparable SUV measurements are crucial when using PET/CT. (orig.)

  9. The effects of slice thickness and reconstructive parameters on VR image quality in multi-slice CT

    International Nuclear Information System (INIS)

    Gao Zhenlong; Wang Qiang; Liu Caixia

    2005-01-01

    Objective: To explore the effects of slice thickness, reconstructive thickness and reconstructive interval on VR image quality in multi-slice CT, in order to select the best slice thickness and reconstructive parameters for the imaging. Methods: Multi-slice CT scan was applied on a rubber dinosaur model with different slice thickness. VR images were reconstructed with different reconstructive thickness and reconstructive interval. Five radiologists were invited to evaluate the quality of the images without knowing anything about the parameters. Results: The slice thickness, reconstructive thickness and reconstructive interval did have effects on VR image quality and the effective degree was different. The effective coefficients were V 1 =1413.033, V 2 =563.733, V 3 =390.533, respectively. The parameters interacted with the others (P<0.05). The smaller of those parameters, the better of the image quality. With a small slice thickness and a reconstructive slice equal to slice thickness, the image quality had no obvious difference when the reconstructive interval was 1/2, 1/3, 1/4 of the slice thickness. Conclusion: A relative small scan slice thickness, a reconstructive slice equal to slice thickness and a reconstructive interval 1/2 of the slice thickness should be selected for the best VR image quality. The image quality depends mostly on the slice thickness. (authors)

  10. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke; Tang, Jie [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States)

    2014-04-15

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial

  11. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    International Nuclear Information System (INIS)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni

    2012-01-01

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 ± 3.00) than low-dose ASIR (49.24 ± 9.11, P < 0.01) and reference-dose ASIR images (24.93 ± 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  12. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Bunkyo-ku, Tokyo (Japan)

    2012-08-15

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 {+-} 3.00) than low-dose ASIR (49.24 {+-} 9.11, P < 0.01) and reference-dose ASIR images (24.93 {+-} 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  13. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  14. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    International Nuclear Information System (INIS)

    Benson, T M; Gregor, J

    2006-01-01

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method

  15. Clinical application of 3D reconstruction of tracheobronchial tree with electron beam CT

    International Nuclear Information System (INIS)

    Yao Zhenwei; Shen Tianzhen

    2002-01-01

    Objective: To explore the clinical promise of CT 3D reconstruction of tracheobronchial tree (TBT) by analyzing 73 cases retrospectively. Methods: All the 73 cases were collected from October 1997 to February 2000, who were scanned by EBCT with 130 kV and 630 mA. The scanning method was continuous volume scan, the slice thickness were 3 mm or 1.5 mm. All cross-sectional images were transmitted to the INSIGHT workstation and reconstructed with SSD (shaded surface display), and the threshold setting were -500 to -300 HU. Results: 3D reconstruction of TBT with EBCT could reveal the abnormal changes of TBT by many kinds of diseases including central cancer, inflammation, bronchiectasis, saber-sheath trachea, trachea cancer, congenital disorders, post-surgical changes of lung cancer, and stenoses by adjacent benign or malignant diseases. It could be used to locate the stenoses and measure stenotic extent. Of the 35 central cancer cases with 3D reconstruction, 6 cases were pestle obstructed, 15 cases cone obstructed, 5 cases interrupted irregularly, 8 cases with eccentric stenoses, and 1 case with right stem destroyed and right upper lobe bronchus obstructed. Conclusion: 3D reconstruction of TBT has characteristic sign in the diagnosis or differential diagnosis of central airway's benign or malignant stenoses, and it is of instructional value in clinical use

  16. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique.

    Science.gov (United States)

    Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-10-01

    To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of

  17. Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra- and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability.

    Science.gov (United States)

    Kim, Hyungjin; Park, Chang Min; Lee, Myunghee; Park, Sang Joon; Song, Yong Sub; Lee, Jong Hyuk; Hwang, Eui Jin; Goo, Jin Mo

    2016-01-01

    To identify the impact of reconstruction algorithms on CT radiomic features of pulmonary tumors and to reveal and compare the intra- and inter-reader and inter-reconstruction algorithm variability of each feature. Forty-two patients (M:F = 19:23; mean age, 60.43±10.56 years) with 42 pulmonary tumors (22.56±8.51mm) underwent contrast-enhanced CT scans, which were reconstructed with filtered back projection and commercial iterative reconstruction algorithm (level 3 and 5). Two readers independently segmented the whole tumor volume. Fifteen radiomic features were extracted and compared among reconstruction algorithms. Intra- and inter-reader variability and inter-reconstruction algorithm variability were calculated using coefficients of variation (CVs) and then compared. Among the 15 features, 5 first-order tumor intensity features and 4 gray level co-occurrence matrix (GLCM)-based features showed significant differences (palgorithms. As for the variability, effective diameter, sphericity, entropy, and GLCM entropy were the most robust features (CV≤5%). Inter-reader variability was larger than intra-reader or inter-reconstruction algorithm variability in 9 features. However, for entropy, homogeneity, and 4 GLCM-based features, inter-reconstruction algorithm variability was significantly greater than inter-reader variability (palgorithms. Inter-reconstruction algorithm variability was greater than inter-reader variability for entropy, homogeneity, and GLCM-based features.

  18. Bound on the estimation grid size for sparse reconstruction in direction of arrival estimation

    NARCIS (Netherlands)

    Coutiño Minguez, M.A.; Pribic, R; Leus, G.J.T.

    2016-01-01

    A bound for sparse reconstruction involving both the signal-to-noise ratio (SNR) and the estimation grid size is presented. The bound is illustrated for the case of a uniform linear array (ULA). By reducing the number of possible sparse vectors present in the feasible set of a constrained ℓ1-norm

  19. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.

    Science.gov (United States)

    Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B; Jia, Xun

    2014-07-01

    4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3-0.5 mm for patients 1-3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1-1.5 min per phase. High-quality 4D-CBCT imaging based

  20. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao; Folkerts, Michael; Jiang, Steve B., E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun, E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 (United States); Zhen, Xin [Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Yongbao [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Pan, Tinsu [Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cervino, Laura [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  1. Reduced-dose abdominopelvic CT using hybrid iterative reconstruction in suspected left-sided colonic diverticulitis

    Energy Technology Data Exchange (ETDEWEB)

    Laqmani, Azien; Dulz, Simon; Behzadi, Cyrus; Schmidt-Holtz, Jakob; Wassenberg, Felicia; Adam, Gerhard; Regier, Marc [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Veldhoen, Simon [University Medical Center Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); Derlin, Thorsten [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Sehner, Susanne [University Medical Center Hamburg-Eppendorf, Department of Medical Biometry and Epidemiology, Hamburg (Germany); Nagel, Hans-Dieter [Scientific and Application-oriented Studies and Consulting in Radiology (SASCRAD), Buchholz (Germany)

    2016-01-15

    To assess the effect of hybrid iterative reconstruction (HIR) and filtered back projection (FBP) on abdominopelvic CT with reduced-dose (RD-APCT) in the evaluation of acute left-sided colonic diverticulitis (ALCD). Twenty-five consecutive patients with suspected ALCD who underwent RD-APCT (mean CTDIvol 11.2 ± 4.2 mGy) were enrolled in this study. Raw data were reconstructed using FBP and two increasing HIR levels, L4 and L6. Two radiologists assessed image quality, image noise and reviewer confidence in interpreting findings of ALCD, including wall thickening, pericolic fat inflammation, pericolic abscess, and contained or free extraluminal air. Objective image noise (OIN) was measured. OIN was reduced up to 54 % with HIR compared to FBP. Subjective image quality of HIR images was superior to FBP; subjective image noise was reduced. The detection rate of extraluminal air was higher with HIR L6. Reviewer confidence in interpreting CT findings of ALCD significantly improved with application of HIR. RD-APCT with HIR offers superior image quality and lower image noise compared to FBP, allowing a high level of reviewer confidence in interpreting CT findings in ALCD. HIR facilitates detection of ALCD findings that may be missed with the FBP algorithm. (orig.)

  2. Hardware system of parallel processing for fast CT image reconstruction based on circular shifting float memory architecture

    International Nuclear Information System (INIS)

    Wang Shi; Kang Kejun; Wang Jingjin

    1995-01-01

    Computerized Tomography (CT) is expected to become an inevitable diagnostic technique in the future. However, the long time required to reconstruct an image has been one of the major drawbacks associated with this technique. Parallel process is one of the best way to solve this problem. This paper gives the architecture and hardware design of PIRS-4 (4-processor Parallel Image Reconstruction System) which is a parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture. It includes structure and component of the system, the design of cross bar switch and details of control model. The test results are described

  3. Estimating Potential Evapotranspiration by Missing Temperature Data Reconstruction

    Directory of Open Access Journals (Sweden)

    Eladio Delgadillo-Ruiz

    2015-01-01

    Full Text Available This work studies the statistical characteristics of potential evapotranspiration calculations and their relevance within the water balance used to determine water availability in hydrological basins. The purpose of this study was as follows: first, to apply a missing data reconstruction scheme in weather stations of the Rio Queretaro basin; second, to reduce the generated uncertainty of temperature data: mean, minimum, and maximum values in the evapotranspiration calculation which has a paramount importance in the manner of obtaining the water balance at any hydrological basin. The reconstruction of missing data was carried out in three steps: (1 application of a 4-parameter sinusoidal type regression to temperature data, (2 linear regression to residuals to obtain a regional behavior, and (3 estimation of missing temperature values for a certain year and during a certain season within the basin under study; estimated and observed temperature values were compared. Finally, using the obtained temperature values, the methods of Hamon, Papadakis, Blaney and Criddle, Thornthwaite, and Hargreaves were employed to calculate potential evapotranspiration that was compared to the real observed values in weather stations. With the results obtained from the application of this procedure, the surface water balance was corrected for the case study.

  4. Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification

    Energy Technology Data Exchange (ETDEWEB)

    Berkovitz, Nadav; Simanovsky, Natalia; Hiller, Nurith [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Radiology, Jerusalem (Israel); Katz, Ran [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Urology, Jerusalem (Israel); Salama, Shaden [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Emergency Medicine, Jerusalem (Israel)

    2010-05-15

    To determine whether size measurement of a urinary calculus in coronal reconstruction of computed tomography (CT) differs from stone size measured in the axial plane, and whether the difference alters clinical decision making. We retrospectively reviewed unenhanced CT examinations of 150 patients admitted to the emergency room (ER) with acute renal colic. Maximal ureteral calculus size was measured on axial slices and coronal reconstructions. Clinical significance was defined as an upgrading or downgrading of stone size according to accepted thresholds of treatment: {<=}5 mm, 6-9 mm and {>=}10 mm. There were 151 stones in 150 patients (male:female 115:34, mean age 41 years). Transverse stone diameters ranged from 1 to 11 mm (mean 4 mm). On coronal images, 56 (37%) stones were upgraded in severity; 46 (30%) from below 5 mm to 6 mm or more, and ten (7%) from 6-9 mm to 10 mm or more. Transverse measurement on the axial slices enabled correct categorization of 95 stones (63%). Transverse calculus measurement on axial slices often underestimates stone size and provides incorrect clinical classification of the true maximal stone diameter. Coronal reconstruction provides additional information in patients with renal colic that may alter treatment strategy. (orig.)

  5. Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification

    International Nuclear Information System (INIS)

    Berkovitz, Nadav; Simanovsky, Natalia; Hiller, Nurith; Katz, Ran; Salama, Shaden

    2010-01-01

    To determine whether size measurement of a urinary calculus in coronal reconstruction of computed tomography (CT) differs from stone size measured in the axial plane, and whether the difference alters clinical decision making. We retrospectively reviewed unenhanced CT examinations of 150 patients admitted to the emergency room (ER) with acute renal colic. Maximal ureteral calculus size was measured on axial slices and coronal reconstructions. Clinical significance was defined as an upgrading or downgrading of stone size according to accepted thresholds of treatment: ≤5 mm, 6-9 mm and ≥10 mm. There were 151 stones in 150 patients (male:female 115:34, mean age 41 years). Transverse stone diameters ranged from 1 to 11 mm (mean 4 mm). On coronal images, 56 (37%) stones were upgraded in severity; 46 (30%) from below 5 mm to 6 mm or more, and ten (7%) from 6-9 mm to 10 mm or more. Transverse measurement on the axial slices enabled correct categorization of 95 stones (63%). Transverse calculus measurement on axial slices often underestimates stone size and provides incorrect clinical classification of the true maximal stone diameter. Coronal reconstruction provides additional information in patients with renal colic that may alter treatment strategy. (orig.)

  6. A Fast CT Reconstruction Scheme for a General Multi-Core PC

    Directory of Open Access Journals (Sweden)

    Kai Zeng

    2007-01-01

    Full Text Available Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT angiography (BCA that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

  7. A fast CT reconstruction scheme for a general multi-core PC.

    Science.gov (United States)

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

  8. Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle.

    Science.gov (United States)

    Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin

    2018-04-18

    Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.

  9. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    International Nuclear Information System (INIS)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A.

    2012-01-01

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR™) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR™. Empirically derived dose reduction limits were established for ASiR™ for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%–100% ASiR™ blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR™ implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR™ reconstruction to maintain noise equivalence of the 0% ASiR™ image. Results: The ASiR™ algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR™ reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR™ presented a more smoothed appearance than the pre-ASiR™ 100% FBP image. Finally, relative to non-ASiR™ images with 100% of standard dose across the

  10. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2012-09-15

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more

  11. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany)

    1999-12-31

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  12. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    International Nuclear Information System (INIS)

    Kolotas, C.; Zamboglou, N.

    1998-01-01

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  13. Towards local progression estimation of pulmonary emphysema using CT.

    Science.gov (United States)

    Staring, M; Bakker, M E; Stolk, J; Shamonin, D P; Reiber, J H C; Stoel, B C

    2014-02-01

    Whole lung densitometry on chest CT images is an accepted method for measuring tissue destruction in patients with pulmonary emphysema in clinical trials. Progression measurement is required for evaluation of change in health condition and the effect of drug treatment. Information about the location of emphysema progression within the lung may be important for the correct interpretation of drug efficacy, or for determining a treatment plan. The purpose of this study is therefore to develop and validate methods that enable the local measurement of lung density changes, which requires proper modeling of the effect of respiration on density. Four methods, all based on registration of baseline and follow-up chest CT scans, are compared. The first naïve method subtracts registered images. The second employs the so-called dry sponge model, where volume correction is performed using the determinant of the Jacobian of the transformation. The third and the fourth introduce a novel adaptation of the dry sponge model that circumvents its constant-mass assumption, which is shown to be invalid. The latter two methods require a third CT scan at a different inspiration level to estimate the patient-specific density-volume slope, where one method employs a global and the other a local slope. The methods were validated on CT scans of a phantom mimicking the lung, where mass and volume could be controlled. In addition, validation was performed on data of 21 patients with pulmonary emphysema. The image registration method was optimized leaving a registration error below half the slice increment (median 1.0 mm). The phantom study showed that the locally adapted slope model most accurately measured local progression. The systematic error in estimating progression, as measured on the phantom data, was below 2 gr/l for a 70 ml (6%) volume difference, and 5 gr/l for a 210 ml (19%) difference, if volume correction was applied. On the patient data an underlying linearity assumption

  14. Towards local progression estimation of pulmonary emphysema using CT

    International Nuclear Information System (INIS)

    Staring, M.; Bakker, M. E.; Shamonin, D. P.; Reiber, J. H. C.; Stoel, B. C.; Stolk, J.

