WorldWideScience

Sample records for ct imaging monte

  1. Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*

    Science.gov (United States)

    Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G

    2014-01-01

    Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image

  2. Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images

    Science.gov (United States)

    Botta, F.; Mairani, A.; Hobbs, R. F.; Vergara Gil, A.; Pacilio, M.; Parodi, K.; Cremonesi, M.; Coca Pérez, M. A.; Di Dia, A.; Ferrari, M.; Guerriero, F.; Battistoni, G.; Pedroli, G.; Paganelli, G.; Torres Aroche, L. A.; Sgouros, G.

    2013-11-01

    Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3-4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image

  3. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy

    Science.gov (United States)

    Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B.; Jia, Xun

    2015-05-01

    Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 to 3 HU and from 78 to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 s including the

  4. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  5. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A; Zbijewski, W; Stayman, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Yorkston, J [Carestream Health (United States); Aygun, N [Department of Radiology, Johns Hopkins University (United States); Koliatsos, V [Department of Neurology, Johns Hopkins University (United States); Siewerdsen, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Department of Radiology, Johns Hopkins University (United States)

    2014-06-15

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain

  6. Strategies for CT tissue segmentation for Monte Carlo calculations in nuclear medicine dosimetry

    DEFF Research Database (Denmark)

    Braad, P E N; Andersen, T; Hansen, Søren Baarsgaard

    2016-01-01

    Purpose: CT images are used for patient specific Monte Carlo treatment planning in radionuclide therapy. The authors investigated the impact of tissue classification, CT image segmentation, and CT errors on Monte Carlo calculated absorbed dose estimates in nuclear medicine. Methods: CT errors...... in the ICRP/ICRU male phantom and in a patient PET/CT-scanned with 124I prior to radioiodine therapy. Results: CT number variations ... calibration of the CT number-to-density conversion ramp. Tissue segmentation by a 13-tissue CT conversion ramp, calibrated by a stoichiometric method, resulted in low (conversion ramp is required for accurate...

  7. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose

    Science.gov (United States)

    Ding, Aiping; Mille, Matthew M.; Liu, Tianyu; Caracappa, Peter F.; Xu, X. George

    2012-05-01

    Although it is known that obesity has a profound effect on x-ray computed tomography (CT) image quality and patient organ dose, quantitative data describing this relationship are not currently available. This study examines the effect of obesity on the calculated radiation dose to organs and tissues from CT using newly developed phantoms representing overweight and obese patients. These phantoms were derived from the previously developed RPI-adult male and female computational phantoms. The result was a set of ten phantoms (five males, five females) with body mass indexes ranging from 23.5 (normal body weight) to 46.4 kg m-2 (morbidly obese). The phantoms were modeled using triangular mesh geometry and include specified amounts of the subcutaneous adipose tissue and visceral adipose tissue. The mesh-based phantoms were then voxelized and defined in the Monte Carlo N-Particle Extended code to calculate organ doses from CT imaging. Chest-abdomen-pelvis scanning protocols for a GE LightSpeed 16 scanner operating at 120 and 140 kVp were considered. It was found that for the same scanner operating parameters, radiation doses to organs deep in the abdomen (e.g., colon) can be up to 59% smaller for obese individuals compared to those of normal body weight. This effect was found to be less significant for shallow organs. On the other hand, increasing the tube potential from 120 to 140 kVp for the same obese individual resulted in increased organ doses by as much as 56% for organs within the scan field (e.g., stomach) and 62% for those out of the scan field (e.g., thyroid), respectively. As higher tube currents are often used for larger patients to maintain image quality, it was of interest to quantify the associated effective dose. It was found from this study that when the mAs was doubled for the obese level-I, obese level-II and morbidly-obese phantoms, the effective dose relative to that of the normal weight phantom increased by 57%, 42% and 23%, respectively. This set

  8. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose.

    Science.gov (United States)

    Ding, Aiping; Mille, Matthew M; Liu, Tianyu; Caracappa, Peter F; Xu, X George

    2012-05-07

    Although it is known that obesity has a profound effect on x-ray computed tomography (CT) image quality and patient organ dose, quantitative data describing this relationship are not currently available. This study examines the effect of obesity on the calculated radiation dose to organs and tissues from CT using newly developed phantoms representing overweight and obese patients. These phantoms were derived from the previously developed RPI-adult male and female computational phantoms. The result was a set of ten phantoms (five males, five females) with body mass indexes ranging from 23.5 (normal body weight) to 46.4 kg m(-2) (morbidly obese). The phantoms were modeled using triangular mesh geometry and include specified amounts of the subcutaneous adipose tissue and visceral adipose tissue. The mesh-based phantoms were then voxelized and defined in the Monte Carlo N-Particle Extended code to calculate organ doses from CT imaging. Chest-abdomen-pelvis scanning protocols for a GE LightSpeed 16 scanner operating at 120 and 140 kVp were considered. It was found that for the same scanner operating parameters, radiation doses to organs deep in the abdomen (e.g., colon) can be up to 59% smaller for obese individuals compared to those of normal body weight. This effect was found to be less significant for shallow organs. On the other hand, increasing the tube potential from 120 to 140 kVp for the same obese individual resulted in increased organ doses by as much as 56% for organs within the scan field (e.g., stomach) and 62% for those out of the scan field (e.g., thyroid), respectively. As higher tube currents are often used for larger patients to maintain image quality, it was of interest to quantify the associated effective dose. It was found from this study that when the mAs was doubled for the obese level-I, obese level-II and morbidly-obese phantoms, the effective dose relative to that of the normal weight phantom increased by 57%, 42% and 23%, respectively. This

  9. Comprehensive Evaluations of Cone-beam CT dose in Image-guided Radiation Therapy via GPU-based Monte Carlo simulations

    CERN Document Server

    Montanari, Davide; Silvestri, Chiara; Graves, Yan J; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B; Jia, Xun

    2013-01-01

    Cone beam CT (CBCT) has been widely used for patient setup in image guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are 1) to commission a GPU-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and 2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. 25 brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is fo...

  10. Monte Carlo simulations of medical imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Estes, G.P. [Los Alamos National Lab., NM (United States)

    1998-09-01

    Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computer power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.

  11. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with 15O-Gas Inhalation.

    Science.gov (United States)

    Magota, Keiichi; Shiga, Tohru; Asano, Yukari; Shinyama, Daiki; Ye, Jinghan; Perkins, Amy E; Maniawski, Piotr J; Toyonaga, Takuya; Kobayashi, Kentaro; Hirata, Kenji; Katoh, Chietsugu; Hattori, Naoya; Tamaki, Nagara

    2017-12-01

    In 3-dimensional PET/CT imaging of the brain with 15O-gas inhalation, high radioactivity in the face mask creates cold artifacts and affects the quantitative accuracy when scatter is corrected by conventional methods (e.g., single-scatter simulation [SSS] with tail-fitting scaling [TFS-SSS]). Here we examined the validity of a newly developed scatter-correction method that combines SSS with a scaling factor calculated by Monte Carlo simulation (MCS-SSS). Methods: We performed phantom experiments and patient studies. In the phantom experiments, a plastic bottle simulating a face mask was attached to a cylindric phantom simulating the brain. The cylindric phantom was filled with 18F-FDG solution (3.8-7.0 kBq/mL). The bottle was filled with nonradioactive air or various levels of 18F-FDG (0-170 kBq/mL). Images were corrected either by TFS-SSS or MCS-SSS using the CT data of the bottle filled with nonradioactive air. We compared the image activity concentration in the cylindric phantom with the true activity concentration. We also performed 15O-gas brain PET based on the steady-state method on patients with cerebrovascular disease to obtain quantitative images of cerebral blood flow and oxygen metabolism. Results: In the phantom experiments, a cold artifact was observed immediately next to the bottle on TFS-SSS images, where the image activity concentrations in the cylindric phantom were underestimated by 18%, 36%, and 70% at the bottle radioactivity levels of 2.4, 5.1, and 9.7 kBq/mL, respectively. At higher bottle radioactivity, the image activity concentrations in the cylindric phantom were greater than 98% underestimated. For the MCS-SSS, in contrast, the error was within 5% at each bottle radioactivity level, although the image generated slight high-activity artifacts around the bottle when the bottle contained significantly high radioactivity. In the patient imaging with 15O2 and C15O2 inhalation, cold artifacts were observed on TFS-SSS images, whereas no

  12. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  13. Simulation of Cone Beam CT System Based on Monte Carlo Method

    OpenAIRE

    Wang, Yu; Chen, Chaobin; Cao, Ruifen; Hu, Liqin; Li, Bingbing

    2014-01-01

    Adaptive Radiation Therapy (ART) was developed based on Image-guided Radiation Therapy (IGRT) and it is the trend of photon radiation therapy. To get a better use of Cone Beam CT (CBCT) images for ART, the CBCT system model was established based on Monte Carlo program and validated against the measurement. The BEAMnrc program was adopted to the KV x-ray tube. Both IOURCE-13 and ISOURCE-24 were chosen to simulate the path of beam particles. The measured Percentage Depth Dose (PDD) and lateral ...

  14. Development of CT scanner models for patient organ dose calculations using Monte Carlo methods

    Science.gov (United States)

    Gu, Jianwei

    There is a serious and growing concern about the CT dose delivered by diagnostic CT examinations or image-guided radiation therapy imaging procedures. To better understand and to accurately quantify radiation dose due to CT imaging, Monte Carlo based CT scanner models are needed. This dissertation describes the development, validation, and application of detailed CT scanner models including a GE LightSpeed 16 MDCT scanner and two image guided radiation therapy (IGRT) cone beam CT (CBCT) scanners, kV CBCT and MV CBCT. The modeling process considered the energy spectrum, beam geometry and movement, and bowtie filter (BTF). The methodology of validating the scanner models using reported CTDI values was also developed and implemented. Finally, the organ doses to different patients undergoing CT scan were obtained by integrating the CT scanner models with anatomically-realistic patient phantoms. The tube current modulation (TCM) technique was also investigated for dose reduction. It was found that for RPI-AM, thyroid, kidneys and thymus received largest dose of 13.05, 11.41 and 11.56 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. For RPI-AF, thymus, small intestine and kidneys received largest dose of 10.28, 12.08 and 11.35 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. The dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. For MDCT with TCM schemas, the fetal dose can be reduced with 14%-25%. To demonstrate the applicability of the method proposed in this dissertation for modeling the CT scanner, additional MDCT scanner was modeled and validated by using the measured CTDI values. These results demonstrated that the

  15. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  16. Mathematical modelling of scanner-specific bowtie filters for Monte Carlo CT dosimetry

    Science.gov (United States)

    Kramer, R.; Cassola, V. F.; Andrade, M. E. A.; de Araújo, M. W. C.; Brenner, D. J.; Khoury, H. J.

    2017-02-01

    The purpose of bowtie filters in CT scanners is to homogenize the x-ray intensity measured by the detectors in order to improve the image quality and at the same time to reduce the dose to the patient because of the preferential filtering near the periphery of the fan beam. For CT dosimetry, especially for Monte Carlo calculations of organ and tissue absorbed doses to patients, it is important to take the effect of bowtie filters into account. However, material composition and dimensions of these filters are proprietary. Consequently, a method for bowtie filter simulation independent of access to proprietary data and/or to a specific scanner would be of interest to many researchers involved in CT dosimetry. This study presents such a method based on the weighted computer tomography dose index, CTDIw, defined in two cylindrical PMMA phantoms of 16 cm and 32 cm diameter. With an EGSnrc-based Monte Carlo (MC) code, ratios CTDIw/CTDI100,a were calculated for a specific CT scanner using PMMA bowtie filter models based on sigmoid Boltzmann functions combined with a scanner filter factor (SFF) which is modified during calculations until the calculated MC CTDIw/CTDI100,a matches ratios CTDIw/CTDI100,a, determined by measurements or found in publications for that specific scanner. Once the scanner-specific value for an SFF has been found, the bowtie filter algorithm can be used in any MC code to perform CT dosimetry for that specific scanner. The bowtie filter model proposed here was validated for CTDIw/CTDI100,a considering 11 different CT scanners and for CTDI100,c, CTDI100,p and their ratio considering 4 different CT scanners. Additionally, comparisons were made for lateral dose profiles free in air and using computational anthropomorphic phantoms. CTDIw/CTDI100,a determined with this new method agreed on average within 0.89% (max. 3.4%) and 1.64% (max. 4.5%) with corresponding data published by CTDosimetry (www.impactscan.org) for the CTDI HEAD and BODY phantoms

  17. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end......This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...

  18. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  19. Panoramic three-dimensional CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kawamata, Akitoshi; Fujishita, Masami [Asahi Univ., Hozumi, Gifu (Japan). School of Dentistry

    1998-09-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ``still image warping`` special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  20. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    Science.gov (United States)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  1. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  2. The stylohyoid chain: CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uysal Ramadan, Selma, E-mail: uysalselma@yahoo.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Goekharman, Dilek, E-mail: gokharman@ttnet.net.t [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Kosar, Pinar, E-mail: pkosar@hotmail.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Kacar, Mahmut, E-mail: mkacar1961@gamil.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Kosar, Ugur, E-mail: ugurkosar@hotmail.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey)

    2010-09-15

    We aimed in this report to discuss the embryology, anatomy, theories of ossification and symptoms, clinical presentation, and diagnosis of the stylohyoid chain (SHC) variations, together with the role of radiographs, computed tomography (CT) and three-dimensional (3D)-CT in showing these variations. Because CT/3D-CT additionally facilitates visualization of the entire SHC with different axes, it is the most valuable method for establishing the relationship between the SHC and the surrounding tissue. SHC variation can be discovered during CT performed for indications other than ossified SHC. It is important to diagnose whether or not the SHC is ossified, since one of the treatment procedures in ossified SHC is total excision. If the clinician and radiologist are aware of these variations observed in the SHC, patients with vague symptoms may be spared unnecessary investigations and may be properly diagnosed earlier.

  3. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    Science.gov (United States)

    Chen, Chaobin; Huang, Qunying; Wu, Yican

    2005-04-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of x-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  4. Monte Carlo evaluation of the Filtered Back Projection method for image reconstruction in proton computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P., E-mail: cirrone@lns.infn.it [Laboratori Nazionali del Sud - National Instiute for Nuclear Physics INFN (INFN-LNS), Via S.Sofia 64, 95100 Catania (Italy); Bucciolini, M. [Department of ' Fisiopatologia Clinica' , University of Florence, V.le Morgagni 85, I-50134 Florence (Italy); Bruzzi, M. [Energetic Department, University of Florence, Via S. Marta 3, I-50139 Florence (Italy); Candiano, G. [Laboratorio di Tecnologie Oncologiche HSR, Giglio Contrada, Pietrapollastra-Pisciotto, 90015 Cefalu, Palermo (Italy); Civinini, C. [National Institute for Nuclear Physics INFN, Section of Florence, Via G. Sansone 1, Sesto Fiorentino, I-50019 Florence (Italy); Cuttone, G. [Laboratori Nazionali del Sud - National Instiute for Nuclear Physics INFN (INFN-LNS), Via S.Sofia 64, 95100 Catania (Italy); Guarino, P. [Nuclear Engineering Department, University of Palermo, Via... Palermo (Italy); Laboratori Nazionali del Sud - National Instiute for Nuclear Physics INFN (INFN-LNS), Via S.Sofia 64, 95100 Catania (Italy); Lo Presti, D. [Physics Department, University of Catania, Via S. Sofia 64, I-95123, Catania (Italy); Mazzaglia, S.E. [Laboratori Nazionali del Sud - National Instiute for Nuclear Physics INFN (INFN-LNS), Via S.Sofia 64, 95100 Catania (Italy); Pallotta, S. [Department of ' Fisiopatologia Clinica' , University of Florence, V.le Morgagni 85, I-50134 Florence (Italy); Randazzo, N. [National Institute for Nuclear Physics INFN, Section of Catania, Via S.Sofia 64, 95123 Catania (Italy); Sipala, V. [National Institute for Nuclear Physics INFN, Section of Catania, Via S.Sofia 64, 95123 Catania (Italy); Physics Department, University of Catania, Via S. Sofia 64, I-95123, Catania (Italy); Stancampiano, C. [National Institute for Nuclear Physics INFN, Section of Catania, Via S.Sofia 64, 95123 Catania (Italy); and others

    2011-12-01

    In this paper the use of the Filtered Back Projection (FBP) Algorithm, in order to reconstruct tomographic images using the high energy (200-250 MeV) proton beams, is investigated. The algorithm has been studied in detail with a Monte Carlo approach and image quality has been analysed and compared with the total absorbed dose. A proton Computed Tomography (pCT) apparatus, developed by our group, has been fully simulated to exploit the power of the Geant4 Monte Carlo toolkit. From the simulation of the apparatus, a set of tomographic images of a test phantom has been reconstructed using the FBP at different absorbed dose values. The images have been evaluated in terms of homogeneity, noise, contrast, spatial and density resolution.

  5. Advances in CT imaging for urolithiasis

    Directory of Open Access Journals (Sweden)

    Yasir Andrabi

    2015-01-01

    Full Text Available Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT is highly sensitive (>95% and specific (>96% in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT and technological innovations in CT such as dual-energy CT (DECT has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice.

  6. Pulmonary CT image classification with evolutionary programming.

    Science.gov (United States)

    Madsen, M T; Uppaluri, R; Hoffman, E A; McLennan, G

    1999-12-01

    It is often difficult to classify information in medical images from derived features. The purpose of this research was to investigate the use of evolutionary programming as a tool for selecting important features and generating algorithms to classify computed tomographic (CT) images of the lung. Training and test sets consisting of 11 features derived from multiple lung CT images were generated, along with an indicator of the target area from which features originated. The images included five parameters based on histogram analysis, 11 parameters based on run length and co-occurrence matrix measures, and the fractal dimension. Two classification experiments were performed. In the first, the classification task was to distinguish between the subtle but known differences between anterior and posterior portions of transverse lung CT sections. The second classification task was to distinguish normal lung CT images from emphysematous images. The performance of the evolutionary programming approach was compared with that of three statistical classifiers that used the same training and test sets. Evolutionary programming produced solutions that compared favorably with those of the statistical classifiers. In separating the anterior from the posterior lung sections, the evolutionary programming results were better than two of the three statistical approaches. The evolutionary programming approach correctly identified all the normal and abnormal lung images and accomplished this by using less features than the best statistical method. The results of this study demonstrate the utility of evolutionary programming as a tool for developing classification algorithms.

  7. Skin image reconstruction using Monte Carlo based color generation

    Science.gov (United States)

    Aizu, Yoshihisa; Maeda, Takaaki; Kuwahara, Tomohiro; Hirao, Tetsuji

    2010-11-01

    We propose a novel method of skin image reconstruction based on color generation using Monte Carlo simulation of spectral reflectance in the nine-layered skin tissue model. The RGB image and spectral reflectance of human skin are obtained by RGB camera and spectrophotometer, respectively. The skin image is separated into the color component and texture component. The measured spectral reflectance is used to evaluate scattering and absorption coefficients in each of the nine layers which are necessary for Monte Carlo simulation. Various skin colors are generated by Monte Carlo simulation of spectral reflectance in given conditions for the nine-layered skin tissue model. The new color component is synthesized to the original texture component to reconstruct the skin image. The method is promising for applications in the fields of dermatology and cosmetics.

  8. Image noise in X-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hilts, M [Medical Physics, BC Cancer Agency, Vancouver Centre (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC (Canada); Duzenli, C [Medical Physics, BC Cancer Agency, Vancouver Centre (Canada)

    2004-01-01

    This work investigates factors which affect image noise in CT polymer gel dosimetry, discusses techniques that can be used to further improve image noise and provides overall recommendations for the CT imaging of polymer gels.

  9. The maxillomandibular ameloblastoma: CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Na, Dong Gyu; Han, Moon Hee; Kim, Myung Jin; Chang, Kee Hyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1994-02-15

    We retrospectively performed this study to evaluate the characteristic findings of maxillomandibular ameloblastomas on CT and MR imaging. We reviewed histologically proved 12 cases of ameloblastomas, of which 7 cases were postoperative recurrent tumors, one of twelve cases was presumed ameloblastic carcinoma. Eleven cases were examined with CT and 3 cases with MR. The types were solid in 4, unicystic in 4, and mixed in the rest 4. CT and MRI of 11 ameloblastomas showed concentric expansile mass (n = 11), cortical bone thinning and focal bone destruction by the tumors (n = 9), well-margined, expansile destruction of surrounding sturctures (n = 9), focal bulging of the tumors (n = 6) and focal poorly-marginated invasion of tissue planes (n = 4). Ameloblastic carcinoma showed ill-defined irregular margin, aggressive invasion of surrounding structures and hematogeneous lung metastasis. Unerupted teeth or mural modules were found in unicystic ameloblastomas. All three tumors examined by MRI showed isointensity to muscle on T1 weighted images and slight hyperintensity on T2 weighted images. The wall, septa and solid portions of the tumors were strongly enhanced on MR imaging. There was no difference in CT ro MR finding between primary and recurrent tumors. Ameloblastomas showed solid, cystic or mixed pattern, and commonly well marginated expansile contour with local aggressiveness. Presence of mural nodules on CT in unicystic ameloblastoma with unerupted tooth was helpful in distinguishing ameloblastoma from dentigerous cyst.

  10. A new cubic phantom for PET/CT dosimetry: Experimental and Monte Carlo characterization

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil); Silva, Rogerio M.V.; Souza, Divanizia N. [Departamento de Fisica, Universidade Federal de Sergipe-UFS, Sao Cristovao, Sergipe (Brazil); Santos, William S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo SP (Brazil); Perini, Ana P.; Neves, Lucio P. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo SP (Brazil); Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil)

    2015-07-01

    In recent years, positron emission tomography (PET) associated with multidetector computed tomography (MDCT) has become a diagnostic technique widely disseminated to evaluate various malignant tumors and other diseases. However, during PET/CT examinations, the doses of ionizing radiation experienced by the internal organs of patients may be substantial. To study the doses involved in PET/CT procedures, a new cubic phantom of overlapping acrylic plates was developed and characterized. This phantom has a deposit for the placement of the fluorine-18 fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) solution. There are also small holes near the faces for the insertion of optically stimulated luminescence dosimeters (OSLD). The holes for OSLD are positioned at different distances from the {sup 18}F-FDG deposit. The experimental results were obtained in two PET/CT devices operating with different parameters. Differences in the absorbed doses were observed in OSLD measurements due to the non-orthogonal positioning of the detectors inside the phantom. This phantom was also evaluated using Monte Carlo simulations, with the MCNPX code. The phantom and the geometrical characteristics of the equipment were carefully modeled in the MCNPX code, in order to develop a new methodology form comparison of experimental and simulated results, as well as to allow the characterization of PET/CT equipments in Monte Carlo simulations. All results showed good agreement, proving that this new phantom may be applied for these experiments. (authors)

  11. Modern CT and PET/CT imaging of the liver; Moderne CT- und PET/CT-Bildgebung der Leber

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, J.; Heusner, T.A.; Riegger, C.; Reichelt, D.; Kuhlemann, J.; Antoch, G.; Blondin, D. [Medizinische Fakultaet, Heinrich-Heine-Universitaet Duesseldorf, Institut fuer Diagnostische und Interventionelle Radiologie, Duesseldorf (Germany)

    2011-08-15

    Computed tomography (CT) is now widely available and represents an important and rapid method for the diagnostics of acute liver disease, characterization of focal liver lesions, planning of interventional therapy measures and postintervention control. In recent years CT has not become less important despite the increasing value of magnetic resonance imaging (MRI). By the use of different contrast medium phases good characterization of space-occupying lesions can be achieved. For the diagnostics of hepatocellular carcinoma (HCC) a triphasic examination protocol should always be implemented. The introduction of dual energy CT increased the sensitivity of imaging of hypervascularized and hypovascularized liver lesions and by the use of virtual native imaging it has become possible to avoid additional native imaging which reduces the x-ray exposition of patients. Positron emission tomography (PET) has an advantage for imaging in oncology because nearly the complete body of the patient can be screened and this is the main indication for PET/CT (whole-body staging). For purely hepatic problems 18F-fluorodeoxyglucose (FDG)-PET/CT using diagnostic CT data has a higher precision than CT alone but is inferior to MRI. (orig.) [German] Die Computertomographie (CT) ist heute breit verfuegbar und stellt eine wichtige und schnelle Methode zur Diagnostik akuter Lebererkrankungen, der Artdiagnostik fokaler Leberlaesionen und der Planung interventioneller Therapiemassnahmen sowie der postinterventionellen Kontrolle dar. In den letzten Jahren hat die CT trotz des zunehmenden Stellenwerts der Magnetresonanztomographie (MRT) nicht an Bedeutung verloren. Durch den Einsatz unterschiedlicher Kontrastmittelphasen kann meist eine gute Charakterisierung von Raumforderungen erfolgen. Bei der Diagnostik des hepatozellulaeren Karzinoms (HCC) sollte beispielsweise immer ein triphasisches Untersuchungsprotokoll angewendet werden. Mit Einfuehrung der Dual-energy-CT hat die Sensitivitaet in der

  12. Automatic lumbar spine measurement in CT images

    Science.gov (United States)

    Mao, Yunxiang; Zheng, Dong; Liao, Shu; Peng, Zhigang; Yan, Ruyi; Liu, Junhua; Dong, Zhongxing; Gong, Liyan; Zhou, Xiang Sean; Zhan, Yiqiang; Fei, Jun

    2017-03-01

    Accurate lumbar spine measurement in CT images provides an essential way for quantitative spinal diseases analysis such as spondylolisthesis and scoliosis. In today's clinical workflow, the measurements are manually performed by radiologists and surgeons, which is time consuming and irreproducible. Therefore, automatic and accurate lumbar spine measurement algorithm becomes highly desirable. In this study, we propose a method to automatically calculate five different lumbar spine measurements in CT images. There are three main stages of the proposed method: First, a learning based spine labeling method, which integrates both the image appearance and spine geometry information, is used to detect lumbar and sacrum vertebrae in CT images. Then, a multiatlases based image segmentation method is used to segment each lumbar vertebra and the sacrum based on the detection result. Finally, measurements are derived from the segmentation result of each vertebra. Our method has been evaluated on 138 spinal CT scans to automatically calculate five widely used clinical spine measurements. Experimental results show that our method can achieve more than 90% success rates across all the measurements. Our method also significantly improves the measurement efficiency compared to manual measurements. Besides benefiting the routine clinical diagnosis of spinal diseases, our method also enables the large scale data analytics for scientific and clinical researches.

  13. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging: Implications for CT dosimetry.

    Science.gov (United States)

    Perisinakis, Kostas; Tzedakis, Antonis; Spanakis, Kostas; Papadakis, Antonios E; Hatzidakis, Adam; Damilakis, John

    2018-01-01

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. • Radiation absorption ability of organs/tissues is considerably affected by iodine uptake • Iodinated organ/tissues may absorb up to 100 % higher radiation dose • Compared to non-enhanced, contrast-enhanced CT may deliver higher dose to patient tissues • CT dosimetry of contrast-enhanced CT imaging should encounter tissue iodine uptake.

  14. Techniques in Iterative Proton CT Image Reconstruction

    CERN Document Server

    Penfold, Scott

    2015-01-01

    This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed to predict the scattered trajectory from measurements of individual proton location and direction before and after the object. Iterative algorithms provide a flexible tool with which to incorporate these models into image reconstruction. The modeling leads to a large and sparse linear system of equations that can efficiently be solved by projection methods-based iterative algorithms. Such algorithms perform projections of the iterates onto the hyperlanes that are represented by the linear equations of the system. They perform these projections in possibly various algorithmic structures, such as block-iterative projections (BIP), string-averaging...

  15. [Budd-Chiari syndrome: the CT image].

    Science.gov (United States)

    Becker, W

    1983-09-01

    The article reports on the CT image of a venous thrombosis of the liver with severe parenchymal damage (Budd-Chiari's syndrome) in a young woman, resulting in her death. The x-ray morphology image showed a liver pattern of reduced density in spot form with hepatomegaly and ascites. The hypodense areas were both circumscribed and disseminated over both lobes with density values between +15 and +30 HE. Enlargement of the lobus caudatus is considered as typical of the disease (4, 7).

  16. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  17. Dosimetric impact of dual-energy CT tissue segmentation for low-energy prostate brachytherapy: a Monte Carlo study

    Science.gov (United States)

    Remy, Charlotte; Lalonde, Arthur; Béliveau-Nadeau, Dominic; Carrier, Jean-François; Bouchard, Hugo

    2018-01-01

    The purpose of this study is to evaluate the impact of a novel tissue characterization method using dual-energy over single-energy computed tomography (DECT and SECT) on Monte Carlo (MC) dose calculations for low-dose rate (LDR) prostate brachytherapy performed in a patient like geometry. A virtual patient geometry is created using contours from a real patient pelvis CT scan, where known elemental compositions and varying densities are overwritten in each voxel. A second phantom is made with additional calcifications. Both phantoms are the ground truth with which all results are compared. Simulated CT images are generated from them using attenuation coefficients taken from the XCOM database with a 100 kVp spectrum for SECT and 80 and 140Sn kVp for DECT. Tissue segmentation for Monte Carlo dose calculation is made using a stoichiometric calibration method for the simulated SECT images. For the DECT images, Bayesian eigentissue decomposition is used. A LDR prostate brachytherapy plan is defined with 125I sources and then calculated using the EGSnrc user-code Brachydose for each case. Dose distributions and dose-volume histograms (DVH) are compared to ground truth to assess the accuracy of tissue segmentation. For noiseless images, DECT-based tissue segmentation outperforms the SECT procedure with a root mean square error (RMS) on relative errors on dose distributions respectively of 2.39% versus 7.77%, and provides DVHs closest to the reference DVHs for all tissues. For a medium level of CT noise, Bayesian eigentissue decomposition still performs better on the overall dose calculation as the RMS error is found to be of 7.83% compared to 9.15% for SECT. Both methods give a similar DVH for the prostate while the DECT segmentation remains more accurate for organs at risk and in presence of calcifications, with less than 5% of RMS errors within the calcifications versus up to 154% for SECT. In a patient-like geometry, DECT-based tissue segmentation provides dose

  18. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Ulrich E-mail: baum@idr.med.uni-erlangen.de; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-03-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  19. Angiomatous Meningioma: CT and MR Imaging Features

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee Yeon; Yu, In Kyu; Kim, Min Sun [Dept. of Radiology, Eulji University Hospital, Daejeon (Korea, Republic of); Kim, Seong Min; Kim, Han Kyu [Dept. of Neurosurgery, Eulji University Hospital, Daejeon (Korea, Republic of)

    2011-05-15

    To describe the computed tomography and magnetic resonance imaging features of angiomatous meningiomas. We reviewed the imaging findings of six patients with pathologically proven angiomatous meningiomas and characterized the location, margin, dura base, CT attenuation, MR signal intensity, intratumoral signal void, contrast enhancement, intratumoral cystic change, and peritumoral edema. Most tumors showed high signal intensity on T2-weighted images, and low signal intensity on diffusion-weighted images. After intravenous contrast administration, the tumor showed heterogeneous strong enhancement. Most tumors had a lobulated margin with prominent intratumoral signal voids. Four patients showed marked or small intratumoral cystic changes. Typically, angiomatous meningiomas were dura-based masses characterized by lobulated margins with high signal intensity on T2-weighted imaging (T2WI), low signal intensity on diffusion-weighted imaging (DWI), prominent intratumoral signal voids, intratumoral cystic changes, and marked enhancement after intravenous contrast administration.

  20. Monte Carlo modeling of ultrasound probes for image guided radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena, E-mail: bazalova@uvic.ca [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2 (Canada); Schlosser, Jeffrey [SoniTrack Systems, Inc., Palo Alto, California 94304 (United States); Chen, Josephine [Department of Radiation Oncology, UCSF, San Francisco, California 94143 (United States); Hristov, Dimitre [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2015-10-15

    Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 and 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The

  1. TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Bai, T [UT Southwestern Medical Center, Dallas, TX (United States); Xi' an Jiaotong University, Xi' an (China); Yan, H; Ouyang, L; Wang, J; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-15

    Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections; 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research

  2. Diffraction enhanced breast imaging through Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, D.M. [Departamento de Fisica e Matematica, FFCLRP, 14040-901 Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil); Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902, Uberlandia, MG (Brazil); Tomal, A. [Departamento de Fisica e Matematica, FFCLRP, 14040-901 Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, FFCLRP, 14040-901 Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil)

    2011-10-01

    In this work, the potential use of diffraction effects from elastic scattering for breast imaging through Monte Carlo (MC) simulations was studied. The geometrical model of the compressed breast consisted of a semi-infinite layer, composed of a mixture of adipose and glandular tissue, with five spherical objects within it, simulating different tissue compositions. A pencil beam scanned the breast surface, impinging normally on it. Two receptors were placed under the breast: the first one detected primary photons, while the other detected the scattered photons. Two images of the breast were then obtained, a primary and a scatter image. Results showed that the scatter image provided values of contrast greater than that of primary image, with the possibility to enhance the contribution of a specific breast tissue to image formation. Nevertheless, scatter images also show considerably higher noise. The results obtained indicate that elastic scattering has a great potential to aid in the enhancement of the mammographic image.

  3. Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation.

    Science.gov (United States)

    Diffenderfer, Eric S; Dolney, Derek; Schaettler, Maximilian; Sanzari, Jenine K; McDonough, James; Cengel, Keith A

    2014-03-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.

  4. CT and MR image fusion for CSF leak diagnosis

    Science.gov (United States)

    Hu, Yangqiu; Haynor, David R.; Maravilla, Kenneth R.

    2008-03-01

    The diagnosis of CSF leak using MR images alone is difficult due to the inherently poor bony information on MR images. While CT images show bones exquisitely, they lack the soft tissue contrast that is important for detecting CSF leak. For these reasons, CT cisternography has been the preferred modality for CSF leak diagnosis despite its invasiveness. We propose a method to fuse the CT and MR images to combine the complementary information from each modality, which we believe will help with the diagnosis and surgical planning for patients with CSF leak, and potentially reduce/replace the use of CT cisternography. In the first step, the user identifies three roughly corresponding points on both the CT and MR images. A GUI was designed that allows the user to quickly navigate through the images by reslicing the volumes interactively. After finding the CT and MR slices at approximately the same anatomical position, the user places three markers to represent the same spatial location. In the second step, a generalized Procrustes transform is used to compute an initial transformation that aligns the CT and MR, which is then optimized using mutual information maximization. The CT is registered with the MR using the optimal transformation found, and the bony masks determined from thresholding CT intensity are blended with MR images. Initial results suggest that CT/MR fusion images are superior to unprocessed CT and MR images in diagnosing CSF leak, and a formal clinical evaluation is being planned to assess the efficacy of fusion images.

  5. Creation of a Reference Image with Monte Carlo Simulations for Online EPID Verification of Daily Patient Setup

    Energy Technology Data Exchange (ETDEWEB)

    Descalle, M-A; Chuang, C; Pouliot, J

    2002-01-30

    Patient positioning accuracy remains an issue for external beam radiotherapy. Currently, kilovoltage verification images are used as reference by clinicians to compare the actual patient treatment position with the planned position. These images are qualitatively different from treatment-time megavoltage portal images. This study will investigate the feasibility of using PEREGRINE, a 3D Monte Carlo calculation engine, to create reference images for portal image comparisons. Portal images were acquired using an amorphous-silicon flat-panel EPID for (1) the head and pelvic sections of an anthropomorphic phantom with 7-8 mm displacements applied, and (2) a prostate patient on five treatment days. Planning CT scans were used to generate simulated reference images with PEREGRINE. A correlation algorithm quantified the setup deviations between simulated and portal images. Monte Carlo simulated images exhibit similar qualities to portal images, the phantom slabs appear clearly. Initial positioning differences and applied displacements were detected and quantified. We find that images simulated with Monte Carlo methods can be used as reference images to detect and quantify set-up errors during treatment.

  6. Robust Image Denoising using a Virtual Flash Image for Monte Carlo Ray Tracing

    DEFF Research Database (Denmark)

    Moon, Bochang; Jun, Jong Yun; Lee, JongHyeob

    2013-01-01

    We propose an efficient and robust image-space denoising method for noisy images generated by Monte Carlo ray tracing methods. Our method is based on two new concepts: virtual flash images and homogeneous pixels. Inspired by recent developments in flash photography, virtual flash images emulate p...

  7. Incidental Detection of Interstitial Pregnancy on CT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Byung Seok [Chungnam National University Hospital, Daejeon (Korea, Republic of); Park, Mi Hyun [Dankook University Hospital, Cheonan (Korea, Republic of)

    2010-02-15

    Ectopic pregnancy is a potentially life-threatening condition. Detection of ectopic pregnancy on CT images is rare. In this case, we describe the CT findings of interstitial pregnancy both before and after rupture. If CT images demonstrate the presence of a strong enhancing ring-like mass in the pelvis, ectopic pregnancy should be considered

  8. Monte Carlo simulation of PET images for injection doseoptimization

    Czech Academy of Sciences Publication Activity Database

    Boldyš, Jiří; Dvořák, Jiří; Skopalová, M.; Bělohlávek, O.

    2013-01-01

    Roč. 29, č. 9 (2013), s. 988-999 ISSN 2040-7939 R&D Projects: GA MŠk 1M0572 Institutional support: RVO:67985556 Keywords : positron emission tomography * Monte Carlo simulation * biological system modeling * image quality Subject RIV: FD - Oncology ; Hematology Impact factor: 1.542, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/boldys-0397175.pdf

  9. MR to CT registration of brains using image synthesis

    Science.gov (United States)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  10. MR to CT Registration of Brains using Image Synthesis.

    Science.gov (United States)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L; Lee, Junghoon

    2014-03-21

    Computed tomography (CT) is the standard imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  11. 3D Interpolation Method for CT Images of the Lung

    Directory of Open Access Journals (Sweden)

    Noriaki Asada

    2003-06-01

    Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

  12. Proton-induced x-ray fluorescence CT imaging.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Matsuo, Yuto; Fahrig, Rebecca; Shirato, Hiroki; Umegaki, Kikuo; Xing, Lei

    2015-02-01

    To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%-5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm(2) CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%-5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R(2) > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Proton-induced x-ray fluorescence CT imaging of 3%-5% gold solutions in a small animal sized water phantom has been demonstrated

  13. Monte Carlo modeling of human tooth optical coherence tomography imaging

    Science.gov (United States)

    Shi, Boya; Meng, Zhuo; Wang, Longzhi; Liu, Tiegen

    2013-07-01

    We present a Monte Carlo model for optical coherence tomography (OCT) imaging of human tooth. The model is implemented by combining the simulation of a Gaussian beam with simulation for photon propagation in a two-layer human tooth model with non-parallel surfaces through a Monte Carlo method. The geometry and the optical parameters of the human tooth model are chosen on the basis of the experimental OCT images. The results show that the simulated OCT images are qualitatively consistent with the experimental ones. Using the model, we demonstrate the following: firstly, two types of photons contribute to the information of morphological features and noise in the OCT image of a human tooth, respectively. Secondly, the critical imaging depth of the tooth model is obtained, and it is found to decrease significantly with increasing mineral loss, simulated as different enamel scattering coefficients. Finally, the best focus position is located below and close to the dental surface by analysis of the effect of focus positions on the OCT signal and critical imaging depth. We anticipate that this modeling will become a powerful and accurate tool for a preliminary numerical study of the OCT technique on diseases of dental hard tissue in human teeth.

  14. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  15. Microscopic imaging through turbid media Monte Carlo modeling and applications

    CERN Document Server

    Gu, Min; Deng, Xiaoyuan

    2015-01-01

    This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the unscattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in biophotonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.

  16. Computational radiology and imaging with the MCNP Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Estes, G.P.; Taylor, W.M.

    1995-05-01

    MCNP, a 3D coupled neutron/photon/electron Monte Carlo radiation transport code, is currently used in medical applications such as cancer radiation treatment planning, interpretation of diagnostic radiation images, and treatment beam optimization. This paper will discuss MCNP`s current uses and capabilities, as well as envisioned improvements that would further enhance MCNP role in computational medicine. It will be demonstrated that the methodology exists to simulate medical images (e.g. SPECT). Techniques will be discussed that would enable the construction of 3D computational geometry models of individual patients for use in patient-specific studies that would improve the quality of care for patients.

  17. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT.

    Science.gov (United States)

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Groden, Christoph; Henzler, Thomas

    2016-01-01

    To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1-5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1-5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.

  18. Cirrhosis: CT and MR imaging evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brancatelli, Giuseppe [Sezione di Radiologia, Ospedale Specializzato in Gastroenterologia, ' Saverio de Bellis' -IRCCS, 70013 Castellana Grotte (Bari) (Italy) and Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy) and Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, 15213 Pittsburgh, PA (United States)]. E-mail: gbranca@yahoo.com; Federle, Michael P. [Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, 15213 Pittsburgh, PA (United States); Ambrosini, Roberta [Department of Diagnostic and Interventional Radiology, ' Maggiore della Carita' University Hospital, ' A.Avogadro' Eastern Piemonte University, Corso Mazzini 18, Novara (Italy); Lagalla, Roberto [Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy); Carriero, Alessandro [Department of Diagnostic and Interventional Radiology, ' Maggiore della Carita' University Hospital, ' A.Avogadro' Eastern Piemonte University, Corso Mazzini 18, Novara (Italy); Midiri, Massimo [Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy); Vilgrain, Valerie [Service de Radiologie, Hopital Beaujon, 100 Boulevard du General Leclerc, 92118 Clichy (France)

    2007-01-15

    In this article, we present the CT and MR imaging characteristics of the cirrhotic liver. We describe the altered liver morphology in different forms of viral, alcoholic and autoimmune end-stage liver disease. We present the spectrum of imaging findings in portal hypertension, such as splenomegaly, ascites and varices. We describe the patchy and lacelike patterns of fibrosis, along with the focal confluent form. The process of hepatocarcinogenesis is detailed, from regenerative to dysplastic nodules to overt hepatocellular carcinoma. Different types of non-neoplastic focal liver lesions occurring in the cirrhotic liver are discussed, including arterially enhancing nodules, hemangiomas and peribiliary cysts. We show different conditions causing liver morphology changes that can mimic cirrhosis, such as congenital hepatic fibrosis, 'pseudo-cirrhosis' due to breast metastases treated with chemotherapy, Budd-Chiari syndrome, sarcoidosis and cavernous transformation of the portal vein.

