WorldWideScience

Sample records for ct imaging monte

  1. Registration of 3D FMT and CT Images of Mouse via Affine Transformation using Sequential Monte Carlo

    International Nuclear Information System (INIS)

    Xia Zheng; Zhou Xiaobo; Wong, Stephen T. C.; Sun Youxian

    2007-01-01

    It is difficult to directly co-register the 3D FMT (Fluorescence Molecular Tomography) image of a small tumor in a mouse whose maximal diameter is only a few mm with a larger CT image of the entire animal that spans about ten cm. This paper proposes a new method to register 2D flat and 3D CT image first to facilitate the registration between small 3D FMT images and large CT images. A novel algorithm based on SMC (Sequential Monte Carlo) incorporated with least square operation for the registration between the 2D flat and 3D CT images is introduced and validated with simulated images and real images of mice. The visualization of the preliminary alignment of the 3D FMT and CT image through 2D registration shows promising results

  2. Region-oriented CT image representation for reducing computing time of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Sarrut, David; Guigues, Laurent

    2008-01-01

    Purpose. We propose a new method for efficient particle transportation in voxelized geometry for Monte Carlo simulations. We describe its use for calculating dose distribution in CT images for radiation therapy. Material and methods. The proposed approach, based on an implicit volume representation named segmented volume, coupled with an adapted segmentation procedure and a distance map, allows us to minimize the number of boundary crossings, which slows down simulation. The method was implemented with the GEANT4 toolkit and compared to four other methods: One box per voxel, parameterized volumes, octree-based volumes, and nested parameterized volumes. For each representation, we compared dose distribution, time, and memory consumption. Results. The proposed method allows us to decrease computational time by up to a factor of 15, while keeping memory consumption low, and without any modification of the transportation engine. Speeding up is related to the geometry complexity and the number of different materials used. We obtained an optimal number of steps with removal of all unnecessary steps between adjacent voxels sharing a similar material. However, the cost of each step is increased. When the number of steps cannot be decreased enough, due for example, to the large number of material boundaries, such a method is not considered suitable. Conclusion. This feasibility study shows that optimizing the representation of an image in memory potentially increases computing efficiency. We used the GEANT4 toolkit, but we could potentially use other Monte Carlo simulation codes. The method introduces a tradeoff between speed and geometry accuracy, allowing computational time gain. However, simulations with GEANT4 remain slow and further work is needed to speed up the procedure while preserving the desired accuracy

  3. Development of virtual CT DICOM images of patients with tumors: application for TPS and Monte Carlo dose evaluation

    International Nuclear Information System (INIS)

    Milian, F. M.; Attili, A.; Russo, G; Marchetto, F.; Cirio, R.; Bourhaleb, F.

    2013-01-01

    A novel procedure for the generation of a realistic virtual Computed Tomography (CT) image of a patient, using the advanced Boundary RE Presentation (BREP)-based model MASH, has been implemented. This method can be used in radiotherapy assessment. It is shown that it is possible to introduce an artificial cancer, which can be modeled using mesh surfaces. The use of virtual CT images based on BREP models presents several advantages with respect to CT images of actual patients, such as automation, control and flexibility. As an example, two artificial cases, namely a brain and a prostate cancer, were created through the generation of images and tumor/organ contours. As a secondary objective, the described methodology has been used to generate input files for treatment planning system (TPS) and Monte Carlo code dose evaluation. In this paper, we consider treatment plans generated assuming a dose delivery via an active proton beam scanning performed with the INFN-IBA TPS kernel. Additionally, Monte Carlo simulations of the two treatment plans were carried out with GATE/GEANT4. The work demonstrates the feasibility of the approach based on the BREP modeling to produce virtual CT images. In conclusion, this study highlights the benefits in using digital phantom model capable of representing different anatomical structures and varying tumors across different patients. These models could be useful for assessing radiotherapy treatment planning systems (TPS) and computer simulations for the evaluation of the adsorbed dose. (author)

  4. Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*

    Science.gov (United States)

    Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G

    2014-01-01

    Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image

  5. Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.

    Science.gov (United States)

    Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P

    2018-01-04

    Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was

  6. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Bretin, Florian; Bahri, Mohamed Ali; Luxen, André; Phillips, Christophe; Plenevaux, Alain; Seret, Alain, E-mail: aseret@ulg.ac.be [Cyclotron Research Centre, University of Liège, Sart Tilman B30, Liège 4000 (Belgium)

    2015-10-15

    Purpose: Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulations in GATE and to compare results to previously obtained experimental values. Methods: Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Results: Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Conclusions: Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120

  7. Strategies for CT tissue segmentation for Monte Carlo calculations in nuclear medicine dosimetry

    DEFF Research Database (Denmark)

    Braad, P E N; Andersen, T; Hansen, Søren Baarsgaard

    2016-01-01

    in the ICRP/ICRU male phantom and in a patient PET/CT-scanned with 124I prior to radioiodine therapy. Results: CT number variations body CT examinations at effective CT doses ∼2 mSv. Monte Carlo calculated absorbed doses depended on both the number of media types and accurate......Purpose: CT images are used for patient specific Monte Carlo treatment planning in radionuclide therapy. The authors investigated the impact of tissue classification, CT image segmentation, and CT errors on Monte Carlo calculated absorbed dose estimates in nuclear medicine. Methods: CT errors...

  8. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A; Zbijewski, W; Stayman, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Yorkston, J [Carestream Health (United States); Aygun, N [Department of Radiology, Johns Hopkins University (United States); Koliatsos, V [Department of Neurology, Johns Hopkins University (United States); Siewerdsen, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Department of Radiology, Johns Hopkins University (United States)

    2014-06-15

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain

  9. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    International Nuclear Information System (INIS)

    Sisniega, A; Zbijewski, W; Stayman, J; Yorkston, J; Aygun, N; Koliatsos, V; Siewerdsen, J

    2014-01-01

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain

  10. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    Science.gov (United States)

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-07

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  11. Monte Carlo dose calibration in CT scanner

    International Nuclear Information System (INIS)

    Yadav, Poonam; Ramasubramanian, V.; Subbaiah, K.V.; Thayalan, K.

    2008-01-01

    Computed Tomography (CT) scanner is a high radiation imaging modality compared to radiography. The dose from a CT examination can vary greatly depending on the particular CT scanner used, the area of the body examined, and the operating parameters of the scan. CT is a major contributor to collective effective dose in diagnostic radiology. Apart from the clinical benefits, the widespread use of multislice scanner is increasing radiation level to patient in comparison with conventional CT scanner. So, it becomes necessary to increase awareness about the CT scanner. (author)

  12. Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations

    International Nuclear Information System (INIS)

    Shi Chengyu; Xu, X. George

    2004-01-01

    Assessment of radiation dose and risk to a pregnant woman and her fetus is an important task in radiation protection. Although tomographic models for male and female patients of different ages have been developed using medical images, such models for pregnant women had not been developed to date. This paper reports the construction of a partial-body model of a pregnant woman from a set of computed tomography (CT) images. The patient was 30 weeks into pregnancy, and the CT scan covered the portion of the body from above liver to below pubic symphysis in 70 slices. The thickness for each slice is 7 mm, and the image resolution is 512x512 pixels in a 48 cmx48 cm field; thus, the voxel size is 6.15 mm 3 . The images were segmented to identify 34 major internal organs and tissues considered sensitive to radiation. Even though the masses are noticeably different from other models, the three-dimensional visualization verified the segmentation and its suitability for Monte Carlo calculations. The model has been implemented into a Monte Carlo code, EGS4-VLSI (very large segmented images), for the calculations of radiation dose to a pregnant woman. The specific absorbed fraction (SAF) results for internal photons were compared with those from a stylized model. Small and large differences were found, and the differences can be explained by mass differences and by the relative geometry differences between the source and the target organs. The research provides the radiation dosimetry community with the first voxelized tomographic model of a pregnant woman, opening the door to future dosimetry studies

  13. SU-F-J-14: Kilovoltage Cone-Beam CT Dose Estimation of Varian On-Board Imager Using GMctdospp Monte Carlo Framework

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Rangaraj, D [Baylor Scott & White Health, Temple, TX (United States)

    2016-06-15

    Purpose: Although cone-beam CT (CBCT) imaging became popular in radiation oncology, its imaging dose estimation is still challenging. The goal of this study is to assess the kilovoltage CBCT doses using GMctdospp - an EGSnrc based Monte Carlo (MC) framework. Methods: Two Varian OBI x-ray tube models were implemented in the GMctpdospp framework of EGSnrc MC System. The x-ray spectrum of 125 kVp CBCT beam was acquired from an EGSnrc/BEAMnrc simulation and validated with IPEM report 78. Then, the spectrum was utilized as an input spectrum in GMctdospp dose calculations. Both full and half bowtie pre-filters of the OBI system were created by using egs-prism module. The x-ray tube MC models were verified by comparing calculated dosimetric profiles (lateral and depth) to ion chamber measurements for a static x-ray beam irradiation to a cuboid water phantom. An abdominal CBCT imaging doses was simulated in GMctdospp framework using a 5-year-old anthropomorphic phantom. The organ doses and effective dose (ED) from the framework were assessed and compared to the MOSFET measurements and convolution/superposition dose calculations. Results: The lateral and depth dose profiles in the water cuboid phantom were well matched within 6% except a few areas - left shoulder of the half bowtie lateral profile and surface of water phantom. The organ doses and ED from the MC framework were found to be closer to MOSFET measurements and CS calculations within 2 cGy and 5 mSv respectively. Conclusion: This study implemented and validated the Varian OBI x-ray tube models in the GMctdospp MC framework using a cuboid water phantom and CBCT imaging doses were also evaluated in a 5-year-old anthropomorphic phantom. In future study, various CBCT imaging protocols will be implemented and validated and consequently patient CT images will be used to estimate the CBCT imaging doses in patients.

  14. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    Science.gov (United States)

    Bauer, J.; Unholtz, D.; Kurz, C.; Parodi, K.

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β+ activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β+ activity induced in the investigated

  15. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    International Nuclear Information System (INIS)

    Bauer, J; Unholtz, D; Kurz, C; Parodi, K

    2013-01-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β + activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β + activity induced in the investigated

  16. Comprehensive evaluations of cone-beam CT dose in image-guided radiation therapy via GPU-based Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Graves, Yan Jiang; Cervino, Laura [Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, CA 92037-0843 (United States); Yan, Hao; Jiang, Steve B; Jia, Xun [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9315 (United States); Rice, Roger [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92037-0843 (United States)

    2014-03-07

    Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1–3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case. (paper)

  17. Comparison of 2 accelerators of Monte Carlo radiation transport calculations, NVIDIA tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor: a case study for X-ray CT Imaging Dose calculation

    International Nuclear Information System (INIS)

    Liu, T.; Xu, X.G.; Carothers, C.D.

    2013-01-01

    Hardware accelerators are currently becoming increasingly important in boosting high performance computing systems. In this study, we tested the performance of two accelerator models, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three code variants, ARCHER-CT(CPU), ARCHER-CT(GPU) and ARCHER-CT(COP) to run in parallel on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms were included in the code to calculate absorbed dose to radiosensitive organs under specified scan protocols. The results from ARCHER agreed well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It was found that all the code variants were significantly faster than the parallel MCNPX running on 12 MPI processes, and that the GPU and coprocessor performed equally well, being 2.89-4.49 and 3.01-3.23 times faster than the parallel ARCHER-CT(CPU) running with 12 hyper-threads. (authors)

  18. Dual source CT imaging

    International Nuclear Information System (INIS)

    Seidensticker, Peter R.; Hofmann, Lars K.

    2008-01-01

    The introduction of Dual Source Computed Tomography (DSCT) in 2005 was an evolutionary leap in the field of CT imaging. Two x-ray sources operated simultaneously enable heart-rate independent temporal resolution and routine spiral dual energy imaging. The precise delivery of contrast media is a critical part of the contrast-enhanced CT procedure. This book provides an introduction to DSCT technology and to the basics of contrast media administration followed by 25 in-depth clinical scan and contrast media injection protocols. All were developed in consensus by selected physicians on the Dual Source CT Expert Panel. Each protocol is complemented by individual considerations, tricks and pitfalls, and by clinical examples from several of the world's best radiologists and cardiologists. This extensive CME-accredited manual is intended to help readers to achieve consistently high image quality, optimal patient care, and a solid starting point for the development of their own unique protocols. (orig.)

  19. CT images of gossypiboma

    International Nuclear Information System (INIS)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee

    1994-01-01

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment

  20. CT images of gossypiboma

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee [College of Medicine, Kon-Kuk University, Seoul (Korea, Republic of)

    1994-04-15

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment.

  1. Comparison of two accelerators for Monte Carlo radiation transport calculations, Nvidia Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor: A case study for X-ray CT imaging dose calculation

    International Nuclear Information System (INIS)

    Liu, T.; Xu, X.G.; Carothers, C.D.

    2015-01-01

    Highlights: • A new Monte Carlo photon transport code ARCHER-CT for CT dose calculations is developed to execute on the GPU and coprocessor. • ARCHER-CT is verified against MCNP. • The GPU code on an Nvidia M2090 GPU is 5.15–5.81 times faster than the parallel CPU code on an Intel X5650 6-core CPU. • The coprocessor code on an Intel Xeon Phi 5110p coprocessor is 3.30–3.38 times faster than the CPU code. - Abstract: Hardware accelerators are currently becoming increasingly important in boosting high performance computing systems. In this study, we tested the performance of two accelerator models, Nvidia Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three components, ARCHER-CT CPU , ARCHER-CT GPU and ARCHER-CT COP designed to be run on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms are included in the code to calculate absorbed dose to radiosensitive organs under user-specified scan protocols. The results from ARCHER agree well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It is found that all the code components are significantly faster than the parallel MCNPX run on 12 MPI processes, and that the GPU and coprocessor codes are 5.15–5.81 and 3.30–3.38 times faster than the parallel ARCHER-CT CPU , respectively. The M2090 GPU performs better than the 5110p coprocessor in our specific test. Besides, the heterogeneous computation mode in which the CPU and the hardware accelerator work concurrently can increase the overall performance by 13–18%

  2. CT image of thymoma

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Nobuo; Shudo, Yuji; Jahana, Masanobu; Matsuki, Tsutomu; Kotani, Kazuhiko (Tottori Univ., Yonago (Japan). School of Medicine)

    1983-10-01

    Computor tomographic images of 11 patients who had had thymectomy for myasthenia gravis or thymoma were studied retrospectively. Of those 11 patients, malignant thymoma and benign condition including normal thymus were 6 and 5 respectively. On CT, calcification and lobulation with irregular margin seem to be reliable findings of malignancy. Defect or abscence of fatty plane and non-homogenous density are ancillary.

  3. CT image of thymoma

    International Nuclear Information System (INIS)

    Morioka, Nobuo; Shudo, Yuji; Jahana, Masanobu; Matsuki, Tsutomu; Kotani, Kazuhiko

    1983-01-01

    Computor tomographic images of 11 patients who had had thymectomy for myasthenia gravis or thymoma were studied retrospectively. Of those 11 patients, malignant thymoma and benign condition including normal thymus were 6 and 5 respectively. On CT, calcification and lobulation with irregular margin seem to be reliable findings of malignancy. Defect or abscence of fatty plane and non-homogenous density are ancillary. (author)

  4. Pulmonary hypertension CT imaging

    International Nuclear Information System (INIS)

    Nedevska, A.

    2013-01-01

    Full text: The right heart catheterization is the gold standard in the diagnosis and determines the severity of pulmonary hypertension. The significant technical progress of noninvasive diagnostic imaging methods significantly improves the pixel density and spatial resolution in the study of cardiovascular structures, thus changes their role and place in the overall diagnostic plan. Learning points: What is the etiology, clinical manifestation and general pathophysiological disorders in pulmonary hypertension. What are the established diagnostic methods in the diagnosis and follow-up of patients with pulmonary hypertension. What is the recommended protocol for CT scanning for patients with clinically suspected or documented pulmonary hypertension. What are the important diagnostic findings in CT scan of a patient with pulmonary hypertension. Discussion: The prospect of instantaneous complex - anatomical and functional cardiopulmonary and vascular diagnostics seems extremely attractive. The contrast enhanced multislice computed (CT ) and magnetic resonance imaging are very suitable methods for imaging the structures of the right heart, with the possibility of obtaining multiple projections and three-dimensional imaging reconstructions . There are specific morphological features that, if carefully analyzed, provide diagnostic information. Thus, it is possible to avoid or at least reduce the frequency of use of invasive diagnostic cardiac catheterization in patients with pulmonary hypertension. Conclusion: This review focuses on the use of contrast-enhanced CT for comprehensive evaluation of patients with pulmonary hypertension and presents the observed characteristic changes in the chest, lung parenchyma , the structures of the right half of the heart and pulmonary vessels

  5. Comparison of Two Accelerators for Monte Carlo Radiation Transport Calculations, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p Coprocessor: A Case Study for X-ray CT Imaging Dose Calculation

    Science.gov (United States)

    Liu, Tianyu; Xu, X. George; Carothers, Christopher D.

    2014-06-01

    Hardware accelerators are currently becoming increasingly important in boosting high performance computing sys- tems. In this study, we tested the performance of two accelerator models, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three code variants, ARCHER - CTCPU, ARCHER - CTGPU and ARCHER - CTCOP to run in parallel on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms were included in the code to calculate absorbed dose to radiosensitive organs under specified scan protocols. The results from ARCHER agreed well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It was found that all the code variants were significantly faster than the parallel MCNPX running on 12 MPI processes, and that the GPU and coprocessor performed equally well, being 2.89~4.49 and 3.01~3.23 times faster than the parallel ARCHER - CTCPU running with 12 hyperthreads.

  6. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Kusama, T.; Saito, K.

    2002-01-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated

  7. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Akahane, K.; Kai, M.; Kusama, T. [Oita Univ., of Nursing and Health Sciences, Oita-Ken (Japan); Saito, K. [JAERI, Ibaraki-ken (Japan)

    2002-07-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated.

  8. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with 15O-Gas Inhalation.

    Science.gov (United States)

    Magota, Keiichi; Shiga, Tohru; Asano, Yukari; Shinyama, Daiki; Ye, Jinghan; Perkins, Amy E; Maniawski, Piotr J; Toyonaga, Takuya; Kobayashi, Kentaro; Hirata, Kenji; Katoh, Chietsugu; Hattori, Naoya; Tamaki, Nagara

    2017-12-01

    In 3-dimensional PET/CT imaging of the brain with 15 O-gas inhalation, high radioactivity in the face mask creates cold artifacts and affects the quantitative accuracy when scatter is corrected by conventional methods (e.g., single-scatter simulation [SSS] with tail-fitting scaling [TFS-SSS]). Here we examined the validity of a newly developed scatter-correction method that combines SSS with a scaling factor calculated by Monte Carlo simulation (MCS-SSS). Methods: We performed phantom experiments and patient studies. In the phantom experiments, a plastic bottle simulating a face mask was attached to a cylindric phantom simulating the brain. The cylindric phantom was filled with 18 F-FDG solution (3.8-7.0 kBq/mL). The bottle was filled with nonradioactive air or various levels of 18 F-FDG (0-170 kBq/mL). Images were corrected either by TFS-SSS or MCS-SSS using the CT data of the bottle filled with nonradioactive air. We compared the image activity concentration in the cylindric phantom with the true activity concentration. We also performed 15 O-gas brain PET based on the steady-state method on patients with cerebrovascular disease to obtain quantitative images of cerebral blood flow and oxygen metabolism. Results: In the phantom experiments, a cold artifact was observed immediately next to the bottle on TFS-SSS images, where the image activity concentrations in the cylindric phantom were underestimated by 18%, 36%, and 70% at the bottle radioactivity levels of 2.4, 5.1, and 9.7 kBq/mL, respectively. At higher bottle radioactivity, the image activity concentrations in the cylindric phantom were greater than 98% underestimated. For the MCS-SSS, in contrast, the error was within 5% at each bottle radioactivity level, although the image generated slight high-activity artifacts around the bottle when the bottle contained significantly high radioactivity. In the patient imaging with 15 O 2 and C 15 O 2 inhalation, cold artifacts were observed on TFS-SSS images, whereas

  9. Dynamic CT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Caruso, Damiano; Eid, Marwen; Schoepf, U. Joseph; Jin, Kwang Nam; Varga-Szemes, Akos; Tesche, Christian; Mangold, Stefanie

    2016-01-01

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  10. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  11. Correction of CT artifacts and its influence on Monte Carlo dose calculations

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank

    2007-01-01

    Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts

  12. Experimental validation of a rapid Monte Carlo based micro-CT simulator

    International Nuclear Information System (INIS)

    Colijn, A P; Zbijewski, W; Sasov, A; Beekman, F J

    2004-01-01

    We describe a newly developed, accelerated Monte Carlo simulator of a small animal micro-CT scanner. Transmission measurements using aluminium slabs are employed to estimate the spectrum of the x-ray source. The simulator incorporating this spectrum is validated with micro-CT scans of physical water phantoms of various diameters, some containing stainless steel and Teflon rods. Good agreement is found between simulated and real data: normalized error of simulated projections, as compared to the real ones, is typically smaller than 0.05. Also the reconstructions obtained from simulated and real data are found to be similar. Thereafter, effects of scatter are studied using a voxelized software phantom representing a rat body. It is shown that the scatter fraction can reach tens of per cents in specific areas of the body and therefore scatter can significantly affect quantitative accuracy in small animal CT imaging

  13. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  14. Research on Monte Carlo simulation method of industry CT system

    International Nuclear Information System (INIS)

    Li Junli; Zeng Zhi; Qui Rui; Wu Zhen; Li Chunyan

    2010-01-01

    There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)

  15. Image mottle in abdominal CT.

    Science.gov (United States)

    Ende, J F; Huda, W; Ros, P R; Litwiller, A L

    1999-04-01

    To investigate image mottle in conventional CT images of the abdomen as a function of radiographic technique factors and patient size. Water-filled phantoms simulating the abdomens of adult (32 cm in diameter) and pediatric (16 cm in diameter) patients were used to investigate image mottle in CT as a function of x-ray tube potential and mAs. CT images from 39 consecutive patients with noncontrast liver scans and 49 patients with iodine contrast scans were analyzed retrospectively. Measurements were made of the mean liver parenchyma Hounsfield unit value and the corresponding image mottle. For a given water phantom and x-ray tube potential, image mottle was proportional to the mAs-0.5. Increasing the phantom diameter from 16 cm (pediatric) to 32 cm increased the mottle by a factor of 2.4, and increasing the x-ray tube potential from 80 kVp to 140 kVp reduced the mottle by a factor of 2.5. All patients were scanned at 120 kVp, with no correlation between patient size and the x-ray tube mAs. The mean mottle level was 7.8 +/- 2.2 and 10.0 +/- 2.5 for the noncontrast and contrast studies, respectively. An increase in patient diameter of 3 cm would require approximately 65% more mAs to maintain the same level of image mottle. The mottle in abdominal CT images may be controlled by adjusting radiographic technique factors, which should be adjusted to take into account the size of the patient undergoing the examination.

  16. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT

    Science.gov (United States)

    Jansen, Jan T. M.; Shrimpton, Paul C.

    2016-07-01

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.

  17. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  18. Functional Imaging: CT and MRI

    OpenAIRE

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advan...

  19. Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms

    International Nuclear Information System (INIS)

    Papadimitroulas, P; Kagadis, G C; Ploussi, A; Kordolaimi, S; Papamichail, D; Karavasilis, E; Syrgiamiotis, V; Loudos, G

    2015-01-01

    The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ∼10 10 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition. (paper)

  20. CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

    Directory of Open Access Journals (Sweden)

    Vahid Moslemi

    2011-03-01

    Full Text Available Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages in locating the source positions and the surrounding tissues, CT and MRI images are replacing conventional radiographs. In this study, we used CT images in Monte Carlo based dose calculation for brachytherapy treatment planning, using an interface software to create the geometry file required in the MCNP code. The aim of using the interface software is to facilitate and speed up the geometry set-up for simulations based on the patient’s anatomy. This paper examines the feasibility of this method in cervix brachytherapy and assesses its accuracy and speed. Material and Methods: For dosimetric measurements regarding the treatment plan, a pelvic phantom was made from polyethylene in which the treatment applicators could be placed. For simulations using CT images, the phantom was scanned at 120 kVp. Using an interface software written in MATLAB, the CT images were converted into MCNP input file and the simulation was then performed. Results: Using the interface software, preparation time for the simulations of the applicator and surrounding structures was approximately 3 minutes; the corresponding time needed in the conventional MCNP geometry entry being approximately 1 hour. The discrepancy in the simulated and measured doses to point A was 1.7% of the prescribed dose.  The corresponding dose differences between the two methods in rectum and bladder were 3.0% and 3.7% of the prescribed dose, respectively. Comparing the results of simulation using the interface software with those of simulation using the standard MCNP geometry entry showed a less than 1

  1. Calibration of lung counter using a CT model of Torso phantom and Monte Carlo method

    International Nuclear Information System (INIS)

    Zhang Binquan; Ma Jizeng; Yang Duanjie; Liu Liye; Cheng Jianping

    2006-01-01

    Tomography image of a Torso phantom was obtained from CT-Scan. The Torso phantom represents the trunk of an adult man that is 170 cm high and weight of 65 kg. After these images were segmented, cropped, and resized, a 3-dimension voxel phantom was created. The voxel phantom includes more than 2 million voxels, which size was 2.73 mm x 2.73 mm x 3 mm. This model could be used for the calibration of lung counter with Monte Carlo method. On the assumption that radioactive material was homogeneously distributed throughout the lung, counting efficiencies of a HPGe detector in different positions were calculated as Adipose Mass fraction (AMF) was different in the soft tissue in chest. The results showed that counting efficiencies of the lung counter changed up to 67% for 17.5 keV γ ray and 20% for 25 keV γ ray when AMF changed from 0 to 40%. (authors)

  2. Evaluation of tomographic-image based geometries with PENELOPE Monte Carlo

    International Nuclear Information System (INIS)

    Kakoi, A.A.Y.; Galina, A.C.; Nicolucci, P.

    2009-01-01

    The Monte Carlo method can be used to evaluate treatment planning systems or for the determination of dose distributions in radiotherapy planning due to its accuracy and precision. In Monte Carlo simulation packages typically used in radiotherapy, however, a realistic representation of the geometry of the patient can not be used, which compromises the accuracy of the results. In this work, an algorithm for the description of geometries based on CT images of patients, developed to be used with Monte Carlo simulation package PENELOPE, is tested by simulating the dose distribution produced by a photon beam of 10 MV. The geometry simulated was based on CT images of a planning of prostate cancer. The volumes of interest in the treatment were adequately represented in the simulation geometry, allowing the algorithm to be used in verification of doses in radiotherapy treatments. (author)

  3. CT and MR imaging of craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, M. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Takahashi, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Higano, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Kurihara, N. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Ikeda, H. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Neurosurgery; Sakamoto, K. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology

    1997-05-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  4. CT and MR imaging of craniopharyngioma

    International Nuclear Information System (INIS)

    Tsuda, M.; Takahashi, S.; Higano, S.; Kurihara, N.; Ikeda, H.; Sakamoto, K.

    1997-01-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  5. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Pan, Yuxi; Qiu, Rui; Ge, Chaoyong; Xie, Wenzhang; Li, Junli; Gao, Linfeng; Zheng, Junzheng

    2014-01-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations. (paper)

  6. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2010-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density is the most important physical property of voxel model. Traditionally, when creating the Monte Carlo input files, the average tissue parameters recommended in ICRP report were used to assign each voxel in the existing voxel models. However, as each tissue consists of many voxels in which voxels are different in their densities, the method of assigning average tissue parameters doesn't take account of the voxel's discrepancy, and can't represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the density of which was derived from CT number. In order to compare with the traditional method, we have constructed two models from a same cadaver specimen date set. A CT-based pelvic voxel model called Pelvis-CT model, was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model, was also constructed, the densities of which were taken from ICRP Publication. The CT images and color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometries. The results were compared with those of given in ICRP74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis-Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model were agreed well with that of ICRP74 data. (author)

  7. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2011-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density and elemental composition are the most important physical properties of voxel model. Usually, when creating the Monte Carlo input files, the average tissue densities recommended in ICRP Publication were used to assign each voxel in the existing voxel models. As each tissue consists of many voxels with different densities, the conventional method of average tissue densities failed to take account of the voxel's discrepancy, and therefore could not represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the densities of which were derived from CT number. In order to compare with the traditional method, we constructed two models from the cadaver specimen dataset. A CT-based pelvic voxel model called Pelvis-CT model was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model was also constructed, the densities of which were taken from ICRP Publication. The CT images and the color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were both ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometry. The results were compared with those of given in ICRP Publication 74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis- Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model agreed well with that of ICRP Publication 74 data. (author)

  8. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  9. William, a voxel model of child anatomy from tomographic images for Monte Carlo dosimetry calculations

    International Nuclear Information System (INIS)

    Caon, M.

    2010-01-01

    Full text: Medical imaging provides two-dimensional pictures of the human internal anatomy from which may be constructed a three-dimensional model of organs and tissues suitable for calculation of dose from radiation. Diagnostic CT provides the greatest exposure to radiation per examination and the frequency of CT examination is high. Esti mates of dose from diagnostic radiography are still determined from data derived from geometric models (rather than anatomical models), models scaled from adult bodies (rather than bodies of children) and CT scanner hardware that is no longer used. The aim of anatomical modelling is to produce a mathematical representation of internal anatomy that has organs of realistic size, shape and positioning. The organs and tissues are represented by a great many cuboidal volumes (voxels). The conversion of medical images to voxels is called segmentation and on completion every pixel in an image is assigned to a tissue or organ. Segmentation is time consuming. An image processing pack age is used to identify organ boundaries in each image. Thirty to forty tomographic voxel models of anatomy have been reported in the literature. Each model is of an individual, or a composite from several individuals. Images of children are particularly scarce. So there remains a need for more paediatric anatomical models. I am working on segmenting ''William'' who is 368 PET-CT images from head to toe of a seven year old boy. William will be used for Monte Carlo dose calculations of dose from CT examination using a simulated modern CT scanner.

  10. Image based Monte Carlo modeling for computational phantom

    International Nuclear Information System (INIS)

    Cheng, M.; Wang, W.; Zhao, K.; Fan, Y.; Long, P.; Wu, Y.

    2013-01-01

    Full text of the publication follows. The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verification of the models for Monte Carlo (MC) simulation are very tedious, error-prone and time-consuming. In addition, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling. The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients (Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection. (authors)

  11. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  12. Image Registration for PET/CT and CT Images with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lee, Hak Jae; Kim, Yong Kwon; Lee, Ki Sung; Choi, Jong Hak; Kim, Chang Kyun; Moon, Guk Hyun; Joo, Sung Kwan; Kim, Kyeong Min; Cheon, Gi Jeong

    2009-01-01

    Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  13. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  14. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  15. SPECT/CT workflow and imaging protocols

    International Nuclear Information System (INIS)

    Beckers, Catherine; Hustinx, Roland

    2014-01-01

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  16. Monte Carlo dosimetry of iodine contrast objects in a small animal microCT

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Villafuerte, M., E-mail: mercedes@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico); Martinez-Davalos, A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2011-08-21

    Small animal microcomputed tomography (microCT) studies with iodine-based contrast media are commonly used in preclinical research. While the use of contrast media improves the quality of the images, it can also result in an increase in the absorbed dose to organs with high concentration of the contrast agent, which might cause radiation damage to the animal. In this work we present the results of a Monte Carlo investigation of a microCT dosimetry study using mouse-sized cylindrical water phantoms with iodine contrast insets for different X-ray spectra (Mo and W targets, 30-80 kVp), iodine concentrations (0, 5, 10 and 15 mg mL{sup -1}) and contrast object sizes (3 and 10 mm diameter). Our results indicate an absorbed dose increase in the contrast-inset regions with respect to the absorbed dose distribution within a reference uniform water phantom. The calculated spatial absorbed dose distributions show large gradients due to beam hardening effects, and large absorbed dose enhancement as the mean energy of the beam and iodine concentration increase. We have found that absorbed doses in iodine contrast objects can increase by a factor of up to 12 for a realistic 80 kVp X-ray spectra and an iodine concentration of 15 mg mL{sup -1}.

  17. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Badal, A [U.S. Food and Drug Administration (CDRH/OSEL), Silver Spring, MD (United States); Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Bolch, W [University of Florida, Gainesville, FL (United States); Sechopoulos, I [Emory University, Atlanta, GA (United States)

    2014-06-15

    virtual generation of medical images and accurate estimation of radiation dose and other imaging parameters. For this, detailed computational phantoms of the patient anatomy must be utilized and implemented within the radiation transport code. Computational phantoms presently come in one of three format types, and in one of four morphometric categories. Format types include stylized (mathematical equation-based), voxel (segmented CT/MR images), and hybrid (NURBS and polygon mesh surfaces). Morphometric categories include reference (small library of phantoms by age at 50th height/weight percentile), patient-dependent (larger library of phantoms at various combinations of height/weight percentiles), patient-sculpted (phantoms altered to match the patient's unique outer body contour), and finally, patient-specific (an exact representation of the patient with respect to both body contour and internal anatomy). The existence and availability of these phantoms represents a very important advance for the simulation of realistic medical imaging applications using Monte Carlo methods. New Monte Carlo simulation codes need to be thoroughly validated before they can be used to perform novel research. Ideally, the validation process would involve comparison of results with those of an experimental measurement, but accurate replication of experimental conditions can be very challenging. It is very common to validate new Monte Carlo simulations by replicating previously published simulation results of similar experiments. This process, however, is commonly problematic due to the lack of sufficient information in the published reports of previous work so as to be able to replicate the simulation in detail. To aid in this process, the AAPM Task Group 195 prepared a report in which six different imaging research experiments commonly performed using Monte Carlo simulations are described and their results provided. The simulation conditions of all six cases are provided in full detail

  18. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    International Nuclear Information System (INIS)

    Badal, A; Zbijewski, W; Bolch, W; Sechopoulos, I

    2014-01-01

    generation of medical images and accurate estimation of radiation dose and other imaging parameters. For this, detailed computational phantoms of the patient anatomy must be utilized and implemented within the radiation transport code. Computational phantoms presently come in one of three format types, and in one of four morphometric categories. Format types include stylized (mathematical equation-based), voxel (segmented CT/MR images), and hybrid (NURBS and polygon mesh surfaces). Morphometric categories include reference (small library of phantoms by age at 50th height/weight percentile), patient-dependent (larger library of phantoms at various combinations of height/weight percentiles), patient-sculpted (phantoms altered to match the patient's unique outer body contour), and finally, patient-specific (an exact representation of the patient with respect to both body contour and internal anatomy). The existence and availability of these phantoms represents a very important advance for the simulation of realistic medical imaging applications using Monte Carlo methods. New Monte Carlo simulation codes need to be thoroughly validated before they can be used to perform novel research. Ideally, the validation process would involve comparison of results with those of an experimental measurement, but accurate replication of experimental conditions can be very challenging. It is very common to validate new Monte Carlo simulations by replicating previously published simulation results of similar experiments. This process, however, is commonly problematic due to the lack of sufficient information in the published reports of previous work so as to be able to replicate the simulation in detail. To aid in this process, the AAPM Task Group 195 prepared a report in which six different imaging research experiments commonly performed using Monte Carlo simulations are described and their results provided. The simulation conditions of all six cases are provided in full detail, with all

  19. Prevalence of Os Trigonum on CT Imaging

    NARCIS (Netherlands)

    Zwiers, Ruben; Baltes, Thomas P. A.; Opdam, Kim T. M.; Wiegerinck, Johannes I.; van Dijk, C. Niek

    2017-01-01

    The os trigonum is known as one of the main causes of posterior ankle impingement. In the literature, a wide variation of occurrence has been reported. All foot and/or ankle computed tomography (CT) scans made between January 2012 and December 2013 were reviewed. CT images were assessed, blinded for

  20. Monte Carlo calculated CT numbers for improved heavy ion treatment planning

    Directory of Open Access Journals (Sweden)

    Qamhiyeh Sima

    2014-03-01

    Full Text Available Better knowledge of CT number values and their uncertainties can be applied to improve heavy ion treatment planning. We developed a novel method to calculate CT numbers for a computed tomography (CT scanner using the Monte Carlo (MC code, BEAMnrc/EGSnrc. To generate the initial beam shape and spectra we conducted full simulations of an X-ray tube, filters and beam shapers for a Siemens Emotion CT. The simulation output files were analyzed to calculate projections of a phantom with inserts. A simple reconstruction algorithm (FBP using a Ram-Lak filter was applied to calculate the pixel values, which represent an attenuation coefficient, normalized in such a way to give zero for water (Hounsfield unit (HU. Measured and Monte Carlo calculated CT numbers were compared. The average deviation between measured and simulated CT numbers was 4 ± 4 HU and the standard deviation σ was 49 ± 4 HU. The simulation also correctly predicted the behaviour of H-materials compared to a Gammex tissue substitutes. We believe the developed approach represents a useful new tool for evaluating the effect of CT scanner and phantom parameters on CT number values.

  1. The stylohyoid chain: CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uysal Ramadan, Selma, E-mail: uysalselma@yahoo.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Goekharman, Dilek, E-mail: gokharman@ttnet.net.t [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Kosar, Pinar, E-mail: pkosar@hotmail.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Kacar, Mahmut, E-mail: mkacar1961@gamil.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Kosar, Ugur, E-mail: ugurkosar@hotmail.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey)

    2010-09-15

    We aimed in this report to discuss the embryology, anatomy, theories of ossification and symptoms, clinical presentation, and diagnosis of the stylohyoid chain (SHC) variations, together with the role of radiographs, computed tomography (CT) and three-dimensional (3D)-CT in showing these variations. Because CT/3D-CT additionally facilitates visualization of the entire SHC with different axes, it is the most valuable method for establishing the relationship between the SHC and the surrounding tissue. SHC variation can be discovered during CT performed for indications other than ossified SHC. It is important to diagnose whether or not the SHC is ossified, since one of the treatment procedures in ossified SHC is total excision. If the clinician and radiologist are aware of these variations observed in the SHC, patients with vague symptoms may be spared unnecessary investigations and may be properly diagnosed earlier.

  2. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    International Nuclear Information System (INIS)

    Michail, C M; Fountos, G P; Kalyvas, N I; Valais, I G; Kandarakis, I S; Karpetas, G E; Martini, Niki; Koukou, Vaia

    2015-01-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations. (paper)

  3. Cochlear anatomy: CT and MR imaging

    International Nuclear Information System (INIS)

    Martinez, Manuel; Bruno, Claudio; Martin, Eduardo; Canale, Nancy; De Luca, Laura; Spina, Juan C. h

    2002-01-01

    The authors present a brief overview of the normal cochlear anatomy with CT and MR images in order to allow a more complete identification of the pathological findings in patients with perceptive hipoacusia. (author)

  4. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  5. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans.

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-07

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients' CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  6. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  7. Modified CT imaging by reduction factor transformations

    International Nuclear Information System (INIS)

    Doehring, W.; Linke, G.

    1981-01-01

    The possibilities of CT image modification which had existed so far for given matrix of attenuation values (window setting, highlighting, black-and-white or colour reversal and logarithmic distortion of the video signal) are supplemented by the method of attenuation value transformation. As a specific case a linear interval by interval attenuation value transformation is described. First of all, the intirety of the measured CT values is transformed into the corresponding CT quotients (CTQ) and then subdivided into 5 optional intervals. Each one freely selected CTQ value can be allocated to the first and to the last interval; the intermediate 3 intervals can be linearly transformed at random. The article discusses the influence of such a manipulation on CT image reproduction; this is of particular importance for the image visualisation of the results of quantitative organ analyses by means of computed tomography. The presented paper also points to the possibility of effecting further attenuation value transformations. (orig.) [de

  8. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions

    Science.gov (United States)

    Schneider, Wilfried; Bortfeld, Thomas; Schlegel, Wolfgang

    2000-02-01

    We describe a new method to convert CT numbers into mass density and elemental weights of tissues required as input for dose calculations with Monte Carlo codes such as EGS4. As a first step, we calculate the CT numbers for 71 human tissues. To reduce the effort for the necessary fits of the CT numbers to mass density and elemental weights, we establish four sections on the CT number scale, each confined by selected tissues. Within each section, the mass density and elemental weights of the selected tissues are interpolated. For this purpose, functional relationships between the CT number and each of the tissue parameters, valid for media which are composed of only two components in varying proportions, are derived. Compared with conventional data fits, no loss of accuracy is accepted when using the interpolation functions. Assuming plausible values for the deviations of calculated and measured CT numbers, the mass density can be determined with an accuracy better than 0.04 g cm-3 . The weights of phosphorus and calcium can be determined with maximum uncertainties of 1 or 2.3 percentage points (pp) respectively. Similar values can be achieved for hydrogen (0.8 pp) and nitrogen (3 pp). For carbon and oxygen weights, errors up to 14 pp can occur. The influence of the elemental weights on the results of Monte Carlo dose calculations is investigated and discussed.

  9. Accuracy and Radiation Dose of CT-Based Attenuation Correction for Small Animal PET: A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Yang, Ching-Ching; Chan, Kai-Chieh

    2013-06-01

    -Small animal PET allows qualitative assessment and quantitative measurement of biochemical processes in vivo, but the accuracy and reproducibility of imaging results can be affected by several parameters. The first aim of this study was to investigate the performance of different CT-based attenuation correction strategies and assess the resulting impact on PET images. The absorbed dose in different tissues caused by scanning procedures was also discussed to minimize biologic damage generated by radiation exposure due to PET/CT scanning. A small animal PET/CT system was modeled based on Monte Carlo simulation to generate imaging results and dose distribution. Three energy mapping methods, including the bilinear scaling method, the dual-energy method and the hybrid method which combines the kVp conversion and the dual-energy method, were investigated comparatively through assessing the accuracy of estimating linear attenuation coefficient at 511 keV and the bias introduced into PET quantification results due to CT-based attenuation correction. Our results showed that the hybrid method outperformed the bilinear scaling method, while the dual-energy method achieved the highest accuracy among the three energy mapping methods. Overall, the accuracy of PET quantification results have similar trend as that for the estimation of linear attenuation coefficients, whereas the differences between the three methods are more obvious in the estimation of linear attenuation coefficients than in the PET quantification results. With regards to radiation exposure from CT, the absorbed dose ranged between 7.29-45.58 mGy for 50-kVp scan and between 6.61-39.28 mGy for 80-kVp scan. For 18 F radioactivity concentration of 1.86x10 5 Bq/ml, the PET absorbed dose was around 24 cGy for tumor with a target-to-background ratio of 8. The radiation levels for CT scans are not lethal to the animal, but concurrent use of PET in longitudinal study can increase the risk of biological effects. The

  10. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging. Implications for CT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Perisinakis, Kostas; Damilakis, John [University of Crete, Department of Medical Physics, Medical School, Heraklion, Crete (Greece); University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Tzedakis, Antonis; Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Spanakis, Kostas [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Hatzidakis, Adam [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); University of Crete, Department of Radiology, Medical School, Heraklion, Crete (Greece)

    2018-01-15

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. (orig.)