    2014-01-01

    Purpose: Whole lung densitometry on chest CT images is an accepted method for measuring tissue destruction in patients with pulmonary emphysema in clinical trials. Progression measurement is required for evaluation of change in health condition and the effect of drug treatment. Information about the location of emphysema progression within the lung may be important for the correct interpretation of drug efficacy, or for determining a treatment plan. The purpose of this study is therefore to develop and validate methods that enable the local measurement of lung density changes, which requires proper modeling of the effect of respiration on density. Methods: Four methods, all based on registration of baseline and follow-up chest CT scans, are compared. The first naïve method subtracts registered images. The second employs the so-called dry sponge model, where volume correction is performed using the determinant of the Jacobian of the transformation. The third and the fourth introduce a novel adaptation of the dry sponge model that circumvents its constant-mass assumption, which is shown to be invalid. The latter two methods require a third CT scan at a different inspiration level to estimate the patient-specific density-volume slope, where one method employs a global and the other a local slope. The methods were validated on CT scans of a phantom mimicking the lung, where mass and volume could be controlled. In addition, validation was performed on data of 21 patients with pulmonary emphysema. Results: The image registration method was optimized leaving a registration error below half the slice increment (median 1.0 mm). The phantom study showed that the locally adapted slope model most accurately measured local progression. The systematic error in estimating progression, as measured on the phantom data, was below 2 gr/l for a 70 ml (6%) volume difference, and 5 gr/l for a 210 ml (19%) difference, if volume correction was applied. On the patient data an underlying

  15. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    International Nuclear Information System (INIS)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc

    2017-01-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  16. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany).

    2017-10-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  17. Performances of new reconstruction algorithms for CT-TDLAS (computer tomography-tunable diode laser absorption spectroscopy)

    International Nuclear Information System (INIS)

    Jeon, Min-Gyu; Deguchi, Yoshihiro; Kamimoto, Takahiro; Doh, Deog-Hee; Cho, Gyeong-Rae

    2017-01-01

    Highlights: • The measured data were successfully used for generating absorption spectra. • Four different reconstruction algorithms, ART, MART, SART and SMART were evaluated. • The calculation speed of convergence by the SMART algorithm was the fastest. • SMART was the most reliable algorithm for reconstructing the multiple signals. - Abstract: Recent advent of the tunable lasers made to measure simultaneous temperature and concentration fields of the gases. CT-TDLAS (computed tomography-tunable diode laser absorption spectroscopy) is one the leading techniques for the measurements of temperature and concentration fields of the gases. In CT-TDLAS, the accuracies of the measurement results are strongly dependent upon the reconstruction algorithms. In this study, four different reconstruction algorithms have been tested numerically using experimental data sets measured by thermocouples for combustion fields. Three reconstruction algorithms, MART (multiplicative algebraic reconstruction technique) algorithm, SART (simultaneous algebraic reconstruction technique) algorithm and SMART (simultaneous multiplicative algebraic reconstruction technique) algorithm, are newly proposed for CT-TDLAS in this study. The calculation results obtained by the three algorithms have been compared with previous algorithm, ART (algebraic reconstruction technique) algorithm. Phantom data sets have been generated by the use of thermocouples data obtained in an actual experiment. The data of the Harvard HITRAN table in which the thermo-dynamical properties and the light spectrum of the H_2O are listed were used for the numerical test. The reconstructed temperature and concentration fields were compared with the original HITRAN data, through which the constructed methods are validated. The performances of the four reconstruction algorithms were demonstrated. This method is expected to enhance the practicality of CT-TDLAS.

  18. The noise power spectrum in CT with direct fan beam reconstruction

    International Nuclear Information System (INIS)

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    The noise power spectrum (NPS) is a useful metric for understanding the noise content in images. To examine some unique properties of the NPS of fan beam CT, the authors derived an analytical expression for the NPS of fan beam CT and validated it with computer simulations. The nonstationary noise behavior of fan beam CT was examined by analyzing local regions and the entire field-of-view (FOV). This was performed for cases with uniform as well as nonuniform noise across the detector cells and across views. The simulated NPS from the entire FOV and local regions showed good agreement with the analytically derived NPS. The analysis shows that whereas the NPS of a large FOV in parallel beam CT (using a ramp filter) is proportional to frequency, the NPS with direct fan beam FBP reconstruction shows a high frequency roll off. Even in small regions, the fan beam NPS can show a sharp transition (discontinuity) at high frequencies. These effects are due to the variable magnification and therefore are more pronounced as the fan angle increases. For cases with nonuniform noise, the NPS can show the directional dependence and additional effects.

  19. Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction

    Science.gov (United States)

    Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing

    2018-02-01

    Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.

  20. Image quality of iterative reconstruction in cranial CT imaging: comparison of model-based iterative reconstruction (MBIR) and adaptive statistical iterative reconstruction (ASiR)

    Energy Technology Data Exchange (ETDEWEB)

    Notohamiprodjo, S.; Deak, Z.; Meurer, F.; Maertz, F.; Mueck, F.G.; Geyer, L.L.; Wirth, S. [Ludwig-Maximilians University Hospital of Munich, Institute for Clinical Radiology, Munich (Germany)

    2015-01-15

    The purpose of this study was to compare cranial CT (CCT) image quality (IQ) of the MBIR algorithm with standard iterative reconstruction (ASiR). In this institutional review board (IRB)-approved study, raw data sets of 100 unenhanced CCT examinations (120 kV, 50-260 mAs, 20 mm collimation, 0.984 pitch) were reconstructed with both ASiR and MBIR. Signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated from attenuation values measured in caudate nucleus, frontal white matter, anterior ventricle horn, fourth ventricle, and pons. Two radiologists, who were blinded to the reconstruction algorithms, evaluated anonymized multiplanar reformations of 2.5 mm with respect to depiction of different parenchymal structures and impact of artefacts on IQ with a five-point scale (0: unacceptable, 1: less than average, 2: average, 3: above average, 4: excellent). MBIR decreased artefacts more effectively than ASiR (p < 0.01). The median depiction score for MBIR was 3, whereas the median value for ASiR was 2 (p < 0.01). SNR and CNR were significantly higher in MBIR than ASiR (p < 0.01). MBIR showed significant improvement of IQ parameters compared to ASiR. As CCT is an examination that is frequently required, the use of MBIR may allow for substantial reduction of radiation exposure caused by medical diagnostics. (orig.)

  1. Image quality of iterative reconstruction in cranial CT imaging: comparison of model-based iterative reconstruction (MBIR) and adaptive statistical iterative reconstruction (ASiR)

    International Nuclear Information System (INIS)

    Notohamiprodjo, S.; Deak, Z.; Meurer, F.; Maertz, F.; Mueck, F.G.; Geyer, L.L.; Wirth, S.

    2015-01-01

    The purpose of this study was to compare cranial CT (CCT) image quality (IQ) of the MBIR algorithm with standard iterative reconstruction (ASiR). In this institutional review board (IRB)-approved study, raw data sets of 100 unenhanced CCT examinations (120 kV, 50-260 mAs, 20 mm collimation, 0.984 pitch) were reconstructed with both ASiR and MBIR. Signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated from attenuation values measured in caudate nucleus, frontal white matter, anterior ventricle horn, fourth ventricle, and pons. Two radiologists, who were blinded to the reconstruction algorithms, evaluated anonymized multiplanar reformations of 2.5 mm with respect to depiction of different parenchymal structures and impact of artefacts on IQ with a five-point scale (0: unacceptable, 1: less than average, 2: average, 3: above average, 4: excellent). MBIR decreased artefacts more effectively than ASiR (p < 0.01). The median depiction score for MBIR was 3, whereas the median value for ASiR was 2 (p < 0.01). SNR and CNR were significantly higher in MBIR than ASiR (p < 0.01). MBIR showed significant improvement of IQ parameters compared to ASiR. As CCT is an examination that is frequently required, the use of MBIR may allow for substantial reduction of radiation exposure caused by medical diagnostics. (orig.)

  2. CT colonography at low tube potential: using iterative reconstruction to decrease noise

    International Nuclear Information System (INIS)

    Chang, K.J.; Heisler, M.A.; Mahesh, M.; Baird, G.L.; Mayo-Smith, W.W.

    2015-01-01

    Aim: To determine the level of iterative reconstruction required to reduce increased image noise associated with low tube potential computed tomography (CT). Materials and methods: Fifty patients underwent CT colonography with a supine scan at 120 kVp and a prone scan at 100 kVp with other scan parameters unchanged. Both scans were reconstructed with filtered back projection (FBP) and increasing levels of adaptive statistical iterative reconstruction (ASiR) at 30%, 60%, and 90%. Mean noise, soft tissue and tagged fluid attenuation, contrast, and contrast-to-noise ratio (CNR) were collected from reconstructions at both 120 and 100 kVp and compared using a generalised linear mixed model. Results: Decreasing tube potential from 120 to 100 kVp significantly increased image noise by 30–34% and tagged fluid attenuation by 120 HU at all ASiR levels (p<0.0001, all measures). Increasing ASiR from 0% (FBP) to 30%, 60%, and 90% resulted in significant decreases in noise and increases in CNR at both tube potentials (p<0.001, all comparisons). Compared to 120 kVp FBP, ASiR greater than 30% at 100 kVp yielded similar or lower image noise. Conclusions: Iterative reconstruction adequately compensates for increased image noise associated with low tube potential imaging while improving CNR. An ASiR level of approximately 50% at 100 kVp yields similar noise to 120 kVp without ASiR. -- Highlights: •Peak kilovoltage (kVp) can be reduced to decrease radiation dose and increase contrast attenuation at a cost of increased image noise. •Utilizing iterative reconstruction can decrease image noise and increase contrast to noise ratio (CNR) independent of kVp. •Iterative reconstruction adequately compensates for increased image noise associated with low dose low kVp imaging while improving CNR. •An ASiR level of approximately 50% at 100 kVp yields similar noise to 120 kVp without ASiR

  3. Three dimensional reconstruction of fossils with X-ray CT and computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Takashi; Tateno, Satoko (Tokyo Univ. (Japan). Coll. of Arts and Sciences); Suzuki, Naoki

    1991-12-01

    We have developed a method for three dimensional (3D) visualization of fossils such as trilobites and ammonites by non-destructive measurement and computer graphics. The imaging techniques in the medical sciences are applied for fossils by us to have quantitative data analyses on the structural and functional features of some extinct creatures. These methods are composed of a high resolutional X-ray computed tomography (X-ray CT) and computer graphics. We are able to observe not only outer shape but also inner structure of fossils as a 3D image by this method. Consequently, the shape and volume are measurable on these 3D image quantitatively. In addition to that, it is able to reconstruct an ideal figure from the deformed fossils by graphical treatments of the data. Such a 3D reconstruction method is useful to obtain a new information from the paleontological standpoint. (author).

  4. Convergence of SART + OS + TV iterative reconstruction algorithm for optical CT imaging of gel dosimeters

    International Nuclear Information System (INIS)

    Du, Yi; Yu, Gongyi; Xiang, Xincheng; Wang, Xiangang; De Deene, Yves

    2017-01-01

    Computational simulations are used to investigate the convergence of a hybrid iterative algorithm for optical CT reconstruction, i.e. the simultaneous algebraic reconstruction technique (SART) integrated with ordered subsets (OS) iteration and total variation (TV) minimization regularization, or SART+OS+TV for short. The influence of parameter selection to reach convergence, spatial dose gradient integrity, MTF and convergent speed are discussed. It’s shown that the results of SART+OS+TV algorithm converge to the true values without significant bias, and MTF and convergent speed are affected by different parameter sets used for iterative calculation. In conclusion, the performance of the SART+OS+TV depends on parameter selection, which also implies that careful parameter tuning work is required and necessary for proper spatial performance and fast convergence. (paper)

  5. Neural network CT image reconstruction method for small amount of projection data

    CERN Document Server

    Ma, X F; Takeda, T

    2000-01-01

    This paper presents a new method for two-dimensional image reconstruction by using a multi-layer neural network. Though a conventionally used object function of such a neural network is composed of a sum of squared errors of the output data, we define an object function composed of a sum of squared residuals of an integral equation. By employing an appropriate numerical line integral for this integral equation, we can construct a neural network which can be used for CT image reconstruction for cases with small amount of projection data. We applied this method to some model problems and obtained satisfactory results. This method is especially useful for analyses of laboratory experiments or field observations where only a small amount of projection data is available in comparison with the well-developed medical applications.

  6. Neural network CT image reconstruction method for small amount of projection data

    International Nuclear Information System (INIS)

    Ma, X.F.; Fukuhara, M.; Takeda, T.

    2000-01-01

    This paper presents a new method for two-dimensional image reconstruction by using a multi-layer neural network. Though a conventionally used object function of such a neural network is composed of a sum of squared errors of the output data, we define an object function composed of a sum of squared residuals of an integral equation. By employing an appropriate numerical line integral for this integral equation, we can construct a neural network which can be used for CT image reconstruction for cases with small amount of projection data. We applied this method to some model problems and obtained satisfactory results. This method is especially useful for analyses of laboratory experiments or field observations where only a small amount of projection data is available in comparison with the well-developed medical applications

  7. Improvement of the temporal resolution of cardiac CT reconstruction algorithms using an optimized filtering step

    International Nuclear Information System (INIS)

    Roux, S.; Desbat, L.; Koenig, A.; Grangeat, P.

    2005-01-01

    In this paper we study a property of the filtering step of multi-cycle reconstruction algorithm used in the field of cardiac CT. We show that the common filtering step procedure is not optimal in the case of divergent geometry and decrease slightly the temporal resolution. We propose to use the filtering procedure related to the work of Noo at al ( F.Noo, M. Defrise, R. Clakdoyle, and H. Kudo. Image reconstruction from fan-beam projections on less than a short-scan. Phys. Med.Biol., 47:2525-2546, July 2002)and show that this alternative allows to reach the optimal temporal resolution with the same computational effort. (N.C.)

  8. Three dimensional reconstruction of fossils with X-ray CT and computer graphics

    International Nuclear Information System (INIS)

    Hamada, Takashi; Tateno, Satoko; Suzuki, Naoki.

    1991-01-01

    We have developed a method for three dimensional (3D) visualization of fossils such as trilobites and ammonites by non-destructive measurement and computer graphics. The imaging techniques in the medical sciences are applied for fossils by us to have quantitative data analyses on the structural and functional features of some extinct creatures. These methods are composed of a high resolutional X-ray computed tomography (X-ray CT) and computer graphics. We are able to observe not only outer shape but also inner structure of fossils as a 3D image by this method. Consequently, the shape and volume are measurable on these 3D image quantitatively. In addition to that, it is able to reconstruct an ideal figure from the deformed fossils by graphical treatments of the data. Such a 3D reconstruction method is useful to obtain a new information from the paleontological standpoint. (author)

  9. Dose-reduced CT with model-based iterative reconstruction in evaluations of hepatic steatosis: How low can we go?

    Energy Technology Data Exchange (ETDEWEB)

    Yasaka, Koichiro, E-mail: koyasaka@gmail.com [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Katsura, Masaki [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Akahane, Masaaki [NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625 (Japan); Sato, Jiro [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Matsuda, Izuru [Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8510 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2014-07-15

    Purpose: To determine whether dose-reduced CT with model-based iterative image reconstruction (MBIR) is a useful tool with which to diagnose hepatic steatosis. Materials and methods: This prospective clinical study approved by our Institutional Review Board included 103 (67 men and 36 women; mean age, 64.3 years) patients who provided written informed consent to undergo unenhanced CT. Images of reference-dose CT (RDCT) with filtered back projection (R-FBP) and low- and ultralow-dose CT (dose-length product; 24 and 9% of that of RDCT) with MBIR (L-MBIR and UL-MBIR) were reconstructed. Mean CT numbers of liver (CT[L]) and spleen (CT[S]), and quotient (CT[L/S]) of CT[L] and CT[S] were calculated from selected regions of interest. Bias and limits of agreement (LOA) of CT[L] and CT[L/S] in L-MBIR and UL-MBIR (vs. R-FBP) were assessed using Bland–Altman analyses. Diagnostic methods for hepatic steatosis of CT[L] < 48 Hounsfield units (HU) and CT[L/S] < 1.1 were applied to L-MBIR and UL-MBIR using R-FBP as the reference standard. Results: Bias was larger for CT[L] in UL-MBIR than in L-MBIR (−3.18 HU vs. −1.73 HU). The LOA of CT[L/S] was larger for UL-MBIR than for L-MBIR (±0.425 vs. ±0.245) and outliers were identified in CT[L/S] of UL-MBIR. Accuracy (0.92–0.95) and the area under the receiver operating characteristics curve (0.976–0.992) were high for each method, but some were slightly lower in UL-MBIR than L-MBIR. Conclusion: Dose-reduced CT reconstructed with MBIR is applicable to diagnose hepatic steatosis, however, a low dose of radiation might be preferable.