  19. Lymph node imaging: multidetector CT (MDCT)

    Science.gov (United States)

    Silverman, Paul M

    2005-01-01

    Advances in cross-sectional imaging, including conventional and helical (spiral) CT and multidetector (MDCT) and MR imaging, now allow detailed evaluation of the anatomy and pathology of the neck and thoracic inlet. The major structures are identified by their appearance and that of contrasting fatty tissue planes surrounding the soft tissues. These structures include the larynx, trachea, thyroid, and parathyroid glands as well as the vessels, lymph node chains, nerves, and supporting muscles. A thorough understanding of the normal cross-sectional anatomy is fundamental to properly interpret pathologic processes. Pathologic processes include both solid and cystic masses. Most solid masses are enlarged lymph nodes. In contrast, cystic masses are of variable pathology, and their characteristic appearances and locations with respect to normal neck anatomy allow a confident diagnosis to be made from a brief differential diagnostic spectrum. PMID:16361138

  20. Toshiba Optical Disk Stores 15000 CT Images

    Science.gov (United States)

    Kato, Haruo; Kita, Kouichi

    1984-08-01

    The Toshiba computed tomography scanner system TCT60A/500X is equipped with an optical disk data storage device for image data archiving. One optical disk stores 3.6 gigabytes of data, or 15000 CT images on both sides. When writing on an optical disk, one spiral of data pits is produced with a semiconductor laser by evaporating the Te-C film coated on the PMMA (poly(methyl methacrylate)) substrate. The pits are read by the same laser at a lower power along with CRC (cyclic redundancy code) error correction. A bit error rate of 1.0E-12 was attained. The IEEE488 interface bus (GPIB) is used to communicate with a host computer. The mean data transfer rate through the bus is 100 kilobytes per second.

  1. Abdominal wall hernias: imaging with spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Stabile Ianora, A.A.; Midiri, M.; Vinci, R.; Rotondo, A.; Angelelli, G. [Department of Radiology, Bari University Hospital (Italy)

    2000-06-01

    Computed tomography is an accurate method of identifying the various types of abdominal wall hernias, especially if they are clinically occult, and of distinguishing them from other diseases such as hematomas, abscesses and neoplasia. In this study we examined the CT images of 94 patients affected by abdominal wall hernias observed over a period of 6 years. Computed tomography clearly demonstrates the anatomical site of the hernial sac, the content and any occlusive bowel complications due to incarceration or strangulation. Clinical diagnosis of external hernias is particularly difficult in obese patients or in those with laparotic scars. In these cases abdominal imaging is essential for a correct preoperative diagnosis and to determine the most effective treatment. (orig.)

  2. 4D CT lung ventilation images are affected by the 4D CT sorting method

    Science.gov (United States)

    Yamamoto, Tokihiro; Kabus, Sven; Lorenz, Cristian; Johnston, Eric; Maxim, Peter G.; Diehn, Maximilian; Eclov, Neville; Barquero, Cristian; Loo, Billy W.; Keall, Paul J.

    2013-01-01

    Purpose: Four-dimensional (4D) computed tomography (CT) ventilation imaging is a novel promising technique for lung functional imaging. The current standard 4D CT technique using phase-based sorting frequently results in artifacts, which may deteriorate the accuracy of ventilation imaging. The purpose of this study was to quantify the variability of 4D CT ventilation imaging due to 4D CT sorting. Methods: 4D CT image sets from nine lung cancer patients were each sorted by the phase-based method and anatomic similarity-based method, designed to reduce artifacts, with corresponding ventilation images created for each method. Artifacts in the resulting 4D CT images were quantified with the artifact score which was defined based on the difference between the normalized cross correlation for CT slices within a CT data segment and that for CT slices bordering the interface between adjacent CT data segments. The ventilation variation was quantified using voxel-based Spearman rank correlation coefficients for all lung voxels, and Dice similarity coefficients (DSC) for the spatial overlap of low-functional lung volumes. Furthermore, the correlations with matching single-photon emission CT (SPECT) ventilation images (assumed ground truth) were evaluated for three patients to investigate which sorting method provides higher physiologic accuracy. Results: Anatomic similarity-based sorting reduced 4D CT artifacts compared to phase-based sorting (artifact score, 0.45 ± 0.14 vs 0.58 ± 0.24, p = 0.10 at peak-exhale; 0.63 ± 0.19 vs 0.71 ± 0.31, p = 0.25 at peak-inhale). The voxel-based correlation between the two ventilation images was 0.69 ± 0.26 on average, ranging from 0.03 to 0.85. The DSC was 0.71 ± 0.13 on average. Anatomic similarity-based sorting yielded significantly fewer lung voxels with paradoxical negative ventilation values than phase-based sorting (5.0 ± 2.6% vs 9.7 ± 8.4%, p = 0.05), and improved the correlation with SPECT ventilation regionally. Conclusions

  3. 4D CT lung ventilation images are affected by the 4D CT sorting method.

    Science.gov (United States)

    Yamamoto, Tokihiro; Kabus, Sven; Lorenz, Cristian; Johnston, Eric; Maxim, Peter G; Diehn, Maximilian; Eclov, Neville; Barquero, Cristian; Loo, Billy W; Keall, Paul J

    2013-10-01

    Four-dimensional (4D) computed tomography (CT) ventilation imaging is a novel promising technique for lung functional imaging. The current standard 4D CT technique using phase-based sorting frequently results in artifacts, which may deteriorate the accuracy of ventilation imaging. The purpose of this study was to quantify the variability of 4D CT ventilation imaging due to 4D CT sorting. 4D CT image sets from nine lung cancer patients were each sorted by the phase-based method and anatomic similarity-based method, designed to reduce artifacts, with corresponding ventilation images created for each method. Artifacts in the resulting 4D CT images were quantified with the artifact score which was defined based on the difference between the normalized cross correlation for CT slices within a CT data segment and that for CT slices bordering the interface between adjacent CT data segments. The ventilation variation was quantified using voxel-based Spearman rank correlation coefficients for all lung voxels, and Dice similarity coefficients (DSC) for the spatial overlap of low-functional lung volumes. Furthermore, the correlations with matching single-photon emission CT (SPECT) ventilation images (assumed ground truth) were evaluated for three patients to investigate which sorting method provides higher physiologic accuracy. Anatomic similarity-based sorting reduced 4D CT artifacts compared to phase-based sorting (artifact score, 0.45 ± 0.14 vs 0.58 ± 0.24, p = 0.10 at peak-exhale; 0.63 ± 0.19 vs 0.71 ± 0.31, p = 0.25 at peak-inhale). The voxel-based correlation between the two ventilation images was 0.69 ± 0.26 on average, ranging from 0.03 to 0.85. The DSC was 0.71 ± 0.13 on average. Anatomic similarity-based sorting yielded significantly fewer lung voxels with paradoxical negative ventilation values than phase-based sorting (5.0 ± 2.6% vs 9.7 ± 8.4%, p = 0.05), and improved the correlation with SPECT ventilation regionally. The variability of 4D CT ventilation

  4. Neural network and its application to CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  5. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  6. Soft tissue imaging with photon counting spectroscopic CT.

    Science.gov (United States)

    Shikhaliev, Polad M

    2015-03-21

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm(2) pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  7. Soft tissue imaging with photon counting spectroscopic CT

    Science.gov (United States)

    Shikhaliev, Polad M.

    2015-03-01

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm2 pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  8. Comparison of the Batho, ETAR and Monte Carlo dose calculation methods in CT based patient models.

    Science.gov (United States)

    du Plessis, F C; Willemse, C A; Lötter, M G; Goedhals, L

    2001-04-01

    This paper shows the contribution that Monte Carlo methods make in regard to dose distribution calculations in CT based patient models and the role it plays as a gold standard to evaluate other dose calculation algorithms. The EGS4 based BEAM code was used to construct a generic 8 MV accelerator to obtain a series of x-ray field sources. These were used in the EGS4 based DOSXYZ code to generate beam data in a mathematical water phantom to set up a beam model in a commercial treatment planning system (TPS), CADPLAN V.2.7.9. Dose distributions were calculated with the Batho and ETAR inhomogeneity correction algorithms in head/sinus, lung, and prostate patient models for 2 x 2, 5 x 5, and 10 X 10 cm2 open x-ray beams. Corresponding dose distributions were calculated with DOSXYZ that were used as a benchmark. The dose comparisons are expressed in terms of 2D isodose distributions, percentage depth dose data, and dose difference volume histograms (DDVH's). Results indicated that the Batho and ETAR methods contained inaccuracies of 20%-70% in the maxillary sinus region in the head model. Large lung inhomogeneities irradiated with small fields gave rise to absorbed dose deviations of 10%-20%. It is shown for a 10 x 10 cm2 field that DOSXYZ models lateral scatter in lung that is not present in the Batho and ETAR methods. The ETAR and Batho methods are accurate within 3% in a prostate model. We showed how the performance of these inhomogeneity correction methods can be understood in realistic patient models using validated Monte Carlo codes such as BEAM and DOSXYZ.

  9. Hybrid µCT-FMT imaging and image analysis.

    Science.gov (United States)

    Gremse, Felix; Doleschel, Dennis; Zafarnia, Sara; Babler, Anne; Jahnen-Dechent, Willi; Lammers, Twan; Lederle, Wiltrud; Kiessling, Fabian

    2015-06-04

    Fluorescence-mediated tomography (FMT) enables longitudinal and quantitative determination of the fluorescence distribution in vivo and can be used to assess the biodistribution of novel probes and to assess disease progression using established molecular probes or reporter genes. The combination with an anatomical modality, e.g., micro computed tomography (µCT), is beneficial for image analysis and for fluorescence reconstruction. We describe a protocol for multimodal µCT-FMT imaging including the image processing steps necessary to extract quantitative measurements. After preparing the mice and performing the imaging, the multimodal data sets are registered. Subsequently, an improved fluorescence reconstruction is performed, which takes into account the shape of the mouse. For quantitative analysis, organ segmentations are generated based on the anatomical data using our interactive segmentation tool. Finally, the biodistribution curves are generated using a batch-processing feature. We show the applicability of the method by assessing the biodistribution of a well-known probe that binds to bones and joints.

  10. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  11. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  12. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P noise was significantly lower (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  13. Dose calculation based on Cone Beam CT images

    DEFF Research Database (Denmark)

    Slot Thing, Rune

    to be similar to the Hounsfield Units found in a CT scan, although image noise remains a challenge in the CBCT images. The artefact corrected CBCT images were demonstrated to be of suffi- cient quality to allow very accurate dose calculations to be performed directly on CBCT images of 21 lung cancer patients...... image lag, scatter within the CBCT detector assembly, x-ray beam hardening from the patient, and truncation of the CBCT field of view were implemented for clinical CBCT imaging of lung cancer patients. Through the artefact corrections, Hounsfield Units in the CBCT images were recovered and shown....... The dose calculations were made following a standard CT-based workflow, thus without need for CBCT specific calibrations. This was only possible due to the CT-likeness of the CBCT images achieved through the artefact correction methods. With the image quality improvements demonstrated in the present work...

  14. Robust cranial cavity segmentation in CT and CT perfusion images of trauma and suspected stroke patients

    NARCIS (Netherlands)

    Patel, A; Ginneken, B. van; Meijer, F.J.A.; Dijk, E.J. van; Prokop, M.; Manniesing, R.

    2017-01-01

    A robust and accurate method is presented for the segmentation of the cranial cavity in computed tomography (CT) and CT perfusion (CTP) images. The method consists of multi-atlas registration with label fusion followed by a geodesic active contour levelset refinement of the segmentation.

  15. CT and MR imaging characteristics of infantile hepatic hemangioendothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Feng Shiting, E-mail: fst1977@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen Univeristy, 58th, The Second Zhongshan Road, Guangzhou (China); Chan Tao, E-mail: taochan@hku.hk [Department of Diagnostic Radiology, University of Hong Kong, Room 406, Block K, Queen Mary Hospital (Hong Kong); Ching, A.S.C., E-mail: chingsc@hotmail.com [Department of Diagnostic Radiology, University of Hong Kong, Room 406, Block K, Queen Mary Hospital (Hong Kong); Sun Canhui, E-mail: canhuisun@sina.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen Univeristy, 58th, The Second Zhongshan Road, Guangzhou (China); Guo Huanyi, E-mail: guohuanyi@163.com [Department of Medical ultrasonics, The Third Affiliated Hospital, Sun Yat-Sen Univeristy, 600th, Tianhe Road, Guangzhou (China); Fan Miao, E-mail: cmu-sums@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen Univeristy, 58th, The Second Zhongshan Road, Guangzhou (China); Meng Quanfei, E-mail: mzycoco@gmail.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen Univeristy, 58th, The Second Zhongshan Road, Guangzhou (China); Li Ziping, E-mail: liziping163@tom.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen Univeristy, 58th, The Second Zhongshan Road, Guangzhou (China)

    2010-11-15

    Aim: This study aims to analyze computed tomography (CT) and magnetic resonance (MR) imaging features of infantile hepatic hemangioendotheliomas before and after treatment. Materials and methods: CT and MR examinations of seven infants with biopsy proven hepatic hemangioendotheliomas were retrospectively analyzed. The distribution, number, size, imaging appearance, enhancement pattern and post-treatment changes of the tumors were evaluated. Results: A total of 153 hepatic hemangioendotheliomas were detected on CT (111) and MR (42) imaging. In six infants, 109/111 (98.2%) tumors were hypodense and 2/111 (1.8%) lesions contained calcification on unenhanced CT. On MR imaging, all 42 lesions in one infant were heterogeneously T1-hypointense and T2-hyperintense compared to the normal liver parenchyma. Contrast-enhanced CT and MRI showed peripheral rim (51.6%), uniform (48.4%), fibrillary (33.3%), and nodular (28.8%) contrast enhancement in the hepatic arterial phase. Homogeneous (100%), rim (98.2%) and mixed enhancement patterns were noted in tumors <1.0 cm, >2.0 cm and 1.0-2.0 cm in diameter respectively in the hepatic arterial phase. In three patients who underwent steroid therapy, follow-up CT examination demonstrated tumor size reduction and increased intra-tumoral calcification in two patients. Conclusion: Infantile hepatic hemangioendotheliomas show some typical imaging features and size-dependent pattern of contrast enhancement on CT and MR imaging, which allow accurate imaging diagnosis and post-treatment evaluation.

  16. SPECT/CT imaging in children with papillary thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E. [Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States)

    2011-08-15

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  17. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  18. Imaging of Acute Mesenteric Ischemia Using Multidetector CT and CT Angiography in a Porcine Model

    Science.gov (United States)

    Rosow, David E.; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S.; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I.; Mueller, Peter R.; Castillo, Carlos Fernández-del; Warshaw, Andrew L.; Thayer, Sarah P.

    2013-01-01

    Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly facilitates the use of CT angiography (CTA) in the clinical setting. We sought to determine whether M.D.CT-CTA could accurately demonstrate vascular anatomy and capture the earliest stages of mesenteric ischemia in a porcine model. Pigs underwent embolization of branches of the superior mesenteric artery, then imaging by M.D.CT-CTA with three-dimensional reconstruction protocols. After scanning, diseased bowel segments were surgically resected and pathologically examined. Multidetector row CT and CT angiography reliably defined normal and occluded mesenteric vessels in the pig. It detected early changes of ischemia including poor arterial enhancement and venous dilatation, which were seen in all ischemic animals. The radiographic findings—compared with pathologic diagnoses—predicted ischemia, with a positive predictive value of 92%. These results indicate that M.D.CT-CTA holds great promise for the early detection necessary for successful treatment of acute mesenteric ischemia. PMID:16332482

  19. Extent of ovarian cancers. Evaluation on CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Torashima, Miyuki; Yamashita, Yasuyuki; Hatanaka, Yoshimi; Takahashi, Mutsumasa; Miyazaki, Kouji; Okamura, Hitoshi [Kumamoto Univ. (Japan). School of Medicine

    1995-12-01

    Fourty patients with ovarian cancer were retrospectively studied to assess the extention of disease with computed tomography (CT) and magnetic resonance imaging (MRI). The following assessments were made: invasive disease to adjacent pelvic structures, intra-abdominal extent of disease, lymphadenopathy and ascites. Twenty-five abdominal CT scans and 33 pelvic scans, 19 abdominal MR imaging and 36 pelvic MR imaging were obtained. All patients were examined prior to initial operation. Contralateral ovarian metastases were seen in 25 patients, and 20 patients (66.7%) had visible or palpable mesenterial and peritoneal carcinomatosis at surgery. Ascites was the most common finding, direct invasion to rectum, sigmoid colon and parametrium, omental metastases and mesenterial metastases were followed. Involved lesions were depicted in 58.0% sites with CT and 57.0% with MRI. In uterus and ovarian involvement, the diagnostic ability of MR imaging was superior to that of CT. In lymph node metastases and mesenterium lesions, CT had superior diagnostic ability over MR imaging. Fat on MRI tended to mask high signal intensity lesions. Furthermore, motion artifacts due to bowel peristalsis and pulsation of vessels will lead to misinterpret the margin of normal organs. Small metastases under 0.5 cm in diameter were missed both on MRI and CT. The results of this study suggest that MR imaging is equivalent to CT in the detection of disseminated and metastatic lesions of ovarian cancer. (author).

  20. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  1. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    Science.gov (United States)

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  2. Automated image analysis of the pathological lung in CT

    NARCIS (Netherlands)

    Sluimer, Ingrid Christine

    2005-01-01

    The general objective of the thesis is automation of the analysis of the pathological lung from CT images. Specifically, we aim for automated detection and classification of abnormalities in the lung parenchyma. We first provide a review of computer analysis techniques applied to CT of the

  3. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Sorapong Aootaphao

    2016-01-01

    Full Text Available Soft tissue images from portable cone beam computed tomography (CBCT scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  4. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  5. Effect of paper porosity on OCT images: Monte Carlo study

    Science.gov (United States)

    Kirillin, Mikhail Yu.; Priezzhev, Alexander V.; Myllylä, Risto

    2008-06-01

    Non-invasive measurement of paper porosity is an important problem for papermaking industry. Presently used techniques are invasive and require long time for processing the sample. In recent years optical coherence tomography (OCT) has been proved to be an effective tool for non-invasive study of optically non-uniform scattering media including paper. The aim of present work is to study the potential ability of OCT for sensing the porosity of a paper sample by means of numerical simulations. The paper sample is characterized by variation of porosity along the sample while numerical simulations allow one to consider the samples with constant porosity which is useful for evaluation of the technique abilities. The calculations were performed implementing Monte Carlo-based technique developed earlier for simulation of OCT signals from multilayer paper models. A 9-layer model of paper consisting of five fiber layers and four air layers with non-planar boundaries was considered. The porosity of the samples was varied from 30 to 80% by varying the thicknesses of the layers. The simulations were performed for model paper samples without and with optical clearing agents (benzyl alcohol, 1-pentanol, isopropanol) applied. It was shown that the simulated OCT images of model paper with various porosities significantly differ revealing the potentiality of the OCT technique for sensing the porosity. When obtaining the images of paper samples with optical clearing agents applied, the inner structure of the samples is also revealed providing additional information about the samples under study.

  6. Compartment Syndrome After Varicose Vein Surgery Evidenced by CT Images.

    Science.gov (United States)

    Wang, Sheng-Min; Kim, Maru

    2016-03-01

    A 21-year-old man developed compartment syndrome after a varicose vein surgery. Because of a lack of appropriate diagnostic apparatus, it was not possible to measure calf pressure. The only diagnostic tool available was computed tomography (CT). With the aid of CT, faster diagnosis of the compartment syndrome was possible, leading to appropriate management. By providing unique CT images of a patient before and after having compartment syndrome and after a fasciotomy, this study could add valuable references for diagnosis of compartment syndrome using CT. © The Author(s) 2014.

  7. Imaging of aortic dissection by helical computed tomography (CT)

    Energy Technology Data Exchange (ETDEWEB)

    Willoteaux, Serge; Lions, Christophe; Gaxotte, Virginia; Negaiwi, Ziad; Beregi, J.P. [CHRU de Lille, Department of Cardiovascular Radiology, Hopital Cardiologique, Lille (France)

    2004-11-01

    Aortic dissection is the most frequent cause of aortic emergency, and its outcome is still frequently fatal. The management of this pathology has changed with the development of endovascular means. Nowadays, imaging modalities are helpful in management decision-making by providing information such as identification of entry tears along the aorta and involvement of the visceral branches of the abdominal aorta. Multi-slice CT scanning now appears to be the modality of choice for complete examination of the entire aorta. We review the parameters of image acquisition and contrast injection; appearances on CT of acute and chronic dissection are illustrated. Diagnostic pitfalls in CT imaging of acute dissection are discussed. Imaging of the post-surgical aorta and of chronic dissection is outlined. Intra-mural hematoma and penetrating aortic ulcer are subtypes of aortic dissection, and their appearances on CT scanning are also presented. (orig.)

  8. Ultrasonography Fused with PET-CT Hybrid Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Ewertsen, Caroline; Gran, Fredrik

    2011-01-01

    We present a method with fusion of images of three modalities 18F-FDG PET, CT, and 3-D ultrasound (US) applied to imaging of the anal canal and the rectum. To obtain comparable geometries in the three imaging modalities, a plexiglas rod, with the same dimensions as the US transducer, is placed in...

  9. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  10. New and evolving concepts in CT for abdominal vascular imaging.

    Science.gov (United States)

    Fuentes-Orrego, Jorge M; Pinho, Daniella; Kulkarni, Naveen M; Agrawal, Mukta; Ghoshhajra, Brian B; Sahani, Dushyant V

    2014-01-01

    Computed tomographic (CT) angiography has become the standard of care, supplanting invasive angiography for comprehensive initial evaluation of acute and chronic conditions affecting the vascular system in the abdomen and elsewhere. Over the past decade, the capabilities of CT have improved substantially; simultaneously, the expectations of the referring physician and vascular surgeons have also evolved. Increasingly, CT angiography is used as an imaging biomarker for treatment selection and assessment of effectiveness. However, the growing use of CT angiography has also introduced some challenges, as potential radiation-associated and contrast media-induced risks need to be addressed. These concerns can be partly confronted by modifying scanning parameters (applying a low tube voltage) with or without using software-based solutions. Most recently, multienergy technology has endowed CT with new capabilities offering improved CT angiographic image quality and novel plaque characterization while decreasing radiation and iodine dose. In this article, we discuss current and new approaches using both conventional and multienergy CT for studying vascular disease in the abdomen. We propose various approaches to overcoming commonly encountered image quality challenges in CT angiography. In addition, we describe supplemental strategies for improving patient safety that leverage the available technology. ©RSNA, 2014.

  11. 'Ready-access' CT imaging for an orthopaedic trauma clinic.

    LENUS (Irish Health Repository)

    Cawley, D

    2011-03-01

    \\'Ready-Access\\' to CT imaging facilities in Orthopaedic Trauma Clinics is not a standard facility. This facility has been available at the regional trauma unit, in Merlin Park Hospital, Galway for the past four years. We reviewed the use of this facility over a 2-year period when 100 patients had CT scans as part of their trauma clinic assessment. The rate of CT scan per clinic was 0.6. The mean waiting time for a CT scan was 30 minutes. 20 (20%) new fractures were confirmed, 33 (33%) fractures were out-ruled, 25 (25%) fractures demonstrated additional information and 8 (8%) had additional fractures. 20 (20%) patients were discharged and 12 (12%) patients were admitted as a result of the CT scan. It adds little time and cost to CT scanning lists.

  12. Image quality assessment for CT used on small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co [Universidad Nacional de Colombia, Departamento de Física, Grupo de Física Médica (Colombia)

    2016-07-07

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  13. Modeling of realistic raw data for image reconstruction: quantifying scattering noise in different CT geometries

    Science.gov (United States)

    Schlattl, H.; Tischenko, O.; Hoeschen, C.

    2006-03-01

    An important step in assessing the quality of an image reconstruction algorithm is the simulation of the medical imaging process. For that purpose, the patient's anatomical structure is substituted in general by more or less simple geometrical objects, as, e.g., the Shepp-Logan phantom. Furthermore, the attenuation of the human body and thus the resulting detector image (e.g., the sinogram in CT) is often computed by integrating the attenuation coefficient along various rays without considering the contribution of scattered photons in the detector signal. We therefore decided to improve the simulation by using an existing Monte Carlo code (EGSnrc) to model the transport of numerous photons from the x-ray tube through the body to the detector. The deflection of photons and creation of secondary particles in scattering events occurs naturally in this program, but can also be avoided artificially. Besides the improved simulation of the irradiation process, this allows us to quantify the amount of scattered radiation in the detector image. The patient is represented by a so-called voxel phantom, which is based on tomographic image data of a real person, adopted to represent the ICRP Reference Man. Our improved modeling process is being applied to determine the amount of scatter radiation in helical multi-slice CT of the thorax compared to a planned circular CT with large flat panel detectors. The new reconstruction algorithm OPED (orthogonal polynomial expansion on disc), developed at GSF and the University of Oregon, might reduce the scatter radiation considerably.

  14. Three-dimensional multislice CT imaging of otitis media

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Miyako [Yanagibasi Hospital, Tokyo (Japan); Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro [Juntendo Univ., Tokyo (Japan). School of Medicine; Wada, Akihiro; Ando, Ichiro [Juntendo Univ., Chiba (Japan). Urayasu Hospital

    2002-07-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  15. PET/CT Imaging in Mouse Models of Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Sara Gargiulo

    2012-01-01

    Full Text Available Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT, high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing.

  16. Pulmonary ventilation and perfusion imaging with dual-energy CT.

    Science.gov (United States)

    Thieme, Sven F; Hoegl, Sandra; Nikolaou, Konstantin; Fisahn, Juergen; Irlbeck, Michael; Maxien, Daniel; Reiser, Maximilian F; Becker, Christoph R; Johnson, Thorsten R C

    2010-12-01

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation.

  17. Monte Carlo simulations in multi-detector CT (MDCT) for two PET/CT scanner models using MASH and FASH adult phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, W., E-mail: wbfisica@gmail.com [Bahia Federal Institute of Education, Science and Technology – IFBA, Vitória da Conquista, 45.100-000 (Brazil); Department of Physics, Federal University of Sergipe – UFS, São Cristóvão, 49.100-000 (Brazil); Santos, W.S. [Department of Physics, Federal University of Sergipe – UFS, São Cristóvão, 49.100-000 (Brazil); Paschoal, C.M.M., E-mail: cinthiam.paschoal@gmail.com [Department of Civil Engineering, Vale do Acarau State University – UVA, Sobral 62.040-730 (Brazil); Souza, D.N. [Department of Physics, Federal University of Sergipe – UFS, São Cristóvão, 49.100-000 (Brazil)

    2015-06-01

    The combination of positron emission tomography (PET) and computed tomography (CT) has been extensively used in oncology for diagnosis and staging of tumors, radiotherapy planning and follow-up of patients with cancer, as well as in cardiology and neurology. This study determines by the Monte Carlo method the internal organ dose deposition for computational phantoms created by multidetector CT (MDCT) beams of two PET/CT devices operating with different parameters. The different MDCT beam parameters were largely related to the total filtration that provides a beam energetic change inside the gantry. This parameter was determined experimentally with the Accu-Gold Radcal measurement system. The experimental values of the total filtration were included in the simulations of two MCNPX code scenarios. The absorbed organ doses obtained in MASH and FASH phantoms indicate that bowtie filter geometry and the energy of the X-ray beam have significant influence on the results, although this influence can be compensated by adjusting other variables such as the tube current–time product (mAs) and pitch during PET/CT procedures.

  18. A three-dimensional CT assisted Monte Carlo evaluation of intracavitary brachytherapy implants

    Science.gov (United States)

    Gifford, Kent A.

    Intracavitary brachytherapy (ICB) combined with external beam irradiation for treatment of cervical cancer is highly successful in achieving local control. The M.D. Anderson Cancer Center employs Fletcher Suit Delclos (FSD) applicators. FSD applicators contain shields to limit dose to critical structures. Dosimetric evaluation of ICB implants is limited to assessing dose at reference points. These points serve as surrogates for treatment intensity and critical structure dose. Several studies have mentioned that the ICRU38 reference points inadequately characterize the dose distribution. Also, the ovoid shields are rarely considered in dosimetry. The goal of this dissertation was to ascertain the influence of the ovoid shields on patient dose distributions. Monte Carlo dosimetry (MCD) was applied to patient computed tomography(CT) scans. These data were analyzed to determine the effect of the shields on dose to standard reference points and the bladder and rectum. The hypothesis of this work is that the ICRU38 bladder and rectal points computed conventionally are not clinically acceptable surrogates for the maximum dose points as determined by MCD. MCD was applied to the tandem and ovoids. The FSD ovoids and tandem were modeled in a single input file that allowed dose to be calculated for any patient. Dose difference surface histograms(DDSH) were computed for the bladder and rectum. Reference point doses were compared between shielded and unshielded ovoids, and a commercial treatment planning system. The results of this work showed the tandem tip screw caused a 33% reduction in dose. The ovoid shields reduced the dose by a maximum of 48.9%. DDSHs revealed on average 5% of the bladder surface area was spared 53 cGy and 5% of the rectal surface area was spared 195 cGy. The ovoid shields on average reduced the dose by 18% for the bladder point and 25% for the rectal point. The Student's t-test revealed the ICRU38 bladder and rectal points do not predict the maximum

  19. Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging.

    NARCIS (Netherlands)

    Vogel, W.V.; Dalen, J.A. van; Wiering, B.; Huisman, H.J.; Corstens, F.H.M.; Ruers, T.J.M.; Oyen, W.J.G.

    2007-01-01

    Multimodality PET/CT of the liver can be performed with an integrated (hybrid) PET/CT scanner or with software fusion of dedicated PET and CT. Accurate anatomic correlation and good image quality of both modalities are important prerequisites, regardless of the applied method. Registration accuracy

  20. Primary staging of laryngeal and hypopharyngeal cancer: CT, MR imaging and dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, Hirofumi, E-mail: hkuno@east.ncc.go.jp [Diagnostic Radiology Division, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Onaya, Hiroaki, E-mail: honaya@ncc.go.jp [Diagnostic Radiology Division, National Cancer Center Hospital, 5-1-1 Tsukiji Chuo-ku, Tokyo 104-0045 (Japan); Fujii, Satoshi, E-mail: sfujii@east.ncc.go.jp [Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Ojiri, Hiroya, E-mail: ojiri@jikei.ac.jp [Department of Radiology, Jikei University School of Medicine, 3-25-18 Nishi-shinbashi Minato-ku, Tokyo 105-8461 (Japan); Otani, Katharina, E-mail: katharina.otani@siemens.com [Imaging and Therapy Systems Division, Siemens Japan K.K., Gate City Osaki West Tower 1-11-1 Osaki, Shinagawa-ku, Tokyo 141-8644 (Japan); Satake, Mitsuo, E-mail: msatake@east.ncc.go.jp [Diagnostic Radiology Division, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan)

    2014-01-15

    Laryngeal and hypopharyngeal cancer, in particular T4a disease associated with cartilage invasion and extralaryngeal spread, needs to be evaluated accurately because treatment can impact heavily on a patient's quality of life. Reliable imaging tools are therefore indispensible. CT offers high spatial and temporal resolution and remains the preferred imaging modality. Although cartilage invasion can be diagnosed with acceptable accuracy by applying defined criteria for combinations of erosion, lysis and transmural extralaryngeal spread, iodine-enhanced tumors and non-ossified cartilage are sometimes difficult to distinguish. MR offers high contrast resolution for images without motion artifacts, although inflammatory changes in cartilage sometimes resemble cartilage invasion. With dual-energy CT, combined iodine overlay images and weighted average images can be used for evaluation of cartilage invasion, since iodine enhancement is evident in tumor tissue but not in cartilage. Extralaryngeal spread can be evaluated from CT, MR or dual-energy CT images and the routes of tumor spread into the extralaryngeal soft tissue must be considered; (1) via the thyrohyoid membrane along the superior laryngeal neurovascular bundle, (2) via the inferior pharyngeal constrictor muscle, and (3) via the cricothyroid membrane. Radiologists need to understand the advantages and limitations of each imaging modality for staging of laryngeal and hypopharyngeal cancer.

  1. CT and MR imaging after middle ear surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, Sabrina E-mail: sabrina.koesling@medizin.uni-halle.de; Bootz, F

    2001-11-01

    This article describes the current value of imaging in patients after stapes surgery and surgery after chronic otitis media including cholesteatoma. Possibilities and limits of computed tomography (CT) and MRI are described and most important investigation parameters are mentioned. After otosclerosis surgery, CT is the method of first choice in detection of reasons for vertigo and/or recurrent hearing loss in the later postoperative phase. CT may show the position and condition of prosthesis, scarring around the prosthesis and otospongiotic foci. Sometimes, it gives indirect hints for perilymphatic fistulas and incus necrosis. MRI is able to document inner ear complications. CT has a high negative predictive value in cases with a free cavity after mastoidectomy. Localized opacities or total occlusion are difficult to distinguish by CT alone. MRI provides important additional information in the differentiation of cholesterol granuloma, cholesteatoma, effusion, granulation and scar tissue.

  2. Lab-based x-ray nanoCT imaging

    Science.gov (United States)

    Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz

    2017-03-01

    Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.

  3. Three-dimensional CT image segmentation by volume growing

    Science.gov (United States)

    Zhu, Dongping; Conners, Richard W.; Araman, Philip A.

    1991-11-01

    The research reported in this paper is aimed at locating, identifying, and quantifying internal (anatomical or physiological) structures, by 3-D image segmentation. Computerized tomography (CT) images of an object are first processed on a slice-by-slice basis, generating a stack of image slices that have been smoothed and pre-segmented. The image smoothing operation is executed by a spatially adaptive filter, and the 2-D pre-segmentation is achieved by a thresholding process whereby each individual pixel in the input image space is consistently assigned a label, according to its CT number, i.e., the gray-level value. Given a sequence of pre-segmented images as 3-D input scene (a stack of image slices), the spatial connectivity that exists among neighboring image pixels is utilized in a volume growing process which generates a number of well-defined volumetric regions or image solides, each representing an individual anatomical or physiological structure in the input scene. The 3-D segmentation is implemented using a volume growing process so that the aspect of pixel spatial connectivity is incorporated into the image segmentation procedure. To initialize the volume growing process for each volumetric region in the input 3-D scene, a seed location for a region is defined and loaded into a queue data structure called seed queue. The volume growing process consists of a set of procedures that perform different operations on the volumetric data of a CT image sequence. Examples of experiment of the described system with CT image data of several hardwood logs are given to demonstrate usefulness and flexibility of this approach. This allows solutions to industrial web inspection, as well as to several problems in medical image analysis where low-level image segmentation plays an important role toward successful image interpretation tasks.

  4. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...... is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small...

  5. CT guided diffuse optical tomography for breast cancer imaging

    Science.gov (United States)

    Baikejiang, Reheman; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as blood, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer detection. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at wavelengths of 650 and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements, the width of measurement patch, have been investigated. Our results indicate that an EMCCD camera with air cooling is good enough for the transmission mode DOT imaging. We have also found that measurements at six projections are sufficient for DOT to reconstruct the optical targets with 4 times absorption contrast when the CT guidance is applied. Finally, we report our effort and progress on the integration of the multispectral DOT imaging system into a breast CT scanner.

  6. CT imaging with a mobile C-arm prototype

    Science.gov (United States)

    Cheryauka, Arvi; Tubbs, David; Langille, Vinton; Kalya, Prabhanjana; Smith, Brady; Cherone, Rocco

    2008-03-01

    Mobile X-ray imagery is an omnipresent tool in conventional musculoskeletal and soft tissue applications. The next generation of mobile C-arm systems can provide clinicians of minimally-invasive surgery and pain management procedures with both real-time high-resolution fluoroscopy and intra-operative CT imaging modalities. In this study, we research two C-arm CT experimental system configurations and evaluate their imaging capabilities. In a non-destructive evaluation configuration, the X-ray Tube - Detector assembly is stationary while an imaging object is placed on a rotating table. In a medical imaging configuration, the C-arm gantry moves around the patient and the table. In our research setting, we connect the participating devices through a Mobile X-Ray Imaging Environment known as MOXIE. MOXIE is a set of software applications for internal research at GE Healthcare - Surgery and used to examine imaging performance of experimental systems. Anthropomorphic phantom volume renderings and orthogonal slices of reconstructed images are obtained and displayed. The experimental C-arm CT results show CT-like image quality that may be suitable for interventional procedures, real-time data management, and, therefore, have great potential for effective use on the clinical floor.

  7. WE-EF-207-05: Monte Carlo Dosimetry for a Dedicated Cone-Beam CT Head Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A; Zbijewski, W; Xu, J; Dang, H; Stayman, J W; Aygun, N; Koliatsos, V E; Siewerdsen, J H [Johns Hopkins University, Balitmore, MD (United States); Wang, X; Foos, D H [Carestream Health, Rochester, NY (United States)

    2015-06-15

    Purpose: Cone-Beam CT (CBCT) is an attractive platform for point-of-care imaging of traumatic brain injury and intracranial hemorrhage. This work implements and evaluates a fast Monte-Carlo (MC) dose estimation engine for development of a dedicated head CBCT scanner, optimization of acquisition protocols, geometry, bowtie filter designs, and patient-specific dosimetry. Methods: Dose scoring with a GPU-based MC CBCT simulator was validated on an imaging bench using a modified 16 cm CTDI phantom with 7 ion chamber shafts along the central ray for 80–100 kVp (+2 mm Al, +0.2 mm Cu). Dose distributions were computed in a segmented CBCT reconstruction of an anthropomorphic head phantom with 4×10{sup 5} tracked photons per scan (5 min runtime). Circular orbits with angular span ranging from short scan (180° + fan angle) to full rotation (360°) were considered for fixed total mAs per scan. Two aluminum filters were investigated: aggressive bowtie, and moderate bowtie (matched to 16 cm and 32 cm water cylinder, respectively). Results: MC dose estimates showed strong agreement with measurements (RMSE<0.001 mGy/mAs). A moderate (aggressive) bowtie reduced the dose, per total mAs, by 20% (30%) at the center of the head, by 40% (50%) at the eye lens, and by 70% (80%) at the posterior skin entrance. For the no bowtie configuration, a short scan reduced the eye lens dose by 62% (from 0.08 mGy/mAs to 0.03 mGy/mAs) compared to full scan, although the dose to spinal bone marrow increased by 40%. For both bowties, the short scan resulted in a similar 40% increase in bone marrow dose, but the reduction in the eye lens was more pronounced: 70% (90%) for the moderate (aggressive) bowtie. Conclusions: Dose maps obtained with validated MC simulation demonstrated dose reduction in sensitive structures (eye lens and bone marrow) through combination of short-scan trajectories and bowtie filters. Xiaohui Wang and David Foos are employees of Carestream Health.

  8. Enabling image fusion for a CT guided needle placement robot

    Science.gov (United States)

    Seifabadi, Reza; Xu, Sheng; Aalamifar, Fereshteh; Velusamy, Gnanasekar; Puhazhendi, Kaliyappan; Wood, Bradford J.

    2017-03-01

    Purpose: This study presents development and integration of hardware and software that enables ultrasound (US) and computer tomography (CT) fusion for a FDA-approved CT-guided needle placement robot. Having real-time US image registered to a priori-taken intraoperative CT image provides more anatomic information during needle insertion, in order to target hard-to-see lesions or avoid critical structures invisible to CT, track target motion, and to better monitor ablation treatment zone in relation to the tumor location. Method: A passive encoded mechanical arm is developed for the robot in order to hold and track an abdominal US transducer. This 4 degrees of freedom (DOF) arm is designed to attach to the robot end-effector. The arm is locked by default and is released by a press of button. The arm is designed such that the needle is always in plane with US image. The articulated arm is calibrated to improve its accuracy. Custom designed software (OncoNav, NIH) was developed to fuse real-time US image to a priori-taken CT. Results: The accuracy of the end effector before and after passive arm calibration was 7.07mm +/- 4.14mm and 1.74mm +/-1.60mm, respectively. The accuracy of the US image to the arm calibration was 5mm. The feasibility of US-CT fusion using the proposed hardware and software was demonstrated in an abdominal commercial phantom. Conclusions: Calibration significantly improved the accuracy of the arm in US image tracking. Fusion of US to CT using the proposed hardware and software was feasible.

  9. Dose reduction in CT using bismuth shielding: measurements and Monte Carlo simulations.

    Science.gov (United States)

    Chang, Kyung-Hwan; Lee, Wonho; Choo, Dong-Myung; Lee, Choon-Sik; Kim, Youhyun

    2010-03-01

    In this research, using direct measurements and Monte Carlo calculations, the potential dose reduction achieved by bismuth shielding in computed tomography was evaluated. The patient dose was measured using an ionisation chamber in a polymethylmethacrylate (PMMA) phantom that had five measurement points at the centre and periphery. Simulations were performed using the MCNPX code. For both the bare and the bismuth-shielded phantom, the differences of dose values between experiment and simulation were within 9%. The dose reductions due to the bismuth shielding were 1.2-55% depending on the measurement points, X-ray tube voltage and the type of shielding. The amount of dose reduction was significant for the positions covered by the bismuth shielding (34 - 46% for head and 41 - 55% for body phantom on average) and negligible for other peripheral positions. The artefact on the reconstructed images were minimal when the distance between the shielding and the organs was >1 cm, and hence the shielding should be selectively located to protect critical organs such as the eye lens, thyroid and breast. The simulation results using the PMMA phantom was compared with those using a realistically voxelised phantom (KTMAN-2). For eye and breast, the simulation results using the PMMA and KTMAN-2 phantoms were similar with each other, while for thyroid the simulation results were different due to the discrepancy of locations and the sizes of the phantoms. The dose reductions achieved by bismuth and lead shielding were compared with each other and the results showed that the difference of the dose reductions achieved by the two materials was less than 2-3%.