  11. Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT

    International Nuclear Information System (INIS)

    Angel, Erin; Yaghmai, Nazanin; Jude, Cecilia Matilda; DeMarco, John J; Cagnon, Christopher H; Goldin, Jonathan G; McNitt-Gray, Michael F; Primak, Andrew N; McCollough, Cynthia H; Stevens, Donna M; Cody, Dianna D

    2009-01-01

    Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were

  12. Improving image quality in portal venography with spectral CT imaging

    International Nuclear Information System (INIS)

    Zhao, Li-qin; He, Wen; Li, Jian-ying; Chen, Jiang-hong; Wang, Ke-yang; Tan, Li

    2012-01-01

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  13. Improving image quality in portal venography with spectral CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li-qin, E-mail: zhaolqzr@sohu.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); He, Wen, E-mail: hewen1724@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Li, Jian-ying, E-mail: jianying.li@med.ge.com [CT Advanced Application and Research, GE Healthcare, 100176 China (China); Chen, Jiang-hong, E-mail: chenjianghong1973@hotmail.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Wang, Ke-yang, E-mail: ke7ke@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Tan, Li, E-mail: Litan@ge.com [CT product, GE Healthcare, 100176 China (China)

    2012-08-15

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  14. Advances in CT imaging for urolithiasis

    Directory of Open Access Journals (Sweden)

    Yasir Andrabi

    2015-01-01

    Full Text Available Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT is highly sensitive (>95% and specific (>96% in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT and technological innovations in CT such as dual-energy CT (DECT has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice.

  15. Research of ART method in CT image reconstruction

    International Nuclear Information System (INIS)

    Li Zhipeng; Cong Peng; Wu Haifeng

    2005-01-01

    This paper studied Algebraic Reconstruction Technique (ART) in CT image reconstruction. Discussed the ray number influence on image quality. And the adopting of smooth method got high quality CT image. (authors)

  16. CT image registration in sinogram space.

    Science.gov (United States)

    Mao, Weihua; Li, Tianfang; Wink, Nicole; Xing, Lei

    2007-09-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy.

  17. CT image registration in sinogram space

    International Nuclear Information System (INIS)

    Mao Weihua; Li Tianfang; Wink, Nicole; Xing Lei

    2007-01-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy

  18. CT imaging features of anaplastic thyroid carcinoma

    International Nuclear Information System (INIS)

    Shi Zhenshan; You Ruixiong; Cao Dairong; Li Yueming; Zhuang Qian

    2013-01-01

    Objective: To investigate the CT characteristics of anaplastic thyroid carcinoma and evaluate the diagnostic value of CT in this disease. Methods: The CT findings of 10 patients with pathologically proved anaplastic thyroid carcinoma were retrospectively reviewed. The patients included 7 females and 3 males. Their age ranged from 25.0 to 78 years with median of 61 years. Multi-slices plain and post contrast CT scans were performed in all patients. Results: Unilateral thyroid was involved in 6 patients. Unilateral thyroid and thyroid isthmus were both involved in 2 patients due to big size. Bilateral thyroid were involved in 2 patients. The maximum diameter of anaplastic thyroid carcinoma ranged from 2.9-12.8 cm with mean of (4.5 ± 1.4) cm. All lesions demonstrated unclear margins and envelope invasion. The densities of all lesions were heterogeneous and obvious necrosis areas were noted on precontrast images. Seven lesions showed varied calcifications, and coarse granular calcifications were found in 5 lesions among them. All lesions showed remarkable heterogenous enhancement on post-contrast CT. The CT value of solid portion of the tumor increased 40 HU after contrast media administration. The ratios of CT value which comparing of the tumor with contralateral sternocleidomastoid muscle were 0.69-0.82 (0.76 ± 0.18) and 1.25-1.41 (1.33 ± 0.28) on pre and post CT, respectively. Enlarged cervical lymph nodes were found in 6 cases (60.0%). It showed obvious homogeneous enhancement or irregular ring-like enhancement on post-contrast images and dot calcifications were seen in 1 case. Conclusions: Relative larger single thyroid masses with coarse granular calcifications, necrosis,envelope invasion, remarkable heterogeneous enhancing and enlarged lymph nodes on CT are suggestive of anaplastic thyroid carcinoma. (authors)

  19. Accurate localization of intracavitary brachytherapy applicators from 3D CT imaging studies

    International Nuclear Information System (INIS)

    Lerma, F.A.; Williamson, J.F.

    2002-01-01

    Purpose: To present an accurate method to identify the positions and orientations of intracavitary (ICT) brachytherapy applicators imaged in 3D CT scans, in support of Monte Carlo photon-transport simulations, enabling accurate dose modeling in the presence of applicator shielding and interapplicator attenuation. Materials and methods: The method consists of finding the transformation that maximizes the coincidence between the known 3D shapes of each applicator component (colpostats and tandem) with the volume defined by contours of the corresponding surface on each CT slice. We use this technique to localize Fletcher-Suit CT-compatible applicators for three cervix cancer patients using post-implant CT examinations (3 mm slice thickness and separation). Dose distributions in 1-to-1 registration with the underlying CT anatomy are derived from 3D Monte Carlo photon-transport simulations incorporating each applicator's internal geometry (source encapsulation, high-density shields, and applicator body) oriented in relation to the dose matrix according to the measured localization transformations. The precision and accuracy of our localization method are assessed using CT scans, in which the positions and orientations of dense rods and spheres (in a precision-machined phantom) were measured at various orientations relative to the gantry. Results: Using this method, we register 3D Monte Carlo dose calculations directly onto post insertion patient CT studies. Using CT studies of a precisely machined phantom, the absolute accuracy of the method was found to be ±0.2 mm in plane, and ±0.3 mm in the axial direction while its precision was ±0.2 mm in plane, and ±0.2 mm axially. Conclusion: We have developed a novel, and accurate technique to localize intracavitary brachytherapy applicators in 3D CT imaging studies, which supports 3D dose planning involving detailed 3D Monte Carlo dose calculations, modeling source positions, shielding and interapplicator shielding

  20. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  1. Multislice CT imaging of pulmonary embolism

    International Nuclear Information System (INIS)

    Schoepf, J.U.; Kessler, M.A.; Rieger, C.T.; Herzog, P.; Wiesgigl, S.; Becker, C.R.; Exarhos, D.N.; Reiser, M.F.

    2001-01-01

    In recent years CT has been established as the method of choice for the diagnosis of central pulmonary embolism (PE) to the level of the segmental arteries. The key advantage of CT over competing modalities is the reliable detection of relevant alternative or additional disease causing the patient's symptoms. Although the clinical relevance of isolated peripheral emboli remains unclear, the alleged poor sensitivity of CT for the detection of such small clots has to date prevented the acceptance of CT as the gold standard for diagnosing PE. With the advent of multislice CT we can now cover the entire chest of a patient with 1-mm slices within one breath-hold. In comparison with thicker sections, the detection rate of subsegmental emboli can be significantly increased with 1-mm slices. In addition, the interobserver correlation which can be achieved with 1-mm sections by far exceeds the reproducibility of competing modalities. Meanwhile use of multislice CT for a combined diagnosis of PE and deep venous thrombosis with the same modality appears to be clinically accepted. In the vast majority of patients who receive a combined thoracic and venous multislice CT examination the scan either confirms the suspected diagnosis or reveals relevant alternative or additional disease. The therapeutic regimen is usually chosen based on the functional effect of embolic vascular occlusion. With the advent of fast CT scanning techniques, also functional parameters of lung perfusion can be non-invasively assessed by CT imaging. These advantages let multislice CT appear as an attractive modality for a non-invasive, fast, accurate, and comprehensive diagnosis of PE, its causes, effects, and differential diagnoses. (orig.)

  2. CT image in Reye syndrome

    International Nuclear Information System (INIS)

    Murayama, Takashi; Sakuma, Nobuko; Ishikawa, Akashi; Saito, Yoko; Takebayashi, Takeyasu; Kuwashima, Shigeru

    1983-01-01

    In a male infant with infantile spasms which had been observed, Reye's syndrome occurred at the age of 1 year and 6 months. CT findings, before the onset of Reye's syndrome, in the acute stage of the disease, and in the recovering stage, were obtained. The features of the disease were shown as low-absorption areas in the frontal and fronto-temporal areas of the head, and also strongly degenerative findings in the same areas, even in the recovery stage. This seemed to be characteristic to Reye's syndrome, and the basis of the suggestion was discussed. (Ueda, J.)

  3. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  4. CT imaging of necrosive fasciitis

    International Nuclear Information System (INIS)

    Schulze, M.; Overkamp, D.; Joanoviciu, S.; Horger, M.

    2008-01-01

    NF is a rare but dramatic and often fatal infection of the fascii and adjoining soft tissues. Contrary to the Fournier's definition, it is most common in elderly people. Patients with immune problems have a higher risk (e.g. Diabetes mellitus, alcohol or drug abuse, AIDS, leukaemia, chemotherapy and immunosuppressive medication). Predisposition factors are diverticulitis, insect bites, or surgical interventions (Uppot RN, Levy HM, PLatel PH, Radiology 2003; 226; 115; Wysoki MG, Santora TA, Shah RM et al. Necrotizing fasciitis: CT characteristics, Radiology 1997; 203;859). Men are affected more frequently than women. In principle, NF may occur everywhere in the body but incidence in the region of the scrotum, perineum and lower extremities are the most common. (orig.)

  5. Fast parallel algorithm for CT image reconstruction.

    Science.gov (United States)

    Flores, Liubov A; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2012-01-01

    In X-ray computed tomography (CT) the X rays are used to obtain the projection data needed to generate an image of the inside of an object. The image can be generated with different techniques. Iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions and from a small number of projections. Their use may be important in portable scanners for their functionality in emergency situations. However, in practice, these methods are not widely used due to the high computational cost of their implementation. In this work we analyze iterative parallel image reconstruction with the Portable Extensive Toolkit for Scientific computation (PETSc).

  6. A new cubic phantom for PET/CT dosimetry: Experimental and Monte Carlo characterization

    International Nuclear Information System (INIS)

    Belinato, Walmir; Silva, Rogerio M.V.; Souza, Divanizia N.; Santos, William S.; Caldas, Linda V.E.; Perini, Ana P.; Neves, Lucio P.

    2015-01-01

    In recent years, positron emission tomography (PET) associated with multidetector computed tomography (MDCT) has become a diagnostic technique widely disseminated to evaluate various malignant tumors and other diseases. However, during PET/CT examinations, the doses of ionizing radiation experienced by the internal organs of patients may be substantial. To study the doses involved in PET/CT procedures, a new cubic phantom of overlapping acrylic plates was developed and characterized. This phantom has a deposit for the placement of the fluorine-18 fluoro-2-deoxy-D-glucose ( 18 F-FDG) solution. There are also small holes near the faces for the insertion of optically stimulated luminescence dosimeters (OSLD). The holes for OSLD are positioned at different distances from the 18 F-FDG deposit. The experimental results were obtained in two PET/CT devices operating with different parameters. Differences in the absorbed doses were observed in OSLD measurements due to the non-orthogonal positioning of the detectors inside the phantom. This phantom was also evaluated using Monte Carlo simulations, with the MCNPX code. The phantom and the geometrical characteristics of the equipment were carefully modeled in the MCNPX code, in order to develop a new methodology form comparison of experimental and simulated results, as well as to allow the characterization of PET/CT equipments in Monte Carlo simulations. All results showed good agreement, proving that this new phantom may be applied for these experiments. (authors)

  7. A new cubic phantom for PET/CT dosimetry: Experimental and Monte Carlo characterization

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil); Silva, Rogerio M.V.; Souza, Divanizia N. [Departamento de Fisica, Universidade Federal de Sergipe-UFS, Sao Cristovao, Sergipe (Brazil); Santos, William S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo SP (Brazil); Perini, Ana P.; Neves, Lucio P. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo SP (Brazil); Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil)

    2015-07-01

    In recent years, positron emission tomography (PET) associated with multidetector computed tomography (MDCT) has become a diagnostic technique widely disseminated to evaluate various malignant tumors and other diseases. However, during PET/CT examinations, the doses of ionizing radiation experienced by the internal organs of patients may be substantial. To study the doses involved in PET/CT procedures, a new cubic phantom of overlapping acrylic plates was developed and characterized. This phantom has a deposit for the placement of the fluorine-18 fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) solution. There are also small holes near the faces for the insertion of optically stimulated luminescence dosimeters (OSLD). The holes for OSLD are positioned at different distances from the {sup 18}F-FDG deposit. The experimental results were obtained in two PET/CT devices operating with different parameters. Differences in the absorbed doses were observed in OSLD measurements due to the non-orthogonal positioning of the detectors inside the phantom. This phantom was also evaluated using Monte Carlo simulations, with the MCNPX code. The phantom and the geometrical characteristics of the equipment were carefully modeled in the MCNPX code, in order to develop a new methodology form comparison of experimental and simulated results, as well as to allow the characterization of PET/CT equipments in Monte Carlo simulations. All results showed good agreement, proving that this new phantom may be applied for these experiments. (authors)

  8. Evaluation of equivalent doses in 18F PET/CT using the Monte Carlo method with MCNPX code

    International Nuclear Information System (INIS)

    Belinato, Walmir; Santos, William Souza; Perini, Ana Paula; Neves, Lucio Pereira; Souza, Divanizia N.

    2017-01-01

    The present work used the Monte Carlo method (MMC), specifically the Monte Carlo NParticle - MCNPX, to simulate the interaction of radiation involving photons and particles, such as positrons and electrons, with virtual adult anthropomorphic simulators on PET / CT scans and to determine absorbed and equivalent doses in adult male and female patients

  9. Improved quantitative 90 Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling.

    Science.gov (United States)

    Dewaraja, Yuni K; Chun, Se Young; Srinivasa, Ravi N; Kaza, Ravi K; Cuneo, Kyle C; Majdalany, Bill S; Novelli, Paula M; Ljungberg, Michael; Fessler, Jeffrey A

    2017-12-01

    In 90 Y microsphere radioembolization (RE), accurate post-therapy imaging-based dosimetry is important for establishing absorbed dose versus outcome relationships for developing future treatment planning strategies. Additionally, accurately assessing microsphere distributions is important because of concerns for unexpected activity deposition outside the liver. Quantitative 90 Y imaging by either SPECT or PET is challenging. In 90 Y SPECT model based methods are necessary for scatter correction because energy window-based methods are not feasible with the continuous bremsstrahlung energy spectrum. The objective of this work was to implement and evaluate a scatter estimation method for accurate 90 Y bremsstrahlung SPECT/CT imaging. Since a fully Monte Carlo (MC) approach to 90 Y SPECT reconstruction is computationally very demanding, in the present study the scatter estimate generated by a MC simulator was combined with an analytical projector in the 3D OS-EM reconstruction model. A single window (105 to 195-keV) was used for both the acquisition and the projector modeling. A liver/lung torso phantom with intrahepatic lesions and low-uptake extrahepatic objects was imaged to evaluate SPECT/CT reconstruction without and with scatter correction. Clinical application was demonstrated by applying the reconstruction approach to five patients treated with RE to determine lesion and normal liver activity concentrations using a (liver) relative calibration. There was convergence of the scatter estimate after just two updates, greatly reducing computational requirements. In the phantom study, compared with reconstruction without scatter correction, with MC scatter modeling there was substantial improvement in activity recovery in intrahepatic lesions (from > 55% to > 86%), normal liver (from 113% to 104%), and lungs (from 227% to 104%) with only a small degradation in noise (13% vs. 17%). Similarly, with scatter modeling contrast improved substantially both visually and in

  10. CT imaging spectrum of infiltrative renal diseases.

    Science.gov (United States)

    Ballard, David H; De Alba, Luis; Migliaro, Matias; Previgliano, Carlos H; Sangster, Guillermo P

    2017-11-01

    Most renal lesions replace the renal parenchyma as a focal space-occupying mass with borders distinguishing the mass from normal parenchyma. However, some renal lesions exhibit interstitial infiltration-a process that permeates the renal parenchyma by using the normal renal architecture for growth. These infiltrative lesions frequently show nonspecific patterns that lead to little or no contour deformity and have ill-defined borders on CT, making detection and diagnosis challenging. The purpose of this pictorial essay is to describe the CT imaging findings of various conditions that may manifest as infiltrative renal lesions.

  11. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  12. Imaging of abdominal tumours: CT or MRI?

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.

    2009-01-01

    The scope of this review is to discuss a theoretical approach to imaging policy, particularly in the perspective of radiation risk reduction. Decisions are ideally driven by empirical evidence about efficacy and risk, e.g., in classical hierarchical efficacy model. As a result of the paucity of empirical evidence (inevitable because of rapid technological development), a pragmatic model is needed. This should avoid overemphasis of factors that currently seem to hamper change, namely personal preference, local expertise, infrastructure, availability. Extrapolation of current general knowledge about CT and MRI demonstrates how a pragmatic approach can be applied in the real world with intermediate goals such as (1) channeling patients from CT to MRI, and (2) reducing CT-delivered radiation. Increased utilisation of MRI in body imaging requires optimisation of scan protocols and equipment, and, being a very operator-dependent modality, the active involvement of the radiologist. In CT dose reduction the main challenge is to benchmark the minimum radiation-dose requirement, and therefore the minimum required image quality that is diagnostically acceptable. As this will ultimately depend on pre-test likelihoods in institutional populations, it is difficult to issue general guidance, and local assessment remains a cornerstone in this effort. (orig.)

  13. PET CT imaging: the Philippine experience

    International Nuclear Information System (INIS)

    Santiago, Jonas Y.

    2011-01-01

    Currently, the most discussed fusion imaging is PET CT. Fusion technology has tremendous potential in diagnostic imaging to detect numerous conditions such as tumors, Alzheimer's disease, dementia and neural disorders. The fusion of PET with CT helps in the localization of molecular abnormalities, thereby increasing diagnostic accuracy and differentiating benign or artefact lesions from malignant diseases. It uses a radiotracer called fluro deoxyglucose that gives a clear distinction between pathological and physiological uptake. Interest in this technology is increasing and additional clinical validation are likely to induce more health care providers to invest in combined scanners. It is hope that in time, a better appreciation of its advantages over conventional and traditional imaging modalities will be realized. The first PET CT facility in the country was established at the St. Luke's Medical Center in Quezon City in 2008 and has since then provided a state-of-the art imaging modality to its patients here and those from other countries. The paper will present the experiences so far gained from its operation, including the measures and steps currently taken by the facility to ensure optimum workers and patient safety. Plans and programs to further enhance the awareness of the Filipino public on this advanced imaging modality for an improved health care delivery system may also be discussed briefly. (author)

  14. On the use of Monte Carlo-derived dosimetric data in the estimation of patient dose from CT examinations

    International Nuclear Information System (INIS)

    Perisinakis, Kostas; Tzedakis, Antonis; Damilakis, John

    2008-01-01

    The purpose of this work was to investigate the applicability and appropriateness of Monte Carlo-derived normalized data to provide accurate estimations of patient dose from computed tomography (CT) exposures. Monte Carlo methodology and mathematical anthropomorphic phantoms were used to simulate standard patient CT examinations of the head, thorax, abdomen, and trunk performed on a multislice CT scanner. Phantoms were generated to simulate the average adult individual and two individuals with different body sizes. Normalized dose values for all radiosensitive organs and normalized effective dose values were calculated for standard axial and spiral CT examinations. Discrepancies in CT dosimetry using Monte Carlo-derived coefficients originating from the use of: (a) Conversion coefficients derived for axial CT exposures, (b) a mathematical anthropomorphic phantom of standard body size to derive conversion coefficients, and (c) data derived for a specific CT scanner to estimate patient dose from CT examinations performed on a different scanner, were separately evaluated. The percentage differences between the normalized organ dose values derived for contiguous axial scans and the corresponding values derived for spiral scans with pitch=1 and the same total scanning length were up to 10%, while the corresponding percentage differences in normalized effective dose values were less than 0.7% for all standard CT examinations. The normalized organ dose values for standard spiral CT examinations with pitch 0.5-1.5 were found to differ from the corresponding values derived for contiguous axial scans divided by the pitch, by less than 14% while the corresponding percentage differences in normalized effective dose values were less than 1% for all standard CT examinations. Normalized effective dose values for the standard contiguous axial CT examinations derived by Monte Carlo simulation were found to considerably decrease with increasing body size of the mathematical phantom

  15. CT Imaging of Craniofacial Fibrous Dysplasia

    Directory of Open Access Journals (Sweden)

    Zerrin Unal Erzurumlu

    2015-01-01

    Full Text Available Fibrous dysplasia is a benign fibroosseous bone dysplasia that can involve single (monostotic or multiple (polyostotic bones. Monostotic form is more frequent in the jaws. It is termed as craniofacial fibrous dysplasia, when it involves, though rarely, adjacent craniofacial bones. A 16-year-old girl consulted for a painless swelling in the right posterior mandible for two years. Panoramic radiography revealed ground-glass ill-defined lesions in the three different regions of the maxilla and mandible. Axial CT scan (bone window showed multiple lesions involving skull base and facial bones. Despite lesions in the skull base, the patient had no abnormal neurological findings. The lesion was diagnosed as fibrous dysplasia based on radiological and histopathological examination. In this paper, CT findings and differential diagnosis of CFD are discussed. CT is a useful imaging technique for CFD cases.

  16. Algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images

    International Nuclear Information System (INIS)

    Ogino, Takashi; Egawa, Sunao

    1991-01-01

    New algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images were developed. One, designated plane weighting method, is to correct CT value in proportion to the position of the beam element passing through the voxel. The other, designated solid weighting method, is to correct CT value in proportion to the length of the beam element passing through the voxel and the volume of voxel. Phantom experiments showed fair spatial resolution in the transverse direction. In the longitudinal direction, however, spatial resolution of under slice thickness could not be obtained. Contrast resolution was equivalent for both methods. In patient studies, the reconstructed radiotherapy simulation image was almost similar in visual perception of the density resolution to a simulation film taken by X-ray simulator. (author)

  17. Evaluation of pulmonary emphysema by the fused image of CT image and ventilation SPECT image

    International Nuclear Information System (INIS)

    Okuda, Ituko; Maruno, Hiromasa; Mori, Kazuaki; Kohno, Tadashi; Kokubo, Takashi

    2007-01-01

    We evaluated pulmonary emphysema using a diagnostic device that could obtain a CT image, a ventilation single photon emission computed tomography (SPECT) image and a lung perfusion SPECT image in one examination. The fused image made from the CT image and SPECT image had very little position gap between images, and the precision was high. From the fused image, we were able to detect the areas in which emphysematous change was the most marked in the CT image, while the accumulation decrease was most remarkable in the ventilation SPECT image. Thus it was possible to obtain an accurate status of pulmonary emphysema, and our method was regarded as a useful technique. (author)

  18. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  19. Dosimetric impact of dual-energy CT tissue segmentation for low-energy prostate brachytherapy: a Monte Carlo study

    Science.gov (United States)

    Remy, Charlotte; Lalonde, Arthur; Béliveau-Nadeau, Dominic; Carrier, Jean-François; Bouchard, Hugo

    2018-01-01

    The purpose of this study is to evaluate the impact of a novel tissue characterization method using dual-energy over single-energy computed tomography (DECT and SECT) on Monte Carlo (MC) dose calculations for low-dose rate (LDR) prostate brachytherapy performed in a patient like geometry. A virtual patient geometry is created using contours from a real patient pelvis CT scan, where known elemental compositions and varying densities are overwritten in each voxel. A second phantom is made with additional calcifications. Both phantoms are the ground truth with which all results are compared. Simulated CT images are generated from them using attenuation coefficients taken from the XCOM database with a 100 kVp spectrum for SECT and 80 and 140Sn kVp for DECT. Tissue segmentation for Monte Carlo dose calculation is made using a stoichiometric calibration method for the simulated SECT images. For the DECT images, Bayesian eigentissue decomposition is used. A LDR prostate brachytherapy plan is defined with 125I sources and then calculated using the EGSnrc user-code Brachydose for each case. Dose distributions and dose-volume histograms (DVH) are compared to ground truth to assess the accuracy of tissue segmentation. For noiseless images, DECT-based tissue segmentation outperforms the SECT procedure with a root mean square error (RMS) on relative errors on dose distributions respectively of 2.39% versus 7.77%, and provides DVHs closest to the reference DVHs for all tissues. For a medium level of CT noise, Bayesian eigentissue decomposition still performs better on the overall dose calculation as the RMS error is found to be of 7.83% compared to 9.15% for SECT. Both methods give a similar DVH for the prostate while the DECT segmentation remains more accurate for organs at risk and in presence of calcifications, with less than 5% of RMS errors within the calcifications versus up to 154% for SECT. In a patient-like geometry, DECT-based tissue segmentation provides dose

  20. Brain CT image and handedness of schizophrenia

    International Nuclear Information System (INIS)

    Hirose, Katsutoshi; Maehara, Katsuya; Iizuka, Reiji; Mikami, Akihiro.

    1989-01-01

    Brain CT images were reviewed of 98 schizophrenic patients and 90 healthy persons in relation to handedness and aging. CT images were further reconstructed to examine morphologically subtle changes in each region. Schizophrenic patients had progressive brain atrophy and dilated lateral ventricles, especially on the left side and in the posterior part of the lateral ventricle. These findings were more marked in left-handed than in right-handed schizophrenic patients. According to age groups, there were significant differences between schizophrenic and normal persons over the age of 40. The incidence of left handedness was significantly higher in schizophrenic patients in their fourties than the age-matched normal persons (31.4% vs 15.1%). Morphological abnormality and laterality might be due to the same pathologic consequences. (N.K.)

  1. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    International Nuclear Information System (INIS)

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Groden, Christoph; Henzler, Thomas

    2016-01-01

    •Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose.•Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT.•State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean

  2. TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Bai, T [UT Southwestern Medical Center, Dallas, TX (United States); Xi' an Jiaotong University, Xi' an (China); Yan, H; Ouyang, L; Wang, J; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-15

    Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections; 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research

  3. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging

    International Nuclear Information System (INIS)

    Hulme, K. W.; Kappadath, S. C.

    2014-01-01

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI vol = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in 99m Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI vol = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ 140 keV on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed 99m Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect

  4. Parallel CT image reconstruction based on GPUs

    International Nuclear Information System (INIS)

    Flores, Liubov A.; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2014-01-01

    In X-ray computed tomography (CT) iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions from a small number of projections. However, in practice, these methods are not widely used due to the high computational cost of their implementation. Nowadays technology provides the possibility to reduce effectively this drawback. It is the goal of this work to develop a fast GPU-based algorithm to reconstruct high quality images from under sampled and noisy projection data. - Highlights: • We developed GPU-based iterative algorithm to reconstruct images. • Iterative algorithms are capable to reconstruct images from under sampled set of projections. • The computer cost of the implementation of the developed algorithm is low. • The efficiency of the algorithm increases for the large scale problems

  5. GPU based Monte Carlo for PET image reconstruction: detector modeling

    International Nuclear Information System (INIS)

    Légrády; Cserkaszky, Á; Lantos, J.; Patay, G.; Bükki, T.

    2011-01-01

    Monte Carlo (MC) calculations and Graphical Processing Units (GPUs) are almost like the dedicated hardware designed for the specific task given the similarities between visible light transport and neutral particle trajectories. A GPU based MC gamma transport code has been developed for Positron Emission Tomography iterative image reconstruction calculating the projection from unknowns to data at each iteration step taking into account the full physics of the system. This paper describes the simplified scintillation detector modeling and its effect on convergence. (author)

  6. Image reconstruction using Monte Carlo simulation and artificial neural networks

    International Nuclear Information System (INIS)

    Emert, F.; Missimner, J.; Blass, W.; Rodriguez, A.

    1997-01-01

    PET data sets are subject to two types of distortions during acquisition: the imperfect response of the scanner and attenuation and scattering in the active distribution. In addition, the reconstruction of voxel images from the line projections composing a data set can introduce artifacts. Monte Carlo simulation provides a means for modeling the distortions and artificial neural networks a method for correcting for them as well as minimizing artifacts. (author) figs., tab., refs

  7. Monte Carlo simulation of PET images for injection doseoptimization

    Czech Academy of Sciences Publication Activity Database

    Boldyš, Jiří; Dvořák, Jiří; Skopalová, M.; Bělohlávek, O.

    2013-01-01

    Roč. 29, č. 9 (2013), s. 988-999 ISSN 2040-7939 R&D Projects: GA MŠk 1M0572 Institutional support: RVO:67985556 Keywords : positron emission tomography * Monte Carlo simulation * biological system modeling * image quality Subject RIV: FD - Oncology ; Hematology Impact factor: 1.542, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/boldys-0397175.pdf

  8. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Cong Peng; Li Zhipeng; Wu Haifeng

    2004-01-01

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  9. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  10. Clinical PET/CT imaging. Promises and misconceptions

    International Nuclear Information System (INIS)

    Czernin, J.; Auerbach, M.A.

    2005-01-01

    PET/CT is now established as the most important imaging tool in oncology. PET/CT stages and restages cancer with a higher accuracy than PET or CT alone. The sometimes irrational approach to combine state of the art PET with the highest end CT devices should give way to a more reasonable equipment design tailored towards the specific clinical indications in well-defined patient populations. The continuing success of molecular PET/CT now depends more upon advances in molecular imaging with the introduction of targeted imaging probes for individualized therapy approaches in cancer patients and less upon technological advances of imaging equipment. (orig.)

  11. Monte Carlo modeling of human tooth optical coherence tomography imaging

    International Nuclear Information System (INIS)

    Shi, Boya; Meng, Zhuo; Wang, Longzhi; Liu, Tiegen

    2013-01-01

    We present a Monte Carlo model for optical coherence tomography (OCT) imaging of human tooth. The model is implemented by combining the simulation of a Gaussian beam with simulation for photon propagation in a two-layer human tooth model with non-parallel surfaces through a Monte Carlo method. The geometry and the optical parameters of the human tooth model are chosen on the basis of the experimental OCT images. The results show that the simulated OCT images are qualitatively consistent with the experimental ones. Using the model, we demonstrate the following: firstly, two types of photons contribute to the information of morphological features and noise in the OCT image of a human tooth, respectively. Secondly, the critical imaging depth of the tooth model is obtained, and it is found to decrease significantly with increasing mineral loss, simulated as different enamel scattering coefficients. Finally, the best focus position is located below and close to the dental surface by analysis of the effect of focus positions on the OCT signal and critical imaging depth. We anticipate that this modeling will become a powerful and accurate tool for a preliminary numerical study of the OCT technique on diseases of dental hard tissue in human teeth. (paper)

  12. 3D Interpolation Method for CT Images of the Lung

    Directory of Open Access Journals (Sweden)

    Noriaki Asada

    2003-06-01

    Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

  13. Microscopic imaging through turbid media Monte Carlo modeling and applications

    CERN Document Server

    Gu, Min; Deng, Xiaoyuan

    2015-01-01

    This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the unscattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in biophotonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.

  14. Optimising imaging parameters in experimental spiral CT

    International Nuclear Information System (INIS)

    Tiitola, M.; Vehmas, T.; Kivisaari, R.P.; Kivisaari, L.

    1997-01-01

    Purpose: This in vitro study was conducted to analyse lesion detection and relative radiation exposure in different CT techniques. Material and Methods: We used a plastic phantom (12 x 8 x 2 cm) containing holes filled with air or fluid of varying densities to simulate lesions. This was imaged with Siemens Somatom Plus S and GE High Speed Advantage units. We varied table feeds (3 and 6 mm/s in Siemens and 3 and 4.5 mm/s in GE) and increments (2 mm and 4 mm) while keeping collimation at 3 mm. The SmartScan program of GE and the reformating algorithm of Siemens were also analysed. To evaluate the different methods, the phatnom lesions were counted by 3 observers. Radiation exposures associated with each technique were also measured. Results: The images reformatted to a coronal direction were significantly inferior (p<0.01) to those in other techniques. The use of SmartScan did not influence lesion detection, nor did changes in pitch or increment. Spiral and non-spiral techniques proved to be equal. Radiation exposure was lowest when a greater pitch or the SmartScan program was used. Conclusion: Radiation exposure in CT can be limited without significantly impairing the image quality by using low-dose techniques. Reformatting to a coronal direction should be used with care as it debases the image quality. (orig.)

  15. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  16. CT urethrography. New imaging technique of the urethra

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Munechika, Hirotsugu

    2005-01-01

    The purpose of the study is to assess the usefulness of CT urethrography for evaluation of the posterior urethra and surrounding structures. The CT images were performed with 4 channel multidetector row CT unit. Twenty-six cases (12 cases of CT urethrography and 14 cases of conventional urethrography) were included in this study. 3D-volume rendering (VR) images and VR-multiplaner reconstruction (MPR) sagittal images were compared with conventional retrograde urethrography (RUG) images to evaluate the following anatomical structures; the inferior wall of bladder, the neck of bladder, the posterior urethra, and the prostate. Two radiologists undertook a task of evaluation of the images. There was no significant difference in image quality between RUG and 3D-VR. However, VR-MPR sagittal images were significantly better than RUG or 3D-VR images in any anatomical structures set up beforehand for evaluation. CT urerthrography was useful for evaluation of the posterior urethra and surrounding structures. (author)

  17. CT and MR imaging of the kidney and adrenal glands: CT of the kidney

    International Nuclear Information System (INIS)

    Levine, E.

    1987-01-01

    Because of its high diagnostic yield, safety, and cost-effectiveness, CT has become a major imaging technique for evaluating the kidney. CT is highly accurate for determining the nature and extent of renal masses, and this has become the main indication for renal CT. However, CT is also valuable in assessing patients with renal cystic disease, trauma, inflammatory disease, infarction, hemorrhage and hydronephrosis of unknown cause. This presentation reviews the normal CT anatomy of the kidneys and the usefulness of CT in the diagnosis of all these conditions. Examination techniques are discussed with particular emphasis on avoiding diagnostic pitfalls and tailoring the examination to the nature of the clinical problem. CT findings in various renal disorders are compared with those of other imaging techniques, particularly US and angiography, and the place of CT in the diagnostic approach to these disorders is considered

  18. Cirrhosis: CT and MR imaging evaluation

    International Nuclear Information System (INIS)

    Brancatelli, Giuseppe; Federle, Michael P.; Ambrosini, Roberta; Lagalla, Roberto; Carriero, Alessandro; Midiri, Massimo; Vilgrain, Valerie

    2007-01-01

    In this article, we present the CT and MR imaging characteristics of the cirrhotic liver. We describe the altered liver morphology in different forms of viral, alcoholic and autoimmune end-stage liver disease. We present the spectrum of imaging findings in portal hypertension, such as splenomegaly, ascites and varices. We describe the patchy and lacelike patterns of fibrosis, along with the focal confluent form. The process of hepatocarcinogenesis is detailed, from regenerative to dysplastic nodules to overt hepatocellular carcinoma. Different types of non-neoplastic focal liver lesions occurring in the cirrhotic liver are discussed, including arterially enhancing nodules, hemangiomas and peribiliary cysts. We show different conditions causing liver morphology changes that can mimic cirrhosis, such as congenital hepatic fibrosis, 'pseudo-cirrhosis' due to breast metastases treated with chemotherapy, Budd-Chiari syndrome, sarcoidosis and cavernous transformation of the portal vein

  19. Cirrhosis: CT and MR imaging evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brancatelli, Giuseppe [Sezione di Radiologia, Ospedale Specializzato in Gastroenterologia, ' Saverio de Bellis' -IRCCS, 70013 Castellana Grotte (Bari) (Italy) and Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy) and Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, 15213 Pittsburgh, PA (United States)]. E-mail: gbranca@yahoo.com; Federle, Michael P. [Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, 15213 Pittsburgh, PA (United States); Ambrosini, Roberta [Department of Diagnostic and Interventional Radiology, ' Maggiore della Carita' University Hospital, ' A.Avogadro' Eastern Piemonte University, Corso Mazzini 18, Novara (Italy); Lagalla, Roberto [Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy); Carriero, Alessandro [Department of Diagnostic and Interventional Radiology, ' Maggiore della Carita' University Hospital, ' A.Avogadro' Eastern Piemonte University, Corso Mazzini 18, Novara (Italy); Midiri, Massimo [Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy); Vilgrain, Valerie [Service de Radiologie, Hopital Beaujon, 100 Boulevard du General Leclerc, 92118 Clichy (France)

    2007-01-15

    In this article, we present the CT and MR imaging characteristics of the cirrhotic liver. We describe the altered liver morphology in different forms of viral, alcoholic and autoimmune end-stage liver disease. We present the spectrum of imaging findings in portal hypertension, such as splenomegaly, ascites and varices. We describe the patchy and lacelike patterns of fibrosis, along with the focal confluent form. The process of hepatocarcinogenesis is detailed, from regenerative to dysplastic nodules to overt hepatocellular carcinoma. Different types of non-neoplastic focal liver lesions occurring in the cirrhotic liver are discussed, including arterially enhancing nodules, hemangiomas and peribiliary cysts. We show different conditions causing liver morphology changes that can mimic cirrhosis, such as congenital hepatic fibrosis, 'pseudo-cirrhosis' due to breast metastases treated with chemotherapy, Budd-Chiari syndrome, sarcoidosis and cavernous transformation of the portal vein.

  20. Abdominal wall hernias: imaging with spiral CT

    International Nuclear Information System (INIS)

    Stabile Ianora, A.A.; Midiri, M.; Vinci, R.; Rotondo, A.; Angelelli, G.

    2000-01-01

    Computed tomography is an accurate method of identifying the various types of abdominal wall hernias, especially if they are clinically occult, and of distinguishing them from other diseases such as hematomas, abscesses and neoplasia. In this study we examined the CT images of 94 patients affected by abdominal wall hernias observed over a period of 6 years. Computed tomography clearly demonstrates the anatomical site of the hernial sac, the content and any occlusive bowel complications due to incarceration or strangulation. Clinical diagnosis of external hernias is particularly difficult in obese patients or in those with laparotic scars. In these cases abdominal imaging is essential for a correct preoperative diagnosis and to determine the most effective treatment. (orig.)

  1. Neural network and its application to CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  2. Monte Carlo simulations in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  3. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  4. PET/CT imaging in head and neck tumors

    International Nuclear Information System (INIS)

    Roedel, R.; Palmedo, H.; Reichmann, K.; Reinhardt, M.J.; Biersack, H.J.; Straehler-Pohl, H.J.; Jaeger, U.

    2004-01-01

    To evaluate the usefulness of combined PET/CT examinations for detection of malignant tumors and their metastases in head and neck oncology. 51 patients received whole body scans on a dual modality PET/CT system. CT was performed without i.v. contrast. The results were compared concerning the diagnostic impact of native CT scan on FDG-PET images and the additional value of fused imaging. From 153 lesions were 97 classified as malignant on CT and 136 on FDG/PET images, as suspicious for malignancy in 33 on CT and 7 on FDG-PET and as benign in 23 on CT and 10 on FDG-PET. With combined PET/CT all primary and recurrent tumors could be found, the detection rate in patients with unknown primary tumors was 45%. Compared to PET or CT alone the sensitivity, specifity and accuracy could be significantly improved by means of combined PET/CT. Fused PET/CT imaging with [F18]-FDG and native CT-scanning enables accurate diagnosis in 93% of lesions and 90% of patients with head and neck oncology. (orig.) [de

  5. Evaluation of Marfan syndrome: MR imaging versus CT

    International Nuclear Information System (INIS)

    Soulen, R.L.; Fishman, E.K.; Pyeritz, R.E.; Gott, V.L.; Zerhouni, E.A.

    1986-01-01

    Twenty-five patients with Marfan, syndrome underwent both CT and MR imaging. MR imaging were interpreted in blinded fashion and then compared with CT scans MR imaging was found to be equivalent to CT in the detection of aortic, dural, and hip abnormalities in patients not operated on. MR imaging was superior to CT in the evaluation of postoperative patients because the artifact produced by Bjork-Shirley or St. Jude valves precludes adequate evaluation of the aortic root on CT while producing only a small inferior field distortion (a ''pseudo-ventricular septal defect'') on MR imaging. The absence of radiation exposure is another major advantage of MR imaging in this relatively young population requiring serial studies. The authors conclude that MR imaging is the modality of choice for the evaluation and follow-up of patients with Marfan syndrome and offers an appropriate means of screening their kindred

  6. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  7. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  8. In vivo microCT imaging of rodent cerebral vasculature

    International Nuclear Information System (INIS)

    Seo, Youngho; Hasegawa, Bruce H; Hashimoto, Tomoki; Nuki, Yoshitsugu

    2008-01-01

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I tube x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml -1 at 1.2 ml min -1 ) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel (∼85 μm) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid arteries and major cerebral blood vessels

  9. In vivo microCT imaging of rodent cerebral vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Youngho; Hasegawa, Bruce H [Center for Molecular and Functional Imaging, Department of Radiology, University of California, San Francisco, CA 94143 (United States); Hashimoto, Tomoki; Nuki, Yoshitsugu [Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143 (United States)], E-mail: youngho.seo@radiology.ucsf.edu

    2008-04-07

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I{sub tube} x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml{sup -1} at 1.2 ml min{sup -1}) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel ({approx}85 {mu}m) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid

  10. TU-H-CAMPUS-IeP1-02: Validation of a CT Monte Carlo Software

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R; Wulff, J; Penchev, P [Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen (Germany); Zink, K [Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen (Germany); University Medical Center Giessen and Marburg, Marburg (Germany)

    2016-06-15

    Purpose: To validate the in-house developed CT Monte Carlo calculation tool GMctdospp against reference simulation sets provided by the AAPM in the new report 195. Methods: Deposited energy was calculated in four segments (test 1) and two 10 cm long cylinders (test 2) inside a CTDI phantom (following case #4 of the AAPM report 195). The x-ray point source of a given 120 kVp spectrum was collimated to a fan beam with two thicknesses (10 mm, 80 mm) for a static and a rotational setup. In addition, a given chest geometry was used to calculate deposited energy in several organs for a 0° static and a rotational beam (following case #5 of the AAPM report 195). The results of GMctdospp were compared against the particular mean value of the four quoted Monte Carlo codes (EGSnrc, Geant 4, MCNP and Penelope). Results: Calculated values showed no outliers in any of the cases. Differences between GMctdospp and the particular mean Results: Calculated values showed no outliers in any of the cases. Differences between GMctdospp and the particular mean value were always at similar magnitude compared to the quoted codes. For case #4 (CTDI phantom) the relative differences were within 1.5 %, on average 0.4 % and for case #5 (chest phantom) within 2.5 % and on average 0.85 %. Conclusion: The results confirmed an overall uncertainty of the Monte-Carlo calculation chain in GMctdospp being <2.5 %, for most cases even better. This can be considered small compared to other sources of uncertainties, e.g. virtual source and patient models. The photon transport implemented in GMctdospp inside a voxel-based patient geometry was successfully verified.