  10. Iterative CT reconstruction with small pixel size: distance-driven forward projector versus Joseph's

    Science.gov (United States)

    Hahn, K.; Rassner, U.; Davidson, H. C.; Schöndube, H.; Stierstorfer, K.; Hornegger, J.; Noo, F.

    2015-03-01

    Over the last few years, iterative reconstruction methods have become an important research topic in x-ray CT imaging. This effort is motivated by increasing evidence that such methods may enable significant savings in terms of dose imparted to the patient. Conceptually, iterative reconstruction methods involve two important ingredients: the statistical model, which includes the forward projector, and a priori information in the image domain, which is expressed using a regularizer. Most often, the image pixel size is chosen to be equal (or close) to the detector pixel size (at field-of-view center). However, there are applications for which a smaller pixel size is desired. In this investigation, we focus on reconstruction with a pixel size that is twice smaller than the detector pixel size. Using such a small pixel size implies a large increase in computational effort when using the distance-driven method for forward projection, which models the detector size. On the other hand, the more efficient method of Joseph will create imbalances in the reconstruction of each pixel, in the sense that there will be large differences in the way each projection contributes to the pixels. The purpose of this work is to evaluate the impact of these imbalances on image quality in comparison with utilization of the distance-driven method. The evaluation involves computational effort, bias and noise metrics, and LROC analysis using human observers. The results show that Joseph's method largely remains attractive.

  11. Interpolated sagittal and coronal reconstruction of CT images in the screening of neck abnormalities

    International Nuclear Information System (INIS)

    Koga, Issei

    1983-01-01

    Recontructed sagittal and coronal images were analyzed for their usefulness during clinical applications and to determine the correct use of recontruction techniques. Recontructed stereoscopic images can be formed by continuous or interrupted image reconstruction using interpolation. This study showed that lesions less than 10 mm in diameter should be made continuously and recontructed with uninterrupted technique. However, 5 mm interrupted distances are acceptable for interpolated reconstruction except in cases of lesions less than 10 mm in diameter. Clinically, interpolated reconstruction is not adequated for semicircular lesions less than 10 mm. Blood vessels and linear lesions are good condiated for the application of interpolated recontruction. Reconstruction of images using interrupted interpolation is therefore recommended for screening and for demonstrating correct stereoscopic information, except cases of small lesions less than 10 mm in diameter. Results of this study underscore the fact that obscure information in transverse CT images should be routinely utilized by interporating recontruction techniques, if transverse images are not made continuously. Interpolated recontruction may be helpful in obtaining stereoscopic information. (author)

  12. Comparison of methods for suppressing edge and aliasing artefacts in iterative x-ray CT reconstruction

    International Nuclear Information System (INIS)

    Zbijewski, Wojciech; Beekman, Freek J

    2006-01-01

    X-ray CT images obtained with iterative reconstruction (IR) can be hampered by the so-called edge and aliasing artefacts, which appear as interference patterns and severe overshoots in the areas of sharp intensity transitions. Previously, we have demonstrated that these artefacts are caused by discretization errors during the projection simulation step in IR. Although these errors are inherent to IR, they can be adequately suppressed by reconstruction on an image grid that is finer than that typically used for analytical methods such as filtered back-projection. Two other methods that may prevent edge artefacts are: (i) smoothing the projections prior to reconstruction or (ii) using an image representation different from voxels; spherically symmetric Kaiser-Bessel functions are a frequently employed example of such a representation. In this paper, we compare reconstruction on a fine grid with the two above-mentioned alternative strategies for edge artefact reduction. We show that the use of a fine grid results in a more adequate suppression of artefacts than the smoothing of projections or using the Kaiser-Bessel image representation

  13. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality--preliminary findings.

    Science.gov (United States)

    Miéville, Frédéric A; Gudinchet, François; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Bochud, François O; Verdun, Francis R

    2011-09-01

    Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI(vol) 4.8-7.9 mGy, DLP 37.1-178.9 mGy·cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. The best image quality for all clinical images was obtained with 20% and 40% ASIR (p ASIR above 50%, image quality significantly decreased (p ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone.

  14. Reconstruction of MRI/CT compatible ring and tandem applicators in CT or MRI images used for treatment planning in brachytherapy

    International Nuclear Information System (INIS)

    Surendran, N.; Kim, Hayeon; Beriwal, Sushil; Saiful Huq, M.

    2008-01-01

    Brachytherapy (BT) plays a crucial role in the management of invasive cervix cancer from stage I to IV. Intracavitary techniques are based on afterloading devices, with different types of applicators. CT and/or MRI compatible applicators allow a sectional image based approach with a better assessment of gross tumour volume (GTV) and definition and delineation of target volume (CTV) compared to traditional approaches. To evaluate reconstruction of MRI/CT compatible ring and tandem applicators in 3D CT or MRI images used for treatment planning in Brachytherapy

  15. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance.

    LENUS (Irish Health Repository)

    McLaughlin, P D

    2014-04-01

    The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR).

  16. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT

    International Nuclear Information System (INIS)

    Siewerdsen, J.H.; Daly, M.J.; Bakhtiar, B.

    2006-01-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), resulting in contrast reduction, image artifacts, and lack of CT number accuracy. We report the performance of a simple scatter correction method in which scatter fluence is estimated directly in each projection from pixel values near the edge of the detector behind the collimator leaves. The algorithm operates on the simple assumption that signal in the collimator shadow is attributable to x-ray scatter, and the 2D scatter fluence is estimated by interpolating between pixel values measured along the top and bottom edges of the detector behind the collimator leaves. The resulting scatter fluence estimate is subtracted from each projection to yield an estimate of the primary-only images for CBCT reconstruction. Performance was investigated in phantom experiments on an experimental CBCT benchtop, and the effect on image quality was demonstrated in patient images (head, abdomen, and pelvis sites) obtained on a preclinical system for CBCT-guided radiation therapy. The algorithm provides significant reduction in scatter artifacts without compromise in contrast-to-noise ratio (CNR). For example, in a head phantom, cupping artifact was essentially eliminated, CT number accuracy was restored to within 3%, and CNR (breast-to-water) was improved by up to 50%. Similarly in a body phantom, cupping artifact was reduced by at least a factor of 2 without loss in CNR. Patient images demonstrate significantly increased uniformity, accuracy, and contrast, with an overall improvement in image quality in all sites investigated. Qualitative evaluation illustrates that soft-tissue structures that are otherwise undetectable are clearly delineated in scatter-corrected reconstructions. Since scatter is estimated directly in each projection, the algorithm is robust with respect to system geometry, patient size and heterogeneity, patient motion, etc. Operating without prior information, analytical modeling

  17. NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT

    Directory of Open Access Journals (Sweden)

    Bin Yan

    2015-01-01

    Full Text Available Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT. Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction technique that utilizes nonuniform fast Fourier transform is presented in this study along with the advanced total variation (TV regularization for sparse-view CT. Combined with the alternating direction method, the proposed approach shows excellent efficiency and rapid convergence property. Numerical simulations and real data experiments are performed on a parallel beam CT. Experimental results validate that the proposed method has higher computational efficiency and better reconstruction quality than the conventional algorithms, such as simultaneous algebraic reconstruction technique using TV method and the alternating direction total variation minimization approach, with the same time duration. The proposed method appears to have extensive applications in X-ray CT imaging.

  18. Adaptive statistical iterative reconstruction improves image quality without affecting perfusion CT quantitation in primary colorectal cancer

    Directory of Open Access Journals (Sweden)

    D. Prezzi

    Full Text Available Objectives: To determine the effect of Adaptive Statistical Iterative Reconstruction (ASIR on perfusion CT (pCT parameter quantitation and image quality in primary colorectal cancer. Methods: Prospective observational study. Following institutional review board approval and informed consent, 32 patients with colorectal adenocarcinoma underwent pCT (100 kV, 150 mA, 120 s acquisition, axial mode. Tumour regional blood flow (BF, blood volume (BV, mean transit time (MTT and permeability surface area product (PS were determined using identical regions-of-interests for ASIR percentages of 0%, 20%, 40%, 60%, 80% and 100%. Image noise, contrast-to-noise ratio (CNR and pCT parameters were assessed across ASIR percentages. Coefficients of variation (CV, repeated measures analysis of variance (rANOVA and Spearman’ rank order correlation were performed with statistical significance at 5%. Results: With increasing ASIR percentages, image noise decreased by 33% while CNR increased by 61%; peak tumour CNR was greater than 1.5 with 60% ASIR and above. Mean BF, BV, MTT and PS differed by less than 1.8%, 2.9%, 2.5% and 2.6% across ASIR percentages. CV were 4.9%, 4.2%, 3.3% and 7.9%; rANOVA P values: 0.85, 0.62, 0.02 and 0.81 respectively. Conclusions: ASIR improves image noise and CNR without altering pCT parameters substantially. Keywords: Perfusion imaging, Multidetector computed tomography, Colorectal neoplasms, Computer-assisted image processing, Radiation dosage

  19. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    Science.gov (United States)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  20. Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source

    Science.gov (United States)

    Mason, Jonathan H.; Perelli, Alessandro; Nailon, William H.; Davies, Mike E.

    2017-11-01

    Quantifying material mass and electron density from computed tomography (CT) reconstructions can be highly valuable in certain medical practices, such as radiation therapy planning. However, uniquely parameterising the x-ray attenuation in terms of mass or electron density is an ill-posed problem when a single polyenergetic source is used with a spectrally indiscriminate detector. Existing approaches to single source polyenergetic modelling often impose consistency with a physical model, such as water-bone or photoelectric-Compton decompositions, which will either require detailed prior segmentation or restrictive energy dependencies, and may require further calibration to the quantity of interest. In this work, we introduce a data centric approach to fitting the attenuation with piecewise-linear functions directly to mass or electron density, and present a segmentation-free statistical reconstruction algorithm for exploiting it, with the same order of complexity as other iterative methods. We show how this allows both higher accuracy in attenuation modelling, and demonstrate its superior quantitative imaging, with numerical chest and metal implant data, and validate it with real cone-beam CT measurements.

  1. CT reconstruction from few-views with anisotropic edge-guided total variance

    International Nuclear Information System (INIS)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Jiao, Chun; Ma, Jianhua; Lu, Hongbing

    2016-01-01

    To overcome the oversmoothing drawback in the edge areas when reconstructing few-view CT with total variation (TV) minimization, in this paper, we propose an anisotropic edge-guided TV minimization framework for few-view CT reconstruction. In the framework, anisotropic TV is summed with pre-weighted image gradient and then used as the object function for minimizing. It includes edge-guided TV minimization (EGTV) and edge-guided adaptive-weighted TV minimization (EGAwTV) algorithms. For EGTV algorithm, the weights of the TV discretization term are updated by anisotropic edge information detected from the image, whereas the weights for EGAwTV are determined based on edge information and local image-intensity gradients. To solve the minimization problem of the proposed algorithm, a similar TV-based minimization implementation is developed to address the raw data fidelity and other constraints. The evaluation results using both computer simulations with the Shepp-Logan phantom and experimental data from a physical phantom demonstrate that the proposed algorithms exhibit noticeable gains in the merits of spatial resolution compared with the conventional TV and other modified TV algorithms.

  2. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  3. Review article - An evaluation of SAFIRE's potential to reduce the dose received by paediatric patients undergoing CT: a narrative review : Iterative reconstruction in ct

    NARCIS (Netherlands)

    Buissink, Carst; Vallinga, Anique; Rook, Jan Willem; Sanderud, Audun; Vouillamoze, Audrey

    2015-01-01

    Introduction: The purpose of this review is to gather and analyse current research publications to evaluate Sinogram-Affirmed Iterative Reconstruction (SAFIRE). The aim of this review is to investigate whether this algorithm is capable of reducing the dose delivered during CT imaging while

  4. Computer-assisted solid lung nodule 3D volumetry on CT : influence of scan mode and iterative reconstruction: a CT phantom study

    NARCIS (Netherlands)

    Coenen, Adriaan; Honda, Osamu; van der Jagt, Eric J.; Tomiyama, Noriyuki

    2013-01-01

    To evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution

  5. Practical reconstruction protocol for quantitative 90Y bremsstrahlung SPECT/CT

    International Nuclear Information System (INIS)

    Siman, W.; Mikell, J. K.; Kappadath, S. C.

    2016-01-01

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative 90 Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a 90 Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar 90 Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical 90 Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for 90 Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion detectability and activity

  6. Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations.