  10. Dose reduction in CT using bismuth shielding: measurements and Monte Carlo simulations

    Science.gov (United States)

    Chang, Kyung-Hwan; Lee, Wonho; Choo, Dong-Myung; Lee, Choon-Sik; Kim, Youhyun

    2010-01-01

    In this research, using direct measurements and Monte Carlo calculations, the potential dose reduction achieved by bismuth shielding in computed tomography was evaluated. The patient dose was measured using an ionisation chamber in a polymethylmethacrylate (PMMA) phantom that had five measurement points at the centre and periphery. Simulations were performed using the MCNPX code. For both the bare and the bismuth-shielded phantom, the differences of dose values between experiment and simulation were within 9 %. The dose reductions due to the bismuth shielding were 1.2–55 % depending on the measurement points, X-ray tube voltage and the type of shielding. The amount of dose reduction was significant for the positions covered by the bismuth shielding (34 − 46 % for head and 41 − 55 % for body phantom on average) and negligible for other peripheral positions. The artefact on the reconstructed images were minimal when the distance between the shielding and the organs was >1 cm, and hence the shielding should be selectively located to protect critical organs such as the eye lens, thyroid and breast. The simulation results using the PMMA phantom was compared with those using a realistically voxelised phantom (KTMAN-2). For eye and breast, the simulation results using the PMMA and KTMAN-2 phantoms were similar with each other, while for thyroid the simulation results were different due to the discrepancy of locations and the sizes of the phantoms. The dose reductions achieved by bismuth and lead shielding were compared with each other and the results showed that the difference of the dose reductions achieved by the two materials was less than 2–3 %. PMID:19959602

  11. Computed tomography image source identification by discriminating CT-scanner image reconstruction process.

    Science.gov (United States)

    Duan, Y; Coatrieux, G; Shu, H Z

    2015-08-01

    In this paper, we focus on the identification of the Computed Tomography (CT) scanner that has produced a CT image. To do so, we propose to discriminate CT-Scanner systems based on their reconstruction process, the footprint or the signature of which can be established based on the way they modify the intrinsic sensor noise of X-ray detectors. After having analyzed how the sensor noise is modified in the reconstruction process, we define a set of image features so as to serve as CT acquisition system footprint. These features are used to train a SVM based classifier. Experiments conducted on images issued from 15 different CT-Scanner models of 4 distinct manufacturers show it is possible to identify the origin of one CT image with high accuracy.

  12. CT images of diffuse hepatic disease

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Suguru; Kido, Choichiro; Satoh, Shigeki; Ashizawa, Tatsuhito (Aichi Cancer Center, Nagoya (Japan). Hospital)

    1982-12-01

    During three years, 198 cases of diffuse hepatic disease were computer tomographed. Of these, 52 cases of fatty liver showed CT values lower than the 62.3 +- 56 HU for normal liver. Cases with iso-density included 76 cases of liver cirrhosis (including 19 cases of liver cancer), 34 cases of chronic hepatitis, 3 cases of malignant lymphomatous infiltration, and 1 case each of amyloidosis and leukemia. Those cases with high-density included 28 cases of Thorotrast deposit (including 4 cases of liver cancer) and 1 case of Wilson's disease, hemochromatosis, and hemosiderosis. After careful investigation, it was demonstrated that CT has broad application and efficacy in diffuse hepatic diseases.

  13. Efficient iterative image reconstruction algorithm for dedicated breast CT

    Science.gov (United States)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  14. Performance benchmarking of liver CT image segmentation and volume estimation

    Science.gov (United States)

    Xiong, Wei; Zhou, Jiayin; Tian, Qi; Liu, Jimmy J.; Qi, Yingyi; Leow, Wee Kheng; Han, Thazin; Wang, Shih-chang

    2008-03-01

    In recent years more and more computer aided diagnosis (CAD) systems are being used routinely in hospitals. Image-based knowledge discovery plays important roles in many CAD applications, which have great potential to be integrated into the next-generation picture archiving and communication systems (PACS). Robust medical image segmentation tools are essentials for such discovery in many CAD applications. In this paper we present a platform with necessary tools for performance benchmarking for algorithms of liver segmentation and volume estimation used for liver transplantation planning. It includes an abdominal computer tomography (CT) image database (DB), annotation tools, a ground truth DB, and performance measure protocols. The proposed architecture is generic and can be used for other organs and imaging modalities. In the current study, approximately 70 sets of abdominal CT images with normal livers have been collected and a user-friendly annotation tool is developed to generate ground truth data for a variety of organs, including 2D contours of liver, two kidneys, spleen, aorta and spinal canal. Abdominal organ segmentation algorithms using 2D atlases and 3D probabilistic atlases can be evaluated on the platform. Preliminary benchmark results from the liver segmentation algorithms which make use of statistical knowledge extracted from the abdominal CT image DB are also reported. We target to increase the CT scans to about 300 sets in the near future and plan to make the DBs built available to medical imaging research community for performance benchmarking of liver segmentation algorithms.

  15. MR imaging of gastric carcinoma; comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Mun; Kim, Choon Yul; Chun, Kyung Ah; Kim, Hyang Sun; Shinn, Kyung Sub [Catholic University Medical College, Seoul (Korea, Republic of)

    1994-08-15

    To assess the value of MR imaging compared to CT for the staging of gastric carcinoma when body-wrap-around surface coil, intravenous glucagon, motion suppression technique and effervescent granules are used. CT and MRI were performed for thirty-five patients with gastric carcinoma. Postcontrast CT scan was performed immediately after oral effervescent granules and Buscopan were given. Before MR imaging, BWA surface coil was wrapped around thr upper abdomen. T1 coronal, sagittal and axial SE images (TR/TE=400/15 msec) were obtained immediately after oral effervescent granules and glucagon were given. Respiratory compensation and presaturation techniques were used for each imaging. Three radiologists evaluated independently for randomly mixed 70 sets of CT and MR images. The signal intensity of gastric mass and enlarged lymph nodes were compared to the signal intensity of the adjacent pancreas, liver and spleen to evaluate any discriminating features between them. The accuracy in the diagnosis of pancreatic invasion was 83.8% on MRI and 74.3% on CT (p < 0.05). The accuracy of MRI and CT was 77.1% and 72.4% in detecting of gastric tumor respectively (p > 0.05), 73.3% and 68.6% in gastric serosal invasion (p < 0.05). 50.5% and 42.9% in lymph node metastasis (p < 0.05). The gastric mass and enlarged lymph nodes were hyperintense to the intensity of pancreas and liver in more than 78% of cases. MRI was comparable to CT scan for the staging of gastric carcinoma. Therefor, MRI could be used as an alternative or adjunctive diagnostic modality in the staging of gastric carcinoma.

  16. Application of low concentration contrast medium in spectral CT imaging for CT portal venography.

    Science.gov (United States)

    Zhao, Yongxia; Wu, Yanmin; Zuo, Ziwei; Suo, Hongna; Zhao, Sisi; Han, Jun; Chang, Xian; Cheng, Shujie

    2017-01-01

    To investigate the effect of low-concentration contrast medium on spectral computed tomography (CT) image quality for portal venography CT. 150 patients with suspected portal diseases were divided into three groups and had spectral CT examination using a GE Discovery CT 750 HD scanner. The patients in three groups were injected with different concentrations of iodine (350 mgI/mL, 315 mgI/mL and 280 mgI/mL) at an injection rate of 4.0-5.0 mL/s with 1.2 mL/kg (body weight) of contrast medium, respectively. During the portal vein imaging phase, 0.625 mm-slice-thickness monochromatic images and optimal monochromatic images were obtained. Optimal keV mono-energy was achieved using the optimal contrast-to-noise ratio (CNR) in the portal vein relative to the erector spinae muscle. Volume rendering and maximum intensity projection methods were applied to generate portal venography. The CT values and standard deviations were measured at the portal vein, the erector spinae muscle, and the abdomen fat, respectively. These values were used to calculate the signal-to-noise ratio (SNR); while CNR was calculated using CT values of the portal vein and erector spinae muscle. The overall imaging quality was evaluated on a five-point scale by two radiologists with at least five years' experience. Comparisons among the three groups were performed using One-Way ANOVA test. Monochromatic images at 50-53 keV demonstrated the best CNR for both the portal vein and erector spinae muscle. SNR and CNR of images with different contrast medium concentrations were similar (P > 0.05). The five-point scores were also similar (P > 0.05) for the three groups. The total iodine intake at 280 mgI/mL was 25.4% lower than that at 350 mgI/mL. Spectral CT with monochromatic images at 50-53 keV allows significant reduction in iodine load while improving portal vein signal intensity and maintaining image quality.

  17. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning.

    Science.gov (United States)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus; Coche, Emmanuel

    2010-09-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  18. Forensic Radiology Pitfalls: CT Imaging in Gunshot Wounds of the Head.

    Science.gov (United States)

    Giffen, Mark A; Powell, Jason A; McLemore, Jerri

    2017-06-20

    Computed tomography (CT) imaging is increasingly used in emergency departments and trauma services and is being offered as a supplemental tool with autopsy in coroner's and medical examiner's offices throughout the United States. The availability of CT images in lieu of traditional X-rays for medicolegal autopsies may lead to misinterpretation of images for forensic pathologists who are not familiar with these types of images. Forensic pathologists must become familiar with CT imaging, the basis of CT image formation and how to interpret CT images appropriately. We highlight potential pitfalls of CT image interpretation through two cases of fatal gunshot wounds of the head. Antemortem CT imaging available at the time of autopsy led to discrepancy between the initial image findings and the autopsy due to inexperienced manipulation of the images. With appropriate understanding of CT image interpretation and manipulation, forensic personnel should be able to avoid most sources of misinterpretation. © 2017 American Academy of Forensic Sciences.

  19. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  20. Prior CT imaging history for patients who undergo PAN CT for acute traumatic injury.

    Science.gov (United States)

    Kenter, Jeremy; Blow, Osbert; Krall, Scott P; Gest, Albert; Smith, Cynthia; Richman, Peter B

    2015-01-01

    Objective. A single PAN scan may provide more radiation to a patient than is felt to be safe within a one-year period. Our objective was to determine how many patients admitted to the trauma service following a PAN scan had prior CT imaging within our six-hospital system. Methods. We performed a secondary analysis of a prospectively collected trauma registry. The study was based at a level-two trauma center and five affiliated hospitals, which comprise 70.6% of all Emergency Department visits within a twelve county region of southern Texas. Electronic medical records were reviewed dating from the point of trauma evaluation back to December 5, 2005 to determine evidence of prior CT imaging. Results. There were 867 patients were admitted to the trauma service between January 1, 2012 and December 31, 2012. 460 (53%) received a PAN scan and were included in the study group. The mean age of the study group was 37.7 ± 1.54 years old, 24.8% were female, and the mean ISS score was 13.4 ± 1.07. The most common mechanism of injury was motor vehicle collision (47%). 65 (14%; 95% CI [11-18]%) of the patients had at least one prior CT. The most common prior studies performed were: CT head (29%; 19-42%), CT Face (29%; 19-42%) and CT Abdomen and Pelvis (18%; 11-30%). Conclusion. Within our trauma registry, 14% of patients had prior CT imaging within our hospital system before their traumatic event and PAN scan.

  1. CT vaginography: a new CT technique for imaging of upper and middle vaginal fistulas.

    Science.gov (United States)

    Botsikas, Diomidis; Pluchino, Nicola; Kalovidouri, Anastasia; Platon, Alexandra; Montet, Xavier; Dallenbach, Patrick; Poletti, Pierre-Alexandre

    2017-05-01

    Different types of vaginal fistulas is a relatively uncommon condition in the Western world but very frequent in developing countries. In the past, conventional vaginography was the radiological examination of choice for exploring this condition. CT and MRI are now both used for this purpose. Our objective was to test the feasibility and to explore the potential role of a new CT imaging technique implementing vaginal introitus obstruction and opacification of the vagina with iodine contrast agent, to show patency of a fistula. We describe the technical protocol of CT-vaginography as performed in Geneva University Hospitals, including vaginal catheterization with a Foley catheter and obstruction of the introitus by inflating the balloon of the catheter. We also report three cases of patients with suspected vaginal fistula who underwent CT-vaginography. The examinations were technically successful. In one patient, it revealed the presence of fistulous pathways from the vaginal fornix along the bilateral infected surgical prostheses. In a second patient, it showed a fistula between the vagina and the necrotic cavity of a recurrent cervical cancer. In a third patient, it proved the absence of a suspected vaginal fistula. CT-vaginography is a technically feasible CT protocol that provides anatomical and functional information on clinically suspected vaginal fistulas. Advances in knowledge: After the abandon of conventional vaginography in the era of transaxial imaging, the current modalities of imaging vaginal fistulas provide excellent anatomical detail but less functional information concerning the permeability of a vaginal fistulous pathway. We propose the use of CT-vaginography, a technical protocol that we describe in detail.

  2. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  3. Accurate registration of temporal CT images for pulmonary nodules detection

    Science.gov (United States)

    Yan, Jichao; Jiang, Luan; Li, Qiang

    2017-02-01

    Interpretation of temporal CT images could help the radiologists to detect some subtle interval changes in the sequential examinations. The purpose of this study was to develop a fully automated scheme for accurate registration of temporal CT images for pulmonary nodule detection. Our method consisted of three major registration steps. Firstly, affine transformation was applied in the segmented lung region to obtain global coarse registration images. Secondly, B-splines based free-form deformation (FFD) was used to refine the coarse registration images. Thirdly, Demons algorithm was performed to align the feature points extracted from the registered images in the second step and the reference images. Our database consisted of 91 temporal CT cases obtained from Beijing 301 Hospital and Shanghai Changzheng Hospital. The preliminary results showed that approximately 96.7% cases could obtain accurate registration based on subjective observation. The subtraction images of the reference images and the rigid and non-rigid registered images could effectively remove the normal structures (i.e. blood vessels) and retain the abnormalities (i.e. pulmonary nodules). This would be useful for the screening of lung cancer in our future study.

  4. Nasal polyps with metaplastic ossification: CT and MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yi Kyung; Kim, Hyung-Jin; Kim, Eunhee; Kim, Sung Tae [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Jinna [Yonsei University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Chung, Seung-Kyu [Sungkyunkwan University School of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Seoul (Korea, Republic of); Ko, Young-Hyeh [Sungkyunkwan University School of Medicine, Department of Pathology, Samsung Medical Center, Seoul (Korea, Republic of)

    2010-12-15

    Metaplastic ossification is a rare event in nasal polyps. The purpose of this study was to review the computed tomography (CT) and magnetic resonance (MR) imaging findings of nasal polyps with metaplastic ossification. CT (n = 5) and MR (n = 3) images of five patients (four men and one woman; mean age, 59 years) with surgically proven nasal polyp with metaplastic ossification were retrospectively reviewed. The location and morphologic characteristics of metaplastic ossification were documented as well. All lesions were seen as lobulated (n = 3), ovoid (n = 1), or dumbbell-shaped (n = 1) benign-looking masses with a mean size of 3.7 cm (range, 2.4-6.5 cm), located unilaterally in the posterior nasal cavity and nasopharynx (n = 2), posterior nasoethmoidal tract (n = 2), and maxillary sinus and nasal cavity (n = 1). Compared with the brain stem, the soft tissue components of all lesions demonstrated isoattenuation on precontrast CT scans, slight hypointensity on T1-weighted MR images, and hyperintensity on T2-weighted MR images. On contrast-enhanced MR images, heterogeneous enhancement with marked peripheral enhancement was seen in two and homogeneous moderate enhancement in one. All lesions contained centrally located radiodense materials on CT scans, the shape of which was multiple clustered in three, single nodular in one, and single large lobulated in one. Although rare, metaplastic ossification can occur within nasal polyps. The possibility of its diagnosis may be raised when one sees a benign-looking sinonasal mass with centrally located radiodense materials on CT scans. MR imaging may be useful when mycetoma or inverted papilloma cannot be ruled out on CT scans. (orig.)

  5. A segmentation algorithm of intracranial hemorrhage CT image

    Science.gov (United States)

    Wang, Haibo; Chen, Zhiguo; Wang, Jianzhi

    2011-10-01

    To develop a computer aided detection (CAD) system that improves diagnostic accuracy of intracranial hemorrhage on cerebral CT. A method for CT image segmentation of brain is proposed, with which, several regions that are suspicious of hemorrhage can be segmented rapidly and effectively. Extracting intracranial area algorithm is introduced firstly to extract intracranial area. Secondly, FCM is employed twice, we named it with TFCM. FCM is first employed to identify areas of intracranial hemorrhage. Finally, FCM is employed to segment the lesions. Experimental results on real medical images demonstrate the efficiency and effectiveness.

  6. Unified wavelet and Gaussian filtering for segmentation of CT images; application in segmentation of bone in pelvic CT images.

    Science.gov (United States)

    Vasilache, Simina; Ward, Kevin; Cockrell, Charles; Ha, Jonathan; Najarian, Kayvan

    2009-11-03

    The analysis of pelvic CT scans is a crucial step for detecting and assessing the severity of Traumatic Pelvic Injuries. Automating the processing of pelvic CT scans could impact decision accuracy, decrease the time for decision making, and reduce health care cost. This paper discusses a method to automate the segmentation of bone from pelvic CT images. Accurate segmentation of bone is very important for developing an automated assisted-decision support system for Traumatic Pelvic Injury diagnosis and treatment. The automated method for pelvic CT bone segmentation is a hierarchical approach that combines filtering and histogram equalization, for image enhancement, wavelet analysis and automated seeded region growing. Initial results of segmentation are used to identify the region where bone is present and to target histogram equalization towards the specific area. Speckle Reducing Anisotropic Didffusion (SRAD) filter is applied to accentuate the desired features in the region. Automated seeded region growing is performed to refine the initial bone segmentation results. The proposed method automatically processes pelvic CT images and produces accurate segmentation. Bone connectivity is achieved and the contours and sizes of bones are true to the actual contour and size displayed in the original image. Results are promising and show great potential for fracture detection and assessing hemorrhage presence and severity. Preliminary experimental results of the automated method show accurate bone segmentation. The novelty of the method lies in the unique hierarchical combination of image enhancement and segmentation methods that aims at maximizing the advantages of the combined algorithms. The proposed method has the following advantages: it produces accurate bone segmentation with maintaining bone contour and size true to the original image and is suitable for automated bone segmentation from pelvic CT images.

  7. PET/CT Imaging and Radioimmunotherapy of Prostate Cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Tagawa, Scott T; Goldsmith, Stanley J

    2011-01-01

    of more effective treatment modalities that could improve outcome. Prostate cancer represents an attractive target for radioimmunotherapy (RIT) for several reasons, including pattern of metastatic spread (lymph nodes and bone marrow, sites with good access to circulating antibodies) and small volume......Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an important role in the clinical management of patients with prostate cancer. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis...... of anatomic, functional, and molecular imaging information. Positron emission tomography (PET)/computed tomography (CT) in oncology is emerging as an important imaging tool. The most common radiotracer for PET/CT in oncology, (18)F-fluorodeoxyglucose (FDG), is not very useful in the imaging of prostate cancer...

  8. Assessment of CT image quality using a Bayesian approach

    Science.gov (United States)

    Reginatto, M.; Anton, M.; Elster, C.

    2017-08-01

    One of the most promising approaches for evaluating CT image quality is task-specific quality assessment. This involves a simplified version of a clinical task, e.g. deciding whether an image belongs to the class of images that contain the signature of a lesion or not. Task-specific quality assessment can be done by model observers, which are mathematical procedures that carry out the classification task. The most widely used figure of merit for CT image quality is the area under the ROC curve (AUC), a quantity which characterizes the performance of a given model observer. In order to estimate AUC from a finite sample of images, different approaches from classical statistics have been suggested. The goal of this paper is to introduce task-specific quality assessment of CT images to metrology and to propose a novel Bayesian estimation of AUC for the channelized Hotelling observer (CHO) applied to the task of detecting a lesion at a known image location. It is assumed that signal-present and signal-absent images follow multivariate normal distributions with the same covariance matrix. The Bayesian approach results in a posterior distribution for the AUC of the CHO which provides in addition a complete characterization of the uncertainty of this figure of merit. The approach is illustrated by its application to both simulated and experimental data.

  9. CT image segmentation using FEM with optimized boundary condition.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hishida

    Full Text Available The authors propose a CT image segmentation method using structural analysis that is useful for objects with structural dynamic characteristics. Motivation of our research is from the area of genetic activity. In order to reveal the roles of genes, it is necessary to create mutant mice and measure differences among them by scanning their skeletons with an X-ray CT scanner. The CT image needs to be manually segmented into pieces of the bones. It is a very time consuming to manually segment many mutant mouse models in order to reveal the roles of genes. It is desirable to make this segmentation procedure automatic. Although numerous papers in the past have proposed segmentation techniques, no general segmentation method for skeletons of living creatures has been established. Against this background, the authors propose a segmentation method based on the concept of destruction analogy. To realize this concept, structural analysis is performed using the finite element method (FEM, as structurally weak areas can be expected to break under conditions of stress. The contribution of the method is its novelty, as no studies have so far used structural analysis for image segmentation. The method's implementation involves three steps. First, finite elements are created directly from the pixels of a CT image, and then candidates are also selected in areas where segmentation is thought to be appropriate. The second step involves destruction analogy to find a single candidate with high strain chosen as the segmentation target. The boundary conditions for FEM are also set automatically. Then, destruction analogy is implemented by replacing pixels with high strain as background ones, and this process is iterated until object is decomposed into two parts. Here, CT image segmentation is demonstrated using various types of CT imagery.

  10. Gastric cancer staging with dual energy spectral CT imaging.

    Directory of Open Access Journals (Sweden)

    Zilai Pan

    Full Text Available PURPOSE: To evaluate the clinical utility of dual energy spectral CT (DEsCT in staging and characterizing gastric cancers. MATERIALS AND METHODS: 96 patients suspected of gastric cancers underwent dual-phasic scans (arterial phase (AP and portal venous phase (PP with DEsCT mode. Three types of images were reconstructed for analysis: conventional polychromatic images, material-decomposition images, and monochromatic image sets with photon energies from 40 to 140 keV. The polychromatic and monochromatic images were compared in TNM staging. The iodine concentrations in the lesions and lymph nodes were measured on the iodine-based material-decomposition images. These values were further normalized against that in aorta and the normalized iodine concentration (nIC values were statistically compared. Results were correlated with pathological findings. RESULTS: The overall accuracies for T, N and M staging were (81.2%, 80.0%, and 98.9% and (73.9%, 75.0%, and 98.9% determined with the monochromatic images and the conventional kVp images, respectively. The improvement of the accuracy in N-staging using the keV images was statistically significant (p<0.05. The nIC values between the differentiated and undifferentiated carcinoma and between metastatic and non-metastatic lymph nodes were significantly different both in AP (p = 0.02, respectively and PP (p = 0.01, respectively. Among metastatic lymph nodes, nIC of the signet-ring cell carcinoma were significantly different from the adenocarcinoma (p = 0.02 and mucinous adenocarcinoma (p = 0.01 in PP. CONCLUSION: The monochromatic images obtained with DEsCT may be used to improve the N-staging accuracy. Quantitative iodine concentration measurements may be helpful for differentiating between differentiated and undifferentiated gastric carcinoma, and between metastatic and non-metastatic lymph nodes.

  11. CT-diskography in patients with sciatica. Comparison with plain CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dullerud, R. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology; Johansen, J.G. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology

    1995-09-01

    The findings at CT-diskography (CT-D), including recording of the pain introduced at contrast injection, were compared with plain CT and MR imaging in 111 disks in 101 patients aged 18 to 68 years. Six disks which were normal at CT had normal CT-D and 5 of them had normal signal on MR imaging. The degree of annular degeneration and the depth of the annular tears were significantly associated with each other and with loss of disk height, but not with size or location of the hernias. Only the depth of the tears was significantly associated with loss of signal on MR. However, frequently complete annular tears and severe annular degeneration were seen in association with small bulges and hernias, even in disks with normal or slightly reduced signal on MR and with normal height. The type and intensity of the pain introduced were associated with each other and with the depth of the annular tears, but not with the degree of annular degeneration, size of the hernia or the MR signal intensity of the disks. Annular degeneration and tears on one hand, and the type and intensity of pain introduced on the other, see to be related rather than separate phenomena. (orig./MG).

  12. Imaging of jaw with dental CT software program: Normal Anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myong Gon; Seo, Kwang Hee; Jung, Hak Young; Sung, Nak Kwan; Chung, Duk Soo; Kim, Ok Dong [School of Medicine, Taegu Catholic University, Taegu (Korea, Republic of); Lee, Young Hwan [Taegu Armed Forces General Hospital, Taegu (Korea, Republic of)

    1994-07-15

    Dental CT software program can provide reformatted cross-sectional and panoramic images that cannot be obtained with conventional axial and direct coronal CT scan. The purpose of this study is to describe the method of the technique and to identify the precise anatomy of jaw. We evaluated 13 mandibles and 7 maxillae of 15 subjects without bony disease who were being considered for endosseous dental implants. Reformatted images obtained by the use of bone algorithm performed on GE HiSpeed Advantage CT scanner were retrospectively reviewed for detailed anatomy of jaw. Anatomy related to neurovascular bundle(mandibular foramen, inferior alveolar canal, mental foramen, canal for incisive artery, nutrient canal, lingual foramen and mylohyoid groove), muscular insertion(mylohyoid line, superior and inferior genial tubercle and digastric fossa) and other anatomy(submandibular fossa, sublingual fossa, contour of alveolar process, oblique line, retromolar fossa, temporal crest and retromolar triangle) were well delineated in mandible. In maxilla, anatomy related to neurovascular bundle(greater palatine foramen and groove, nasopalatine canal and incisive foramen) and other anatomy(alveolar process, maxillary sinus and nasal fossa) were also well delineated. Reformatted images using dental CT software program provided excellent delineation of the jaw anatomy. Therefore, dental CT software program can play an important role in the preoperative assessment of mandible and maxilla for dental implants and other surgical conditions.

  13. CT, PET and MR-Imaging in experimental baromedical research

    DEFF Research Database (Denmark)

    Hansen, Kasper

    CBF), T and T * relaxation, and blood brain barrier (BBB) breakage 90 min following decompression. Results: Simulated diving induced significant changes in all measured parameters during 3 T MRI. SUV of F-FDG was unchanged in both groups, although following μCT-examination revealed intracranial bubbles...... it is intrinsically difficult to study humans or animals inside a pressure chamber. We have developed a preclinical pressure chamber system compatible with CT, PET and MR-imaging during pressurisation up to 1.013 mPa, which allows for anatomical visualisations and measurements of certain physiological processes......Pa pressurisation, and repeatedly after 500 kPa/min decompression. After MRI, venous bubble development was monitored using ultrasound. Second, preclinical μCT, PET/MRI, and high-field 9.4 T MR-Imaging systems evaluated changes in cerebral standard uptake value (SUV) of F-FDG, changes in cerebral blood flow (delta...

  14. Dental imaging using laminar optical tomography and micro CT

    Science.gov (United States)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  15. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Brocker, Kerstin A.; Eichbaum, Michael; Sohn, Christof [Heidelberg Univ. (Germany). Dept. of Obstetrics and Gynecology; Alt, Celine D.; Kauczor, Hans-Ulrich; Hallscheidt, Peter [Heidelberg Univ. (Germany). Dept. of Diagnostic and Interventional Radiology

    2011-10-15

    The goal of this article is to provide an overview of diagnostic standard operating procedures for both clinical and imaging assessment of cervical and endometrial carcinoma, sarcoma of the uterus, and primary pelvic non-Hodgkin's lymphoma. The literature was reviewed for methods used to diagnose malignancies in the female pelvis with a special focus on the role of MRI as the imaging method of choice. Furthermore, CT findings and staging criteria for the mentioned malignancies are also provided. Whereas ultrasound still remains the imaging modality of choice in clinical practice for the early diagnosis of female pelvic malignancies, MRI is more frequently recognized as a diagnostic tool for its accuracy in tumor identification. MRI also plays a crucial role in the 3D pretreatment planning for brachytherapy especially in cervical cancer. In the future, PET/CT might achieve an important role for staging lymph nodes or distant metastases as well as tumor recurrence.

  16. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  17. CT for upper abdominal pathology - is imaging of the pelvis ...

    African Journals Online (AJOL)

    Limited upper abdominal imaging exists in other modalities, and tailoring the examination to pathology will result in higher positive yield. Objective. To determine if the pelvic component of a routine abdominal CT scan contributes to the final diagnosis in organ-specific upperabdominal pathology. Methods. This was a ...

  18. Hydatid disease of the spleen; Ultrasonography, CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sinner, W.N. von; Stridbeck, H. (Dept. of Diagnostic Radiology, King Faisal Specialist Hospital, and Research Center, Riyadh (Saudi Arabia) Lund Univ. Hospital (Sweden))

    1992-09-01

    Seven patients with hydatid disease of the spleen were examined by radiography, ultrasound, CT, and in one case MR imaging. The observations were confirmed by patho-anatomic findings except in 2 patients where high indirect hemagglutination tests confirmed the diagnosis. (orig./MG).

  19. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    Science.gov (United States)

    Eck, Brendan L.; Fahmi, Rachid; Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun; Miao, Jun; Wilson, David L.

    2015-01-01

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, PC. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit and

  20. Generation of synthetic CT data using patient specific daily MR image data and image registration.

    Science.gov (United States)

    Kraus, Kim Melanie; Jäkel, Oliver; Niebuhr, Nina I; Pfaffenberger, Asja

    2017-02-21

    To fully exploit the advantages of magnetic resonance imaging (MRI) for radiotherapy (RT) treatment planning, a method is required to overcome the problem of lacking electron density information. We aim to establish and evaluate a new method for computed tomography (CT) data generation based on MRI and image registration. The thereby generated CT data is used for dose accumulation. We developed a process flow based on an initial pair of rigidly co-registered CT and T2-weighted MR image representing the same anatomical situation. Deformable image registration using anatomical landmarks is performed between the initial MRI data and daily MR images. The resulting transformation is applied to the initial CT, thus fractional CT data is generated. Furthermore, the dose for a photon intensity modulated RT (IMRT) or intensity modulated proton therapy (IMPT) plan is calculated on the generated fractional CT and accumulated on the initial CT via inverse transformation. The method is evaluated by the use of phantom CT and MRI data. Quantitative validation is performed by evaluation of the mean absolute error (MAE) between the measured and the generated CT. The effect on dose accumulation is examined by means of dose-volume parameters. One patient case is presented to demonstrate the applicability of the method introduced here. Overall, CT data derivation lead to MAEs with a median of 37.0 HU ranging from 29.9 to 66.6 HU for all investigated tissues. The accuracy of image registration showed to be limited in the case of unexpected air cavities and at tissue boundaries. The comparisons of dose distributions based on measured and generated CT data agree well with the published literature. Differences in dose volume parameters kept within 1.6% and 3.2% for photon and proton RT, respectively. The method presented here is particularly suited for application in adaptive RT in current clinical routine, since only minor additional technical equipment is required.

  1. Generation of synthetic CT data using patient specific daily MR image data and image registration

    Science.gov (United States)

    Melanie Kraus, Kim; Jäkel, Oliver; Niebuhr, Nina I.; Pfaffenberger, Asja

    2017-02-01

    To fully exploit the advantages of magnetic resonance imaging (MRI) for radiotherapy (RT) treatment planning, a method is required to overcome the problem of lacking electron density information. We aim to establish and evaluate a new method for computed tomography (CT) data generation based on MRI and image registration. The thereby generated CT data is used for dose accumulation. We developed a process flow based on an initial pair of rigidly co-registered CT and T2-weighted MR image representing the same anatomical situation. Deformable image registration using anatomical landmarks is performed between the initial MRI data and daily MR images. The resulting transformation is applied to the initial CT, thus fractional CT data is generated. Furthermore, the dose for a photon intensity modulated RT (IMRT) or intensity modulated proton therapy (IMPT) plan is calculated on the generated fractional CT and accumulated on the initial CT via inverse transformation. The method is evaluated by the use of phantom CT and MRI data. Quantitative validation is performed by evaluation of the mean absolute error (MAE) between the measured and the generated CT. The effect on dose accumulation is examined by means of dose-volume parameters. One patient case is presented to demonstrate the applicability of the method introduced here. Overall, CT data derivation lead to MAEs with a median of 37.0 HU ranging from 29.9 to 66.6 HU for all investigated tissues. The accuracy of image registration showed to be limited in the case of unexpected air cavities and at tissue boundaries. The comparisons of dose distributions based on measured and generated CT data agree well with the published literature. Differences in dose volume parameters kept within 1.6% and 3.2% for photon and proton RT, respectively. The method presented here is particularly suited for application in adaptive RT in current clinical routine, since only minor additional technical equipment is required.

  2. Fast and Automatic Ultrasound Simulation from CT Images

    OpenAIRE

    Weijian Cong; Jian Yang; Yue Liu; Yongtian Wang

    2013-01-01

    Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of...

  3. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  4. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  5. Organ dose calculation in CT based on scout image data and automatic image registration.

    Science.gov (United States)

    Kortesniemi, Mika; Salli, Eero; Seuri, Raija

    2012-10-01

    Computed tomography (CT) has become the main contributor of the cumulative radiation exposure in radiology. Information on cumulative exposure history of the patient should be available for efficient management of radiation exposures and for radiological justification. To develop and evaluate automatic image registration for organ dose calculation in CT. Planning radiograph (scout) image data describing CT scan ranges from 15 thoracic CT examinations (9 men and 6 women) and 10 abdominal CT examinations (6 men and 4 women) were co-registered with the reference trunk CT scout image. 2-D affine transformation and normalized correlation metric was used for image registration. Longitudinal (z-axis) scan range coordinates on the reference scout image were converted into slice locations on the CT-Expo anthropomorphic male and female models, following organ and effective dose calculations. The average deviation of z-location of studied patient images from the corresponding location in the reference scout image was 6.2 mm. The ranges of organ and effective doses with constant exposure parameters were from 0 to 28.0 mGy and from 7.3 to 14.5 mSv, respectively. The mean deviation of the doses for fully irradiated organs (inside the scan range), partially irradiated organs and non-irradiated organs (outside the scan range) was 1%, 5%, and 22%, respectively, due to image registration. The automated image processing method to registrate individual chest and abdominal CT scout radiograph with the reference scout radiograph is feasible. It can be used to determine the individual scan range coordinates in z-direction to calculate the organ dose values. The presented method could be utilized in automatic organ dose calculation in CT for radiation exposure tracking of the patients.

  6. Clinical feasibility of {sup 90}Y digital PET/CT for imaging microsphere biodistribution following radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Chadwick L.; Binzel, Katherine; Zhang, Jun; Knopp, Michael V. [The Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, Columbus, OH (United States); Wuthrick, Evan J. [The Ohio State University Wexner Medical Center, Department of Radiation Oncology, Columbus, OH (United States)

    2017-07-15

    The purpose of this study was to evaluate the clinical feasibility of next generation solid-state digital photon counting PET/CT (dPET/CT) technology and imaging findings in patients following {sup 90}Y microsphere radioembolization in comparison with standard of care (SOC) bremsstrahlung SPECT/CT (bSPECT/CT). Five patients underwent SOC {sup 90}Y bremsstrahlung imaging immediately following routine radioembolization with 3.5 ± 1.7 GBq of {sup 90}Y-labeled glass microspheres. All patients also underwent dPET/CT imaging at 29 ± 11 h following radioembolization. Matched pairs comparison was used to compare image quality, image contrast and {sup 90}Y biodistribution between dPET/CT and bSPECT/CT images. Volumetric assessments of {sup 90}Y activity using different isocontour thresholds on dPET/CT and bSPECT/CT images were also compared. Digital PET/CT consistently provided better visual image quality and {sup 90}Y-to-background image contrast while depicting {sup 90}Y biodistribution than bSPECT/CT. Isocontour volumetric assessment using a 1% threshold precisely outlined {sup 90}Y activity and the treatment volume on dPET/CT images, whereas a more restrictive 20% threshold on bSPECT/CT images was needed to obtain comparable treatment volumes. The use of a less restrictive 10% threshold isocontour on bSPECT/CT images grossly overestimated the treatment volume when compared with the 1% threshold on dPET/CT images. Digital PET/CT is clinically feasible for the assessment of {sup 90}Y microsphere biodistribution following radioembolization, and provides better visual image quality and image contrast than routine bSPECT/CT with comparable acquisition times. With further optimization and clinical validation, dPET technology may allow faster and more accurate imaging-based assessment of {sup 90}Y microsphere biodistribution. (orig.)

  7. Diagnostic accuracy at several reduced radiation dose levels for CT imaging in the diagnosis of appendicitis

    Science.gov (United States)

    Zhang, Di; Khatonabadi, Maryam; Kim, Hyun; Jude, Matilda; Zaragoza, Edward; Lee, Margaret; Patel, Maitraya; Poon, Cheryce; Douek, Michael; Andrews-Tang, Denise; Doepke, Laura; McNitt-Gray, Shawn; Cagnon, Chris; DeMarco, John; McNitt-Gray, Michael

    2012-03-01

    Purpose: While several studies have investigated the tradeoffs between radiation dose and image quality (noise) in CT imaging, the purpose of this study was to take this analysis a step further by investigating the tradeoffs between patient radiation dose (including organ dose) and diagnostic accuracy in diagnosis of appendicitis using CT. Methods: This study was IRB approved and utilized data from 20 patients who underwent clinical CT exams for indications of appendicitis. Medical record review established true diagnosis of appendicitis, with 10 positives and 10 negatives. A validated software tool used raw projection data from each scan to create simulated images at lower dose levels (70%, 50%, 30%, 20% of original). An observer study was performed with 6 radiologists reviewing each case at each dose level in random order over several sessions. Readers assessed image quality and provided confidence in their diagnosis of appendicitis, each on a 5 point scale. Liver doses at each case and each dose level were estimated using Monte Carlo simulation based methods. Results: Overall diagnostic accuracy varies across dose levels: 92%, 93%, 91%, 90% and 90% across the 100%, 70%, 50%, 30% and 20% dose levels respectively. And it is 93%, 95%, 88%, 90% and 90% across the 13.5-22mGy, 9.6-13.5mGy, 6.4-9.6mGy, 4-6.4mGy, and 2-4mGy liver dose ranges respectively. Only 4 out of 600 observations were rated "unacceptable" for image quality. Conclusion: The results from this pilot study indicate that the diagnostic accuracy does not change dramatically even at significantly reduced radiation dose.

  8. Hybrid detection of lung nodules on CT scan images

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.; Zhao, Binsheng, E-mail: bz2166@columbia.edu [Department of Radiology, Columbia University Medical Center, 630 West 168th Street, New York, New York 10032 (United States)

    2015-09-15

    Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithms were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.

  9. Combined use of iterative reconstruction and monochromatic imaging in spinal fusion CT images.

    Science.gov (United States)

    Wang, Fengdan; Zhang, Yan; Xue, Huadan; Han, Wei; Yang, Xianda; Jin, Zhengyu; Zwar, Richard

    2017-01-01

    Spinal fusion surgery is an important procedure for treating spinal diseases and computed tomography (CT) is a critical tool for postoperative evaluation. However, CT image quality is considerably impaired by metal artifacts and image noise. To explore whether metal artifacts and image noise can be reduced by combining two technologies, adaptive statistical iterative reconstruction (ASIR) and monochromatic imaging generated by gemstone spectral imaging (GSI) dual-energy CT. A total of 51 patients with 318 spinal pedicle screws were prospectively scanned by dual-energy CT using fast kV-switching GSI between 80 and 140 kVp. Monochromatic GSI images at 110 keV were reconstructed either without or with various levels of ASIR (30%, 50%, 70%, and 100%). The quality of five sets of images was objectively and subjectively assessed. With objective image quality assessment, metal artifacts decreased when increasing levels of ASIR were applied (P ASIR to GSI also decreased image noise (P ASIR levels (P ASIR and GSI decreased image noise and improved image quality in post-spinal fusion CT scans. Optimal results were achieved with ASIR levels ≥70%. © The Foundation Acta Radiologica 2016.

  10. Semiautomatic brain morphometry from CT images

    Science.gov (United States)

    Soltanian-Zadeh, Hamid; Windham, Joe P.; Peck, Donald J.

    1994-05-01

    Fast, accurate, and reproducible volume estimation is vital to the diagnosis, treatment, and evaluation of many medical situations. We present the development and application of a semi-automatic method for estimating volumes of normal and abnormal brain tissues from computed tomography images. This method does not require manual drawing of the tissue boundaries. It is therefore expected to be faster and more reproducible than conventional methods. The steps of the new method are as follows. (1) The intracranial brain volume is segmented from the skull and background using thresholding and morphological operations. (2) The additive noise is suppressed (the image is restored) using a non-linear edge-preserving filter which preserves partial volume information on average. (3) The histogram of the resulting low-noise image is generated and the dominant peak is removed from it using a Gaussian model. (4) Minima and maxima of the resulting histogram are identified and using a minimum error criterion, the brain is segmented into the normal tissues (white matter and gray matter), cerebrospinal fluid, and lesions, if present. (5) Previous steps are repeated for each slice through the brain and the volume of each tissue type is estimated from the results. Details and significance of each step are explained. Experimental results using a simulation, a phantom, and selected clinical cases are presented.