  11. Planar imaging quantification using 3D attenuation correction data and Monte Carlo simulated buildup factors

    International Nuclear Information System (INIS)

    Miller, C.; Filipow, L.; Jackson, S.; Riauka, T.

    1996-01-01

    A new method to correct for attenuation and the buildup of scatter in planar imaging quantification is presented. The method is based on the combined use of 3D density information provided by computed tomography to correct for attenuation and the application of Monte Carlo simulated buildup factors to correct for buildup in the projection pixels. CT and nuclear medicine images were obtained for a purpose-built nonhomogeneous phantom that models the human anatomy in the thoracic and abdominal regions. The CT transverse slices of the phantom were converted to a set of consecutive density maps. An algorithm was developed that projects the 3D information contained in the set of density maps to create opposing pairs of accurate 2D correction maps that were subsequently applied to planar images acquired from a dual-head gamma camera. A comparison of results obtained by the new method and the geometric mean approach based on published techniques is presented for some of the source arrangements used. Excellent results were obtained for various source - phantom configurations used to evaluate the method. Activity quantification of a line source at most locations in the nonhomogeneous phantom produced errors of less than 2%. Additionally, knowledge of the actual source depth is not required for accurate activity quantification. Quantification of volume sources placed in foam, Perspex and aluminium produced errors of less than 7% for the abdominal and thoracic configurations of the phantom. (author)

  12. Cardiac MR imaging: Comparison with echocardiography and dynamic CT

    International Nuclear Information System (INIS)

    Colletti, P.M.; Norris, S.; Raval, J.; Boswell, W.; Lee, K.; Ralls, P.; Haywood, J.; Halls, J.

    1986-01-01

    The authors compared gated cardiac MR imaging with two-dimensional and Doppler echocardiography and dynamic CT. Gated cardiac MR imaging (VISTA unit, 0.5 T) was performed in 55 patients with a variety of conditions. Accuracy of diagnosis was compared. CT showed arterial, valvular, and pericardial calcifications not seen on MR imaging. Many lesions were seen as well on CT as on MR imaging. Two-dimensional echocardiography was superior in demonstrating wall motion and valvular disease. MR imaging was superior in demonstrating myocardial structures

  13. CT and MR imaging of rhinocerebral mucormycosis

    International Nuclear Information System (INIS)

    Press, G.A.; Weindling, S.M.; Hesselink, J.R.

    1987-01-01

    Eight patients with biopsy-proven rhinocerebral mucormycosis had postcontrast CT. MR examination (1.5T) was also performed in two patients. Unilateral maxillary and ethmoid sinus disease with orbital apex extension was seen in five of six patients examined preoperatively. T2-weighted images showed intracranial extension as hyperintensity and mass effect in gray matter and white matter of frontal and temporal lobes, hypothalamus, thalamus, and pons in two patients. In the region of septic thrombosis of the cavernous sinus and internal carotid artery, MR detected inflammatory tissue of mixed signal intensity replacing the expected carotid signal void and petrous apex. Resolution of MR findings correlated with clinical improvement in one surviving patient

  14. Superiority of CT imaging reconstruction on Linux OS

    International Nuclear Information System (INIS)

    Lin Shaochun; Yan Xufeng; Wu Tengfang; Luo Xiaomei; Cai Huasong

    2010-01-01

    Objective: To compare the speed of CT reconstruction using the Linux and Windows OS. Methods: Shepp-Logan head phantom in different pixel size was projected to obtain the sinogram by using the inverse Fourier transformation, filtered back projection and Radon transformation on both Linux and Windows OS. Results: CT image reconstruction using the Linux operating system was significantly better and more efficient than Windows. Conclusion: CT image reconstruction using the Linux operating system is more efficient. (authors)

  15. Multislice CT imaging of anomalous coronary arteries

    International Nuclear Information System (INIS)

    Shi Heshui; Aschoff, Andrik J.; Brambs, Hans-Juergen; Hoffmann, Martin H.K.

    2004-01-01

    The purpose of the present study was to evaluate the role of 16 multislice computed tomography (MSCT) to identify the origin of anomalous coronary arteries and to confirm their anatomic course in relation to the great vessels. Accuracy of coronary artery disease (CAD) detection was a secondary aim and was tested with conventional angiograms (CA) serving as standard of reference. Two hundred and forty-two consecutive patients referred for noninvasive coronary CT imaging were reviewed for the study. Sixteen patients (6.6%) with anomalous coronary arteries were detected and included as the study group. MSCT and CA images were analyzed in a blinded fashion for accuracy of anomalous artery origin and path detection. Results were compared in a secondary consensus evaluation. Accuracy ratios to detect CAD with MSCT in all vessels were calculated. Coronary anomalies for all 16 patients were correctly displayed on MSCT. CA alone achieved correct identification of the abnormality in only 53% (P=0.016). Sensitivity and specificity of MSCT to detect significantly stenosed vessels was 90 and 92%. 16-MSCT is accurate to delineate abnormally branching coronary arteries and allows sufficiently accurate detection of obstructive coronary artery disease in distal branches. It should therefore be considered as a prime non-invasive imaging tool for suspected coronary anomalies. (orig.)

  16. Segmentation of liver tumors on CT images

    International Nuclear Information System (INIS)

    Pescia, D.

    2011-01-01

    This thesis is dedicated to 3D segmentation of liver tumors in CT images. This is a task of great clinical interest since it allows physicians benefiting from reproducible and reliable methods for segmenting such lesions. Accurate segmentation would indeed help them during the evaluation of the lesions, the choice of treatment and treatment planning. Such a complex segmentation task should cope with three main scientific challenges: (i) the highly variable shape of the structures being sought, (ii) their similarity of appearance compared with their surrounding medium and finally (iii) the low signal to noise ratio being observed in these images. This problem is addressed in a clinical context through a two step approach, consisting of the segmentation of the entire liver envelope, before segmenting the tumors which are present within the envelope. We begin by proposing an atlas-based approach for computing pathological liver envelopes. Initially images are pre-processed to compute the envelopes that wrap around binary masks in an attempt to obtain liver envelopes from estimated segmentation of healthy liver parenchyma. A new statistical atlas is then introduced and used to segmentation through its diffeomorphic registration to the new image. This segmentation is achieved through the combination of image matching costs as well as spatial and appearance prior using a multi-scale approach with MRF. The second step of our approach is dedicated to lesions segmentation contained within the envelopes using a combination of machine learning techniques and graph based methods. First, an appropriate feature space is considered that involves texture descriptors being determined through filtering using various scales and orientations. Then, state of the art machine learning techniques are used to determine the most relevant features, as well as the hyper plane that separates the feature space of tumoral voxels to the ones corresponding to healthy tissues. Segmentation is then

  17. An attenuation correction method for PET/CT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Yamazaki, Tomohiro; Haneishi, Hideaki

    2006-01-01

    In PET/CT systems, accurate attenuation correction can be achieved by creating an attenuation map from an X-ray CT image. On the other hand, respiratory-gated PET acquisition is an effective method for avoiding motion blurring of the thoracic and abdominal organs caused by respiratory motion. In PET/CT systems employing respiratory-gated PET, using an X-ray CT image acquired during breath-holding for attenuation correction may have a large effect on the voxel values, especially in regions with substantial respiratory motion. In this report, we propose an attenuation correction method in which, as the first step, a set of respiratory-gated PET images is reconstructed without attenuation correction, as the second step, the motion of each phase PET image from the PET image in the same phase as the CT acquisition timing is estimated by the previously proposed method, as the third step, the CT image corresponding to each respiratory phase is generated from the original CT image by deformation according to the motion vector maps, and as the final step, attenuation correction using these CT images and reconstruction are performed. The effectiveness of the proposed method was evaluated using 4D-NCAT phantoms, and good stability of the voxel values near the diaphragm was observed. (author)

  18. Interactive machine learning for postprocessing CT images of hardwood logs

    Science.gov (United States)

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2003-01-01

    This paper concerns the nondestructive evaluation of hardwood logs through the analysis of computed tomography (CT) images. Several studies have shown that the commercial value of resulting boards can be increased substantially if log sawing strategies are chosen using prior knowledge of internal log defects. Although CT imaging offers a potential means of obtaining...

  19. Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily dose recalculation

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume, E-mail: g.landry@lmu.de [Department of Medical Physics, Ludwig-Maximilians-University, Munich D85748, Germany and Department of Radiation Oncology, Ludwig-Maximilians-University, Munich D81377 (Germany); Nijhuis, Reinoud; Thieke, Christian; Reiner, Michael; Ganswindt, Ute; Belka, Claus [Department of Radiation Oncology, Ludwig-Maximilians-University, Munich D81377 (Germany); Dedes, George; Handrack, Josefine; Parodi, Katia [Department of Medical Physics, Ludwig-Maximilians-University, Munich D85748 (Germany); Janssens, Guillaume; Orban de Xivry, Jonathan [ICTEAM, Université Catholique de Louvain, Louvain-La-Neuve B1348 (Belgium); Kamp, Florian; Wilkens, Jan J. [Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich D81675, Germany and Physik-Department, Technische Universität München, Garching D85748 (Germany); Paganelli, Chiara; Riboldi, Marco; Baroni, Guido [Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan 20133 (Italy)

    2015-03-15

    Purpose: Intensity modulated proton therapy (IMPT) of head and neck (H and N) cancer patients may be improved by plan adaptation. The decision to adapt the treatment plan based on a dose recalculation on the current anatomy requires a diagnostic quality computed tomography (CT) scan of the patient. As gantry-mounted cone beam CT (CBCT) scanners are currently being offered by vendors, they may offer daily or weekly updates of patient anatomy. CBCT image quality may not be sufficient for accurate proton dose calculation and it is likely necessary to perform CBCT CT number correction. In this work, the authors investigated deformable image registration (DIR) of the planning CT (pCT) to the CBCT to generate a virtual CT (vCT) to be used for proton dose recalculation. Methods: Datasets of six H and N cancer patients undergoing photon intensity modulated radiation therapy were used in this study to validate the vCT approach. Each dataset contained a CBCT acquired within 3 days of a replanning CT (rpCT), in addition to a pCT. The pCT and rpCT were delineated by a physician. A Morphons algorithm was employed in this work to perform DIR of the pCT to CBCT following a rigid registration of the two images. The contours from the pCT were deformed using the vector field resulting from DIR to yield a contoured vCT. The DIR accuracy was evaluated with a scale invariant feature transform (SIFT) algorithm comparing automatically identified matching features between vCT and CBCT. The rpCT was used as reference for evaluation of the vCT. The vCT and rpCT CT numbers were converted to stopping power ratio and the water equivalent thickness (WET) was calculated. IMPT dose distributions from treatment plans optimized on the pCT were recalculated with a Monte Carlo algorithm on the rpCT and vCT for comparison in terms of gamma index, dose volume histogram (DVH) statistics as well as proton range. The DIR generated contours on the vCT were compared to physician-drawn contours on the rpCT

  20. Importance of PET/CT for imaging of colorectal cancer

    International Nuclear Information System (INIS)

    Meinel, F.G.; Schramm, N.; Graser, A.; Reiser, M.F.; Rist, C.; Haug, A.R.

    2012-01-01

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has emerged as a very useful imaging modality in the management of colorectal carcinoma. Data from the literature regarding the role of PET/CT in the initial diagnosis, staging, radiotherapy planning, response monitoring and surveillance of colorectal carcinoma is presented. Future directions and economic aspects are discussed. Computed tomography (CT), magnetic resonance imaging (MRI) and FDG-PET for colorectal cancer and endorectal ultrasound for rectal cancer. Combined FDG-PET/CT. While other imaging modalities allow superior visualization of the extent and invasion depth of the primary tumor, PET/CT is most sensitive for the detection of distant metastases of colorectal cancer. We recommend a targeted use of PET/CT in cases of unclear M staging, prior to metastasectomy and in suspected cases of residual or recurrent colorectal carcinoma with equivocal conventional imaging. The role of PET/CT in radiotherapy planning and response monitoring needs to be determined. Currently there is no evidence to support the routine use of PET/CT for colorectal screening, staging or surveillance. To optimally exploit the synergy between morphologic and functional information, FDG-PET should generally be performed as an integrated FDG-PET/CT with a contrast-enhanced CT component in colorectal carcinoma. (orig.) [de

  1. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  2. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  3. The construction of trunk voxel phantom by using CT images and application to 3 dimensional radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. S.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    2001-10-01

    Trunk voxel phantom was constructed by using whole body CT images and tumor doses were calculated by using Monte Carlo method after simulating situation of radiotheraphy treatment planning. The whole body CT images of VHP (Visual Human Project) man were acquired from National Library of Medicine of USA. 153 slices of trunk part were extracted from whole body CT images and MCNP4B, a general purpose Monte Carlo code, was used for dose calculation. Gray scale of CT images were converted into density of medium and processed into trunk voxel phantom ported to MCNP4B input deck. The conversion method was verified by comparing cross sectional images of voxel phantom with original CT images. Tumor volumes with diameter of 3 cm were defined in liver, stomach and right lung and irradiated with 5, 10 and 15 MeV gamma beam with diameter of 6 cm. The technical basis for 3D dose calculation was established through this study for localization of 3D RTP system.

  4. Evaluation of a patient-specific Monte Carlo software for CT dosimetry

    International Nuclear Information System (INIS)

    Myronakis, M.; Perisinakis, K.; Tzedakis, A.; Gourtsoyianni, S.; Damilakis, J.

    2009-01-01

    The aim was to validate the ImpactMC computed tomography (CT) dosimetry software that allows patient-specific dose determination. Measured values of head- and body-weighted CT dose index (CTDIw) were compared with corresponding values derived using ImpactMC software. A physical anthropomorphic phantom simulating the average adult was employed to study the effect of exposure parameters used to produce the input image set on a normalised dose output and the relationship between exposure parameters selected for simulation on the dose output. The difference between CTDIw values obtained through measurements and simulations were found to be up to 12.8 and 18.3% for head and body phantoms, respectively. Exposure parameters of the image set used as input were found to have a minor impact on the normalised dose output. Simulations confirmed the expected linear relationship between dose and tube load and the power law relationship between dose and tube potential. Results demonstrate that ImpactMC may be capable of providing reliable CT dose estimates. (authors)

  5. Performance of three-photon PET imaging: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Kacperski, Krzysztof; Spyrou, Nicholas M

    2005-01-01

    We have recently introduced the idea of making use of three-photon positron annihilations in positron emission tomography. In this paper, the basic characteristics of the three-gamma imaging in PET are studied by means of Monte Carlo simulations and analytical computations. Two typical configurations of human and small animal scanners are considered. Three-photon imaging requires high-energy resolution detectors. Parameters currently attainable by CdZnTe semiconductor detectors, the technology of choice for the future development of radiation imaging, are assumed. Spatial resolution is calculated as a function of detector energy resolution and size, position in the field of view, scanner size and the energies of the three-gamma annihilation photons. Possible ways to improve the spatial resolution obtained for nominal parameters, 1.5 cm and 3.2 mm FWHM for human and small animal scanners, respectively, are indicated. Counting rates of true and random three-photon events for typical human and small animal scanning configurations are assessed. A simple formula for minimum size of lesions detectable in the three-gamma based images is derived. Depending on the contrast and total number of registered counts, lesions of a few mm size for human and sub mm for small animal scanners can be detected

  6. GPU based Monte Carlo for PET image reconstruction: parameter optimization

    International Nuclear Information System (INIS)

    Cserkaszky, Á; Légrády, D.; Wirth, A.; Bükki, T.; Patay, G.

    2011-01-01

    This paper presents the optimization of a fully Monte Carlo (MC) based iterative image reconstruction of Positron Emission Tomography (PET) measurements. With our MC re- construction method all the physical effects in a PET system are taken into account thus superior image quality is achieved in exchange for increased computational effort. The method is feasible because we utilize the enormous processing power of Graphical Processing Units (GPUs) to solve the inherently parallel problem of photon transport. The MC approach regards the simulated positron decays as samples in mathematical sums required in the iterative reconstruction algorithm, so to complement the fast architecture, our work of optimization focuses on the number of simulated positron decays required to obtain sufficient image quality. We have achieved significant results in determining the optimal number of samples for arbitrary measurement data, this allows to achieve the best image quality with the least possible computational effort. Based on this research recommendations can be given for effective partitioning of computational effort into the iterations in limited time reconstructions. (author)

  7. Accelerated Compressed Sensing Based CT Image Reconstruction.

    Science.gov (United States)

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  8. Accelerated Compressed Sensing Based CT Image Reconstruction

    Directory of Open Access Journals (Sweden)

    SayedMasoud Hashemi

    2015-01-01

    Full Text Available In X-ray computed tomography (CT an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  9. Measurement of parapharyngeal space using CT images

    International Nuclear Information System (INIS)

    Ichimura, Keiichi; Kase, Yasuhiro; Iinuma, Toshitaka

    1991-01-01

    Parapharyngeal space can be defined as a potential space surrounded by deglutitional and masticator muscles and their covering, superficial and middle layer of deep cervical fascia. Parapharyngeal space has traditionally been divided by styloid process and fascia of tensor veli palatini muscle (nasopharyngeal level) or fascia of stylopharyngeus muscle (oropharyngeal level) into two compartments, prestyloid and poststyloid spaces. The latter is often called as carotid space. Prestyloid portion exclusively contains fat tissue, which yields hypoabsorption area in CT films and high density area in MRI. In most of papers in radiological journals, the term of parapharyngeal space is regarded as its prestyloid portion which is clearly identified. Axial CT images of 144 patients without any naso- or oropharyngeal lesions were analyzed. Two reference levels of nasopharynx were adopted for the study. The upper level passes through the plane of fossa of Rosenmuller, and the lower reference level transects soft palate. The following parameters of the space were measured; Length and width of the whole space, length and width of prestyloid fatty space, and furthermore, width of pre- and poststyloid space, that were divided by a imaginary line pararell to the axis of the whole space (the upper level); Length and width of the whole space, length of base and height of a triangle of the prestyloid part (the lower level). While parapharyngeal space was symmmetrical in the upper level, the rate of asymmetry amounted to a fourth in the lower level. Prestyloid space was broader than poststyloid one in the upper level. Men were dominant in length of the space in both the upper and the lower level and in length of the base of fatty space in the lower level. There was no difference between any age groups other than in fatty area in the lower level. Teens tended to be narrow, while 60's and older were wide. (author)

  10. Ring artifacts removal from synchrotron CT image slices

    International Nuclear Information System (INIS)

    Wei Zhouping; Chapman, Dean; Wiebe, Sheldon

    2013-01-01

    Ring artifacts can occur in reconstructed images from x-ray Computerized Tomography (CT) as full or partial concentric rings superimposed on the scanned structures. Due to the data corruption by those ring artifacts in CT images, qualitative and quantitative analysis of these images are compromised. In this paper, we propose to correct the ring artifacts on the reconstructed synchrotron radiation (SR) CT image slices. The proposed correction procedure includes the following steps: (1). transform the reconstructed CT images into polar coordinates; (2) apply discrete two-dimensional (2D) wavelet transform to the polar image to decompose it into four image components: low pass band image component, as well as the components from horizontal, vertical and diagonal details bands; (3). apply 2D Fourier transform to the vertical details band image component only, since the ring artifacts become vertical lines in the polar coordinates; (4). apply Gaussian filtering in Fourier domain along the abscissa direction to suppress the vertical lines, since the information of the vertical lines in Fourier domain is completely condensed to that direction; (5). perform inverse Fourier transform to get the corrected vertical details band image component; (6). perform inverse wavelet transform to get the corrected polar image; (7). transform the corrected polar image back to Cartesian coordinates to get the CT image slice with reduced ring artifacts. This approach has been successfully used on CT data acquired from the Biomedical Imaging and Therapy (BMIT) beamline in Canadian Light Source (CLS), and the results show that the ring artifacts in original SR CT images have been effectively suppressed with all the structure information in the image preserved.

  11. CT and MRI techniques for imaging around orthopedic hardware

    Energy Technology Data Exchange (ETDEWEB)

    Do, Thuy Duong; Skornitzke, Stephan; Weber, Marc-Andre [Heidelberg Univ. (Germany). Dept. of Clinical Radiology; Sutter, Reto [Uniklinik Balgrist, Zurich (Switzerland). Radiology

    2018-01-15

    Orthopedic hardware impairs image quality in cross-sectional imaging. With an increasing number of orthopedic implants in an aging population, the need to mitigate metal artifacts in computed tomography and magnetic resonance imaging is becoming increasingly relevant. This review provides an overview of the major artifacts in CT and MRI and state-of-the-art solutions to improve image quality. All steps of image acquisition from device selection, scan preparations and parameters to image post-processing influence the magnitude of metal artifacts. Technological advances like dual-energy CT with the possibility of virtual monochromatic imaging (VMI) and new materials offer opportunities to further reduce artifacts in CT and MRI. Dedicated metal artifact reduction sequences contain algorithms to reduce artifacts and improve imaging of surrounding tissue and are essential tools in orthopedic imaging to detect postoperative complications in early stages.

  12. Reconstruction CT imaging of the hypopharynx and the larynx

    International Nuclear Information System (INIS)

    Okuno, Tetsuji; Fujimura, Akiko; Murakami, Yasushi; Shiga, Hayao

    1986-01-01

    The multiplanar reconstruction CT imaging of the hypopharynx and the larynx was performed on a total of 20 cases: 8 with laryngeal carcinomas, 6 with hypopharyngeal carcinomas, 4 with vocal cord paralyses due to various causes, 1 with laryngeal amyloidosis, 1 with inflammatory granuloma of the hypopharynx. Coronal, segittal, and parasagittal reconstruction images were obtained from either 1 or 2 mm overlapping axial scans with 4 or 5 mm slice thickness (3 cases) using 5 sec scan times during queit breathing. In 15 cases with coronal reconstruction imaging, the anatomical derangements of the laryngopharyngeal structures especially along the undersurface of the true vocal cord to the false cord level, the lateral wall of the pyriform sinus, and the paraglottic space were demonstrated more clearly than the axial CT imaging. In 5 cases with sagittal reconstruction imaging, the vertical extension of the lesions through the anterior commisure was more clearly depicted than the axial CT imaging. In 8 cases with parasagittal reconstruction imaging, which is along the vocal fold or across the aryepiglottic fold, pathological changes along the aryepiglottic fold, the arytenoid-corniculate cartilage complex, and the tip of the pyriform sinus were more clearly demonstrated than the axial CT imaging. In determining the feasibility of conservation surgery of the larynx and the hypopharynx, reconstruction CT imaging is recommended as the diagnostic procedure of a choice, which would supplement the findings of the routine axial CT imaging. (author)

  13. Imaging of Acute Mesenteric Ischemia Using Multidetector CT and CT Angiography in a Porcine Model

    OpenAIRE

    Rosow, David E.; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S.; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I.; Mueller, Peter R.; Castillo, Carlos Fernández-del; Warshaw, Andrew L.; Thayer, Sarah P.

    2005-01-01

    Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly f...

  14. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  15. Dual scan CT image recovery from truncated projections

    Science.gov (United States)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  16. CT and MR imaging characteristics of infantile hepatic hemangioendothelioma

    International Nuclear Information System (INIS)

    Feng Shiting; Chan Tao; Ching, A.S.C.; Sun Canhui; Guo Huanyi; Fan Miao; Meng Quanfei; Li Ziping

    2010-01-01

    Aim: This study aims to analyze computed tomography (CT) and magnetic resonance (MR) imaging features of infantile hepatic hemangioendotheliomas before and after treatment. Materials and methods: CT and MR examinations of seven infants with biopsy proven hepatic hemangioendotheliomas were retrospectively analyzed. The distribution, number, size, imaging appearance, enhancement pattern and post-treatment changes of the tumors were evaluated. Results: A total of 153 hepatic hemangioendotheliomas were detected on CT (111) and MR (42) imaging. In six infants, 109/111 (98.2%) tumors were hypodense and 2/111 (1.8%) lesions contained calcification on unenhanced CT. On MR imaging, all 42 lesions in one infant were heterogeneously T1-hypointense and T2-hyperintense compared to the normal liver parenchyma. Contrast-enhanced CT and MRI showed peripheral rim (51.6%), uniform (48.4%), fibrillary (33.3%), and nodular (28.8%) contrast enhancement in the hepatic arterial phase. Homogeneous (100%), rim (98.2%) and mixed enhancement patterns were noted in tumors 2.0 cm and 1.0-2.0 cm in diameter respectively in the hepatic arterial phase. In three patients who underwent steroid therapy, follow-up CT examination demonstrated tumor size reduction and increased intra-tumoral calcification in two patients. Conclusion: Infantile hepatic hemangioendotheliomas show some typical imaging features and size-dependent pattern of contrast enhancement on CT and MR imaging, which allow accurate imaging diagnosis and post-treatment evaluation.

  17. Development of a 3-dimensional CT using an image intensifier

    International Nuclear Information System (INIS)

    Toyofuku, Fukai

    1992-01-01

    A prototype of three-dimensional CT (Fluoroscopic CT) has been developed using an image intensifier as a two-dimensional X-ray detector. A patient on a rotating table is projected onto an image intensifier by a cone beam of X-ray from the X-ray tube. A total of 390 projection images covering 180 degrees are acquired in a single scan (13 sec) and stored on a digital frame recorder (512 x 256 x 8-bit x 480). The transverse axial images are reconstructed by using the usual CT reconstruction algorithm, while longitudinal section images such as sagittal, coronal, oblique, and panoramic images are obtained by directly back-projecting the filtered projection image onto the sections. The radiation exposure was measured with an ionization chamber, and the exposure of the present fluoroscopic CT is about 10 to 20 times less than that of conventional X-ray CT. A similar monochromatic X-ray CT system has also been developed using synchrotron radiation. Large area parallel X-rays are obtained from a wiggler beam using a silicon crystal with [311] asymmetric reflection. By taking two images above and below iodine K-absorption edge (33.17 keV), iodine image is obtained. (author)

  18. PET/CT. Dose-escalated image fusion?

    International Nuclear Information System (INIS)

    Brix, G.; Beyer, T.

    2005-01-01

    Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hard- and software of PET/CT systems. (orig.)

  19. SPECT/CT imaging in children with papillary thyroid carcinoma

    International Nuclear Information System (INIS)

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E.

    2011-01-01

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  20. CT myocardial perfusion imaging. Ready for prime time?

    Energy Technology Data Exchange (ETDEWEB)

    Takx, Richard A.P.; Celeng, Csilla [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Schoepf, U.J. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Ashley River Tower, Heart and Vascular Center, Charleston, SC (United States)

    2018-03-15

    The detection of functional coronary artery stenosis with coronary CT angiography (CCTA) is suboptimal. Additional CT myocardial perfusion imaging (CT-MPI) may be helpful to identify patients with myocardial ischaemia in whom coronary revascularization therapy would be beneficial. CT-MPI adds incremental diagnostic and prognostic value over obstructive disease on CCTA. It allows for the quantitation of myocardial blood flow and calculation of coronary flow reserve and shows good correlation with {sup 15}O-H{sub 2}O positron emission tomography and invasive fractional flow reserve. In addition, patients prefer CCTA/CT-MPI over SPECT, MRI and invasive coronary angiography. CT-MPI is ready for clinical use for detecting myocardial ischaemia caused by obstructive disease. Nevertheless, the clinical utility of CT-MPI to identify ischaemia in patients with non-obstructive/microvascular disease still has to be established. (orig.)

  1. CT images of infantile viral encephalitis

    International Nuclear Information System (INIS)

    Sugimoto, Tateo; Okazaki, Hitoshi; Woo, Man

    1985-01-01

    Cranial CT scanning was undertaken in 40 patients with infantile viral encephalitis seen from 1977 to 1983. According to the pathogenic viruses, abnormal CT findings were detected most frequently in cases of herpes simplex encephalitis (HSE), followed by non-eruptive viral encephalitis, measles encephalitis, and rubella encephalitis in that order, which coincided well with neurological prognosis. Although CT findings lay within a normal range in cases of measles encephalitis, except a case in which cerebral ventricle was slightly dilated, the degree of consciousness disturbance was unfavorable and it persisted long. This revealed that there is no distinct correlation between the degree of consciousness disturbance and CT findings. Normal CT findings were detected in 13% of patients aged less than 5 years and 76.5% of patients aged 5 years or more. In many patients who had an attack of viral encephalitis at the age of 5 years or more, epileptic seizures occurred frequently, even though CT findings were normal. (Namekawa, K.)

  2. A modified VMAT adaptive radiotherapy for nasopharyngeal cancer patients based on CT-CT image fusion

    International Nuclear Information System (INIS)

    Jin, Xiance; Han, Ce; Zhou, Yongqiang; Yi, Jinling; Yan, Huawei; Xie, Congying

    2013-01-01

    To investigate the feasibility and benefits of a modified adaptive radiotherapy (ART) by replanning in the initial CT (iCT) with new contours from a repeat CT (rCT) based on CT-CT image fusion for nasopharyngeal cancer (NPC) patients underwent volumetric modulated arc radiotherapy (VMAT). Nine NPC patients underwent VMAT treatment with a rCT at 23rd fraction were enrolled in this study. Dosimetric differences for replanning VMAT plans in the iCT and in the rCT were compared. Volumetric and dosimetric changes of gross tumor volume (GTV) and organs at risk (OARs) of this modified ART were also investigated. No dosimetric differences between replanning in the iCT and in the rCT were observed. The average volume of GTV decreased from 78.83 ± 38.42 cm 3 in the iCT to 71.44 ± 37.46 cm 3 in the rCT, but with no significant difference (p = 0.42).The average volume of the left and right parotid decreased from 19.91 ± 4.89 cm 3 and 21.58 ± 6.16 cm 3 in the iCT to 11.80 ± 2.79 cm 3 and 13.29 ± 4.17 cm 3 in the rCT (both p < 0.01), respectively. The volume of other OARs did not shrink very much. No significant differences on PTV GTV and PTV CTV coverage were observed for replanning with this modified ART. Compared to the initial plans, the average mean dose of the left and right parotid after re-optimization were decreased by 62.5 cGy (p = 0.05) and 67.3 cGy (p = 0.02), respectively, and the V5 (the volume receiving 5 Gy) of the left and right parotids were decreased by 7.8% (p = 0.01) and 11.2% (p = 0.001), respectively. There was no significant difference on the dose delivered to other OARs. Patients with NPC undergoing VMAT have significant anatomic and dosimetric changes to parotids. Repeat CT as an anatomic changes reference and re-optimization in the iCT based on CT-CT image fusion was accurate enough to identify the volume changes and to ensure safe dose to parotids

  3. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  4. CT and MR imaging features of hydrocephalus

    International Nuclear Information System (INIS)

    Shier, C.K.; George, A.E.; de Leon, M.J.; Stylopoulos, L.A.; Pinto, R.S.

    1989-01-01

    Sylvian fissure and sulcal enlargement is generally perceived as indicative of cortical atrophy and has been used by surgeons in cases of suspected hydrocephalus as a criterion for exclusion from ventricular shunting procedure. The authors have observed sylvian fissure collapse following ventricular shunting in several patients with communicating hydrocephalus (CH). The purpose of this study was to determine the incidence of this finding in patients with CH. The pre- and postshunt CT and MR images of 30 patients with communicating hydrocephalus were reviewed. As anticipated, after shunting a diminution in caliber of the lateral ventricle bodies, temporal horns, and third ventricle occurred in a majority of cases. However, sulcal width paradoxically decreased in 13% of cases after shunt, and sylvian fissure size decreased in seven patients after shunt (23%). In summary, large sylvian fissures and focally dilated sulci do not rule out the presence of hydrocephalus and may in fact act as cerebrospinal fluid reservoirs in cases of obstruction higher along the cerebral convexities

  5. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  6. The findings and the role of axial CT imaging and 3D imaging of gastric lesion by spiral CT

    International Nuclear Information System (INIS)

    Lee, Dong Ho; Ko, Young Tae

    1996-01-01

    The purpose of this study is to assess the efficacy of axial CT imaging and 3D imaging by spiral CT in the detection and evaluation of gastric lesion. Seventy-seven patients with pathologically-proven gastric lesions underwent axial CT and 3D imaging by spiral CT. There were 49 cases of advanced gastric carcinoma(AGC), 21 of early gastric carcinoma (EGC), three of benign ulcers, three of leiomyomas, and one case of lymphoma. Spiral CT was performed with 3-mm collimation, 4.5mm/sec table feed, and 1-1.5-mm reconstruction interval after the ingestion of gas. 3D imaging was obtained using the SSD technique, and on analysis a grade was given(excellent, good, poor). Axial CT scan was performed with 5-mm collimation, 7mm/sec table feed, and 5-mm reconstruction interval after the ingestion of water. Among 49 cases of AGC, excellent 3D images were obtained in seven patients (14.3%), good 3D images in 30(61.2%), and poor 3D images in 12(24.5%). Among the 12 patients with poor images, the cancers were located at the pyloric antrum in eight cases, were AGC Borrmann type 4 in three cases, and EGC-mimicking lesion in one case. Using axial CT scan alone, Borrmann's classification based tumor morphology were accurately identified in 67.3% of cases, but using 3D imaging, the corresponding figure was 85.7%. In 33 cases receiving surgery, good correlation between axial CT scan and pathology occurred in 72.7% of T class, and 69.7% of N class. Among 21 cases of EGC, excellent 3D images were obtained in three patients (14.3%), good 3D images in 14 (66.7%), and poor 3D images in two (9.5%). The other two cases of EGC were not detected. By axial CT scan, no tumor was detected in four cases, and there were two doubtful cases. 3D images of three benign ulcers were excellent in one case and good in two. 3D images of three leiomyomas and one lymphoma were excellent. Combined axial CT imaging and 3D imaging by spiral CT has the potential to accurately diagnose gastric lesions other than AGC

  7. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  8. Holographic observation of magnetic resonance image CT of intracranial tumors

    International Nuclear Information System (INIS)

    Iwata, Kinjiro; Watanabe, Saburo; Yuasa, Hiromi; Yamada, Takahisa; Hoshino, Daisaku; Suzuki, Masane; Saito, Takayuki.

    1987-01-01

    In 1975, we developed a new method of 3-dimensional observation of CT pictures using Gabor's holography principle. In this study, we are reporting our experience with the multi-tomogram holography using magnetic resonance image CT in order to reconstruct 3-dimensional viewing of the central nervous system and intracranial lesions. (J.P.N.)

  9. The ratio of ICRP103 to ICRP60 calculated effective doses from CT: Monte Carlo calculations with the ADELAIDE voxel paediatric model and comparisons with published values

    International Nuclear Information System (INIS)

    Caon, Martin

    2013-01-01

    The ADELAIDE voxel model of paediatric anatomy was used with the EGSnrc Monte Carlo code to compare effective dose from computed tomography (CT) calculated with both the ICRP103 and ICRP60 definitions which are different in their tissue weighting factors and in the included tissues. The new tissue weighting factors resulted in a lower effective dose for pelvis CT (than if calculated using ICRP60 tissue weighting factors), by 6.5 % but higher effective doses for all other examinations. ICRP103 calculated effective dose for CT abdomen + pelvis was higher by 4.6 %, for CT abdomen (by 9.5 %), for CT chest + abdomen + pelvis (by 6 %), for CT chest + abdomen (by 9.6 %), for CT chest (by 10.1 %) and for cardiac CT (by 11.5 %). These values, along with published values of effective dose from CT that were calculated for both sets of tissue weighting factors were used to determine single values for the ratio ICRP103:ICRP60 calculated effective doses from CT, for seven CT examinations. The following values for ICRP103:ICRP60 are suggested for use to convert ICRP60 calculated effective dose to ICRP103 calculated effective dose for the following CT examinations: Pelvis CT, 0.75; for abdomen CT, abdomen + pelvis CT, chest + abdomen + pelvis CT, 1.00; for chest + abdomen CT, and for chest CT. 1.15; for cardiac CT 1.25.

  10. Imaging of acute mesenteric ischemia using multidetector CT and CT angiography in a porcine model.

    Science.gov (United States)

    Rosow, David E; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I; Mueller, Peter R; Fernández-del Castillo, Carlos; Warshaw, Andrew L; Thayer, Sarah P

    2005-12-01

    Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly facilitates the use of CT angiography (CTA) in the clinical setting. We sought to determine whether M.D.CT-CTA could accurately demonstrate vascular anatomy and capture the earliest stages of mesenteric ischemia in a porcine model. Pigs underwent embolization of branches of the superior mesenteric artery, then imaging by M.D.CT-CTA with three-dimensional reconstruction protocols. After scanning, diseased bowel segments were surgically resected and pathologically examined. Multidetector row CT and CT angiography reliably defined normal and occluded mesenteric vessels in the pig. It detected early changes of ischemia including poor arterial enhancement and venous dilatation, which were seen in all ischemic animals. The radiographic findings--compared with pathologic diagnoses-- predicted ischemia, with a positive predictive value of 92%. These results indicate that M.D.CT-CTA holds great promise for the early detection necessary for successful treatment of acute mesenteric ischemia.

  11. PET/CT Atlas on Quality Control and Image Artefacts

    International Nuclear Information System (INIS)

    2014-01-01

    Combined positron emission tomography (PET)/computed tomography (CT) imaging has become a routine procedure in diagnostic radiology and nuclear medicine. The clinical review of both PET and PET/CT images requires a thorough understanding of the basics of image formation as well as an appreciation of variations of inter-patient and intra-patient image appearance. Such variations may be caused by variations in tracer accumulation and metabolism, and, perhaps more importantly, by image artefacts related to methodological pitfalls of the two modalities. This atlas on quality control (QC) and PET/CT artefacts provides guidance on typical image distortions in clinical PET/CT usage scenarios. A number of cases are presented to provide nuclear medicine and radiology professionals with an assortment of examples of possible image distortions and errors in order to support the correct interpretation of images. About 70 typical PET and PET/CT cases, comprised of image sets and cases, have been collected in this book, and all have been catalogued and have explanations as to the causes of and solutions to each individual image problem. This atlas is intended to be used as a guide on how to take proper QC measures, on performing situation and problem analysis, and on problem prevention. This book will be especially useful to medical physicists, physicians, technologists and service engineers in the clinical field

  12. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    Science.gov (United States)

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  13. Imaging fusion (SPECT/CT) in degenerative disease of spine

    International Nuclear Information System (INIS)

    Bernal, P.; Ucros, G.; Bermudez, S.; Ocampo, M.

    2007-01-01

    Full text: Objective: To determine the utility of Fusion Imaging SPECT/CT in degenerative pathology of the spine and to establish the impact of the use of fusion imaging in spinal pain due to degenerative changes of the spine. Materials and methods: 44 Patients (M=21, F=23) average age of 63 years and with degenerative pathology of spine were sent to Diagnosis Imaging department in FSFB. Bone scintigraphy (SPECT), CT of spine (cervical: 30%, Lumbar 70%) and fusion imaging were performed in all of them. Bone scintigraphy was carried out in a gamma camera Siemens Diacam double head attached to ESOFT computer. The images were acquired in matrix 128 x 128, 20 seg/imag, 64 images. CT of spine was performed same day or two days after in Helycoidal Siemens somatom emotion CT. The fusion was done in a Dicom workstation in sagital, axial and coronal reconstruction. The findings were evaluated by 2 Nuclear Medicine physicians and 2 radiologists of the staff of FSFB in an independent way. Results: Bone scan (SPECT) and CT of 44 patients were evaluated. CT showed facet joint osteoarthrities in 27 (61.3%) patients, uncovertebral joint arthrosis in 7 (15.9%), bulging disc in 9(20.4%), spinal nucleus lesion in 7(15.9%), osteophytes in 9 (20.4%), spinal foraminal stenosis in 7 (15.9%), spondylolysis/spondylolisthesis in 4 (9%). Bone scan showed facet joint osteoarthrities in 29 (65.9%), uncovertebral joint arthrosis in 4 (9%), osteophytes in 9 (20.4%) and normal 3 (6.8%). The imaging fusion showed coincidence findings (main lesion in CT with high uptake in scintigraphy) in 34 patients (77.2%) and no coincidence in 10 (22.8%). In 15 (34.09%) patients the fusion provided additional information. The analysis of the findings of CT and SPECT showed similar results in most of the cases and the fusion didn't provide additional information but it allowed to confirm the findings but when the findings didn't match where the CT showed several findings and SPECT only one area with high uptake

  14. CT and MR imaging findings of sinonasal angiomatous polyps

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jing [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Man, Fengyuan [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing (China); Deng, Kai [Department of Radiology, Qingdao No. 4 People' s Hospital, Qingdao, Shandong (China); Zheng, Yuanyuan [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Hao, Dapeng, E-mail: haodp_2009@163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Xu, Wenjian, E-mail: cjr.xuwenjian@vip.163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China)

    2014-03-15

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP.