    Directory of Open Access Journals (Sweden)

    Peter B Noël

    Full Text Available PURPOSE: Evaluation of 15,000 computed tomography (CT examinations to investigate if iterative reconstruction (IR reduces sustainably radiation exposure. METHOD AND MATERIALS: Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. RESULTS: IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01. Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv, or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv the dose reduction effect is significant(p*=0.01. On the contrary for unenhanced low-dose scans of the cranial (for example sinuses the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv. CONCLUSION: The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine

  7. Practical reconstruction protocol for quantitative {sup 90}Y bremsstrahlung SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Siman, W.; Mikell, J. K.; Kappadath, S. C., E-mail: skappadath@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative {sup 90}Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a {sup 90}Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar {sup 90}Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical {sup 90}Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for {sup 90}Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion

  8. Accelerated barrier optimization compressed sensing (ABOCS) for CT reconstruction with improved convergence

    International Nuclear Information System (INIS)

    Niu, Tianye; Fruhauf, Quentin; Petrongolo, Michael; Zhu, Lei; Ye, Xiaojing

    2014-01-01

    Recently, we proposed a new algorithm of accelerated barrier optimization compressed sensing (ABOCS) for iterative CT reconstruction. The previous implementation of ABOCS uses gradient projection (GP) with a Barzilai–Borwein (BB) step-size selection scheme (GP-BB) to search for the optimal solution. The algorithm does not converge stably due to its non-monotonic behavior. In this paper, we further improve the convergence of ABOCS using the unknown-parameter Nesterov (UPN) method and investigate the ABOCS reconstruction performance on clinical patient data. Comparison studies are carried out on reconstructions of computer simulation, a physical phantom and a head-and-neck patient. In all of these studies, the ABOCS results using UPN show more stable and faster convergence than those of the GP-BB method and a state-of-the-art Bregman-type method. As shown in the simulation study of the Shepp–Logan phantom, UPN achieves the same image quality as those of GP-BB and the Bregman-type methods, but reduces the iteration numbers by up to 50% and 90%, respectively. In the Catphan©600 phantom study, a high-quality image with relative reconstruction error (RRE) less than 3% compared to the full-view result is obtained using UPN with 17% projections (60 views). In the conventional filtered-backprojection reconstruction, the corresponding RRE is more than 15% on the same projection data. The superior performance of ABOCS with the UPN implementation is further demonstrated on the head-and-neck patient. Using 25% projections (91 views), the proposed method reduces the RRE from 21% as in the filtered backprojection (FBP) results to 7.3%. In conclusion, we propose UPN for ABOCS implementation. As compared to GP-BB and the Bregman-type methods, the new method significantly improves the convergence with higher stability and fewer iterations. (paper)

  9. Coronary CT angiography: Comparison of a novel iterative reconstruction with filtered back projection for reconstruction of low-dose CT—Initial experience

    International Nuclear Information System (INIS)

    Takx, Richard A.P.; Schoepf, U. Joseph; Moscariello, Antonio; Das, Marco; Rowe, Garrett; Schoenberg, Stefan O.; Fink, Christian; Henzler, Thomas

    2013-01-01

    Objective: To prospectively compare subjective and objective image quality in 20% tube current coronary CT angiography (cCTA) datasets between an iterative reconstruction algorithm (SAFIRE) and traditional filtered back projection (FBP). Materials and methods: Twenty patients underwent a prospectively ECG-triggered dual-step cCTA protocol using 2nd generation dual-source CT (DSCT). CT raw data was reconstructed using standard FBP at full-dose (Group 1 a) and 80% tube current reduced low-dose (Group 1 b). The low-dose raw data was additionally reconstructed using iterative raw data reconstruction (Group 2 ). Attenuation and image noise were measured in three regions of interest and signal-to-noise-ratio (SNR) as well as contrast-to-noise-ratio (CNR) was calculated. Subjective diagnostic image quality was evaluated using a 4-point Likert scale. Results: Mean image noise of group 2 was lowered by 22% on average when compared to group 1 b (p 2 compared to group 1 b (p 2 (1.88 ± 0.63) was also rated significantly higher when compared to group 1 b (1.58 ± 0.63, p = 0.004). Conclusions: Image quality of 80% tube current reduced iteratively reconstructed cCTA raw data is significantly improved when compared to standard FBP and consequently may improve the diagnostic accuracy of cCTA

  10. Computer-assisted lung nodule volumetry from multi-detector row CT: Influence of image reconstruction parameters

    International Nuclear Information System (INIS)

    Honda, Osamu; Sumikawa, Hiromitsu; Johkoh, Takeshi; Tomiyama, Noriyuki; Mihara, Naoki; Inoue, Atsuo; Tsubamoto, Mitsuko; Natsag, Javzandulam; Hamada, Seiki; Nakamura, Hironobu

    2007-01-01

    Purpose: To investigate differences in volumetric measurement of pulmonary nodules caused by changing the reconstruction parameters for multi-detector row CT. Materials and methods: Thirty-nine pulmonary nodules less than 2 cm in diameter were examined by multi-slice CT. All nodules were solid, and located in the peripheral part of the lungs. The resultant 48 parameters images were reconstructed by changing slice thickness (1.25, 2.5, 3.75, or 5 mm), field of view (FOV: 10, 20, or 30 cm), algorithm (high-spatial frequency algorithm or low-spatial frequency algorithm) and reconstruction interval (reconstruction with 50% overlapping of the reconstructed slices or non-overlapping reconstruction). Volumetric measurements were calculated using commercially available software. The differences between nodule volumes were analyzed by the Kruskal-Wallis test and the Wilcoxon Signed-Ranks test. Results: The diameter of the nodules was 8.7 ± 2.7 mm on average, ranging from 4.3 to 16.4 mm. Pulmonary nodule volume did not change significantly with changes in slice thickness or FOV (p > 0.05), but was significantly larger with the high-spatial frequency algorithm than the low-spatial frequency algorithm (p < 0.05), except for one reconstruction parameter. The volumes determined by non-overlapping reconstruction were significantly larger than those of overlapping reconstruction (p < 0.05), except for a 1.25 mm thickness with 10 cm FOV with the high-spatial frequency algorithm, and 5 mm thickness. The maximum difference in measured volume was 16% on average between the 1.25 mm slice thickness/10 cm FOV/high-spatial frequency algorithm parameters and overlapping reconstruction. Conclusion: Volumetric measurements of pulmonary nodules differ with changes in the reconstruction parameters, with a tendency toward larger volumes in high-spatial frequency algorithm and non-overlapping reconstruction compared to the low-spatial frequency algorithm and overlapping reconstruction

  11. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination.

    Science.gov (United States)

    McKnight, Colin D; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H; Parmar, Hemant A

    2014-08-01

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDIvol) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDIvol value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDIvol for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDIvol in the ASIR group (P ASIR group as compared to the 3- to 12-year-old non-ASIR group (21.5 mGy vs. 30.0 mGy; P = 0.004) as well as statistically significant reductions in CTDI for the >12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the homogeneity of variance in the ASIR group compared to the non-ASIR group. Radiologist assessment of

  12. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Colin D.; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H.; Parmar, Hemant A. [University of Michigan, Department of Radiology, Ann Arbor, MI (United States)

    2014-08-15

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDI{sub vol}) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDI{sub vol} value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDI{sub vol} for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDI{sub vol} in the ASIR group (P < 0.01). There were statistically significant reductions in CTDI for the 3- to 12-year-old ASIR group as compared to the 3- to 12-year-old non-ASIR group (21.5 mGy vs. 30.0 mGy; P = 0.004) as well as statistically significant reductions in CTDI for the >12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the

  13. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination

    International Nuclear Information System (INIS)

    McKnight, Colin D.; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H.; Parmar, Hemant A.

    2014-01-01

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDI vol ) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDI vol value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDI vol for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDI vol in the ASIR group (P 12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the homogeneity of variance in the ASIR group compared to the non-ASIR group. Radiologist assessment of gray-white differentiation, sharpness and overall diagnostic quality in ASIR examinations was not substantially different compared to non-ASIR examinations. The use of ASIR in

  14. Peripheral pulmonary arteries: identification at multi-slice spiral CT with 3D reconstruction

    International Nuclear Information System (INIS)

    Coche, Emmanuel; Pawlak, Sebastien; Dechambre, Stephane; Maldague, Baudouin

    2003-01-01

    Our objective was to analyze the peripheral pulmonary arteries using thin-collimation multi-slice spiral CT. Twenty consecutive patients underwent enhanced-spiral multi-slice CT using 1-mm collimation. Two observers analyzed the pulmonary arteries by consensus on a workstation. Each artery was identified on axial and 3D shaded-surface display reconstruction images. Each subsegmental artery was measured at a mediastinal window setting and compared with anatomical classifications. The location and branching of every subsegmental artery was recorded. The number of well-visualized sub-subsegmental arteries at a mediastinal window setting was compared with those visualized at a lung window setting. Of 800 subsegmental arteries, 769 (96%) were correctly visualized and 123 accessory subsegmental arteries were identified using the mediastinal window setting. One thousand ninety-two of 2019 sub-subsegmental arteries (54%) identified using the lung window setting were correctly visualized using the mediastinal window setting. Enhanced multi-slice spiral CT with thin collimation can be used to analyze precisely the subsegmental pulmonary arteries and may identify even more distal pulmonary arteries. (orig.)

  15. Towards local progression estimation of pulmonary emphysema using CT

    Energy Technology Data Exchange (ETDEWEB)

    Staring, M., E-mail: m.staring@lumc.nl; Bakker, M. E.; Shamonin, D. P.; Reiber, J. H. C.; Stoel, B. C. [Department of Radiology, Division of Image Processing, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Stolk, J. [Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands)

    2014-02-15

    Purpose: Whole lung densitometry on chest CT images is an accepted method for measuring tissue destruction in patients with pulmonary emphysema in clinical trials. Progression measurement is required for evaluation of change in health condition and the effect of drug treatment. Information about the location of emphysema progression within the lung may be important for the correct interpretation of drug efficacy, or for determining a treatment plan. The purpose of this study is therefore to develop and validate methods that enable the local measurement of lung density changes, which requires proper modeling of the effect of respiration on density. Methods: Four methods, all based on registration of baseline and follow-up chest CT scans, are compared. The first naïve method subtracts registered images. The second employs the so-called dry sponge model, where volume correction is performed using the determinant of the Jacobian of the transformation. The third and the fourth introduce a novel adaptation of the dry sponge model that circumvents its constant-mass assumption, which is shown to be invalid. The latter two methods require a third CT scan at a different inspiration level to estimate the patient-specific density-volume slope, where one method employs a global and the other a local slope. The methods were validated on CT scans of a phantom mimicking the lung, where mass and volume could be controlled. In addition, validation was performed on data of 21 patients with pulmonary emphysema. Results: The image registration method was optimized leaving a registration error below half the slice increment (median 1.0 mm). The phantom study showed that the locally adapted slope model most accurately measured local progression. The systematic error in estimating progression, as measured on the phantom data, was below 2 gr/l for a 70 ml (6%) volume difference, and 5 gr/l for a 210 ml (19%) difference, if volume correction was applied. On the patient data an underlying

  16. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

    Science.gov (United States)

    Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo

    2015-05-01

    It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Task-driven image acquisition and reconstruction in cone-beam CT

    International Nuclear Information System (INIS)

    Gang, Grace J; Stayman, J Webster; Siewerdsen, Jeffrey H; Ehtiati, Tina

    2015-01-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d′) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d′ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d′ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  18. Radiation dose reduction in cerebral CT perfusion imaging using iterative reconstruction

    International Nuclear Information System (INIS)

    Niesten, Joris M.; Schaaf, Irene C. van der; Riordan, Alan J.; Jong, Hugo W.A.M. de; Eijspaart, Daniel; Smit, Ewoud J.; Mali, Willem P.T.M.; Velthuis, Birgitta K.; Horsch, Alexander D.

    2014-01-01

    To investigate whether iterative reconstruction (IR) in cerebral CT perfusion (CTP) allows for 50 % dose reduction while maintaining image quality (IQ). A total of 48 CTP examinations were reconstructed into a standard dose (150 mAs) with filtered back projection (FBP) and half-dose (75 mAs) with two strengths of IR (middle and high). Objective IQ (quantitative perfusion values, contrast-to-noise ratio (CNR), penumbra, infarct area and penumbra/infarct (P/I) index) and subjective IQ (diagnostic IQ on a four-point Likert scale and overall IQ binomial) were compared among the reconstructions. Half-dose CTP with high IR level had, compared with standard dose with FBP, similar objective (grey matter cerebral blood volume (CBV) 4.4 versus 4.3 mL/100 g, CNR 1.59 versus 1.64 and P/I index 0.74 versus 0.73, respectively) and subjective diagnostic IQ (mean Likert scale 1.42 versus 1.49, respectively). The overall IQ in half-dose with high IR level was scored lower in 26-31 %. Half-dose with FBP and with the middle IR level were inferior to standard dose with FBP. With the use of IR in CTP imaging it is possible to examine patients with a half dose without significantly altering the objective and diagnostic IQ. The standard dose with FBP is still preferable in terms of subjective overall IQ in about one quarter of patients. (orig.)

  19. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    International Nuclear Information System (INIS)

    Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc

    2014-01-01

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the

  20. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure.

    Science.gov (United States)

    Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc

    2014-05-01

    Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the

  1. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Joscha, E-mail: joscha.maier@dkfz.de [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Sawall, Stefan; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen (Germany)

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the

  2. The parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture

    International Nuclear Information System (INIS)

    Wang Shi; Kang Kejun; Wang Jingjin

    1996-01-01

    Computerized Tomography (CT) is expected to become an inevitable diagnostic technique in the future. However, the long time required to reconstruct an image has been one of the major drawbacks associated with this technique. Parallel process is one of the best way to solve this problem. This paper gives the architecture, hardware and software design of PIRS-4 (4-processor Parallel Image Reconstruction System), which is a parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture. It includes the structure and components of the system, the design of crossbar switch and details of control model, the description of RPBP image reconstruction, the choice of OS (Operate System) and language, the principle of imitating EMS, direct memory R/W of float and programming in the protect model. Finally, the test results are given

  3. Application of three-dimensional CT reconstruction technology on inferior oblique muscle in congenital superior oblique palsy

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-05-01

    Full Text Available AIM: To investigate the viability of the morphology of inferior oblique muscle observed stereoscopically using 3-dimensional CT reconstruction technique. METHODS: This control study included of 29 cases which were clinically diagnosed with monocular congenital superior oblique palsy, examined by dimensional CT. The images of the inferior oblique muscle were reconstructed by Mimics software. 3D digital images on the basis of CT scanning data of the individuals were established. Observing the morphology of binocular inferior oblique muscle by self-controlled design, we compared the maximum transverse diameter of inferior oblique muscle of paralyzed eye with non-paralyzed one. We chose 5% as the significant level.RESULTS: The reconstructed results of 3-dimensional CT scan showed that not all of the inferior oblique abdominal muscle of paralyzed eyes were thinner than that of the non-paralyzed eye in maximum transverse diameter of cross-sectional area. The maximum transverse diameter of inferior oblique muscle was measured. The average maximum transverse diameter of the paralyzed eye was 6.797±1.083mm and the non-paralyzed eye was 6.507±0.848mm. The maximum transverse diameter of inferior oblique muscle of paralyzed eye did not, however, differ significantly from the normal(P>0.05. CONCLUSION: The three-dimensional CT reconstruction technology can be used for preoperative evaluation of the morphology of inferior oblique muscle.

  4. Clinical application of 16-slice spiral CT in reconstruction imaging of coronary artery for diagnosing coronary disense

    International Nuclear Information System (INIS)

    Mao Xinbo; Zhu Xinjin; Zeng Huiliang; Chen Xueguang

    2005-01-01

    Objective: An evaluation of the reconstructed imaging of coronary arteries with 16-slice spiral CT in diagnosis of coronary disease. Methods: The reconstructed images of coronary arteries obtained on a 16-slice spiral CT scanner were reviewed in 60 cases, on which the following techniques were applied: retrospective ECG-gating, Segment method with 75% R-R interval, volume rendering technique (VRT), maximum intensity projection (MIP), mulfiplanar reconstruction (MPR), curved planar reconstruction (CPR) and CT virtual endoscopy (CTVE). Results: In all 60 cases, different stages of CHD were revealed in 21 cases; none abnormality was found in 33; and images were in poor quality in 2 cases, which was available for diagnosis. There were 4 stents planted in 4 cases: soft plaque suspected in lcase, patent in 2 and occlude in 1. Conclusion: The reconstructed imaging of coronary arteries with 16-slice spiral CT is superior modality in evaluation of severe coronary stenosis, plaques, and the pantency of the intra-luminal stents, which is an efficient and non-invasive imaging in diagnosis of early-stage CHD and screening in high risk population. (authors)

  5. Reporducibilities of cephalometric measurements of three-dimensional CT images reconstructed in the personal computer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kug Jin; Park, Hyok; Lee, Hee Cheol; Kim, Kee Deog; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2003-09-15

    The purpose of this study was to report the reproducibility of intra-observer and inter-observer consistency of cephalometric measurements using three-dimensional (3D) computed tomography (CT), and the degree of difference of the cephalometric measurements. CT images of 16 adult patients with normal class I occlusion were sent to personal computer and reconstructed into 3D images using V-Works 3.5{sup TM} (Cybermed Inc., Seoul, Korea). With the internal program of V-Works 3.5{sup TM}, 12 landmarks on regular cephalograms were transformed into 21 analytic categories and measured by 2 observers and in addition, one of the observers repeated their measurements. Intra-observer difference was calculated using paired t-test, and inter-observer by two sample test. There were significant differences in the intra-observer measurements (p<0.05) in four of the categories which included ANS-Me, ANS-PNS, Cdl-GO (Lt), GoL-GoR, but with the exception of Cdl-Go (Lt), ZmL-ZmR, Zyo-Zyo, the average differences were within 2 mm of each other. The inter-observer observations also showed significant differences in the measurements of the ZmL-ZmR and Zyo-Zyo categories (p<0.05). With the exception of the Cdl-Me (Rt), ZmL-ZmR, Zyo-Zyo categories, the average differences between the two observers were within 2mm, but the ZmL-ZmR and Zyo-Zyo values differed greatly with values of 8.10 and 19.8 mm respectively. In general, 3D CT images showed greater accuracy and reproducibility, with the exception of suture areas such as Zm and Zyo, than regular cephalograms in orthodontic measurement, showing differences of less than 2 mm, therefore 3D CT images can be useful in cephalometric measurements and treatment planning.