  11. MR and CT imaging patterns in post-varicella encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Darling, C.F. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Larsen, M.B. [Div. of Neurology, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Byrd, S.E. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Radkowski, M.A. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Palka, P.S. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Allen, E.D. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States)

    1995-06-01

    The aim of the investigation was to determine the patterns of cerebral involvement on computed tomography (CT) and magnetic resonance (MR) imaging in post-varicella encephalitis. Four children between the ages of 2 and 11 years presented over a 5-year period with a diagnosis of post-varicella encephalitis. Their imaging studies and clinical data were reviewed retrospectively. The medical histories of all four children were noncontributory except for recent bouts of chickenpox 1 week to 3 months prior to hospitalization. Three children presented with parkinsonian manifestations. Bilateral, symmetric hypodense, nonenhancing basal ganglia lesions were found on CT. These areas showed nonenhancing low signal intensity on T1-weighted images and high signal intensity on T2-weighted images on MR. One child presented with diffuse, multiple gray and white matter lesions of similar imaging characteristics; some lesions, however, did enhance. This child had no gait disturbances. Post-varicella encephalitis can produce two patterns of dramatic CT and MR findings. With an appropriate history and clinical findings, varicella as a cause of bilateral basal ganglia or diffuse cerebral lesions can be differentiated from other possible etiologies which include trauma, anoxia, metabolic disorders and demyelinating diseases. (orig.)

  12. Fast and Automatic Ultrasound Simulation from CT Images

    Directory of Open Access Journals (Sweden)

    Weijian Cong

    2013-01-01

    Full Text Available Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

  13. Fast and automatic ultrasound simulation from CT images.

    Science.gov (United States)

    Cong, Weijian; Yang, Jian; Liu, Yue; Wang, Yongtian

    2013-01-01

    Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

  14. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    Energy Technology Data Exchange (ETDEWEB)

    Ilic, Radovan D [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Spasic-Jokic, Vesna [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Belicev, Petar [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Dragovic, Milos [Center for Nuclear Medicine MEDICA NUCLEARE, Bulevar Despota Stefana 69, 11000 Belgrade (Serbia and Montenegro)

    2005-03-07

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour.

  15. Multislice spiral CT imaging of the chest; Bildgebung des Thorax mit der Mehrschicht-Spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, U.J.; Bruening, R.; Becker, C.; Eibel, R.; Hong, C.; Rueckmann, B. von; Stadie, A. [Klinikum Grosshadern, Muenchen (Germany). Inst. fuer Radiologische Diagnostik

    1999-11-01

    With Multislice Spiral Computed Tomography (MSCT), existing indications for performing CT of the chest are strengthened and new applications are emerging. The high speed of MSCT improves efficiency, image quality and patient comfort of 'routine'-imaging of the chest. The ability to cover large volumes with thin slices improves the evaluation of mediastinal lymph nodes and pulmonary modules and allows for high-quality secondary reconstruction. If a comprehensive diagnosis of the mediastinal structures and the pulmonary parenchyma is desired, MSCT for the first time allows reconstruction of continguous and high-resolution (HRCT) sections from the same set of thin-collimation raw data. This way, contiguous chest images of superior and HRCT sections of equal image quality compared to conventional CT scanning can be obtained. Vascular protocols greatly benefit from the high speed of MSCT: For imaging the thoracic aorta or pulmonary emboli (PE), the amount of contrast material can be substantially reduced. Owing to thin collimation, the detection-rate of small peripheral emboli can be significantly increased. If indicated, the entire subphrenic venous system can be evaluated during the same session, without additional contrast material. (orig.) [German] Mit der Einfuehrung der Mehrschicht-Spiral-CT (MSCT) werden die bestehenden Indikationen fuer die CT des Thorax bestaetigt und neue Indikationen lassen sich erschliessen. Die 'Routine'-Bildgebung im Thorax ist mit der MSCT in gewohnter Weise moeglich, wobei die hohe Scan-Geschwindigkeit die Effizienz der Untersuchung, die Bildqualitaet und den Patientenkomfort erhoeht. Die Moeglichkeit, auch grosse Organvolumina mit duenner Schichtung zu erfassen, verbessert die Beurteilung von mediastinalen Lymphknoten und Lungenrundherden und ermoeglicht qualitativ hochwertige dreidimensionale Rekonstruktionen. Soll eine umfassende Diagnose der Weichteilstrukturen und des Lungenparenchyms erfolgen, so ist es mit der

  16. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Science.gov (United States)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  17. CTC-ask: a new algorithm for conversion of CT numbers to tissue parameters for Monte Carlo dose calculations applying DICOM RS knowledge

    DEFF Research Database (Denmark)

    Ottosson, Rickard; Behrens, Claus F.

    2011-01-01

    One of the building blocks in Monte Carlo (MC) treatment planning is to convert patient CT data to MC compatible phantoms, consisting of density and media matrices. The resulting dose distribution is highly influenced by the accuracy of the conversion. Two major contributing factors are precise...

  18. CT ventilation functional image-based IMRT treatment plans are comparable to SPECT ventilation functional image-based plans.

    Science.gov (United States)

    Kida, Satoshi; Bal, Matthieu; Kabus, Sven; Negahdar, Mohammadreza; Shan, Xin; Loo, Billy W; Keall, Paul J; Yamamoto, Tokihiro

    2016-03-01

    To investigate the hypothesis that CT ventilation functional image-based IMRT plans designed to avoid irradiating highly-functional lung regions are comparable to single-photon emission CT (SPECT) ventilation functional image-based plans. Three IMRT plans were created for eight thoracic cancer patients using: (1) CT ventilation functional images, (2) SPECT ventilation functional images, and (3) anatomic images (no functional images). CT ventilation images were created by deformable image registration of 4D-CT image data sets and quantitative analysis. The resulting plans were analyzed for the relationship between the deviations of CT-functional plan metrics from anatomic plan metrics (ΔCT-anatomic) and those of SPECT-functional plans (ΔSPECT-anatomic), and moreover for agreements of various metrics between the CT-functional and SPECT-functional plans. The relationship between ΔCT-anatomic and ΔSPECT-anatomic was strong (e.g., R=0.94; linear regression slope 0.71). The average differences and 95% limits of agreement between the CT-functional and SPECT-functional plan metrics (except for monitor units) for various structures were mostly less than 1% and 2%, respectively. This study demonstrated a reasonable agreement between the CT ventilation functional image-based IMRT plans and SPECT-functional plans, suggesting the potential for CT ventilation imaging to serve as a surrogate for SPECT ventilation in functional image-guided radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. CT Scanning Imaging Method Based on a Spherical Trajectory.

    Directory of Open Access Journals (Sweden)

    Ping Chen

    Full Text Available In industrial computed tomography (CT, the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object's complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning.

  20. A minimum spanning forest based classification method for dedicated breast CT images

    NARCIS (Netherlands)

    Pike, R.; Sechopoulos, I.; Fei, B.

    2015-01-01

    PURPOSE: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. METHODS: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale

  1. CT scanning analysis of Megantereon whitei (Carnivora, Machairodontinae) from Monte Argentario (Early Pleistocene, central Italy): evidence of atavistic teeth

    Science.gov (United States)

    Iurino, Dawid Adam; Sardella, Raffaele

    2014-12-01

    CT scanning analysis applied to vertebrate palaeontology is providing an increasing number of data of great interest. This method can be used in many branches of palaeontology such as the investigation of all the fossilized elements in a hard matrix and the hidden structures in the bones. A large number of pathologies are "hidden", completely or partially invisible on the external surface of the bones because their development took place within the bones. However, the study of these diseases and abnormalities plays a crucial role in our understanding of evolutionary and adaptive processes of extinct taxa. The analysis of a partial skeleton of the sabre-toothed felid Megantereon whitei from the Early Pleistocene karst filling deposits of Monte Argentario (Tuscany, Italy) has been carried out. The CT scanning analysis put in evidence the presence of supernumerary teeth (P2) and the absence of P3 in the mandible. The occurrence of P2 can be considered as an evidence of atavism. Such an archaic feature is recorded for the first time in Megantereon.

  2. 90Y PET/CT quantitative accuracy and image quality

    Directory of Open Access Journals (Sweden)

    Wendy Siman

    2014-03-01

    Full Text Available Purpose: To optimize 90Y-PET/CT image reconstruction for quantitative accuracy and optimal image quality.Methods: PET/CT scans of a NEMA IEC phantom (3GBq 90YCl2, sphere uptake ratio of ~7 were acquired on 4 GE (BGO:DSTE, DST & LYSO:DRX, D690 and 1 Siemens (LSO:mCT scanners in 3D list mode with 30 min/bed; replayed to 20, 15, 10 min/bed. Iterative reconstruction parameters explored were SUB × IT (3 – 80 and post-reconstruction filters: transaxial: 5 – 25 mm cutoff & z-axis (GE only: std vs. heavy. The effects of PSF modeling and TOF correction were evaluated for D690 and mCT. VOIs were drawn inside spheres and in adjacent background regions. The accuracy of sphere activity concentration (AC in kBq/mL and contrast to noise ratio (CNR was calculated as function of SUB × IT. Reconstructed PET images were also evaluated qualitatively for sphere detectability and artifacts.Results: AC converged to 70 – 90% accuracy for 37 mm sphere and further degraded for smaller spheres. Spheres at max CNR might not reach AC convergence yet. Smaller spheres have slower convergence but reach CNR max together with other spheres. Scan duration did not strongly affect sphere convergence but shorter scans increased noise and reduced detectability; 13 mm spheres were not visible going from 30 to 15 min/bed. Heavy z-axis (GE and transaxial filter with 10 – 15 mm cutoff helped suppress noise and increase sphere detectability at the expense of accuracy. Images with PSF+TOF corrections had higher sphere detectability and converged faster. Hot cluster artifacts 5 – 7 times the background were seen in some cases with SUB × IT near convergence and lower filtration.Conclusion: Accurate 90Y AC was not achieved even at convergence and noise is a major concern. 90YPET/CT reconstruction parameters are different than those for 18F and benefit substantially from PSF+TOF corrections. Optimum image quality and accurate AC may not be simultaneously achievable

  3. Importance of PET/CT for imaging of colorectal cancer; Stellenwert der PET/CT zur Bildgebung des kolorektalen Karzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Meinel, F.G.; Schramm, N.; Graser, A.; Reiser, M.F.; Rist, C. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Haug, A.R. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Klinik und Poliklinik fuer Nuklearmedizin, Muenchen (Germany)

    2012-06-15

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has emerged as a very useful imaging modality in the management of colorectal carcinoma. Data from the literature regarding the role of PET/CT in the initial diagnosis, staging, radiotherapy planning, response monitoring and surveillance of colorectal carcinoma is presented. Future directions and economic aspects are discussed. Computed tomography (CT), magnetic resonance imaging (MRI) and FDG-PET for colorectal cancer and endorectal ultrasound for rectal cancer. Combined FDG-PET/CT. While other imaging modalities allow superior visualization of the extent and invasion depth of the primary tumor, PET/CT is most sensitive for the detection of distant metastases of colorectal cancer. We recommend a targeted use of PET/CT in cases of unclear M staging, prior to metastasectomy and in suspected cases of residual or recurrent colorectal carcinoma with equivocal conventional imaging. The role of PET/CT in radiotherapy planning and response monitoring needs to be determined. Currently there is no evidence to support the routine use of PET/CT for colorectal screening, staging or surveillance. To optimally exploit the synergy between morphologic and functional information, FDG-PET should generally be performed as an integrated FDG-PET/CT with a contrast-enhanced CT component in colorectal carcinoma. (orig.) [German] Die Fluordesoxyglukose-Positronenemissionstomographie/Computertomographie (FDG-PET/CT) hat in den letzten Jahren zunehmende Bedeutung zur Bildgebung des kolorektalen Karzinoms erlangt. In diesem Beitrag stellen wir den Stand der Literatur zur Rolle der PET/CT bei Screening, Staging, Bestrahlungsplanung, Beurteilung eines Therapieansprechens und Nachsorge des kolorektalen Karzinoms dar. Zudem wird auf gesundheitsoekonomische Aspekte und zukuenftige Entwicklungen eingegangen. CT, MRT, FDG-PET, beim Rektumkarzinom zusaetzlich endorektaler Ultraschall. Kombinierte FDG-PET/CT. Waehrend

  4. An Efficient Pipeline for Abdomen Segmentation in CT Images.

    Science.gov (United States)

    Koyuncu, Hasan; Ceylan, Rahime; Sivri, Mesut; Erdogan, Hasan

    2017-10-24

    Computed tomography (CT) scans usually include some disadvantages due to the nature of the imaging procedure, and these handicaps prevent accurate abdomen segmentation. Discontinuous abdomen edges, bed section of CT, patient information, closeness between the edges of the abdomen and CT, poor contrast, and a narrow histogram can be regarded as the most important handicaps that occur in abdominal CT scans. Currently, one or more handicaps can arise and prevent technicians obtaining abdomen images through simple segmentation techniques. In other words, CT scans can include the bed section of CT, a patient's diagnostic information, low-quality abdomen edges, low-level contrast, and narrow histogram, all in one scan. These phenomena constitute a challenge, and an efficient pipeline that is unaffected by handicaps is required. In addition, analysis such as segmentation, feature selection, and classification has meaning for a real-time diagnosis system in cases where the abdomen section is directly used with a specific size. A statistical pipeline is designed in this study that is unaffected by the handicaps mentioned above. Intensity-based approaches, morphological processes, and histogram-based procedures are utilized to design an efficient structure. Performance evaluation is realized in experiments on 58 CT images (16 training, 16 test, and 26 validation) that include the abdomen and one or more disadvantage(s). The first part of the data (16 training images) is used to detect the pipeline's optimum parameters, while the second and third parts are utilized to evaluate and to confirm the segmentation performance. The segmentation results are presented as the means of six performance metrics. Thus, the proposed method achieves remarkable average rates for training/test/validation of 98.95/99.36/99.57% (jaccard), 99.47/99.67/99.79% (dice), 100/99.91/99.91% (sensitivity), 98.47/99.23/99.85% (specificity), 99.38/99.63/99.87% (classification accuracy), and 98

  5. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soevik, Aaste; Skogmo, Hege K. (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)), E-mail: aste.sovik@nvh.no; Roedal, Jan (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)); Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik (Dept. of Medical Physics, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway))

    2010-10-15

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  6. Cochlear anatomy using micro computed tomography (μCT) imaging

    Science.gov (United States)

    Kim, Namkeun; Yoon, Yongjin; Steele, Charles; Puria, Sunil

    2008-02-01

    A novel micro computed tomography (μCT) image processing method was implemented to measure anatomical features of the gerbil and chinchilla cochleas, taking into account the bent modailosis axis. Measurements were made of the scala vestibule (SV) area, the scala tympani (SV) area, and the basilar membrane (BM) width using prepared cadaveric temporal bones. 3-D cochlear structures were obtained from the scanned images using a process described in this study. It was necessary to consider the sharp curvature of mododailosis axis near the basal region. The SV and ST areas were calculated from the μCT reconstructions and compared with existing data obtained by Magnetic Resonance Microscopy (MRM), showing both qualitative and quantitative agreement. In addition to this, the width of the BM, which is the distance between the primary and secondary osseous spiral laminae, is calculated for the two animals and compared with previous data from the MRM method. For the gerbil cochlea, which does not have much cartilage in the osseous spiral lamina, the μCT-based BM width measurements show good agreement with previous data. The chinchilla BM, which contains more cartilage in the osseous spiral lamina than the gerbil, shows a large difference in the BM widths between the μCT and MRM methods. The SV area, ST area, and BM width measurements from this study can be used in building an anatomically based mathematical cochlear model.

  7. Segmentation of the ovine lung in 3D CT Images

    Science.gov (United States)

    Shi, Lijun; Hoffman, Eric A.; Reinhardt, Joseph M.

    2004-04-01

    Pulmonary CT images can provide detailed information about the regional structure and function of the respiratory system. Prior to any of these analyses, however, the lungs must be identified in the CT data sets. A popular animal model for understanding lung physiology and pathophysiology is the sheep. In this paper we describe a lung segmentation algorithm for CT images of sheep. The algorithm has two main steps. The first step is lung extraction, which identifies the lung region using a technique based on optimal thresholding and connected components analysis. The second step is lung separation, which separates the left lung from the right lung by identifying the central fissure using an anatomy-based method incorporating dynamic programming and a line filter algorithm. The lung segmentation algorithm has been validated by comparing our automatic method to manual analysis for five pulmonary CT datasets. The RMS error between the computer-defined and manually-traced boundary is 0.96 mm. The segmentation requires approximately 10 minutes for a 512x512x400 dataset on a PC workstation (2.40 GHZ CPU, 2.0 GB RAM), while it takes human observer approximately two hours to accomplish the same task.

  8. The influence of respiratory motion on CT image volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid (Spain)

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  9. CT scan range estimation using multiple body parts detection: let PACS learn the CT image content.

    Science.gov (United States)

    Wang, Chunliang; Lundström, Claes

    2016-02-01

    The aim of this study was to develop an efficient CT scan range estimation method that is based on the analysis of image data itself instead of metadata analysis. This makes it possible to quantitatively compare the scan range of two studies. In our study, 3D stacks are first projected to 2D coronal images via a ray casting-like process. Trained 2D body part classifiers are then used to recognize different body parts in the projected image. The detected candidate regions go into a structure grouping process to eliminate false-positive detections. Finally, the scale and position of the patient relative to the projected figure are estimated based on the detected body parts via a structural voting. The start and end lines of the CT scan are projected to a standard human figure. The position readout is normalized so that the bottom of the feet represents 0.0, and the top of the head is 1.0. Classifiers for 18 body parts were trained using 184 CT scans. The final application was tested on 136 randomly selected heterogeneous CT scans. Ground truth was generated by asking two human observers to mark the start and end positions of each scan on the standard human figure. When compared with the human observers, the mean absolute error of the proposed method is 1.2% (max: 3.5%) and 1.6% (max: 5.4%) for the start and end positions, respectively. We proposed a scan range estimation method using multiple body parts detection and relative structure position analysis. In our preliminary tests, the proposed method delivered promising results.

  10. SU-F-J-57: Effectiveness of Daily CT-Based Three-Dimensional Image Guided and Adaptive Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, S [University of Tsukuba, Tsukuba, Ibaraki (Japan); National Cancer Center, Kashiwa, Chiba (Japan); Tachibana, H; Hotta, K; Baba, H; Kohno, R; Akimoto, T [National Cancer Center, Kashiwa, Chiba (Japan); Nakamura, N [National Cancer Center Hospital East, Kashiwa, Chiba (Japan); Miyakawa, S; Kurosawa, T [Komazawa University, Setagaya, Tokyo (Japan)

    2016-06-15

    Purpose: Daily CT-based three-dimensional image-guided and adaptive (CTIGRT-ART) proton therapy system was designed and developed. We also evaluated the effectiveness of the CTIGRT-ART. Methods: Retrospective analysis was performed in three lung cancer patients: Proton treatment planning was performed using CT image datasets acquired by Toshiba Aquilion ONE. Planning target volume and surrounding organs were contoured by a well-trained radiation oncologist. Dose distribution was optimized using 180-deg. and 270-deg. two fields in passive scattering proton therapy. Well commissioned Simplified Monte Carlo algorithm was used as dose calculation engine. Daily consecutive CT image datasets was acquired by an in-room CT (Toshiba Aquilion LB). In our in-house program, two image registrations for bone and tumor were performed to shift the isocenter using treatment CT image dataset. Subsequently, dose recalculation was performed after the shift of the isocenter. When the dose distribution after the tumor registration exhibits change of dosimetric parameter of CTV D90% compared to the initial plan, an additional process of was performed that the range shifter thickness was optimized. Dose distribution with CTV D90% for the bone registration, the tumor registration only and adaptive plan with the tumor registration was compared to the initial plan. Results: In the bone registration, tumor dose coverage was decreased by 16% on average (Maximum: 56%). The tumor registration shows better coverage than the bone registration, however the coverage was also decreased by 9% (Maximum: 22%) The adaptive plan shows similar dose coverage of the tumor (Average: 2%, Maximum: 7%). Conclusion: There is a high possibility that only image registration for bone and tumor may reduce tumor coverage. Thus, our proposed methodology of image guidance and adaptive planning using the range adaptation after tumor registration would be effective for proton therapy. This research is partially supported

  11. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2016-10-15

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use. (orig.)

  12. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans.

    Science.gov (United States)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Naßenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian

    2016-10-01

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use.

  13. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Lyu, Kwang Yeul [Dept. of Radiological Technology, Shingu University, Seoul (Korea, Republic of); Kim, Tae Hyung [Dept. of Radiological Science, Kangwon National University, Samcheok (Korea, Republic of); Shin, Ji Yun [Dept. of Biomedical Engineering, Cheongju National University, Cheongju (Korea, Republic of)

    2012-03-15

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3{+-}12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  14. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  15. [Measurements in triggered CT imaging of moving objects].

    Science.gov (United States)

    Schultz, E; Fischer, P; Lackner, K

    1982-06-01

    This paper describes results of measurements characterising the image properties of a CT apparatus triggered by an "R-peak simulator". For this purpose, a phantom was constructed in which--as straightforward simulation of a cardiac wall movement--a plate made of plexiglass of 5 mm wall thickness moves to and fro with a frequency nu (1 s-1 less than or equal to nu less than or equal to 2 s-1) and an amplitude of A = 10 mm. The number of scanning cycles during a measurement could be varied between 2 and 9. It was evident that the measured density values as well as the positions of the plate which could be ascertained from the CT images in the various phases of movement, especially at low frequencies and a large number of cycles, agree well with the real values; however, it was also found that both at the measured density values and the positions of the plate as seen from the CT images, systematic deviations occur, especially at high frequencies and a small number of scanning cycles.

  16. Kinematic CT and MR imaging of the patellofemoral joint

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C.; Brossmann, J.; Heller, M. [Klinik fuer Radiologische Diagnostik, Christian-Albrechts-Universitaet, Kiel (Germany)

    1999-04-01

    Anterior knee pain is a frequently encountered orthopedic symptom and is often associated with patellofemoral malalignment, which may cause chondromalacia of the patella. The difficulty in determining the patellar position between 0 and 30 of knee flexion with a conventional axial radiographic examination is well known. The introduction of computed tomography (CT) and magnetic resonance (MR) imaging for the diagnosis of knee joint abnormalities has enabled assessment of the patellar position in this critical range. More recently, emphasis has been placed on dynamic visualization of patellar motion to detect an abnormal tracking pattern. The important influence of the quadriceps muscle on the patellar tracking pattern is well known and has been examined during active knee extension by the use of ultrafast CT, and motion-triggered and ultrafast MR imaging. This article provides an overview of the current status of kinematic CT and MR imaging in the diagnosis of patellofemoral alignment, its clinical implications, and future directions. (orig.) With 13 figs., 5 tabs., 47 refs.

  17. Semiautomatic segmentation of liver metastases on volumetric CT images.

    Science.gov (United States)

    Yan, Jiayong; Schwartz, Lawrence H; Zhao, Binsheng

    2015-11-01

    Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1-10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the "gold standard" for validation of the method's accuracy. The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation method.

  18. CT and MR imaging of odontoid abnormalities: A pictorial review

    Directory of Open Access Journals (Sweden)

    Nishchint Jain

    2016-01-01

    Full Text Available Odontoid process is the central pillar of the craniovertebral junction. Imaging of this small structure continues to be a challenge for the radiologists due to complex bony and ligamentous anatomy. A wide range of developmental and acquired abnormalities of odontoid have been identified. Their accurate radiologic evaluation is important as different lesions have markedly different clinical course, patient management, and prognosis. This article seeks to provide knowledge for interpreting appearances of odontoid on computed tomography (CT and magnetic resonance imaging (MRI with respect to various disease processes, along with providing a quick review of the embryology and relevant anatomy.

  19. Compact CT/SPECT Small-Animal Imaging System

    Science.gov (United States)

    Kastis, George A.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.; Barber, H. Bradford; Barrett, Harrison H.

    2015-01-01

    We have developed a dual-modality CT/SPECT imaging system for small-animal imaging applications. The X-ray system comprises a commercially available micro-focus X-ray tube and a CCD-based X-ray camera. X-ray transmission measurements are performed based on cone-beam geometry. Individual projections are acquired by rotating the animal about a vertical axis in front of the CCD detector. A high-resolution CT image is obtained after reconstruction using an ordered subsets-expectation maximization (OS-EM) reconstruction algorithm. The SPECT system utilizes a compact semiconductor camera module previously developed in our group. The module is mounted perpendicular to the X-ray tube/CCD combination. It consists of a 64×64 pixellated CdZnTe detector and a parallel-hole tungsten collimator. The field of view is 1 square inch. Planar projections for SPECT reconstruction are obtained by rotating the animal in front of the detector. Gamma-ray and X-ray images are presented of phantoms and mice. Procedures for merging the anatomical and functional images are discussed. PMID:26538684

  20. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  1. Prediction of ICP Pose Uncertainties Using Monte Carlo Simulation with Synthetic Depth Images

    DEFF Research Database (Denmark)

    Iversen, Thorbjørn Mosekjær; Buch, Anders Glent; Kraft, Dirk

    2017-01-01

    on the generation of synthetic depth images in a Monte Carlo simulation. In this paper we demonstrate our method for depth sensors which rely on Kinect v1 like technology. We evaluate our method using real depth sensor recordings from the publicly available BigBird dataset. The evaluation shows that the uncertainty...

  2. Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction.

    Science.gov (United States)

    Weller, Daniel S; Ramani, Sathish; Nielsen, Jon-Fredrik; Fessler, Jeffrey A

    2014-05-01

    Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein's unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods that preserve the undersampled acquired data, which cannot be accomplished using existing techniques. We derive a weighted MSE criterion appropriate for data-preserving regularized parallel imaging reconstruction and the corresponding weighted Stein's unbiased risk estimate. We describe a Monte Carlo approximation of the weighted Stein's unbiased risk estimate that uses two evaluations of the reconstruction method per candidate parameter value. We reconstruct images using the denoising sparse images from GRAPPA using the nullspace method (DESIGN) and L1 iterative self-consistent parallel imaging (L1 -SPIRiT). We validate Monte Carlo Stein's unbiased risk estimate against the weighted MSE. We select the regularization parameter using these methods for various noise levels and undersampling factors and compare the results to those using MSE-optimal parameters. Our method selects nearly MSE-optimal regularization parameters for both DESIGN and L1 -SPIRiT over a range of noise levels and undersampling factors. The proposed method automatically provides nearly MSE-optimal choices of regularization parameters for data-preserving nonlinear parallel MRI reconstruction methods. Copyright © 2013 Wiley Periodicals, Inc.

  3. Ultra-low-dose chest CT with iterative reconstruction does not alter anatomical image quality.

    Science.gov (United States)

    Macri, F; Greffier, J; Pereira, F R; Mandoul, C; Khasanova, E; Gualdi, G; Beregi, J P

    2016-11-01

    To evaluate the effect of dose reduction with iterative reconstruction (IR) on image quality of chest CT scan. Eighteen human cadavers had chest CT with one reference CT protocol (RP-CT; 120kVp/200mAs) and two protocols with dose reduction: low-dose-CT (LD-CT; 120kVp/40mAs) and ultra-low-dose CT (ULD-CT; 120kVp/10mAs). Data were reconstructed with filter-back-projection (FBP) for RP-CT and with FBP and IR (sinogram affirmed iterative reconstruction [SAFIRE(®)]) algorithm for LD-CT and ULD-CT. Volume CT dose index (CTDIvol) were recorded. The signal-to-noise (SNR), contrast-to-noise (CNR) ratios of LD-CT and ULD-CT and quantitative parameters were compared to RP-CT. Two radiologists reviewed the CT examinations assessed independently the quality of anatomical structures and expressed a confidence level using a 2-point scale (50% and 95%). CTDIvol was 2.69 mGy for LD-CT (-80%; PCT (-95%; PCT. SNR and CNR were significantly decreased (PCT and ULD-CT, but IR improved these values satisfactorily. No significant differences were observed for quantitative measurements. Radiologists rated excellent/good the RP-CT and LD-CT images, whereas good/fair the ULD-CT images. Confidence level for subjective anatomical analysis was 95% for all protocols. Dose reduction with a dose lower than 1 mGy, used in conjunction with IR allows performing chest CT examinations that provide a high quality of anatomical structures. Copyright © 2016 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  4. Monte Carlo simulation of gamma ray tomography for image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)

    2015-07-01

    The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)

  5. Characteristic CT and MR imaging findings of cerebral paragonimiasis.

    Science.gov (United States)

    Xia, Yong; Chen, Jing; Ju, Yan; You, Chao

    2016-06-01

    The early diagnosis of cerebral paragonimiasis (CP) is essential for a good prognosis. We seek to provide references for early diagnosis by analyzing the imaging characteristics of cerebral paragonimiasis. Images of 27 patients with CP (22 males and 5 females; median age 20.3 years; range: 4 to 47 years) were retrospectively evaluated. All patients underwent head computed tomography (CT) scans; 22 patients underwent conventional magnetic resonance imaging (MRI) sequences, including contrast-enhanced MRI for 20 patients and diffusion-weighted-imaging (DWI) for 1 patient. The diagnosis was confirmed based on a positive antibody test using enzyme-linked immunosorbent assay (ELISA) for paragonimiasis in the serum. The most common imaging findings of CP were isodense or hypodense lesions combined with extensive hypodense areas of perilesional edema on CT scans and a large mass composed of multiple ring-shaped lesions with surrounding edema on MRI images. The conglomeration of multiple ring-shaped lesions (n=11 patients), "tunnel signs" (n=12 patients) and worm-eaten signs (n=5 patients) were characteristic of most CP images. In 14 patients, contrast-enhanced MRI showed varying degrees of contrast enhancement combined with adjacent meningeal enhancement (n=10). A large mass comprising multiple ring-shaped lesions of different sizes, "tunnel signs" and worm-eaten signs with surrounding edema are the most characteristic features of CP. Extensive invasions of the adjacent meninges and ventricular wall (19 patients), multiple intracerebral lesions, bilateral hemispheric involvement, and lesion migration are other noteworthy imaging characteristics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. The effects of gantry tilt on breast dose and image noise in cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States); Stevens, Grant M. [GE Healthcare, Waukesha, Wisconsin 53188 (United States); Foley, W. Dennis [Department of Radiology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin 53226 (United States)

    2013-12-15

    Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 0°–30°, in 5° increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30° gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%–30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%–50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the

  7. Feasibility and Initial Performance of Simultaneous SPECT-CT Imaging Using a Commercial Multi-Modality Preclinical Imaging System

    Directory of Open Access Journals (Sweden)

    Dustin R. Osborne

    2015-01-01

    Full Text Available Multi-modality imaging provides coregistered PET-CT and SPECT-CT images; however such multi-modality workflows usually consist of sequential scans from the individual imaging components for each modality. This typical workflow may result in long scan times limiting throughput of the imaging system. Conversely, acquiring multi-modality data simultaneously may improve correlation and registration of images, improve temporal alignment of the acquired data, increase imaging throughput, and benefit the scanned subject by minimizing time under anesthetic. In this work, we demonstrate the feasibility and procedure for modifying a commercially available preclinical SPECT-CT platform to enable simultaneous SPECT-CT acquisition. We also evaluate the performance of simultaneous SPECT-CT tomographic imaging with this modified system. Performance was accessed using a 57Co source and image quality was evaluated with Tc99m phantoms in a series of simultaneous SPECT-CT scans.

  8. Dentomaxillofacial imaging with panoramic views and cone beam CT.

    Science.gov (United States)

    Suomalainen, Anni; Pakbaznejad Esmaeili, Elmira; Robinson, Soraya

    2015-02-01

    Panoramic and intraoral radiographs are the basic imaging modalities used in dentistry. Often they are the only imaging techniques required for delineation of dental anatomy or pathology. Panoramic radiography produces a single image of the maxilla, mandible, teeth, temporomandibular joints and maxillary sinuses. During the exposure the x-ray source and detector rotate synchronously around the patient producing a curved surface tomography. It can be supplemented with intraoral radiographs. However, these techniques give only a two-dimensional view of complicated three-dimensional (3D) structures. As in the other fields of imaging also dentomaxillofacial imaging has moved towards 3D imaging. Since the late 1990s cone beam computed tomography (CBCT) devices have been designed specifically for dentomaxillofacial imaging, allowing accurate 3D imaging of hard tissues with a lower radiation dose, lower cost and easier availability for dentists when compared with multislice CT. Panoramic and intraoral radiographies are still the basic imaging methods in dentistry. CBCT should be used in more demanding cases. In this review the anatomy with the panoramic view will be presented as well as the benefits of the CBCT technique in comparison to the panoramic technique with some examples. Also the basics as well as common errors and pitfalls of these techniques will be discussed. Teaching Points • Panoramic and intraoral radiographs are the basic imaging methods in dentomaxillofacial radiology.• CBCT imaging allows accurate 3D imaging of hard tissues.• CBCT offers lower costs and a smaller size and radiation dose compared with MSCT.• The disadvantages of CBCT imaging are poor soft tissue contrast and artefacts.• The Sedentexct project has developed evidence-based guidelines on the use of CBCT in dentistry.

  9. Dual-gamma-source CT imaging system: Feasibility study with simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wi, Sun Hee; Lim, Sun Ho; Cho, Seung Ryong [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Our study demonstrated the feasibility of proposed CT imaging protocol and iterative reconstruction algorithm in both simulation and experimental studies. Polychromatic X-ray tube is used for imaging source of conventional CT system. However, conventional detector technique does not provide the capability to distinguish incident x-rays between different energy bins. Therefore, current reconstruction algorithms assumed and employed the mean values of the incident x-rays to reconstruct the 3D CT image. This assumption caused three main problems: formation of beam hardening, accuracy of quantitative CT imaging, and degradation of contrast, particularly for soft tissue. First, beam hardening causes cupping artifacts which can be observed as dark shades at the center of a CT image. Second, quantitative CT image refers to 3D image reconstructed by absolute value and conversion to Hounsfield units (HU). Quantitative CT is the active research field for normalized CT images and more accurate diagnosis. However, there are some limitations and difficulties to generate the quantitative CT image directly using polychromatic energy source. Third, polychromatic x-ray makes Compton scattering dominant and degrades the contrast of the soft tissue in CT images. To solve these problems, the use of monochromatic x-ray source is inevitable. We proposed a CT imaging protocol using multi-gamma-sources. We accordingly developed an iterative image reconstruction algorithm and validated it through both numerical and experimental studies. Our preliminary study demonstrated a feasibility of using multi-gamma-sources for CT imaging. The developed reconstruction approach would find applications in a high-resolution imaging with a large-focal-spot x-ray source or in a fast-scan x-ray CT imaging.

  10. Verification of organ doses calculated by a dose monitoring software tool based on Monte Carlo Simulation in thoracic CT protocols.

    Science.gov (United States)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Naßenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian

    2017-01-01

    Background The importance of monitoring of the radiation dose received by the human body during computed tomography (CT) examinations is not negligible. Several dose-monitoring software tools emerged in order to monitor and control dose distribution during CT examinations. Some software tools incorporate Monte Carlo Simulation (MCS) and allow calculation of effective dose and organ dose apart from standard dose descriptors. Purpose To verify the results of a dose-monitoring software tool based on MCS in assessment of effective and organ doses in thoracic CT protocols. Material and Methods Phantom measurements were performed with thermoluminescent dosimeters (TLD LiF:Mg,Ti) using two different thoracic CT protocols of the clinical routine: (I) standard CT thorax (CTT); and (II) CTT with high-pitch mode, P = 3.2. Radiation doses estimated with MCS and measured with TLDs were compared. Results Inter-modality comparison showed an excellent correlation between MCS-simulated and TLD-measured doses ((I) after localizer correction r = 0.81; (II) r = 0.87). The following effective and organ doses were determined: (I) (a) effective dose = MCS 1.2 mSv, TLD 1.3 mSv; (b) thyroid gland = MCS 2.8 mGy, TLD 2.5 mGy; (c) thymus = MCS 3.1 mGy, TLD 2.5 mGy; (d) bone marrow = MCS 0.8 mGy, TLD 0.9 mGy; (e) breast = MCS 2.5 mGy, TLD 2.2 mGy; (f) lung = MCS 2.8 mGy, TLD 2.7 mGy; (II) (a) effective dose = MCS 0.6 mSv, TLD 0.7 mSv; (b) thyroid gland = MCS 1.4 mGy, TLD 1.8 mGy; (c) thymus = MCS 1.4 mGy, TLD 1.8 mGy; (d) bone marrow = MCS 0.4 mGy, TLD 0.5 mGy; (e) breast = MCS 1.1 mGy, TLD 1.1 mGy; (f) lung = MCS 1.2 mGy, TLD 1.3 mGy. Conclusion Overall, in thoracic CT protocols, organ doses simulated by the dose-monitoring software tool were coherent to those measured by TLDs. Despite some challenges, the dose-monitoring software was capable of an accurate dose calculation.

  11. Robust cranial cavity segmentation in CT and CT perfusion images of trauma and suspected stroke patients.

    Science.gov (United States)

    Patel, Ajay; van Ginneken, Bram; Meijer, Frederick J A; van Dijk, Ewoud J; Prokop, Mathias; Manniesing, Rashindra

    2017-02-01

    A robust and accurate method is presented for the segmentation of the cranial cavity in computed tomography (CT) and CT perfusion (CTP) images. The method consists of multi-atlas registration with label fusion followed by a geodesic active contour levelset refinement of the segmentation. Pre-registration atlas selection based on differences in anterior skull anatomy reduces computation time whilst optimising performance. The method was evaluated on a large clinical dataset of 573 acute stroke and trauma patients that received a CT or CTP in our hospital in the period February 2015-December 2015. The database covers a large spectrum of the anatomical and pathological variations that is typically observed in everyday clinical practice. Three orthogonal slices were randomly selected per patient and manually annotated, resulting in 1659 reference annotations. Segmentations were initially visually inspected for the entire study cohort to assess failures. A total of 20 failures were reported. Quantitative evaluation in comparison to the reference dataset showed a mean Dice coefficient of 98.36 ±  2.59%. The results demonstrate that the method closely approaches the high performance of expert manual annotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Cardiac imaging: MR or CT? Which to use when

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Andrew M. [Cardiothoracic Unit, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London (United Kingdom)

    2008-06-15

    Over the last 5 years there has been a sea-change in the imaging pathways used to investigate patients with congenital heart disease. Prior to 2003 in our own institution, patients would undergo an echocardiogram (ECHO), and, if diagnostic, the appropriate management pathway would be followed. For example, a patient with a large ASD seen at ECHO would be referred for surgical closure of the septal defect. However, if ECHO was not able to resolve the diagnostic problem, cardiac catheterization was performed. This obviously entailed a general anaesthetic in most patients, an interventional procedure with the potential to damage vascular access, and potentially long screening times with high radiation doses. Since 2003 in our institution, we have introduced a second tier of investigations: cardiovascular MR and CT. Thus, if ECHO cannot resolve the diagnostic problem, patients will now be referred for cardiovascular MR/CT. (orig.)

  13. A methodology for image quality evaluation of advanced CT systems.

    Science.gov (United States)

    Wilson, Joshua M; Christianson, Olav I; Richard, Samuel; Samei, Ehsan

    2013-03-01

    This work involved the development of a phantom-based method to quantify the performance of tube current modulation and iterative reconstruction in modern computed tomography (CT) systems. The quantification included resolution, HU accuracy, noise, and noise texture accounting for the impact of contrast, prescribed dose, reconstruction algorithm, and body size. A 42-cm-long, 22.5-kg polyethylene phantom was designed to model four body sizes. Each size was represented by a uniform section, for the measurement of the noise-power spectrum (NPS), and a feature section containing various rods, for the measurement of HU and the task-based modulation transfer function (TTF). The phantom was scanned on a clinical CT system (GE, 750HD) using a range of tube current modulation settings (NI levels) and reconstruction methods (FBP and ASIR30). An image quality analysis program was developed to process the phantom data to calculate the targeted image quality metrics as a function of contrast, prescribed dose, and body size. The phantom fabrication closely followed the design specifications. In terms of tube current modulation, the tube current and resulting image noise varied as a function of phantom size as expected based on the manufacturer specification: From the 16- to 37-cm section, the HU contrast for each rod was inversely related to phantom size, and noise was relatively constant (quality analysis software were created for assessing CT image quality over a range of contrasts, doses, and body sizes. The testing platform enabled robust NPS, TTF, HU, and pixel noise measurements as a function of body size capable of characterizing the performance of reconstruction algorithms and tube current modulation techniques.

  14. Automatic segmentation of lumbar vertebrae in CT images

    Science.gov (United States)

    Kulkarni, Amruta; Raina, Akshita; Sharifi Sarabi, Mona; Ahn, Christine S.; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.