  15. CT and MR imaging findings of sinonasal angiomatous polyps

    International Nuclear Information System (INIS)

    Zou, Jing; Man, Fengyuan; Deng, Kai; Zheng, Yuanyuan; Hao, Dapeng; Xu, Wenjian

    2014-01-01

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP

  16. Recurrent postoperative sciatica: Evaluation with MR imaging and enhanced CT

    International Nuclear Information System (INIS)

    Duoauferrier, R.; Frocrain, L.; Husson, J.L.

    1987-01-01

    The authors prospectively compared surface coil MR (SCMR) imaging and CT with iodinate contrast enhancement in 50 patients with recurrent postoperative sciatica. Of the 50 patients enrolled in the study, surgical treatment was elected in 27 patients after independent examination of SCMR imaging and enhanced CT. All predictions made with the 27 SCMR images were surgically confirmed. The surgical findings were 20 recurrent disk herniations, five recurrent disk herniations with scar tissue, one disk herniation above the level of diskectomy, and one disk herniation below the level of diskectomy. The surgical findings of the 12 patients who had scar tissue on CT were seven recurrent disk herniations, four recurrent disk herniations with scar tissue, and one disk herniation below the operated level. SCMR imaging was more sensitive and more specific than CT to differentiate scar tissue from recurrent disk herniation

  17. MR imaging and CT findings after liver transplantation

    International Nuclear Information System (INIS)

    Langer, M.; Langer, R.; Scholz, A.; Zwicker, C.; Astinet, F.

    1990-01-01

    The aim of the paper is to evaluate MR imaging and dynamic CT as noninvasive procedures to image signs of graft failure after an orthotopic liver transplantation (OLT). Thirty MR studies and 50 dynamic CT examinations were performed within 20 days after OLT. MR examinations were performed with a 0.5-T Siemens Magnetom. CT scans were obtained by using a Siemens Somatom Plus. In all patients, MR images demonstrated a perivascular rim of intermediate signal intensity on T1-weighted and increased signal intensity on T2-weighted images in the hilum of the liver; in 20/26, this was seen in peripheral areas also. In all patients, a perivascular area of low attenuation was diagnosed at angio-CT

  18. Correlative Imaging in a Patient with Cystic Thymoma: CT, MR and PET/CT Comparison

    International Nuclear Information System (INIS)

    Romeo, Valeria; Esposito, Alfredo; Maurea, Simone; Camera, Luigi; Mainenti, Pier Paolo; Palmieri, Giovannella; Buonerba, Carlo; Salvatore, Marco

    2015-01-01

    Cystic thymoma is a rare variant of thymic neoplasm characterized by almost complete cystic degeneration with mixed internal structure. We describe a case of a 60 year-old woman with a cystic thymoma studied with advanced tomographic imaging stydies. CT, MRI and PET/CT with 18 F-FDG were performed; volumetric CT and MRI images provided better anatomic evaluation for pre-operative assessment, while PET/CT was helpful for lesion characterization based on 18 F-FDG uptake. Although imaging studies are mandatory for pre-operative evaluation of cystic thymoma, final diagnosis still remains surgical. A 60-year-old woman with recent chest pain and no history of previous disease was admitted to our departement to investigate the result of a previous chest X-ray that showed bilateral mediastinal enlargement; for this purpose, enhanced chest CT scan was performed using a 64-rows scanner (Toshiba, Aquilion 64, Japan) before and after intravenous bolus administration of iodinated non ionic contrast agent; CT images demonstrated the presence of a large mediastinal mass (11×8 cm) located in the anterior mediastinum who extended from the anonymous vein to the cardio-phrenic space, compressing the left atrium and causing medium lobe atelectasis; bilateral pleural effusion was also present. In conclusion, correlative imaging plays a foundamental role for the diagnostic evaluation of patient with cystic thymoma. In particular, volumetric CT and MRI studies can provide better anatomic informations regarding internal structure and local tumor spread for pre-operative assessment. Conversely, metabolic imaging using 18 F-FDG PET/CT is helpful for lesion characterization differentiating benign from malignant lesion on the basis of intense tracer uptake. The role of PET/MRI is still under investigation. However, final diagnosis still remains surgical even though imaging studies are mandatory for pre-operative patient management

  19. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  20. Lung cancer mimicking lung abscess formation on CT images

    OpenAIRE

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Patient: Male, 64 Final Diagnosis: Lung pleomorphic carcinoma Symptoms: Cough • fever Medication: — Clinical Procedure: — Specialty: Oncology Objective: Unusual clinical course Background: The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resemble...

  1. Normalized glandular dose (DgN) coefficients for flat-panel CT breast imaging

    International Nuclear Information System (INIS)

    Thacker, Samta C; Glick, Stephen J

    2004-01-01

    The development of new digital mammography techniques such as dual-energy imaging, tomosynthesis and CT breast imaging will require investigation of optimal camera design parameters and optimal imaging acquisition parameters. In optimizing these acquisition protocols and imaging systems it is important to have knowledge of the radiation dose to the breast. This study presents a methodology for estimating the normalized glandular dose to the uncompressed breast using the geometry proposed for flat-panel CT breast imaging. The simulation uses the GEANT 3 Monte Carlo code to model x-ray transport and absorption within the breast phantom. The Monte Carlo software was validated for breast dosimetry by comparing results of the normalized glandular dose (DgN) values of the compressed breast to those reported in the literature. The normalized glandular dose was then estimated for a range of breast diameters from 10 cm to 18 cm using an uncompressed breast model with a homogeneous composition of adipose and glandular tissue, and for monoenergetic x-rays from 10 keV to 120 keV. These data were fit providing expressions for the normalized glandular dose. Using these expressions for the DgN coefficients and input variables such as the diameter, height and composition of the breast phantom, the mean glandular dose for any spectra can be estimated. A computer program to provide normalized glandular dose values has been made available online. In addition, figures displaying energy deposition maps are presented to better understand the spatial distribution of dose in CT breast imaging

  2. Castleman disease of the neck: CT and MR imaging findings

    International Nuclear Information System (INIS)

    Jiang, Xin-hua; Song, Hao-ming; Liu, Qing-yu; Cao, Yun; Li, Guo-hong; Zhang, Wei-dong

    2014-01-01

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases

  3. Castleman disease of the neck: CT and MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin-hua [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Song, Hao-ming [Department of Cardiology, Shanghai Tongji Hospital, Shanghai 200065 (China); Liu, Qing-yu [Department of Radiology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120 (China); Cao, Yun [Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Li, Guo-hong [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Zhang, Wei-dong, E-mail: dongw.z@163.com [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China)

    2014-11-15

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases.

  4. Clinical applications of SPECT/CT in imaging the extremities

    International Nuclear Information System (INIS)

    Huellner, Martin W.; Strobel, Klaus

    2014-01-01

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  5. Clinical applications of SPECT/CT in imaging the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, Martin W. [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland); Strobel, Klaus [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland)

    2014-05-15

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  6. Image quality assessment for CT used on small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co [Universidad Nacional de Colombia, Departamento de Física, Grupo de Física Médica (Colombia)

    2016-07-07

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  7. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  8. 'Ready-access' CT imaging for an orthopaedic trauma clinic.

    LENUS (Irish Health Repository)

    Cawley, D

    2011-03-01

    \\'Ready-Access\\' to CT imaging facilities in Orthopaedic Trauma Clinics is not a standard facility. This facility has been available at the regional trauma unit, in Merlin Park Hospital, Galway for the past four years. We reviewed the use of this facility over a 2-year period when 100 patients had CT scans as part of their trauma clinic assessment. The rate of CT scan per clinic was 0.6. The mean waiting time for a CT scan was 30 minutes. 20 (20%) new fractures were confirmed, 33 (33%) fractures were out-ruled, 25 (25%) fractures demonstrated additional information and 8 (8%) had additional fractures. 20 (20%) patients were discharged and 12 (12%) patients were admitted as a result of the CT scan. It adds little time and cost to CT scanning lists.

  9. Three-dimensional multislice CT imaging of otitis media

    International Nuclear Information System (INIS)

    Suzuki, Miyako; Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro; Wada, Akihiro; Ando, Ichiro

    2002-01-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  10. Three-dimensional multislice CT imaging of otitis media

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Miyako [Yanagibasi Hospital, Tokyo (Japan); Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro [Juntendo Univ., Tokyo (Japan). School of Medicine; Wada, Akihiro; Ando, Ichiro [Juntendo Univ., Chiba (Japan). Urayasu Hospital

    2002-07-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  11. MCID: A Software Tool to Provide Monte Carlo Driven Dosimetric Calculations Using Multimodality NM Images

    International Nuclear Information System (INIS)

    Vergara Gil, Alex; Torres Aroche, Leonel A; Coca Péreza, Marco A; Pacilio, Massimiliano; Botta, Francesca; Cremonesi, Marta

    2016-01-01

    Aim: In this work, a new software tool (named MCID) to calculate patient specific absorbed dose in molecular radiotherapy, based on Monte Carlo simulation, is presented. Materials & Methods: The inputs for MCID are two co-registered medical images containing anatomical (CT) and functional (PET or SPECT) information of the patient. The anatomical image is converted to a density map, and tissues segmentation is provided considering compositions and densities from ICRU 44 and ICRP; the functional image provides the cumulative activity map at voxel level (figure 1). MCID creates an input file for Monte Carlo (MC) codes such as MCNP5 and GATE, and converts the MC outputs into an absorbed dose image. Results: The developed tool allows estimating dose distributions for non-uniform activities distributions and non-homogeneous tissues. It includes tools for delineation of volumes of interest, and dosimetric data analysis. Procedures to decrease the calculation time are implemented in order to allow its use in clinical settings. Dose–volume histograms are computed and presented from the obtained dosimetric maps as well as dose statistics such as mean, minimum and maximum dose values; the results can be saved in common medical image formats (Interfile, DICOM, Analyze, MetaImage). The MCID was validated by comparing estimated dose values versus reference data, such as gold standards phantoms (OLINDA´s spheres) and other MC simulations of non-homogeneous phantoms. A good agreement was obtained in spheres ranged 1g to 1kg of mass and in non-homogeneous phantoms. Clinical studies were also examined. Dosimetric evaluations in patients undergoing 153Sm-EDTMP therapy for osseous metastases showed non-significant differences with calculations performed by traditional methods. The possibility of creating input files to perform the simulations using the Gate Code has increased the MCID applications and improved its functionality, Different clinical situations including PET and SPECT

  12. Comparison of CT scanning and radionuclide imaging in liver disease

    International Nuclear Information System (INIS)

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient

  13. Skeletal scintigraphy and SPECT/CT in orthopedic imaging

    International Nuclear Information System (INIS)

    Klaeser, B.; Walter, M.; Krause, T.

    2011-01-01

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  14. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  15. Development of information preserving data compression algorithm for CT images

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio

    1989-01-01

    Although digital imaging techniques in radiology develop rapidly, problems arise in archival storage and communication of image data. This paper reports on a new information preserving data compression algorithm for computed tomographic (CT) images. This algorithm consists of the following five processes: 1. Pixels surrounding the human body showing CT values smaller than -900 H.U. are eliminated. 2. Each pixel is encoded by its numerical difference from its neighboring pixel along a matrix line. 3. Difference values are encoded by a newly designed code rather than the natural binary code. 4. Image data, obtained with the above process, are decomposed into bit planes. 5. The bit state transitions in each bit plane are encoded by run length coding. Using this new algorithm, the compression ratios of brain, chest, and abdomen CT images are 4.49, 4.34. and 4.40 respectively. (author)

  16. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus

    2010-01-01

    -invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy......, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and computed tomography (CT) are used to communicate the actual image data created by the modalities. Care must be taken for data security...

  17. Improving the quality of brain CT image from Wavelet filters

    International Nuclear Information System (INIS)

    Pita Machado, Reinaldo; Perez Diaz, Marlen; Bravo Pino, Rolando

    2012-01-01

    An algorithm to reduce Poisson noise is described using Wavelet filters. Five tomographic images of patients and a head anthropomorphic phantom were used. They were acquired with two different CT machines. Due to the original images contain the acquisition noise; some simulated free noise lesions were added to the images and after that the whole images were contaminated with noise. Contaminated images were filtered with 9 Wavelet filters at different decomposition levels and thresholds. Image quality of filtered and unfiltered images was graded using the Signal to Noise ratio, Normalized Mean Square Error and the Structural Similarity Index, as well as, by the subjective JAFROC methods with 5 observers. Some filters as Bior 3.7 and dB45 improved in a significant way head CT image quality (p<0.05) producing an increment in SNR without visible structural distortions

  18. Study of CT image texture using deep learning techniques

    Science.gov (United States)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  19. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  20. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Pt. 2

    International Nuclear Information System (INIS)

    Alt, Celine D.; Kauczor, Hans-Ulrich; Hallscheidt, Peter; Brocker, Kerstin A.; Eichbaum, Michael; Sohn, Christof; Arnegger, Florian U.

    2011-01-01

    To compose diagnostic standard operating procedures for both clinical and imaging assessment for vulvar and vaginal cancer, for vaginal sarcoma, and for ovarian cancer. The literature was reviewed for diagnosing the above mentioned malignancies in the female pelvis. Special focus herein lies in tumor representation in MRI, followed by the evaluation of CT and PET/CT for this topic. MRI is a useful additional diagnostic complement but by no means replaces established methods of gynecologic diagnostics and ultrasound. In fact, MRI is only implemented in the guidelines for vulvar cancer. According to the current literature, CT is still the cross-sectional imaging modality of choice for evaluating ovarian cancer. PET/CT appears to have advantages for staging and follow-up in sarcomas and cancers of the ovaries. (orig.)

  1. Advances in fusion of PET, SPET, CT und MRT images

    International Nuclear Information System (INIS)

    Pietrzyk, U.

    2003-01-01

    Image fusion as part of the correlative analysis for medical images has gained ever more interest and the fact that combined systems for PET and CT are commercially available demonstrates the importance for medical diagnostics, therapy and research oriented applications. In this work the basics of image registration, its different strategies and the mathematical and physical background are described. A successful image registration is an essential prerequisite for the next steps, namely correlative medical image analysis. Means to verify image registration and the different modes for integrated display are presented and its usefulness is discussed. Possible limitations in applying image fusion in order to avoid misinterpretation will be pointed out. (orig.) [de

  2. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  3. Lung cancer mimicking lung abscess formation on CT images.

    Science.gov (United States)

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  4. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  5. Primary staging of laryngeal and hypopharyngeal cancer: CT, MR imaging and dual-energy CT

    International Nuclear Information System (INIS)

    Kuno, Hirofumi; Onaya, Hiroaki; Fujii, Satoshi; Ojiri, Hiroya; Otani, Katharina; Satake, Mitsuo

    2014-01-01

    Laryngeal and hypopharyngeal cancer, in particular T4a disease associated with cartilage invasion and extralaryngeal spread, needs to be evaluated accurately because treatment can impact heavily on a patient's quality of life. Reliable imaging tools are therefore indispensible. CT offers high spatial and temporal resolution and remains the preferred imaging modality. Although cartilage invasion can be diagnosed with acceptable accuracy by applying defined criteria for combinations of erosion, lysis and transmural extralaryngeal spread, iodine-enhanced tumors and non-ossified cartilage are sometimes difficult to distinguish. MR offers high contrast resolution for images without motion artifacts, although inflammatory changes in cartilage sometimes resemble cartilage invasion. With dual-energy CT, combined iodine overlay images and weighted average images can be used for evaluation of cartilage invasion, since iodine enhancement is evident in tumor tissue but not in cartilage. Extralaryngeal spread can be evaluated from CT, MR or dual-energy CT images and the routes of tumor spread into the extralaryngeal soft tissue must be considered; (1) via the thyrohyoid membrane along the superior laryngeal neurovascular bundle, (2) via the inferior pharyngeal constrictor muscle, and (3) via the cricothyroid membrane. Radiologists need to understand the advantages and limitations of each imaging modality for staging of laryngeal and hypopharyngeal cancer

  6. Developing optimized CT scan protocols: Phantom measurements of image quality

    International Nuclear Information System (INIS)

    Zarb, Francis; Rainford, Louise; McEntee, Mark F.

    2011-01-01

    Purpose: The increasing frequency of computerized tomography (CT) examinations is well documented, leading to concern about potential radiation risks for patients. However, the consequences of not performing the CT examination and missing injuries and disease are potentially serious, impacting upon correct patient management. The ALARA principle of dose optimization must be employed for all justified CT examinations. Dose indicators displayed on the CT console as either CT dose index (CTDI) and/or dose length product (DLP), are used to indicate dose and can quantify improvements achieved through optimization. Key scan parameters contributing to dose have been identified in previous literature and in previous work by our group. The aim of this study was to optimize the scan parameters of mA; kV and pitch, whilst maintaining image quality and reducing dose. This research was conducted using psychophysical image quality measurements on a CT quality assurance (QA) phantom establishing the impact of dose optimization on image quality parameters. Method: Current CT scan parameters for head (posterior fossa and cerebrum), abdomen and chest examinations were collected from 57% of CT suites available nationally in Malta (n = 4). Current scan protocols were used to image a Catphan 600 CT QA phantom whereby image quality was assessed. Each scan parameter: mA; kV and pitch were systematically reduced until the contrast resolution (CR), spatial resolution (SR) and noise were significantly lowered. The Catphan 600 images, produced by the range of protocols, were evaluated by 2 expert observers assessing CR, SR and noise. The protocol considered as the optimization threshold was just above the setting that resulted in a significant reduction in CR and noise but not affecting SR at the 95% confidence interval. Results: The limit of optimization threshold was determined for each CT suite. Employing optimized parameters, CTDI and DLP were both significantly reduced (p ≤ 0.001) by

  7. CT and MR imaging after middle ear surgery

    International Nuclear Information System (INIS)

    Koesling, Sabrina; Bootz, F.

    2001-01-01

    This article describes the current value of imaging in patients after stapes surgery and surgery after chronic otitis media including cholesteatoma. Possibilities and limits of computed tomography (CT) and MRI are described and most important investigation parameters are mentioned. After otosclerosis surgery, CT is the method of first choice in detection of reasons for vertigo and/or recurrent hearing loss in the later postoperative phase. CT may show the position and condition of prosthesis, scarring around the prosthesis and otospongiotic foci. Sometimes, it gives indirect hints for perilymphatic fistulas and incus necrosis. MRI is able to document inner ear complications. CT has a high negative predictive value in cases with a free cavity after mastoidectomy. Localized opacities or total occlusion are difficult to distinguish by CT alone. MRI provides important additional information in the differentiation of cholesterol granuloma, cholesteatoma, effusion, granulation and scar tissue

  8. CT and MR imaging after middle ear surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, Sabrina E-mail: sabrina.koesling@medizin.uni-halle.de; Bootz, F

    2001-11-01

    This article describes the current value of imaging in patients after stapes surgery and surgery after chronic otitis media including cholesteatoma. Possibilities and limits of computed tomography (CT) and MRI are described and most important investigation parameters are mentioned. After otosclerosis surgery, CT is the method of first choice in detection of reasons for vertigo and/or recurrent hearing loss in the later postoperative phase. CT may show the position and condition of prosthesis, scarring around the prosthesis and otospongiotic foci. Sometimes, it gives indirect hints for perilymphatic fistulas and incus necrosis. MRI is able to document inner ear complications. CT has a high negative predictive value in cases with a free cavity after mastoidectomy. Localized opacities or total occlusion are difficult to distinguish by CT alone. MRI provides important additional information in the differentiation of cholesterol granuloma, cholesteatoma, effusion, granulation and scar tissue.

  9. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...

  10. Multidetector row CT for imaging the paediatric tracheobronchial tree

    International Nuclear Information System (INIS)

    Papaioannou, Georgia; Young, Carolyn; Owens, Catherine M.

    2007-01-01

    The introduction of multidetector row computed tomography (MDCT) scanners has altered the approach to imaging the paediatric thorax. In an environment where the rapid acquisition of CT data allows general hospitals to image children instead of referring them to specialist paediatric centres, it is vital that general radiologists have access to protocols appropriate for paediatric applications. Thus a dramatic reduction in the delivered radiation dose is ensured with optimal contrast bolus delivery and timing, and inappropriate repetition of the scans is avoided. This article focuses on the main principles of volumetric CT imaging that apply generically to all MDCT scanners. We describe the reconstruction techniques for imaging the paediatric thorax and the low-dose protocols used in our institution on a 16-slice detector CT scanner. Examples of the commonest clinical applications are also given. (orig.)

  11. Intrathoracic kidney. Diagnostic value of CT scan imaging

    International Nuclear Information System (INIS)

    Baillet, A.M.; Escure, M.N.

    1988-01-01

    Two cases are reported of an ectopic right kidney that was partially intrathoracic in position. Diagnosis was simple from CT scan imaging appearances, the examination being performed to investigate an intrathoracic mass. Images showed a tissular mass within a fatty zone in sections without contrast and the typical appearance of the kidney on sections with contrast [fr

  12. Improved CT imaging in diagnosis of ankylosing spondylitis

    International Nuclear Information System (INIS)

    Mai Yuanfeng; Sun Haixing; Ling Jian; Kuang Jianyi; Pan Ximin

    2006-01-01

    Objective: To evaluate the improved CT imaging of sacroiliac joint in diagnosis of ankylosing spondylitis (AS). Methods: 22 patients, diagnosed as AS by clinical and radiography, undertook both conventional and improved CT imaging. All images were comparatively studied. Results: With conventional CT imaging, in the 44 joints of 22 cases, unremarkable images were obtained in 3 cases; early stage AS was found in 15 joints of 9 cases; AS in progressive stage was revealed in 8 cases/16 joints, stabled AS was presented in 2 cases/4 joints. There were 23 joints in 12 cases diagnosed as early term by improved imaging, progressive staged AS was shown in 8 cases/16 joints as, stable AS was demonstrated in 2 cases/4 joints. Conclusion: The improved imaging is sensitive in the diagnosis of early staged AS, for the application of thin slice scan, which helps to reduce partial volume effect. Scanning along the longitudinal axis of the sacroiliac joint extends the observation of erosion of the joint surface. For progressive or stable staged AS, the alterations of bone and joint space are prominent, improved CT imaging is not superior to the conventional. (authors)

  13. CT imaging of cervical spinal vascular malformation

    International Nuclear Information System (INIS)

    Ueda, Takashi; Iwamoto, Munehisa; Miyamoto, Etsuo; Kuriyama, Tsuyoshi; Hayama, Tsuneto

    1982-01-01

    The patient had a history of the onset of motor paralysis of the right upper and lower extremities. Eight years later, numbness of the right upper extremity and a severe neck pain developed, and transverse paralysis of the lower extremities appeared in about 10 hours. CT demonstrated the presence of spinal vascular abnormality. Angiography suggested arteriovenous malformation of glomus type. (Chiba, N.)

  14. CT imaging of cervical spinal vascular malformation

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takashi; Iwamoto, Munehisa; Miyamoto, Etsuo; Kuriyama, Tsuyoshi; Hayama, Tsuneto [Wakayama Red Cross Hospital, Wakayama (Japan)

    1982-05-01

    The patient had a history of the onset of motor paralysis of the right upper and lower extremities. Eight years later, numbness of the right upper extremity and a severe neck pain developed, and transverse paralysis of the lower extremities appeared in about 10 hours. CT demonstrated the presence of spinal vascular abnormality. Angiography suggested arteriovenous malformation of glomus type.

  15. Enabling image fusion for a CT guided needle placement robot

    Science.gov (United States)

    Seifabadi, Reza; Xu, Sheng; Aalamifar, Fereshteh; Velusamy, Gnanasekar; Puhazhendi, Kaliyappan; Wood, Bradford J.

    2017-03-01

    Purpose: This study presents development and integration of hardware and software that enables ultrasound (US) and computer tomography (CT) fusion for a FDA-approved CT-guided needle placement robot. Having real-time US image registered to a priori-taken intraoperative CT image provides more anatomic information during needle insertion, in order to target hard-to-see lesions or avoid critical structures invisible to CT, track target motion, and to better monitor ablation treatment zone in relation to the tumor location. Method: A passive encoded mechanical arm is developed for the robot in order to hold and track an abdominal US transducer. This 4 degrees of freedom (DOF) arm is designed to attach to the robot end-effector. The arm is locked by default and is released by a press of button. The arm is designed such that the needle is always in plane with US image. The articulated arm is calibrated to improve its accuracy. Custom designed software (OncoNav, NIH) was developed to fuse real-time US image to a priori-taken CT. Results: The accuracy of the end effector before and after passive arm calibration was 7.07mm +/- 4.14mm and 1.74mm +/-1.60mm, respectively. The accuracy of the US image to the arm calibration was 5mm. The feasibility of US-CT fusion using the proposed hardware and software was demonstrated in an abdominal commercial phantom. Conclusions: Calibration significantly improved the accuracy of the arm in US image tracking. Fusion of US to CT using the proposed hardware and software was feasible.

  16. CT perfusion imaging in the management of posterior reversible encephalopathy

    International Nuclear Information System (INIS)

    Casey, S.O.; McKinney, A.; Teksam, M.; Liu, H.; Truwit, C.L.

    2004-01-01

    A 13-year-old girl with a renal transplant presented with hypertension and seizures. CT and MRI demonstrated typical bilateral parietal, occipital and posterior frontal cortical and subcortical edema, thought to represent posterior reversible encephalopathy syndrome. The cause was presumed to be hypertension. Antihypertensive therapy was started, lowering of the blood pressure in the range of 110-120 mmHg systolic. However, stable xenon (Xe) CT perfusion imaging revealed ischemia within the left parietal occipital region. The antihypertensive was adjusted which increased both the systolic and diastolic blood pressure by 31 mm Hg. The patient was re-imaged with Xe CT and was found to have resolution of the ischemic changes within the left parietal occipital region. In this report, we present a case in which stable Xe CT was used to monitor the degree of cerebral perfusion and guide titration of antihypertensive therapy. Such brain perfusion monitoring may have helped to prevent infarction of our patient. (orig.)

  17. Pediatric renal leukemia: spectrum of CT imaging findings

    International Nuclear Information System (INIS)

    Hilmes, Melissa A.; Dillman, Jonathan R.; Mody, Rajen J.; Strouse, Peter J.

    2008-01-01

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  18. Pediatric renal leukemia: spectrum of CT imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Hilmes, Melissa A. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); Vanderbilt University Children' s Hospital, Section of Pediatric Radiology, Nashville, TN (United States); Dillman, Jonathan R. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Mody, Rajen J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Division of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Ann Arbor, MI (United States); Strouse, Peter J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States)

    2008-04-15

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  19. CT and MR imaging in the evaluation of leptomeningeal metastases

    International Nuclear Information System (INIS)

    Xiao Jiahe; Wang Dayou; Deng Kaihong

    1999-01-01

    Objective: To study the manifestations of leptomeningeal metastases on CT and MR imaging, and evaluate the diagnostic significance of both modalities for this disease. Methods: Clinical and neuroradiological data of 21 cases with leptomeningeal metastases were retrospectively reviewed. In this series, 16 patients were studied by CT and 7 patients by MRI, 2 patients by both CT and MRI. Results: Abnormal enhancement of pia and subarachnoid space, appearing as diffuse pattern in 10 cases, nodular pattern in 8 cases and mixed pattern with diffuse plus nodules in 3 cases, were visualized by CE-CT and Gd-MRI. Diffuse enhancement followed the convolutions of gyri and surface of brainstem, and extended into cerebral cisterns and sulci. the foci appeared as enhanced nodules 0.2-3.0 cm in diameter and 1 or more in number. Nodules with infiltration of cerebral parenchymal were found in 4 patients. In 86% of all cases, diffuse or nodular foci occurred in basilar systems and adjacent cerebellar and cerebral sulci. There were 4 cases associated with ependymal nodular enhancement and 10 cases with widened irregular tentorial enhancement. Intracerebral metastases in 9 cases and hydrocephalus in 13 cases were found in this series. Conclusions: CE-CT and Gd-MRI are had significant clinical diagnostic value for leptomeningeal metastases, Gd-MRI is superior to CE-CT. Because of the limitation in the evaluation of leptomeningeal invasion by neoplasms on CT and MRI, definitive diagnosis of leptomeningeal metastases depends on combination of clinical and imaging data

  20. CT and MR imaging of gynecological emergency disease

    International Nuclear Information System (INIS)

    Fujii, Shinya; Kinoshita, Toshibumi; Tahara, Takatoshi; Matsusue, Eiji; Ogawa, Toshihide

    2004-01-01

    We describe the CT and MRI findings of gynecologic emergency diseases: pelvic inflammatory disease, ectopic pregnancy, ovarian hemorrhage, ovarian torsion, rupture of ovarian tumor, eclampsia, and HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome. Diagnostic keys to these diseases are presented in this review. CT and MRI play a complementary role to sonography in accurately diagnosing these diseases. In situations that require an exact, immediate diagnosis, radiologists should be familiar with the key imaging findings. (author)

  1. Atlas of Skeletal SPECT/CT Clinical Images

    International Nuclear Information System (INIS)

    2016-01-01

    The atlas focuses specifically on single photon emission computed tomography/computed tomography (SPECT/CT) in musculoskeletal imaging, and thus illustrates the inherent advantages of the combination of the metabolic and anatomical component in a single procedure. In addition, the atlas provides information on the usefulness of several sets of specific indications. The publication, which serves more as a training tool rather than a textbook, will help to further integrate the SPECT and CT experience in clinical practice by presenting a series of typical cases with many different patterns of SPECT/CT seen in bone scintigraphy

  2. Monte Carlo simulations in multi-detector CT (MDCT) for two PET/CT scanner models using MASH and FASH adult phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, W., E-mail: wbfisica@gmail.com [Bahia Federal Institute of Education, Science and Technology – IFBA, Vitória da Conquista, 45.100-000 (Brazil); Department of Physics, Federal University of Sergipe – UFS, São Cristóvão, 49.100-000 (Brazil); Santos, W.S. [Department of Physics, Federal University of Sergipe – UFS, São Cristóvão, 49.100-000 (Brazil); Paschoal, C.M.M., E-mail: cinthiam.paschoal@gmail.com [Department of Civil Engineering, Vale do Acarau State University – UVA, Sobral 62.040-730 (Brazil); Souza, D.N. [Department of Physics, Federal University of Sergipe – UFS, São Cristóvão, 49.100-000 (Brazil)

    2015-06-01

    The combination of positron emission tomography (PET) and computed tomography (CT) has been extensively used in oncology for diagnosis and staging of tumors, radiotherapy planning and follow-up of patients with cancer, as well as in cardiology and neurology. This study determines by the Monte Carlo method the internal organ dose deposition for computational phantoms created by multidetector CT (MDCT) beams of two PET/CT devices operating with different parameters. The different MDCT beam parameters were largely related to the total filtration that provides a beam energetic change inside the gantry. This parameter was determined experimentally with the Accu-Gold Radcal measurement system. The experimental values of the total filtration were included in the simulations of two MCNPX code scenarios. The absorbed organ doses obtained in MASH and FASH phantoms indicate that bowtie filter geometry and the energy of the X-ray beam have significant influence on the results, although this influence can be compensated by adjusting other variables such as the tube current–time product (mAs) and pitch during PET/CT procedures.

  3. MO-F-CAMPUS-I-03: GPU Accelerated Monte Carlo Technique for Fast Concurrent Image and Dose Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Becchetti, M; Tian, X; Segars, P; Samei, E [Clinical Imaging Physics Group, Department of Radiology, Duke University Me, Durham, NC (United States)

    2015-06-15

    Purpose: To develop an accurate and fast Monte Carlo (MC) method of simulating CT that is capable of correlating dose with image quality using voxelized phantoms. Methods: A realistic voxelized phantom based on patient CT data, XCAT, was used with a GPU accelerated MC code for helical MDCT. Simulations were done with both uniform density organs and with textured organs. The organ doses were validated using previous experimentally validated simulations of the same phantom under the same conditions. Images acquired by tracking photons through the phantom with MC require lengthy computation times due to the large number of photon histories necessary for accurate representation of noise. A substantial speed up of the process was attained by using a low number of photon histories with kernel denoising of the projections from the scattered photons. These FBP reconstructed images were validated against those that were acquired in simulations using many photon histories by ensuring a minimal normalized root mean square error. Results: Organ doses simulated in the XCAT phantom are within 10% of the reference values. Corresponding images attained using projection kernel smoothing were attained with 3 orders of magnitude less computation time compared to a reference simulation using many photon histories. Conclusion: Combining GPU acceleration with kernel denoising of scattered photon projections in MC simulations allows organ dose and corresponding image quality to be attained with reasonable accuracy and substantially reduced computation time than is possible with standard simulation approaches.

  4. MO-F-CAMPUS-I-03: GPU Accelerated Monte Carlo Technique for Fast Concurrent Image and Dose Simulation

    International Nuclear Information System (INIS)

    Becchetti, M; Tian, X; Segars, P; Samei, E

    2015-01-01

    Purpose: To develop an accurate and fast Monte Carlo (MC) method of simulating CT that is capable of correlating dose with image quality using voxelized phantoms. Methods: A realistic voxelized phantom based on patient CT data, XCAT, was used with a GPU accelerated MC code for helical MDCT. Simulations were done with both uniform density organs and with textured organs. The organ doses were validated using previous experimentally validated simulations of the same phantom under the same conditions. Images acquired by tracking photons through the phantom with MC require lengthy computation times due to the large number of photon histories necessary for accurate representation of noise. A substantial speed up of the process was attained by using a low number of photon histories with kernel denoising of the projections from the scattered photons. These FBP reconstructed images were validated against those that were acquired in simulations using many photon histories by ensuring a minimal normalized root mean square error. Results: Organ doses simulated in the XCAT phantom are within 10% of the reference values. Corresponding images attained using projection kernel smoothing were attained with 3 orders of magnitude less computation time compared to a reference simulation using many photon histories. Conclusion: Combining GPU acceleration with kernel denoising of scattered photon projections in MC simulations allows organ dose and corresponding image quality to be attained with reasonable accuracy and substantially reduced computation time than is possible with standard simulation approaches

  5. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  6. Automatic segmentation of liver structure in CT images

    International Nuclear Information System (INIS)

    Bae, K.T.; Giger, M.L.; Chen, C.; Kahn, C.E. Jr.

    1993-01-01

    The segmentation and three-dimensional representation of the liver from a computed tomography (CT) scan is an important step in many medical applications, such as in the surgical planning for a living-donor liver transplant and in the automatic detection and documentation of pathological states. A method is being developed to automatically extract liver structure from abdominal CT scans using a priori information about liver morphology and digital image-processing techniques. Segmentation is performed sequentially image-by-image (slice-by-slice), starting with a reference image in which the liver occupies almost the entire right half of the abdomen cross section. Image processing techniques include gray-level thresholding, Gaussian smoothing, and eight-point connectivity tracking. For each case, the shape, size, and pixel density distribution of the liver are recorded for each CT image and used in the processing of other CT images. Extracted boundaries of the liver are smoothed using mathematical morphology techniques and B-splines. Computer-determined boundaries were compared with those drawn by a radiologist. The boundary descriptions from the two methods were in agreement, and the calculated areas were within 10%

  7. Three-dimensional-CT imaging of colorectal disease with thin collimation helical CT scanning

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Koizumi, Koichi; Sakai, Tatsuya; Kai, Shunkichi; Takatsu, Kazuaki; Maruyama, Masakazu

    1998-01-01

    We have conducted research on three-dimensional (3D)-CT-colonoscopy with thin collimation helical CT scanning over the past three years. This has lately become a subject of special interest. 3D-CT-colonoscopy has three kinds of visualizing methods depending on the threshold setting of CT values. The first one is the virtual endoscopy method which is displayed in a similar fashion to colonoscopic images. The second one is the air image method using the air in the digestive tract as a contrast medium. The third one is the pseudo-tract method which has characteristics of both virtual endoscopy and the air image method and visualizes in a shape of the digestive tract. The image visualized by 3D-CT-colonoscopy is similar to that of conventional colonoscopy and barium enema study, which is obtained with minimal invasion to patients. Obvious advanced carcinomas were easily visualized, and even a small flat polyp measuring 5 mm in size, was able to be observed retrospectively. The characteristics of our method are that we can easily make an examination in a short time and with little dependence on expert technique. Also patients have little discomfort compared to that experienced during colonoscopy and barium enema study. Important features are as follows; long calculation time, insufficient air insufflation, fecal material in the patient''s bowel, whole abdominal scan, and spatial resolution. In the near future, a multislice CT scanner system will have ability to overcome these problems. Therefore, 3D-CT-colonoscopy might be applied in the future for first line examination as a mass screening for colorectal carcinoma. (author)

  8. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  9. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  10. Variation in the quality of CT images of the upper abdomen when CT automatic exposure control is employed

    International Nuclear Information System (INIS)

    Aizawa, Isao; Muramatsu, Yoshihisa; Nomura, Keiichi; Shimizu, Fuminori

    2010-01-01

    The aim of this study was to analyze the reason for variation of image quality in the upper abdomen CT with the use of CT-automatic exposure control (AEC). The CT investigated was 3D modulation in the 16 multi detector row CT (MDCT) and lung cancer screening CT (LSCT) phantom was used to simulate the patient. When there was a phase difference, an image noise increase of around 15% at the maximum was accepted. It is concluded that the major reason for variation in image quality is respiratory motion and the importance of respiration control must be recognized. (author)

  11. Kinematic CT and MR imaging of the patellofemoral joint

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Heller, M.

    1999-01-01

    Anterior knee pain is a frequently encountered orthopedic symptom and is often associated with patellofemoral malalignment, which may cause chondromalacia of the patella. The difficulty in determining the patellar position between 0 and 30 of knee flexion with a conventional axial radiographic examination is well known. The introduction of computed tomography (CT) and magnetic resonance (MR) imaging for the diagnosis of knee joint abnormalities has enabled assessment of the patellar position in this critical range. More recently, emphasis has been placed on dynamic visualization of patellar motion to detect an abnormal tracking pattern. The important influence of the quadriceps muscle on the patellar tracking pattern is well known and has been examined during active knee extension by the use of ultrafast CT, and motion-triggered and ultrafast MR imaging. This article provides an overview of the current status of kinematic CT and MR imaging in the diagnosis of patellofemoral alignment, its clinical implications, and future directions. (orig.)

  12. Recurrent postoperative sciatica: Evaluation with MR imaging and enhanced CT

    International Nuclear Information System (INIS)

    Duvauferrier, R.; Frocain, L.; Husson, J.L.

    1987-01-01

    The authors prospectively compared MR imaging performed with a surface coil and CT performed with iodinated contrast agent enhancement in 50 patients with recurrent postoperative sciatica. Surgical decision was an objective measure of accuracy. Surgical treatment was selected for 27 patients. All 27 underwent MR imaging. The 15 patients who underwent CT/surgical treatment were included in the 27 indications of SCMR. All predictions based on MR imaging findings were confirmed at surgery. There were 25 recurrent disk herniations, including five with scar tissue, and two disk herniations above or below the level of the diskectomy. In the 12 patients with scar tissue detected on CT there were seven recurrent disk hernitions, four recurrent disk herniations with scar tissue, and one disk herniation below the level of the diskectomy

  13. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  14. WE-EF-207-05: Monte Carlo Dosimetry for a Dedicated Cone-Beam CT Head Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A; Zbijewski, W; Xu, J; Dang, H; Stayman, J W; Aygun, N; Koliatsos, V E; Siewerdsen, J H [Johns Hopkins University, Balitmore, MD (United States); Wang, X; Foos, D H [Carestream Health, Rochester, NY (United States)

    2015-06-15

    Purpose: Cone-Beam CT (CBCT) is an attractive platform for point-of-care imaging of traumatic brain injury and intracranial hemorrhage. This work implements and evaluates a fast Monte-Carlo (MC) dose estimation engine for development of a dedicated head CBCT scanner, optimization of acquisition protocols, geometry, bowtie filter designs, and patient-specific dosimetry. Methods: Dose scoring with a GPU-based MC CBCT simulator was validated on an imaging bench using a modified 16 cm CTDI phantom with 7 ion chamber shafts along the central ray for 80–100 kVp (+2 mm Al, +0.2 mm Cu). Dose distributions were computed in a segmented CBCT reconstruction of an anthropomorphic head phantom with 4×10{sup 5} tracked photons per scan (5 min runtime). Circular orbits with angular span ranging from short scan (180° + fan angle) to full rotation (360°) were considered for fixed total mAs per scan. Two aluminum filters were investigated: aggressive bowtie, and moderate bowtie (matched to 16 cm and 32 cm water cylinder, respectively). Results: MC dose estimates showed strong agreement with measurements (RMSE<0.001 mGy/mAs). A moderate (aggressive) bowtie reduced the dose, per total mAs, by 20% (30%) at the center of the head, by 40% (50%) at the eye lens, and by 70% (80%) at the posterior skin entrance. For the no bowtie configuration, a short scan reduced the eye lens dose by 62% (from 0.08 mGy/mAs to 0.03 mGy/mAs) compared to full scan, although the dose to spinal bone marrow increased by 40%. For both bowties, the short scan resulted in a similar 40% increase in bone marrow dose, but the reduction in the eye lens was more pronounced: 70% (90%) for the moderate (aggressive) bowtie. Conclusions: Dose maps obtained with validated MC simulation demonstrated dose reduction in sensitive structures (eye lens and bone marrow) through combination of short-scan trajectories and bowtie filters. Xiaohui Wang and David Foos are employees of Carestream Health.

  15. Fetal doses to pregnant patients from CT with tube current modulation calculated using Monte Carlo simulations and realistic phantoms

    International Nuclear Information System (INIS)

    Gu, J.; George Xu, X.; Caracappa, P. F.; Liu, B.