  6. Extent of emphysema estimated by the three dimensional CT (3D-CT) predicts pulmonary dysfunction in patients with COPD

    International Nuclear Information System (INIS)

    Fujita, Etsuo; Inoue, Yoshikazu; Tanaka Isao

    2003-01-01

    We assessed the extent of emphysematous area by the 3D-CT in 35 chronic stable patients (age 66.5±8.9 yrs). And we evaluated the data from the total lung volume estimated by the 3D-CT, % low attenuation area below -950 HU (%LAA) and pulmonary function tests (PFT). Total lung volume estimated by 3D-CT was correlated with total lung capacity (TLC) by PFT (r=0.736, p<0.0005). The % LAA correlated with forced expiratory volume (FEV) 1% (r=-0.716, p<0.001). We concluded that the 3D-CT is the excellent method of evaluating the extent of emphysema without effort. (author)

  7. PIRPLE: a penalized-likelihood framework for incorporation of prior images in CT reconstruction

    International Nuclear Information System (INIS)

    Stayman, J Webster; Dang, Hao; Ding, Yifu; Siewerdsen, Jeffrey H

    2013-01-01

    Over the course of diagnosis and treatment, it is common for a number of imaging studies to be acquired. Such imaging sequences can provide substantial patient-specific prior knowledge about the anatomy that can be incorporated into a prior-image-based tomographic reconstruction for improved image quality and better dose utilization. We present a general methodology using a model-based reconstruction approach including formulations of the measurement noise that also integrates prior images. This penalized-likelihood technique adopts a sparsity enforcing penalty that incorporates prior information yet allows for change between the current reconstruction and the prior image. Moreover, since prior images are generally not registered with the current image volume, we present a modified model-based approach that seeks a joint registration of the prior image in addition to the reconstruction of projection data. We demonstrate that the combined prior-image- and model-based technique outperforms methods that ignore the prior data or lack a noise model. Moreover, we demonstrate the importance of registration for prior-image-based reconstruction methods and show that the prior-image-registered penalized-likelihood estimation (PIRPLE) approach can maintain a high level of image quality in the presence of noisy and undersampled projection data. (paper)

  8. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution

    Science.gov (United States)

    Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang

    2018-04-01

    In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.

  9. The Effects of Metal on Size Specific Dose Estimation (SSDE) in CT: A Phantom Study

    Science.gov (United States)

    Alsanea, Maram M.

    Over the past number of years there has been a significant increase in the awareness of radiation dose from use of computed tomography (CT). Efforts have been made to reduce radiation dose from CT and to better quantify dose being delivered. However, unfortunately, these dose metrics such as CTDI vol are not a specific patient dose. In 2011, the size-specific dose estimation (SSDE) was introduced by AAPM TG-204 which accounts for the physical size of the patient. However, the approach presented in TG-204 ignores the importance of the attenuation differences in the body. In 2014, a newer methodology that accounted for tissue attenuation was introduced by the AAPM TG-220 based on the concept of water equivalent diameter, Dw. One of the limitation of TG-220 is that there is no estimation of the dose while highly attenuating objects such as metal is present in the body. The purpose of this research is to evaluate the accuracy of size-specific dose estimates in CT in the presence of simulated metal prostheses using a conventional PMMA CTDI phantom at different phantom diameter (body and head) and beam energy. Titanium, Cobalt- chromium and stainless steel alloys rods were used in the study. Two approaches were used as introduced by AAPM TG-204 and 220 utilizing the effective diameter and the Dw calculations. From these calculations, conversion factors have been derived that could be applied to the measured CTDIvol to convert it to specific patient dose, or size specific dose estimate, (SSDE). Radiation dose in tissue (f-factor = 0.94) was measured at various chamber positions with the presence of metal. Following, an average weighted tissue dose (AWTD) was calculated in a manner similar to the weighted CTDI (CTDIw). In general, for the 32 cm body phantom SSDE220 provided more accurate estimates of AWTD than did SSDE204. For smaller patient size, represented by the 16 cm head phantom, the SSDE204 was a more accurate estimate of AWTD that that of SSDE220. However, as the

  10. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms.

    Science.gov (United States)

    Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan

    2016-12-01

    To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels

  11. CT angiography after carotid artery stenting: assessment of the utility of adaptive statistical iterative reconstruction and model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kuya, Keita; Shinohara, Yuki; Fujii, Shinya; Ogawa, Toshihide [Tottori University, Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Yonago (Japan); Sakamoto, Makoto; Watanabe, Takashi [Tottori University, Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Yonago (Japan); Iwata, Naoki; Kishimoto, Junichi [Tottori University, Division of Clinical Radiology Faculty of Medicine, Yonago (Japan); Kaminou, Toshio [Osaka Minami Medical Center, Department of Radiology, Osaka (Japan)

    2014-11-15

    Follow-up CT angiography (CTA) is routinely performed for post-procedure management after carotid artery stenting (CAS). However, the stent lumen tends to be underestimated because of stent artifacts on CTA reconstructed with the filtered back projection (FBP) technique. We assessed the utility of new iterative reconstruction techniques, such as adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR), for CTA after CAS in comparison with FBP. In a phantom study, we evaluated the differences among the three reconstruction techniques with regard to the relationship between the stent luminal diameter and the degree of underestimation of stent luminal diameter. In a clinical study, 34 patients who underwent follow-up CTA after CAS were included. We compared the stent luminal diameters among FBP, ASIR, and MBIR, and performed visual assessment of low attenuation area (LAA) in the stent lumen using a three-point scale. In the phantom study, stent luminal diameter was increasingly underestimated as luminal diameter became smaller in all CTA images. Stent luminal diameter was larger with MBIR than with the other reconstruction techniques. Similarly, in the clinical study, stent luminal diameter was larger with MBIR than with the other reconstruction techniques. LAA detectability scores of MBIR were greater than or equal to those of FBP and ASIR in all cases. MBIR improved the accuracy of assessment of stent luminal diameter and LAA detectability in the stent lumen when compared with FBP and ASIR. We conclude that MBIR is a useful reconstruction technique for CTA after CAS. (orig.)

  12. CT angiography after carotid artery stenting: assessment of the utility of adaptive statistical iterative reconstruction and model-based iterative reconstruction

    International Nuclear Information System (INIS)

    Kuya, Keita; Shinohara, Yuki; Fujii, Shinya; Ogawa, Toshihide; Sakamoto, Makoto; Watanabe, Takashi; Iwata, Naoki; Kishimoto, Junichi; Kaminou, Toshio

    2014-01-01

    Follow-up CT angiography (CTA) is routinely performed for post-procedure management after carotid artery stenting (CAS). However, the stent lumen tends to be underestimated because of stent artifacts on CTA reconstructed with the filtered back projection (FBP) technique. We assessed the utility of new iterative reconstruction techniques, such as adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR), for CTA after CAS in comparison with FBP. In a phantom study, we evaluated the differences among the three reconstruction techniques with regard to the relationship between the stent luminal diameter and the degree of underestimation of stent luminal diameter. In a clinical study, 34 patients who underwent follow-up CTA after CAS were included. We compared the stent luminal diameters among FBP, ASIR, and MBIR, and performed visual assessment of low attenuation area (LAA) in the stent lumen using a three-point scale. In the phantom study, stent luminal diameter was increasingly underestimated as luminal diameter became smaller in all CTA images. Stent luminal diameter was larger with MBIR than with the other reconstruction techniques. Similarly, in the clinical study, stent luminal diameter was larger with MBIR than with the other reconstruction techniques. LAA detectability scores of MBIR were greater than or equal to those of FBP and ASIR in all cases. MBIR improved the accuracy of assessment of stent luminal diameter and LAA detectability in the stent lumen when compared with FBP and ASIR. We conclude that MBIR is a useful reconstruction technique for CTA after CAS. (orig.)

  13. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment.

    Science.gov (United States)

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-12-01

    Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT∕CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. In this work, we accelerated the Feldcamp-Davis-Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT∕CT reconstruction algorithm. Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10(-7). Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed

  14. Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates

    Science.gov (United States)

    Grobys, Jan W. G.; Gohl, Karsten; Eagles, Graeme

    2008-01-01

    Zealandia is a key piece in the plate reconstruction of Gondwana. The positions of its submarine plateaus are major constraints on the best fit and breakup involving New Zealand, Australia, Antarctica, and associated microplates. As the submarine plateaus surrounding New Zealand consist of extended and highly extended continental crust, classic plate tectonic reconstructions assuming rigid plates and narrow plate boundaries fail to reconstruct these areas correctly. However, if the early breakup history shall be reconstructed, it is crucial to consider crustal stretching in a plate-tectonic reconstruction. We present a reconstruction of the basins around New Zealand (Great South Basin, Bounty Trough, and New Caledonia Basin) based on crustal balancing, an approach that takes into account the rifting and thinning processes affecting continental crust. In a first step, we computed a crustal thickness map of Zealandia using seismic, seismological, and gravity data. The crustal thickness map shows the submarine plateaus to have a uniform crustal thickness of 20-24 km and the basins to have a thickness of 12-16 km. We assumed that a reconstruction of Zealandia should close the basins and lead to a most uniform crustal thickness. We used the standard deviation of the reconstructed crustal thickness as a measure of uniformity. The reconstruction of the Campbell Plateau area shows that the amount of extension in the Bounty Trough and the Great South Basin is far smaller than previously thought. Our results indicate that the extension of the Bounty Trough and Great South Basin occurred simultaneously.

  15. Comparison of the image qualities of filtered back-projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction for CT venography at 80 kVp

    International Nuclear Information System (INIS)

    Kim, Jin Hyeok; Choo, Ki Seok; Moon, Tae Yong; Lee, Jun Woo; Jeon, Ung Bae; Kim, Tae Un; Hwang, Jae Yeon; Yun, Myeong-Ja; Jeong, Dong Wook; Lim, Soo Jin

    2016-01-01

    To evaluate the subjective and objective qualities of computed tomography (CT) venography images at 80 kVp using model-based iterative reconstruction (MBIR) and to compare these with those of filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) using the same CT data sets. Forty-four patients (mean age: 56.1 ± 18.1) who underwent 80 kVp CT venography (CTV) for the evaluation of deep vein thrombosis (DVT) during 4 months were enrolled in this retrospective study. The same raw data were reconstructed using FBP, ASIR, and MBIR. Objective and subjective image analysis were performed at the inferior vena cava (IVC), femoral vein, and popliteal vein. The mean CNR of MBIR was significantly greater than those of FBP and ASIR and images reconstructed using MBIR had significantly lower objective image noise (p <.001). Subjective image quality and confidence of detecting DVT by MBIR group were significantly greater than those of FBP and ASIR (p <.005), and MBIR had the lowest score for subjective image noise (p <.001). CTV at 80 kVp with MBIR was superior to FBP and ASIR regarding subjective and objective image qualities. (orig.)

  16. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions.

    Science.gov (United States)

    Morsbach, Fabian; Bickelhaupt, Sebastian; Wanner, Guido A; Krauss, Andreas; Schmidt, Bernhard; Alkadhi, Hatem

    2013-07-01

    To assess the value of iterative frequency split-normalized (IFS) metal artifact reduction (MAR) for computed tomography (CT) of hip prostheses. This study had institutional review board and local ethics committee approval. First, a hip phantom with steel and titanium prostheses that had inlays of water, fat, and contrast media in the pelvis was used to optimize the IFS algorithm. Second, 41 consecutive patients with hip prostheses who were undergoing CT were included. Data sets were reconstructed with filtered back projection, the IFS algorithm, and a linear interpolation MAR algorithm. Two blinded, independent readers evaluated axial, coronal, and sagittal CT reformations for overall image quality, image quality of pelvic organs, and assessment of pelvic abnormalities. CT attenuation and image noise were measured. Statistical analysis included the Friedman test, Wilcoxon signed-rank test, and Levene test. Ex vivo experiments demonstrated an optimized IFS algorithm by using a threshold of 2200 HU with four iterations for both steel and titanium prostheses. Measurements of CT attenuation of the inlays were significantly (P algorithm for CT image reconstruction significantly reduces metal artifacts from hip prostheses, improves the reliability of CT number measurements, and improves the confidence for depicting pelvic abnormalities.

  17. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    Science.gov (United States)

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p ASIR images (p ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  18. Y-90 SPECT ML image reconstruction with a new model for tissue-dependent bremsstrahlung production using CT information: a proof-of-concept study

    Science.gov (United States)

    Lim, Hongki; Fessler, Jeffrey A.; Wilderman, Scott J.; Brooks, Allen F.; Dewaraja, Yuni K.

    2018-06-01

    While the yield of positrons used in Y-90 PET is independent of tissue media, Y-90 SPECT imaging is complicated by the tissue dependence of bremsstrahlung photon generation. The probability of bremsstrahlung production is proportional to the square of the atomic number of the medium. Hence, the same amount of activity in different tissue regions of the body will produce different numbers of bremsstrahlung photons. Existing reconstruction methods disregard this tissue-dependency, potentially impacting both qualitative and quantitative imaging of heterogeneous regions of the body such as bone with marrow cavities. In this proof-of-concept study, we propose a new maximum-likelihood method that incorporates bremsstrahlung generation probabilities into the system matrix, enabling images of the desired Y-90 distribution to be reconstructed instead of the ‘bremsstrahlung distribution’ that is obtained with existing methods. The tissue-dependent probabilities are generated by Monte Carlo simulation while bone volume fractions for each SPECT voxel are obtained from co-registered CT. First, we demonstrate the tissue dependency in a SPECT/CT imaging experiment with Y-90 in bone equivalent solution and water. Visually, the proposed reconstruction approach better matched the true image and the Y-90 PET image than the standard bremsstrahlung reconstruction approach. An XCAT phantom simulation including bone and marrow regions also demonstrated better agreement with the true image using the proposed reconstruction method. Quantitatively, compared with the standard reconstruction, the new method improved estimation of the liquid bone:water activity concentration ratio by 40% in the SPECT measurement and the cortical bone:marrow activity concentration ratio by 58% in the XCAT simulation.

  19. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J [Lehigh Valley Health Network, Allentown, PA (United States)

    2014-06-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  20. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J

    2014-01-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  1. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements

    International Nuclear Information System (INIS)

    Lin, Yuan; Samei, Ehsan; Ramirez-Giraldo, Juan Carlos; Gauthier, Daniel J.; Stierstorfer, Karl

    2014-01-01

    Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: The proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to measure

  2. Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.