  15. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Poortman, Pieter [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: ppoortman@wlz.nl; Lohle, Paul N.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: plohle@elisabeth.nl; Schoemaker, Cees M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: mcschoemaker@elisabeth.nl; Cuesta, Miguel A. [Department of Surgery, VU Medical Centre, Amsterdam (Netherlands)], E-mail: ma.cuesta@vumc.nl; Oostvogel, Henk J.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: h.oostvogel@elisabeth.nl; Lange-de Klerk, Elly S.M. de [Department of Epidemiology and Biostatistics, VU Medical Centre, Amsterdam (Netherlands)], E-mail: esm.delange@vumc.nl; Hamming, Jaap F. [Department of Surgery, Leiden University Medical Centre (Netherlands)], E-mail: j.f.hamming@lumc.nl

    2010-04-15

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  16. Heart tumors: magnetic resonance imaging and multislice spiral CT; Herztumoren: Magnetresonanztomographie und Mehrschicht-Spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Krombach, G.A.; Spuentrup, E.; Buecker, A.; Mahnken, A.H.; Katoh, M.; Temur, Y.; Higgins, C.B.; Guenther, R.W. [Klinik fuer Radiologische Diagnostik, Universitaetsklinikum Aachen (Germany)

    2005-09-01

    Transthoracic echocardiography is usually the initial diagnostic test in patients with a suspected cardiac mass. However, this technique is restricted by its small field of views and insufficient acoustic window in some patients. Magnetic resonance imaging (MRI) and, since its introduction, multislice spiral computed tomography allow for detailed delineation of intra and pericardiac tumors, their extent, and their influence on cardiac function. Primary benign and malignant cardiac tumors have several characteristic features in MR imaging. Assessment of such features may narrow down the differential diagnosis or even allow for reliable diagnosis in selected cases. Many such features can also be assessed using MSCT. This article provides an overview of examination protocols of MRI and CT for cases in which a cardiac mass is suspected and describes the appearance of primary and secondary cardiac masses as well as intracavitary thrombi. (orig.)

  17. CT imaging vs. traditional radiographic imaging for evaluating Harris Lines in tibiae

    DEFF Research Database (Denmark)

    Primeau, Charlotte; Jakobsen, Lykke Schrøder; Lynnerup, Niels

    2016-01-01

    This paper is the first to systematically investigate computer tomography (CT) images vs. ordinary flat plane radiography for evaluating Harris Lines (HL) on tibiae. Harris Lines are traditionally investigated using radiographic images and recorded as either present or absent, or by counting...... the number of HL. Seventy-four pairs of human sub-adult and adult archaeological tibiae were used in this study. Both image methods were tested for intra- and inter-observer agreement and the methods were then compared. Analysis was performed with the tibiae divided into younger (n = 19) and older sub......-adults (n = 26) and adults (n = 29), as well as all tibiae combined (n = 74). This study found that the intra- and inter-observer agreement was very similar for each method, but both image methods performed less well for counting the number of HL. Direct comparison between CT images and radiographic images...

  18. Lung cancer classification using neural networks for CT images.

    Science.gov (United States)

    Kuruvilla, Jinsa; Gunavathi, K

    2014-01-01

    Early detection of cancer is the most promising way to enhance a patient's chance for survival. This paper presents a computer aided classification method in computed tomography (CT) images of lungs developed using artificial neural network. The entire lung is segmented from the CT images and the parameters are calculated from the segmented image. The statistical parameters like mean, standard deviation, skewness, kurtosis, fifth central moment and sixth central moment are used for classification. The classification process is done by feed forward and feed forward back propagation neural networks. Compared to feed forward networks the feed forward back propagation network gives better classification. The parameter skewness gives the maximum classification accuracy. Among the already available thirteen training functions of back propagation neural network, the Traingdx function gives the maximum classification accuracy of 91.1%. Two new training functions are proposed in this paper. The results show that the proposed training function 1 gives an accuracy of 93.3%, specificity of 100% and sensitivity of 91.4% and a mean square error of 0.998. The proposed training function 2 gives a classification accuracy of 93.3% and minimum mean square error of 0.0942. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Using the ACR CT accreditation phantom for routine image quality assurance on both CT and CBCT imaging systems in a radiotherapy environment.

    Science.gov (United States)

    Hobson, Maritza A; Soisson, Emilie T; Davis, Stephen D; Parker, William

    2014-07-08

    Image-guided radiation therapy using cone-beam computed tomography (CBCT) is becoming routine practice in modern radiation therapy. The purpose of this work was to develop an imaging QA program for CT and CBCT units in our department, based on the American College of Radiology (ACR) CT accreditation phantom. The phantom has four testing modules, permitting one to test CT number accuracy, slice width, low contrast resolution, image uniformity, in-plane distance accuracy, and high-contrast resolution reproducibly with suggested window/levels for image analysis. Additional tests for contrast-to-noise ratio (CNR) and noise were added using the polyethylene and acrylic plugs. Baseline values were obtained from CT simulator images acquired on a Phillips Brilliance Big Bore CT simulator and CBCT images acquired on three Varian CBCTs for the imaging protocols most used clinically. Images were then acquired quarterly over a period of two years. Images were exported via DICOM and analyzed manually using OsiriX. Baseline values were used to ensure that image quality remained consistent quarterly, and baselines were reset at any major maintenance or recalibration. Analysis of CT simulator images showed that image quality was within ACR guidelines for all tested scanning protocols. All three CBCT systems were unable to distinguish the low-contrast resolution plugs and had the same high-contrast resolution over all imaging protocols. Analysis of CBCT results over time determined a range of values that could be used to establish quantitative tolerance levels for image quality deterioration. While appropriate for the helical CT, the ACR phantom and guidelines could be modified to be more useful in evaluating CBCT systems. In addition, the observed values for the CT simulator were well within ACR tolerances.

  20. Iterative Image Reconstruction for Limited-Angle CT Using Optimized Initial Image

    OpenAIRE

    Jingyu Guo; Hongliang Qi; Yuan Xu; Zijia Chen; Shulong Li; Linghong Zhou

    2016-01-01

    Limited-angle computed tomography (CT) has great impact in some clinical applications. Existing iterative reconstruction algorithms could not reconstruct high-quality images, leading to severe artifacts nearby edges. Optimal selection of initial image would influence the iterative reconstruction performance but has not been studied deeply yet. In this work, we proposed to generate optimized initial image followed by total variation (TV) based iterative reconstruction considering the feature o...

  1. CT images of an anthropomorphic and anthropometric male pelvis phantom

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares

    2009-07-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  2. CT images of lipomatosis of the ileocecal valve

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Takashi; Sato, Tadayuki; Fujita, Makoto; Narumi, Yoshifumi; Kuriyama, Keiko; Sakai, Yoshiko; Fujino, Yasusada

    1988-08-01

    Lipomatosis of the ileocecal valve, which is characterized by diffuse fatty deposition in the submucosa of the valve without encapsulation, usually appears as round or lobulated, smoothly outlined and sharply demarcated tumors on barium enema examination. These filling defects sometimes have presented problems of differential diagnosis with respect to malignant involvement. We have recently seen three cases of lipomatosis of the ileocecal valve. One is histologically proved and two are clinically diagnosed. CT images of those cases are discussed and inhomogeneous low density area in the ileocecal valve is suggestive of the lipomatosis.

  3. FDG PET/CT imaging in canine cancer patients

    DEFF Research Database (Denmark)

    Hansen, Anders Elias; McEvoy, Fintan; Engelholm, Svend Aage

    2011-01-01

    .0, and for sarcomas from 2.0 to 10.6. The FDG SUV of several organs and tissues, including regional brain uptake is reported, to serve as a reference for future FDG PET studies in canine cancer patients. Several potential pitfalls have been recognized in interpretation of FDG PET images of human patients, a number...... and organs in canine cancer patients. FDG PET/CT was performed in 14 dogs including, nine mesenchymal tumors, four carcinomas, and one incompletely excised mast cell tumor. A generally higher FDG uptake was observed in carcinomas relative to sarcomas. Maximum SUV of carcinomas ranged from 7.6 to 27...

  4. Metastatic meningioma: positron emission tomography CT imaging findings.

    LENUS (Irish Health Repository)

    Brennan, C

    2010-12-01

    The imaging findings of a case of metastasing meningioma are described. The case illustrates a number of rare and interesting features. The patient presented with haemoptysis 22 years after the initial resection of an intracranial meningioma. CT demonstrated heterogeneous masses with avid peripheral enhancement without central enhancement. Blood supply to the larger lesion was partially from small feeding vessels from the inferior pulmonary vein. These findings correlate with a previously published case in which there was avid uptake of fluoro-18-deoxyglucose peripherally with lesser uptake centrally. The diagnosis of metastasing meningioma was confirmed on percutaneous lung tissue biopsy.

  5. Ultra-filtration measurement using CT imaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Lu Junfeng [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.2 Beiyitiao Street, Zhongguancun, Haidian District, Beijing, 100190 (China); Lu Wenqiang, E-mail: junfenglu@mail.ipc.ac.c [Graduate University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049 (China)

    2009-02-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  6. CT and MR Imagings of Semicircular Canal Aplasia

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chung Hee; Hong, Hyun Sook; Yi, Beom Ha; Cha, Jang Gyu; Park, Seong Jin; Kim, Dae Ho; Lee, Hae Kyung; Kim, Shi Chan [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2009-07-15

    To evaluate the clinical, CT and MR imaging findings of semicircular canal (SCC) aplasia and to evaluate if a correlation exists between these findings and the associated anomalies or syndromes. This study retrospectively reviewed the CT and MRI findings of five patients with SCC aplasia. The CT and MR findings were analyzed for SCC, direction of facial nerve canal, cochlea, vestibule, oval or round window, middle ear ossicles, and internal auditory canal (IAC). The subjects included three boys and two girls ranging in age from one to 120 months (mean age; 51 months). Four of the subjects had the CHARGE syndrome, and one had the Goldenhar syndrome. Moreover, four subjects had sensorineural hearing loss and one had combined hearing loss. The course of the facial nerve canal was abnormal in all five cases. Moreover, trapped cochlea and dysplastic modiolus were each observed in one case. Four subjects had atresia of the oval window; whereas ankylosis of the ossicles was present in three subjects. IAC stenosis was present in one patient with the CHARGE syndrome. The aberrant course of the facial nerve canal, atresia of the oval window, and abnormal ossicles were frequently associated in patients with SCC aplasia. In addition, the Goldenhar and CHARGE syndromes were also commonly associated syndromes.

  7. Preoperative planning for renal cell carcinoma - benefits of 64-slice CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dighe, Manjiri; Bush Junior, William H. [University of Washington Medical Center, Seattle, WA (United States). Dept. of Radiology]. E-mail: dighe@u.washington.edu; Takayama, Thomas [University of Washington Medical Center, Seattle, WA (United States). Dept. of Surgery

    2007-05-15

    Surgery is the primary form of treatment in localized renal cell carcinoma. Adrenal-sparing nephrectomy, laparoscopic nephrectomy and nephron-sparing partial nephrectomy are growing trends for more limited surgical resection. Accurate preoperative imaging is essential for planning the surgical approach. Multislice CT and MR are regarded as the most efficient modalities for imaging renal neoplasms. Development of faster CT systems like 64-slice CT with improved resolution and capability to achieve isotropic reformats have significantly enhanced the role of CT in imaging of renal neoplasms.This review article describes the present state, technique and benefits of 64-slice CT scanning in preoperative planning for RCC. (author)

  8. CT and MR imaging features in patients with intracranial dolichoectasia

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Kuang Lung; Yu, In Kyu; Yoon, Sook Ja; Yoon, Yong Kyu [Eulji College of Medicine, Eulji Hospital, Seoul (Korea, Republic of)

    2000-02-01

    To describe the CT and MR imaging features in patients with intracranial dolichoectasia. The CT (n=3D21), MR (n=3D20) and MRA (n=3D11) imaging features seen in 28 patients (M:F=3D12:16 aged between 65 and 82 (mean, 65) years) with intracranial dolichoectasia were retrospectively reviewed with regard to involved sites, arterial changes (maximum diameter, wall calcification, high signal intensity in the involved artery, as seen on T1-weighted MR images), infarction, hemorrhagic lesion, compression of brain parenchyma or cranial nerves, hydrocephalus and brain atrophy. Involved sites were classified as either type 1 (involvement of only the posterior circulation), type 2 (only the anterior circulation), or type 3 (both). In order of frequency, involved sites were type 1 (43%), type 3 (36%) and type 2 (22%). Dolichoectasia was more frequently seen in the posterior circulation (79%) than in the anterior (57%). Arterial changes as seen on T1-weighted MR images, included dolichoectasia (mean maximum diameter 7.4 mm in the distal internal carotid artery, and 6.7 mm in the basilar artery), wall calcification (100% in involved arteries) and high signal intensity in involved. Cerebral infarction in the territory of the involved artery was found in all patients, and a moderate degree of infarct was 87%. Hemorrhagic lesions were found in 19 patients (68%); these were either lobar (53%), petechial (37%), or subarachnoid (16%), and three patients showed intracranial aneurysms, including one case of dissecting aneurysm. In 19 patients (68%), lesions were compressed lesions by the dolichoectatic arteries, and were found-in order of descending frequency-in the medulla, pons, thalamus, and cerebellopontine angle cistern. Obstructive hydrocephalus was found in two patients (7%), and 23 (82%) showed a moderate degree of brain atrophy. In patients with intracranial dolichoectasia, moderate degrees of cerebral infarction and brain atrophy in the territory of involved arteries, as well as

  9. Nonrigid Registration of Lung CT Images Based on Tissue Features

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2013-01-01

    Full Text Available Nonrigid image registration is a prerequisite for various medical image process and analysis applications. Much effort has been devoted to thoracic image registration due to breathing motion. Recently, scale-invariant feature transform (SIFT has been used in medical image registration and obtained promising results. However, SIFT is apt to detect blob features. Blobs key points are generally detected in smooth areas which may contain few diagnostic points. In general, diagnostic points used in medical image are often vessel crossing points, vascular endpoints, and tissue boundary points, which provide abundant information about vessels and can reflect the motion of lungs accurately. These points generally have high gradients as opposed to blob key points and can be detected by Harris. In this work, we proposed a hybrid feature detection method which can detect tissue features of lungs effectively based on Harris and SIFT. In addition, a novel method which can remove mismatched landmarks is also proposed. A series of thoracic CT images are tested by using the proposed algorithm, and the quantitative and qualitative evaluations show that our method is statistically significantly better than conventional SIFT method especially in the case of large deformation of lungs during respiration.

  10. Deep convolutional networks for pancreas segmentation in CT imaging

    Science.gov (United States)

    Roth, Holger R.; Farag, Amal; Lu, Le; Turkbey, Evrim B.; Summers, Ronald M.

    2015-03-01

    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to state-of-the-art segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% +/- 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.

  11. Spinal osteoblastoma: CT and MR imaging with pathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, M.I.; Saifuddin, A.; Sherazi, Z. [Department of Radiology, The Royal National Orthopaedic Hospital Trust, Middlesex (United Kingdom); Pringle, J. [Department of Morbid Anatomy, The Royal National Orthopaedic Hospital Trust, Brockley Hill, Stanmore, Middlesex HA7 4LP (United Kingdom); Natali, C. [Department of Spinal Surgery, The Royal National Orthopaedic Hospital Trust, Brockley Hill, Stanmore, Middlesex HA7 4LP (United Kingdom)

    1999-01-01

    Objectives. To illustrate the CT and MRI features of spinal osteoblastomas and correlate the imaging with histological findings. Design. In a retrospective review the CT and MRI features of spinal osteoblastomas with respect to mineralisation, signal intensity (SI), adjacent reactive changes, enhancement following gadolinium-DTPA (5 cases) and adjacent soft tissue masses were compared and correlated with the histological findings including the degree of osteoid formation and matrix mineralisation, vascularity and surrounding reactive changes in bone and soft tissue. Patients. Eleven patients (7 males and 4 females; age range 8-43 years, mean age 19.5 years) with 12 osteoblastomas (1 patient suffered a recurrence) were studied. Results. All lesions showed classical features on CT with varying degrees of matrix mineralisation, whereas MRI identified mineralisation in only eight of 12 cases. MRI showed low signal intensity of the lesion on both T1- and T2-weighted sequences in several cases in the absence of heavy mineralisation. In these cases, histological examination revealed diffuse osteoid production by the tumour. All patients given gadolinium showed enhancement within the tumour on MRI. Reactive bone marrow changes were identified on MRI in 10 cases, and in five of these the changes were at multiple levels. An adjacent soft tissue mass was demonstrated in five cases, but extraosseous tumour was present histologically in only two of these. Conclusions. The MRI appearances of spinal osteoblastomas are varied and show no characteristic features. MRI may also overestimate the extent of the lesion due to extensive reactive changes and adjacent soft tissue masses. CT should continue to be the investigation of choice for the characterisation and local staging of suspected spinal osteoblastomas. (orig.) With 4 figs., 3 tabs., 20 refs.

  12. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dokun; Suh, Tae Suk [Catholic Univ. of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Stanford Univ., Stanford (United States)

    2014-05-15

    The resulting neutron captures in {sup 10}B are used for radiation therapy. The occurrence point of the characteristic 478 keV prompt gamma rays agrees with the neutron capture point. If these prompt gamma rays are detected by external instruments such as a gamma camera or single photon emission computed tomography (SPECT), the therapy region can be monitored during the treatment using images. A feasibility study and analysis of a reconstructed image using many projections (128) were conducted. The optimization of the detection system and a detailed neutron generator simulation were beyond the scope of this study. The possibility of extracting a 3D BNCT-SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The quality of the prompt gamma ray SPECT image obtained from BNCT was evaluated quantitatively using three different boron uptake regions and was shown to depend on the location and size relations. The prospects for obtaining an actual BNCT-SPECT image were also estimated from the quality of the simulated image and the simulation conditions. When multi tumor regions should be treated using the BNCT method, a reasonable model to determine how many useful images can be obtained from SPECT can be provided to the BNCT facilities based on the preceding imaging research. However, because the scope of this research was limited to checking the feasibility of 3D BNCT-SPECT image reconstruction using multiple projections, along with an evaluation of the image, some simulation conditions were taken from previous studies. In the future, a simulation will be conducted that includes optimized conditions for an actual BNCT facility, along with an imaging process for motion correction in BNCT. Although an excessively long simulation time was required to obtain enough events for image reconstruction, the feasibility of acquiring a 3D BNCT-SPECT image using multiple projections was confirmed using a Monte Carlo simulation, and a quantitative image

  13. CT paging arteriography with a multidetector-row CT. Advantages in splanchnic arterial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Seiji [Keio Univ., Tokyo (Japan). School of Medicine

    1999-11-01

    The purpose of this study is to assess the utility of CT paging arteriography with a multidetector-row CT as a replacement for conventional angiography in the evaluation of splanchnic arterial anomalies. Sixty-three patients underwent CT paging arteriography with a multidetector-row CT. In the 56 patients with conventional angiographic correlation, there was only one minor disagreement with CT paging arteriography. In the 7 patients who underwent IVDSA (intra venous digital subtraction angiography), CT paging arteriography defined four hepatic arterial anomalies which could not be depicted by IVDSA. In conclusion, CT paging arteriography provides noninvasive means to identify splanchnic arterial anomalies. (author)

  14. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    DEFF Research Database (Denmark)

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2016-01-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five...

  15. Lung Nodule Detection in CT Images using Neuro Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    M. Usman Akram

    2013-07-01

    Full Text Available Automated lung cancer detection using computer aided diagnosis (CAD is an important area in clinical applications. As the manual nodule detection is very time consuming and costly so computerized systems can be helpful for this purpose. In this paper, we propose a computerized system for lung nodule detection in CT scan images. The automated system consists of two stages i.e. lung segmentation and enhancement, feature extraction and classification. The segmentation process will result in separating lung tissue from rest of the image, and only the lung tissues under examination are considered as candidate regions for detecting malignant nodules in lung portion. A feature vector for possible abnormal regions is calculated and regions are classified using neuro fuzzy classifier. It is a fully automatic system that does not require any manual intervention and experimental results show the validity of our system.

  16. Surface image of herniated disc on three-dimensional CT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung Il; Jeon, Chang Hoon; Kim, Sun Yong; Kim, Ok Hwa; Suh, Jung Ho [Ajou Univ. College of Medicine, Suwon(Korea, Republic of)

    1996-03-01

    To evaluate surface configuration of herniated disc on three-dimensional CT. Three dimensional surface images reconstructed from CT scans(1 mm thick) of 24 surgically confirmed herniated discs in 23 patients were reviewed. Disc surface was classified into peripheral and central zones in contact with consecutive peripheral ring and central endplate. Surface irregularity was categorized into two types(local and general). The incidence, size, and extent of local irregularity were observed. General irregularity incidence and severity ranges in 4 grades, and peripheral width were evaluated. The findings were correlated with discography. Local irregularity compatible with anulus tear in discography was shown in all. It was large(13/24) and mainly peripheral tract extending to disc margin in protrusion(3/5) and sequestration(5/7), and cleft encompassing central zone to disc margin in extrusion(9/12). General irregularity was predominantly grade 3(15/22) and was shown in all except in 2 protrusions. Peripheral width was 0.56 of central radius. Extrusion in herniated disc shows characteristic cleft encompassing central zone to disc margin whereas sequestration or protrusion displays tract extending from peripheral zone to disc margin. Thus, three dimensional surface imaging may aid the diagnosis, follow-up, prediction, and treatment of herniated disc.

  17. High-fidelity artifact correction for cone-beam CT imaging of the brain

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  18. Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality.

    Science.gov (United States)

    O'Connell, Avice; Conover, David L; Zhang, Yan; Seifert, Posy; Logan-Young, Wende; Lin, Chuen-Fu Linda; Sahler, Lawrence; Ning, Ruola

    2010-08-01

    The primary objectives of this pilot study were to evaluate the radiation dose, breast coverage, and image quality of cone-beam breast CT compared with a conventional mammographic examination. Image quality analysis was focused on the concordance of cone-beam breast CT with conventional mammography in terms of mammographic findings. This prospective study was performed from July 2006 through August 2008. Twenty-three women were enrolled who met the inclusion criteria, which were age 40 years or older with final BI-RADS assessment category 1 or 2 lesions on conventional mammograms within the previous 6 months. The breasts were imaged with a flat-panel detector-based cone-beam CT system, and the images were reviewed with a 3D visualization system. Cone-beam breast CT image data sets and the corresponding mammograms were reviewed by three qualified mammographers. The parameters assessed and compared in this pilot study were radiation dose, breast tissue coverage, and image quality, including detectability of masses and calcifications. The mammograms and cone-beam breast CT images were independently reviewed side by side, and the reviewers were not blinded to the other technique. The observed agreement and Cohen's kappa were used to evaluate agreement between the mammographic and cone-beam breast CT findings and interobserver agreement. Each subject responded to a questionnaire on multiple parameters, including comfort of the cone-beam breast CT examination compared with mammography. For a conventional mammographic examination, the average glandular radiation dose ranged from 2.2 to 15 mGy (mean, 6.5 [SD, 2.9] mGy). For cone-beam breast CT, the average glandular dose ranged from 4 to 12.8 mGy (mean, 8.2 [SD, 1.4] mGy). The average glandular dose from cone-beam breast CT was generally within the range of that from conventional mammography. For heterogeneously dense and extremely dense breasts, the difference between the mean dose of conventional mammography and that of

  19. Classification of texture patterns in CT lung imaging

    Science.gov (United States)

    Nuzhnaya, Tatyana; Megalooikonomou, Vasileios; Ling, Haibin; Kohn, Mark; Steiner, Robert

    2011-03-01

    Since several lung diseases can be potentially diagnosed based on the patterns of lung tissue observed in medical images, automated texture classification can be useful in assisting the diagnosis. In this paper, we propose a methodology for discriminating between various types of normal and diseased lung tissue in computed tomography (CT) images that utilizes Vector Quantization (VQ), an image compression technique, to extract discriminative texture features. Rather than focusing on images of the entire lung, we direct our attention to the extraction of local descriptors from individual regions of interest (ROIs) as determined by domain experts. After determining the ROIs, we generate "locally optimal" codebooks representing texture features of each region using the Generalized Lloyd Algorithm. We then utilize the codeword usage frequency of each codebook as a discriminative feature vector for the region it represents. We compare k-nearest neighbor, support vector machine and neural network classification approaches using the normalized histogram intersection as a similarity measure. The classification accuracy reached up to 98% for certain experimental settings, indicating that our approach may potentially assist clinicians in the interpretation of lung images and facilitate the investigation of relationships among structure, texture and function or pathology related to several lung diseases.

  20. Task-based optimization of image reconstruction in breast CT

    Science.gov (United States)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  1. Monte Carlo reference data sets for imaging research: Executive summary of the report of AAPM Research Committee Task Group 195

    NARCIS (Netherlands)

    Sechopoulos, I.; Ali, E.S.; Badal, A.; Badano, A.; Boone, J.M.; Kyprianou, I.S.; Mainegra-Hing, E.; McMillan, K.L.; McNitt-Gray, M.F.; Rogers, D.W.; Samei, E.; Turner, A.C.

    2015-01-01

    The use of Monte Carlo simulations in diagnostic medical imaging research is widespread due to its flexibility and ability to estimate quantities that are challenging to measure empirically. However, any new Monte Carlo simulation code needs to be validated before it can be used reliably. The type

  2. CT-imaging in Acute Ischemic Stroke: Thrombus Characterization and Technique Optimization

    NARCIS (Netherlands)

    Niesten, J.M.

    2014-01-01

    In this thesis two main subjects were discussed. First, histopathologic and CT characteristics of cerebral thrombi were examined. Second, techniques to increase the accuracy and to optimize CT-perfusion (CTP)- and CT-angiography (CTA)-imaging were explored. In part 1 we investigated the relation

  3. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    Energy Technology Data Exchange (ETDEWEB)

    Won Kim, Chang [Interdisciplinary Program of Bioengineering Major Seoul National University College of Engineering, San 56-1, Silim-dong, Gwanak-gu, Seoul 152-742, South Korea and Institute of Radiation Medicine, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Kim, Jong Hyo, E-mail: kimjhyo@snu.ac.kr [Department of Radiology, Institute of Radiation Medicine, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul, 110-744 (Korea, Republic of); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do, 443-270 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 443-270 (Korea, Republic of)

    2014-01-15

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/−3.2% in

  4. Feasibility of low-tube-voltage excretory phase images during CT urography: assessment using a dual-energy CT scanner.

    Science.gov (United States)

    Shinagare, Atul B; Sahni, V Anik; Sadow, Cheryl A; Erturk, Sukru M; Silverman, Stuart G

    2011-11-01

    The purpose of this study is to assess the feasibility of low-tube-voltage images during excretory phase CT urography. In this retrospective study, we examined 70 consecutive CT urograms (35 men and 35 women; mean age, 58.5 years) performed on a dual-energy CT scanner and compared excretory phase images obtained at 80 kVp and 340 mAs with blended images (0.3 × 140 kVp and 80 mAs; and 0.7 × 80 kVp and 340 mAs). Quantitative measurements of urinary system opacification (Hounsfield units), image noise (Hounsfield units), and effective dose (millisieverts) were compared using Student paired t test. Image noise was correlated with patient thickness. Two independent blinded readers qualitatively assessed opacification, image quality (both compared using Wilcoxon test), overall acceptability (compared using McNemar test), and detectability of urinary and extraurinary findings. The 80-kVp images yielded significantly higher opacification of renal pelvis (p excretory phase CT urography is feasible, with improved urinary system opacification, acceptable image quality, and lower radiation dose.

  5. Importance of multidetector CT imaging in multiple trauma; Stellenwert der Multidetektor-CT bei Polytrauma

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmaier, U. [HELIOS Kliniken Muenchen West, HELIOS Klinik Muenchen Perlach, Institut fuer Diagnostische und Interventionelle Radiologie, Muenchen (Germany); Geyer, L.L.; Reiser, M.; Wirth, S. [Klinikum der Ludwig-Maximilians-Universitaet, Institut fuer Klinische Radiologie, Muenchen (Germany); Koerner, M. [Radiologie Muehleninsel, Landshut (Germany)

    2014-09-15

    Diagnostic imaging of complex multiple trauma remains a challenge for any department providing modern emergency radiology (ER) service. An early and comprehensive approach for ER imaging is crucial for a priority-oriented and timely therapy concept with the aim of identifying potentially life-threatening injuries early and initiating appropriate treatment. The basic diagnostic approach still consists of focused ultrasound using focused assessment with sonography for trauma (FAST) and conventional radiography (CR), usually limited to a single supine chest x-ray for triaging patients undergoing immediate operations. Multidetector computed tomography (MDCT) has become established as early whole body CT (WBCT) as the undisputable diagnostic method. The detection rate of injuries by WBCT is outstanding and it improves the probability of survival by 20-25 % compared with all other previous methods. At the same time, the spatial and temporal resolution of MDCT was improved resulting in considerably shortened examination times but WBCT is still associated with a significant radiation exposure, even in the acute single use setting. Using modern scanner and dose reduction technology, including iterative reconstruction, a dose reduction of up to 40 % could be achieved. The substantial number of images in WBCT is another challenge; images must be processed priority-oriented, read and transferred to the picture archiving and communications system (PACS). For rapid diagnosis, volume image reading (VIR) offers additional options to keep the diagnostic process on time. Modern WBCT after multiple trauma is performed early, comprehensively and personalized so that WBCT improves the probability of survival by 20-25 %. (orig.) [German] Die Diagnostik komplexer Mehrfachverletzungen ist eine Herausforderung fuer die moderne radiologische Notfalldiagnostik. Eine umfassend angelegte, fruehe und praezise radiologische Diagnostik ist entscheidend fuer eine prioritaetenorientierte und

  6. CT and MR imaging after imaging-guided thermal ablation of renal neoplasms.

    Science.gov (United States)

    Wile, Geoffrey E; Leyendecker, John R; Krehbiel, Kyle A; Dyer, Raymond B; Zagoria, Ronald J

    2007-01-01

    In recent years, thermal tumor ablation techniques such as percutaneous radiofrequency (RF) ablation and cryoablation have assumed an important role in the management of renal tumors, particularly in patients who may be suboptimal candidates for more invasive surgical techniques. Postablation computed tomography (CT) and magnetic resonance (MR) imaging play an important part in evaluation of the ablation zone, surveillance for residual or recurrent tumor, and identification of procedure-related complications. The appearance of the ablation zone may vary depending on the ablation technique used, initial tumor size, and tumor location and composition. Most ablated tumors demonstrate a gradual decrease in size over time once the acute changes have resolved, although tumor involution is more evident after cryoablation than after RF ablation. Exophytic tumor ablation zones typically have a "bull's-eye" appearance on CT scans and MR images obtained after RF ablation, with a visible mass often persisting in the absence of viable tumor. Residual or recurrent tumor often manifests as a focus of nodular or crescentic enhancement on postablation contrast material-enhanced CT scans and MR images, although a thin peripheral rim of enhancement often persists for several months following cryoablation. Complications following renal tumor ablation are usually minor but may include hemorrhage, ureteral stricture, urine leak, colonic perforation and colonephric fistula, and pneumothorax. As more patients undergo renal ablation procedures, it will become increasingly important that radiologists be able to recognize typical postablation CT and MR imaging findings to prevent confusing them with other pathologic processes. (c) RSNA, 2007.

  7. Image processing based detection of lung cancer on CT scan images

    Science.gov (United States)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  8. Applying Quantitative CT Image Feature Analysis to Predict Response of Ovarian Cancer Patients to Chemotherapy.

    Science.gov (United States)

    Danala, Gopichandh; Thai, Theresa; Gunderson, Camille C; Moxley, Katherine M; Moore, Kathleen; Mannel, Robert S; Liu, Hong; Zheng, Bin; Qiu, Yuchen

    2017-10-01

    The study aimed to investigate the role of applying quantitative image features computed from computed tomography (CT) images for early prediction of tumor response to chemotherapy in the clinical trials for treating ovarian cancer patients. A dataset involving 91 patients was retrospectively assembled. Each patient had two sets of pre- and post-therapy CT images. A computer-aided detection scheme was applied to segment metastatic tumors previously tracked by radiologists on CT images and computed image features. Two initial feature pools were built using image features computed from pre-therapy CT images only and image feature difference computed from both pre- and post-therapy images. A feature selection method was applied to select optimal features, and an equal-weighted fusion method was used to generate a new quantitative imaging marker from each pool to predict 6-month progression-free survival. The prediction accuracy between quantitative imaging markers and the Response Evaluation Criteria in Solid Tumors (RECIST) criteria was also compared. The highest areas under the receiver operating characteristic curve are 0.684 ± 0.056 and 0.771 ± 0.050 when using a single image feature computed from pre-therapy CT images and feature difference computed from pre- and post-therapy CT images, respectively. Using two corresponding fusion-based image markers, the areas under the receiver operating characteristic curve significantly increased to 0.810 ± 0.045 and 0.829 ± 0.043 (P imaging markers and RECIST, respectively. This study demonstrated the feasibility of predicting patients' response to chemotherapy using quantitative imaging markers computed from pre-therapy CT images. However, using image feature difference computed between pre- and post-therapy CT images yielded higher prediction accuracy. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Three-dimensional segmentation of bone structures in CT images

    Science.gov (United States)

    Boehm, Guenther; Knoll, Christian J.; Grau Colomer, Vincente; Alcaniz-Raya, Mariano L.; Albalat, Salvador E.

    1999-05-01

    This work is concerned with the implementation of a fully 3D-consistent, automatic segmentation of bone structures in CT images. The morphological watersheds algorithm has been chosen as the base of the low-level segmentation. The over- segmentation, a phenomenon normally involved with this transformation, has been sorted out successfully by inserting modifying modules that act already within the algorithm. When dealing with a maxillofacial image, this approach also includes the possibility to provide two different divisions of the image: a fine-grained tessellation geared to the following high-level segmentation and a more coarse-grained one for the segmentation of the teeth. In the knowledge-based high-level segmentation, probabilistic considerations make use of specific properties of the 3D low-level regions to find the most probable tissue for each region. Low-level regions that cannot be classified with the necessary certainty are passed to a second stage, where--embedded in their respective environment--they are compared with structural patterns deduced from anatomical knowledge. The tooth segmentation takes the coarse-grained tessellation as its starting point. The few regions making up each tooth are grouped to 3D envelopes--one envelope per tooth. Matched filtering detects the bases of these envelopes. After a refinement they are fitted into the fine- grained, high-level segmented image.

  10. Iterative Image Reconstruction for Limited-Angle CT Using Optimized Initial Image

    Directory of Open Access Journals (Sweden)

    Jingyu Guo

    2016-01-01

    Full Text Available Limited-angle computed tomography (CT has great impact in some clinical applications. Existing iterative reconstruction algorithms could not reconstruct high-quality images, leading to severe artifacts nearby edges. Optimal selection of initial image would influence the iterative reconstruction performance but has not been studied deeply yet. In this work, we proposed to generate optimized initial image followed by total variation (TV based iterative reconstruction considering the feature of image symmetry. The simulated data and real data reconstruction results indicate that the proposed method effectively removes the artifacts nearby edges.

  11. Development of a guideline on reading CT images of malignant pleural mesothelioma and selection of the reference CT films.

    Science.gov (United States)

    Zhou, Huashi; Tamura, Taro; Kusaka, Yukinori; Suganuma, Narufumi; Subhannachart, Ponglada; Vijitsanguan, Chomphunut; Noisiri, Weeraya; Hering, Kurt G; Akira, Masanori; Itoh, Harumi; Arakawa, Hiroaki; Ishikawa, Yuichi; Kumagai, Shinji; Kurumatani, Norio

    2012-12-01

    International experts developed a guideline on reading CT images of malignant pleural mesothelioma for radiologists and physicians. It is intended that it act as a supplement to the current International Classification of HRCT for Occupational and Environmental Respiratory Diseases. The research literatures on mesothelioma CT features were systematically reviewed. Ten mesothelioma CT features were adopted into the guideline prepared according to experts' opinion. The terminology of mesothelioma CT features and mesothelioma probability were agreed by consensus of experts. The CT reference films for each mesothelioma feature were selected based on agreement by experts from 22 definite mesothelioma cases confirmed pathologically and immunohistochemically. To support the validity of the mesothelioma probability, 4 experts' readings of CT films from 57 cases with or without mesothelioma were analyzed by kappa statistics between the experts; sensitivity and specificity for mesothelioma were also assessed. The mesothelioma CT Guideline was developed, providing the terminology of CT features and the mesothelioma probability, the judgement of severity, the distribution of mesothelioma, and the revised CT reading sheet including mesothelioma items. The CT reference films with ten mesothelioma typical features were selected. The average linearly and quadratically weighted kappa of the agreement on the 4-point scale mesothelioma probability were 0.58 and 0.71, respectively. The average sensitivity and specificity for mesothelioma were 93.2% and 65.6%, respectively. The evidence-based mesothelioma CT Guideline developed may serve as a good educational tool to facilitate physicians in recognising mesothelioma and improve their proficiency in diagnosis of mesothelioma. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Development of a guideline on reading CT images of malignant pleural mesothelioma and selection of the reference CT films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huashi, E-mail: zhouhua@u-fukui.ac.jp [Department of Environmental Health, School of Medicine, University of Fukui, 23-3 Shimoaitsuki, Matsuoka, Eihezi-cho, Fukui Prefecture 910-1193 (Japan); Tamura, Taro, E-mail: tarou@u-fukui.ac.jp [Department of Environmental Health, School of Medicine, University of Fukui, 23-3 Shimoaitsuki, Matsuoka, Eihezi-cho, Fukui Prefecture 910-1193 (Japan); Kusaka, Yukinori, E-mail: kusakayk@gmail.com [Department of Environmental Health, School of Medicine, University of Fukui, 23-3 Shimoaitsuki, Matsuoka, Eihezi-cho, Fukui Prefecture 910-1193 (Japan); Suganuma, Narufumi, E-mail: nsuganuma@kochi-u.ac.jp [Department of Environmental Medicine, Kochi University School of Medicine (Japan); Subhannachart, Ponglada, E-mail: pongladas@gmail.com [Central Chest Disease Institute of Thailand, 39 Moo 9, Tiwanon Road, Muang Nonthaburi 11000 (Thailand); Vijitsanguan, Chomphunut, E-mail: Chompoo_vj@yahoo.com [Central Chest Disease Institute of Thailand, 39 Moo 9, Tiwanon Road, Muang Nonthaburi 11000 (Thailand); Noisiri, Weeraya, E-mail: weeraya_tat@yahoo.com [Central Chest Disease Institute of Thailand, 39 Moo 9, Tiwanon Road, Muang Nonthaburi 11000 (Thailand); Hering, Kurt G., E-mail: k.g.hering@t-online.de [Department of Diagnostic Radiology, Radiooncology and Nuclear Medicine, Radiological Clinic, Miner' s Hospital, Radiologische Klinik, Lansppaschaftskranhaus Dortmund, Wieckesweg 27 44309, Dortmund (Germany); Akira, Masanori, E-mail: akira@kch.hosp.go.jp [Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai, Osaka 591-8555 (Japan); Itoh, Harumi, E-mail: hitoh@fmsrsa.fukui-med.ac.jp [Department of Environmental Health, School of Medicine, University of Fukui, 23-3 Shimoaitsuki, Matsuoka, Eihezi-cho, Fukui Prefecture 910-1193 (Japan); Department of Radiology, School of Medicine, University of Fukui, 23-3 Shimoaitsuki Matsuoka, Eiheizi-cho, Fukui Prefecture 910-1193 (Japan); and others

    2012-12-15

    Purpose: International experts developed a guideline on reading CT images of malignant pleural mesothelioma for radiologists and physicians. It is intended that it act as a supplement to the current International Classification of HRCT for Occupational and Environmental Respiratory Diseases. Methods: The research literatures on mesothelioma CT features were systematically reviewed. Ten mesothelioma CT features were adopted into the guideline prepared according to experts’ opinion. The terminology of mesothelioma CT features and mesothelioma probability were agreed by consensus of experts. The CT reference films for each mesothelioma feature were selected based on agreement by experts from 22 definite mesothelioma cases confirmed pathologically and immunohistochemically. To support the validity of the mesothelioma probability, 4 experts’ readings of CT films from 57 cases with or without mesothelioma were analyzed by kappa statistics between the experts; sensitivity and specificity for mesothelioma were also assessed. Results: The mesothelioma CT Guideline was developed, providing the terminology of CT features and the mesothelioma probability, the judgement of severity, the distribution of mesothelioma, and the revised CT reading sheet including mesothelioma items. The CT reference films with ten mesothelioma typical features were selected. The average linearly and quadratically weighted kappa of the agreement on the 4-point scale mesothelioma probability were 0.58 and 0.71, respectively. The average sensitivity and specificity for mesothelioma were 93.2% and 65.6%, respectively. Conclusion: The evidence-based mesothelioma CT Guideline developed may serve as a good educational tool to facilitate physicians in recognising mesothelioma and improve their proficiency in diagnosis of mesothelioma.

  13. Monte Carlo Radiative Transfer Modeling of Lightning Observed in Galileo Images of Jupiter

    Science.gov (United States)

    Dyudine, U. A.; Ingersoll, Andrew P.

    2002-01-01

    We study lightning on Jupiter and the clouds illuminated by the lightning using images taken by the Galileo orbiter. The Galileo images have a resolution of 25 km/pixel and axe able to resolve the shape of the single lightning spots in the images, which have full widths at half the maximum intensity in the range of 90-160 km. We compare the measured lightning flash images with simulated images produced by our ED Monte Carlo light-scattering model. The model calculates Monte Carlo scattering of photons in a ED opacity distribution. During each scattering event, light is partially absorbed. The new direction of the photon after scattering is chosen according to a Henyey-Greenstein phase function. An image from each direction is produced by accumulating photons emerging from the cloud in a small range (bins) of emission angles. Lightning bolts are modeled either as points or vertical lines. Our results suggest that some of the observed scattering patterns axe produced in a 3-D cloud rather than in a plane-parallel cloud layer. Lightning is estimated to occur at least as deep as the bottom of the expected water cloud. For the six cases studied, we find that the clouds above the lightning are optically thick (tau > 5). Jovian flashes are more regular and circular than the largest terrestrial flashes observed from space. On Jupiter there is nothing equivalent to the 30-40-km horizontal flashes which axe seen on Earth.