    2013-01-01

    To investigate the radiation dose to the fetus using retrospective tube current modulation (TCM) data selected from archived clinical records. This paper describes the calculation of fetal doses using retrospective TCM data and Monte Carlo (MC) simulations. Three TCM schemes were adopted for use with three pregnant patient phantoms. MC simulations were used to model CT scanners, TCM schemes and pregnant patients. Comparisons between organ doses from TCM schemes and those from non-TCM schemes show that these three TCM schemes reduced fetal doses by 14, 18 and 25 %, respectively. These organ doses were also compared with those from ImPACT calculation. It is found that the difference between the calculated fetal dose and the ImPACT reported dose is as high as 46 %. This work demonstrates methods to study organ doses from various TCM protocols and potential ways to improve the accuracy of CT dose calculation for pregnant patients. (authors)

  16. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  17. Colonic surveillance by CT colonography using axial images only

    International Nuclear Information System (INIS)

    Bruzzi, John F.; Brennan, Darren D.; Fenlon, Helen M.; Moss, Alan C.; MacMathuna, Padraic

    2004-01-01

    Patients at increased risk of colon cancer require strict colon surveillance. Our objective was to establish the efficacy of 2D axial CT colonography as a surveillance test when performed in routine clinical practice. Eighty-two patients at increased risk of colon cancer underwent CT colonography followed by conventional colonoscopy on the same morning. CT colonography studies were performed on a four-ring multidetector CT scanner (100 mAs, 120 kVp, 4 x 2.5 collimation) and were interpreted by two radiologists using 2D axial images only. Results were correlated with findings at colonoscopy. Note was made of subsequent histology reports from polypectomy specimens. A total of 52 polyps were detected at colonoscopy. Using 2D axial images alone, with no recourse to 2D multiplanar or 3D views, the sensitivity of CT colonography was 100, 33 and 19% for polyps larger than 9, 6-9 and smaller than 6 mm, respectively. Per-patient specificities were 98.8, 96 and 81.5%, respectively. Twenty-nine percent of polyps smaller than 1 cm were adenomatous and there were no histological features of severe dysplasia. CT colonography is a useful colon surveillance tool for patients at increased risk of colon cancer. It has a high specificity for identifying patients who should proceed to colonoscopy and polypectomy, while allowing further colon examination to be deferred in patients with normal studies. Using 2D axial images only, CT colonography can be performed as part of the daily CT workload, with a very low rate of referral for unnecessary colonoscopy. (orig.)

  18. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    International Nuclear Information System (INIS)

    Sattler, Bernhard; Lee, John A.; Lonsdale, Markus; Coche, Emmanuel

    2010-01-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  19. Choline-PET/CT for imaging prostate cancer; Cholin-PET/CT zur Bildgebung des Prostatakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Bernd Joachim [Klinik- und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Treiber, U.; Schwarzenboeck, S.; Souvatzoglou, M. [Klinik fuer Urologie, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany)

    2010-09-15

    PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives are increasingly being used for imaging of prostate cancer. The value of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in biochemical recurrence of prostate cancer has been examined in many studies and demonstrates an increasing importance. Primary prostate cancer can be detected with moderate sensitivity using PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives - the differentiation between benign prostatic hyperplasia, prostatitis or high-grade intraepithelial neoplasia (HGPIN) is not always possible. At the present time [{sup 11}C]choline PET/CT is not recommended in the primary setting but may be utilized in clinically suspected prostate cancer with repeatedly negative prostate biopsies, in preparation of a focused re-biopsy. Promising results have been obtained for the use of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in patients with biochemical recurrence. The detection rate of choline PET and PET/CT for local, regional, and distant recurrence in patients with a biochemical recurrence shows a linear correlation with PSA values at the time of imaging and reaches about 75% in patients with PSA > 3 ng/mL. At PSA values below 1 ng/mL, the recurrence can be diagnosed with choline PET/CT in approximately 1/3 of the patients. PET and PET/CT with [{sup 11}C]- and [{sup 18}F]choline derivates can be helpful for choosing a therapeutic strategy in the sense of an individualized treatment: since an early diagnosis of recurrence is crucial to the choice of optimal treatment. The localization of the site of recurrence - local recurrence, lymph node metastasis or systemic dissemination - has important influence on the therapy regimen. (orig.)

  20. Analysis of CT and PET/SPECT images for dosimetry calculation

    International Nuclear Information System (INIS)

    Massicano, Felipe; Massicano, Adriana V.F.; Silva, Natanael Gomes da; Cintra, Felipe Belonsi; Yoriyaz, Helio; Carvalho, Rodrigo Mueller de

    2009-01-01

    Computer images are routinely used in diagnostic centers and hospitals. In particular in the field of Nuclear Medicine they help in the diagnosis and planning therapy against cancer. In the case of the planning therapy the quantifying the distribution of dose in patients is very important, because it provides an estimate of the dose in the tumor and healthy tissues, allowing a greater understanding on the response and toxicity caused by this dose. The aim of this study is to analyze both kinds of images: CT and PET/SPECT and their potential utilization for dosimetry calculation. PET or SPECT images were analyzed using a Gamma Camera, brand Medis, model Nuclide-TH/22 through image acquisition of scanned phantoms containing a known activity inside their volume so that a relationship between the number of counts for each voxel in the image and the real activity will be constructed. The heterogeneous organism patient's is specified from the computed tomography (CT) through number of Hounsfield. However, there is not a simple correlation to convert Hounsfield numbers into material tissues, therefore, in this work we developed a software in Java to convert Hounsfield numbers in mass density. Moreover, the software provides a map of tissues and a text file containing the elemental weights to be used by the Monte Carlo transport code MCNP5 to perform dose calculations. (author)

  1. The utilization of dual source CT in imaging of polytrauma

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, S. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)], E-mail: savvas.nicolaou@vch.ca; Eftekhari, A.; Sedlic, T.; Hou, D.J.; Mudri, M.J.; Aldrich, John; Louis, L. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)

    2008-12-15

    Despite the growing role of imaging, trauma remains the leading cause of death in people below the age of 45 years in the western industrialized countries. Trauma has been touted as the largest epidemic in the 20th century. The advent of MDCT has been the greatest advance in trauma care in the last 25 years. However, there are still challenges in CT imaging of the polytrauma individual including time restraints, diagnostic errors, radiation dose effects and bridging the gap between anatomy and physiology. This article will analyze these challenges and provide possible solutions offered by the unique design of the dual source CT scanner.

  2. The utilization of dual source CT in imaging of polytrauma

    International Nuclear Information System (INIS)

    Nicolaou, S.; Eftekhari, A.; Sedlic, T.; Hou, D.J.; Mudri, M.J.; Aldrich, John; Louis, L.

    2008-01-01

    Despite the growing role of imaging, trauma remains the leading cause of death in people below the age of 45 years in the western industrialized countries. Trauma has been touted as the largest epidemic in the 20th century. The advent of MDCT has been the greatest advance in trauma care in the last 25 years. However, there are still challenges in CT imaging of the polytrauma individual including time restraints, diagnostic errors, radiation dose effects and bridging the gap between anatomy and physiology. This article will analyze these challenges and provide possible solutions offered by the unique design of the dual source CT scanner

  3. CT imaging of complications of catheter ablation for atrial fibrillation

    International Nuclear Information System (INIS)

    Shroff, G.S.; Guirguis, M.S.; Ferguson, E.C.; Oldham, S.A.A.; Kantharia, B.K.

    2014-01-01

    The complication rate following radiofrequency catheter ablation for atrial fibrillation is low (<5%). Complications include pericardial effusion, cardiac tamponade, pulmonary vein stenosis, oesophageal ulceration or perforation, atrio-oesophageal fistula formation, stroke/transient ischaemic attack, phrenic nerve injury, haematoma at the puncture site, and femoral arteriovenous fistula. Among available imaging tools, computed tomography (CT) can be very useful in diagnosing complications of the procedure, particularly in the subacute and delayed stages after ablation. This review illustrates CT imaging of several of the common and uncommon complications of radiofrequency catheter ablation

  4. Development of PC based Monte Carlo simulations for the calculation of scanner-specific normalized organ doses from CT

    International Nuclear Information System (INIS)

    Jansen, J. T. M.; Shrimpton, P. C.; Zankl, M.

    2009-01-01

    This paper discusses the simulation of contemporary computed tomography (CT) scanners using Monte Carlo calculation methods to derive normalized organ doses, which enable hospital physicists to estimate typical organ and effective doses for CT examinations. The hardware used in a small PC-cluster at the Health Protection Agency (HPA) for these calculations is described. Investigations concerning optimization of software, including the radiation transport codes MCNP5 and MCNPX, and the Intel and PGI FORTRAN compilers, are presented in relation to results and calculation speed. Differences in approach for modelling the X-ray source are described and their influences are analysed. Comparisons with previously published calculations at HPA from the early 1990's proved satisfactory for the purposes of quality assurance and are presented in terms of organ dose ratios for whole body exposure and differences in organ location. Influences on normalized effective dose are discussed in relation to choice of cross section library, CT scanner technology (contemporary multi slice versus single slice), definition for effective dose (1990 and 2007 versions) and anthropomorphic phantom (mathematical and voxel). The results illustrate the practical need for the updated scanner-specific dose coefficients presently being calculated at HPA, in order to facilitate improved dosimetry for contemporary CT practice. (authors)

  5. PET/CT Imaging and Radioimmunotherapy of Prostate Cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Tagawa, Scott T; Goldsmith, Stanley J

    2011-01-01

    disease (ideal for antigen access and antibody delivery). Furthermore, prostate cancer is also radiation sensitive. Prostate-specific membrane antigen is expressed by virtually all prostate cancers, and represents an attractive target for RIT. Antiprostate-specific membrane antigen RIT demonstrates......Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an important role in the clinical management of patients with prostate cancer. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis...... of anatomic, functional, and molecular imaging information. Positron emission tomography (PET)/computed tomography (CT) in oncology is emerging as an important imaging tool. The most common radiotracer for PET/CT in oncology, (18)F-fluorodeoxyglucose (FDG), is not very useful in the imaging of prostate cancer...

  6. Image quality of cone beam CT on respiratory motion

    International Nuclear Information System (INIS)

    Zhang Ke; Li Minghui; Dai Jianrong; Wang Shi

    2011-01-01

    In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform, an image quality phantom, and a kV X-ray CBCT. A total of 21 motion states in the superior-inferior direction and the anterior-posterior direction, separately or together, was simulated by considering different respiration amplitudes, periods and hysteresis. The influence of motion on CBCT image quality was evaluated with the quality indexes of low contrast visibility, geometric accuracy, spatial resolution and uniformity of CT values. The results showed that the quality indexes were affected by the motion more prominently in AP direction than in SI direction, and the image quality was affected by the respiration amplitude more prominently than the respiration period and the hysteresis. The CBCT image quality and its characteristics influenced by the respiration motion, and may be exploited in finding solutions. (authors)

  7. Utilization of CT images for the quantification of FDG uptake

    International Nuclear Information System (INIS)

    Karidioula, I.; De Freitas, D.; Cachin, F.; Geissler, B.; Jullien, Ph.; Maublant, J.

    2006-01-01

    The aim of this study was to evaluate an automatic method based on a computed tomography (CT) derived region of interest (ROI) to quantify the mean standardized uptake value (SUVm) of 18 F-fluoro-deoxy-glucose (FDG) in pulmonary lesions detected by positron emission tomography (PET). A total of 164 pairs of slices were selected in a series of PET/CT studies performed in 26 patients presenting lung tumours of various forms and complexities. On each matched CT slice, a ROI was obtained by growth-region segmentation starting from a pixel contained in the tumour. The obtained ROI was then applied to the PET image to calculate SUVm. Results were compared with the conventional manual method using a geometric ROI positioned directly on the PET lesion. The automatic delineation of the tumour from the CT image was successful in 136 sections (83%). The SUVm calculated by the manual and automatic method were respectively (mean±standard deviation) 5.05±2.39 and 6.70±3.18 (p<0.05). The ROI size (in number of pixels) was respectively 28±23 and 21±17 (p<0.05). The variability of the automatic method was 0% versus 20% for the manual method. SUV of FDG in PET/CT can be calculated with an excellent reproducibility by using the CT-derived limits of the lesion

  8. CT imaging and histopathological features of renal epithelioid angiomyolipomas

    International Nuclear Information System (INIS)

    Cui, L.; Zhang, J.-G.; Hu, X.-Y.; Fang, X.-M.; Lerner, A.; Yao, X.-J.; Zhu, Z.-M.

    2012-01-01

    Aim: To describe computed tomography (CT) imaging and histopathological manifestations of renal epithelioid angiomyolipomas (EAMLs) for better understanding and cognition in the diagnosis of this new category of renal tumours. Materials and methods: Clinical data and CT images from 10 cases of EAML were retrospectively analysed. All patients underwent CT with and without contrast medium administration, with multiplanar reconstruction (MPR) when needed. Results: Plain CT manifestations of EAMLs were a higher density of mass (10–25 HU) than renal parenchyma, bulging contour of the involved kidney, absence of fat, distinct edges without a lobulate appearance. Contrast-enhanced CT features were markedly heterogeneous enhancement (from rapid wash-in to slow wash-out), large tumour size without lobular appearance, complete capsule with distinct margins and frequent mild necrotic areas. Histopathological features were epithelioid cells with eosinophilic cytoplasm, large and deeply stained nuclei, and dense arrangement of tumour cells with patchy necrosis; diffuse sheets of epithelioid cells were positive for HMB-45 (melanoma-associated antigen) and negative for epithelial membrane antigen (EMA) staining. Conclusion: Multiple specific CT features correlated well with the histopathology and may play an important role in the primary diagnosis of EAMLs.

  9. Automatic anatomy recognition on CT images with pathology

    Science.gov (United States)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  10. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.

    Science.gov (United States)

    Xiang, Lei; Wang, Qian; Nie, Dong; Zhang, Lichi; Jin, Xiyao; Qiao, Yu; Shen, Dinggang

    2018-07-01

    Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis result back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeating this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate imaging datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding operations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image. Copyright © 2018. Published by Elsevier B.V.

  11. Image Quality Improvement after Implementation of a CT Accreditation Program

    International Nuclear Information System (INIS)

    Kim, You Sung; Jung, Seung Eun; Choi, Byung Gil; Shin, Yu Ri; Hwang, Seong Su; Ku, Young Mi; Lim, Yeon Soo; Lee, Jae Mun

    2010-01-01

    The purpose of this study was to evaluate any improvement in the quality of abdominal CTs after the utilization of the nationally based accreditation program. Approval was obtained from the Institutional Review Board, and informed consent was waived. We retrospectively analyzed 1,011 outside abdominal CTs, from 2003 to 2007. We evaluated images using a fill-up sheet form of the national accreditation program, and subjectively by grading for the overall CT image quality. CT scans were divided into two categories according to time periods; before and after the implementation of the accreditation program. We compared CT scans between two periods according to parameters pertaining to the evaluation of images. We determined whether there was a correlation between the results of a subjective assessment of the image quality and the evaluation scores of the clinical image. The following parameters were significantly different after the implementation of the accreditation program: identifying data, display parameters, scan length, spatial and contrast resolution, window width and level, optimal contrast enhancement, slice thickness, and total score. The remaining parameters were not significantly different between scans obtained from the two different periods: scan parameters, film quality, and artifacts. After performing the CT accreditation program, the quality of the outside abdominal CTs show marked improvement, especially for the parameters related to the scanning protocol

  12. Automated planning of breast radiotherapy using cone beam CT imaging

    International Nuclear Information System (INIS)

    Amit, Guy; Purdie, Thomas G.

    2015-01-01

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation

  13. Three-dimensional CT endoscopic images of the larynx. Clinical application of helical CT

    International Nuclear Information System (INIS)

    Yumoto, Eiji; Sanuki, Tetsuji; Yasuhara, Yoshifumi; Ochi, Takashi

    1998-01-01

    Twenty-seven patients with several laryngeal ailments underwent helical computed tomography (CT) on 37 occasions. Ten of these 27 patients suffered from unilateral vocal fold paralysis (UVFP). Three-dimensional (3D) images of the laryngeal lumen viewed from various angles were produced for all sets of CT volumetric data, except for three which contained excessive motion artifacts. The present paper examined whether 3D endoscopic images could offer useful diagnostic and therapeutic information about UVFP. The 3D endoscopic images viewed from the tracheal side and the hemilaryngeal images viewed from the opposite side could delineate the vocal folds, ventricular fold and ventricle three-dimensionally. Atrophy and hypotonic changes to the vocal fold and expansion of the ventricle on the affected side were clearly shown. The 3D endoscopic images accurately showed the phonosurgical effects on the laryngeal structures. The 3D endoscopic images could be produced even when the vocal folds could not be observed with conventional endoscopy due to their overadduction. Multiplanar reconstruction (MPR) images in the coronal plane were reconstructed at a right angle to the glottic axis when the whole larynx was deviated. In addition, coronal MPR images showed a better resolution among the different layers of the vocal fold soft tissue than X-ray tomography. In conclusion, 3D endoscopic images combined with coronal MPR images can provide useful diagnostic an therapeutic information about UVFP, although motion artifacts may occur. (author)

  14. Imaging of jaw with dental CT software program: Normal Anatomy

    International Nuclear Information System (INIS)

    Kim, Myong Gon; Seo, Kwang Hee; Jung, Hak Young; Sung, Nak Kwan; Chung, Duk Soo; Kim, Ok Dong; Lee, Young Hwan

    1994-01-01

    Dental CT software program can provide reformatted cross-sectional and panoramic images that cannot be obtained with conventional axial and direct coronal CT scan. The purpose of this study is to describe the method of the technique and to identify the precise anatomy of jaw. We evaluated 13 mandibles and 7 maxillae of 15 subjects without bony disease who were being considered for endosseous dental implants. Reformatted images obtained by the use of bone algorithm performed on GE HiSpeed Advantage CT scanner were retrospectively reviewed for detailed anatomy of jaw. Anatomy related to neurovascular bundle(mandibular foramen, inferior alveolar canal, mental foramen, canal for incisive artery, nutrient canal, lingual foramen and mylohyoid groove), muscular insertion(mylohyoid line, superior and inferior genial tubercle and digastric fossa) and other anatomy(submandibular fossa, sublingual fossa, contour of alveolar process, oblique line, retromolar fossa, temporal crest and retromolar triangle) were well delineated in mandible. In maxilla, anatomy related to neurovascular bundle(greater palatine foramen and groove, nasopalatine canal and incisive foramen) and other anatomy(alveolar process, maxillary sinus and nasal fossa) were also well delineated. Reformatted images using dental CT software program provided excellent delineation of the jaw anatomy. Therefore, dental CT software program can play an important role in the preoperative assessment of mandible and maxilla for dental implants and other surgical conditions

  15. New frontiers in CT imaging of airway disease

    International Nuclear Information System (INIS)

    Grenier, Philippe A.; Beigelman-Aubry, Catherine; Fetita, Catalin; Preteux, Francoise; Brauner, Michel W.; Lenoir, Stephane

    2002-01-01

    Combining helical volumetric CT acquisition and thin-slice thickness during breath hold provides an accurate assessment of both focal and diffuse airway diseases. With multiple detector rows, compared with single-slice helical CT, multislice CT can cover a greater volume, during a simple breath hold, and with better longitudinal and in-plane spatial resolution and improved temporal resolution. The result in data set allows the generation of superior multiplanar and 3D images of the airways, including those obtained from techniques developed specifically for airway imaging, such as virtual bronchography and virtual bronchoscopy. Complementary CT evaluation at suspended or continuous full expiration is mandatory to detect air trapping that is a key finding for depicting an obstruction on the small airways. Indications for CT evaluation of the airways include: (a) detection of endobronchial lesions in patients with an unexplained hemoptysis; (b) evaluation of extent of tracheobronchial stenosis for planning treatment and follow-up; (c) detection of congenital airway anomalies revealed by hemoptysis or recurrent infection; (d) detection of postinfectious or postoperative airway fistula or dehiscence; and (e) diagnosis and assessment of extent of bronchiectasis and small airway disease. Improvement in image analysis technique and the use of spirometrically control of lung volume acquisition have made possible accurate and reproducible quantitative assessment of airway wall and lumen areas and lung density. This contributes to better insights in physiopathology of obstructive lung disease, particularly in chronic obstructive pulmonary disease and asthma. (orig.)

  16. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  17. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China)

    2016-06-15

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  18. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    International Nuclear Information System (INIS)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L

    2016-01-01

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  19. Evaluation of equivalent doses in {sup 18}F PET/CT using the Monte Carlo method with MCNPX code; Avaliação de doses equivalentes em PET/CT com {sup 18}F utilizando o Método Monte Carlo com código MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, Walmir [Instituto Federal de Bahia (IFBA), Vitória da Conquista, BA (Brazil); Santos, William Souza; Perini, Ana Paula; Neves, Lucio Pereira [Universidade Federal de Uberlândia (UFU), Uberlândia, MG (Brazil). Instituto de Física; Caldas, Linda V. E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP (Brazil); Souza, Divanizia N. [Universidade Federal de Sergipe (UFS), São Cristóvão, SE (Brazil)

    2017-07-01

    The present work used the Monte Carlo method (MMC), specifically the Monte Carlo NParticle - MCNPX, to simulate the interaction of radiation involving photons and particles, such as positrons and electrons, with virtual adult anthropomorphic simulators on PET / CT scans and to determine absorbed and equivalent doses in adult male and female patients.

  20. Helical CT imaging of clinically suspected appendicitis: Correlation of CT and histological findings

    International Nuclear Information System (INIS)

    Wong, S.K.; Chan, L.P.; Yeo, A.

    2002-01-01

    PURPOSE: The diagnosis of appendicitis is traditionally made on the basis of clinical findings supported by laboratory results. The aim of our study was to determine the accuracy and feasibility of using a relatively new technique of computed tomography (CT) using only colonic contrast medium. MATERIALS AND METHODS: A total of 50 patients clinically diagnosed as having appendicitis were prospectively examined before surgery with thin-collimation helical CT from the L3 level to the acetabular roof with only rectally administered colon contrast medium. The hard copy CT images were reviewed jointly by two radiologists and a consensus was reached for each patient. The results were then compared with the surgical and histological findings at appendicectomy. RESULTS: There were 35 true-positives, one false-positive, 12 true-negatives and two false-negatives for CT. This yielded an accuracy of 94%, sensitivity of 95%, specificity of 92%, positive predictive value of 97% and negative predictive value of 86%. The appendix was identified in 45 patients (90%) and obscured by an inflammatory mass in the remaining five. An alternative diagnosis was found in 10 of 12 normal CT examinations (83%). CONCLUSION: Helical CT with rectal contrast medium is a quick, well tolerated and accurate test to diagnose appendicitis. It can offer alternative, possibly non-surgical diagnosis in patients who would otherwise have undergone laparotomy. Wong, S.K. et al. (2002)

  1. CT-diskography in patients with sciatica. Comparison with plain CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dullerud, R. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology; Johansen, J.G. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology

    1995-09-01

    The findings at CT-diskography (CT-D), including recording of the pain introduced at contrast injection, were compared with plain CT and MR imaging in 111 disks in 101 patients aged 18 to 68 years. Six disks which were normal at CT had normal CT-D and 5 of them had normal signal on MR imaging. The degree of annular degeneration and the depth of the annular tears were significantly associated with each other and with loss of disk height, but not with size or location of the hernias. Only the depth of the tears was significantly associated with loss of signal on MR. However, frequently complete annular tears and severe annular degeneration were seen in association with small bulges and hernias, even in disks with normal or slightly reduced signal on MR and with normal height. The type and intensity of the pain introduced were associated with each other and with the depth of the annular tears, but not with the degree of annular degeneration, size of the hernia or the MR signal intensity of the disks. Annular degeneration and tears on one hand, and the type and intensity of pain introduced on the other, see to be related rather than separate phenomena. (orig./MG).

  2. CT-diskography in patients with sciatica. Comparison with plain CT and MR imaging

    International Nuclear Information System (INIS)

    Dullerud, R.; Johansen, J.G.

    1995-01-01

    The findings at CT-diskography (CT-D), including recording of the pain introduced at contrast injection, were compared with plain CT and MR imaging in 111 disks in 101 patients aged 18 to 68 years. Six disks which were normal at CT had normal CT-D and 5 of them had normal signal on MR imaging. The degree of annular degeneration and the depth of the annular tears were significantly associated with each other and with loss of disk height, but not with size or location of the hernias. Only the depth of the tears was significantly associated with loss of signal on MR. However, frequently complete annular tears and severe annular degeneration were seen in association with small bulges and hernias, even in disks with normal or slightly reduced signal on MR and with normal height. The type and intensity of the pain introduced were associated with each other and with the depth of the annular tears, but not with the degree of annular degeneration, size of the hernia or the MR signal intensity of the disks. Annular degeneration and tears on one hand, and the type and intensity of pain introduced on the other, see to be related rather than separate phenomena. (orig./MG)

  3. Role of FDG/CT in imaging of renal lesions

    International Nuclear Information System (INIS)

    Kochhar, R.; Manoharan, P.; Brown, R.K.; Dunnick, N.R.; Frey, K.A.; Wong, C.O.

    2010-01-01

    Full text: Focal incidental renal lesions are commonly encountered on positron emission tomography (PET)/computed tomography (CT) imaging. The wast majority of these lesions are benign. However, the interpretation of renal lesions can be problematic if the imaging criteria of simple cysts are not met. Limited literature exists on the characterisation of renal masses with metabolic imaging. The purpose of this article is to focus on the imaging features of benign and malignant renal masses with PET/CT. The lesions discussed include renal cyst, angiomyolipoma, oncocytoma, renal cell carcinoma, renal metastases and other infiltrating neoplastic processes affecting the kidney. Both the anatomical and metabolic features which characterise these benign and malignant entities are described. We emphasise the importance of viewing the CT component to identify the typical morphological features and discuss how to best use hybrid imaging for management of renal lesions. Metabolic imaging has a promising role in the imaging of renal lesions and can help prevent unnecessary biopsies and ensure optimal management of suspicious lesions.

  4. Dental imaging using laminar optical tomography and micro CT

    Science.gov (United States)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  5. Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI

    Science.gov (United States)

    Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian

    2005-04-01

    Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CTCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.

  6. Vascular imaging with spiral CT. The way to CY angiography

    International Nuclear Information System (INIS)

    Prokop, M.; Schaefer, C.; Kalender, W.A.; Polacin, A.; Galanski, M.

    1993-01-01

    Spiral CT is a technique that allows for high-quality two-dimensional angiographic projections and 3D imaging of vascular structures. The authors present the technical and methodological principles of the technique, including scan parameters and parameters of contrast application for various clinical imaging tasks. They present their experience with over 150 clinical cases using spiral CT angiography. Suitable applications of this technique include cogenital anomalies, aneurysms, dissections, stenoses, thrombi and vascular tumor involvement. Given a problem-adapted examination technique, pathologic changes in vessels of as little as 2 mm can be visualized. In some cases with complex vascular anatomy, spiral CT angiography can be superior to arterial angiography. (orig.) [de

  7. Cardiodiagnostic imaging. MRT, CT, echocardiography and other methods

    International Nuclear Information System (INIS)

    Erbel, R.; Kreitner, K.F.; Barkhausen, J.; Thelen, M.

    2007-01-01

    The book presents a differentiated approach to cardiac imaging. The focus is n cardio-MR/-CT and echocardiography. These are highly complex methods involving new equipment, new protocols and indications. The techniques are new and difficult to learn for everybody concerned. MR, CT and echocardiography must always be viewed in the context of other diagnostic methods. The interdisciplinary approach of the book addresses both radiologists and cardiologists and relies on the vast experience of the authors. The book offers more than 500 large high-quality reference images reflecting the latest state of the art. It has amethodological section in which the current methods are described (X-ray, echocardiography, nuclear medicine, angiography, CT, MRT etc.) along with their advantages and shortcomings, and a clinical section in which the main indications are described in the common standardized way (anatomy, clinical picture, interpretation, differential diagnosis). (orig.)

  8. Peritoneal Lymphomatosis Imaged by F-18 FDG PET/CT

    International Nuclear Information System (INIS)

    Park, Eun Kyung; Lee, Se Ryeon; Kim, Young Chul; Oh, Sun Young; Choe, Jae Gol

    2010-01-01

    Peritoneal lymphomatosis is uncommon, but when encountered is associated with aggressive histological subtypes of high-grade lymphoma, such as small-cell, large-cell, mixed large and small cell, non-cleaved, lymphoblastic Burkitt-like, and diffuse large B-cell lymphomas. The CT findings of peritoneal lymphomatosis are linear or nodular peritoneal thickening, retroperitoneal lymphadenopathy, omental and mesenteric involvement with streak-like infiltrations or a bulky mass, bowel wall thickening, hepatosplenomegaly, and ascites. The authors reports report the first FDG PET/CT images of diffuse large B-cell lymphoma of small bowel origin associated with peritoneal lymphomatosis in a 69-year-old man. The lesions demonstrated intense FDG uptake in PET/CT images.

  9. How safe is teleradiological telediagnosis for CT imaging?

    International Nuclear Information System (INIS)

    Ricke, J.; Wolf, M.; Hosten, N.; Zielinski, C.; Liebig, T.; Lopez-Haenninen, E.; Lemke, A.J.; Siekmann, R.; Stroszczynski, C.; Schauer, W.; Amthauer, H.; Kleinholz, L.; Felix, R.

    1997-01-01

    Purpose: To define the value of teleradiographic studies, a comparison was carried out between digitised copies of CT examinations of the skull with the original images. Differences in image quality obtained from a digital scanner and a camera were quantified. Material and method: 56 CT examinations of the skull, 28 of which had discrete abnormalities, were chosen for ROC analysis. The original films were digitised with a Vidar VXR-12 scanner and Panasonic WV-160 and WV-PB 500 cameras. The images were evaluated by five radiologists after image transfer with Video Conference software to a personal computer. Results: For the analysis of the films the area under the ROC curve was 0.91±0.04, for the digital scanner it was 0.85±0.04, for camera WV-BP 500 0.89±0.06 and for camera WE-160 0.87±0.09. Comprison with the film findings showed a minimal p-value of 0.17 which indicated that there was no significant reduction in diagnostic value following digitisation. Conclusion: The probable reason for the slight deterioration using the digital scanner was the reduction to 75 dpi compared with 134 dpi on the CT films. The cameras produce image noise comparable to CT with low window settings and reduced local resolution. We expect similar results for CT with soft tissue windows or for MRT of the skull. Conventional radiographs containing high local resolution, wide grey scale and low image noise would presumably make higher demands on methods of digitisation. (orig.) [de

  10. Periodontoid pseudotumor: CT and MRI imaging

    International Nuclear Information System (INIS)

    Yu, Eugene; Montanera, Walter

    2005-01-01

    Periodontoid pseudotumor (PP) can be a severe and disabling disease. This disease process typically presents in elderly patients with a longstanding history of myelopathy. We reviewed four cases of PP in order to summarize the clinical and imaging features. (orig.)

  11. PET/CT for atherosclerotic plaque imaging

    International Nuclear Information System (INIS)

    Ben-Haim, S.; Technion Institute of Technology, Haifa; Israel, O.; Rambam Medical Center, Haifa

    2006-01-01

    Atherosclerosis is one of the leading causes of morbidity and mortality in the world. Rupture of atherosclerotic plaques and thrombi formation are the primary mechanisms of myocardial infarction or cerebrovascular accident. Angiography is considered to represent the gold standard technique for imaging of the arterial lumen. However, in recent years it has been realized that the primary determinant of the atherosclerotic plaque stability is the composition of the plaque and other imaging modalities have been suggested. The purpose of this review is to briefly summarize the knowledge accumulated to present date regarding the potential role of fluo deoxyglucose imaging in the assessment of atherosclerosis and to compare this modality to additional available imaging approaches for the detection of vulnerable plaques

  12. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  13. Study of CT-based positron range correction in high resolution 3D PET imaging

    International Nuclear Information System (INIS)

    Cal-Gonzalez, J.; Herraiz, J.L.; Espana, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J.J.; Udias, J.M.

    2011-01-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  14. Dose calculation based on Cone Beam CT images

    DEFF Research Database (Denmark)

    Slot Thing, Rune

    in the pursuit of personalised adaptive radiotherapy. The main limiting factor in the extended use of CBCT imaging for personalised radiotherapy is the relatively poor CBCT image quality. The limited image quality of CBCT images is mainly caused by contamination from scattered radiation. There are, however......, several other factors contributing to the image quality degradation, and while one should, theoretically, be able to obtain CT-like image quality from CBCT scans, clinical image quality is often very far from this ideal realisation. The present thesis describes the investigation of potential image quality...... simulations to be performed prior to CBCT acquisition, and through optimisations of the simulation efficiency, simulations were performed in a time frame which allows a full clinical implementation of the method. In addition to the scatter estimation model, corrections for additional artefacts arising from...

  15. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  16. MRI, CT and TRUS imaging of seminal vesicle metastasis

    International Nuclear Information System (INIS)

    Larsson, P.; Blomqvist, L.; Norming, U.

    1997-01-01

    We present a case of a testicular germ-cell metastasis in the seminal vesicle. Diagnostic imaging with transrectal ultrasonography (TRUS), CT, and MRI was performed. This case emphasizes the role of MRI in the evaluation of patients with pathology in the pelvic region. (orig.)

  17. CT and MR imaging findings of sphenoidal masses

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Shoki; Higano, Shuichi (Tohoku Univ., Sendai (Japan). School of Medicine); Ishii, Kiyoshi (and others)

    1994-07-01

    CT and MR imaging findings of 57 sphenoidal masses were retrospectively reviewed to assess the possibility of differential diagnosis between them. Various kinds of masses such as pituitary adenoma, epipharyngeal cancer, mucocele, chordoma, chondroma, chondrosarcoma, distant metastasis, multiple myeloma, fibrous dysplasia, craniopharyngioma, hemangiopericytoma, giant cell tumor, primary sphenoidal cancer, malignant melanoma, leukemia, histiocytosis X, and giant cell tumor were included in this series. CT scanning was performed in all cases using a spin-echo pulse sequence. The relative density of the masses, bony changes and calcification were evaluated on CT, and on MR images, signal intensity of the masses relative to the normal gray matter, contrast enhancement and extension/contour were evaluated. Although no single feature appeared to be specific to the masses, detection of calcification on CT, identification of the normal pituitary gland as deformed or displaced on T1-weighted images, signal intensity on T2-weighted images, and extension of the masses seemed to be useful and should be examined in terms of their ability to assist in differential diagnosis. Finally, accommodative classification of sphenoidal masses primarily based on presumed origin or mode of extension was attempted. (author).

  18. Hydatid disease of the spleen; Ultrasonography, CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sinner, W.N. von; Stridbeck, H. (Dept. of Diagnostic Radiology, King Faisal Specialist Hospital, and Research Center, Riyadh (Saudi Arabia) Lund Univ. Hospital (Sweden))

    1992-09-01

    Seven patients with hydatid disease of the spleen were examined by radiography, ultrasound, CT, and in one case MR imaging. The observations were confirmed by patho-anatomic findings except in 2 patients where high indirect hemagglutination tests confirmed the diagnosis. (orig./MG).

  19. Nasal Chondromesenchymal Hamartoma: CT and MR Imaging Findings

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Kim, Hyung Jin; Kim, Ji Hye; Ko, Young Hyeh; Chung, Seung Kyu

    2009-01-01

    We report CT and MR imaging findings for a case of nasal chondromesenchymal hamartoma occurring in a 19-month-old boy. A nasal chondromesenchymal hamartoma is a rare benign pediatric hamartoma that can simulate malignancy. Although rare, knowledge of this entity is essential to avoid potentially harmful therapies

  20. FDG PET/CT imaging in canine cancer patients

    DEFF Research Database (Denmark)

    Hansen, Anders Elias; McEvoy, Fintan; Engelholm, Svend Aage

    2011-01-01

    2-Deoxy-2-[¹⁸F]fluoro-D-glucose positron emission tomography/computed tomography (FDG PET/CT) is becoming increasingly available as an imaging modality in veterinary medicine. The purpose of this study was to report semiquantitative standard uptake values (SUV) of malignant and nonmalignant tissues...

  1. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun [Philips Healthcare, Cleveland, Ohio 44143 (United States); Wilson, David L., E-mail: dlw@case.edu [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106 (United States)

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit

  2. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  3. Investigation of time-of-flight benefits in an LYSO-based PET/CT scanner: A Monte Carlo study using GATE

    International Nuclear Information System (INIS)

    Geramifar, P.; Ay, M.R.; Shamsaie Zafarghandi, M.; Sarkar, S.; Loudos, G.; Rahmim, A.

    2011-01-01

    The advent of fast scintillators yielding great light yield and/or stopping power, along with advances in photomultiplier tubes and electronics, have rekindled interest in time-of-flight (TOF) PET. Because the potential performance improvements offered by TOF PET are substantial, efforts to improve PET timing should prove very fruitful. In this study, we performed Monte Carlo simulations to explore what gains in PET performance could be achieved if the coincidence resolving time (CRT) in the LYSO-based PET component of Discovery RX PET/CT scanner were improved. For this purpose, the GATE Monte Carlo package was utilized, providing the ability to model and characterize various physical phenomena in PET imaging. For the present investigation, count rate performance and signal to noise ratio (SNR) values in different activity concentrations were simulated for different coincidence timing windows of 4, 5.85, 6, 6.5, 8, 10 and 12 ns and with different CRTs of 100-900 ps FWHM involving 50 ps FWHM increments using the NEMA scatter phantom. Strong evidence supporting robustness of the simulations was found as observed in the good agreement between measured and simulated data for the cases of estimating axial sensitivity, axial and transaxial detection position, gamma non-collinearity angle distribution and positron annihilation distance. In the non-TOF context, the results show that the random event rate can be reduced by using narrower coincidence timing window widths, demonstrating considerable enhancements in the peak noise equivalent count rate (NECR) performance. The peak NECR had increased by ∼50% when utilizing the coincidence window width of 4 ns. At the same time, utilization of TOF information resulted in improved NECR and SNR with the dramatic reduction of random coincidences as a function of CRT. For example, with CRT of 500 ps FWHM, a factor of 2.3 reduction in random rates, factor of 1.5 increase in NECR and factor of 2.1 improvement in SNR is achievable

  4. Investigation of time-of-flight benefits in an LYSO-based PET/CT scanner: A Monte Carlo study using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Geramifar, P. [Faculty of Physics and Nuclear Engineering, Amir Kabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, Shariati Hospital, Tehran (Iran, Islamic Republic of); Ay, M.R., E-mail: mohammadreza_ay@tums.ac.ir [Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, Shariati Hospital, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shamsaie Zafarghandi, M. [Faculty of Physics and Nuclear Engineering, Amir Kabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Sarkar, S. [Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, Shariati Hospital, Tehran (Iran, Islamic Republic of); Loudos, G. [Department of Medical Instruments Technology, Technological Educational Institute, Athens (Greece); Rahmim, A. [Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore (United States); Department of Electrical and Computer Engineering, School of Engineering, Johns Hopkins University, Baltimore (United States)

    2011-06-11

    The advent of fast scintillators yielding great light yield and/or stopping power, along with advances in photomultiplier tubes and electronics, have rekindled interest in time-of-flight (TOF) PET. Because the potential performance improvements offered by TOF PET are substantial, efforts to improve PET timing should prove very fruitful. In this study, we performed Monte Carlo simulations to explore what gains in PET performance could be achieved if the coincidence resolving time (CRT) in the LYSO-based PET component of Discovery RX PET/CT scanner were improved. For this purpose, the GATE Monte Carlo package was utilized, providing the ability to model and characterize various physical phenomena in PET imaging. For the present investigation, count rate performance and signal to noise ratio (SNR) values in different activity concentrations were simulated for different coincidence timing windows of 4, 5.85, 6, 6.5, 8, 10 and 12 ns and with different CRTs of 100-900 ps FWHM involving 50 ps FWHM increments using the NEMA scatter phantom. Strong evidence supporting robustness of the simulations was found as observed in the good agreement between measured and simulated data for the cases of estimating axial sensitivity, axial and transaxial detection position, gamma non-collinearity angle distribution and positron annihilation distance. In the non-TOF context, the results show that the random event rate can be reduced by using narrower coincidence timing window widths, demonstrating considerable enhancements in the peak noise equivalent count rate (NECR) performance. The peak NECR had increased by {approx}50% when utilizing the coincidence window width of 4 ns. At the same time, utilization of TOF information resulted in improved NECR and SNR with the dramatic reduction of random coincidences as a function of CRT. For example, with CRT of 500 ps FWHM, a factor of 2.3 reduction in random rates, factor of 1.5 increase in NECR and factor of 2.1 improvement in SNR is

  5. Clinical feasibility of {sup 90}Y digital PET/CT for imaging microsphere biodistribution following radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Chadwick L.; Binzel, Katherine; Zhang, Jun; Knopp, Michael V. [The Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, Columbus, OH (United States); Wuthrick, Evan J. [The Ohio State University Wexner Medical Center, Department of Radiation Oncology, Columbus, OH (United States)

    2017-07-15

    The purpose of this study was to evaluate the clinical feasibility of next generation solid-state digital photon counting PET/CT (dPET/CT) technology and imaging findings in patients following {sup 90}Y microsphere radioembolization in comparison with standard of care (SOC) bremsstrahlung SPECT/CT (bSPECT/CT). Five patients underwent SOC {sup 90}Y bremsstrahlung imaging immediately following routine radioembolization with 3.5 ± 1.7 GBq of {sup 90}Y-labeled glass microspheres. All patients also underwent dPET/CT imaging at 29 ± 11 h following radioembolization. Matched pairs comparison was used to compare image quality, image contrast and {sup 90}Y biodistribution between dPET/CT and bSPECT/CT images. Volumetric assessments of {sup 90}Y activity using different isocontour thresholds on dPET/CT and bSPECT/CT images were also compared. Digital PET/CT consistently provided better visual image quality and {sup 90}Y-to-background image contrast while depicting {sup 90}Y biodistribution than bSPECT/CT. Isocontour volumetric assessment using a 1% threshold precisely outlined {sup 90}Y activity and the treatment volume on dPET/CT images, whereas a more restrictive 20% threshold on bSPECT/CT images was needed to obtain comparable treatment volumes. The use of a less restrictive 10% threshold isocontour on bSPECT/CT images grossly overestimated the treatment volume when compared with the 1% threshold on dPET/CT images. Digital PET/CT is clinically feasible for the assessment of {sup 90}Y microsphere biodistribution following radioembolization, and provides better visual image quality and image contrast than routine bSPECT/CT with comparable acquisition times. With further optimization and clinical validation, dPET technology may allow faster and more accurate imaging-based assessment of {sup 90}Y microsphere biodistribution. (orig.)