    Science.gov (United States)

    Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P

    2018-01-04

    Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was

  3. Radiation Dose Reduction of Chest CT with Iterative Reconstruction in Image Space - Part I: Studies on Image Quality Using Dual Source CT

    International Nuclear Information System (INIS)

    Hwang, Hye Jeon; Seo, Joon Beom; Lee, Jin Seong; Song, Jae Woo; Lee, Hyun Joo; Lim, Chae Hun; Kim, Song Soo

    2012-01-01

    To determine whether the image quality (IQ) is improved with iterative reconstruction in image space (IRIS), and whether IRIS can be used for radiation reduction in chest CT. Standard dose chest CT (SDCT) in 50 patients and low dose chest CT (LDCT) in another 50 patients were performed, using a dual-source CT, with 120 kVp and same reference mAs (50 mAs for SDCT and 25 mAs for LDCT) employed to both tubes by modifying a dual-energy scan mode. Full-dose data were obtained by combining the data from both tubes and half-dose data were separated from a single tube. These were reconstructed by using a filtered back projection (FBP) and IRIS: full-dose FBP (F-FBP); full-dose IRIS (F-IRIS); half-dose FBP (H-FBP) and half-dose IRIS (H-IRIS). Objective noise was measured. The subjective IQ was evaluated by radiologists for the followings: noise, contrast and sharpness of mediastinum and lung. Objective noise was significantly lower in H-IRIS than in F-FBP (p < 0.01). In both SDCT and LDCT, the IQ scores were highest in F-IRIS, followed by F-FBP, H-IRIS and H-FBP, except those for sharpness of mediastinum, which tended to be higher in FBP. When comparing CT images between the same dose and different reconstruction (F-IRIS/F-FBP and H-IRIS/H-FBP) algorithms, scores tended to be higher in IRIS than in FBP, being more distinct in half-dose images. However, despite the use of IRIS, the scores were lower in H-IRIS than in F-FBP. IRIS generally helps improve the IQ, being more distinct at the reduced radiation. However, reduced radiation by half results in IQ decrease even when using IRIS in chest CT.

  4. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    Science.gov (United States)

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from

  5. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    International Nuclear Information System (INIS)

    Wang, Adam S; Stayman, J Webster; Otake, Yoshito; Siewerdsen, Jeffrey H; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L; Khanna, A Jay

    2014-01-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (∼40–80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4–2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ∼1.7 mGy and benefits from 50% sparsity at dose below ∼1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose. (paper)

  6. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    Science.gov (United States)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  7. Regularization design for high-quality cone-beam CT of intracranial hemorrhage using statistical reconstruction

    Science.gov (United States)

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.

  8. An automatic virtual patient reconstruction from CT-scans for hepatic surgical planning.

    Science.gov (United States)

    Soler, L; Delingette, H; Malandain, G; Ayache, N; Koehl, C; Clément, J M; Dourthe, O; Marescaux, J

    2000-01-01

    PROBLEM/BACKGROUND: In order to help hepatic surgical planning we perfected automatic 3D reconstruction of patients from conventional CT-scan, and interactive visualization and virtual resection tools. From a conventional abdominal CT-scan, we have developed several methods allowing the automatic 3D reconstruction of skin, bones, kidneys, lung, liver, hepatic lesions, and vessels. These methods are based on deformable modeling or thresholding algorithms followed by the application of mathematical morphological operators. From these anatomical and pathological models, we have developed a new framework for translating anatomical knowledge into geometrical and topological constraints. More precisely, our approach allows to automatically delineate the hepatic and portal veins but also to label the portal vein and finally to build an anatomical segmentation of the liver based on Couinaud definition which is currently used by surgeons all over the world. Finally, we have developed a user friendly interface for the 3D visualization of anatomical and pathological structures, the accurate evaluation of volumes and distances and for the virtual hepatic resection along a user-defined cutting plane. A validation study on a 30 patients database gives 2 mm of precision for liver delineation and less than 1 mm for all other anatomical and pathological structures delineation. An in vivo validation performed during surgery also showed that anatomical segmentation is more precise than the delineation performed by a surgeon based on external landmarks. This surgery planning system has been routinely used by our medical partner, and this has resulted in an improvement of the planning and performance of hepatic surgery procedures. We have developed new tools for hepatic surgical planning allowing a better surgery through an automatic delineation and visualization of anatomical and pathological structures. These tools represent a first step towards the development of an augmented

  9. Image quality in children with low-radiation chest CT using adaptive statistical iterative reconstruction and model-based iterative reconstruction.

    Directory of Open Access Journals (Sweden)

    Jihang Sun

    Full Text Available OBJECTIVE: To evaluate noise reduction and image quality improvement in low-radiation dose chest CT images in children using adaptive statistical iterative reconstruction (ASIR and a full model-based iterative reconstruction (MBIR algorithm. METHODS: Forty-five children (age ranging from 28 days to 6 years, median of 1.8 years who received low-dose chest CT scans were included. Age-dependent noise index (NI was used for acquisition. Images were retrospectively reconstructed using three methods: MBIR, 60% of ASIR and 40% of conventional filtered back-projection (FBP, and FBP. The subjective quality of the images was independently evaluated by two radiologists. Objective noises in the left ventricle (LV, muscle, fat, descending aorta and lung field at the layer with the largest cross-section area of LV were measured, with the region of interest about one fourth to half of the area of descending aorta. Optimized signal-to-noise ratio (SNR was calculated. RESULT: In terms of subjective quality, MBIR images were significantly better than ASIR and FBP in image noise and visibility of tiny structures, but blurred edges were observed. In terms of objective noise, MBIR and ASIR reconstruction decreased the image noise by 55.2% and 31.8%, respectively, for LV compared with FBP. Similarly, MBIR and ASIR reconstruction increased the SNR by 124.0% and 46.2%, respectively, compared with FBP. CONCLUSION: Compared with FBP and ASIR, overall image quality and noise reduction were significantly improved by MBIR. MBIR image could reconstruct eligible chest CT images in children with lower radiation dose.

  10. SU-F-J-23: Field-Of-View Expansion in Cone-Beam CT Reconstruction by Use of Prior Information

    Energy Technology Data Exchange (ETDEWEB)

    Haga, A; Magome, T; Nakano, M; Nakagawa, K [University of Tokyo Hospital, Tokyo (Japan); Kotoku, J [Teikyo University, Tokyo (Japan)

    2016-06-15

    Purpose: Cone-beam CT (CBCT) has become an integral part of online patient setup in an image-guided radiation therapy (IGRT). In addition, the utility of CBCT for dose calculation has actively been investigated. However, the limited size of field-of-view (FOV) and resulted CBCT image with a lack of peripheral area of patient body prevents the reliability of dose calculation. In this study, we aim to develop an FOV expanded CBCT in IGRT system to allow the dose calculation. Methods: Three lung cancer patients were selected in this study. We collected the cone-beam projection images in the CBCT-based IGRT system (X-ray volume imaging unit, ELEKTA), where FOV size of the provided CBCT with these projections was 410 × 410 mm{sup 2} (normal FOV). Using these projections, CBCT with a size of 728 × 728 mm{sup 2} was reconstructed by a posteriori estimation algorithm including a prior image constrained compressed sensing (PICCS). The treatment planning CT was used as a prior image. To assess the effectiveness of FOV expansion, a dose calculation was performed on the expanded CBCT image with region-of-interest (ROI) density mapping method, and it was compared with that of treatment planning CT as well as that of CBCT reconstructed by filtered back projection (FBP) algorithm. Results: A posteriori estimation algorithm with PICCS clearly visualized an area outside normal FOV, whereas the FBP algorithm yielded severe streak artifacts outside normal FOV due to under-sampling. The dose calculation result using the expanded CBCT agreed with that using treatment planning CT very well; a maximum dose difference was 1.3% for gross tumor volumes. Conclusion: With a posteriori estimation algorithm, FOV in CBCT can be expanded. Dose comparison results suggested that the use of expanded CBCTs is acceptable for dose calculation in adaptive radiation therapy. This study has been supported by KAKENHI (15K08691).

  11. Statistical iterative reconstruction for streak artefact reduction when using multidetector CT to image the dento-alveolar structures.

    Science.gov (United States)

    Dong, J; Hayakawa, Y; Kober, C

    2014-01-01

    When metallic prosthetic appliances and dental fillings exist in the oral cavity, the appearance of metal-induced streak artefacts is not avoidable in CT images. The aim of this study was to develop a method for artefact reduction using the statistical reconstruction on multidetector row CT images. Adjacent CT images often depict similar anatomical structures. Therefore, reconstructed images with weak artefacts were attempted using projection data of an artefact-free image in a neighbouring thin slice. Images with moderate and strong artefacts were continuously processed in sequence by successive iterative restoration where the projection data was generated from the adjacent reconstructed slice. First, the basic maximum likelihood-expectation maximization algorithm was applied. Next, the ordered subset-expectation maximization algorithm was examined. Alternatively, a small region of interest setting was designated. Finally, the general purpose graphic processing unit machine was applied in both situations. The algorithms reduced the metal-induced streak artefacts on multidetector row CT images when the sequential processing method was applied. The ordered subset-expectation maximization and small region of interest reduced the processing duration without apparent detriments. A general-purpose graphic processing unit realized the high performance. A statistical reconstruction method was applied for the streak artefact reduction. The alternative algorithms applied were effective. Both software and hardware tools, such as ordered subset-expectation maximization, small region of interest and general-purpose graphic processing unit achieved fast artefact correction.

  12. Cardiac CT for planning redo cardiac surgery: effect of knowledge-based iterative model reconstruction on image quality

    International Nuclear Information System (INIS)

    Oda, Seitaro; Weissman, Gaby; Weigold, W. Guy; Vembar, Mani

    2015-01-01

    The purpose of this study was to investigate the effects of knowledge-based iterative model reconstruction (IMR) on image quality in cardiac CT performed for the planning of redo cardiac surgery by comparing IMR images with images reconstructed with filtered back-projection (FBP) and hybrid iterative reconstruction (HIR). We studied 31 patients (23 men, 8 women; mean age 65.1 ± 16.5 years) referred for redo cardiac surgery who underwent cardiac CT. Paired image sets were created using three types of reconstruction: FBP, HIR, and IMR. Quantitative parameters including CT attenuation, image noise, and contrast-to-noise ratio (CNR) of each cardiovascular structure were calculated. The visual image quality - graininess, streak artefact, margin sharpness of each cardiovascular structure, and overall image quality - was scored on a five-point scale. The mean image noise of FBP, HIR, and IMR images was 58.3 ± 26.7, 36.0 ± 12.5, and 14.2 ± 5.5 HU, respectively; there were significant differences in all comparison combinations among the three methods. The CNR of IMR images was better than that of FBP and HIR images in all evaluated structures. The visual scores were significantly higher for IMR than for the other images in all evaluated parameters. IMR can provide significantly improved qualitative and quantitative image quality at in cardiac CT for planning of reoperative cardiac surgery. (orig.)

  13. Influence of dose reduction and iterative reconstruction on CT calcium scores : a multi-manufacturer dynamic phantom study

    NARCIS (Netherlands)

    van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T

    To evaluate the influence of dose reduction in combination with iterative reconstruction (IR) on coronary calcium scores (CCS) in a dynamic phantom on state-of-the-art CT systems from different manufacturers. Calcified inserts in an anthropomorphic chest phantom were translated at 20 mm/s

  14. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

    Science.gov (United States)

    Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr

    2017-12-01

    There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

  15. The significance of multi-slice helical CT multiplanar reconstruction in the diagnoses of laryngeal carcinoma

    International Nuclear Information System (INIS)

    Li Lin; Luo Dehong; Zhou Chunwu; Zhao Xinming; Jiang Liming; Huang Yao; Jiang Lingxia; Li Jing; Wu Ning

    2006-01-01

    Objective: To evaluate the significance of multi-slice helical CT with multiplanar reconstruction in laryngeal carcinoma. Methods: Thirty-five patients with laryngeal carcinoma were studied by helical CT, MPR were subsequently done. The lesion extent of the axial image findings, MPR findings and the combined image findings were compared with the pathological results respectively. The data were statistically analyzed. Results: In the evaluation of the anterior commissure, the axial image findings, MPR findings and the combined image findings were 82.9%, 68.6% and 91.4% in accuracy respectively, the results were statistically different (P 0.05). The combined images were superior to the axial images and the MPR images in sensitivity, specificity and accuracy of the lesion extent. Conclusion: The axial images could show the shape, size, extension of the tumor and the lymphadenopathy, MPR images displayed the shape, size and extension roundly and directly, they were the supplement for the axial images. Axial images combined with MPR could improve the accuracy in the diagnoses of laryngeal carcinoma. (authors)

  16. Anterior glenoid rim fracture: the value of helical CT with threedimensional reconstruction and electronic humeral disarticulation

    Directory of Open Access Journals (Sweden)

    Heverton César de Oliveira

    2003-06-01

    Full Text Available Objectives: To show a new three-dimensional reconstructiontechnique based on helical computed tomography images withelectronic humeral disarticulation in anterior glenoid rim fractures,correlating the anatomic specimen with simulation of an anteriorglenoid rim fracture, as well as evaluating the extension of thefracture, the bone fragment position and distance in relation to theglenoid cavity in six patients. Methods: One scapula and onehumerus with no signs of fracture or congenital malformationswere placed in anatomical position using an adhesive tape aftersimulating an anterior glenoid rim fracture made by an osteotome.Helical CT imaging was acquired and three-dimensionalreconstructions were made based on these images, with andwithout electronic humeral disarticulation. The bone fragment waslocated, measured and its position in relation to the glenoid cavitywas assessed. Six patients with anterior glenoid rim fracture weresubmitted to CT of the shoulder using the same parameters asthose applied to the anatomic specimen. Results: In the anatomicspecimen and in all six patients the bone fragment was clearlydemonstrated; bone fragment measurements in the anatomicspecimen and in three-dimensional reconstructions wereequivalent. The fragment was better demonstrated in the imagestaken with electronic humeral disarticulation, particularly in thefrontal view of the glenoid cavity as observed in all six patients.Conclusion: We concluded that our experiment with the anatomicspecimen and the study of six patients allow us to state that thistechnique is safe and accurate to demonstrate the extension, sizeand location of the bone fragment in anterior glenoid rim fractures,and it provides essential elements for therapeutic planning.

  17. A trial to reduce cardiac motion artifact on HR-CT images of the lung with the use of subsecond scan and special cine reconstruction algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Fumikazu; Tsuuchi, Yasuhiko; Suzuki, Keiko; Ueno, Keiko; Yamada, Takayuki; Okawa, Tomohiko [Tokyo Women`s Medical Coll. (Japan); Yun, Shen; Horiuchi, Tetsuya; Kimura, Fumiko

    1998-05-01

    We describe our trial to reduce cardiac motion artifacts on HR-CT images caused by cardiac pulsation by combining use of subsecond CT (scan time 0.8 s) and a special cine reconstruction algorithm (cine reconstruction algorithm with 180-degree helical interpolation). Eleven to 51 HR-CT images were reconstructed with the special cine reconstruction algorithm at the pitch of 0.1 (0.08 s) from the data obtained by two to six contigious rotation scans at the same level. Images with the fewest cardiac motion artifacts were selected for evaluation. These images were compared with those reconstructed with a conventional cine reconstruction algorithm and step-by-step scan. In spite of its increased radiation exposure, technical complexity and slight degradation of spatial resolution, our method was useful in reducing cardiac motion artifacts on HR-CT images in regions adjacent to the heart. (author)

  18. Estimating cancer risks induced by CT screening for Korea population

    International Nuclear Information System (INIS)

    Yang, Hye Jeong; Yang, Won Seok

    2016-01-01

    Computed Tomography(CT) has been used to diagnose early stages of cancer and other diseases. Since the number of CT screening has been increasing, there is now a debate about the possible benefits and risks of CT screening on asymptomatic individuals. CT screening has definite benefits, however the radiation risk of screening an asymptomatic individual is a serious problem that cannot be overlooked. Despite its potential risks, CT screening for asymptomatic individual has been gradually increased in Korea and it is attributed to increase collective effective dose. Therefore, we reported the risk level of each organ which is included in scan field for CT screening and analyzed and then evaluated the risk level of Korean population comparison to others, Hong Kong, U.S. and U.K. populations. LARs are lower with older ages for all populations of both sexes. We recommend CT screening after the age of 40 because from that age, LAR decreases and the danger of top 5 cancer increases.