  14. Low dose CT image restoration using a database of image patches

    Science.gov (United States)

    Ha, Sungsoo; Mueller, Klaus

    2015-01-01

    Reducing the radiation dose in CT imaging has become an active research topic and many solutions have been proposed to remove the significant noise and streak artifacts in the reconstructed images. Most of these methods operate within the domain of the image that is subject to restoration. This, however, poses limitations on the extent of filtering possible. We advocate to take into consideration the vast body of external knowledge that exists in the domain of already acquired medical CT images, since after all, this is what radiologists do when they examine these low quality images. We can incorporate this knowledge by creating a database of prior scans, either of the same patient or a diverse corpus of different patients, to assist in the restoration process. Our paper follows up on our previous work that used a database of images. Using images, however, is challenging since it requires tedious and error prone registration and alignment. Our new method eliminates these problems by storing a diverse set of small image patches in conjunction with a localized similarity matching scheme. We also empirically show that it is sufficient to store these patches without anatomical tags since their statistics are sufficiently strong to yield good similarity matches from the database and as a direct effect, produce image restorations of high quality. A final experiment demonstrates that our global database approach can recover image features that are difficult to preserve with conventional denoising approaches.

  15. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: Initial patient experience

    Energy Technology Data Exchange (ETDEWEB)

    Apfaltrer, Paul, E-mail: paul.apfaltrer@medma.uni-heidelberg.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoendube, Harald, E-mail: harald.schoendube@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Allmendinger, Thomas, E-mail: thomas.allmendinger@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Tricarico, Francesco, E-mail: francescotricarico82@gmail.com [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Department of Bioimaging and Radiological Sciences, Catholic University of the Sacred Heart, “A. Gemelli” Hospital, Largo A. Gemelli 8, Rome (Italy); Schindler, Andreas, E-mail: andreas.schindler@campus.lmu.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Vogt, Sebastian, E-mail: sebastian.vogt@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Sunnegårdh, Johan, E-mail: johan.sunnegardh@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); and others

    2013-02-15

    Objective: To evaluate the effect of a temporal resolution improvement method (TRIM) for cardiac CT on diagnostic image quality for coronary artery assessment. Materials and methods: The TRIM-algorithm employs an iterative approach to reconstruct images from less than 180° of projections and uses a histogram constraint to prevent the occurrence of limited-angle artifacts. This algorithm was applied in 11 obese patients (7 men, 67.2 ± 9.8 years) who had undergone second generation dual-source cardiac CT with 120 kV, 175–426 mAs, and 500 ms gantry rotation. All data were reconstructed with a temporal resolution of 250 ms using traditional filtered-back projection (FBP) and of 200 ms using the TRIM-algorithm. Contrast attenuation and contrast-to-noise-ratio (CNR) were measured in the ascending aorta. The presence and severity of coronary motion artifacts was rated on a 4-point Likert scale. Results: All scans were considered of diagnostic quality. Mean BMI was 36 ± 3.6 kg/m{sup 2}. Average heart rate was 60 ± 9 bpm. Mean effective dose was 13.5 ± 4.6 mSv. When comparing FBP- and TRIM reconstructed series, the attenuation within the ascending aorta (392 ± 70.7 vs. 396.8 ± 70.1 HU, p > 0.05) and CNR (13.2 ± 3.2 vs. 11.7 ± 3.1, p > 0.05) were not significantly different. A total of 110 coronary segments were evaluated. All studies were deemed diagnostic; however, there was a significant (p < 0.05) difference in the severity score distribution of coronary motion artifacts between FBP (median = 2.5) and TRIM (median = 2.0) reconstructions. Conclusion: The algorithm evaluated here delivers diagnostic imaging quality of the coronary arteries despite 500 ms gantry rotation. Possible applications include improvement of cardiac imaging on slower gantry rotation systems or mitigation of the trade-off between temporal resolution and CNR in obese patients.

  16. A First Report on [18F]FPRGD2 PET/CT Imaging in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Nadia Withofs

    2017-01-01

    Full Text Available An observational study was set up to assess the feasibility of [F18]FPRGD2 PET/CT for imaging patients with multiple myeloma (MM and to compare its detection rate with low dose CT alone and combined [F18]NaF/[F18]FDG PET/CT images. Four patients (2 newly diagnosed patients and 2 with relapsed MM were included and underwent whole-body PET/CT after injection of [F18]FPRGD2. The obtained images were compared with results of low dose CT and already available results of a combined [F18]NaF/[F18]FDG PET/CT. In total, 81 focal lesions (FLs were detected with PET/CT and an underlying bone destruction or fracture was seen in 72 (89% or 8 (10% FLs, respectively. Fewer FLs (54% were detected by [F18]FPRGD2 PET/CT compared to low dose CT (98% or [F18]NaF/[F18]FDG PET/CT (70% and all FLs detected with [F18]FPRGD2 PET were associated with an underlying bone lesion. In one newly diagnosed patient, more [F18]FPRGD2 positive lesions were seen than [F18]NaF/[F18]FDG positive lesions. This study suggests that [F18]FPRGD2 PET/CT might be less useful for the detection of myeloma lesions in patients with advanced disease as all FLs with [F18]FPRGD2 uptake were already detected with CT alone.

  17. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner

    NARCIS (Netherlands)

    Arabi, Hossein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    Objective: The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. MethodsA realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To

  18. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Himuro, Kazuhiko; Yamashita, Yasuo; Komiya, Isao [Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Shingo [Department of Clinical Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually

  19. An evaluation on CT image acquisition method for medical VR applications

    Science.gov (United States)

    Jang, Seong-wook; Ko, Junho; Yoo, Yon-sik; Kim, Yoonsang

    2017-02-01

    Recent medical virtual reality (VR) applications to minimize re-operations are being studied for improvements in surgical efficiency and reduction of operation error. The CT image acquisition method considering three-dimensional (3D) modeling for medical VR applications is important, because the realistic model is required for the actual human organ. However, the research for medical VR applications has focused on 3D modeling techniques and utilized 3D models. In addition, research on a CT image acquisition method considering 3D modeling has never been reported. The conventional CT image acquisition method involves scanning a limited area of the lesion for the diagnosis of doctors once or twice. However, the medical VR application is required to acquire the CT image considering patients' various postures and a wider area than the lesion. A wider area than the lesion is required because of the necessary process of comparing bilateral sides for dyskinesia diagnosis of the shoulder, pelvis, and leg. Moreover, patients' various postures are required due to the different effects on the musculoskeletal system. Therefore, in this paper, we perform a comparative experiment on the acquired CT images considering image area (unilateral/bilateral) and patients' postures (neutral/abducted). CT images are acquired from 10 patients for the experiments, and the acquired CT images are evaluated based on the length per pixel and the morphological deviation. Finally, by comparing the experiment results, we evaluate the CT image acquisition method for medical VR applications.

  20. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

    Science.gov (United States)

    Umehara, Kensuke; Ota, Junko; Ishida, Takayuki

    2017-10-18

    In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

  1. Small Nodules Localization on CT Images of Lungs

    Science.gov (United States)

    Snezhko, E. V.; Kharuzhyk, S. A.; Tuzikov, A. V.; Kovalev, V. A.

    2017-05-01

    According to the World Health Organization (WHO) lung cancer remains the leading cause of death of men among all malignant tumors [1, 2]. One of the reasons of such a statistics is the fact that the lung cancer is hardly diagnosed on the yearly stages when it is almost asymptomatic. The purpose of this paper is to present a Computer-Aided Diagnosis (CAD) software developed for assistance of early detection of nodules in CT lung images including solitary pulmonary nodules (SPN) as well as multiple nodules. The efficiency of nodule localization was intended to be as high as the level of the best practice. The software developed supports several functions including lungs segmentation, selection of nodule candidates and nodule candidates filtering.

  2. Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.

    Directory of Open Access Journals (Sweden)

    Daniela Muenzel

    Full Text Available OBJECTIVE: To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI by using motion compensation and a spatio-temporal filter. METHODS: Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT. Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved. Three datasets for each patient were generated: (i original data (ii motion compensated data and (iii motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. RESULTS: The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. CONCLUSION: The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.

  3. CT, MRI, and FDG-PET/CT imaging findings of abdominopelvic desmoplastic small round cell tumors: Correlation with histopathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weidong, E-mail: dongw.z@163.com [State Key Laboratory of Oncology in South China, 651 Dongfengdong Road, Guangzhou, Guangdong 510060 (China) and Department of Radiology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 (China); Li Chuanxing, E-mail: lichuanh@mail.sysu.edu.cn [State Key Laboratory of Oncology in South China, 651 Dongfengdong Road, Guangzhou, Guangdong 510060 (China); Department of Radiology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 (China); Liu Qingyu, E-mail: liu.qingyu@163.com [Department of Radiology, No. 2 Affiliated Hospital, 107 Yanjiangxi Road, Sun Yat-sen University, Guangzhou, Guangdong 510120 (China); Hu Yingying, E-mail: yingyinghu1981@163.com [State Key Laboratory of Oncology in South China, 651 Dongfengdong Road, Guangzhou, Guangdong 510060 (China) and Department of Radiology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 (China); Cao Yun, E-mail: caoyun@mail.sysu.edu.cn [State Key Laboratory of Oncology in South China, 651 Dongfengdong Road, Guangzhou, Guangdong 510060 (China); Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 (China); Huang Jinhua, E-mail: drhuangjh@163.com [State Key Laboratory of Oncology in South China, 651 Dongfengdong Road, Guangzhou, Guangdong 510060 (China) and Department of Radiology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 (China)

    2011-11-15

    Objective: To analyze computed tomography (CT), magnetic resonance imaging (MRI), and fluorodeoxyglucose-positron emission tomography (FDG-PET)/CT imaging features of abdominopelvic desmoplastic small round cell tumor (DSRCT) and to improve the diagnostic efficacy of these techniques for the detection of such tumor. Methods: We retrospectively analyzed 7 cases of abdominopelvic DSRCT confirmed by histopathologic analysis. Among the 7 patients, 5 patients had undergone CT scanning, 2 of which were also examined with FDG-PET/CT imaging, and 2 had undergone MRI. Unenhanced and contrast-enhanced examinations were performed in all patients, and 2 patients had also undergone dynamic CT contrast-enhanced examinations. Image characteristics, such as shape, size, number, edge, attenuation, and intensity of each lesion before and after contrast enhancement were analyzed and compared with the pathomorphology of the tumors. Results: Multiple large masses in the abdominopelvis were detected in 6 cases, and a large mass in the pelvis was detected in 1 case. Six cases showed largest mass in pelvis, and 1 case in mesentery. None of the masses had a definite organ origin. CT showed soft tissue masses with patchy foci of hypodense areas. MR T1-weighted images revealed lesions with mild hypointense areas and patchy hypointense areas in 2 cases and lesions with patchy hyperintense areas in 1 case. T2-weighted images showed lesions with mixed isointense and hyperintense areas in 1 case and lesions with mixed hypointense, isointense, and hyperintense areas in another. Contrast-enhanced CT and T1-weighted images showed mildly heterogeneous enhancement of the lesions. Other associated findings included peritoneal seeding (n = 3), peritoneal effusions (n = 3), hepatic metastasis (n = 2), bone metastasis (n = 1), and mesenteric and retroperitoneal lymphadenopathy (n = 4). FDG-PET/CT showed multiple nodular foci of increased metabolic activity in the abdominopelvic masses, in the hepatic and

  4. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  5. Technical Note: Correction for the effect of breathing variations in CT pulmonary ventilation imaging.

    Science.gov (United States)

    Yamamoto, Tokihiro; Kabus, Sven

    2017-10-26

    The accuracy and precision of computed tomography (CT) pulmonary ventilation imaging with conventional CT scanners are limited by breathing variations. We propose a method to correct for the effect of breathing variations in CT ventilation imaging based on external respiratory signals acquired throughout a scan. The proposed method is based on: (a) calculating voxel-by-voxel abdominal surface motion ranges using four-dimensional (4D) CT image datasets spatiotemporally correlated with external respiratory monitor data, and (b) applying the correction factor, which is defined as the ratio of the overall mean of the abdominal surface motion range in the lungs to that of each voxel, to the CT ventilation value. The performance of the proposed method was investigated by comparing voxel-wise correlations of the uncorrected and corrected CT ventilation images with single-photon emission CT (SPECT) ventilation images as a ground truth for nine patients. CT ventilation images were calculated by deformable image registration of the 4D-CT image datasets, followed by calculation of regional volume changes. A Steiger's Z-test was used to determine the statistical significance of the difference between the correlations for the uncorrected and corrected CT ventilation images. The proposed correction method resulted in significant increases (P ventilation in three patients, trends toward significant increase (P: 0.13-0.18) in two patients, no significant differences in three patients, and a significantly decreased correlation in one patient. The average standard deviation of the abdominal surface motion range in three patients showing significant increases was 0.27 (range 0.10-0.37), which was greater than 0.17 (range 0.07-0.38) in the other six patients. The proposed method to correct for the effect of breathing variations could be readily implemented and has the potential to improve the accuracy of CT ventilation imaging as demonstrated in a nine-patient study. © 2017 American

  6. CT imaging of splenic sequestration in sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, S.; Piomelli, S. [Columbia Univ., New York, NY (United States). Dept. of Pediatrics; Ruzal-Shapiro, C.; Berdon, W.E. [Columbia Univ., New York, NY (United States). Div. of Pediatric Radiology

    2000-12-01

    Pooling of blood in the spleen is a frequent occurrence in children with sickle cell diseases, particularly in the first few years of life, resulting in what is termed ''splenic sequestration crisis.'' The spectrum of severity in this syndrome is wide, ranging from mild splenomegaly to massive enlargement, circulatory collapse, and even death. The diagnosis is usually clinical, based on the enlargement of the spleen with a drop in hemoglobin level by >2 g/dl, and it is rare that imaging studies are ordered. However, in the patient who presents to the emergency department with non-specific findings of an acute abdomen, it is important to recognize the appearance of sequestration on imaging studies. We studied seven patients utilizing contrast-enhanced CT scans and found two distinct patterns - multiple, peripheral, non-enhancing low-density areas or large, diffuse areas of low density in the majority of the splenic tissue. Although radiological imaging is not always necessary to diagnose splenic sequestration, in those situations where this diagnosis is not immediately obvious, it makes an important clarifying contribution. (orig.)

  7. Accessory cardiac bronchus: Proposed imaging classification on multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Min; Kim, Young Tong; Han, Jong Kyu; Jou, Sung Shick [Dept. of Radiology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan (Korea, Republic of)

    2016-02-15

    To propose the classification of accessory cardiac bronchus (ACB) based on imaging using multidetector computed tomography (MDCT), and evaluate follow-up changes of ACB. This study included 58 patients diagnosed as ACB since 9 years, using MDCT. We analyzed the types, division locations and division directions of ACB, and also evaluated changes on follow-up. We identified two main types of ACB: blind-end (51.7%) and lobule (48.3%). The blind-end ACB was further classified into three subtypes: blunt (70%), pointy (23.3%) and saccular (6.7%). The lobule ACB was also further classified into three subtypes: complete (46.4%), incomplete (28.6%) and rudimentary (25%). Division location to the upper half bronchus intermedius (79.3%) and medial direction (60.3%) were the most common in all patients. The difference in division direction was statistically significant between the blind-end and lobule types (p = 0.019). Peribronchial soft tissue was found in five cases. One calcification case was identified in the lobule type. During follow-up, ACB had disappeared in two cases of the blind-end type and in one case of the rudimentary subtype. The proposed classification of ACB based on imaging, and the follow-up CT, helped us to understand the various imaging features of ACB.

  8. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  9. SU-F-I-45: An Automated Technique to Measure Image Contrast in Clinical CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J; Abadi, E; Meng, B; Samei, E [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: To develop and validate an automated technique for measuring image contrast in chest computed tomography (CT) exams. Methods: An automated computer algorithm was developed to measure the distribution of Hounsfield units (HUs) inside four major organs: the lungs, liver, aorta, and bones. These organs were first segmented or identified using computer vision and image processing techniques. Regions of interest (ROIs) were automatically placed inside the lungs, liver, and aorta and histograms of the HUs inside the ROIs were constructed. The mean and standard deviation of each histogram were computed for each CT dataset. Comparison of the mean and standard deviation of the HUs in the different organs provides different contrast values. The ROI for the bones is simply the segmentation mask of the bones. Since the histogram for bones does not follow a Gaussian distribution, the 25th and 75th percentile were computed instead of the mean. The sensitivity and accuracy of the algorithm was investigated by comparing the automated measurements with manual measurements. Fifteen contrast enhanced and fifteen non-contrast enhanced chest CT clinical datasets were examined in the validation procedure. Results: The algorithm successfully measured the histograms of the four organs in both contrast and non-contrast enhanced chest CT exams. The automated measurements were in agreement with manual measurements. The algorithm has sufficient sensitivity as indicated by the near unity slope of the automated versus manual measurement plots. Furthermore, the algorithm has sufficient accuracy as indicated by the high coefficient of determination, R2, values ranging from 0.879 to 0.998. Conclusion: Patient-specific image contrast can be measured from clinical datasets. The algorithm can be run on both contrast enhanced and non-enhanced clinical datasets. The method can be applied to automatically assess the contrast characteristics of clinical chest CT images and quantify dependencies

  10. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rolison, L; Samant, S; Baciak, J; Jordan, K [University of Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  11. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features.

    Science.gov (United States)

    Choi, Jin-Young; Lee, Jeong-Min; Sirlin, Claude B

    2014-10-01

    Computed tomography (CT) and magnetic resonance (MR) imaging play critical roles in the diagnosis and staging of hepatocellular carcinoma (HCC). The second article of this two-part review discusses basic concepts of diagnosis and staging, reviews the diagnostic performance of CT and MR imaging with extracellular contrast agents and of MR imaging with hepatobiliary contrast agents, and examines in depth the major and ancillary imaging features used in the diagnosis and characterization of HCC. © RSNA, 2014.

  12. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary?

    Science.gov (United States)

    Naswa, Niraj; Sharma, Punit; Gupta, Santosh Kumar; Karunanithi, Sellam; Reddy, Rama Mohan; Patnecha, Manish; Lata, Sneh; Kumar, Rakesh; Malhotra, Arun; Bal, Chandrasekhar

    2014-01-01

    This study aimed to compare the diagnostic performance of Ga-DOTANOC PET/CT with F-FDG PET/CT in the patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Data of 51 patients with definite histological diagnosis of GEP-NET who underwent both Ga-DOTA-NOC PET-CT and F-FDG PET-CT within a span of 15 days were selected for this retrospective analysis. Sensitivity, specificity, and predictive values were calculated for Ga-DOTA-NOC PET-CT and F-FDG PET-CT, and results were compared both on patientwise and regionwise analysis. Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT on patientwise analysis (P NOC PET-CT is superior to F-FDG PET-CT only for lymph node metastases (P NOC PET-CT detected more liver and skeletal lesions compared with F-FDG PET-CT, the difference was not statistically significant. In addition, the results of combined imaging helped in selecting candidates who would undergo the appropriate mode of treatment, whether octreotide therapy or conventional chemotherapy Ga-DOTA-NOC PET-CT seems to be superior to F-FDG PET-CT for imaging GEP-NETs. However, their role seems to be complementary because combination of Ga-DOTA-NOC PET-CT and F-FDG PET-CT in such patients helps demonstrate the total disease burden and segregate them to proper therapeutic groups.

  13. Automatic kidney segmentation in CT images based on multi-atlas image registration.

    Science.gov (United States)

    Yang, Guanyu; Gu, Jinjin; Chen, Yang; Liu, Wangyan; Tang, Lijun; Shu, Huazhong; Toumoulin, Christine

    2014-01-01

    Kidney segmentation is an important step for computer-aided diagnosis or treatment in urology. In this paper, we present an automatic method based on multi-atlas image registration for kidney segmentation. The method mainly relies on a two-step framework to obtain coarse-to-fine segmentation results. In the first step, down-sampled patient image is registered with a set of low-resolution atlas images. A coarse kidney segmentation result is generated to locate the left and right kidneys. In the second step, the left and right kidneys are cropped from original images and aligned with another set of high-resolution atlas images to obtain the final results respectively. Segmentation results from 14 CT angiographic (CTA) images show that our proposed method can segment the kidneys with a high accuracy. The average Dice similarity coefficient and surface-to-surface distance between segmentation results and reference standard are 0.952 and 0.913mm. Furthermore, the kidney segmentation in CT urography (CTU) and CTA images of 12 patients were performed to show the feasibility of our method in CTU images.

  14. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/CT imaging

    NARCIS (Netherlands)

    Abdoli, Mehrsima; Dierckx, Rudi A. J. O.; Zaidi, Habib

    Metallic implants are known to generate bright and dark streaking artifacts in x-ray computed tomography (CT) images, which in turn propagate to corresponding functional positron emission tomography (PET) images during the CT-based attenuation correction procedure commonly used on hybrid clinical

  15. Monte Carlo modeling of cavity imaging in pure iron using back-scatter electron scanning microscopy

    Science.gov (United States)

    Yan, Qiang; Gigax, Jonathan; Chen, Di; Garner, F. A.; Shao, Lin

    2016-11-01

    Backscattered electrons (BSE) in a scanning electron microscope (SEM) can produce images of subsurface cavity distributions as a nondestructive characterization technique. Monte Carlo simulations were performed to understand the mechanism of void imaging and to identify key parameters in optimizing void resolution. The modeling explores an iron target of different thicknesses, electron beams of different energies, beam sizes, and scan pitch, evaluated for voids of different sizes and depths below the surface. The results show that the void image contrast is primarily caused by discontinuity of energy spectra of backscattered electrons, due to increased outward path lengths for those electrons which penetrate voids and are backscattered at deeper depths. Size resolution of voids at specific depths, and maximum detection depth of specific voids sizes are derived as a function of electron beam energy. The results are important for image optimization and data extraction.

  16. Accuracy of 3D volumetric image registration based on CT, MR and PET/CT phantom experiments.

    Science.gov (United States)

    Li, Guang; Xie, Huchen; Ning, Holly; Citrin, Deborah; Capala, Jacek; Maass-Moreno, Roberto; Guion, Peter; Arora, Barbara; Coleman, Norman; Camphausen, Kevin; Miller, Robert W

    2008-07-09

    Registration is critical for image-based treatment planning and image-guided treatment delivery. Although automatic registration is available, manual, visual-based image fusion using three orthogonal planar views (3P) is always employed clinically to verify and adjust an automatic registration result. However, the 3P fusion can be time consuming, observer dependent, as well as prone to errors, owing to the incomplete 3-dimensional (3D) volumetric image representations. It is also limited to single-pixel precision (the screen resolution). The 3D volumetric image registration (3DVIR) technique was developed to overcome these shortcomings. This technique introduces a 4th dimension in the registration criteria beyond the image volume, offering both visual and quantitative correlation of corresponding anatomic landmarks within the two registration images, facilitating a volumetric image alignment, and minimizing potential registration errors. The 3DVIR combines image classification in real-time to select and visualize a reliable anatomic landmark, rather than using all voxels for alignment. To determine the detection limit of the visual and quantitative 3DVIR criteria, slightly misaligned images were simulated and presented to eight clinical personnel for interpretation. Both of the criteria produce a detection limit of 0.1 mm and 0.1 degree. To determine the accuracy of the 3DVIR method, three imaging modalities (CT, MR and PET/CT) were used to acquire multiple phantom images with known spatial shifts. Lateral shifts were applied to these phantoms with displacement intervals of 5.0+/-0.1 mm. The accuracy of the 3DVIR technique was determined by comparing the image shifts determined through registration to the physical shifts made experimentally. The registration accuracy, together with precision, was found to be: 0.02+/-0.09 mm for CT/CT images, 0.03+/-0.07 mm for MR/MR images, and 0.03+/-0.35 mm for PET/CT images. This accuracy is consistent with the detection limit

  17. Pinhole X-ray Fluorescence Imaging of Gadolinium Nanoparticles: A Preliminary Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seong Moon; Sung, Won Mo; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    X-ray fluorescence imaging is a modality for the element-specific imaging of a subject through analysis of characteristic x-rays produced by exploiting the interaction of high atomic number elements and incoming x-rays. Previous studies have utilized a polychromatic x-ray source to investigate the production of in vivo x-ray fluorescence images for the assessment of concentrations and locations of gold nanoparticles. However, previous efforts have so far been unable to detect low concentrations, such as 0.001% gold by weight, which is an expected concentration accumulated in tumors. We examined the feasibility of a monochromatic synchrotron x-rays implementation of pinhole x-ray fluorescence imaging by Monte Carlo simulations using MCNP5. In the current study, gadolinium (Gd) nanoparticles, which have been widely used as a contrast agent in magnetic resonance imaging and also as a dose enhancer in radiation therapy, were chosen for tumor targeting. Since a monochromatic x-ray source is used, the increased x-ray fluorescence signals allow the detection of low concentrations of Gd. Two different monochromatic x-ray beam energies, 50.5 keV near the Kedge energy (i.e., 50.207 keV) of Gd and 55 keV, were compared by their respective imaging results. Using Monte Carlo simulations the feasibility of imaging low concentrations of Gd nanoparticles (e.g., 0.001 wt%) with x-ray fluorescence using monochromatic synchrotron x-rays of two different energies was shown. In the case of imaging a single Gd column inserted in the center of a water phantom, the fluorescence signals from 0.05 wt% and 0.1 wt% Gd columns irradiated with a 50.5 keV photon beam were higher than those irradiated with 55 keV. Below 0.05 wt% region no significant differences were found.

  18. PET/CT and MRI in the imaging assessment of cervical cancer.

    Science.gov (United States)

    Kusmirek, Joanna; Robbins, Jessica; Allen, Hailey; Barroilhet, Lisa; Anderson, Bethany; Sadowski, Elizabeth A

    2015-10-01

    Imaging plays a central role in the evaluation of patients with cervical cancer and helps guide treatment decisions. The purpose of this pictorial review is to describe magnetic resonance (MR) imaging and positron emission tomography (PET)/computed tomography (CT) assessment of cervical cancer, including indications for imaging, important findings that may result in management change, as well as limitations of both modalities. The International Federation of Gynecology and Obstetrics cervical cancer staging system does not officially include imaging; however, the organization endorses the use of MR imaging and PET/CT in the management of patients with cervical cancer where these modalities are available. MR imaging provides the best visualization of the primary tumor and extent of soft tissue disease. PET/CT is recommended for assessment of nodal involvement, as well as distant metastases. Both MR imaging and PET/CT are used to follow patients post-treatment to assess for recurrence. This review focuses on the current MR imaging and PET/CT protocols, the utility of these modalities in assessing primary tumors and recurrences, with emphasis on imaging findings which change management and on imaging pitfalls to avoid. It is important to be familiar with the MR imaging and PET/CT appearance of the primary tumor and metastasis, as well as the imaging pitfalls, so that an accurate assessment of disease burden is made prior to treatment.

  19. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    Science.gov (United States)

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Arms Down Cone Beam CT Hepatic Angiography Performance Assessment: Vascular Imaging Quality and Imaging Artifacts.

    Science.gov (United States)

    Gonzalez-Aguirre, Adrian J; Petre, Elena N; Hsu, Meier; Moskowitz, Chaya S; Solomon, Stephen B; Durack, Jeremy C

    2018-01-11

    The practice of positioning patients' arms above the head during catheter-injected hepatic arterial phase cone beam CT (A-CBCT) imaging has been inherited from standard CT imaging due to image quality concerns, but interrupts workflow and extends procedure time. We sought to assess A-CBCT image quality and artifacts with arms extended above the head versus down by the side. We performed an IRB approved retrospective evaluation of reformatted and 3D-volume rendered images from 91 consecutive A-CBCTs (43 arms up, 48 arms down) acquired during hepatic tumor arterial embolization procedures. Two interventional radiologists reviewed all A-CBCT imaging and assigned vessel visualization scores (VVS) from 1 to 5, ranging from non-diagnostic to optimal visualization. Streak artifacts across axial images were rated from 1 to 3 based on resulting image quality (none to significant). Presence of respiratory or cardiac motion during acquisition, body mass index and radiation dose area product (DAP) were also recorded and analyzed. Univariate and multivariate analyses were used to assess the impact of arm position on VVS and imaging artifacts. VVS were not significantly associated with arm position during A-CBCT imaging. One reader reported more streak artifacts across axial images in the arms down group (p = 0.005). DAP was not statistically different between the groups (23.9 Gy cm2 [6.1-73.4] arms up, 26.1 Gy cm2 [4.2-102.6] arms down, p = 0.54). A-CBCT angiography performed with the arms above the head is not superior for clinically relevant hepatic vascular visualization compared to imaging performed with the arms by the patient's side.

  1. Material Science Image Analysis using Quant-CT in ImageJ

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  2. Improvement of image quality and dose management in CT fluoroscopy by iterative 3D image reconstruction.

    Science.gov (United States)

    Grosser, Oliver S; Wybranski, Christian; Kupitz, Dennis; Powerski, Maciej; Mohnike, Konrad; Pech, Maciej; Amthauer, Holger; Ricke, Jens

    2017-09-01

    The objective of this study was to assess the influence of an iterative CT reconstruction algorithm (IA), newly available for CT-fluoroscopy (CTF), on image noise, readers' confidence and effective dose compared to filtered back projection (FBP). Data from 165 patients (FBP/IA = 82/74) with CTF in the thorax, abdomen and pelvis were included. Noise was analysed in a large-diameter vessel. The impact of reconstruction and variables (e.g. X-ray tube current I) influencing noise and effective dose were analysed by ANOVA and a pairwise t-test with Bonferroni-Holm correction. Noise and readers' confidence were evaluated by three readers. Noise was significantly influenced by reconstruction, I, body region and circumference (all p ≤ 0.0002). IA reduced the noise significantly compared to FBP (p = 0.02). The effect varied for body regions and circumferences (p ≤ 0.001). The effective dose was influenced by the reconstruction, body region, interventional procedure and I (all p ≤ 0.02). The inter-rater reliability for noise and readers' confidence was good (W ≥ 0.75, p confidence were significantly better in AIDR-3D compared to FBP (p ≤ 0.03). Generally, IA yielded a significant reduction of the median effective dose. The CTF reconstruction by IA showed a significant reduction in noise and effective dose while readers' confidence increased. • CTF is performed for image guidance in interventional radiology. • Patient exposure was estimated from DLP documented by the CT. • Iterative CT reconstruction is appropriate to reduce image noise in CTF. • Using iterative CT reconstruction, the effective dose was significantly reduced in abdominal interventions.

  3. Biomechanical deformable image registration of longitudinal lung CT images using vessel information.

    Science.gov (United States)

    Cazoulat, Guillaume; Owen, Dawn; Matuszak, Martha M; Balter, James M; Brock, Kristy K

    2016-07-07

    Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Six lung cancer patients previously treated with conventionally fractionated radiotherapy were retrospectively evaluated. Exhale CT scans were obtained at treatment planning and following three weeks of treatment. For each patient, the planning CT was registered to the follow-up CT using Morfeus, a biomechanical model-based deformable registration algorithm. To model the complex response of the lung, an extension to Morfeus has been developed: an initial deformation was estimated with Morfeus consisting of boundary conditions on the chest wall and incorporating a sliding interface with the lungs. It was hypothesized that the addition of boundary conditions based on vessel tree matching would provide a robust reduction of the residual registration error. To achieve this, the vessel trees were segmented on the two images by thresholding a vesselness image based on the Hessian matrix's eigenvalues. For each point on the reference vessel tree centerline, the displacement vector was estimated by applying a variant of the Demons registration algorithm between the planning CT and the deformed follow-up CT. An expert independently identified corresponding landmarks well distributed in the lung to compute target registration errors (TRE). The TRE was: [Formula: see text], [Formula: see text] and [Formula: see text] mm after rigid registration, Morfeus and Morfeus with boundary conditions on the vessel tree, respectively. In conclusion, the addition of boundary conditions on the vessels significantly improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical

  4. Clinical usefulness of helical CT three-dimensional images in blow-out fractures

    Energy Technology Data Exchange (ETDEWEB)

    Takeno, Naokazu; Honda, Kouichi; Ohiwa, Akira [Keiseigeka Memorial Hospital, Sapporo, Hokkaido (Japan); Miyashita, Souji; Sugihara, Tsuneki; Funayama, Emi; Maeda, Kazuhiko

    1996-12-01

    Since the bone of the orbital floor is very thin, it was previously impossible to visualize bone deficits and bone fracture lines of the orbital floor accurately in three-dimensional (3D) CT images. Since the analytical ability of CT and 3D image reconstitution have improved, however, CT imaging of thin bone has become possible. We used CT photography and 3D image reconstruction in 19 cases before surgery to correct blow-out fracture. We used the Toshiba Corporation helical CT system (X-Vigor, version 5.0A) and filmed an area 3-4 cm wide in the orbital region, mainly on the orbital floor. The X-Tension workstation (Toshiba) was used for 3D image reconstruction. All cases were filmed in 0.5-mm slices. CT scanning time was approximately 60 seconds. There were very few artifacts in the 3D images. Small bone deficits and minute bone fracture lines could be observed on the 3D images, and it was also possible to change the visual angle. The CT images were faithful, their reliability was good, and they were clinically useful. In 8 cases in which a silicon sheet was used for reconstruction of the orbital floor, 3D images were also used for postoperative evaluation. The silicon sheets used to reconstruct bone deficits could be selectively viewed on the image and their condition determined 3D CT images are therefore considered useful in both pre- and postoperative evaluation of blow-out fractures. We have utilized these 3D CT images in the evaluation of zygomatic bone and other facial fractures in addition to blow-out fractures. (author)

  5. Adaptive geodesic transform for segmentation of vertebrae on CT images

    Science.gov (United States)

    Gaonkar, Bilwaj; Shu, Liao; Hermosillo, Gerardo; Zhan, Yiqiang

    2014-03-01

    Vertebral segmentation is a critical first step in any quantitative evaluation of vertebral pathology using CT images. This is especially challenging because bone marrow tissue has the same intensity profile as the muscle surrounding the bone. Thus simple methods such as thresholding or adaptive k-means fail to accurately segment vertebrae. While several other algorithms such as level sets may be used for segmentation any algorithm that is clinically deployable has to work in under a few seconds. To address these dual challenges we present here, a new algorithm based on the geodesic distance transform that is capable of segmenting the spinal vertebrae in under one second. To achieve this we extend the theory of the geodesic distance transforms proposed in1 to incorporate high level anatomical knowledge through adaptive weighting of image gradients. Such knowledge may be provided by the user directly or may be automatically generated by another algorithm. We incorporate information 'learnt' using a previously published machine learning algorithm2 to segment the L1 to L5 vertebrae. While we present a particular application here, the adaptive geodesic transform is a generic concept which can be applied to segmentation of other organs as well.

  6. A High Spatial Resolution CT Scanner for Small Animal Imaging

    Science.gov (United States)

    Cicalini, E.; Baldazzi, G.; Belcari, N.; Del Guerra, A.; Gombia, M.; Motta, A.; Panetta, D.

    2006-01-01

    We have built a micro-CT system that will be integrated with a small animal PET scanner. The components are: an X-ray source with a peak voltage of up to 60 kV, a power of 10 W and a focal spot size of 30 μm; a CCD coupled to CsI(Tl) scintillator, subdivided into 128×3072 square pixels, each with a size of 48 μm; stepping motors for the sample roto-translation; a PCI acquisition board; electronic boards to control and read-out the CCD. A program in Lab VIEW controls the data acquisition. Reconstruction algorithms have been implemented for fan-beam and cone-beam configurations. Images of a bar pattern have been acquired to evaluate the detector performance: the CTF curve has been extracted from the data, obtaining a value of 10 % at 5 lp/mm and about 3 % at 10 lp/mm. Tomographic acquisitions have been performed with a test phantom consisting of a Plexiglas cylinder, 3 cm in diameter, with holes ranging from 3 mm down to 0.6 mm in diameter, filled with different materials. The contrast resolution has been extracted from the reconstructed images: a value of 6 % (in water) for a cubic voxel size of 80 μm has been obtained.

  7. Open source deformable image registration system for treatment planning and recurrence CT scans

    DEFF Research Database (Denmark)

    Zukauskaite, Ruta; Brink, Carsten; Hansen, Christian Rønn

    2016-01-01

    CT) images of head and neck squamous cell carcinoma (HNSCC) patients was evaluated. PATIENTS AND MATERIALS: Twenty patients treated with definitive IMRT for HNSCC in 2010-2012 were included. For each patient, a pCT and an rCT scan were used. Median interval between the scans was 8.5 months. One observer...... on pCT. DSC for DIR varied between 0.58 and 0.79 for soft tissues and was 0.79 or higher for bony structures, and correlated with the volumes of ROIs (r = 0.5, p CT scans is feasible...

  8. Tumor volume assessment by 18F-FDG PET/CT in patients with oral cavity cancer with dental artifacts on CT or MR images.

    Science.gov (United States)

    Baek, Chung-Hwan; Chung, Man Ki; Son, Young-Ik; Choi, Joon Young; Kim, Hyung-Jin; Yim, Yoo Jeong; Ko, Young Hyeh; Choi, Jeesun; Cho, Jae Keun; Jeong, Han-Sin

    2008-09-01

    The purpose of this study was to investigate the clinical usefulness of PET/CT or CT-attenuated PET in the evaluation of patients with oral cavity cancer (OCC) in whom dental artifacts distorted the conventional CT or MR images of the oral cavity. A PET/CT scan, in addition to a CT or MRI scan, was performed in 69 patients with OCC who had dentures or dental implants. A total of 64 PET/CT, 64 CT, and 27 MR images were analyzed including images from scans performed on 40 patients with OCC without dental artifacts on the conventional images; these were used for comparison. The CT-attenuated PET scan for the detection of primary tumors was compared with the CT or MRI scan. We also evaluated the correlation between the PET/CT volume and the pathologic volume using a regression analysis. In addition, subgroup analysis was performed to determine what proportion of subjects benefited most from the PET/CT. CT-attenuated PET detected more primary tumors than did CT in patients with OCC with dental artifacts (95.3% vs. 75.0%, respectively; P=0.0016). PET/CT volume with a standardized uptake value (SUV) cutoff point of 3.5 predicted the pathologic volume more accurately than did the other cutoff points in patients with OCC with or without artifacts. After comparing pathologic volume and PET/CT(SUV 3.5) volume, the following regression equation was developed: log (pathologic volume)=0.6 x log (PET/CT(SUV 3.5) volume) + 1.3 (R(2) = 0.42, Pdental artifacts on the conventional imaging, PET/CT could provide useful clinical information about the primary tumors, particularly in cases with advanced tumors.

  9. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  10. Comparing MR imaging and CT in the staging of gastric carcinoma.

    Science.gov (United States)

    Sohn, K M; Lee, J M; Lee, S Y; Ahn, B Y; Park, S M; Kim, K M

    2000-06-01

    The purpose of this study was to assess the usefulness of breath-hold two-dimensional (2D) fast low-angle shot (FLASH) and T2-weighted turbo spin-echo fast MR imaging compared with helical CT in the staging of gastric carcinoma. Thirty patients with gastric carcinoma underwent preoperative MR imaging and helical CT. MR imaging at 1.5 T was performed immediately after the intramuscular injection of scopolamine and the oral administration of water or effervescent granules. Breath-hold 2D FLASH T1-weighted images in all three planes, turbo spin-echo T2-weighted axial images, and gadolinium-enhanced fat-suppressed 2D FLASH axial images were included. Helical CT was performed 60 sec after initiation of i.v. contrast medium injection (2.5-3 ml/sec). Two groups of two radiologists each independently analyzed the MR and helical CT findings, and these results were compared with the pathologic findings. For T staging, MR imaging accuracy was higher than that of helical CT (73.3% and 66.7%, respectively); however, the accuracies of the two methods were not significantly different from each other (McNemar test, p > 0.05). Overstaging was noted in 6.7% of cases with MR imaging and 10% with helical CT. Understaging was noted in 20% of cases with MR imaging and 23.3% with helical CT. For N staging, the accuracies of MR imaging and helical CT were 55% and 58.6%, respectively, with no statistical significance (overstaging, 10% and 6.9%; understaging, 34.5% and 34.5%, respectively). MR imaging was comparable to helical CT in the T and N staging of gastric cancer.

  11. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    Directory of Open Access Journals (Sweden)

    Chae Young Lee

    Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  12. Evaluation of x-ray detectors for dual-modality CT-SPECT animal imaging

    Science.gov (United States)

    MacDonald, Lawrence R.; Iwata, Koji; Patt, Bradley E.; Iwanczyk, Jan S.; Hwang, Andrew B.; Wu, Max C.; Hasegawa, Bruce H.

    2002-11-01

    We are developing a bench-top animal scanner that will acquire both functional SPECT images and anatomical CT images with sub-millimeter spatial resolution for both imaging modalities. This paper presents preliminary results from the evaluation of two x-ray detectors for the CT application, and dual SPECT-CT images using one of these detectors. Two phosphor-CMOS x-ray detectors, one with 48 m pixels and 5 cm x 5 cm area and the other with 50 μm pixels and 12 cm x 12 cm area, were evaluated for linearity and dynamic range. Each detector showed linearity over ~ 3 orders of magnitude, which is sufficient for mouse CT imaging. The smaller detector was mounted to an A-SPECT system, along with a custom 50 W x-ray source with focal spot size of ~ 150 μm. Phantoms and mice were scanned sequentially, SPECT followed by CT, and the resulting reconstructed images fused into a single SPECT-CT image. These preliminary results show that the two detectors evaluated for this application can successfully achieve high contrast CT images of mice and similar sized objects.