  6. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  7. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  8. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  9. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  10. Experimental validation of incomplete data CT image reconstruction techniques

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Hsiao, M.L.; Tam, K.C.

    1989-01-01

    X-ray CT inspection of large metal parts is often limited by x-ray penetration problems along many of the ray paths required for a complete CT data set. In addition, because of the complex geometry of many industrial parts, manipulation difficulties often prevent scanning over some range of angles. CT images reconstructed from these incomplete data sets contain a variety of artifacts which limit their usefulness in part quality determination. Over the past several years, the authors' company has developed 2 new methods of incorporating a priori information about the parts under inspection to significantly improve incomplete data CT image quality. This work reviews the methods which were developed and presents experimental results which confirm the effectiveness of the techniques. The new methods for dealing with incomplete CT data sets rely on a priori information from part blueprints (in electronic form), outer boundary information from touch sensors, estimates of part outer boundaries from available x-ray data, and linear x-ray attenuation coefficients of the part. The two methods make use of this information in different fashions. The relative performance of the two methods in detecting various flaw types is compared. Methods for accurately registering a priori information with x-ray data are also described. These results are critical to a new industrial x-ray inspection cell built for inspection of large aircraft engine parts

  11. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology

    Science.gov (United States)

    Fiedler, S.; Bravin, A.; Keyriläinen, J.; Fernández, M.; Suortti, P.; Thomlinson, W.; Tenhunen, M.; Virkkunen, P.; Karjalainen-Lindsberg, M.-L.

    2004-01-01

    Different modalities for imaging cancer-bearing breast tissue samples are described and compared. The images include clinical mammograms and computed tomography (CT) images, CT images with partly coherent synchrotron radiation (SR), and CT and radiography images taken with SR using the diffraction enhanced imaging (DEI) method. The images are evaluated by a radiologist and compared with histopathological examination of the samples. Two cases of lobular carcinoma are studied in detail. The indications of cancer are very weak or invisible in the conventional images, but the morphological changes due to invasion of cancer become pronounced in the images taken by the DEI method. The strands penetrating adipose tissue are seen clearly in the DEI-CT images, and the histopathology confirms that some strands contain the so-called 'Indian file' formations of cancer cells. The radiation dose is carefully measured for each of the imaging modalities. The mean glandular dose (MGD) for 50% glandular breast tissue is about 1 mGy in conventional mammography and less than 0.25 mGy in projection DEI, while in the clinical CT imaging the MGD is very high, about 45 mGy. The entrance dose of 95 mGy in DEI-CT imaging gives rise to an MGD of 40 mGy, but the dose may be reduced by an order of magnitude, because the contrast is very large in most images.

  12. Diagnostic accuracy at several reduced radiation dose levels for CT imaging in the diagnosis of appendicitis

    Science.gov (United States)

    Zhang, Di; Khatonabadi, Maryam; Kim, Hyun; Jude, Matilda; Zaragoza, Edward; Lee, Margaret; Patel, Maitraya; Poon, Cheryce; Douek, Michael; Andrews-Tang, Denise; Doepke, Laura; McNitt-Gray, Shawn; Cagnon, Chris; DeMarco, John; McNitt-Gray, Michael

    2012-03-01

    Purpose: While several studies have investigated the tradeoffs between radiation dose and image quality (noise) in CT imaging, the purpose of this study was to take this analysis a step further by investigating the tradeoffs between patient radiation dose (including organ dose) and diagnostic accuracy in diagnosis of appendicitis using CT. Methods: This study was IRB approved and utilized data from 20 patients who underwent clinical CT exams for indications of appendicitis. Medical record review established true diagnosis of appendicitis, with 10 positives and 10 negatives. A validated software tool used raw projection data from each scan to create simulated images at lower dose levels (70%, 50%, 30%, 20% of original). An observer study was performed with 6 radiologists reviewing each case at each dose level in random order over several sessions. Readers assessed image quality and provided confidence in their diagnosis of appendicitis, each on a 5 point scale. Liver doses at each case and each dose level were estimated using Monte Carlo simulation based methods. Results: Overall diagnostic accuracy varies across dose levels: 92%, 93%, 91%, 90% and 90% across the 100%, 70%, 50%, 30% and 20% dose levels respectively. And it is 93%, 95%, 88%, 90% and 90% across the 13.5-22mGy, 9.6-13.5mGy, 6.4-9.6mGy, 4-6.4mGy, and 2-4mGy liver dose ranges respectively. Only 4 out of 600 observations were rated "unacceptable" for image quality. Conclusion: The results from this pilot study indicate that the diagnostic accuracy does not change dramatically even at significantly reduced radiation dose.

  13. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Science.gov (United States)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  14. New developments in imaging: Sonography, cine-CT, MRI

    International Nuclear Information System (INIS)

    Otto, R.J.; Higgins, C.B.

    1987-01-01

    The book can be conveniently subdivided into three sections: the first on magnetic resonance imaging the second on cine-computed tomography and the third on advances in ultrasound (US). The MR imaging section includes two chapters: the first on indications for MR in abdominal disease (a cookbook layout of indications for MR imaging versus CT) and the second on MR imaging of the heart. There are also chapters on MR imaging and US in the pelvis, contrast agent principles, and a chapter on imaging renal tumors. The third section, on US, contains chapters on the liver and gastrointenstinal disease, interventional US sonography during neurosurgery, state-of-the-art echocardiography. Doppler flow imaging, contrast media for sonography, endometrial sonography, and high-resolution US in the first trimester. The final chapter is presented as a scientific paper rather than as a chapter in a book and has no illustrations

  15. Commissioning a CT-compatible LDR tandem and ovoid applicator using Monte Carlo calculation and 3D dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Justus; Newton, Joseph; Yang Yun; Steffey, Beverly; Cai, Jing; Adamovics, John; Oldham, Mark; Chino, Junzo; Craciunescu, Oana [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Chemistry, Rider University, Lawrenceville, New Jersey 08648 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2012-07-15

    Purpose: To determine the geometric and dose attenuation characteristics of a new commercially available CT-compatible LDR tandem and ovoid (T and O) applicator using Monte Carlo calculation and 3D dosimetry. Methods: For geometric characterization, we quantified physical dimensions and investigated a systematic difference found to exist between nominal ovoid angle and the angle at which the afterloading buckets fall within the ovoid. For dosimetric characterization, we determined source attenuation through asymmetric gold shielding in the buckets using Monte Carlo simulations and 3D dosimetry. Monte Carlo code MCNP5 was used to simulate 1.5 Multiplication-Sign 10{sup 9} photon histories from a {sup 137}Cs source placed in the bucket to achieve statistical uncertainty of 1% at a 6 cm distance. For 3D dosimetry, the distribution about an unshielded source was first measured to evaluate the system for {sup 137}Cs, after which the distribution was measured about sources placed in each bucket. Cylindrical PRESAGE{sup Registered-Sign} dosimeters (9.5 cm diameter, 9.2 cm height) with a central channel bored for source placement were supplied by Heuris Inc. The dosimeters were scanned with the Duke Large field of view Optical CT-Scanner before and after delivering a nominal dose at 1 cm of 5-8 Gy. During irradiation the dosimeter was placed in a water phantom to provide backscatter. Optical CT scan time lasted 15 min during which 720 projections were acquired at 0.5 Degree-Sign increments, and a 3D distribution was reconstructed with a (0.05 cm){sup 3} isotropic voxel size. The distributions about the buckets were used to calculate a 3D distribution of transmission rate through the bucket, which was applied to a clinical CT-based T and O implant plan. Results: The systematic difference in bucket angle relative to the nominal ovoid angle (105 Degree-Sign ) was 3.1 Degree-Sign -4.7 Degree-Sign . A systematic difference in bucket angle of 1 Degree-Sign , 5 Degree-Sign , and

  16. Commissioning a CT-compatible LDR tandem and ovoid applicator using Monte Carlo calculation and 3D dosimetry.

    Science.gov (United States)

    Adamson, Justus; Newton, Joseph; Yang, Yun; Steffey, Beverly; Cai, Jing; Adamovics, John; Oldham, Mark; Chino, Junzo; Craciunescu, Oana

    2012-07-01

    To determine the geometric and dose attenuation characteristics of a new commercially available CT-compatible LDR tandem and ovoid (T&O) applicator using Monte Carlo calculation and 3D dosimetry. For geometric characterization, we quantified physical dimensions and investigated a systematic difference found to exist between nominal ovoid angle and the angle at which the afterloading buckets fall within the ovoid. For dosimetric characterization, we determined source attenuation through asymmetric gold shielding in the buckets using Monte Carlo simulations and 3D dosimetry. Monte Carlo code MCNP5 was used to simulate 1.5 × 10(9) photon histories from a (137)Cs source placed in the bucket to achieve statistical uncertainty of 1% at a 6 cm distance. For 3D dosimetry, the distribution about an unshielded source was first measured to evaluate the system for (137)Cs, after which the distribution was measured about sources placed in each bucket. Cylindrical PRESAGE(®) dosimeters (9.5 cm diameter, 9.2 cm height) with a central channel bored for source placement were supplied by Heuris Inc. The dosimeters were scanned with the Duke Large field of view Optical CT-Scanner before and after delivering a nominal dose at 1 cm of 5-8 Gy. During irradiation the dosimeter was placed in a water phantom to provide backscatter. Optical CT scan time lasted 15 min during which 720 projections were acquired at 0.5° increments, and a 3D distribution was reconstructed with a (0.05 cm)(3) isotropic voxel size. The distributions about the buckets were used to calculate a 3D distribution of transmission rate through the bucket, which was applied to a clinical CT-based T&O implant plan. The systematic difference in bucket angle relative to the nominal ovoid angle (105°) was 3.1°-4.7°. A systematic difference in bucket angle of 1°, 5°, and 10° caused a 1% ± 0.1%, 1.7% ± 0.4%, and 2.6% ± 0.7% increase in rectal dose, respectively, with smaller effect to dose to Point A, bladder

  17. CT scan imaging in cervical infections

    International Nuclear Information System (INIS)

    Marsot-Dupuch, K.; Janklewicz, Ph.; Chabolle, F.

    1988-01-01

    Infections of face and neck represent serious and potentially life threatening conditions that are sometimes difficult to differentiate from neoplasic tumours, especially in subacute clinical forms. Conventional radiographic techniques offer interest for cervical masses, except Ultra-Sonographic examen, in sites regarding vascular axes, but carries little value for evaluating their spread the into different cervical spaces. On the other hand, C.T. is valuable to precise the location and the extent and to determine its inflammatory nature by studying the fats and the aponeurosis around it. It helps in the analysis of associated adjacent signs: soft tissue swelling, extensive obliteration of adjacent fats, swelling of cervical aponeurosis, thickening of adjacent muscles. These findings are documented by the study of fourteen patients, admitted in St-Antopine hospital. All abcesses, except one, were easy to diagnose because of their low central attenuation. False negative cases are possible and noted by other authors. So, in absence of response to appropriate therapy, surgery is necessary to eliminate a misdiagnosed abcess. Furthermore, it's sometimes possible to suspect an etiology (foreign body, tuberculosis) [fr

  18. Comparative evaluation of the porta hepatis/hepatoduodenal ligament with CT and MR imaging

    International Nuclear Information System (INIS)

    Silverman, P.M.; Feuerstein, I.M.; Zeman, R.K.; Jaffe, M.H.; Garra, B.S.

    1988-01-01

    CT and MR imaging were compared in a retrospective evaluation of 16 patients with abnormalities, predominantly neoplasms, of the porta hepatis/hepatoduodenal ligament. Masses on CT were of decreased density compared with that of liver and were seen in contrast to surrounding periportal fat. On MR images, T1-weighted images demonstrated findings similar to those of CT. T2-weighted images clearly depicted intrahepatic lesions but less distinctly depicted lesions surrounded by fat. Short inversion recovery (STIR) images better demonstrated tumor relative to fat. CT was better than all MR imaging sequences in one of 16 cases, whereas at least one MR imaging sequence was better than CT in six of 16. In nine cases, CT was equivalent to the best MR imaging sequence. In five of six cases where MR imaging was better than CT, STIR sequences were most favorable. In conclusion, MR imaging provided a valuable technique for assessing abnormalities of the porta hepatis/hepatoduodenal ligament

  19. CT guided stereotaxy based on scout view imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wester, K; Kjartansson, O; Bakke, S J

    1987-05-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing.

  20. CT guided stereotaxy based on scout view imaging

    International Nuclear Information System (INIS)

    Wester, K.; Kjartansson, O.; Bakke, S.J.; Rikshospitalet, Oslo

    1987-01-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing. (orig.)

  1. The relationship between image quality and trial slits CT-1010

    International Nuclear Information System (INIS)

    Yoshinaga, Toshihiko; Nakamura, Sumio; Kakoi, Iwao; Ohkubo, Mitsuo; Tomiyoshi, Tsukasa

    1980-01-01

    We had used trial slits for EMI scanner CT-1010 and CT images of good quality almost free artifacts could be obtained when the slice thickness decreased to 5 mm. In this study, we experimented changes of MTF (modulation transfer function) as the slice thickness changed. As a result, MTF got worse as the slice thickness decreased, but got better as the exposure dose increased. The high accuracy high definitions of a 10 mm slice thickness and a 5 mm one were nearly equal in MTF. (author)

  2. MR and CT imaging of cerebral fat embolism

    International Nuclear Information System (INIS)

    Li Ying; Xu Jianmin; Wan Xiaohong; Chen Yu; Guo Yi

    2003-01-01

    Objective: To summarize the clinical characteristics and imaging features of cerebral fat embolism (CFE). Methods: The clinical features and imaging appearances of 3 cases with acute CFE were analyzed. Results: (1) 3 non-head injured cases had sudden mental status changes after leg injury. (2) The main clinical manifestation was vigil coma. (3) MRI showed lesions of the brain in all 3 cases. Cranial CT showed lesions in only 1 case. (4) MRI and CT showed spotty and patchy symmetrical lesions, which were low signal on T 1 WI and high signal on T 2 WI, and low density on CT scan. The lesions were distributed in the white matter along the boundary zones of the major vascular territories, thalamus and basal ganglia, internal capsule, corpus callosum, brain stem, and cerebellum. The margins of the lesions were obscure. (5) 1 case received MRI examination after therapy for 3 months, which showed no lesions in the brain. Conclusion: Cerebral fat embolism has its own clinical features and imaging characteristics. MRI is superior to CT in diagnosing CFE

  3. CT, PET and MR-Imaging in experimental baromedical research

    DEFF Research Database (Denmark)

    Hansen, Kasper

    Pa pressurisation, and repeatedly after 500 kPa/min decompression. After MRI, venous bubble development was monitored using ultrasound. Second, preclinical μCT, PET/MRI, and high-field 9.4 T MR-Imaging systems evaluated changes in cerebral standard uptake value (SUV) of F-FDG, changes in cerebral blood flow (delta...... it is intrinsically difficult to study humans or animals inside a pressure chamber. We have developed a preclinical pressure chamber system compatible with CT, PET and MR-imaging during pressurisation up to 1.013 mPa, which allows for anatomical visualisations and measurements of certain physiological processes...... in vivo during pressurisation. Material and methods: Anaesthetised rats (simulated diving and control groups) underwent the following imaging protocols: First, a 3T clinical MRI-system was employed to evaluate in vivo cerebral relaxation parameters (T1, T2 and T2*). MRI was performed before, during 709 k...

  4. Pros and cons of organ shielding for CT imaging

    International Nuclear Information System (INIS)

    Samei, Ehsan

    2014-01-01

    With the increased importance of CT radiation dose to health care providers, patients and the general public, there is an increased responsibility to minimize patient dose effectively. Bismuth shields offer a simple strategy to reduce dose to certain anterior radiosensitive organs such as breasts and eyes. However, in order to reduce organ dose they must be used properly; improper use can lead to an actual increase in the patient dose. They also create a proportional increase in image noise in the section of the body adjacent to the shield and further reduce the quantitative precision of CT numbers. In addition, shielding can degrade the overall efficiency (by an order of approximately 10%) of the imaging process, reducing the theoretical image quality that can be expected from a certain level of patient dose. However, in spite of their significant disadvantages, there are certain clinical situations and practice considerations that provide qualified justification for their continued use. (orig.)

  5. FDG PET/CT imaging as a biomarker in lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Meignan, Michel; Itti, Emmanuel [Hopitaux Universitaires Henri Mondor, Paris-Est Creteil University, LYSA Imaging, Department of Nuclear Medicine, Creteil (France); Gallamini, Andrea [Nice University, Research, Innovation and Statistic Department, Antoine Lacassagne Cancer Center, Nice (France); Scientific Research Committee, S. Croce Hospital, Cuneo (Italy); Younes, Anas [Memorial Sloan Kettering Cancer Center, Lymphoma Service, New York, NY (United States)

    2015-04-01

    FDG PET/CT has changed the management of FDG-avid lymphoma and is now recommended as the imaging technique of choice for staging and restaging. The need for tailoring therapy to reduce toxicity in patients with a favourable outcome and for improving treatment in those with high-risk factors requires accurate diagnostic methods and a new prognostic algorithm to identify different risk categories. New drugs are used in relapsed/refractory patients. The role of FDG PET/CT as a biomarker in this context is summarized in this review. New trends in FDG metabolic imaging in lymphoma are addressed including metabolic tumour volume measurement at staging and integrative PET which combines PET data with clinical and molecular markers or other imaging techniques. The quantitative approach for response assessment which is under investigation and is used in large ongoing trials is compared with visual criteria. The place of FDG in the era of targeted therapy is discussed. (orig.)

  6. Imaging in covert ectopic ACTH secretion: a CT pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Sookur, Paul A.; Sahdev, Anju; Rockall, Andrea G.; Reznek, Rodney H. [St Bartholomew' s Hospital, Department of Academic Radiology, Dominion House, London (United Kingdom); Isidori, Andrea M. [Sapienza University of Rome, Department of Medical Pathophysiology, Rome (Italy); Monson, John P.; Grossman, Ashley B. [St Bartholomew' s Hospital, Department of Endocrinology, London (United Kingdom)

    2009-05-15

    The syndrome of ectopic adrenocorticotrophin secretion (EAS) is rare and is due to excess adrenocorticotrophin (ACTH) production from a nonpituitary tumour. These tumours can be covert, where the tumours are not readily apparent, and very small making them challenging to image. It is clinically and biochemically difficult to distinguish between covert EAS and Cushing's disease. The first-line investigation in locating the source of ACTH production is computed tomography (CT). The aim of this pictorial review is to illustrate the likely covert sites and related imaging findings. We review the CT appearances of tumours resulting in covert EAS and the associated literature. The most common tumours were bronchial carcinoid tumours, which appear as small, well-defined, round or ovoid pulmonary lesions. Rarer causes included thymic carcinoids, gastrointestinal carcinoids and pancreatic neuroendocrine tumours. Awareness of the imaging characteristics will aid identification of the source of ACTH production and allow potentially curative surgical resection. (orig.)

  7. MR and CT imaging patterns in post-varicella encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Darling, C.F. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Larsen, M.B. [Div. of Neurology, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Byrd, S.E. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Radkowski, M.A. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Palka, P.S. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Allen, E.D. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States)

    1995-06-01

    The aim of the investigation was to determine the patterns of cerebral involvement on computed tomography (CT) and magnetic resonance (MR) imaging in post-varicella encephalitis. Four children between the ages of 2 and 11 years presented over a 5-year period with a diagnosis of post-varicella encephalitis. Their imaging studies and clinical data were reviewed retrospectively. The medical histories of all four children were noncontributory except for recent bouts of chickenpox 1 week to 3 months prior to hospitalization. Three children presented with parkinsonian manifestations. Bilateral, symmetric hypodense, nonenhancing basal ganglia lesions were found on CT. These areas showed nonenhancing low signal intensity on T1-weighted images and high signal intensity on T2-weighted images on MR. One child presented with diffuse, multiple gray and white matter lesions of similar imaging characteristics; some lesions, however, did enhance. This child had no gait disturbances. Post-varicella encephalitis can produce two patterns of dramatic CT and MR findings. With an appropriate history and clinical findings, varicella as a cause of bilateral basal ganglia or diffuse cerebral lesions can be differentiated from other possible etiologies which include trauma, anoxia, metabolic disorders and demyelinating diseases. (orig.)

  8. Automatic labeling and segmentation of vertebrae in CT images

    Science.gov (United States)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  9. Fast and Automatic Ultrasound Simulation from CT Images

    Directory of Open Access Journals (Sweden)

    Weijian Cong

    2013-01-01

    Full Text Available Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

  10. Image quality of conventional images of dual-layer SPECTRAL CT: a phantom study.

    Science.gov (United States)

    van Ommen, F; Bennink, E; Vlassenbroek, A; Dankbaar, J W; Schilham, A M R; Viergever, M A; de Jong, H W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips), by means of phantom experiments. For both CT scanners conventional CT images were acquired using four adult scanning protocols: i) body helical, ii) body axial, iii) head helical and iv) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10% and 5% MTF of the iCT and IQon showed small but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with

  11. Fast bilateral filtering of CT-images

    Energy Technology Data Exchange (ETDEWEB)

    Steckmann, Sven; Baer, Matthias; Kachelriess, Marc [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. of Medical Physics (IMP)

    2011-07-01

    The Bilateral filter is able to get a lower noise level while retaining the edges in images. The downside of a bilateral filter is the high order of the problem itself. While having a Volume size of N with a dimension of d and a filter window of r the problem is of size N{sup d} . r{sup d}. In the literature there are some proposals for speeding up by reducing this order by approximating a component of the filter. This leads to inaccurate results which often implies non acceptable artifacts for medical imaging. A better way for medical imaging is to speed up the filter itself while leaving the basic structure intact. This is the way our implementation uses. We solve the problem of calculating the function of e{sup -x} in an efficient way on modern architectures, and the problem of vectorizing the filtering process. As result we implemented a filter which is 2.5 times faster than the highly optimized basic approach. By comparing the basic analytical approach with the final algorithm, the differences in quality of the computing process is negligible to the human eye. We are able to process a volume with 512{sup 3} voxels with a filter of 25 x 25 x 1 in 21 s on a modern Intel Xeon platform with two X5590 processors running at 3.33 GHz. (orig.)

  12. Automatic extraction of via in the CT image of PCB

    Science.gov (United States)

    Liu, Xifeng; Hu, Yuwei

    2018-04-01

    In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. In order to detect the via in the PCB base on the CT image automatically accurately and reliably, a novel algorithm for via extraction based on weighting stack combining the morphologic character of via is designed. Every slice data in the vertical direction of the PCB is superimposed to enhanced vias target. The OTSU algorithm is used to segment the slice image. OTSU algorithm of thresholding gray level images is efficient for separating an image into two classes where two types of fairly distinct classes exist in the image. Randomized Hough Transform was used to locate the region of via in the segmented binary image. Then the 3D reconstruction of via based on sequence slice images was done by volume rendering. The accuracy of via positioning and detecting from a CT images of PCB was demonstrated by proposed algorithm. It was found that the method is good in veracity and stability for detecting of via in three dimensional.

  13. Imaging of pancreatic adenocarcinoma with emphasis on multidetector CT

    International Nuclear Information System (INIS)

    Smith, S.L.; Rajan, P.S.

    2004-01-01

    Pancreatic adenocarcinoma is the fourth most frequent cause of cancer-related death. The incidence is increasing and the overall survival has altered little in recent years. Moreover, patients usually present late with inoperable disease and curative resection by standard pancreatico-duodenectomy (Whipple's procedure) is associated with significant morbidity. It should only be attempted in that small group of patients lacking radiological evidence of advanced disease. Despite the recent advances in body magnetic resonance imaging (MRI) and endoscopic ultrasound (EUS), computed tomography (CT) is the mainstay of staging in most centres and the recent development of multidetector CT machines (MDCT) has raised hope of an improvement in preoperative staging. This review focuses on the CT of pancreatic adenocarcinoma with particular emphasis on examination technique and on those criteria that determine resectability

  14. Imaging of pancreatic adenocarcinoma with emphasis on multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.L. E-mail: simon.smith@ipsh-tr.anglox.nhs.uk; Rajan, P.S

    2004-01-01

    Pancreatic adenocarcinoma is the fourth most frequent cause of cancer-related death. The incidence is increasing and the overall survival has altered little in recent years. Moreover, patients usually present late with inoperable disease and curative resection by standard pancreatico-duodenectomy (Whipple's procedure) is associated with significant morbidity. It should only be attempted in that small group of patients lacking radiological evidence of advanced disease. Despite the recent advances in body magnetic resonance imaging (MRI) and endoscopic ultrasound (EUS), computed tomography (CT) is the mainstay of staging in most centres and the recent development of multidetector CT machines (MDCT) has raised hope of an improvement in preoperative staging. This review focuses on the CT of pancreatic adenocarcinoma with particular emphasis on examination technique and on those criteria that determine resectability.

  15. Diagnosis and staging of breast cancer by SPECT images fused with CT images

    International Nuclear Information System (INIS)

    Li Yanjing; Zhu Qiaomei

    2007-01-01

    Objective: To evaluate the TNM staging value of 99mTc-MIBI scintimammotraphy with SPECT-CT images fusing for the diagnosis of breast cancer. Methods: 10 patients with breast cancer underwent scintimammography with 99mTc-MIBI, and SPECT images were fused with CT images. Images were compared with final diagnosis confirmed by histopathology. Results: Of the 19 breast cancer patients, one case of invasive ductal carcinoma showed false-negative. Among 18 cases of positive lesions, axillary metastases were involved in 10, supraclavicular nodes were also defined in 3, para-sternum nodes were involved in 2, 2 were missed and 1 cases without metastatic node. The axillary lymph nodes were divided into three levels with respect to their position relative to the pectoralis minor muscle by fused images. Conclusion: 99mTc-MIBI scintimammotraphy combined with SPECT-CT images fusing is of some clinical value in TNM staging of breast cancer. (authors)

  16. Evaluation of aortocoronary bypass graft patency by reconstructed CT image

    International Nuclear Information System (INIS)

    Kawakita, Seizaburo; Koide, Takashi; Saito, Yoshio; Yamamoto, Tadao; Iwasaki, Tadaaki

    1982-01-01

    Ten patients were examined in the period of three months from January to March 1981. The patients were operated from 1 month to 7 years before CT. A bypass to the left anterior descending artery (LAD) was grafted in 10 cases, 2 to the right coronary artery (RCA), 4 to an obtuse marginal artery (OM), and 1 to a diagonal artery. Image reconstruction was performed in 10 cases by using an image analytical computer Evaluskop. Appropriate planes for reconstruction were selected by trial and error methods upon observation of CT images. When gained picture of a graft course coincided with surgical records or angiography, the work of building images was concluded. On cross section, grafts to LAD were visualized in all 10 cases: 9 in the entire course and 1 in a proximal part of the graft. Two to RCA, 4 to OM and 1 to a diagonal were also successfully visualized. Reconstruction of graft images succeeded in 9 grafts of 6 cases. The course of a graft could be pursued from the proximal to the distal end adjacent to the cardiac chamber. The picture of a bypass to LAD was visualized in 6 of 10 grafts. Two bypass to RCA could be depicted, and 1 to OM was also found. However 3 to OM and 1 to a diagonal failed to be visualized throughout their courses in reconstructed images. I think that the causes of faillure mainly depended upon the course of the graft. When a graft was running arc-like surrounding the heart chamber, it was very difficult to depict its entire length in reconstructed images, though the graft could be detected in cross sections. These preliminary studies indicated that reconstruction of CT images had some benefits for the pursuit of graft courses. (J.P.N.)

  17. Parameters related to the image quality in computed tomography -CT

    International Nuclear Information System (INIS)

    Alonso, T.C.; Silva, T.A.; Mourão, A.P.; Silva, T.A.

    2015-01-01

    Quality control programs in computed tomography, CT, should be continuously reviewed to always ensure the best image quality with the lowest possible dose for the patient in the diagnostic process. The quality control in CT aims to design and implement a set of procedures that allows the verification of their operating conditions within the specified requirements for its use. In Brazil, the Ministry of Health (MOH), the Technical Rules (Resolution NE in 1016.) - Radiology Medical - 'Equipment and Safety Performance' establishes a reference to the analysis of tests on TC. A large number of factors such as image noise, slice thickness (resolution of the Z axis), low contrast resolution and high contrast resolution and the radiation dose can be affected by the selection of technical parameters in exams. The purpose of this study was to investigate how changes in image acquisition protocols modify its quality and determine the advantages and disadvantages between the different aspects of image quality, especially the reduction of patient radiation dose. A preliminary procedure is to check the operating conditions of the CT measurements were performed on a scanner with 64-MDCT scanner (GE Healthcare, BrightSpeed) in the service of the Molecular Imaging Center (Cimol) of the Federal University of Minas Gerais (UFMG). When performing the image quality tests we used a simulator, Catphan-600, this device has five modules, and in each you can perform a series of tests. Different medical imaging practices have different requirements for acceptable image quality. The results of quality control tests showed that the analyzed equipment is in accordance with the requirements established by current regulations. [pt

  18. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  19. Fractal Dimension Of CT Images Of Normal Parotid Glands

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Heo, Min Suk; You, Dong Soo

    1999-01-01

    This study was to investigate the age and sex differences of the fractal dimension of the normal parotid glands in the digitized CT images. The six groups, which were composed of 42 men and women from 20's, 40's and 60's and over were picked. Each group contained seven people of the same sex. The normal parotid CT images were digitized, and their fractal dimensions were calculated using Scion Image PC program. The mean of fractal dimensions in males was 1.7292 (+/-0.0588) and 1.6329 (+/-0.0425) in females. The mean of fractal dimensions in young males was 1.7617, 1.7328 in middle males, and 1.6933 in old males. The mean of fractal dimensions in young females was 1.6318, 1.6365 in middle females, and 1.6303 in old females. There was no statistical difference in fractal dimension between left and right parotid gland of the same subject (p>0.05). Fractal dimensions in male were decreased in older group (p 0.05). The fractal dimension of parotid glands in the digitized CT images will be useful to evaluate the age and sex differences.

  20. vECTlab-A fully integrated multi-modality Monte Carlo simulation framework for the radiological imaging sciences

    International Nuclear Information System (INIS)

    Peter, Joerg; Semmler, Wolfhard

    2007-01-01

    Alongside and in part motivated by recent advances in molecular diagnostics, the development of dual-modality instruments for patient and dedicated small animal imaging has gained attention by diverse research groups. The desire for such systems is high not only to link molecular or functional information with the anatomical structures, but also for detecting multiple molecular events simultaneously at shorter total acquisition times. While PET and SPECT have been integrated successfully with X-ray CT, the advance of optical imaging approaches (OT) and the integration thereof into existing modalities carry a high application potential, particularly for imaging small animals. A multi-modality Monte Carlo (MC) simulation approach at present has been developed that is able to trace high-energy (keV) as well as optical (eV) photons concurrently within identical phantom representation models. We show that the involved two approaches for ray-tracing keV and eV photons can be integrated into a unique simulation framework which enables both photon classes to be propagated through various geometry models representing both phantoms and scanners. The main advantage of such integrated framework for our specific application is the investigation of novel tomographic multi-modality instrumentation intended for in vivo small animal imaging through time-resolved MC simulation upon identical phantom geometries. Design examples are provided for recently proposed SPECT-OT and PET-OT imaging systems

  1. The appearance and effects of metallic implants in CT images

    International Nuclear Information System (INIS)

    Kairn, T.; Crowe, S.B.; Trapp, J.V.; Fogg, P.

    2013-01-01

    The computed tomography (CT) imaging artefacts that metallic medical implants produce in surrounding tissues are usually contoured and over-ridden during radiotherapy treatment planning. In cases where radiotherapy treatment beams unavoidably pass though implants, it is especially important to understand the imaging artefacts that may occur within the implants themselves. This study examines CT images of a set of simple metallic objects, immersed in water, in order to evaluate reliability and variability of CT numbers (Hounsfield units, HUs) within medical implants. Model implants with a range of sizes (heights from 2.2 to 49.6 mm), electron densities (from 2.3 to 7.7 times the electron density of water) and effective atomic numbers (from 3.9 to 9.0 times the effective atomic number of water in a CT X-ray beam) were created by stacking metal coins from several currencies. These 'implants' were CT scanned within a large (31.0 cm across) and a small (12.8 cm across) water phantom. Resulting HU values are as much as 50 % lower than the result of extrapolating standard electron density calibration data (obtained for tissue and bone densities) up to the metal densities and there is a 6 % difference between the results obtained by scanning with 120 and 140 kVp tube potentials. Profiles through the implants show localised cupping artefacts, within the implants, as well as a gradual decline in HU outside the implants that can cause the implants' sizes to be over estimated by 1.3–9.0 mm. These effects are exacerbated when the implants are scanned in the small phantom or at the side of the large phantom, due to reduced pre-hardening of the X-ray beam in these configurations. These results demonstrate the necessity of over-riding the densities of metallic implants, as well as their artefacts in tissue, in order to obtain accurate radiotherapy dose calculations.

  2. The appearance and effects of metallic implants in CT images.

    Science.gov (United States)

    Kairn, T; Crowe, S B; Fogg, P; Trapp, J V

    2013-06-01

    The computed tomography (CT) imaging artefacts that metallic medical implants produce in surrounding tissues are usually contoured and over-ridden during radiotherapy treatment planning. In cases where radiotherapy treatment beams unavoidably pass though implants, it is especially important to understand the imaging artefacts that may occur within the implants themselves. This study examines CT images of a set of simple metallic objects, immersed in water, in order to evaluate reliability and variability of CT numbers (Hounsfield units, HUs) within medical implants. Model implants with a range of sizes (heights from 2.2 to 49.6 mm), electron densities (from 2.3 to 7.7 times the electron density of water) and effective atomic numbers (from 3.9 to 9.0 times the effective atomic number of water in a CT X-ray beam) were created by stacking metal coins from several currencies. These 'implants' were CT scanned within a large (31.0 cm across) and a small (12.8 cm across) water phantom. Resulting HU values are as much as 50 % lower than the result of extrapolating standard electron density calibration data (obtained for tissue and bone densities) up to the metal densities and there is a 6 % difference between the results obtained by scanning with 120 and 140 kVp tube potentials. Profiles through the implants show localised cupping artefacts, within the implants, as well as a gradual decline in HU outside the implants that can cause the implants' sizes to be over estimated by 1.3-9.0 mm. These effects are exacerbated when the implants are scanned in the small phantom or at the side of the large phantom, due to reduced pre-hardening of the X-ray beam in these configurations. These results demonstrate the necessity of over-riding the densities of metallic implants, as well as their artefacts in tissue, in order to obtain accurate radiotherapy dose calculations.

  3. The influence of respiratory motion on CT image volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid (Spain)

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  4. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  5. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    International Nuclear Information System (INIS)

    Ilic, Radovan D; Spasic-Jokic, Vesna; Belicev, Petar; Dragovic, Milos

    2005-01-01

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour

  6. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  7. Automated image-matching technique for comparative diagnosis of the liver on CT examination

    International Nuclear Information System (INIS)

    Okumura, Eiichiro; Sanada, Shigeru; Suzuki, Masayuki; Tsushima, Yoshito; Matsui, Osamu

    2005-01-01

    When interpreting enhanced computer tomography (CT) images of the upper abdomen, radiologists visually select a set of images of the same anatomical positions from two or more CT image series (i.e., non-enhanced and contrast-enhanced CT images at arterial and delayed phase) to depict and to characterize any abnormalities. The same process is also necessary to create subtraction images by computer. We have developed an automated image selection system using a template-matching technique that allows the recognition of image sets at the same anatomical position from two CT image series. Using the template-matching technique, we compared several anatomical structures in each CT image at the same anatomical position. As the position of the liver may shift according to respiratory movement, not only the shape of the liver but also the gallbladder and other prominent structures included in the CT images were compared to allow appropriate selection of a set of CT images. This novel technique was applied in 11 upper abdominal CT examinations. In CT images with a slice thickness of 7.0 or 7.5 mm, the percentage of image sets selected correctly by the automated procedure was 86.6±15.3% per case. In CT images with a slice thickness of 1.25 mm, the percentages of correct selection of image sets by the automated procedure were 79.4±12.4% (non-enhanced and arterial-phase CT images) and 86.4±10.1% (arterial- and delayed-phase CT images). This automated method is useful for assisting in interpreting CT images and in creating digital subtraction images. (author)

  8. Tin-filter enhanced dual-energy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging.

    Science.gov (United States)

    Kaufmann, Sascha; Sauter, Alexander; Spira, Daniel; Gatidis, Sergios; Ketelsen, Dominik; Heuschmid, Martin; Claussen, Claus D; Thomas, Christoph

    2013-05-01

    To measure and compare the objective image quality of true noncontrast (TNC) images with virtual noncontrast (VNC) images acquired by tin-filter-enhanced, dual-source, dual-energy computed tomography (DECT) of upper abdomen. Sixty-three patients received unenhanced abdominal CT and enhanced abdominal DECT (100/140 kV with tin filter) in portal-venous phase. VNC images were calculated from the DECT datasets using commercially available software. The mean attenuation of relevant tissues and image quality were compared between the TNC and VNC images. Image quality was rated objectively by measuring image noise and the sharpness of object edges using custom-designed software. Measurements were compared using Student two-tailed t-test. Correlation coefficients for tissue attenuation measurements between TNC and VNC were calculated and the relative deviations were illustrated using Bland-Altman plots. Mean attenuation differences between TNC and VNC (HUTNC - HUVNC) image sets were as follows: right liver lobe -4.94 Hounsfield units (HU), left liver lobe -3.29 HU, vena cava -2.19 HU, spleen -7.46 HU, pancreas 1.29 HU, fat -11.14 HU, aorta 1.29 HU, bone marrow 36.83 HU (all P VNC and TNC series were observed for liver, vena portae, kidneys, pancreas, muscle and bone marrow (Pearson's correlation coefficient ≥0.75). Mean image noise was significantly higher in TNC images (P VNC and TNC images (P = .19). The Hounsfield units in VNC images closely resemble TNC images in the majority of the organs of the upper abdomen (kidneys, liver, pancreas). In spleen and fat, Hounsfield numbers in VNC images are tend to be higher than in TNC images. VNC images show a low image noise and satisfactory edge sharpness. Other criteria of image quality and the depiction of certain lesions need to be evaluated additionally. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  9. Subtraction imaging of the ECG gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Tanegashima, K.; Fukui, M.; Hyodo, H.

    1987-05-01

    The subtracting manipulation of contrast-enhanced gated cardiac CT (GCCT) images was experimentally studied with TCT 60A - 30 type (Toshiba) for clinical use, thereby reducing the amount of contrast medium (CM). Initially the optimum relationship between the concentration of CM and its injected velocity was determined using the model of resected canine hearts and in actual dogs. The emphasized good-subtracted images were obtained when the difference of CT values was approximately 40 H.U. between cardiac cavity and myocardium. Such condition was feasible in the use of 25 % Diatrizoic acid and its injected velocity of 0.02 ml/kg/sec. Finally the reduction of the amount of CM by 1/3 became possible in clinical settings. The method is applicable to multi-slice GCCT in various heart diseases.

  10. Active contour based segmentation of resected livers in CT images

    Science.gov (United States)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  11. SU-F-J-57: Effectiveness of Daily CT-Based Three-Dimensional Image Guided and Adaptive Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, S [University of Tsukuba, Tsukuba, Ibaraki (Japan); National Cancer Center, Kashiwa, Chiba (Japan); Tachibana, H; Hotta, K; Baba, H; Kohno, R; Akimoto, T [National Cancer Center, Kashiwa, Chiba (Japan); Nakamura, N [National Cancer Center Hospital East, Kashiwa, Chiba (Japan); Miyakawa, S; Kurosawa, T [Komazawa University, Setagaya, Tokyo (Japan)

    2016-06-15

    Purpose: Daily CT-based three-dimensional image-guided and adaptive (CTIGRT-ART) proton therapy system was designed and developed. We also evaluated the effectiveness of the CTIGRT-ART. Methods: Retrospective analysis was performed in three lung cancer patients: Proton treatment planning was performed using CT image datasets acquired by Toshiba Aquilion ONE. Planning target volume and surrounding organs were contoured by a well-trained radiation oncologist. Dose distribution was optimized using 180-deg. and 270-deg. two fields in passive scattering proton therapy. Well commissioned Simplified Monte Carlo algorithm was used as dose calculation engine. Daily consecutive CT image datasets was acquired by an in-room CT (Toshiba Aquilion LB). In our in-house program, two image registrations for bone and tumor were performed to shift the isocenter using treatment CT image dataset. Subsequently, dose recalculation was performed after the shift of the isocenter. When the dose distribution after the tumor registration exhibits change of dosimetric parameter of CTV D90% compared to the initial plan, an additional process of was performed that the range shifter thickness was optimized. Dose distribution with CTV D90% for the bone registration, the tumor registration only and adaptive plan with the tumor registration was compared to the initial plan. Results: In the bone registration, tumor dose coverage was decreased by 16% on average (Maximum: 56%). The tumor registration shows better coverage than the bone registration, however the coverage was also decreased by 9% (Maximum: 22%) The adaptive plan shows similar dose coverage of the tumor (Average: 2%, Maximum: 7%). Conclusion: There is a high possibility that only image registration for bone and tumor may reduce tumor coverage. Thus, our proposed methodology of image guidance and adaptive planning using the range adaptation after tumor registration would be effective for proton therapy. This research is partially supported

  12. Dual-source CT cardiac imaging: initial experience

    International Nuclear Information System (INIS)

    Johnson, Thorsten R.C.; Nikolaou, Konstantin; Wintersperger, Bernd J.; Rist, Carsten; Buhmann, Sonja; Reiser, Maximilian F.; Becker, Christoph R.; Leber, Alexander W.; Ziegler, Franz von; Knez, Andreas

    2006-01-01

    The relation of heart rate and image quality in the depiction of coronary arteries, heart valves and myocardium was assessed on a dual-source computed tomography system (DSCT). Coronary CT angiography was performed on a DSCT (Somatom Definition, Siemens) with high concentration contrast media (Iopromide, Ultravist 370, Schering) in 24 patients with heart rates between 44 and 92 beats per minute. Images were reconstructed over the whole cardiac cycle in 10% steps. Two readers independently assessed the image quality with regard to the diagnostic evaluation of right and left coronary artery, heart valves and left ventricular myocardium for the assessment of vessel wall changes, coronary stenoses, valve morphology and function and ventricular function on a three point grading scale. The image quality ratings at the optimal reconstruction interval were 1.24±0.42 for the right and 1.09±0.27 for the left coronary artery. A reconstruction of diagnostic systolic and diastolic images is possible for a wide range of heart rates, allowing also a functional evaluation of valves and myocardium. Dual-source CT offers very robust diagnostic image quality in a wide range of heart rates. The high temporal resolution now also makes a functional evaluation of the heart valves and myocardium possible. (orig.)