  19. Effect of Scanning and Reconstruction Parameters on Three Dimensional Volume and CT Value Measurement of Pulmonary Nodules: A Phantom Study

    Directory of Open Access Journals (Sweden)

    Datong SU

    2017-08-01

    Full Text Available Background and objective The computed tomography (CT follow-up of indeterminate pulmonary nodules aiming to evaluate the change of the volume and CT value is the common strategy in clinic. The CT dose needs to considered on serious CT scans in addition to the measurement accuracy. The purpose of this study is to quantify the precision of pulmonary nodule volumetric measurement and CT value measurement with various tube currents and reconstruction algorithms in a phantom study with dual-energy CT. Methods A chest phantom containing 9 artificial spherical solid nodules with known diameter (D=2.5 mm, 5 mm, 10 mm and density (-100 HU, 60 HU and 100 HU was scanned using a 64-row detector CT canner at 120 Kilovolt & various currents (10 mA, 20 mA, 50 mA, 80 mA,100 mA, 150 mA and 350 mA. Raw data were reconstructed with filtered back projection and three levels of adaptive statistical iterative reconstruction algorithm (FBP, ASIR; 30%, 50% and 80%. Automatic volumetric measurements were performed using commercially available software. The relative volume error (RVE and the absolute attenuation error (AAE between the software measures and the reference-standard were calculated. Analyses of the variance were performed to evaluate the effect of reconstruction methods, different scan parameters, nodule size and attenuation on the RPE. Results The software substantially overestimated the very small (D=2.5 mm nodule's volume [mean RVE: (100.8%±28%] and underestimated it attenuation [mean AAE: (-756±80 HU]. The mean RVEs of nodule with diameter as 5 mm and 10 mm were small [(-0.9%±1.1% vs (0.9%±1.4%], however, the mean AAEs [(-243±26 HU vs (-129±7 HU] were large. The ANOVA analysis for repeated measurements showed that different tube current and reconstruction algorithm had no significant effect on the volumetric measurements for nodules with diameter of 5 mm and 10 mm (F=5.60, P=0.10 vs F=11.13, P=0.08, but significant effects on the measurement of CT

  20. Coronary stent on coronary CT angiography: Assessment with model-based iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Chae; Kim, Yeo Koon; Chun, Eun Ju; Choi, Sang IL [Dept. of of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-05-15

    To assess the performance of model-based iterative reconstruction (MBIR) technique for evaluation of coronary artery stents on coronary CT angiography (CCTA). Twenty-two patients with coronary stent implantation who underwent CCTA were retrospectively enrolled for comparison of image quality between filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR) and MBIR. In each data set, image noise was measured as the standard deviation of the measured attenuation units within circular regions of interest in the ascending aorta (AA) and left main coronary artery (LM). To objectively assess the noise and blooming artifacts in coronary stent, we additionally measured the standard deviation of the measured attenuation and intra-luminal stent diameters of total 35 stents with dedicated software. All image noise measured in the AA (all p < 0.001), LM (p < 0.001, p = 0.001) and coronary stent (all p < 0.001) were significantly lower with MBIR in comparison to those with FBP or ASIR. Intraluminal stent diameter was significantly higher with MBIR, as compared with ASIR or FBP (p < 0.001, p = 0.001). MBIR can reduce image noise and blooming artifact from the stent, leading to better in-stent assessment in patients with coronary artery stent.

  1. An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction.

    Science.gov (United States)

    Li, Jiaojiao; Niu, Shanzhou; Huang, Jing; Bian, Zhaoying; Feng, Qianjin; Yu, Gaohang; Liang, Zhengrong; Chen, Wufan; Ma, Jianhua

    2015-01-01

    Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, most exiting algorithms related to the SIR unavoidably suffer from heavy computation load and slow convergence rate, especially when an edge-preserving or sparsity-based penalty or regularization is incorporated. In this work, to address abovementioned issues of the general algorithms related to the SIR, we propose an adaptive nonmonotone alternating direction algorithm in the framework of augmented Lagrangian multiplier method, which is termed as "ALM-ANAD". The algorithm effectively combines an alternating direction technique with an adaptive nonmonotone line search to minimize the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD algorithm, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present ALM-ANAD algorithm can achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio, convergence rate, and universal quality index metrics.

  2. MO-FG-204-04: How Iterative Reconstruction Algorithms Affect the NPS of CT Images

    International Nuclear Information System (INIS)

    Li, G; Liu, X; Dodge, C; Jensen, C; Rong, J

    2015-01-01

    Purpose: To evaluate how the third generation model based iterative reconstruction (MBIR) compares with filtered back-projection (FBP), adaptive statistical iterative reconstruction (ASiR), and the second generation MBIR based on noise power spectrum (NPS) analysis over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP515 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 19mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 0.984 pitch and reconstructed thickness 2.5mm (VEO3.0: Abd/Pelvis with Texture and NR05). At each CTDIvol level, 10 repeated scans were acquired for achieving sufficient data sampling. The images were reconstructed using Standard kernel with FBP; 20%, 40% and 70% ASiR; and two versions of MBIR (VEO2.0 and 3.0). For evaluating the effect of the ROI spatial location to the Result of NPS, 4 ROI groups were categorized based on their distances from the center of the phantom. Results: VEO3.0 performed inferiorly comparing to VEO2.0 over all dose levels. On the other hand, at low dose levels (less than 3 mGy), it clearly outperformed ASiR and FBP, in NPS values. Therefore, the lower the dose level, the relative performance of MBIR improves. However, the shapes of the NPS show substantial differences in horizontal and vertical sampling dimensions. These differences may determine the characteristics of the noise/texture features in images, and hence, play an important role in image interpretation. Conclusion: The third generation MBIR did not improve over the second generation MBIR in term of NPS analysis. The overall performance of both versions of MBIR improved as compared to other reconstruction algorithms when dose was reduced. The shapes of the NPS curves provided additional value for future characterization of the image noise/texture features

  3. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints

    Science.gov (United States)

    Lee, Ho; Xing, Lei; Davidi, Ran; Li, Ruijiang; Qian, Jianguo; Lee, Rena

    2012-04-01

    Volumetric cone-beam CT (CBCT) images are acquired repeatedly during a course of radiation therapy and a natural question to ask is whether CBCT images obtained earlier in the process can be utilized as prior knowledge to reduce patient imaging dose in subsequent scans. The purpose of this work is to develop an adaptive prior image constrained compressed sensing (APICCS) method to solve this problem. Reconstructed images using full projections are taken on the first day of radiation therapy treatment and are used as prior images. The subsequent scans are acquired using a protocol of sparse projections. In the proposed APICCS algorithm, the prior images are utilized as an initial guess and are incorporated into the objective function in the compressed sensing (CS)-based iterative reconstruction process. Furthermore, the prior information is employed to detect any possible mismatched regions between the prior and current images for improved reconstruction. For this purpose, the prior images and the reconstructed images are classified into three anatomical regions: air, soft tissue and bone. Mismatched regions are identified by local differences of the corresponding groups in the two classified sets of images. A distance transformation is then introduced to convert the information into an adaptive voxel-dependent relaxation map. In constructing the relaxation map, the matched regions (unchanged anatomy) between the prior and current images are assigned with smaller weight values, which are translated into less influence on the CS iterative reconstruction process. On the other hand, the mismatched regions (changed anatomy) are associated with larger values and the regions are updated more by the new projection data, thus avoiding any possible adverse effects of prior images. The APICCS approach was systematically assessed by using patient data acquired under standard and low-dose protocols for qualitative and quantitative comparisons. The APICCS method provides an

  4. Diagnosis of multidetector spiral CT and its reconstruction techniques in trachea and principal bronchus tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Luo; Hong, Shan; Zaibo, Jiang; Lufang, Li; Jiansheng, Zhang [Zhongshan Univ., Guangzhou (China). The Third Univ. Hospital, Dept. of Radiology; Lijia, Gu; Shaohong, Huang; Yi, Jin; Zhiqiang, Hou

    2003-12-01

    Objective: To investigate the clinical diagnostic value of multidetector spiral CT (MSCT) and its reconstruction techniques including multiplanar volume reformation (MPVR), volume rendering (VR), and virtual bronchoscopy (VB) in the trachea and principal bronchus tumors. Methods: Thin slice MSCT scanning was performed in 31 patients with suspected trachea or principal bronchus tumors, and image reconstruction data were formed after retro-reconstructing of initial scanning data. MPVR, VR, and VB images were obtained respectively by postprocessing of image reconstruction data with MPVR, VR, and VB image processing software in AW workstation. The findings of MSCT initial axial images, MPVR, VR, and VB images were compared with surgical and pathological results. Results: MSCT initial axial images combined with MPVR, VR, and VB images displayed the locations (tracheae, n=19; right principal bronchi, n=6; left principal bronchi, n=6), morphologies (endoluminal nodular tumors with narrow bases, n=2; endoluminal nodular tumors with wide bases, n=13; intraluminal and extraluminal massive tumors, n=16), internal features (1 had homogeneous density, 1 had low density, they both without obvious enhancement; 23 squamous cell carcinomas and 3 adenocarcinomas had fairly homogeneous density and rather obvious enhancement; 1 had homogeneous density, 1 had inhomogeneous density, 1 had punctate calcification, all with obvious enhancement), extramural invasion situations (broke through only serous membrane, n=1; no clear border with right atelectatic lung tissue, n=1; ranges of extramural invasion 4-56 mm, n=14), morphologies of luminal stenoses (eccentric, n=1; irregular, n=26; circular, n=3; conical interruption, n=1), extents (mild, n=5; moderate, n=7; severe, n=19); measured longitudinal invasion ranges (only 3 mm, n=1; invaded the whole right principal bronchus wall and carina, n=1; 5-68 mm, n=29), and distances between principal bronchus tumors and carina (invaded carina, n=1

  5. Reconstruction-of-difference (RoD) imaging for cone-beam CT neuro-angiography

    Science.gov (United States)

    Wu, P.; Stayman, J. W.; Mow, M.; Zbijewski, W.; Sisniega, A.; Aygun, N.; Stevens, R.; Foos, D.; Wang, X.; Siewerdsen, J. H.

    2018-06-01

    Timely evaluation of neurovasculature via CT angiography (CTA) is critical to the detection of pathology such as ischemic stroke. Cone-beam CTA (CBCT-A) systems provide potential advantages in the timely use at the point-of-care, although challenges of a relatively slow gantry rotation speed introduce tradeoffs among image quality, data consistency and data sparsity. This work describes and evaluates a new reconstruction-of-difference (RoD) approach that is robust to such challenges. A fast digital simulation framework was developed to test the performance of the RoD over standard reference reconstruction methods such as filtered back-projection (FBP) and penalized likelihood (PL) over a broad range of imaging conditions, grouped into three scenarios to test the trade-off between data consistency, data sparsity and peak contrast. Two experiments were also conducted using a CBCT prototype and an anthropomorphic neurovascular phantom to test the simulation findings in real data. Performance was evaluated primarily in terms of normalized root mean square error (NRMSE) in comparison to truth, with reconstruction parameters chosen to optimize performance in each case to ensure fair comparison. The RoD approach reduced NRMSE in reconstructed images by up to 50%–53% compared to FBP and up to 29%–31% compared to PL for each scenario. Scan protocols well suited to the RoD approach were identified that balance tradeoffs among data consistency, sparsity and peak contrast—for example, a CBCT-A scan with 128 projections acquired in 8.5 s over a 180°  +  fan angle half-scan for a time attenuation curve with ~8.5 s time-to-peak and 600 HU peak contrast. With imaging conditions such as the simulation scenarios of fixed data sparsity (i.e. varying levels of data consistency and peak contrast), the experiments confirmed the reduction of NRMSE by 34% and 17% compared to FBP and PL, respectively. The RoD approach demonstrated superior performance in 3D angiography

  6. MO-FG-204-04: How Iterative Reconstruction Algorithms Affect the NPS of CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Li, G; Liu, X; Dodge, C; Jensen, C; Rong, J [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To evaluate how the third generation model based iterative reconstruction (MBIR) compares with filtered back-projection (FBP), adaptive statistical iterative reconstruction (ASiR), and the second generation MBIR based on noise power spectrum (NPS) analysis over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP515 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 19mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 0.984 pitch and reconstructed thickness 2.5mm (VEO3.0: Abd/Pelvis with Texture and NR05). At each CTDIvol level, 10 repeated scans were acquired for achieving sufficient data sampling. The images were reconstructed using Standard kernel with FBP; 20%, 40% and 70% ASiR; and two versions of MBIR (VEO2.0 and 3.0). For evaluating the effect of the ROI spatial location to the Result of NPS, 4 ROI groups were categorized based on their distances from the center of the phantom. Results: VEO3.0 performed inferiorly comparing to VEO2.0 over all dose levels. On the other hand, at low dose levels (less than 3 mGy), it clearly outperformed ASiR and FBP, in NPS values. Therefore, the lower the dose level, the relative performance of MBIR improves. However, the shapes of the NPS show substantial differences in horizontal and vertical sampling dimensions. These differences may determine the characteristics of the noise/texture features in images, and hence, play an important role in image interpretation. Conclusion: The third generation MBIR did not improve over the second generation MBIR in term of NPS analysis. The overall performance of both versions of MBIR improved as compared to other reconstruction algorithms when dose was reduced. The shapes of the NPS curves provided additional value for future characterization of the image noise/texture features.

  7. Performance evaluation of iterative reconstruction algorithms for achieving CT radiation dose reduction — a phantom study

    Science.gov (United States)

    Dodge, Cristina T.; Tamm, Eric P.; Cody, Dianna D.; Liu, Xinming; Jensen, Corey T.; Wei, Wei; Kundra, Vikas

    2016-01-01

    The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative reconstruction (ASiR), and model‐based iterative reconstruction (MBIR), over a range of typical to low‐dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat‐equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back‐projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low‐contrast detectability were evaluated from noise and contrast‐to‐noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were confirmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1 mGy. MBIR reduced noise levels five‐fold and increased CNR by a factor of five compared to FBP below 6 mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high‐contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial

  8. Determination of the optimal dose reduction level via iterative reconstruction using 640-slice volume chest CT in a pig model.