  13. Usefulness of MR imaging for diseases of the small intestine: comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hoon; Ha, Hyun Kwon; Sohn, Min Jae; Shin, Byung Suck; Lee, Young Suk; Chung, Soo Yoon; Kim, Pyo Nyun; Lee, Moon Gyu; Auh, Yong Ho [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2000-03-01

    To evaluate the usefulness of MR imaging for diseases of the small intestine, emphasizing a comparison with CT. Thirty-four patients who underwent both CT and MR imaging using FLASH 2D and HASTE sequences were analyzed. All patients had various small bowel diseases with variable association of peritoneal lesions. We compared the detectabilities of CT and MR imaging using different MR pulse sequences. The capability for analyzing the characteristics of small intestinal disease was also compared. MR imaging was nearly equal to CT for detecting intraluminal or peritoneal masses, lesions in the bowel and mesentery, and small bowel obstruction, but was definitely inferior for detecting omental lesions. The most successful MR imaging sequence was HASTE for demonstrating bowel wall thickening, coronal FLASH 2D for mesenteric lesions, and axial FLASH 2D for omental lesions. MR imaging yielded greater information than CT in six of 12 inflammatory bowel diseases, while it was equal to CT in six of seven neoplasms and inferior in five of seven mesenteric ischemia. In determining the primary causes of 15 intestinal obstructions, MR imaging was correct in 11 (73%) and CT in nine (60%) patients. MR imaging can serve as an alternative diagnostic tool for patients with suspected inflammatory bowel disease, small intestinal neoplasm or obstruction.

  14. X-ray imaging plate performance investigation based on a Monte Carlo simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Yao, M., E-mail: philippe.duvauchelle@insa-lyon.fr [Laboratoire Vibration Acoustique (LVA), INSA de Lyon, 25 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Duvauchelle, Ph.; Kaftandjian, V. [Laboratoire Vibration Acoustique (LVA), INSA de Lyon, 25 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Peterzol-Parmentier, A. [AREVA NDE-Solutions, 4 Rue Thomas Dumorey, 71100 Chalon-sur-Saône (France); Schumm, A. [EDF R& D SINETICS, 1 Avenue du Général de Gaulle, 92141 Clamart Cedex (France)

    2015-01-01

    Computed radiography (CR) based on imaging plate (IP) technology represents a potential replacement technique for traditional film-based industrial radiography. For investigating the IP performance especially at high energies, a Monte Carlo simulation tool based on PENELOPE has been developed. This tool tracks separately direct and secondary radiations, and monitors the behavior of different particles. The simulation output provides 3D distribution of deposited energy in IP and evaluation of radiation spectrum propagation allowing us to visualize the behavior of different particles and the influence of different elements. A detailed analysis, on the spectral and spatial responses of IP at different energies up to MeV, has been performed. - Highlights: • A Monte Carlo tool for imaging plate (IP) performance investigation is presented. • The tool outputs 3D maps of energy deposition in IP due to different signals. • The tool also provides the transmitted spectra along the radiation propagation. • An industrial imaging case is simulated with the presented tool. • A detailed analysis, on the spectral and spatial responses of IP, is presented.

  15. Sequential Monte Carlo Methods for Joint Detection and Tracking of Multiaspect Targets in Infrared Radar Images

    Directory of Open Access Journals (Sweden)

    Anton G. Pavlov

    2008-02-01

    Full Text Available We present in this paper a sequential Monte Carlo methodology for joint detection and tracking of a multiaspect target in image sequences. Unlike the traditional contact/association approach found in the literature, the proposed methodology enables integrated, multiframe target detection and tracking incorporating the statistical models for target aspect, target motion, and background clutter. Two implementations of the proposed algorithm are discussed using, respectively, a resample-move (RS particle filter and an auxiliary particle filter (APF. Our simulation results suggest that the APF configuration outperforms slightly the RS filter in scenarios of stealthy targets.

  16. Sequential Monte Carlo Methods for Joint Detection and Tracking of Multiaspect Targets in Infrared Radar Images

    Directory of Open Access Journals (Sweden)

    Bruno MarceloGS

    2008-01-01

    Full Text Available We present in this paper a sequential Monte Carlo methodology for joint detection and tracking of a multiaspect target in image sequences. Unlike the traditional contact/association approach found in the literature, the proposed methodology enables integrated, multiframe target detection and tracking incorporating the statistical models for target aspect, target motion, and background clutter. Two implementations of the proposed algorithm are discussed using, respectively, a resample-move (RS particle filter and an auxiliary particle filter (APF. Our simulation results suggest that the APF configuration outperforms slightly the RS filter in scenarios of stealthy targets.

  17. Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT).

    Science.gov (United States)

    Hutchinson, J Ciaran; Shelmerdine, Susan C; Simcock, Ian C; Sebire, Neil J; Arthurs, Owen J

    2017-07-01

    Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.

  18. Automatic anatomy recognition in whole-body PET/CT images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqian [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China and Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey; Tong, Yubing; Torigian, Drew A. [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Zhao, Liming [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and Research Center of Intelligent System and Robotics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

    2016-01-15

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  19. CT image sequence restoration based on sparse and low-rank decomposition.

    Directory of Open Access Journals (Sweden)

    Shuiping Gou

    Full Text Available Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA, Linearized Alternating Direction Method with Adaptive Penalty (LADMAP and Go Decomposition (GoDec. Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images.

  20. CT image sequence restoration based on sparse and low-rank decomposition.

    Science.gov (United States)

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images.

  1. Influence of 320-detector-row volume scanning and AAPM report 111 CT dosimetry metrics on size-specific dose estimate: a Monte Carlo study.

    Science.gov (United States)

    Haba, Tomonobu; Koyama, Shuji; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao

    2016-09-01

    The American Association of Physicists in Medicine (AAPM) task group 204 has recommended the use of size-dependent conversion factors to calculate size-specific dose estimate (SSDE) values from volume computed tomography dose index (CTDIvol) values. However, these conversion factors do not consider the effects of 320-detector-row volume computed tomography (CT) examinations or the new CT dosimetry metrics proposed by AAPM task group 111. This study aims to investigate the influence of these examinations and metrics on the conversion factors reported by AAPM task group 204, using Monte Carlo simulations. Simulations were performed modelling a Toshiba Aquilion ONE CT scanner, in order to compute dose values in water for cylindrical phantoms with 8-40-cm diameters at 2-cm intervals for each scanning parameter (tube voltage, bow-tie filter, longitudinal beam width). Then, the conversion factors were obtained by applying exponential regression analysis between the dose values for a given phantom diameter and the phantom diameter combined with various scanning parameters. The conversion factors for each scanning method (helical, axial, or volume scanning) and CT dosimetry method (i.e., the CTDI100 method or the AAPM task group 111 method) were in agreement with those reported by AAPM task group 204, within a percentage error of 14.2 % for phantom diameters ≥11.2 cm. The results obtained in this study indicate that the conversion factors previously presented by AAPM task group 204 can be used to provide appropriate SSDE values for 320-detector-row volume CT examinations and the CT dosimetry metrics proposed by the AAPM task group 111.

  2. Monte Carlo simulation of the dose distribution of ICRP adult reference computational phantoms for acquisitions with a 320 detector-row cone-beam CT scanner.

    Science.gov (United States)

    Salvadó, M; Cros, M; Joemai, R M S; Calzado, A; Geleijns, J

    2015-07-01

    The purpose of this study was to develop and validate a Monte Carlo (MC) simulation tool for patient dose assessment for a 320 detector-row CT scanner, based on the recommendations of International Commission on Radiological Protection (ICRP). Additionally, the simulation was applied on four clinical acquisition protocols, with and without automatic tube current modulation (TCM). The MC simulation was based on EGS4 code and was developed specifically for a 320 detector-row cone-beam CT scanner. The ICRP adult reference phantoms were used as patient models. Dose measurements were performed free-in-air and also in four CTDI phantoms: 150 mm and 350 mm long CT head and CT body phantoms. The MC program was validated by comparing simulations results with these actual measurements acquired under the same conditions. The measurements agreed with the simulations across all conditions within 5%. Patient dose assessment was performed for four clinical axial acquisitions using the ICRP adult reference phantoms, one of them using TCM. The results were nearly always lower than those obtained from other dose calculator tools or published in other studies, which were obtained using mathematical phantoms in different CT systems. For the protocol with TCM organ doses were reduced by between 28 and 36%, compared to the results obtained using a fixed mA value. The developed simulation program provides a useful tool for assessing doses in a 320 detector-row cone-beam CT scanner using ICRP adult reference computational phantoms and is ready to be applied to more complex protocols. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Xenon-enhanced CT imaging of local pulmonary ventilation

    Science.gov (United States)

    Tajik, Jehangir K.; Tran, Binh Q.; Hoffman, Eric A.

    1996-04-01

    We are using the unique features of electron beam CT (EBCT) in conjunction with respiratory and cardiac gating to explore the use of non-radioactive xenon gas as a pulmonary ventilation contrast agent. The goal is to construct accurate and quantitative high-resolution maps of local pulmonary ventilation in humans. We are evaluating xenon-enhanced computed tomography in the pig model with dynamic tracer washout/dilution and single breath inhalation imaging protocols. Scanning is done via an EBCT scanner which offers 50 msec scan aperture speeds. CT attenuation coefficients (image gray scale value) show a linear increase with xenon concentration (r equals 0.99). We measure a 1.55 Hounsfield Unit (HU) enhancement (kV equals 130, mA equals 623) per percentage increase in xenon gas concentration giving an approximately 155 HU enhancement with 100% xenon gas concentration as measured in a plexiglass super-syringe. Early results indicate that a single breath (from functional residual capacity to total lung capacity) of 100% xenon gas provides an average 32 +/- 1.85 (SE) HU enhancement in the lung parenchyma (maximum 50 HU) and should not encounter unwanted xenon side effects. However, changes in lung density occurring during even short breath holds (as short as 10 seconds) may limit using a single breath technique to synchronous volumetric scanning, currently possible only with EBCT. Preliminary results indicate close agreement between measured regional xenon concentration-time curves and theoretical predictions for the same sample. More than 10 breaths with inspirations to as high as 25 cmH2O airway pressure were needed to clear tracer from all lung regions and some regions had nearly linear rather than mono-exponential clearance curves. When regional parenchymal xenon concentration-time curves were analyzed, vertical gradients in ventilation and redistribution of ventilation at higher inspiratory flow rates were consistent with known pulmonary physiology. We present

  4. Static and dynamic CT imaging of the cervical spine in patients with rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Soederman, Tomas; Shalabi, Adel; Sundin, Anders [Uppsala University Hospital, Department of Radiology, Uppsala (Sweden); Olerud, Claes; Alavi, Kamran [Uppsala University Hospital, Department of Orthopedic Surgery, Uppsala (Sweden)

    2014-09-18

    To compare CR with CT (static and dynamic) to evaluate upper spine instability and to determine if CT in flexion adds value compared to MR imaging in neutral position to assess compression of the subarachnoid space and of the spinal cord. Twenty-one consecutive patients with atlantoaxial subluxation due to rheumatoid arthritis planned for atlantoaxial fusion were included. CT and MRI were performed with the neck in the neutral position and CT also in flexion. CR in neutral position and flexion were obtained in all patients except for one subject who underwent examination in flexion and extension. CR and CT measurements of atlantoaxial subluxation correlated but were larger by CR than CT in flexion, however, the degree of vertical dislocation was similar with both techniques irrespective of the position of the neck. Cervical motion was larger at CR than at CT. The spinal cord compression was significantly worse at CT obtained in the flexed position as compared to MR imaging in the neutral position. Functional CR remains the primary imaging method but CT in the flexed position might be useful in the preoperative imaging work-up, as subarachnoid space involvement may be an indicator for the development of neurologic dysfunction. (orig.)

  5. Gamma Knife radiosurgery with CT image-based dose calculation.

    Science.gov (United States)

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Niranjan, Ajay; Kondziolka, Douglas; Flickinger, John; Lunsford, L Dade; Huq, M Saiful

    2015-11-08

    The Leksell GammaPlan software version 10 introduces a CT image-based segmentation tool for automatic skull definition and a convolution dose calculation algorithm for tissue inhomogeneity correction. The purpose of this work was to evaluate the impact of these new approaches on routine clinical Gamma Knife treatment planning. Sixty-five patients who underwent CT image-guided Gamma Knife radiosurgeries at the University of Pittsburgh Medical Center in recent years were retrospectively investigated. The diagnoses for these cases include trigeminal neuralgia, meningioma, acoustic neuroma, AVM, glioma, and benign and metastatic brain tumors. Dose calculations were performed for each patient with the same dose prescriptions and the same shot arrangements using three different approaches: 1) TMR 10 dose calculation with imaging skull definition; 2) convolution dose calculation with imaging skull definition; 3) TMR 10 dose calculation with conventional measurement-based skull definition. For each treatment matrix, the total treatment time, the target coverage index, the selectivity index, the gradient index, and a set of dose statistics parameters were compared between the three calculations. The dose statistics parameters investigated include the prescription isodose volume, the 12 Gy isodose volume, the minimum, maximum and mean doses on the treatment targets, and the critical structures under consideration. The difference between the convolution and the TMR 10 dose calculations for the 104 treatment matrices were found to vary with the patient anatomy, location of the treatment shots, and the tissue inhomogeneities around the treatment target. An average difference of 8.4% was observed for the total treatment times between the convolution and the TMR algorithms. The maximum differences in the treatment times, the prescription isodose volumes, the 12 Gy isodose volumes, the target coverage indices, the selectivity indices, and the gradient indices from the convolution

  6. Multiplanar sinus CT: a systematic approach to imaging before functional endoscopic sinus surgery.

    Science.gov (United States)

    Hoang, Jenny K; Eastwood, James D; Tebbit, Christopher L; Glastonbury, Christine M

    2010-06-01

    The purpose of this essay is to present a systematic approach to the use of coronal, axial, and sagittal images for CT evaluation of the sinuses before functional endoscopic sinus surgery (FESS). We present a systematic approach to the use of coronal, axial, and sagittal images in CT evaluation before FESS. Each imaging plane is valuable for displaying anatomic variants, which can predispose a patient to recurrent disease and affect the surgical approach, and critical variants, which can make surgery hazardous.

  7. Synchrotron μCT Imaging of Bone, Titanium implants and Bone Substitutes -a Systematic Review of the Literature

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Pinholt, Else Marie

    2014-01-01

    Today x-ray micro computer tomography (μCT) imaging is used to investigate bone microarchitecture. μCT imaging is obtained by polychromatic x-ray beams, resulting in images with beam hardening artifacts, resolution levels at 10 μm, geometrical blurring, and lack of contrasts. When μCT is coupled ...

  8. Prompt gamma ray imaging for verification of proton boron fusion therapy: A Monte Carlo study.

    Science.gov (United States)

    Shin, Han-Back; Yoon, Do-Kun; Jung, Joo-Young; Kim, Moo-Sub; Suh, Tae Suk

    2016-10-01

    The purpose of this study was to verify acquisition feasibility of a single photon emission computed tomography image using prompt gamma rays for proton boron fusion therapy (PBFT) and to confirm an enhanced therapeutic effect of PBFT by comparison with conventional proton therapy without use of boron. Monte Carlo simulation was performed to acquire reconstructed image during PBFT. We acquired percentage depth dose (PDD) of the proton beams in a water phantom, energy spectrum of the prompt gamma rays, and tomographic images, including the boron uptake region (BUR; target). The prompt gamma ray image was reconstructed using maximum likelihood expectation maximisation (MLEM) with 64 projection raw data. To verify the reconstructed image, both an image profile and contrast analysis according to the iteration number were conducted. In addition, the physical distance between two BURs in the region of interest of each BUR was measured. The PDD of the proton beam from the water phantom including the BURs shows more efficient than that of conventional proton therapy on tumour region. A 719keV prompt gamma ray peak was clearly observed in the prompt gamma ray energy spectrum. The prompt gamma ray image was reconstructed successfully using 64 projections. Different image profiles including two BURs were acquired from the reconstructed image according to the iteration number. We confirmed successful acquisition of a prompt gamma ray image during PBFT. In addition, the quantitative image analysis results showed relatively good performance for further study. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent

    Science.gov (United States)

    Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho

    2015-04-01

    In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.

  10. Overnight Emergency CT Imaging: A 10-Year Experience at an Irish Tertiary Referral Hospital.

    LENUS (Irish Health Repository)

    2018-01-01

    In recent years there has been increased utilisation of computed tomography (CT) imaging in developed countries, however there is a paucity of data regarding the utilisation of CT in the emergency overnight setting. We retrospectively analysed trends in ‘overnight’ (midnight to 8am) CT utilisation over a ten-year period at a single Irish tertiary referral hospital. Over the study period, we observed a significant increase in the proportion of CT imaging that was carried out overnight. There was no significant variation in the yield of pathological findings over the study period, which remained low (64% of CT studies were normal or had non-critical findings). The multiple factors which have contributed to the increased utilization of overnight emergency CT in recent years, the potential for reporting errors overnight and the implications therein for patient safety warrant consideration.

  11. The quality of three-dimensional images reconstructed with volume-scan CT

    Energy Technology Data Exchange (ETDEWEB)

    Shimbashi, Takeshi; Sakurai, Nobuaki; Watanabe, Norimitsu (Jikei Univ., Tokyo (Japan). School of Medicine); Takagi, Hiroshi; Takeuchi, Yutaka

    1993-05-01

    Volume-scan CT is based on slip-ring technology which leads to continuous scanning. It permits remarkable reduction in scanning time, which is especially meaningful where children and elderly patients are concerned. One scan takes one second, with a maximum continuous time of 50 seconds. Slice widths of 2, 3, 5 and 100 mm can be selected and table changed from 1.5 to 20 mm/second. The reconstruction index is 1 to 10 mm, and reconstruction time about 10 seconds. As both the patient and table are moved simultaneously, it is possible to scan a wide area in a short time. Volume-scan CT is suitable for three-dimensional (3-D) images because of the good continuity of slices. The authors reconstructed 3-D phantom images using both ordinary CT and volume-scan CT, and then compared the quality of these images. Under the condition of 3 mm slice width and 3 mm/sec table speed, the 3-D images reconstructed with volume-scan CT were clearly better than those reconstructed using ordinary CT. The quality of both has improved after interpolation. In particular, the periorbital and zygomatic areas of 3-D images reconstructed with volume-scan CT are quite natural. When a phantom was scanned under the condition of 10 mm slice width and 10 mm/sec table speed, the quality of 3-D image reconstructed with ordinary CT was not sufficient to be distinct. Even under interpolation, the quality of image was not natural. Useful images could not be obtained when the phantom was moving. It was found that volume-scan CT is suitable for reconstruction of 3-D images. (author).

  12. A novel hybrid reconstruction algorithm for first generation incoherent scatter CT (ISCT) of large objects with potential medical imaging applications.

    Science.gov (United States)

    Alpuche Aviles, Jorge E; Pistorius, Stephen; Gordon, Richard; Elbakri, Idris A

    2011-01-01

    This work presents a first generation incoherent scatter CT (ISCT) hybrid (analytic-iterative) reconstruction algorithm for accurate ρ{e}imaging of objects with clinically relevant sizes. The algorithm reconstructs quantitative images of ρ{e} within a few iterations, avoiding the challenges of optimization based reconstruction algorithms while addressing the limitations of current analytical algorithms. A 4π detector is conceptualized in order to address the issue of directional dependency and is then replaced with a ring of detectors which detect a constant fraction of the scattered photons. The ISCT algorithm corrects for the attenuation of photons using a limited number of iterations and filtered back projection (FBP) for image reconstruction. This results in a hybrid reconstruction algorithm that was tested with sinograms generated by Monte Carlo (MC) and analytical (AN) simulations. Results show that the ISCT algorithm is weakly dependent on the ρ{e} initial estimate. Simulation results show that the proposed algorithm reconstruct ρ{e} images with a mean error of -1% ± 3% for the AN model and from -6% to -8% for the MC model. Finally, the algorithm is capable of reconstructing qualitatively good images even in the presence of multiple scatter. The proposed algorithm would be suitable for in-vivo medical imaging as long as practical limitations can be addressed. © 2011 – IOS Press and the authors. All rights reserved

  13. Adaptive statistical iterative reconstruction improves image quality without affecting perfusion CT quantitation in primary colorectal cancer

    OpenAIRE

    Prezzi, Davide; Goh, V.; Virdi, S.; Mallett, S; Grierson, C; Breen, D.J.

    2017-01-01

    Objectives: To determine the effect of Adaptive Statistical Iterative Reconstruction (ASIR) on perfusion CT (pCT) parameter quantitation and image quality in primary colorectal cancer. Methods: Prospective observational study. Following institutional review board approval and informed consent, 32 patients with colorectal adenocarcinoma underwent pCT (100 kV, 150 mA, 120 s acquisition, axial mode). Tumour regional blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability sur...

  14. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    Science.gov (United States)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT

  15. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery.

    Science.gov (United States)

    Reaungamornrat, S; De Silva, T; Uneri, A; Wolinsky, J-P; Khanna, A J; Kleinszig, G; Vogt, S; Prince, J L; Siewerdsen, J H

    2016-02-27

    Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration

  16. Impact of SPECT/CT in imaging inflammation and infection; Wertigkeit der SPECT/CT fuer die nuklearmedizinische Entzuendungsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R. [Klinikum Bremen-Mitte, Bremen (Germany). Klinik fuer Nuklearmedizin; Kuwert, T. [Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik

    2011-03-15

    Even today infection remains a significant concern, and the diagnosis and localization of infectious foci is an important health issue. As an established infection-imaging modality, nuclear medicine plays a vital health-care role in the diagnosis and subsequent effective treatment of this condition. Several techniques in nuclear medicine significantly aid infection diagnosis, including triple-phase bone scanning, {sup 18}F-FDG-PET and imaging with {sup 111}In-oxine-, {sup 99m}Tc-HMPAO-labeled leukocytes. Each radiopharmaceutical has specific advantages and disadvantages that makes it suitable to diagnose different infectious processes (e.g., soft-tissue sepsis, inflammatory bowel disease, osteomyelitis, occult fever, fever of unknown origin, and infections commonly found in immuno-compromised patients). However, their clinical applications may be limited by the relatively low spatial resolution and the lack of anatomic landmarks of a highly specific tracer with only scarce background uptake to use as a framework for orientation. Anatomic imaging modalities such as CT provide a high-quality assessment of structural abnormalities related to infection, but these structural abnormalities may be unspecific. Furthermore, to detect infection before anatomical changes are present, functional imaging could have some advantages over anatomical imaging. Scintigraphic studies have demonstrated high sensitivity and specificity to an infectious process. Diagnosis and precise delineation of infection may be challenging in certain clinical scenarios, rendering decisions concerning further patient management difficult. The SPECT/CT-technology combines the acquisition of SPECT and CT data with the same imaging device enabling perfect overlay of anatomical and functional images. SPECT/CT imaging data has been shown to be beneficial for many clinical settings such as indeterminate findings in bone scintigraphy, orthopaedic disorders, endocrine, and neuroendocrine tumors. Therefore

  17. Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R [Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire 1000, Cidade Universitaria, CEP 50740-540, Recife, PE (Brazil); Khoury, H J [Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire 1000, Cidade Universitaria, CEP 50740-540, Recife, PE (Brazil); Vieira, J W [Centro Federal de Educacao Tecnologica de Pernambuco, Recife, PE (Brazil); Kawrakow, I [Ionizing Radiation Standards, National Research Council of Canada, Ottawa (Canada)

    2006-12-21

    3D-microCT images of vertebral bodies from three different individuals have been segmented into trabecular bone, bone marrow and bone surface cells (BSC), and then introduced into the spongiosa voxels of the MAX06 and the FAX06 phantoms, in order to calculate the equivalent dose to the red bone marrow (RBM) and the BSC in the marrow cavities of trabecular bone with the EGSnrc Monte Carlo code from whole-body exposure to external photon radiation. The MAX06 and the FAX06 phantoms consist of about 150 million 1.2 mm cubic voxels each, a part of which are spongiosa voxels surrounded by cortical bone. In order to use the segmented 3D-microCT images for skeletal dosimetry, spongiosa voxels in the MAX06 and the FAX06 phantom were replaced at runtime by so-called micro matrices representing segmented trabecular bone, marrow and BSC in 17.65, 30 and 60 {mu}m cubic voxels. The 3D-microCT image-based RBM and BSC equivalent doses for external exposure to photons presented here for the first time for complete human skeletons are in agreement with the results calculated with the three correction factor method and the fluence-to-dose response functions for the same phantoms taking into account the conceptual differences between the different methods. Additionally the microCT image-based results have been compared with corresponding data from earlier studies for other human phantoms.

  18. Medical images of patients in voxel structures in high resolution for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, Leonardo S.; Menezes, Artur F.; Silva, Ademir X., E-mail: lboia@con.ufrj.b, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear; Salmon Junior, Helio A. [Clinicas Oncologicas Integradas (COI), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work aims to present a computational process of conversion of tomographic and MRI medical images from patients in voxel structures to an input file, which will be manipulated in Monte Carlo Simulation code for tumor's radiotherapic treatments. The problem's scenario inherent to the patient is simulated by such process, using the volume element (voxel) as a unit of computational tracing. The head's voxel structure geometry has voxels with volumetric dimensions around 1 mm{sup 3} and a population of millions, which helps - in that way, for a realistic simulation and a decrease in image's digital process techniques for adjustments and equalizations. With such additional data from the code, a more critical analysis can be developed in order to determine the volume of the tumor, and the protection, beside the patients' medical images were borrowed by Clinicas Oncologicas Integradas (COI/RJ), joined to the previous performed planning. In order to execute this computational process, SAPDI computational system is used in a digital image process for optimization of data, conversion program Scan2MCNP, which manipulates, processes, and converts the medical images into voxel structures to input files and the graphic visualizer Moritz for the verification of image's geometry placing. (author)

  19. Accurate image reconstruction in CT from projection data taken at few-views

    Science.gov (United States)

    Sidky, Emil Y.; Kao, Chien-Min; Pan, Xiaochuan

    2006-03-01

    Image reconstruction from few-view CT is of interest because of the potential to reduce scanning time and radiation dose. The challenge of few-view CT for image reconstruction is essentially a problem of interpolation from under-sampled data. Recently, a new algorithm for inverting the Fourier transform from under-sampled data has been developed by Candes et al. IEEE Trans. Inf. Theory , 52 489 (2006). This algorithm can be directly applied to image reconstruction in 2D parallel-beam CT because of the central slice theorem. This article presents a discussion of the new algorithm, showing examples for different degrees of under-sampling.

  20. CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization

    Directory of Open Access Journals (Sweden)

    Hongliang Qi

    2015-01-01

    Full Text Available Radiation dose reduction without losing CT image quality has been an increasing concern. Reducing the number of X-ray projections to reconstruct CT images, which is also called sparse-projection reconstruction, can potentially avoid excessive dose delivered to patients in CT examination. To overcome the disadvantages of total variation (TV minimization method, in this work we introduce a novel adaptive TpV regularization into sparse-projection image reconstruction and use FISTA technique to accelerate iterative convergence. The numerical experiments demonstrate that the proposed method suppresses noise and artifacts more efficiently, and preserves structure information better than other existing reconstruction methods.

  1. Split-bolus CT-urography using dual-energy CT: Feasibility, image quality and dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuru, E-mail: m2rbimn@gmail.com [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Kawai, Tatsuya; Ito, Masato; Ogawa, Masaki [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Ohashi, Kazuya [Nagoya City University Hospital, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Hara, Masaki; Shibamoto, Yuta [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan)

    2012-11-15

    Purpose: To prospectively evaluate the feasibility of dual-energy (DE) split-bolus CT-urography (CTU) and the quality of virtual non-enhanced images (VNEI) and DE combined nephrographic-excretory phase images (CNEPI), and to estimate radiation dose reduction if true non-enhanced images (TNEI) could be omitted. Patients and methods: Between August and September 2011, 30 consecutive patients with confirmed or suspected urothelial cancer or with hematuria underwent DE CT. Single-energy TNEI and DE CNEPI were obtained. VNEI was reconstructed from CNEPI. Image quality of CNEPI and VNEI was evaluated using a 5-point scale. The attenuation of urine in the bladder on TNEI and VNEI was measured. The CT dose index volume (CTDI (vol)) of the two scans was recorded. Results: The mean image quality score of CNEPI and VNEI was 4.7 and 3.3, respectively. The mean differences in urine attenuation between VNEI and TNEI were 14 {+-} 15 [SD] and -16 {+-} 29 in the anterior and posterior parts of the bladder, respectively. The mean CTDI (vol) for TNEI and CNEPI was 11.8 and 10.9 mGy, respectively. Omission of TNEI could reduce the total radiation dose by 52%. Conclusion: DE split-bolus CTU is technically feasible and can reduce radiation exposure; however, an additional TNEI scan is necessary when the VNEI quality is poor or quantitative evaluation of urine attenuation is required.

  2. Split-bolus CT-urography using dual-energy CT: feasibility, image quality and dose reduction.

    Science.gov (United States)

    Takeuchi, Mitsuru; Kawai, Tatsuya; Ito, Masato; Ogawa, Masaki; Ohashi, Kazuya; Hara, Masaki; Shibamoto, Yuta

    2012-11-01

    To prospectively evaluate the feasibility of dual-energy (DE) split-bolus CT-urography (CTU) and the quality of virtual non-enhanced images (VNEI) and DE combined nephrographic-excretory phase images (CNEPI), and to estimate radiation dose reduction if true non-enhanced images (TNEI) could be omitted. Between August and September 2011, 30 consecutive patients with confirmed or suspected urothelial cancer or with hematuria underwent DE CT. Single-energy TNEI and DE CNEPI were obtained. VNEI was reconstructed from CNEPI. Image quality of CNEPI and VNEI was evaluated using a 5-point scale. The attenuation of urine in the bladder on TNEI and VNEI was measured. The CT dose index volume (CTDI (vol)) of the two scans was recorded. The mean image quality score of CNEPI and VNEI was 4.7 and 3.3, respectively. The mean differences in urine attenuation between VNEI and TNEI were 14±15 [SD] and -16±29 in the anterior and posterior parts of the bladder, respectively. The mean CTDI (vol) for TNEI and CNEPI was 11.8 and 10.9 mGy, respectively. Omission of TNEI could reduce the total radiation dose by 52%. DE split-bolus CTU is technically feasible and can reduce radiation exposure; however, an additional TNEI scan is necessary when the VNEI quality is poor or quantitative evaluation of urine attenuation is required. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. A water-soluble triiodo amino acid and its dendrimer conjugate for computerized tomography (CT imaging

    Directory of Open Access Journals (Sweden)

    MARTIN W. BRECHBIEL

    2005-02-01

    Full Text Available Prolonging the circulation of an imaging agent is vital for making it suitable for blood pool (vascular imaging. Medical applications of vascular imaging include cardiovascular disease, abnormal capillary permeability, and tumor neovascularity. As low molecular weight computerized tomography (CT enhancement agents are characterized by inconveniently fast clearance, macromolecular compounds (both natural and synthetic have gained a wide recongnition for possessing better characteristics for performing blood imaging tasks. Herein, the syntheses and characterization of a new water-soluble triiodo amino acid, 3-[(N,N-dimethylaminoacetyl amino]-a-ethyl-2,4,6-triiodobenzenepropanoic acid (DMAA-IPA and its Starburst PAMAMgeneration 4.0 dendrimer conjugate, G-4-(DMAA-IPA37 are described. The applicability of G-4-(DMAA-IPA37 as a potential macromolecular angiographic CT contrast agent is discussed. The linear relationship between organically bound iodine concentration and CT Hounsfield units has been established thus allowing for quantification uses of CT imaging as well.

  4. 68Ga-DOTATATE PET/CT Can Be an Alternative Imaging Method in Insulinoma Patients.

    Science.gov (United States)

    Tuzcu, Sadiye Altun; Pekkolay, Zafer; Kılınç, Faruk; Tuzcu, Alpaslan Kemal

    2017-09-01

    Insulinomas are the most common cause of hypoglycemia, resulting from endogenous hyperinsulinism. The diagnosis of insulinoma is established by demonstrating inappropriately high serum insulin concentrations during a spontaneous or induced episode of hypoglycemia. Most insulinomas are islet-cell tumors. They are often small (<2 cm), benign, and difficult to localize with current imaging techniques. Insulinomas can be detected using either noninvasive procedures (e.g., transabdominal ultrasonography, spiral CT, MRI, 111In-pentetreotide imaging, and 18F-l-dihydroxyphenylalanine PET) or invasive procedures (e.g., endoscopic ultrasonography) or a selective arterial calcium stimulation test with hepatic venous sampling. Methods: We performed 68Ga-DOTATATE PET/CT on 3 patients with insulinoma. Results: All patients' insulinomas were shown clearly with 68Ga-DOTATATE PET/CT. Conclusion:68Ga-DOTATATE PET/CT imaging may be a useful noninvasive imaging technique to localize insulinomas preoperatively. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Automatic and manual image fusion of 111 In-pentetreotide SPECT and diagnostic CT in neuroendocrine tumor imaging - An evaluation

    Directory of Open Access Journals (Sweden)

    Hedlund Elisabeth

    2010-01-01

    Full Text Available In the clinical diagnosis of neuroendocrine tumors (NET, the results of examinations, such as high-resolution computed tomography (CT and single photon computerized tomography (SPECT, have conventionally been interpreted separately. The aim of the present study was to evaluate Hermes Multimodality™ 5.0 H Image Fusion software-based automatic and manual image fusion of SPECT and CT for the localization of NET lesions. Out of 34 NET patients who were examined by means of somatostatin receptor scintigraphy (SRS with 111In- pentetreotide along with SPECT, 22 patients had a CT examination of the abdomen, which was used in the fusion analysis. SPECT and CT data were fused using software with a registration algorithm based on normalized mutual information. The criteria for acceptable fusion were established at a maximum cranial or caudal dislocation of 25 mm between the images and at a reasonable consensus (in order of less than 1 cm between outline of the reference organs. The automatic fusion was acceptable in 13 of the 22 examinations, whereas 9 fusions were not. However all the 22 examinations were acceptable at the manual fusion. The result of automatic fusion was better when the slice thickness of 5 mm was applied at CT examination, when the number of slices was below 100 in CT data and when both examinations included uptakes of pathological lesions. Retrospective manual image fusion of SPECT and CT is a relatively inexpensive but reliable method to be used in NET imaging. Automatic image fusion with specified software of SPECT and CT acts better when the number of CT slices is reduced to the SPECT volume and when corresponding pathological lesions appear at both SPECT and CT examinations.

  6. CT Image Sequence Processing For Wood Defect Recognition

    Science.gov (United States)

    Dongping Zhu; R.W. Conners; Philip A. Araman

    1991-01-01

    The research reported in this paper explores a non-destructive testing application of x-ray computed tomography (CT) in the forest products industry. This application involves a computer vision system that uses CT to locate and identify internal defects in hardwood logs. The knowledge of log defects is critical in deciding whether to veneer or to saw up a log, and how...

  7. Fast and memory-efficient Monte Carlo-based image reconstruction for whole-body PET.

    Science.gov (United States)

    Zhang, Long; Staelens, Steven; Van Holen, Roel; De Beenhouwer, Jan; Verhaeghe, Jeroen; Kawrakow, Iwan; Vandenberghe, Stefaan

    2010-07-01

    Several studies have shown the benefit of an accurate system modeling using Monte Carlo techniques. For state-of-the-art whole-body positron emission tomography (PET) scanners, Monte Carlo-based image reconstruction is associated with a significant computational cost to calculate the system matrix as well as a large memory capacity to store it. In this article, the authors present a simulation-reconstruction framework to solve these problems on the Philips Gemini GS PET scanner. A fast, realistic system matrix simulation module was developed using egs_pet, which is an efficient PET simulation code based on EGSnrc. The generated system matrix was then used in a rotator-based ordered subset expectation maximization (OS-EM) algorithm, which exploits the rotational symmetry of a cylindrical PET scanner. The system matrix was further compressed by using sparse storage techniques. The system matrix simulation took five days on 50 cores of Xeon 2.66 GHz, resulting in a system matrix of 2.01 GB. The entire system matrix could be stored in the main memory of a standard personal computer. The image quality in terms of contrast-noise trade-offs was considerably improved compared to a standard OS-EM algorithm. The image quality was also compared to the clinical software on the scanner using routine parameter settings. The contrast recovery coefficient of small hot spheres and cold spheres was significantly improved. The results indicated that the proposed framework could be used for this PET scanner with improved image quality. This method could also be applied to other state-of-the-art whole-body PET scanners and preclinical PET scanners with a similar shape.

  8. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia, E-mail: mccollough.cynthia@mayo.edu [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Halaweish, Ahmed [Siemens Medical Solutions, Malvern, Pennsylvania 19355 (United States)

    2016-01-15

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.

  9. How we read pediatric PET/CT: indications and strategies for image acquisition, interpretation and reporting.

    Science.gov (United States)

    Colleran, Gabrielle C; Kwatra, Neha; Oberg, Leah; Grant, Frederick D; Drubach, Laura; Callahan, Michael J; MacDougall, Robert D; Fahey, Frederic H; Voss, Stephan D

    2017-11-07

    PET/CT plays an important role in the diagnosis, staging and management of many pediatric malignancies. The techniques for performing PET/CT examinations in children have evolved, with increasing attention focused on reducing patient exposure to ionizing radiation dose whenever possible and minimizing scan duration and sedation times, with a goal toward optimizing the overall patient experience. This review outlines our approach to performing PET/CT, including a discussion of the indications for a PET/CT exam, approaches for optimizing the exam protocol, and a review of different approaches for acquiring the CT portion of the PET/CT exam. Strategies for PACS integration, image display, interpretation and reporting are also provided. Most practices will develop a strategy for performing PET/CT that best meets their respective needs. The purpose of this article is to provide a comprehensive overview for radiologists who are new to pediatric PET/CT, and also to provide experienced PET/CT practitioners with an update on state-of-the art CT techniques that we have incorporated into our protocols and that have enabled us to make considerable improvements to our PET/CT practice.

  10. High Dose MicroCT Does Not Contribute Toward Improved MicroPET/CT Image Quantitative Accuracy and Can Limit Longitudinal Scanning of Small Animals

    Directory of Open Access Journals (Sweden)

    Wendy A. McDougald

    2017-10-01

    Full Text Available Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1 to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2 to evaluate the absorbed dose associated with varying CT parameters.Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA software implemented by Mediso. Measured Hounsfield Unit (HU in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC, uniformity and quantitative bias were also measured.Results: Only less than 2 and 1% of CT acquisition protocols yielded water HU values < −80 and air HU values < −840, respectively. Four out of 11 CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration.Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed toward improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  11. Profiles of US and CT imaging features with a high probability of appendicitis

    NARCIS (Netherlands)

    van Randen, A.; Laméris, W.; van Es, H.W.; ten Hove, W.; Bouma, W.H.; van Leeuwen, M.S.; van Keulen, E.M.; van der Hulst, V.P.M.; Henneman, O.D.; Bossuyt, P.M.; Boermeester, M.A.; Stoker, J.

    2010-01-01

    To identify and evaluate profiles of US and CT features associated with acute appendicitis. Consecutive patients presenting with acute abdominal pain at the emergency department were invited to participate in this study. All patients underwent US and CT. Imaging features known to be associated with

  12. time of presentation of stroke patients for ct imaging in a nigerian ...

    African Journals Online (AJOL)

    Challenges in developing countries like Nigeria often lead to delayed presentation of stroke ... haemorrhagic stroke. However, 18 (21.7%) patients had apparently normal CT findings. The mean presentation time for CT imaging was 70 hours (SD ±94 hours). ..... Stroke Nursing; Council on Epidemiology and. Prevention ...

  13. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang [Biomedical Imaging Center/Cluster, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Kalra, Mannudeep; Murugan, Venkatesh [Department of Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Vannier, Michael [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-10-15

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.

  14. 3D Prior Image Constrained Projection Completion for X-ray CT Metal Artifact Reduction

    NARCIS (Netherlands)

    Mehranian, Abolfazl; Ay, Mohammad Reza; Rahmim, Arman; Zaidi, Habib

    2013-01-01

    The presence of metallic implants in the body of patients undergoing X-ray computed tomography (CT) examinations often results insevere streaking artifacts that degrade image quality. In this work, we propose a new metal artifact reduction (MAR) algorithm for 2D fan-beam and 3D cone-beam CT based on

  15. New Applications of Cardiac Computed Tomography Dual-Energy, Spectral, and Molecular CT Imaging

    NARCIS (Netherlands)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    Computed tomography (CT) has evolved into a powerful diagnostic tool, and it is impossible to imagine current clinical practice without CT imaging. Because of its widespread availability, ease of clinical application, superb sensitivity for the detection of coronary artery disease, and noninvasive

  16. TU-AB-BRC-03: Accurate Tissue Characterization for Monte Carlo Dose Calculation Using Dual-and Multi-Energy CT Data

    Energy Technology Data Exchange (ETDEWEB)

    Lalonde, A; Bouchard, H [University of Montreal, Montreal, Qc (Canada)

    2016-06-15

    Purpose: To develop a general method for human tissue characterization with dual-and multi-energy CT and evaluate its performance in determining elemental compositions and the associated proton stopping power relative to water (SPR) and photon mass absorption coefficients (EAC). Methods: Principal component analysis is used to extract an optimal basis of virtual materials from a reference dataset of tissues. These principal components (PC) are used to perform two-material decomposition using simulated DECT data. The elemental mass fraction and the electron density in each tissue is retrieved by measuring the fraction of each PC. A stoichiometric calibration method is adapted to the technique to make it suitable for clinical use. The present approach is compared with two others: parametrization and three-material decomposition using the water-lipid-protein (WLP) triplet. Results: Monte Carlo simulations using TOPAS for four reference tissues shows that characterizing them with only two PC is enough to get a submillimetric precision on proton range prediction. Based on the simulated DECT data of 43 references tissues, the proposed method is in agreement with theoretical values of protons SPR and low-kV EAC with a RMS error of 0.11% and 0.35%, respectively. In comparison, parametrization and WLP respectively yield RMS errors of 0.13% and 0.29% on SPR, and 2.72% and 2.19% on EAC. Furthermore, the proposed approach shows potential applications for spectral CT. Using five PC and five energy bins reduces the SPR RMS error to 0.03%. Conclusion: The proposed method shows good performance in determining elemental compositions from DECT data and physical quantities relevant to radiotherapy dose calculation and generally shows better accuracy and unbiased results compared to reference methods. The proposed method is particularly suitable for Monte Carlo calculations and shows promise in using more than two energies to characterize human tissue with CT.