  13. CT and MR imaging of high cervical intradural lipomas

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joo Hyeong; Choi, Woo Suk; Lee, Sun Wha; Lim, Jae Hoon; Leem, Woon; Kim, Gook Ki; Rhee, Bong Arm [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1988-04-15

    Intradural spinal lipoma occurs in less than 1% of all spinal cord tumors. It has been described at every level of the spinal canal, although its most common location is the cervicothoracic and thoracic region. However, lipoma located in the high cervical region is very unusual. We described two cases, a teenager and an adult, with progressive neurologic deficit from such a lipomatous tumor, which were evaluated by CT scanning and MR imaging.

  14. SPECT/CT imaging in general orthopedic practice.

    Science.gov (United States)

    Scharf, Stephen

    2009-09-01

    The availability of hybrid devices that combine the latest single-photon emission computed tomography (SPECT) imaging technology with multislice computed tomography (CT) scanning has allowed us to detect subtle, nonspecific abnormalities on bone scans and interpret them as specific focal areas of pathology. Abnormalities in the spine can be separated into those caused by pars fractures, facet joint arthritis, or osteophyte formation on vertebral bodies. Compression fractures can be distinguished from severe degenerative disease, both of which can cause intense activity across the spine on either planar or SPECT imaging. Localizing activity in patients who have had spinal fusion can provide tremendous insight into the causes of therapeutic failures. Infections of the spine now can be diagnosed with gallium SPECT/CT, despite the fact that gallium has long been abandoned because of its failure to detect spine infection on either planar or SPECT imaging. Small focal abnormalities in the feet and ankles can be localized well enough to make specific orthopedic diagnoses on the basis of their location. Moreover, when radiographic imaging provides equivocal or inadequate information, SPECT/CT can provide a road map for further diagnostic studies and has been invaluable in planning surgery. Our ability to localize activity within a bone or at an articular surface has allowed us to distinguish between fractures and joint disease. Increased activity associated with congenital anomalies, such as tarsal coalition and Bertolotti's syndrome have allowed us to understand the pathophysiology of these conditions, to confirm them as the cause of the patient's symptoms, and to provide information that is useful in determining appropriate clinical management. As our experience broadens, SPECT/CT will undoubtedly become an important tool in the evaluation and management of a wider variety of orthopedic patients.

  15. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Lyu, Kwang Yeul; Kim, Tae Hyung; Shin, Ji Yun

    2012-01-01

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  16. Cone-beam volume CT mammographic imaging: feasibility study

    Science.gov (United States)

    Chen, Biao; Ning, Ruola

    2001-06-01

    X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.

  17. Open source deformable image registration system for treatment planning and recurrence CT scans

    DEFF Research Database (Denmark)

    Zukauskaite, Ruta; Brink, Carsten; Hansen, Christian Rønn

    2016-01-01

    manually contoured eight anatomical regions-of-interest (ROI) twice on pCT and once on rCT. METHODS: pCT and rCT images were deformably registered using the open source software elastix. Mean surface distance (MSD) and Dice similarity coefficient (DSC) between contours were used for validation of DIR...

  18. Kinematic CT and MR imaging of the patellofemoral joint

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C.; Brossmann, J.; Heller, M. [Klinik fuer Radiologische Diagnostik, Christian-Albrechts-Universitaet, Kiel (Germany)

    1999-04-01

    Anterior knee pain is a frequently encountered orthopedic symptom and is often associated with patellofemoral malalignment, which may cause chondromalacia of the patella. The difficulty in determining the patellar position between 0 and 30 of knee flexion with a conventional axial radiographic examination is well known. The introduction of computed tomography (CT) and magnetic resonance (MR) imaging for the diagnosis of knee joint abnormalities has enabled assessment of the patellar position in this critical range. More recently, emphasis has been placed on dynamic visualization of patellar motion to detect an abnormal tracking pattern. The important influence of the quadriceps muscle on the patellar tracking pattern is well known and has been examined during active knee extension by the use of ultrafast CT, and motion-triggered and ultrafast MR imaging. This article provides an overview of the current status of kinematic CT and MR imaging in the diagnosis of patellofemoral alignment, its clinical implications, and future directions. (orig.) With 13 figs., 5 tabs., 47 refs.

  19. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  20. Solid models for CT/MR image display

    International Nuclear Information System (INIS)

    ManKovich, N.J.; Yue, A.; Kioumehr, F.; Ammirati, M.; Turner, S.

    1991-01-01

    Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. The authors have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the mode with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of >99.6 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents an accuracy study and discusses ways of assessing the quality of neurosurgical plans when 3-D models re made available as planning tools

  1. Application of CT perfusion imaging in radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Xia Guangrong; Liu Guimei; He Wen; Jin Guohua; Xie Ruming; Xu Yongxiang; Li Xiaobo; Li Xuebing

    2011-01-01

    Objective: To investigate the value of CT perfusion imaging in evaluation of therapeutic effect and prognosis in radiotherapy for lung cancer. Methods: Fifty-one cases of lung cancer who were unable or refused to be operated on, 36 males and 15 females, aged 37-80, underwent CT perfusion imaging, 29 of which only before radiotherapy and 22 before and after radiotherapy twice. The images were collected by cine dynamic scanning (5 mm/4 slices) and input into the GE AW4.0 workstation for data processing. The slice positions of CT imaging were determined according to the largest tumor size in CT scan. Regions of interest of tumor were drawn at the region corresponding to the original images of CT perfusion. Radiotherapy was performed after CT perfusion imaging. Relevant parameters, including blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface (PS) were calculated. The treatment response after radiotherapy was evaluated by RECIST. At 2 -4 weeks after the treatment, CT examination was conducted once more. Results: The tests of the 51 patients showed that the BV was 13.6 ml·100 g -1 , the BF was 129.5 ml·min -1 ·100 g -1 , the MTT was 9.1 s, and the PS was 10.0 ml· min -1 · 100 g -1 before radiotherapy. The tests of the 22 of the 51 patients showed that the values of BV and BF after radiotherapy were 7.6 ml· 100 g -1 and 97.8 ml·min -1 · 100 g -1 , respectively, both lower than those before radiotherapy (11.2 and 108.7 ml·min -1 ·100 g -1 , respectively), however, both not significantly (t=1.28, 0.40, P>0.05); and the values of MTT and PS after radiotherapy were 8.9 s and 7.8 ml·min -1 · 100 g -1 , respectively, both not significantly higher than those before radiotherapy (7.2 s and 6.8 ml· min -1 · 100 g -1 , respectively, t=-1.15, -0.57, P>0.05). The mean area of tumor after radiotherapy was 1189.6 mm 2 , significantly less than that before radiotherapy (1920.3 mm 2 , t=3.98, P<0.05). The MTT of the SCLC patients was 12

  2. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    International Nuclear Information System (INIS)

    Ireland, Rob H.; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-01-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 ± 0.80 mm and 4.96 ± 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 ± 1.22 mm and 4.96 ± 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy

  3. Preparing diagnostic 3D images for image registration with planning CT images

    International Nuclear Information System (INIS)

    Tracton, Gregg S.; Miller, Elizabeth P.; Rosenman, Julian; Chang, Sha X.; Sailer, Scott; Boxwala, Azaz; Chaney, Edward L.

    1997-01-01

    Purpose: Pre-radiotherapy (pre-RT) tomographic images acquired for diagnostic purposes often contain important tumor and/or normal tissue information which is poorly defined or absent in planning CT images. Our two years of clinical experience has shown that computer-assisted 3D registration of pre-RT images with planning CT images often plays an indispensable role in accurate treatment volume definition. Often the only available format of the diagnostic images is film from which the original 3D digital data must be reconstructed. In addition, any digital data, whether reconstructed or not, must be put into a form suitable for incorporation into the treatment planning system. The purpose of this investigation was to identify all problems that must be overcome before this data is suitable for clinical use. Materials and Methods: In the past two years we have 3D-reconstructed 300 diagnostic images from film and digital sources. As a problem was discovered we built a software tool to correct it. In time we collected a large set of such tools and found that they must be applied in a specific order to achieve the correct reconstruction. Finally, a toolkit (ediScan) was built that made all these tools available in the proper manner via a pleasant yet efficient mouse-based user interface. Results: Problems we discovered included different magnifications, shifted display centers, non-parallel image planes, image planes not perpendicular to the long axis of the table-top (shearing), irregularly spaced scans, non contiguous scan volumes, multiple slices per film, different orientations for slice axes (e.g. left-right reversal), slices printed at window settings corresponding to tissues of interest for diagnostic purposes, and printing artifacts. We have learned that the specific steps to correct these problems, in order of application, are: Also, we found that fast feedback and large image capacity (at least 2000 x 2000 12-bit pixels) are essential for practical application

  4. Semiautomatic segmentation of liver metastases on volumetric CT images

    International Nuclear Information System (INIS)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-01-01

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  5. The use of megavoltage CT (MVCT) images for dose recomputations

    International Nuclear Information System (INIS)

    Langen, K M; Meeks, S L; Poole, D O; Wagner, T H; Willoughby, T R; Kupelian, P A; Ruchala, K J; Haimerl, J; Olivera, G H

    2005-01-01

    Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation

  6. Selecting optimal monochromatic level with spectral CT imaging for improving imaging quality in hepatic venography

    International Nuclear Information System (INIS)

    Sun Jun; Luo Xianfu; Wang Shou'an; Wang Jun; Sun Jiquan; Wang Zhijun; Wu Jingtao

    2013-01-01

    Objective: To investigate the effect of spectral CT monochromatic images for improving imaging quality in hepatic venography. Methods: Thirty patients underwent spectral CT examination on a GE Discovery CT 750 HD scanner. During portal phase, 1.25 mm slice thickness polychromatic images and optimal monochromatic images were obtained, and volume rendering and maximum intensity projection were created to show the hepatic veins respectively. The overall imaging quality was evaluated on a five-point scale by two radiologists. Inter-observer agreement in subjective image quality grading was assessed by Kappa statistics. Paired-sample t test were used to compare hepatic vein attenuation, hepatic parenchyma attenuation, CT value difference between the hepatic vein and the liver parenchyma, image noise, vein-to-liver contrast-to-noise ratio (CNR), the image quality score of hepatic venography between the two image data sets. Results: The monochromatic images at 50 keV were found to demonstrate the best CNR for hepatic vein.The hepatic vein attenuation [(329 ± 47) HU], hepatic parenchyma attenuation [(178 ± 33) HU], CT value difference between the hepatic vein and the liver parenchyma [(151 ± 33) HU], image noise (17.33 ± 4.18), CNR (9.13 ± 2.65), the image quality score (4.2 ± 0.6) of optimal monochromatic images were significantly higher than those of polychromatic images [(149 ± 18) HU], [(107 ± 14) HU], [(43 ±11) HU], 12.55 ± 3.02, 3.53 ± 1.03, 3.1 ± 0.8 (t values were 24.79, 13.95, 18.85, 9.07, 13.25 and 12.04, respectively, P < 0.01). In the comparison of image quality, Kappa value was 0.81 with optimal monochromatic images and 0.69 with polychromatic images. Conclusion: Monochromatic images of spectral CT could improve CNR for displaying hepatic vein and improve the image quality compared to the conventional polychromatic images. (authors)

  7. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  8. CT and MR imaging of odontoid abnormalities: A pictorial review

    Directory of Open Access Journals (Sweden)

    Nishchint Jain

    2016-01-01

    Full Text Available Odontoid process is the central pillar of the craniovertebral junction. Imaging of this small structure continues to be a challenge for the radiologists due to complex bony and ligamentous anatomy. A wide range of developmental and acquired abnormalities of odontoid have been identified. Their accurate radiologic evaluation is important as different lesions have markedly different clinical course, patient management, and prognosis. This article seeks to provide knowledge for interpreting appearances of odontoid on computed tomography (CT and magnetic resonance imaging (MRI with respect to various disease processes, along with providing a quick review of the embryology and relevant anatomy.

  9. Analytical equations for CT dose profiles derived using a scatter kernel of Monte Carlo parentage with broad applicability to CT dosimetry problems

    International Nuclear Information System (INIS)

    Dixon, Robert L.; Boone, John M.

    2011-01-01

    Purpose: Knowledge of the complete axial dose profile f(z), including its long scatter tails, provides the most complete (and flexible) description of the accumulated dose in CT scanning. The CTDI paradigm (including CTDI vol ) requires shift-invariance along z (identical dose profiles spaced at equal intervals), and is therefore inapplicable to many of the new and complex shift-variant scan protocols, e.g., high dose perfusion studies using variable (or zero) pitch. In this work, a convolution-based beam model developed by Dixon et al.[Med. Phys. 32, 3712-3728, (2005)] updated with a scatter LSF kernel (or DSF) derived from a Monte Carlo simulation by Boone [Med. Phys. 36, 4547-4554 (2009)] is used to create an analytical equation for the axial dose profile f(z) in a cylindrical phantom. Using f(z), equations are derived which provide the analytical description of conventional (axial and helical) dose, demonstrating its physical underpinnings; and likewise for the peak axial dose f(0) appropriate to stationary phantom cone beam CT, (SCBCT). The methodology can also be applied to dose calculations in shift-variant scan protocols. This paper is an extension of our recent work Dixon and Boone [Med. Phys. 37, 2703-2718 (2010)], which dealt only with the properties of the peak dose f(0), its relationship to CTDI, and its appropriateness to SCBCT. Methods: The experimental beam profile data f(z) of Mori et al.[Med. Phys. 32, 1061-1069 (2005)] from a 256 channel prototype cone beam scanner for beam widths (apertures) ranging from a = 28 to 138 mm are used to corroborate the theoretical axial profiles in a 32 cm PMMA body phantom. Results: The theoretical functions f(z) closely-matched the central axis experimental profile data 11 for all apertures (a = 28 -138 mm). Integration of f(z) likewise yields analytical equations for all the (CTDI-based) dosimetric quantities of conventional CT (including CTDI L itself) in addition to the peak dose f(0) relevant to SCBCT

  10. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  11. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.

    2009-01-01

    Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18 F-FDG and 123 I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children. (orig.)

  12. Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance

    International Nuclear Information System (INIS)

    Hasford, F.

    2015-01-01

    Fusion of medical images between different cross-sectional modalities is widely used, mostly where functional images are fused with anatomical data. Ultrasound has for some time now been the standard imaging technique used for treatment planning of prostate cancer cases. While this approach is laudable and has yielded some positive results, latest developments have been the integration of images from ultrasound and other modalities such as PET-CT to compliment missing properties of ultrasound images. This study has sought to enhance diagnosis and treatment of prostate cancers by developing MATLAB algorithms to fuse ultrasound and PET-CT images. The fused ultrasound-PET-CT image has shown to contain improved quality of information than the individual input images. The fused image has the property of reduced uncertainty, increased reliability, robust system performance, and compact representation of information. The objective of co-registering the ultrasound and PET-CT images was achieved by conducting performance evaluation of the ultrasound and PET-CT imaging systems, developing image contrast enhancement algorithm, developing MATLAB image fusion algorithm, and assessing accuracy of the fusion algorithm. Performance evaluation of the ultrasound brachytherapy system produced satisfactory results in accordance with set tolerances as recommended by AAPM TG 128. Using an ultrasound brachytherapy quality assurance phantom, average axial distance measurement of 10.11 ± 0.11 mm was estimated. Average lateral distance measurements of 10.08 ± 0.07 mm, 20.01 ± 0.06 mm, 29.89 ± 0.03 mm and 39.84 ± 0.37 mm were estimated for the inter-target distances corresponding to 10 mm, 20 mm, 30 mm and 40 mm respectively. Volume accuracy assessment produced measurements of 3.97 cm 3 , 8.86 cm 3 and 20.11 cm 3 for known standard volumes of 4 cm 3 , 9 cm 3 and 20 cm 3 respectively. Depth of penetration assessment of the ultrasound system produced an estimate of 5.37 ± 0.02 cm

  13. Numerical simulation of logging-while-drilling density image by Monte-Carlo method

    International Nuclear Information System (INIS)

    Yue Aizhong; He Biao; Zhang Jianmin; Wang Lijuan

    2010-01-01

    Logging-while-drilling system is researched by Monte Carlo Method. Model of Logging-while-drilling system is built, tool response and azimuth density image are acquired, methods dealing with azimuth density data is discussed. This outcome lay foundation for optimizing tool, developing new tool and logging explanation. (authors)

  14. Coronary imaging techniques with emphasis on CT and MRI

    International Nuclear Information System (INIS)

    Lederlin, Mathieu; Latrabe, Valerie; Corneloup, Olivier; Cochet, Hubert; Montaudon, Michel; Laurent, Francois; Thambo, Jean-Benoit

    2011-01-01

    Coronary artery imaging in children is challenging, with high demands both on temporal and spatial resolution due to high heart rates and smaller anatomy. Although invasive conventional coronary angiography remains the benchmark technique, over the past 10 years, CT and MRI have emerged in the field of coronary imaging. The choice of hardware is important. For CT, the minimum requirement is a 64-channel scanner. The temporal resolution of the scanner is most important for optimising image quality and minimising radiation dose. Manufacturers have developed several modes of electrocardiographic (ECG) triggering to facilitate dose reduction. Recent technical advances have opened new possibilities in MRI coronary imaging. As a non-ionising radiation technique, MRI is of great interest in paediatric imaging. It is currently recommended in centres with appropriate expertise for the screening of patients with suspected congenital coronary anomalies. However, MRI is still not feasible in infants. This review describes and discusses the technical requirements and the pros and cons of all three techniques. (orig.)

  15. Monte Carlo simulation of gamma ray tomography for image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)

    2015-07-01

    The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)

  16. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  17. Occipital condyle fracture and ligament injury: imaging by CT

    International Nuclear Information System (INIS)

    Bloom, A.I.; Neeman, Z.; Floman, Y.; Gomori, J.; Bar-Ziv, J.

    1996-01-01

    The true incidence of fracture of the occipital condyles is unknown. It may be associated with instability at the craniocervical joint. CT is the modality of choice for the demonstration of these fractures, but its use for imaging of the associated ligament injury has not been reported. In order to demonstrate normal anatomy, occipital condyle fracture and ligament injury, and to estimate the incidence of this lesion, 21 children and young adults with high-energy blunt craniocervical injury were examined prospectively. Thin-slice, axial, contiguous, CT was performed from the base of C2 to above the foramen magnum. Bone and soft tissue windows and coronal, sagittal, and curvilinear 2D reconstructions were performed. Five occipital condyle fractures were identified in four patients (19 %), with demonstration of alar ligament injury in two cases and local hematoma in one. In four, artifacts or rotation precluded assessment of ligaments. In all remaining cases normal bone and ligament anatomy was demonstrated. Fracture of the occipital condyles following craniocervical injury is not uncommon in children and young adults. Normal bone and ligament anatomy and pathology can be safely and clearly demonstrated in seriously injured patients and others using this CT technique. Increased awareness of this entity and a low threshold for performing CT should avoid the potentially serious consequences of a missed diagnosis. (orig.). With 8 figs., 2 tabs

  18. Three dimensional CT imaging of ossicular chain: a preliminary study

    International Nuclear Information System (INIS)

    Hu Chunhong; Zhong Shenbin; Fu Yindi; Zhu Wei; Wang Xueyuan; Chen Jianhua; Ding Yi

    2001-01-01

    Objective: To analysis the features of normal and abnormal ossicular chain in three dimensional images and asses the best parameters and its usefulness in diagnosis and treatment of chronic otitis media (COM). Methods: All patients, including 43 patients with normal ears and 24 ears with COM, were examined using spiral CT with inner ear software, 1-mm slice width and 1 pitch. SSD method was used in three dimensional reconstruction and the threshold was 100-300 Hu. Results: In normal cases, Malleus, incus, stapes crura, incudomalleal joints and incudostapedial joints were displayed well, but stapes footplate unsatisfactorily. The disruption of the ossicular chain showed in three-dimensional images in cases of chronic otitis media was in accord with that seen in the operation. Conclusion: It is very important for imaging with high quality through selecting proper parameters, and three-dimensional image can provide valuable information for surgery

  19. Dynamic CT perfusion image data compression for efficient parallel processing.

    Science.gov (United States)

    Barros, Renan Sales; Olabarriaga, Silvia Delgado; Borst, Jordi; van Walderveen, Marianne A A; Posthuma, Jorrit S; Streekstra, Geert J; van Herk, Marcel; Majoie, Charles B L M; Marquering, Henk A

    2016-03-01

    The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast results. However, the size of CTP datasets makes transfers to cloud infrastructures time-consuming and therefore not suitable in acute situations. To reduce this transfer time, this work proposes a fast and lossless compression algorithm for CTP data. The algorithm exploits redundancies in the temporal dimension and keeps random read-only access to the image elements directly from the compressed data on the GPU. To the best of our knowledge, this is the first work to present a GPU-ready method for medical image compression with random access to the image elements from the compressed data.

  20. Infective endocarditis detection through SPECT/CT images digital processing

    Science.gov (United States)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  1. CT imaging vs. traditional radiographic imaging for evaluating Harris Lines in tibiae

    DEFF Research Database (Denmark)

    Primeau, Charlotte; Jakobsen, Lykke Schrøder; Lynnerup, Niels

    2016-01-01

    This paper is the first to systematically investigate computer tomography (CT) images vs. ordinary flat plane radiography for evaluating Harris Lines (HL) on tibiae. Harris Lines are traditionally investigated using radiographic images and recorded as either present or absent, or by counting...

  2. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2016-10-15

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use. (orig.)

  3. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans

    International Nuclear Information System (INIS)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian

    2016-01-01

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use. (orig.)

  4. Peritoneal manifestations of fascioliasis on CT images: a new observation.

    Science.gov (United States)

    Song, Kyoung Doo; Lim, Jae Hoon; Kim, Mi Jeong; Jang, Yun Jin; Kim, Jae Woon; Cho, Seung Hyun; Kwon, Jung Hyeok

    2013-08-01

    To describe peritoneal manifestations of fascioliasis on CT. We reviewed CT images in 31 patients with fascioliasis confirmed by enzyme-linked immunosorbent assay (ELISA) (n = 24) or surgery (n = 7). Image analyses were performed to identify hepatic, biliary, and peritoneal abnormalities. Hepatic abnormalities were seen in 28 (90.3 %) of the 31 patients. The most common finding was caves sign, which was present in 25 (80.1 %) patients. Three patients (9.7 %) presented with biliary abnormalities exhibiting dilatation and enhancing wall thickening of the bile duct, wall thickening of the gallbladder, and elongated structures in the bile duct or gallbladder. Peritoneal abnormalities were seen in 14 (45.2 %) of the 31 patients. The most common peritoneal abnormality was mesenteric or omental infiltration, which was seen in 9 (29.0 %) patients. Other peritoneal findings included lymph node enlargement (n = 7), ascites (n = 7), thickening of ligamentum teres (n = 2), and peritoneal mass (n = 2). Peritoneal manifestations of fascioliasis are relatively common, and CT findings include mesenteric or omental infiltration, lymph node enlargement, ascites, thickening of the ligamentum teres, and peritoneal masses.

  5. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    OpenAIRE

    Leotta, Salvatore; Amato, Ernesto; Settineri, Nicola; Basile, Emilia; Italiano, Antonio; Auditore, Lucrezia; Santacaterina, Anna; Pergolizzi, Stefano

    2018-01-01

    Image Guided RadioTherapy (IGRT) is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT) scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS ...

  6. Adaptable three-dimensional Monte Carlo modeling of imaged blood vessels in skin

    Science.gov (United States)

    Pfefer, T. Joshua; Barton, Jennifer K.; Chan, Eric K.; Ducros, Mathieu G.; Sorg, Brian S.; Milner, Thomas E.; Nelson, J. Stuart; Welch, Ashley J.

    1997-06-01

    In order to reach a higher level of accuracy in simulation of port wine stain treatment, we propose to discard the typical layered geometry and cylindrical blood vessel assumptions made in optical models and use imaging techniques to define actual tissue geometry. Two main additions to the typical 3D, weighted photon, variable step size Monte Carlo routine were necessary to achieve this goal. First, optical low coherence reflectometry (OLCR) images of rat skin were used to specify a 3D material array, with each entry assigned a label to represent the type of tissue in that particular voxel. Second, the Monte Carlo algorithm was altered so that when a photon crosses into a new voxel, the remaining path length is recalculated using the new optical properties, as specified by the material array. The model has shown good agreement with data from the literature. Monte Carlo simulations using OLCR images of asymmetrically curved blood vessels show various effects such as shading, scattering-induced peaks at vessel surfaces, and directionality-induced gradients in energy deposition. In conclusion, this augmentation of the Monte Carlo method can accurately simulate light transport for a wide variety of nonhomogeneous tissue geometries.

  7. Evaluation of video-printer images as secondary CT images for clinical use

    International Nuclear Information System (INIS)

    Doi, K.; Rubin, J.

    1983-01-01

    Video-printer (VP) images of 24 abnormal views from a body CT scanner were made. Although the physical quality of printer images was poor, a group of radiologists and clinicians found that VP images are adequate to confirm the lesion described in the radiology report. The VP images can be used as secondary images, and they can be attached to a report as a part of the radiology service to increase communication between radiologists and clinicians and to prevent the loss of primary images from the radiology file

  8. Automatic segmentation of lumbar vertebrae in CT images

    Science.gov (United States)

    Kulkarni, Amruta; Raina, Akshita; Sharifi Sarabi, Mona; Ahn, Christine S.; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.

  9. Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study.

    Science.gov (United States)

    Abuhaimed, Abdullah; Martin, Colin J; Sankaralingam, Marimuthu; Gentle, David J

    2015-07-21

    A function called Gx(L) was introduced by the International Commission on Radiation Units and Measurements (ICRU) Report-87 to facilitate measurement of cumulative dose for CT scans within long phantoms as recommended by the American Association of Physicists in Medicine (AAPM) TG-111. The Gx(L) function is equal to the ratio of the cumulative dose at the middle of a CT scan to the volume weighted CTDI (CTDIvol), and was investigated for conventional multi-slice CT scanners operating with a moving table. As the stationary table mode, which is the basis for cone beam CT (CBCT) scans, differs from that used for conventional CT scans, the aim of this study was to investigate the extension of the Gx(L) function to CBCT scans. An On-Board Imager (OBI) system integrated with a TrueBeam linac was simulated with Monte Carlo EGSnrc/BEAMnrc, and the absorbed dose was calculated within PMMA, polyethylene (PE), and water head and body phantoms using EGSnrc/DOSXYZnrc, where the body PE body phantom emulated the ICRU/AAPM phantom. Beams of width 40-500 mm and beam qualities at tube potentials of 80-140 kV were studied. Application of a modified function of beam width (W) termed Gx(W), for which the cumulative dose for CBCT scans f (0) is normalized to the weighted CTDI (CTDIw) for a reference beam of width 40 mm, was investigated as a possible option. However, differences were found in Gx(W) with tube potential, especially for body phantoms, and these were considered to be due to differences in geometry between wide beams used for CBCT scans and those for conventional CT. Therefore, a modified function Gx(W)100 has been proposed, taking the form of values of f (0) at each position in a long phantom, normalized with respect to dose indices f 100(150)x measured with a 100 mm pencil ionization chamber within standard 150 mm PMMA phantoms, using the same scanning parameters, beam widths and positions within the phantom. f 100(150)x averages the dose resulting from

  10. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    International Nuclear Information System (INIS)

    Poortman, Pieter; Lohle, Paul N.M.; Schoemaker, Cees M.; Cuesta, Miguel A.; Oostvogel, Henk J.M.; Lange-de Klerk, Elly S.M. de; Hamming, Jaap F.

    2010-01-01

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  11. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Poortman, Pieter [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: ppoortman@wlz.nl; Lohle, Paul N.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: plohle@elisabeth.nl; Schoemaker, Cees M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: mcschoemaker@elisabeth.nl; Cuesta, Miguel A. [Department of Surgery, VU Medical Centre, Amsterdam (Netherlands)], E-mail: ma.cuesta@vumc.nl; Oostvogel, Henk J.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: h.oostvogel@elisabeth.nl; Lange-de Klerk, Elly S.M. de [Department of Epidemiology and Biostatistics, VU Medical Centre, Amsterdam (Netherlands)], E-mail: esm.delange@vumc.nl; Hamming, Jaap F. [Department of Surgery, Leiden University Medical Centre (Netherlands)], E-mail: j.f.hamming@lumc.nl

    2010-04-15

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  12. SU-F-I-06: Evaluation of Imaging Dose for Modulation Layer Based Dual Energy Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Eunbin [Department of Medical Science, Ewha Womans University, Seoul (Korea, Republic of); Ahn, SoHyun; Cho, Samju; Keum, Ki Chang [Department of Radiation Oncology, School of Medicine, Yonsei Univeristy, Seoul (Korea, Republic of); Lee, Rena [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Dual energy cone beam CT system is finding a variety of promising applications in diagnostic CT, both in imaging of endogenous materials and exogenous materials across a range of body sites. Dual energy cone beam CT system to suggest in this study acquire image by rotating 360 degree with half of the X-ray window covered using copper modulation layer. In the region that covered by modulation layer absorb the low energy X-ray by modulation layer. Relative high energy X-ray passes through the layer and contributes to image reconstruction. Dose evaluation should be carried out in order to utilize such an imaging acquirement technology for clinical use. Methods: For evaluating imaging dose of modulation layer based dual energy cone beam CT system, Prototype cone beam CT that configured X-ray tube (D054SB, Toshiba, Japan) and detector (PaxScan 2520V, Varian Medical Systems, Palo Alto, CA) is used. A range of 0.5–2.0 mm thickness of modulation layer is implemented in Monte Carlo simulation (MCNPX, ver. 2.6.0, Los Alamos National Laboratory, USA) with half of X-ray window covered. In-house phantom using in this study that has 3 cylindrical phantoms configured water, Teflon air with PMMA covered for verifying the comparability the various material in human body and is implemented in Monte Carlo simulation. The actual dose with 2.0 mm copper covered half of X-ray window is measured using Gafchromic EBT3 film with 5.0 mm bolus for compared with simulative dose. Results: Dose in phantom reduced 33% by copper modulation layer of 2.0 mm. Scattering dose occurred in modulation layer by Compton scattering effect is 0.04% of overall dose. Conclusion: Modulation layer of that based dual energy cone beam CT has not influence on unnecessary scatter dose. This study was supported by the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission.

  13. A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations

    International Nuclear Information System (INIS)

    Turner, Adam C.; Zhang Di; Kim, Hyun J.; DeMarco, John J.; Cagnon, Chris H.; Angel, Erin; Cody, Dianna D.; Stevens, Donna M.; Primak, Andrew N.; McCollough, Cynthia H.; McNitt-Gray, Michael F.

    2009-01-01

    The purpose of this study was to present a method for generating x-ray source models for performing Monte Carlo (MC) radiation dosimetry simulations of multidetector row CT (MDCT) scanners. These so-called ''equivalent'' source models consist of an energy spectrum and filtration description that are generated based wholly on the measured values and can be used in place of proprietary manufacturer's data for scanner-specific MDCT MC simulations. Required measurements include the half value layers (HVL 1 and HVL 2 ) and the bowtie profile (exposure values across the fan beam) for the MDCT scanner of interest. Using these measured values, a method was described (a) to numerically construct a spectrum with the calculated HVLs approximately equal to those measured (equivalent spectrum) and then (b) to determine a filtration scheme (equivalent filter) that attenuates the equivalent spectrum in a similar fashion as the actual filtration attenuates the actual x-ray beam, as measured by the bowtie profile measurements. Using this method, two types of equivalent source models were generated: One using a spectrum based on both HVL 1 and HVL 2 measurements and its corresponding filtration scheme and the second consisting of a spectrum based only on the measured HVL 1 and its corresponding filtration scheme. Finally, a third type of source model was built based on the spectrum and filtration data provided by the scanner's manufacturer. MC simulations using each of these three source model types were evaluated by comparing the accuracy of multiple CT dose index (CTDI) simulations to measured CTDI values for 64-slice scanners from the four major MDCT manufacturers. Comprehensive evaluations were carried out for each scanner using each kVp and bowtie filter combination available. CTDI experiments were performed for both head (16 cm in diameter) and body (32 cm in diameter) CTDI phantoms using both central and peripheral measurement positions. Both equivalent source model types

  14. 90Y microsphere therapy: does 90Y PET/CT imaging obviate the need for 90Y Bremsstrahlung SPECT/CT imaging?

    Science.gov (United States)

    Zade, Anand A; Rangarajan, Venkatesh; Purandare, Nilendu C; Shah, Sneha A; Agrawal, Archi R; Kulkarni, Suyash S; Shetty, Nitin

    2013-11-01

    Transarterial radioembolization using Y microspheres is a novel therapeutic option for inoperable hepatic malignancies. As these spheres are radiolucent, real-time assessment of their distribution during the infusion process under fluoroscopic guidance is not possible. Bremsstrahlung radiations arising from 90Y have conventionally been used for imaging its biodistribution. Recent studies have proved that sources of 90Y also emit positrons, which can further be used for PET/computed tomography (CT) imaging. This study aimed to assess the feasibility of 90Y PET/CT imaging in evaluating microsphere distributions and to compare its findings with those of Bremsstrahlung imaging. Thirty-five sessions of 90Y microsphere transarterial radioembolization were performed on 30 patients with hepatic malignancies. 90Y PET/CT imaging was performed within 3 h of therapy. Bremsstrahlung imaging was also performed for each patient. The imaging findings were compared for concordance in the distribution of microspheres. Exact one-to-one correspondence between 90Y PET/CT imaging and 90Y Bremsstrahlung imaging was observed in 97.14% of cases (i.e. in 34/35 cases). Discordance was observed only in one case in which 90Y PET/CT imaging resolved the microsphere uptake in the inferior vena cava tumor thrombus, which was, however, not visualized on Bremsstrahlung imaging. There is good concordance in the imaging findings of 90Y PET/CT and 90Y Bremsstrahlung imaging. 90Y PET/CT imaging scores over the conventionally used Bremsstrahlung imaging in terms of better resolution, ease of technique, and comparable image acquisition time. This makes it a preferred imaging modality for assessment of the distribution of 90Y microspheres.

  15. Customisation of a Monte Carlo dosimetry tool for dental cone-beam CT systems

    International Nuclear Information System (INIS)

    Stratis, A.; Lopez-Rendon, X.; Jacobs, R.; Zhang, G.; Bogaerts, R.; Bosmans, H.

    2016-01-01

    A versatile EGSnrc Monte Carlo (MC) framework, initially designed to explicitly simulate X-ray tubes and record the output data into phase space data files, was modified towards dental cone-beam computed tomography (CBCT) dosimetric applications by introducing equivalent sources. Half value layer (HVL) measurements were conducted to specify protocol-specific energy spectra. Air kerma measurements were carried out with an ionisation chamber positioned against the X-ray tube to obtain the total filtration attenuation characteristics. The framework is applicable to bow-tie and non-bow-tie inherent filtrations, and it accounts for the anode heel effect and the total filtration of the tube housing. The code was adjusted to the Promax 3D Max (Planmeca, Helsinki, Finland) dental CBCT scanner. For each clinical protocol, calibration factors were produced to allow absolute MC dose calculations. The framework was validated by comparing MC calculated doses and measured doses in a cylindrical water phantom. Validation results demonstrate the reliability of the framework for dental CBCT dosimetry purposes. (authors)

  16. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  17. CT and MR imaging of closed head trauma

    International Nuclear Information System (INIS)

    Park, Byung Moon; Kim, Wan Jin; Kim, Dae Ho; Lee, Hae Kyung; Chung, Moo Chan; Kwon, Kui Hyang; Kim, Ki Jeong

    1990-01-01

    The distribution and extent of traumatic lesions were evaluated with MR imaging in 40 patients with closed head injuries. The primary intraaxial lesions were classified into four main types, according to their topographical distribution within the brain ; cortical contusion (54%), diffuse axonal injury (35%), subcortical gray matter injury (4%), primary brain stem injury (7%). MR was found to be superior to CT and to be very useful in the detection of traumatic head lesions and T2WI were most useful for lesion detection. But T1WI proved to be also useful for detection of hemorrhage and anatomical localization

  18. CT imaging features of tuberculous spondylitis in children

    International Nuclear Information System (INIS)

    Song Min; Liu Wen; Fang Weijun; Wang Fukang; Li Ziping

    2009-01-01

    Objective: To investigate CT imaging features of tuberculous spondylitis in children. Methods: The CT imagings of two groups of patients with Tuberculous Spondylitis between January 2004 and March 2008 were retrospectively reviewed. One group included 28 children from 0 to 14 years old. Another group included 159 adults. All the patients were diagnosed as tuberculous spondylitis by pathology or biopsy, or by anti-turboelectric therapy. The CT imagings of the two groups were read retrospectively, including infections of vertebras and its appendix, the proportion of the total length of paravertebral abscess to the height of relative vertebra, the information of paravertebral abscess and dura mate of spinal cord and nerve root compression. Results The ratio of kyphosis in children group was 75% (21/28), higher than that in adults'. Tuberculous spondylitis in children was most often involved thoracic vertebra (53.7%,51/95). In children, involvement was more often seen than that of cervical vertebra and lumbar. The ratio of tuberculous spondylitis of children's cervical vertebrae was 10.5% (10/95)and of lumbar was 31.6% (30/95, while in adults that of cervical vertebrae was 3.3% (16/479)and of lumbar was 44.5% (213/479). There was statistical difference between them. The percentages of central type of tuberculous vertebral osteitis in chlidren was 57.1% (16/28)and was different with that in adults'(P=0.001 0.05). The incidence of dura mate of spinal cord or nerve root compression in children was 78.6%(22/28), much higher than that in adults (49.7%(79/159), P=0.005 <0.05). Conclusion: Special features of tuberculous spondylitis in childrencan be observed on CT imaging, kyphosis is often seen. The incidence of tuberculous spondylitis of thoracic vertebra and cervical vertebrae is high, central type of tuberculous vertebral osteitis in children is more popular than that in adults, but there is higher ratio of dura mate of spinal cord or nerve root compression in children

  19. Metastatic meningioma: positron emission tomography CT imaging findings.

    LENUS (Irish Health Repository)

    Brennan, C

    2010-12-01

    The imaging findings of a case of metastasing meningioma are described. The case illustrates a number of rare and interesting features. The patient presented with haemoptysis 22 years after the initial resection of an intracranial meningioma. CT demonstrated heterogeneous masses with avid peripheral enhancement without central enhancement. Blood supply to the larger lesion was partially from small feeding vessels from the inferior pulmonary vein. These findings correlate with a previously published case in which there was avid uptake of fluoro-18-deoxyglucose peripherally with lesser uptake centrally. The diagnosis of metastasing meningioma was confirmed on percutaneous lung tissue biopsy.

  20. Clinical and CT imaging features of abdominal fat necrosis

    International Nuclear Information System (INIS)

    Zhao Jinkun; Bai Renju

    2013-01-01

    Fat necrosis is a common pathological change at abdominal cross-sectional imaging, and it may cause abdominal pain, mimic pathological change of acute abdomen, or be asymptomatic and accompany other pathophysiologic processes. Fat necrosis is actually the result of steatosis by metabolism or mechanical injury. Common processes that are present in fat necrosis include epiploic appendagitis, infarction of the greater omentum, pancreatitis, and fat necrosis related to trauma or ischemia. As a common fat disease, fat necrosis should be known by clinicians and radiologists. Main content of this text is the clinical symptoms and CT findings of belly fat necrosis and related diseases. (authors)

  1. CT images of an anthropomorphic and anthropometric male pelvis phantom

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares

    2009-07-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  2. CT images of an anthropomorphic and anthropometric male pelvis phantom

    International Nuclear Information System (INIS)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de

    2009-01-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  3. CT and MR Imagings of Semicircular Canal Aplasia

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chung Hee; Hong, Hyun Sook; Yi, Beom Ha; Cha, Jang Gyu; Park, Seong Jin; Kim, Dae Ho; Lee, Hae Kyung; Kim, Shi Chan [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2009-07-15

    To evaluate the clinical, CT and MR imaging findings of semicircular canal (SCC) aplasia and to evaluate if a correlation exists between these findings and the associated anomalies or syndromes. This study retrospectively reviewed the CT and MRI findings of five patients with SCC aplasia. The CT and MR findings were analyzed for SCC, direction of facial nerve canal, cochlea, vestibule, oval or round window, middle ear ossicles, and internal auditory canal (IAC). The subjects included three boys and two girls ranging in age from one to 120 months (mean age; 51 months). Four of the subjects had the CHARGE syndrome, and one had the Goldenhar syndrome. Moreover, four subjects had sensorineural hearing loss and one had combined hearing loss. The course of the facial nerve canal was abnormal in all five cases. Moreover, trapped cochlea and dysplastic modiolus were each observed in one case. Four subjects had atresia of the oval window; whereas ankylosis of the ossicles was present in three subjects. IAC stenosis was present in one patient with the CHARGE syndrome. The aberrant course of the facial nerve canal, atresia of the oval window, and abnormal ossicles were frequently associated in patients with SCC aplasia. In addition, the Goldenhar and CHARGE syndromes were also commonly associated syndromes.