    Directory of Open Access Journals (Sweden)

    Xingli Liu

    Full Text Available To determine the optimal dose reduction level of iterative reconstruction technique for paediatric chest CT in pig models.27 infant pigs underwent 640-slice volume chest CT with 80kVp and different mAs. Automatic exposure control technique was used, and the index of noise was set to SD10 (Group A, routine dose, SD12.5, SD15, SD17.5, SD20 (Groups from B to E to reduce dose respectively. Group A was reconstructed with filtered back projection (FBP, and Groups from B to E were reconstructed using iterative reconstruction (IR. Objective and subjective image quality (IQ among groups were compared to determine an optimal radiation reduction level.The noise and signal-to-noise ratio (SNR in Group D had no significant statistical difference from that in Group A (P = 1.0. The scores of subjective IQ in Group A were not significantly different from those in Group D (P>0.05. There were no obvious statistical differences in the objective and subjective index values among the subgroups (small, medium and large subgroups of Group D. The effective dose (ED of Group D was 58.9% lower than that of Group A (0.20±0.05mSv vs 0.48±0.10mSv, p <0.001.In infant pig chest CT, using iterative reconstruction can provide diagnostic image quality; furthermore, it can reduce the dosage by 58.9%.

  9. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance

    OpenAIRE

    McLaughlin, P. D.; Murphy, K. P.; Hayes, S. A.; Carey, K.; Sammon, J.; Crush, L.; O’Neill, F.; Normoyle, B.; McGarrigle, A. M.; Barry, J. E.; Maher, M. M.

    2014-01-01

    Objectives The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR). Methods Thirty-three patients with clinically suspected renal colic were prospectively included. Conventional dose (CD-CT) and LD-CT data sets were contemporaneously acquired. LD-CT images were reconstructed with 40 %, 70 % and 90 % ASiR. Image quality was sub...

  10. Dynamic evaluation of pelvic floor reconstructive surgery using radiopaque meshes and three-dimensional helical CT

    Directory of Open Access Journals (Sweden)

    Paulo Palma

    2010-04-01

    Full Text Available PURPOSE: This prospective study was performed to achieve visualization of the reestablishment of anatomy after reconstructive surgery in the different pelvic compartments with non-absorbable radiopaque meshes, providing valuable anatomic information for surgeons implanting meshes. MATERIALS AND METHODS: A total of 30 female patients with stress urinary incontinence (SUI, anterior and posterior vaginal wall prolapse, or both underwent surgical repair using radiopaque meshes after written informed consent. Patients with SUI underwent five different surgeries. Patients with anterior vaginal prolapse underwent a procedure using a combined pre-pubic and transobturator mesh, and those with posterior vaginal prolapse underwent posterior slingplasty. Three-dimensional reconstruction using helical CT was performed four weeks postoperatively. RESULTS: In all cases, the mesh was clearly visualized. Transobturator slings were shown at the midurethra, and the anchoring tails perforated the obturator foramen at the safety region. Mini-slings were in the proper place, and computed angiography revealed that the anchoring system was away from the obturator vessels. In patients undergoing procedure for anterior vaginal prolapse, both pre-pubic armpit and obturator slings were clearly seen and the mesh was in the proper position, supporting the bladder base and occluding the distal part of the urogenital hiatus. Transcoccygeal sacropexy revealed indirectly a well-supported "neo rectovaginal fascia" and the anchoring tails at the level of ischial spines. CONCLUSION: Three-dimensional helical tomography images of the female pelvis using radiopaque meshes have a potential role in improving our understanding of pelvic floor reconstructive surgeries. These radiopaque meshes might be the basis of a new investigative methodology.

  11. Evaluation of robustness of maximum likelihood cone-beam CT reconstruction with total variation regularization

    International Nuclear Information System (INIS)

    Stsepankou, D; Arns, A; Hesser, J; Ng, S K; Zygmanski, P

    2012-01-01

    The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone–beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system. (paper)

  12. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    International Nuclear Information System (INIS)

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Groden, Christoph; Henzler, Thomas

    2016-01-01

    •Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose.•Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT.•State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean

  13. A technique for on-board CT reconstruction using both kilovoltage and megavoltage beam projections for 3D treatment verification

    International Nuclear Information System (INIS)

    Yin Fangfang; Guan Huaiqun; Lu Wenkai

    2005-01-01

    The technologies with kilovoltage (kV) and megavoltage (MV) imaging in the treatment room are now available for image-guided radiation therapy to improve patient setup and target localization accuracy. However, development of strategies to efficiently and effectively implement these technologies for patient treatment remains challenging. This study proposed an aggregated technique for on-board CT reconstruction using combination of kV and MV beam projections to improve the data acquisition efficiency and image quality. These projections were acquired in the treatment room at the patient treatment position with a new kV imaging device installed on the accelerator gantry, orthogonal to the existing MV portal imaging device. The projection images for a head phantom and a contrast phantom were acquired using both the On-Board Imager TM kV imaging device and the MV portal imager mounted orthogonally on the gantry of a Varian Clinac TM 21EX linear accelerator. MV projections were converted into kV information prior to the aggregated CT reconstruction. The multilevel scheme algebraic-reconstruction technique was used to reconstruct CT images involving either full, truncated, or a combination of both full and truncated projections. An adaptive reconstruction method was also applied, based on the limited numbers of kV projections and truncated MV projections, to enhance the anatomical information around the treatment volume and to minimize the radiation dose. The effects of the total number of projections, the combination of kV and MV projections, and the beam truncation of MV projections on the details of reconstructed kV/MV CT images were also investigated

  14. Detection of thin wall regions of unruptured cerebral aneurysms by ECG synchronous reconstruction 3D-CT angiography (4D-CTA) using 16 slices per rotation CT

    International Nuclear Information System (INIS)

    Fujita, Shigekiyo

    2004-01-01

    The objective of this study was to evaluate the capability of electrocardiogram (ECG) synchronous reconstruction 3D-CT angiography (4D-CTA) using 16 sequence MD-CT to detect weak portions of unruptured cerebral aneurysm. 4D-CT angiography of unruptured cerebral aneurysms was performed on 26 patients, 28 cerebral aneurysms, using 16 sequence MD-CT (GE, HiLight Matrix II). Contrast material of iodine (300 mg/ml) was injected over 30 sec period into the ante-cubital vein with a rate of 0.06 ml/Kg/sec. ECG synchronous reconstruction images (10 images at intervals of 10% between R-R of ECG) were generated (GE, Workstation Advantage 4.1). After careful inspection of the wall motion of an aneurysm from many aspects, cine images were made from several directions. Acquisition of data required 9 seconds, total volume data were generated within 15 minutes, and ECG synchronous reconstruction image processing was performed in about 5 minutes. Animation creation for one direction was completed within one minute. Even in 3-mm aneurysms, changes of its form and size within a heartbeat were fully observed. Timing of maximum and minimum sizes were also recognized. The pulsatile changes and nipple extent, bleb, daughter, and dome of aneurysms were well visualized. The projecting motion of the pulsatory enlargement of nipple was detected in nine cases, and definite increases in bleb sizes were detected in five cases. Since the easily reptured thin walled portion of a cerebral aneurysm can be recognized by this method, 4D-CT angiography is likely to become indispensable in judging how to cope with unruptured cerebral aneurysms, in deciding whether to operate or observe. (author)

  15. Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: An experimental evaluation using an oncology and brain phantom.

    Science.gov (United States)

    Mansor, Syahir; Pfaehler, Elisabeth; Heijtel, Dennis; Lodge, Martin A; Boellaard, Ronald; Yaqub, Maqsood

    2017-12-01

    In longitudinal oncological and brain PET/CT studies, it is important to understand the repeatability of quantitative PET metrics in order to assess change in tracer uptake. The present studies were performed in order to assess precision as function of PET/CT system, reconstruction protocol, analysis method, scan duration (or image noise), and repositioning in the field of view. Multiple (repeated) scans have been performed using a NEMA image quality (IQ) phantom and a 3D Hoffman brain phantom filled with 18 F solutions on two systems. Studies were performed with and without randomly (PET/CT, especially in the case of smaller spheres (PET metrics depends on the combination of reconstruction protocol, data analysis methods and scan duration (scan statistics). Moreover, precision was also affected by phantom repositioning but its impact depended on the data analysis method in combination with the reconstructed voxel size (tissue fraction effect). This study suggests that for oncological PET studies the use of SUV peak may be preferred over SUV max because SUV peak is less sensitive to patient repositioning/tumor sampling. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  16. Radiation dose reduction on multidetector abdominal CT using adaptive statistical iterative reconstruction technique in children

    International Nuclear Information System (INIS)

    Zhang Qifeng; Peng Yun; Duan Xiaomin; Sun Jihang; Yu Tong; Han Zhonglong

    2013-01-01

    Objective: To investigate the feasibility to reduce radiation doses on pediatric multidetector abdominal CT using the adaptive statistical iterative reconstruction technique (ASIR) associated with automated tube current modulation technique (ATCM). Methods: Thirty patients underwent abdominal CT with ATCM and the follow-up scan with ATCM cooperated with 40% ASIR. ATCM was used with age dependent noise index (NI) settings: NI = 9 for 0-5 year old and NI = 11 for > 5 years old for simple ATCM group, NI = 11 for 0-5 year old and NI = 15 for > 5 years old for ATCM cooperated with 40% ASIR group (AISR group). Two radiologists independently evaluated images for diagnostic quality and image noise with subjectively image quality score and image noise score using a 5-point scale. Interobserver agreement was assessed by Kappa test. The volume CT dose indexes (CTDIvol) for the two groups were recorded. Statistical significance for the CTDIvol value was analyzed by pair-sample t test. Results: The average CTDIvol for the ASIR group was (1.38 ± 0.64) mGy, about 60% lower than (3.56 ± 1.23) mGy for the simple ATCM group, and the CTDIvol of two groups had statistically significant differences. (t = 33.483, P < 0.05). The subjective image quality scores for the simple ATCM group were 4.43 ± 0.57 and 4.37 ±0.61, Kappa = 0.878, P < 0.01 (ASIR group: 4.70 ± 0.47 and 4.60 ± 0.50, Kappa = 0.783, P < 0.01), by two observers. The image noise score for the simple ATCM group were 4.03 ±0.56 and 3.83 ±0.53, Kappa = 0.572, P < 0.01 (ASIR group: 4.20 ± 0.48 and 4.10 ± 0.48, Kappa = 0.748, P < 0.01), by two observers. All images had acceptable diagnostic image quality. Conclusion: Lower radiation dose can be achieved by elevating NI with ASIR in pediatric CT abdominal studies, while maintaining diagnostically acceptable images. (authors)

  17. Application of iterative reconstruction in prospective electrocardiography-triggered CT coronary angiography

    International Nuclear Information System (INIS)

    Hou Yang; Yu Bing; Guo Qiyong; Wang Yuke; Yu Mei

    2013-01-01

    Objective: To assess the image quality (IQ) of an iterative reconstruction (IR) technique (iDose"4) from prospective electrocardiography (ECG)-triggered coronary CTA on a 256 MSCT scanner and determine the optimal dose reduction using IR that can provide IQ comparable to filtered back projection (FBP). Methods: Prospectively ECG gated CCTA were performed on 120 patients [76 men, 44 women; age: (53 ± 10) y] using a 256-slice MSCT (Brilliance iCT, Philips Healthcare). The control group (Group A , n = 30) were scanned using the conventional tube output (120 kVp, 210 mAs) and reconstructed using FBP. The other 3 groups were scanned with the same kVp but successively reduced tube output as follows: B (n = 30) : 105 mAs , C (n = 30) : 84 mAs: D (n = 30) : 65 mAs and reconstructed using IR levels of L4 to L6, respectively. All images were reconstructed using the same kernel (XCB). Two radiologists graded IQ in a blinded fashion on a 4-point scale (4-excellent, 3-good, 2-fair and 1-poor). Quantitative measurements of CT values, image noise, Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were obtained in each group. Analysis of variance (ANOVA) was used for comparisons of objective evaluation indices (noise, CNR) and radiation dose (CTDIvol, DLP, ED) between the four groups. The Kruskal-Wallis test was used for comparisons of demographic data and for detection of differences in subjective evaluation of IQ among groups. A level of P < 0.05 was considered statistically significant. A ROC analysis was performed to determine a radiation reduction threshold up to which excellent IQ was maintained. Results: There was no significant differences in objective noise among Groups A (37.4 ± 7.9) HU, B (33.2 ± 7.1) HU, C (35.7 ± 9.8) HU, and D (36.0 ± 6.8) HU (F = 1.48, P = 0.22). There was no significant differences in CNR among Groups A (15.0 ± 2.3), B (16.5 ± 3.6), C (16.3 ± 3.5), and D (15.3 ± 2.8) (F = 1.70, P = 0.17). Group B and C had good and excellent

  18. SU-E-I-45: Reconstruction of CT Images From Sparsely-Sampled Data Using the Logarithmic Barrier Method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H [Department of Radiation Oncology, Dalhousie University, Halifax, NS (Canada)

    2014-06-01

    Purpose: To develop and investigate whether the logarithmic barrier (LB) method can result in high-quality reconstructed CT images using sparsely-sampled noisy projection data Methods: The objective function is typically formulated as the sum of the total variation (TV) and a data fidelity (DF) term with a parameter λ that governs the relative weight between them. Finding the optimized value of λ is a critical step for this approach to give satisfactory results. The proposed LB method avoid using λ by constructing the objective function as the sum of the TV and a log function whose augment is the DF term. Newton's method was used to solve the optimization problem. The algorithm was coded in MatLab2013b. Both Shepp-Logan phantom and a patient lung CT image were used for demonstration of the algorithm. Measured data were simulated by calculating the projection data using radon transform. A Poisson noise model was used to account for the simulated detector noise. The iteration stopped when the difference of the current TV and the previous one was less than 1%. Results: Shepp-Logan phantom reconstruction study shows that filtered back-projection (FBP) gives high streak artifacts for 30 and 40 projections. Although visually the streak artifacts are less pronounced for 64 and 90 projections in FBP, the 1D pixel profiles indicate that FBP gives noisier reconstructed pixel values than LB does. A lung image reconstruction is presented. It shows that use of 64 projections gives satisfactory reconstructed image quality with regard to noise suppression and sharp edge preservation. Conclusion: This study demonstrates that the logarithmic barrier method can be used to reconstruct CT images from sparsely-amped data. The number of projections around 64 gives a balance between the over-smoothing of the sharp demarcation and noise suppression. Future study may extend to CBCT reconstruction and improvement on computation speed.

  19. SU-E-I-45: Reconstruction of CT Images From Sparsely-Sampled Data Using the Logarithmic Barrier Method

    International Nuclear Information System (INIS)

    Xu, H

    2014-01-01

    Purpose: To develop and investigate whether the logarithmic barrier (LB) method can result in high-quality reconstructed CT images using sparsely-sampled noisy projection data Methods: The objective function is typically formulated as the sum of the total variation (TV) and a data fidelity (DF) term with a parameter λ that governs the relative weight between them. Finding the optimized value of λ is a critical step for this approach to give satisfactory results. The proposed LB method avoid using λ by constructing the objective function as the sum of the TV and a log function whose augment is the DF term. Newton's method was used to solve the optimization problem. The algorithm was coded in MatLab2013b. Both Shepp-Logan phantom and a patient lung CT image were used for demonstration of the algorithm. Measured data were simulated by calculating the projection data using radon transform. A Poisson noise model was used to account for the simulated detector noise. The iteration stopped when the difference of the current TV and the previous one was less than 1%. Results: Shepp-Logan phantom reconstruction study shows that filtered back-projection (FBP) gives high streak artifacts for 30 and 40 projections. Although visually the streak artifacts are less pronounced for 64 and 90 projections in FBP, the 1D pixel profiles indicate that FBP gives noisier reconstructed pixel values than LB does. A lung image reconstructi