  4. Ultra-filtration measurement using CT imaging technology

    International Nuclear Information System (INIS)

    Lu Junfeng; Lu Wenqiang

    2009-01-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  5. Blind CT image quality assessment via deep learning strategy: initial study

    Science.gov (United States)

    Li, Sui; He, Ji; Wang, Yongbo; Liao, Yuting; Zeng, Dong; Bian, Zhaoying; Ma, Jianhua

    2018-03-01

    Computed Tomography (CT) is one of the most important medical imaging modality. CT images can be used to assist in the detection and diagnosis of lesions and to facilitate follow-up treatment. However, CT images are vulnerable to noise. Actually, there are two major source intrinsically causing the CT data noise, i.e., the X-ray photo statistics and the electronic noise background. Therefore, it is necessary to doing image quality assessment (IQA) in CT imaging before diagnosis and treatment. Most of existing CT images IQA methods are based on human observer study. However, these methods are impractical in clinical for their complex and time-consuming. In this paper, we presented a blind CT image quality assessment via deep learning strategy. A database of 1500 CT images is constructed, containing 300 high-quality images and 1200 corresponding noisy images. Specifically, the high-quality images were used to simulate the corresponding noisy images at four different doses. Then, the images are scored by the experienced radiologists by the following attributes: image noise, artifacts, edge and structure, overall image quality, and tumor size and boundary estimation with five-point scale. We trained a network for learning the non-liner map from CT images to subjective evaluation scores. Then, we load the pre-trained model to yield predicted score from the test image. To demonstrate the performance of the deep learning network in IQA, correlation coefficients: Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are utilized. And the experimental result demonstrate that the presented deep learning based IQA strategy can be used in the CT image quality assessment.

  6. Feasibility study of CT perfusion imaging for prostate carcinoma

    International Nuclear Information System (INIS)

    Cullu, Nesat; Kantarci, Mecit; Ogul, Hayri; Pirimoglu, Berhan; Karaca, Leyla; Kizrak, Yesim; Adanur, Senol; Koc, Erdem; Polat, Ozkan; Okur, Aylin

    2014-01-01

    The aim of this feasibility study was to obtain initial data with which to assess the efficiency of perfusion CT imaging (CTpI) and to compare this with magnetic resonance imaging (MRI) in the diagnosis of prostate carcinoma. This prospective study involved 25 patients with prostate carcinoma undergoing MRI and CTpI. All analyses were performed on T2-weighted images (T2WI), apparent diffusion coefficient (ADC) maps, diffusion-weighted images (DWI) and CTp images. We compared the performance of T2WI combined with DWI and CTp alone. The study was approved by the local ethics committee, and written informed consent was obtained from all patients. Tumours were present in 87 areas according to the histopathological results. The diagnostic performance of the T2WI+DWI+CTpI combination was significantly better than that of T2WI alone for prostate carcinoma (P < 0.001). The diagnostic value of CTpI was similar to that of T2WI+DWI in combination. There were statistically significant differences in the blood flow and permeability surface values between prostate carcinoma and background prostate on CTp images. CTp may be a valuable tool for detecting prostate carcinoma and may be preferred in cases where MRI is contraindicated. If this technique is combined with T2WI and DWI, its diagnostic value is enhanced. (orig.)

  7. CT and MR imaging features in patients with intracranial dolichoectasia

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Kuang Lung; Yu, In Kyu; Yoon, Sook Ja; Yoon, Yong Kyu [Eulji College of Medicine, Eulji Hospital, Seoul (Korea, Republic of)

    2000-02-01

    To describe the CT and MR imaging features in patients with intracranial dolichoectasia. The CT (n=3D21), MR (n=3D20) and MRA (n=3D11) imaging features seen in 28 patients (M:F=3D12:16 aged between 65 and 82 (mean, 65) years) with intracranial dolichoectasia were retrospectively reviewed with regard to involved sites, arterial changes (maximum diameter, wall calcification, high signal intensity in the involved artery, as seen on T1-weighted MR images), infarction, hemorrhagic lesion, compression of brain parenchyma or cranial nerves, hydrocephalus and brain atrophy. Involved sites were classified as either type 1 (involvement of only the posterior circulation), type 2 (only the anterior circulation), or type 3 (both). In order of frequency, involved sites were type 1 (43%), type 3 (36%) and type 2 (22%). Dolichoectasia was more frequently seen in the posterior circulation (79%) than in the anterior (57%). Arterial changes as seen on T1-weighted MR images, included dolichoectasia (mean maximum diameter 7.4 mm in the distal internal carotid artery, and 6.7 mm in the basilar artery), wall calcification (100% in involved arteries) and high signal intensity in involved. Cerebral infarction in the territory of the involved artery was found in all patients, and a moderate degree of infarct was 87%. Hemorrhagic lesions were found in 19 patients (68%); these were either lobar (53%), petechial (37%), or subarachnoid (16%), and three patients showed intracranial aneurysms, including one case of dissecting aneurysm. In 19 patients (68%), lesions were compressed lesions by the dolichoectatic arteries, and were found-in order of descending frequency-in the medulla, pons, thalamus, and cerebellopontine angle cistern. Obstructive hydrocephalus was found in two patients (7%), and 23 (82%) showed a moderate degree of brain atrophy. In patients with intracranial dolichoectasia, moderate degrees of cerebral infarction and brain atrophy in the territory of involved arteries, as well as

  8. Deep convolutional networks for pancreas segmentation in CT imaging

    Science.gov (United States)

    Roth, Holger R.; Farag, Amal; Lu, Le; Turkbey, Evrim B.; Summers, Ronald M.

    2015-03-01

    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to state-of-the-art segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% +/- 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.

  9. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations

    Science.gov (United States)

    Gu, J.; Bednarz, B.; Caracappa, P. F.; Xu, X. G.

    2009-05-01

    The latest multiple-detector technologies have further increased the popularity of x-ray CT as a diagnostic imaging modality. There is a continuing need to assess the potential radiation risk associated with such rapidly evolving multi-detector CT (MDCT) modalities and scanning protocols. This need can be met by the use of CT source models that are integrated with patient computational phantoms for organ dose calculations. Based on this purpose, this work developed and validated an MDCT scanner using the Monte Carlo method, and meanwhile the pregnant patient phantoms were integrated into the MDCT scanner model for assessment of the dose to the fetus as well as doses to the organs or tissues of the pregnant patient phantom. A Monte Carlo code, MCNPX, was used to simulate the x-ray source including the energy spectrum, filter and scan trajectory. Detailed CT scanner components were specified using an iterative trial-and-error procedure for a GE LightSpeed CT scanner. The scanner model was validated by comparing simulated results against measured CTDI values and dose profiles reported in the literature. The source movement along the helical trajectory was simulated using the pitch of 0.9375 and 1.375, respectively. The validated scanner model was then integrated with phantoms of a pregnant patient in three different gestational periods to calculate organ doses. It was found that the dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. The paper also discusses how these fetal dose values can be used to evaluate imaging procedures and to assess risk using recommendations of the report from AAPM Task Group 36. This work demonstrates the ability of modeling and validating an MDCT scanner by the Monte Carlo method, as well as

  10. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Gu, J; Bednarz, B; Caracappa, P F; Xu, X G

    2009-01-01

    The latest multiple-detector technologies have further increased the popularity of x-ray CT as a diagnostic imaging modality. There is a continuing need to assess the potential radiation risk associated with such rapidly evolving multi-detector CT (MDCT) modalities and scanning protocols. This need can be met by the use of CT source models that are integrated with patient computational phantoms for organ dose calculations. Based on this purpose, this work developed and validated an MDCT scanner using the Monte Carlo method, and meanwhile the pregnant patient phantoms were integrated into the MDCT scanner model for assessment of the dose to the fetus as well as doses to the organs or tissues of the pregnant patient phantom. A Monte Carlo code, MCNPX, was used to simulate the x-ray source including the energy spectrum, filter and scan trajectory. Detailed CT scanner components were specified using an iterative trial-and-error procedure for a GE LightSpeed CT scanner. The scanner model was validated by comparing simulated results against measured CTDI values and dose profiles reported in the literature. The source movement along the helical trajectory was simulated using the pitch of 0.9375 and 1.375, respectively. The validated scanner model was then integrated with phantoms of a pregnant patient in three different gestational periods to calculate organ doses. It was found that the dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. The paper also discusses how these fetal dose values can be used to evaluate imaging procedures and to assess risk using recommendations of the report from AAPM Task Group 36. This work demonstrates the ability of modeling and validating an MDCT scanner by the Monte Carlo method, as well as

  11. CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Torres, Andrew S; Bonitatibus, Peter J; Yeh, Benjamin M

    2016-03-01

    To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions. Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution. The solutions were imaged within a modified 32-cm CT dose index phantom at 80, 100, 120, and 140 kVp at CT. To simulate larger body sizes, 0.2-, 0.5-, and 1.0-mm-thick copper filters were applied. CT image contrast was measured and corrected for measured concentrations and presence of chlorine in some compounds. Each element tested provided higher image contrast than iodine at some tube potential levels. Over the range of tube potentials that are clinically practical for average-sized and larger adults-that is, 100 kVp and higher-barium, gadolinium, ytterbium, and tantalum provided consistently increased image contrast compared with iodine, respectively demonstrating 39%, 56%, 34%, and 24% increases at 100 kVp; 39%, 66%, 53%, and 46% increases at 120 kVp; and 40%, 72%, 65%, and 60% increases at 140 kVp, with no added x-ray filter. The consistently high image contrast produced with 100-140 kVp by tantalum compared with bismuth and iodine at equal mass concentration suggests that tantalum could potentially be favorable for use as a clinical CT contrast agent.

  12. Skeletal scintigraphy and SPECT/CT in orthopedic imaging; Knochenszintigrafie und SPECT/CT bei orthopaedischen Fragestellungen

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, B.; Walter, M.; Krause, T. [Inselspital Bern (Switzerland). Universitaetsklinik fuer Nuklearmedizin

    2011-03-15

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  13. Image analysis of the inner ear with CT and MR imaging

    International Nuclear Information System (INIS)

    Kumakawa, Kohzoh; Takeda, Hidehiko; Mutoh, Naoko; Miyakawa, Kohichi; Yukawa, Kumiko; Funasaka, Sohtaro.

    1992-01-01

    Recent progress in magnetic resonance imaging (MRI) has made it possible to obtain detailed images of the inner ear by delineating the lymphatic fluid within the labyrinth. We analyzed CT scans and MR imaging in 70 ears manifesting profound deafness owing to inner ear lesions and compared their detective ability for inner ear lesions. The following results were obtained. CT scan examination showed slight to extensive ossification of the labyrinth in six ears (9%), whereas MRI examination revealed low to absent signal intensity of the inner ear in nine ears (13%). Therefore, it was concluded that MRI is more sensitive in detecting abnormalities of the inner ear than CT scan. MRI provided useful information as to whether the cochlear turn is filled with lymphatic fluid or obstructed. This point was one of the greatest advantages of MRI over CT scan. Abnormal findings in either or both the CT scan and the MRI were detected in suppurative labyrinthitis occurring secondary to chronic otitis media, bacterial meningitis and in inner ear trauma. However, such abnormal findings were not detected in patients with idiopathic progressive sensorineural hearing loss, ototoxity or sudden deafness. These findings should be taken into consideration in pre-operative assessment of cochlear implant candidates. (author)

  14. Edge detection of solid motor' CT image based on gravitation model

    International Nuclear Information System (INIS)

    Yu Guanghui; Lu Hongyi; Zhu Min; Liu Xudong; Hou Zhiqiang

    2012-01-01

    In order to detect the edge of solid motor' CT image much better, a new edge detection operator base on gravitation model was put forward. The edge of CT image is got by the new operator. The superiority turned out by comparing the edge got by ordinary operator. The comparison among operators with different size shows that higher quality CT images need smaller size operator while the lower need the larger. (authors)

  15. Dosimetric effect of statistics noise of the TC image in the simulation Monte Carlo of radiotherapy treatments

    International Nuclear Information System (INIS)

    Laliena Bielsa, V.; Jimenez Albericio, F. J.; Gandia Martinez, A.; Font Gomez, J. A.; Mengual Gil, M. A.; Andres Redondo, M. M.

    2013-01-01

    The source of uncertainty is not exclusive of the Monte Carlo method, but it will be present in any algorithm which takes into account the correction for heterogeneity. Although we hope that the uncertainty described above is small, the objective of this work is to try to quantify depending on the CT study. (Author)

  16. Studies on diagnosis of lung emphysema by CT image using experimental models and clinical cases

    International Nuclear Information System (INIS)

    Nakatani, Seiki

    1998-01-01

    Since the detailed report between the degree of functional disorder in lung emphysema and the analysis of CT image is quite unknown, the present study was attempted to produce the experimental model of lung emphysema with various stages by the administration of papain to the focal lobe in canine lung. Using this model or clinical lung emphysema, the relationship between the degree of destruction of alveolar walls, clinical pulmonary functions and CT images was investigated. CT scan was performed at the level of 50% vital capacity in both experimental models and clinical subjects by using spirometric gating CT. CT density histogram was obtained from CT image which was produced by using the developed software for this purpose. Densitometric parameters, such as mean CT value, %LAA, the peak in the histogram and 5% tile were selected from CT image. Papain solution of 5 mg/kg body weight was cumulatively administered to the left lower lobe in canine lung, resulting in the destruction of lung alveolar walls in parallel to the increasing dosage of papain. There was a significant correlation between not only the increasing dosage of papain, but also %FEV 1.0 and CT densitometric parameters, indicating that the histological changes of alveolar walls and the lung function in lung emphysema could be estimated by analysis of CT image. These experimental and clinical studies suggest that the analysis of CT image can reflect the pathophysiological changes in the lung and be useful for precise clinical diagnosis of lung emphysema. (author)

  17. Monte Carlo reference data sets for imaging research: Executive summary of the report of AAPM Research Committee Task Group 195

    NARCIS (Netherlands)

    Sechopoulos, I.; Ali, E.S.; Badal, A.; Badano, A.; Boone, J.M.; Kyprianou, I.S.; Mainegra-Hing, E.; McMillan, K.L.; McNitt-Gray, M.F.; Rogers, D.W.; Samei, E.; Turner, A.C.

    2015-01-01

    The use of Monte Carlo simulations in diagnostic medical imaging research is widespread due to its flexibility and ability to estimate quantities that are challenging to measure empirically. However, any new Monte Carlo simulation code needs to be validated before it can be used reliably. The type

  18. Assessment of pulmonary hypertension by CT and MR imaging

    International Nuclear Information System (INIS)

    Ley, Sebastian; Kreitner, Karl-Friedrich; Heussel, Claus P.; Fink, Christian; Kauczor, Hans-Ulrich; Borst, Mathias M.

    2004-01-01

    In the recent World Health Organization (WHO) classification the group of pulmonary arterial hypertension (PH) comprises the classic primary pulmonary hypertension and several conditions with definite or very high risk factors to develop pulmonary arterial hypertension. Therapeutic advances drive the need for a comprehensive pre-therapeutic evaluation for optimal treatment. Furthermore, follow-up examinations need to be performed to monitor changes in disease status and response to therapy. Up to now, the diagnostic imaging work-up of PH comprises mainly echocardiography, invasive right heart catheterization and ventilation/perfusion scintigraphy. Due to technical advances helical computed tomography (CT) and magnetic resonance imaging (MRI) became more important in the evaluation and for differential diagnosis of pulmonary arterial hypertension. Both modalities are reviewed and recommendations for clinical use are given. (orig.)

  19. Lung Nodule Detection in CT Images using Neuro Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    M. Usman Akram

    2013-07-01

    Full Text Available Automated lung cancer detection using computer aided diagnosis (CAD is an important area in clinical applications. As the manual nodule detection is very time consuming and costly so computerized systems can be helpful for this purpose. In this paper, we propose a computerized system for lung nodule detection in CT scan images. The automated system consists of two stages i.e. lung segmentation and enhancement, feature extraction and classification. The segmentation process will result in separating lung tissue from rest of the image, and only the lung tissues under examination are considered as candidate regions for detecting malignant nodules in lung portion. A feature vector for possible abnormal regions is calculated and regions are classified using neuro fuzzy classifier. It is a fully automatic system that does not require any manual intervention and experimental results show the validity of our system.

  20. High-fidelity artifact correction for cone-beam CT imaging of the brain

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  1. Efficacy of dynamic CT perfusion imaging in conjunction with three dimensional CT angiography for the evaluation of acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Nakaguchi, Hiroshi; Teraoka, Akira; Adachi, Shinobu; Yanagibashi, Kazutaka [Teraoka Memorial Hospital, Shinichi, Hiroshima (Japan)

    2003-01-01

    Through the use of a high-speed spiral CT scanner (GEMedical HiSpeedZX/i), CT/P/A technique, where conventional CT, CT perfusion imaging (CTP) and CT angiography (CTA) are consecutively performed, can now be performed with an imaging time of 90 seconds and a total contrast medium volume of 100 ml. A prospective clinical study was performed to ascertain the effectiveness of CT/P/A in diagnosing acute ischemic strokes. Twenty-nine consecutive patients of Teraoka Memorial Hospital suspected of suffering from the occlusion or constriction of cerebral arteries and who underwent CT/P/A within 3 hours from the onset served as subjects. The sensitivity, specificity, or Odds ratio of CTP and CTA in detecting lesions that caused cerebral infarction was calculated. CTP detected a hypoperfusion area with a sensitivity, specificity, and Odds ratio of 80%, 64%, and 7.2. The sensitivity in lobar infarcts, white matter infarcts, basal ganglia infarcts, and brainstem infarcts was 100%, 100%, 100%, 0% (p=0.0022). The sensitivity and Odds ratio of CT/P/A in cerebral infarcts differed according to the diameter of the infarcts. That with infarcts of 10 mm or more was 91%, 20. That with infarcts smaller than 10 mm was 50%, 2. CTA detected arterial lesions that caused cerebral ischemic attack with a sensitivity of 94% and specificity of 90%. The examination time for CT/P/A was 18 minutes, total radiation time being 90 seconds. Although CT/P/A was ineffective for the diagnosis of brainstem infarcts and lesions smaller than 10 mm, CT/P/A was useful in detecting moderate-sized hypoperfusion areas and arterial lesions three-dimensionally before an infarct is completed. (author)

  2. CT image reconstruction system based on hardware implementation

    International Nuclear Information System (INIS)

    Silva, Hamilton P. da; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo; Hormaza, Joel M.; Lopes, Ricardo T.

    2009-01-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  3. Task-based optimization of image reconstruction in breast CT

    Science.gov (United States)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  4. Detection and preoperative staging of carcinoma of the cervix: Comparison between MR imaging and CT

    International Nuclear Information System (INIS)

    Mayr, B.; Schmidt, H.; Baieri, P.; Scheidel, P.; Meier, W.; Schramm, T.

    1986-01-01

    Twenty-four patients with carcinoma of the cervix were examined preoperatively by MR imaging and CT. In all patients histopathologic confirmation was available for specimens obtained either by radical hysterectomy or at staging laparotomy. MR imaging was equivalent to contrast CT in the detection and evaluation of tumor extension in the cervix. Tumor extension to the parametria and pelvic wall was difficult to evaluate on both modalities, as neither had a higher accuracy than pelvic examination conducted under anesthesia. Nodal staging was nearly equivalent on MR imaging and CT. In the detection and staging of carcinoma of the cervix, MR imaged proved to be as good as CT with contrast agent enhancement

  5. Clinical assessment of SPECT/CT co-registration image fusion

    International Nuclear Information System (INIS)

    Zhou Wen; Luan Zhaosheng; Peng Yong

    2004-01-01

    Objective: Study the methodology of the SPECT/CT co-registration image fusion, and Assessment the Clinical application value. Method: 172 patients who underwent SPECT/CT image fusion during 2001-2003 were studied, 119 men, 53 women. 51 patients underwent 18FDG image +CT, 26 patients underwent 99m Tc-RBC Liver pool image +CT, 43 patients underwent 99mTc-MDP Bone image +CT, 18 patients underwent 99m Tc-MAA Lung perfusion image +CT. The machine is Millium VG SPECT of GE Company. All patients have been taken three steps image: X-ray survey, X-ray transmission and nuclear emission image (Including planer imaging, SPECT or 18 F-FDG of dual head camera) without changing the position of the patients. We reconstruct the emission image with X-ray map and do reconstruction, 18FDG with COSEM and 99mTc with OSEM. Then combine the transmission image and the reconstructed emission image. We use different process parameters in deferent image methods. The accurate rate of SPECT/CT image fusion were statistics, and compare their accurate with that of single nuclear emission image. Results: The nuclear image which have been reconstructed by X-ray attenuation and OSEM are apparent better than pre-reconstructed. The post-reconstructed emission images have no scatter lines around the organs. The outline between different issues is more clear than before. The validity of All post-reconstructed images is better than pre-reconstructed. SPECT/CT image fusion make localization have worthy bases. 138 patients, the accuracy of SPECT/CT image fusion is 91.3% (126/138), whereas 60(88.2%) were found through SPECT/CT image fusion, There are significant difference between them(P 99m Tc- RBC-SPECT +CT image fusion, but 21 of them were inspected by emission image. In BONE 99m Tc -MDP-SPECT +CT image fusion, 4 patients' removed bone(1-6 months after surgery) and their relay with normal bone had activity, their morphologic and density in CT were different from normal bones. 11 of 20 patients who could

  6. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT.

    Science.gov (United States)

    Ananthakrishnan, Lakshmi; Rajiah, Prabhakar; Ahn, Richard; Rassouli, Negin; Xi, Yin; Soesbe, Todd C; Lewis, Matthew A; Lenkinski, Robert E; Leyendecker, John R; Abbara, Suhny

    2017-03-01

    To assess virtual non-contrast (VNC) images obtained on a detection-based spectral detector CT scanner and determine how attenuation on VNC images derived from various phases of enhanced CT compare to those obtained from true unenhanced images. In this HIPAA compliant, IRB approved prospective multi-institutional study, 46 patients underwent pre- and post-contrast imaging on a prototype dual-layer spectral detector CT between October 2013 and November 2015, yielding 84 unenhanced and VNC pairs (25 arterial, 39 portal venous/nephrographic, 20 urographic). Mean attenuation was measured by one of three readers in the liver, spleen, kidneys, psoas muscle, abdominal aorta, and subcutaneous fat. Equivalence testing was used to determine if the mean difference between unenhanced and VNC attenuation was less than 5, 10, or 15 HU. VNC image quality was assessed on a 5 point scale. Mean difference between unenhanced and VNC attenuation was VNC attenuation were equivalent in all tissues except fat using a threshold of VNC overestimated the HU relative to unenhanced images. VNC image quality was rated as excellent or good in 84% of arterial phase and 85% of nephrographic phase cases, but only 40% of urographic phase. VNC images derived from novel dual layer spectral detector CT demonstrate attenuation values similar to unenhanced images in all tissues evaluated except for subcutaneous fat. Further study is needed to determine if attenuation thresholds currently used clinically for common pathology should be adjusted, particularly for lesions containing fat.

  7. CT paging arteriography with a multidetector-row CT. Advantages in splanchnic arterial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Seiji [Keio Univ., Tokyo (Japan). School of Medicine

    1999-11-01

    The purpose of this study is to assess the utility of CT paging arteriography with a multidetector-row CT as a replacement for conventional angiography in the evaluation of splanchnic arterial anomalies. Sixty-three patients underwent CT paging arteriography with a multidetector-row CT. In the 56 patients with conventional angiographic correlation, there was only one minor disagreement with CT paging arteriography. In the 7 patients who underwent IVDSA (intra venous digital subtraction angiography), CT paging arteriography defined four hepatic arterial anomalies which could not be depicted by IVDSA. In conclusion, CT paging arteriography provides noninvasive means to identify splanchnic arterial anomalies. (author)

  8. Evaluation of the reconstruction of image acquired from CT simulator to reduce metal artifact

    International Nuclear Information System (INIS)

    Choi, Ji Hun; Park, Jin Hong; Choi, Byung Don; Won, Hui Su; Chang, Nam Jun; Goo, Jang Hyun; Hong, Joo Wan

    2014-01-01

    This study presents the usefulness assessment of metal artifact reduction for orthopedic implants(O-MAR) to decrease metal artifacts from materials with high density when acquired CT images. By CT simulator, original CT images were acquired from Gammex and Rando phantom and those phantoms inserted with high density materials were scanned for other CT images with metal artifacts and then O-MAR was applied to those images, respectively. To evaluate CT images using Gammex phantom, 5 regions of interest(ROIs) were placed at 5 organs and 3 ROIs were set up at points affected by artifacts. The averages of standard deviation(SD) and CT numbers were compared with a plan using original image. For assessment of variations in dose of tissue around materials with high density, the volume of a cylindrical shape was designed at 3 places in images acquired from Rando phantom by Eclipse. With 6 MV, 7-fields, 15x15cm 2 and 100 cGy per fraction, treatment planning was created and the mean dose were compared with a plan using original image. In the test with the Gammex phantom, CT numbers had a few difference at established points and especially 3 points affected by artifacts had most of the same figures. In the case of O-MAR image, the more reduction in SD appeared at all of 8 points than non O-MAR image. In the test using the Rando Phantom, the variations in dose of tissue around high density materials had a few difference between original CT image and CT image with O-MAR. The CT images using O-MAR were acquired clearly at the boundary of tissue around high density materials and applying O-MAR was useful for correcting CT numbers

  9. Image processing based detection of lung cancer on CT scan images

    Science.gov (United States)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  10. CT image construction of a totally deflated lung using deformable model extrapolation

    International Nuclear Information System (INIS)

    Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim

    2011-01-01

    Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very similar. The

  11. A novel concept for CT with fixed anodes (FACT): Medical imaging based on the feasibility of thermal load capacity.

    Science.gov (United States)

    Kellermeier, Markus; Bert, Christoph; Müller, Reinhold G

    2015-07-01

    Focussing primarily on thermal load capacity, we describe the performance of a novel fixed anode CT (FACT) compared with a 100 kW reference CT. Being a fixed system, FACT has no focal spot blurring of the X-ray source during projection. Monte Carlo and finite element methods were used to determine the fluence proportional to thermal capacity. Studies of repeated short-time exposures showed that FACT could operate in pulsed mode for an unlimited period. A virtual model for FACT was constructed to analyse various temporal sequences for the X-ray source ring, representing a circular array of 1160 fixed anodes in the gantry. Assuming similar detector properties at a very small integration time, image quality was investigated using an image reconstruction library. Our model showed that approximately 60 gantry rounds per second, i.e. 60 sequential targetings of the 1160 anodes per second, were required to achieve a performance level equivalent to that of the reference CT (relative performance, RP = 1) at equivalent image quality. The optimal projection duration in each direction was about 10 μs. With a beam pause of 1 μs between projections, 78.4 gantry rounds per second with consecutive source activity were thermally possible at a given thermal focal spot. The settings allowed for a 1.3-fold (RP = 1.3) shorter scan time than conventional CT while maintaining radiation exposure and image quality. Based on the high number of rounds, FACT supports a high image frame rate at low doses, which would be beneficial in a wide range of diagnostic and technical applications. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    Science.gov (United States)

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (Pdynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  13. Design of a practical model-observer-based image quality assessment method for CT imaging systems

    Science.gov (United States)

    Tseng, Hsin-Wu; Fan, Jiahua; Cao, Guangzhi; Kupinski, Matthew A.; Sainath, Paavana

    2014-03-01

    The channelized Hotelling observer (CHO) is a powerful method for quantitative image quality evaluations of CT systems and their image reconstruction algorithms. It has recently been used to validate the dose reduction capability of iterative image-reconstruction algorithms implemented on CT imaging systems. The use of the CHO for routine and frequent system evaluations is desirable both for quality assurance evaluations as well as further system optimizations. The use of channels substantially reduces the amount of data required to achieve accurate estimates of observer performance. However, the number of scans required is still large even with the use of channels. This work explores different data reduction schemes and designs a new approach that requires only a few CT scans of a phantom. For this work, the leave-one-out likelihood (LOOL) method developed by Hoffbeck and Landgrebe is studied as an efficient method of estimating the covariance matrices needed to compute CHO performance. Three different kinds of approaches are included in the study: a conventional CHO estimation technique with a large sample size, a conventional technique with fewer samples, and the new LOOL-based approach with fewer samples. The mean value and standard deviation of area under ROC curve (AUC) is estimated by shuffle method. Both simulation and real data results indicate that an 80% data reduction can be achieved without loss of accuracy. This data reduction makes the proposed approach a practical tool for routine CT system assessment.

  14. Adapting protocols of CT imaging in a pediatric emergency department. Evaluation of image quality and dose

    International Nuclear Information System (INIS)

    Batista Arce, A.; Gonzalez Lopez, S.; Catalan Acosta, A.; Casares Magaz, O.; Hernandez Armas, O.; Hernandez Armas, J.

    2011-01-01

    The purpose of this study was to assess qualitatively the picture quality in relation to the radiation dose delivered in CT studies of computer tomograph Pediatric Emergency Department of Hospital Universitario de Canarias (HUC) in order to optimize the technical parameters used these radiological examinations so as to obtain optimal image quality at the lowest possible dose.

  15. Low dose CT image restoration using a database of image patches

    Science.gov (United States)

    Ha, Sungsoo; Mueller, Klaus

    2015-01-01

    Reducing the radiation dose in CT imaging has become an active research topic and many solutions have been proposed to remove the significant noise and streak artifacts in the reconstructed images. Most of these methods operate within the domain of the image that is subject to restoration. This, however, poses limitations on the extent of filtering possible. We advocate to take into consideration the vast body of external knowledge that exists in the domain of already acquired medical CT images, since after all, this is what radiologists do when they examine these low quality images. We can incorporate this knowledge by creating a database of prior scans, either of the same patient or a diverse corpus of different patients, to assist in the restoration process. Our paper follows up on our previous work that used a database of images. Using images, however, is challenging since it requires tedious and error prone registration and alignment. Our new method eliminates these problems by storing a diverse set of small image patches in conjunction with a localized similarity matching scheme. We also empirically show that it is sufficient to store these patches without anatomical tags since their statistics are sufficiently strong to yield good similarity matches from the database and as a direct effect, produce image restorations of high quality. A final experiment demonstrates that our global database approach can recover image features that are difficult to preserve with conventional denoising approaches.

  16. Cranial CT with 64-, 16-, 4- and single-slice CT systems-comparison of image quality and posterior fossa artifacts in routine brain imaging with standard protocols

    Energy Technology Data Exchange (ETDEWEB)

    Ertl-Wagner, Birgit; Eftimov, Lara; Becker, Christoph; Reiser, Maximilian [University of Munich, Grosshadern (Germany). Institute of Clinical Radiology; Blume, Jeffrey; Cormack, Jean [Brown University, Center for Statistical Sciences, Providence, RI (United States); Bruening, Roland; Brueckmann, Hartmut [University of Munich, Grosshadern (Germany). Department of Neuroradiology

    2008-08-15

    Posterior fossa artifacts constitute a characteristic limitation of cranial CT. To identify practical benefits and drawbacks of newer CT systems with reduced collimation in routine cranial imaging, we aimed to investigate image quality, posterior fossa artifacts and parenchymal delineation in non-enhanced CT (NECT) with 1-, 4-, 16- and 64-slice scanners using standard scan protocols. We prospectively enrolled 25 consecutive patients undergoing NECT on a 64-slice CT. Three groups with 25 patients having undergone NECT on 1-, 4- and 16-slice CT machines were matched regarding age and sex. Standard routine CT parameters were used on each CT system with helical acquisition in the posterior fossa; the parameters varied regarding collimation and radiation dose. Three blinded readers independently assessed the cases regarding image quality, infra- and supratentorial artifacts and delineation of brain parenchymal structures on a five-point ordinal scale. Reading orders were randomized. A proportional odds model that accounted for the correlated nature of the data was fit using generalized estimating equations. Posterior fossa artifacts were significantly reduced, and the delineation of infratentorial brain structures was significantly improved with the thinner collimation used for the newer CT systems (p<0.001). No significant differences were observed for midbrain structures (p>0.5). The thinner collimation available on modern CT systems leads to reduced posterior fossa artifacts and to a better delineation of brain parenchyma in the posterior fossa. (orig.)

  17. A pilot study of three dimensional color CT images of brain diseases to improve informed consent

    International Nuclear Information System (INIS)

    Tanizaki, Yoshio; Akiyama, Takenori; Hiraga, Kenji; Akaji, Kazunori

    2005-01-01

    We have described brain diseases to patients and their family using monochrome CT images. It is thought that patients have difficulties in giving their consent to our conventional explanation because their understanding of brain diseases is based on three dimensional and color images, however, standard CT images are two dimensional and gray scale images. We have been trying to use three dimensional color CT images to improve the typical patient's comprehension of brain diseases. We also try to simulate surgery using these images. Multi-slice CT accumulates precise isotropic voxel data within a half minute. These two dimensional and monochrome data are converted to three dimensional color CT images by 3D workstation. Three dimensional color CT images of each brain structures (e.g. scalp, skull, brain, ventricles and lesions) are created separately. Then, selected structures are fused together for different purposes. These images are able to rotate around any axis. Because the methods to generate three-dimensional color images have not established, we neurosurgeons must create these images. In particular, when an operation is required, the surgeon should create the images. In this paper, we demonstrate how three-dimensional color CT images can improve informed consent. (author)

  18. Diagnostic imaging of Klippel-Feil syndrome: conventional radiography, CT and MR imaging. Case report

    International Nuclear Information System (INIS)

    Jochens, R.; Schubeus, P.; Steinkamp, H.J.; Menzhausen, L.; Felix, R.

    1993-01-01

    In two patients with Klippel-Feil syndrome, type II radiographic findings of the malformation are shown in the cervical spine and the craniocervical junction. Conventional X-rays of the cervical spine in the AP and lateral view and conventional tomography as well as CT of the cervical spine were obtained in both patients. One of the two patients additionally underwent MR imaging. Findings of the different imaging modalities are compared with each other. (orig.) [de

  19. Nodal imaging in the neck: recent advances in US, CT and MR imaging of metastatic nodes

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Sumi, Misa

    2007-01-01

    The presence of lymph node metastasis in the neck in patients with head and neck cancer is an important prognostic determinant in staging cancers and in planning surgery and chemo- and radiotherapy for the cancer patients. Therefore, metastatic nodes should be effectively differentiated from benign lymphadenopathies and nodal lymphomas. Here, we review recent advances in the diagnostic imaging of metastatic nodes in the neck, with emphasis placed on the diagnostic performance of MR imaging, Doppler sonography, and CT. (orig.)

  20. Collimator and energy window optimization for 90Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study

    International Nuclear Information System (INIS)

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Pirayesh Islamian, Jalil

    2016-01-01

    Treatment efficacy of radioembolization using Yttrium-90 ( 90 Y) microspheres is assessed by the 90 Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of 90 Y microspheres distribution. One of the main reasons of the poor image quality in 90 Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the 90 Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the 90 Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8 mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a 90 Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35–3.3 mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for 90 Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3 mm. Geometry of the ME parallel-hole collimator and energy

  1. The relationship between image quality and CT dose index of multi-slice low-dose chest CT

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Shao Jiang; Shi Jingyun; You Zhengqian; Li Shijun; Xue Yongming

    2003-01-01

    Objective: To explore the rationality and possibility of multi-slice low-dose CT scan in the examination of the chest. Methods: (1) X-ray dose index measurement: 120 kV tube voltage, 0.75 s rotation, 8 mm and 3 mm slice thickness, and the tube current setting of 115.0, 40.0, 25.0, and 7.5 mAs were employed in every section. The X-ray radiation dose was measured and compared statistically. (2) phantom measurement of homogeneity and noise: The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm sections, and every slice was scanned using tube current of 115.0, 40.0, 25.0, and 7.5 mAs. Five same regions of interest were measured on every image. The homogeneity and noise level of CT were appraised. (3) The multi-slice low-dose CT in patients: 30 patients with mass and 30 with patch shadow in the lung were selected randomly. The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm slice thickness. 115.0, 40.0, 25.0, 15.0, and 7.5 mAs tube current were employed in each same slice. Otherwise, 15 cases with helical scan were examined using 190, 150, 40, 25, and 15 mAs tube current. The reconstruction images of MIP, MPR, CVR, HRCT, 3D, CT virtual endoscopy, and variety of interval reconstruction were compared. (4) Evaluation of image quality: CT images were evaluated by four doctors using single-blind method, and 3 degrees including normal image, image with few artifact, and image with excessive artifact, were employed and analyzed statistically. Results: (1) The CT dose index with 115.0 mAs tube current exceeded those of 40.0, 25.0, and 7.5 mAs by about 60%, 70%, and 85%, respectively. (2) The phantom measurement showed that the lower of CT dose the lower of homogeneity, the lower of CT dose the higher of noise level. (3) Result of image quality evaluation: The percentage of the normal image had no significant difference between 8 and 3 mm in 115, 40, and 25 mAs (P>0.05). Conclusion: Multi-slice low-dose chest CT technology may protect the patients and guarantee the

  2. Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image.

    Science.gov (United States)

    Saukko, Annina E A; Honkanen, Juuso T J; Xu, Wujun; Väänänen, Sami P; Jurvelin, Jukka S; Lehto, Vesa-Pekka; Töyräs, Juha

    2017-12-01

    Cartilage injuries may be detected using contrast-enhanced computed tomography (CECT) by observing variations in distribution of anionic contrast agent within cartilage. Currently, clinical CECT enables detection of injuries and related post-traumatic degeneration based on two subsequent CT scans. The first scan allows segmentation of articular surfaces and lesions while the latter scan allows evaluation of tissue properties. Segmentation of articular surfaces from the latter scan is difficult since the contrast agent diffusion diminishes the image contrast at surfaces. We hypothesize that this can be overcome by mixing anionic contrast agent (ioxaglate) with bismuth oxide nanoparticles (BINPs) too large to diffuse into cartilage, inducing a high contrast at the surfaces. Here, a dual contrast method employing this mixture is evaluated by determining the depth-wise X-ray attenuation profiles in intact, enzymatically degraded, and mechanically injured osteochondral samples (n = 3 × 10) using a microCT immediately and at 45 min after immersion in contrast agent. BiNPs were unable to diffuse into cartilage, producing high contrast at articular surfaces. Ioxaglate enabled the detection of enzymatic and mechanical degeneration. In conclusion, the dual contrast method allowed detection of injuries and degeneration simultaneously with accurate cartilage segmentation using a single scan conducted at 45 min after contrast agent administration.

  3. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    International Nuclear Information System (INIS)

    Won Kim, Chang; Kim, Jong Hyo

    2014-01-01

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/−3.2% in

  4. Roentgen and X-ray computerized tomographic (CT) imaging of cysts in the maxilla

    International Nuclear Information System (INIS)

    Rahmatulla, M

    1999-01-01

    Two cysts in the maxilla were subjected to routine roentgen imaging followed by CT scanning. Roentgen investigation included periapical, occlusal, and panoramic views. CT imaging included axial and coronal scans. While roentgen views were adequate in establishing the diagnosis of the cystic lesions, CT scan was useful in understanding the precise antero-posterior expansion and depth of the lesion. Interpretation of CT scan of cystic jaw lesions without con-ventional radiographs can be misleading. Hence, the CT procedure may be used only as supplement to the routine radiographic investigations particularly in cystic lesions of the jaws. (author)

  5. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  6. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    International Nuclear Information System (INIS)

    Wu, T-H; Liang, C-H; Wu, J-K; Lien, C-Y; Yang, B-H; Lee, J J S; Huang, Y-H

    2009-01-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18 F-fluorodeoxyglucose ( 18 F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  7. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    International Nuclear Information System (INIS)

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-01-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose

  8. Optimization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment

    International Nuclear Information System (INIS)

    Flampouri, S.; Evans, P.M.; Partridge, M.; Nahum, A.E.; Verhaegen, A.E.; Spezi, E.

    2002-01-01

    Megavoltage portal images suffer from poor quality compared to those produced with kilovoltage x-rays. Several authors have shown that the image quality can be improved by modifying the linear accelerator to generate more low-energy photons. This work addresses the problem of using Monte Carlo simulation and experiment to optimize the beam and detector combination to maximize image quality for a given patient thickness. A simple model of the whole imaging chain was developed for investigation of the effect of the target parameters on the quality of the image. The optimum targets (6 mm thick aluminium and 1.6 mm copper) were installed in an Elekta SL25 accelerator. The first beam will be referred to as Al6 and the second as Cu1.6. A tissue-equivalent contrast phantom was imaged with the 6 MV standard photon beam and the experimental beams with standard radiotherapy and mammography film/screen systems. The arrangement with a thin Al target/mammography system improved the contrast from 1.4 cm bone in 5 cm water to 19% compared with 2% for the standard arrangement of a thick, high-Z target/radiotherapy verification system. The linac/phantom/detector system was simulated with the BEAM/EGS4 Monte Carlo code. Contrast calculated from the predicted images was in good agreement with the experiment (to within 2.5%). The use of MC techniques to predict images accurately, taking into account the whole imaging system, is a powerful new method for portal imaging system design optimization. (author)

  9. Attenuation correction of myocardial SPECT images with X-ray CT. Effects of registration errors between X-ray CT and SPECT

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Murase, Kenya; Mochizuki, Teruhito; Motomura, Nobutoku

    2002-01-01

    Attenuation correction with an X-ray CT image is a new method to correct attenuation on SPECT imaging, but the effect of the registration errors between CT and SPECT images is unclear. In this study, we investigated the effects of the registration errors on myocardial SPECT, analyzing data from a phantom and a human volunteer. Registerion (fusion) of the X-ray CT and SPECT images was done with standard packaged software in three dimensional fashion, by using linked transaxial, coronal and sagittal images. In the phantom study, and X-ray CT image was shifted 1 to 3 pixels on the x, y and z axes, and rotated 6 degrees clockwise. Attenuation correction maps generated from each misaligned X-ray CT image were used to reconstruct misaligned SPECT images of the phantom filled with 201 Tl. In a human volunteer, X-ray CT was acquired in different conditions (during inspiration vs. expiration). CT values were transferred to an attenuation constant by using straight lines; an attenuation constant of 0/cm in the air (CT value=-1,000 HU) and that of 0.150/cm in water (CT value=0 HU). For comparison, attenuation correction with transmission CT (TCT) data and an external γ-ray source ( 99m Tc) was also applied to reconstruct SPECT images. Simulated breast attenuation with a breast attachment, and inferior wall attenuation were properly corrected by means of the attenuation correction map generated from X-ray CT. As pixel shift increased, deviation of the SPECT images increased in misaligned images in the phantom study.