  17. MR Image Based Approach for Metal Artifact Reduction in X-Ray CT

    Directory of Open Access Journals (Sweden)

    Andras Anderla

    2013-01-01

    Full Text Available For decades, computed tomography (CT images have been widely used to discover valuable anatomical information. Metallic implants such as dental fillings cause severe streaking artifacts which significantly degrade the quality of CT images. In this paper, we propose a new method for metal-artifact reduction using complementary magnetic resonance (MR images. The method exploits the possibilities which arise from the use of emergent trimodality systems. The proposed algorithm corrects reconstructed CT images. The projected data which is affected by dental fillings is detected and the missing projections are replaced with data obtained from a corresponding MR image. A simulation study was conducted in order to compare the reconstructed images with images reconstructed through linear interpolation, which is a common metal-artifact reduction technique. The results show that the proposed method is successful in reducing severe metal artifacts without introducing significant amount of secondary artifacts.

  18. Monte Carlo simulation in proton computed tomography: a study of image reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Inocente, Guilherme Franco; Stenico, Gabriela V.; Hormaza, Joel Mesa [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Fisica e Biofisica

    2012-07-01

    Full text: The radiation method is one of the most used for cancer treatment. In this context arises therapy with proton beams in front of conventional radiotherapy. It is known that with proton therapy there are more advantages to the patient treated when compared with more conventional methods. The dose distributed along the path, especially in healthy tissues - neighbor the tumor, is smaller and the accuracy of treatment is much better. To carry out the treatment, the patient undergoes a plan through images for visualization and location of the target volume. The main method for obtaining these images is computed tomography X-ray (XCT). For treatment with proton beam this imaging technique can to generate some uncertainties. The purpose of this project is to study the feasibility of reconstructing images generated from the irradiation with proton beams, thereby reducing some inaccuracies, as it will be the same type of radiation as treatment planning, and also to drastically reduce some errors location, since the planning can be done at the same place and just before where the patient is treated. This study aims to obtain a relationship between the intrinsic property of the interaction of photons and protons with matter. For this we use computational simulation based on Monte Carlo method with the code SRIM 2008 and MCNPX v.2.5.0, to reconstruct images using the technique used in conventional computed tomography. (author)

  19. Lumbar intraspinal juxtafacet cysts: MR imaging and CT-arthrography; Lumbale intraspinale Juxta-Facettenzysten: Kernspintomograpie und CT-Arthrographie

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, G.; Jergas, M.; Pennekamp, W.; Bickert, U.; Koester, O. [Bochum Univ. (Germany). Klinik fuer Radiologie und Nuklearmedizin; Willburger, R. [Bochum Univ. (Germany). Klinik fuer Orthopaedie

    2002-10-01

    Purpose: To present data on the MR imaging appearance of lumbar intraspinal juxtafacet cysts (JFC) and to assess the importance of additional CT arthrography. Material and Methods: Twenty-eight patients (16 women, 12 men) with a mean age of 64 years (range: 43-82), who underwent MR imaging because of radicular pain or spinal claudication, were found to have an intraspinal cyst associated with the facet joint. In 14 patients, additional CT-arthrography was performed to determine whether a communication exists between the cyst and the facet joint and to try to rupture the cyst. Results: In T{sub 2}-weighted images, juxtafacet cysts show a typical pattern consisting of a hyperintense center and hypointense rim. The center is likely to be inhomogeneous because of recurrent hemorrhage in the cyst. In T1-weighted images, the cysts are hypo/isointense. Irregular hyperintensity may indicate subacute hemorrhage, which may aggravate the clinical symptoms. MR allows superior visualization of the cyst in all anatomical planes. It also enables assessment of typical accompanying changes, such as degenerative spondylolisthesis and facet hypertrophy. All patients, who had CT-arthrography, were found to have a direct communication between joint space and cyst. Transarticular rupture of the cyst was possible in five patients. Two of these five patients had good to excellent improvement, and the remaining three patients underwent surgery. (orig.) [German] Ziel: Darstellung der kernspintomographischen Charakteristika sowie Wertigkeit der CT-Arthrographie bei lumbalen intraspinalen Juxta-Facettenzysten (JFZ). Material und Methode: Bei 28 Patienten (16 w, 12 m) mit einem Durchschnittsalter von 64 Jahren (43-82 Jahre) wurde im Rahmen der Abklaerung einer Lumboischialgie oder einer Claudicatio spinalis eine intraspinale facettgelenksassoziierte Zyste durch CT/MR diagnostiziert. Bei 14 Patienten wurde eine CT-gesteuerte Arthrographie des betroffenen Intervertebralgelenks durchgefuehrt zum

  20. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    Science.gov (United States)

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  1. Variation of system performance, quality control standards and adherence to international FDG-PET/CT imaging guidelines. A national survey of PET/CT operations in Austria.

    Science.gov (United States)

    Rausch, I; Bergmann, H; Geist, B; Schaffarich, M; Hirtl, A; Hacker, M; Beyer, T

    2014-01-01

    To gather information on clinical operations, quality control (QC) standards and adoption of guidelines for FDG-PET/CT imaging in Austrian PET/CT centres. A written survey composed of 68 questions related to A) PET/CT centre and installation, B) standard protocol parameters for FDG-PET/CT imaging of oncology patients, and C) standard QC procedures was conducted between November and December 2013 among all Austrian PET/CT centres. In addition, a NEMA-NU2 2012 image quality phantom test was performed using standard whole-body imaging settings on all PET/CT systems with a lesion-to-background ratio of 4. Recovery coefficients (RC) were calculated for each lesion and PET/CT system. A) 13 PET/CT systems were installed in 12 nuclear medicine departments at public hospitals. B) Average fasting prior to FDG-PET/CT was 7.6 (4-12) h. All sites measured blood glucose levels while using different cut-off levels (64%: 150 mg/dl). Weight-based activity injection was performed at 83% sites with a mean FDG activity of 4.1 MBq/kg. Average FDG uptake time was 55 (45-75) min. All sites employed CT contrast agents (variation from 1%-95% of the patients). All sites reported SUV-max. C) Frequency of QC tests varied significantly and QC phantom measurements revealed significant differences in RCs. Significant variations in FDG-PET/CT protocol parameters among all Austrian PET/CT users were observed. Subsequently, efforts need to be put in place to further standardize imaging protocols. At a minimum clinical PET/CT operations should ensure compliance with existing guidelines. Further, standardized QC procedures must be followed to improve quantitative accuracy across PET/CT centres.

  2. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images

    Science.gov (United States)

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-01-01

    Purpose: To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. Methods: The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. Results: The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic classification and manual segmentation were 91.6% ± 2.0%. Conclusions: A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution. PMID:23039675

  3. A microPET/CT system for invivo small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States); Yang, Y [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States); Yang, K [Department of Radiology, UC Davis Medical Center, 4701 X Street, X-ray Imaging Laboratory, Sacramento, CA 95817 (United States); Wu, Y [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States); Boone, J M [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States); Cherry, S R [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States)

    2007-07-07

    A microCT scanner was designed, fabricated and integrated with a previously reported microPET II scanner (Tai et al 2003 Phys. Med. Biol. 48 1519, Yang et al 2004 Phys. Med. Biol. 49 2527), forming a dual modality system for in vivo anatomic and molecular imaging of the mouse. The system was designed to achieve high-spatial-resolution and high-sensitivity PET images with adequate CT image quality for anatomic localization and attenuation correction with low x-ray dose. The system also has relatively high throughput for screening, and a flexible gantry and user interface. X-rays were produced by a 50 kVp, 1.5 mA fixed tungsten anode tube, with a focal spot size of 70 {mu}m. The detector was a 5 x 5 cm{sup 2} photodiode detector incorporating 48 {mu}m pixels on a CMOS array and a fast gadolinium oxysulfide (GOS) intensifying screen. The microCT system has a flexible C-arm gantry design with adjustable detector positioning, which acquires CT projection images around the common microPET/CT bed. The design and the initial characterization of the microCT system is described, and images of the first mouse scans with microPET/CT scanning protocols are shown.

  4. A microPET/CT system for invivo small animal imaging

    Science.gov (United States)

    Liang, H.; Yang, Y.; Yang, K.; Wu, Y.; Boone, J. M.; Cherry, S. R.

    2007-07-01

    A microCT scanner was designed, fabricated and integrated with a previously reported microPET II scanner (Tai et al 2003 Phys. Med. Biol. 48 1519, Yang et al 2004 Phys. Med. Biol. 49 2527), forming a dual modality system for in vivo anatomic and molecular imaging of the mouse. The system was designed to achieve high-spatial-resolution and high-sensitivity PET images with adequate CT image quality for anatomic localization and attenuation correction with low x-ray dose. The system also has relatively high throughput for screening, and a flexible gantry and user interface. X-rays were produced by a 50 kVp, 1.5 mA fixed tungsten anode tube, with a focal spot size of 70 µm. The detector was a 5 × 5 cm2 photodiode detector incorporating 48 µm pixels on a CMOS array and a fast gadolinium oxysulfide (GOS) intensifying screen. The microCT system has a flexible C-arm gantry design with adjustable detector positioning, which acquires CT projection images around the common microPET/CT bed. The design and the initial characterization of the microCT system is described, and images of the first mouse scans with microPET/CT scanning protocols are shown.

  5. Influence of Arm Movement on Lesion Detection in PET/CT Imaging: Case Report

    Directory of Open Access Journals (Sweden)

    Yasemin Parlak

    2015-06-01

    Full Text Available Arm movement after the CT scan is a common artifact in PET/CT scanning. Motion artifacts may lead to difficulties in interpreting PET/CT images accurately. We report a 66 year old male patient with gastric cancer who underwent PET/CT for primary staging. He had a previous history of papillary thyroid cancer. In PET scan, there were striking cold artifacts at the level of arms. This is a classical sign of an accidental arm motion. A second scan was performed with the arms down due to the history of papillary thyroid cancer. The results were discussed.

  6. PET CT imaging in extramedullary hematopoiesis and lung cancer surprise in a case with thalassemia intermedia

    Directory of Open Access Journals (Sweden)

    Semra Paydaş

    2011-03-01

    Full Text Available Extramedullary hematopoiesis (EMH is the production of hematopoietic precursors outside the bone marrow cavity, and it causes mass effects according to its localization. Magnetic resonance imaging (MRI and/or computed tomography (CT scans are used most commonly to detect EMH foci. We report herein a case with thalassemia intermedia causing paravertebral mass associated with EMH detected by CT scan. We further evaluated the case with positron emission tomography (PET CT, and lung cancer, which was not revealed in the CT scan, was detected coincidentally.

  7. Molecular imaging for prostate cancer: Performance analysis of (68)Ga-PSMA PET/CT versus choline PET/CT.

    Science.gov (United States)

    Michaud, L; Touijer, K A

    2017-06-01

    There is a need for a precise and reliable imaging to improve the management of prostate cancer. In recent years the PET/CT with choline has changed the handling of prostate cancer in Europe, and it is commonly used for initial stratification or for the diagnosis of a biochemical recurrence, although it does not lack limitations. Other markers are being tested, including the ligand of prostate-specific membrane antigen (PSMA), that seems to offer encouraging prospects. The goal of this piece of work was to critically review the role of choline and PSMA PET/CT in prostate cancer. A systematic literature review of databases PUBMED/MEDLINE and EMBASE was conducted searching for articles fully published in English on the PET marker in prostate cancer and its clinical application. It seems as 68Ga-PSMA PET/CT is better than PET/CT in prostate cancer to detect primary prostate lesions, initial metastases in the lymph nodes and recurrence. However, further research is required to obtain high-level tests. Also, other PET markers are studied. Moreover, the emergence of a new PET/MR camera could change the performance of PET imaging. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Usefulness comparative experimental study of the CT and MR imaging in the dog clonorchiasis

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Eun Hoe; Kweon, Dae Cheol; Kim, Dong Sung; Choi, Chun Kyu [Seoul National University Hospital, Seoul (Korea, Republic of)

    2003-06-15

    Be aware of clinical possibilities on image quality by comparison of contrast-enhanced dynamic CT and MR imaging applied of MIP technique after the experimentally induced clonorchasis infection in dogs. Twenty mongrel dogs prepared in zoo-laboratory were followed up with serial CT scans and MR imaging for 13 weeks after the experimental infection in liver. Two-phase helical CT was acquired in the supine position with the following scanning parameters. After the injection of contrast material, the arterial phase was initiated using a bolus-tracking method. The portal phase scan was started 15 seconds after the arterial phase scan. CT protocol was determined after single level dynamic scans. MR imaging used the CP body coil and images get a 2D image using HASTE, FLASH, TSE pulse sequence. Bile duct MR imaging were obtained in three plans. Then each image was post processed by using target MIP algorithm. Two experimentation above, as a method of evaluation, one pathologist, three radiologist and five radiological technologist were analyzed visually for evaluation of following findings, enhancement of the bile duct wall, dilatation of bile duct tip, liver parenchyma, background suppression. Five dogs was died of a disease after the infection, the rest one else shows the chronic dilatation of the intrahepatic bile duct with CT and MR imaging. Contrast administration of CT shows the contrast-enhanced of the bile duct walls with live parenchyma. MR Imaging calculated of CNR and CR from pulse sequence for comparative evaluation and shows the pattern of the intrahepatic bile duct, dilatation of bile duct tip using MIP technique. CNR of the clonorchiasis, HASTE was 16 {+-} 0.83, TSE 7.06 {+-} 3.0, FLASH 1.19 {+-} 0.2 and CR, HASTE was 73.3%, TSE 62.3%, FLASH 6.4%. CT and MR imaging is very usefulness in diagnosis of dog clonorchiasis.

  9. Dosimetric effect of statistics noise of the TC image in the simulation Monte Carlo of radiotherapy treatments; Efecto dosimetrico del ruido estadistico de la imagen TC en la simulacion Monte Carlo de tratamientos de radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Laliena Bielsa, V.; Jimenez Albericio, F. J.; Gandia Martinez, A.; Font Gomez, J. A.; Mengual Gil, M. A.; Andres Redondo, M. M.

    2013-07-01

    The source of uncertainty is not exclusive of the Monte Carlo method, but it will be present in any algorithm which takes into account the correction for heterogeneity. Although we hope that the uncertainty described above is small, the objective of this work is to try to quantify depending on the CT study. (Author)

  10. Magnetic resonance imaging in the diagnosis of the liver diseases; From CT to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shinichiro; Ohmoto, Kenji; Takatori, Keiko; Yamamoto, Ryosuke; Ideguchi, Seiji; Ohumi, Tsuneyo; Hino, Kazunari; Hirano, Yutaka (Kawasaki Medical School, Kurashiki, Okayama (Japan))

    1989-12-01

    To evaluate the usefulness of magnetic resonance (MR) imaging in the diagnosis of liver diseases, MR imaging was performed in 20 patients with liver diseases. MR imaging was carried out with a 0.5-Tesla superconducting magnet by a spin-echo technique, from which T{sub 1} and T{sub 2}-weighted images were obtained. Based on our more than ten years experience with CT diagnosis, the essentials and limits of CT diagnosis were summarized and compared with those of MR. CT and MR were almost equally effective in the diagnosis of liver diseases, but MR was especially useful in determining the extent of necrosis in liver cancer after TAE (transcatheter arterial embolization) or PEIT (percutaneous ethanol injection therapy). The diagnosis of hemangiomas and hemosiderosis, as well as the differentiation of small liver cancer and liver cyst, was superior to that using conventional X-ray CT. (author).

  11. Raw computed tomography (CT) images of sediment cores collected in 2009 offshore from Palos Verdes, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release includes raw computed tomography (CT) images of sediment cores collected in 2009 offshore of Palos Verdes, California. It is one of...

  12. Automatic pulmonary fissure detection and lobe segmentation in CT chest images

    National Research Council Canada - National Science Library

    Qi, Shouliang; van Triest, Han J W; Yue, Yong; Xu, Mingjie; Kang, Yan

    2014-01-01

    .... Based on CT images, the automatic algorithm to detect the fissures and divide the lung into five lobes will help regionally quantify, amongst others, the lung density, texture, airway and, blood...

  13. Helical CT of calcaneal fractures: technique and imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, R.J.; Schweitzer, M.E.; Karasick, D.; Deely, D.M.; Morrison, W. [Thomas Jefferson University Hospital, Department of Radiology, 111 South 11th Street, Philadelphia, PA 19107 (United States)

    1998-01-01

    Since the degree of comminution, fracture alignment, and articular congruity of intra-articular calcaneal fractures are important determinants in surgical treatment and patient prognosis, we review helical computed tomographic (CT) technique and features for detecting and assessing the extent of acute calcaneal fractures. Helical CT can be used to classify these fractures and facilitate the surgeon`s understanding of the anatomy and position of the fracture components in all orthogonal planes independently of the patient`s condition, foot placement in the CT gantry, or other injuries. (orig.) With 13 figs., 13 refs.

  14. Spectral CT imaging in patients with Budd-Chiari syndrome: investigation of image quality.

    Science.gov (United States)

    Su, Lei; Dong, Junqiang; Sun, Qiang; Liu, Jie; Lv, Peijie; Hu, Lili; Yan, Liangliang; Gao, Jianbo

    2014-11-01

    To assess the image quality of monochromatic imaging from spectral CT in patients with Budd-Chiari syndrome (BCS), fifty patients with BCS underwent spectral CT to generate conventional 140 kVp polychromatic images (group A) and monochromatic images, with energy levels from 40 to 80, 40 + 70, and 50 + 70 keV fusion images (group B) during the portal venous phase (PVP) and the hepatic venous phase (HVP). Two-sample t tests compared vessel-to-liver contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) for the portal vein (PV), hepatic vein (HV), inferior vena cava. Readers' subjective evaluations of the image quality were recorded. The highest SNR values in group B were distributed at 50 keV; the highest CNR values in group B were distributed at 40 keV. The higher CNR values and SNR values were obtained though PVP of PV (SNR 18.39 ± 6.13 vs. 10.56 ± 3.31, CNR 7.81 ± 3.40 vs. 3.58 ± 1.31) and HVP of HV (3.89 ± 2.08 vs. 1.27 ± 1.55) in the group B; the lower image noise for group B was at 70 keV and 50 + 70 keV (15.54 ± 8.39 vs. 18.40 ± 4.97, P = 0.0004 and 18.97 ± 7.61 vs. 18.40 ± 4.97, P = 0.0691); the results show that the 50 + 70 keV fusion image quality was better than that in group A. Monochromatic energy levels of 40-70, 40 + 70, and 50 + 70 keV fusion image can increase vascular contrast and that will be helpful for the diagnosis of BCS, we select the 50 + 70 keV fusion image to acquire the best BCS images.

  15. Physiologic positron emission tomography/CT imaging of an integrated orbital implant.

    Science.gov (United States)

    Graue, Gerardo F; Finger, Paul T

    2012-01-01

    A 46-year-old woman with a T4N0M0 choroidal melanoma was staged for metastatic disease with whole-body positron emission tomography/CT imaging. She underwent enucleation of the right eye and placement of a 20-mm MEDPOR spherical implant. Four months after surgery, follow-up positron emission tomography/CT imaging revealed physiologic metabolic activity in the MEDPOR implant with no evidence of orbital melanoma or chronic inflammation.

  16. A Case of a Retained Surgical Sponge after Endoscopic Sinus Surgery Depicted on CT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Song Mee; Kim, Byung Guk [Catholic University St. Paul' s Hospital, Seoul (Korea, Republic of)

    2009-08-15

    A retained surgical sponge is an uncommon complication in endoscopic sinus surgery. A 53-year-old woman who underwent endoscopic sinus surgery two years prior presented with nasal stuffiness and posterior nasal dripping that had persisted for one year. On CT images, a soft-tissue mass with mixed high and low attenuation was noted in the posterior air cells of the right ethmoid sinus. CT imaging features of the surgical sponge granuloma are described.

  17. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... to current best practice, we demonstrate competitive performance and some useful properties of our method....

  18. WE-A-BRF-01: Dual-Energy CT Imaging in Diagnostic Imaging and Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, S [University of California, Irvine, CA (United States); Li, B [Boston University Medical Center, Boston, MA (United States); Yin, F [Duke University Medical Center, Durham, NC (United States); Chen, H [New York Presbyterian Hospital, New York, NY (United States)

    2014-06-15

    The quantification accuracy of dual-energy imaging is influenced by the fundamentals of x-ray physics, system geometry, data acquisition hardware/protocol, system calibration, and image processing technique. This symposium will provide updates on the following advanced application areas: Mammography. Volumetric breast density techniques based on standard mammograms require estimation of breast thickness, which is difficult to accurately measure. By comparison, calculation of breast density using dual energy mammography does not require measurement of breast thickness. Dual energy mammography has been implemented using both energy integrating flat panel detectors in conjunction with beam energy switching and energy resolved photon counting detectors. These techniques have been optimized using simulation studies and validated using physical phantoms and postmortem breasts. Chemical decomposition was used as the gold standard for volumetric breast density measurement in postmortem breasts. Breast density measurements have also been compared with results from four-category BI-RADS density rankings, standard image thresholding and Fuzzy k-mean clustering techniques. These studies indicate that dual energy mammography can be used to accurately measure volumetric breast density. Cardiovascular CT. The predicative accuracy of risk models for recurrent stroke and cardiac arrest depends heavily on accurate differentiation of thrombus or calcium from iodine in left atrial appendage or coronary arteries. The amount of energy separation is constrained by image noise; therefore, optimal kVp, beam filtration, and balanced flux are essential for the quantification accuracy of iodine and calcium. The basis materials are combined linearly to generate monochromatic energy images, where CT# accuracy and CNR are energy dependent. With optimal monochromatic energy, the mean iodine concentration for the thrombus, circulatory stasis, and control groups are significantly different. Risk

  19. Automatic segmentation of teeth from dentomaxillofacial 3D-CT images.

    Science.gov (United States)

    Aizawa, Mitsuhiro; Nishikawa, Keiichi; Sasaki, Keita; Kobayashi, Norio; Yama, Mitsuru; Kakizawa, Takashi; Sano, Tsukasa; Murakami, Shinichi

    2010-04-20

    CT is an effective tool for image diagnosis because it enables noninvasive observation of internal organs. In the course of CT, 3D-CT, such as a helical scanning CT and a multi-detector row CT, has been developed. With the use of 3D-CT, organs can be observed from several viewing directions. Even now, however, 3D-CT images are generated by manual procedures to extract objective organs using the threshold method. These procedures waste time and effort. Therefore, development of highly automated and effective extracting techniques has been desired. The region growing (RG) method is one of the effective techniques of extracting internal organs. The conventional RG method, however, has some defects. Extracted regions are strongly affected by the threshold value for segmentation. A break point on a region contour yields a leakage of region. To overcome these defects, we formulated a modified region growing method with edge detection (MRGWED) which combines a three-dimensional region growing technique and an edge detection technique. Using the MRGWED, we tried to extract teeth from dentomaxillofacial 3D-CT image data.

  20. Algorithm of pulmonary emphysema extraction using thoracic 3-D CT images

    Science.gov (United States)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2008-03-01

    Emphysema patients have the tendency to increase due to aging and smoking. Emphysematous disease destroys alveolus and to repair is impossible, thus early detection is essential. CT value of lung tissue decreases due to the destruction of lung structure. This CT value becomes lower than the normal lung- low density absorption region or referred to as Low Attenuation Area (LAA). So far, the conventional way of extracting LAA by simple thresholding has been proposed. However, the CT value of CT image fluctuates due to the measurement conditions, with various bias components such as inspiration, expiration and congestion. It is therefore necessary to consider these bias components in the extraction of LAA. We removed these bias components and we proposed LAA extraction algorithm. This algorithm has been applied to the phantom image. Then, by using the low dose CT(normal: 30 cases, obstructive lung disease: 26 cases), we extracted early stage LAA and quantitatively analyzed lung lobes using lung structure.

  1. Monte-Carlo simulations and image reconstruction for novel imaging scenarios in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gillam, John E. [The University of Sydney, Faculty of Health Sciences and The Brain and Mind Centre, Camperdown (Australia); Rafecas, Magdalena, E-mail: rafecas@imt.uni-luebeck.de [University of Lubeck, Institute of Medical Engineering, Ratzeburger Allee 160, 23538 Lübeck (Germany)

    2016-02-11

    Emission imaging incorporates both the development of dedicated devices for data acquisition as well as algorithms for recovering images from that data. Emission tomography is an indirect approach to imaging. The effect of device modification on the final image can be understood through both the way in which data are gathered, using simulation, and the way in which the image is formed from that data, or image reconstruction. When developing novel devices, systems and imaging tasks, accurate simulation and image reconstruction allow performance to be estimated, and in some cases optimized, using computational methods before or during the process of physical construction. However, there are a vast range of approaches, algorithms and pre-existing computational tools that can be exploited and the choices made will affect the accuracy of the in silico results and quality of the reconstructed images. On the one hand, should important physical effects be neglected in either the simulation or reconstruction steps, specific enhancements provided by novel devices may not be represented in the results. On the other hand, over-modeling of device characteristics in either step leads to large computational overheads that can confound timely results. Here, a range of simulation methodologies and toolkits are discussed, as well as reconstruction algorithms that may be employed in emission imaging. The relative advantages and disadvantages of a range of options are highlighted using specific examples from current research scenarios.

  2. Estimation of Compton imager using single 3D position-sensitive LYSO scintillator: Monte Carlo simulation

    Science.gov (United States)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho

    2017-07-01

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm3 and 0.3 × 0.3 × 0.3 cm3, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-to-noise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of 137Cs (662 keV) could be distinguishable if they were more than 17° apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  3. Estimation of Compton Imager Using Single 3D Position-Sensitive LYSO Scintillator: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm{sup 3} and 0.3 × 0.3 × 0.3 cm{sup 3}, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-tonoise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of {sup 137}Cs (662 keV) could be distinguishable if they were more than 17 ◦ apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  4. Metastatic retropharyngeal lymph nodes: Comparison of CT and MR imaging for diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hiroki, E-mail: hkato@gifu-u.ac.jp [Department of Radiology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Kanematsu, Masayuki, E-mail: masa_gif@yahoo.co.jp [Department of Radiology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); High-level Imaging Diagnosis Center, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Watanabe, Haruo, E-mail: haruwow860@yahoo.co.jp [Department of Radiology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Mizuta, Keisuke, E-mail: kmizuta@gifu-u.ac.jp [Department of Otolaryngology, Gifu University School of Medicine, Gifu (Japan); Aoki, Mitsuhiro, E-mail: aoki@gifu-u.ac.jp [Department of Otolaryngology, Gifu University School of Medicine, Gifu (Japan)

    2014-07-15

    Purpose: The purpose of this study was to compare the diagnostic accuracies of CT and MR imaging for the detection of metastatic retropharyngeal lymph nodes (RLNs) in patients with nasopharyngeal and oropharyngeal squamous cell carcinoma (SCC). Materials and methods: The study included 38 patients (28 men and 10 women; mean age, 65 years; age range, 48–82 years) with nasopharyngeal (n = 15) and oropharyngeal (n = 23) SCC who underwent both contrast-enhanced CT and MR imaging before chemoradiotherapy. RLNs were classified as malignant or benign on the basis of the results of follow-up MR imaging. Two radiologists independently evaluated the images for diagnosing metastatic RLNs. Results: Among a total of 68 RLNs (minimum diameter, ≥4 mm) that were detected on gadolinium-enhanced fat-suppressed T1-weighted images, 30 (44%) were malignant and 38 (56%) were benign. The sensitivities of CT versus MRI were 60% versus 97% for observer 1 (p < 0.01) and 37% versus 90% for observer 2 (p < 0.01). The specificities of CT versus MRI were 92% versus 97% for observer 1 (p = 0.50) and 92% versus 100% for observer 2 (p = 0.25). The areas under the receiver operating characteristic curve (AUC) for CT versus MRI were 0.788 versus 0.996 for observer 1 (p < 0.01) and 0.693 versus 0.961 for observer 2 (p < 0.01). Conclusion: MR imaging was superior to CT for the detection of metastatic RLNs.

  5. Relationship between solitary pulmonary nodule lung cancer and CT image features based on gradual clustering

    Science.gov (United States)

    Zhang, Weipeng

    2017-06-01

    The relationship between the medical characteristics of lung cancers and computer tomography (CT) images are explored so as to improve the early diagnosis rate of lung cancers. This research collected CT images of patients with solitary pulmonary nodule lung cancer, and used gradual clustering methodology to classify them. Preliminary classifications were made, followed by continuous modification and iteration to determine the optimal condensation point, until iteration stability was achieved. Reasonable classification results were obtained. the clustering results fell into 3 categories. The first type of patients was mostly female, with ages between 50 and 65 years. CT images of solitary pulmonary nodule lung cancer for this group contain complete lobulation and burr, with pleural indentation; The second type of patients was mostly male with ages between 50 and 80 years. CT images of solitary pulmonary nodule lung cancer for this group contain complete lobulation and burr, but with no pleural indentation; The third type of patients was also mostly male with ages between 50 and 80 years. CT images for this group showed no abnormalities. the application of gradual clustering methodology can scientifically classify CT image features of patients with lung cancer in the initial lesion stage. These findings provide the basis for early detection and treatment of malignant lesions in patients with lung cancer.

  6. SU-F-I-38: Patient Organ Specific Dose Assessment in Coronary CT Angiograph Using Voxellaized Volume Dose Index in Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh. [Tehran University of Medical Scienced(TUMS), School of Medicine, Department of Nedical Physics and Biomedical Engineering, Tehran (Iran, Islamic Republic of); Paydar, R. [Iran University of Medical Sciences(IUMS), Allied Medicine Faculty, Department of radiation Sciences, Tehran (Iran, Islamic Republic of)

    2016-06-15

    Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-system component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose

  7. CT and MR imaging of the thoracic aorta

    Directory of Open Access Journals (Sweden)

    Di Cesare Ernesto

    2016-01-01

    Full Text Available At present time, both CT and MRI are valuable techniques in the study of the thoracic aorta. Nowadays, CT represents the most widely employed technique for the study of the thoracic aorta. The new generation CTs show sensitivities up to 100% and specificities of 98-99%. Sixteen and wider row detectors provide isotropic pixels, mandatory for the ineludible longitudinal reconstruction. The main limits are related to the X-ray dose expoure and the use of iodinated contrast media. MRI has great potential in the study of the thoracic aorta. Nevertheless, if compared to CT, acquisition times remain longer and movement artifact susceptibility higher. The main MRI disadvantages are claustrophobia, presence of ferromagnetic implants, pacemakers, longer acquisition times with respect to CT, inability to use contrast media in cases of renal insufficiency, lower spatial resolution and less availability than CT. CT is preferred in the acute aortic disease. Nevertheless, since it requires iodinated contrast media and X-ray exposure, it may be adequately replaced by MRI in the follow up of aortic diseases. The main limitation of MRI, however, is related to the scarce visibility of stents and calcifications.

  8. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus

    2010-01-01

    and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while...... simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described...

  9. Optimization of low-dose CT protocol in pediatric nuclear medicine imaging.

    Science.gov (United States)

    Piwowarska-Bilska, Hanna; Hahn, Leszek J; Birkenfeld, Bozena; Cichon-Bankowska, Katarzyna; Listewnik, Maria H; Zorga, Piotr

    2010-12-01

    This study was performed to find the optimal low-dose CT protocol for children being imaged on SPECT/CT scanners not equipped with automatic dose control. For SPECT/CT systems with manually adjustable x-ray tube voltage (kV) and anode current (mA), an optimized protocol makes it possible to minimize the dose to patients. Using the 4-slice low-dose CT component of a commercially available SPECT/CT scanner, we compared the signals reaching the CT detector after radiation passes through objects of different sizes. First, the exit dose rates were measured for combinations of available voltages and currents. Next, imaging parameters were selected on the basis of acceptable levels of exit dose rates, cylindric phantoms of different diameters approximating children of different sizes were scanned using these parameters, and the quality of the CT images was evaluated. Finally, weighted CT dose indexes for abdomen and head CT dose phantoms simulating, respectively, adult and pediatric patients were measured using exactly the same techniques to estimate and compare doses to these 2 groups of patients. For children with torsos smaller than 150 mm, imaging can be performed using the lowest available voltage and current (120 kV and 1 mA, respectively). For children with torsos less than 250 mm, 140 kV and 1.5 mA can be used. For patients with torsos greater than 250 and less than 300 mm, 140 kV and 2 mA can be used. Regarding the signal-to-noise ratio, all these parameters give an excellent signal and fully acceptable noise levels. For the SPECT/CT system studied, even the lowest available voltage and current used for scanning pediatric patients did not cause signal-to-noise degradation, and the use of these settings substantially lowered the dose to the patients.

  10. A multiscale adaptive mask method for rigid intraoperative ultrasound and preoperative CT image registration.

    Science.gov (United States)

    Zhang, Zhijun; Liu, Feng; Tsui, Hungtat; Lau, Yunwong; Song, Xubo

    2014-10-01

    Rigid registration of intraoperative ultrasound (US) and preoperative CT image is important for providing real-time guidance during operations. However, due to the low spatial and temporal resolutions and the dissimilarity between US and CT, accurate registration of CT and US images is still a challenging problem. The authors propose an adaptive-mask-based CT and US registration method. The registration is initialized by matching the image regions of CT and US with intensity distinctiveness. The registration is a multistage iterative process in which the US region mask is adaptively updated. Each stage is an interleaving process of optimizing a global similarity energy and updating the mask of US by selecting high saliency and local statistical dependency regions. Performances of their proposed method and mutual information (MI) based method are validated with simulated, in vitro phantom and real patient datasets. Results show that their method has larger capture range in all datasets. The estimated transformation parameters in their method are more accurate than the mutual information based method. By using an adaptively updated mask of the US image, regions with salient intensity information and high intensity correlation with CT are included in the registration. Regions which have low correlation with CT such as artifacts are excluded in the registration so that the robustness and accuracy of the intensity-based registration method are improved.

  11. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    Science.gov (United States)

    Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920

  12. Study of CT head scans using different voltages: image quality evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco de Freitas C, I.; Prata M, A. [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil); Alonso, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P., E-mail: iarapfcorrea@gmail.com [Universidade Federal de Minas Gerais, Departamento de Anatomia e Imagem, Av. Prof. Alfredo Balena 190, 30130-100 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  13. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    Directory of Open Access Journals (Sweden)

    Cristian T. Badea

    2013-01-01

    Full Text Available CT and digital subtraction angiography (DSA are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA. This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  14. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    Science.gov (United States)

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  15. CT imaging features and frequency of left ventricular myocardial fat in patients with CT findings of chronic left ventricular myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, H.M.; Litt, H.I. [Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States); Torigian, D.A. [Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States)], E-mail: drew.torigian@uphs.upenn.edu

    2008-03-15

    Aim: To determine the frequency of left ventricular myocardial fat in patients with computed tomography (CT) findings of chronic left ventricular myocardial infarction, and to review the typical CT imaging features. Materials and methods: A retrospective search of the CT and nuclear scintigraphy reports from 1998-2005 for chronic left ventricular myocardial infarction was performed. The study group comprised those cases with available CT examinations revealing findings of chronic left ventricular myocardial infarction. Assessment for the presence of various imaging characteristics of left ventricular myocardial fat was performed in all cases. Results: The frequency of left ventricular myocardial fat in 47 patients with CT evidence of chronic left ventricular myocardial infarction was 51%. Typical CT imaging features include thin linear or curvilinear fat attenuation within left ventricular myocardium, most commonly subendocardial, often associated with left ventricular wall thinning and/or calcification, predominantly in elderly men. Conclusions: Fat in the left ventricular myocardium is a common additional finding in patients with CT findings of chronic left ventricular myocardial infarction. The potential, but as yet unproven, use of this CT imaging finding is that the radiologist may be able to suggest a potential diagnosis of chronic left ventricular myocardial infarction on unenhanced, thick-section, non-gated or non-triggered chest CT imaging where identification of myocardial wall thinning may be difficult.

  16. Characterization of Image Quality for 3D Scatter Corrected Breast CT Images.

    Science.gov (United States)

    Pachon, Jan H; Shah, Jainil; Tornai, Martin P

    2011-03-16

    The goal of this study was to characterize the image quality of our dedicated, quasi-monochromatic spectrum, cone beam breast imaging system under scatter corrected and non-scatter corrected conditions for a variety of breast compositions. CT projections were acquired of a breast phantom containing two concentric sets of acrylic spheres that varied in size (1-8mm) based on their polar position. The breast phantom was filled with 3 different concentrations of methanol and water, simulating a range of breast densities (0.79-1.0g/cc); acrylic yarn was sometimes included to simulate connective tissue of a breast. For each phantom condition, 2D scatter was measured for all projection angles. Scatter-corrected and uncorrected projections were then reconstructed with an iterative ordered subsets convex algorithm. Reconstructed image quality was characterized using SNR and contrast analysis, and followed by a human observer detection task for the spheres in the different concentric rings. Results show that scatter correction effectively reduces the cupping artifact and improves image contrast and SNR. Results from the observer study indicate that there was no statistical difference in the number or sizes of lesions observed in the scatter versus non-scatter corrected images for all densities. Nonetheless, applying scatter correction for differing breast conditions improves overall image quality.

  17. Impact of iterative reconstruction on image quality of low-dose CT of the lumbar spine.

    Science.gov (United States)

    Alshamari, Muhammed; Geijer, Mats; Norrman, Eva; Lidén, Mats; Krauss, Wolfgang; Jendeberg, Johan; Magnuson, Anders; Geijer, Håkan

    2017-06-01

    Background Iterative reconstruction (IR) is a recent reconstruction algorithm for computed tomography (CT) that can be used instead of the standard algorithm, filtered back projection (FBP), to reduce radiation dose and/or improve image quality. Purpose To evaluate and compare the image quality of low-dose CT of the lumbar spine reconstructed with IR to conventional FBP, without further reduction of radiation dose. Material and Methods Low-dose CT on 55 patients was performed on a Siemens scanner using 120 kV tube voltage, 30 reference mAs, and automatic dose modulation. From raw CT data, lumbar spine CT images were reconstructed with a medium filter (B41f) using FBP and four levels of IR (levels 2-5). Five reviewers scored all images on seven image quality criteria according to the European guidelines on quality criteria for CT, using a five-grade scale. A side-by-side comparison was also performed. Results There was significant improvement in image quality for IR (levels 2-4) compared to FBP. According to visual grading regression, odds ratios of all criteria with 95% confidence intervals for IR2, IR3, IR4, and IR5 were: 1.59 (1.39-1.83), 1.74 (1.51-1.99), 1.68 (1.46-1.93), and 1.08 (0.94-1.23), respectively. In the side-by-side comparison of all reconstructions, images with IR (levels 2-4) received the highest scores. The mean overall CTDIvol was 1.70 mGy (SD 0.46; range, 1.01-3.83 mGy). Image noise decreased in a linear fashion with increased strength of IR. Conclusion Iterative reconstruction at levels 2, 3, and 4 improves image quality of low-dose CT of the lumbar spine compared to FPB.

  18. A minimum spanning forest based classification method for dedicated breast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Robert [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 (United States); Fei, Baowei, E-mail: bfei@emory.edu [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322 (United States); Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322 (United States); Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 (United States)

    2015-11-15

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.

  19. Influence of difference in cross-sectional dose profile in a CTDI phantom on X-ray CT dose estimation: a Monte Carlo study.

    Science.gov (United States)

    Haba, Tomonobu; Koyama, Shuji; Ida, Yoshihiro

    2014-01-01

    The longitudinal dose profile in a computed tomography dose index (CTDI) phantom had been studied by many researchers. The cross-sectional dose profile in the CTDI phantom, however, has not been studied. It is also important to understand the cross-sectional dose profile in the CTDI phantom for dose estimation in X-ray CT. In this study, the cross-sectional dose profile in the CTDI phantom was calculated by use of a Monte Carlo (MC) simulation method. A helical or a 320-detector-row cone-beam X-ray CT scanner was simulated. The cross-sectional dose profile in the CTDI phantom from surface to surface through the center point was calculated by MC simulation. The shape of the calculation region was a cylinder of 1-mm-diameter. The length of the cylinder was 23, 100, or 300 mm to represent various CT ionization chamber lengths. Detailed analyses of the energy depositions demonstrated that the cross-sectional dose profile was different in measurement methods and phantom sizes. In this study, we also focused on the validation of the weighting factor used in weighted CTDI (CTDI w ). As it stands now, the weighting factor used in CTDI w is (1/3, 2/3) for the (central, peripheral) axes. Our results showed that an equal weighting factor, which is (1/2, 1/2) for the (central, peripheral) axes, is more suitable to estimate the average cross-sectional dose when X-ray CT dose estimation is performed.

  20. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    Science.gov (United States)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  1. CT radiation dose and image quality optimization using a porcine model.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2013-01-01

    To evaluate potential radiation dose savings and resultant image quality effects with regard to optimization of commonly performed computed tomography (CT) studies derived from imaging a porcine (pig) model. Imaging protocols for 4 clinical CT suites were developed based on the lowest milliamperage and kilovoltage, the highest pitch that could be set from current imaging protocol parameters, or both. This occurred before significant changes in noise, contrast, and spatial resolution were measured objectively on images produced from a quality assurance CT phantom. The current and derived phantom protocols were then applied to scan a porcine model for head, abdomen, and chest CT studies. Further optimized protocols were developed based on the same methodology as in the phantom study. The optimization achieved with respect to radiation dose and image quality was evaluated following data collection of radiation dose recordings and image quality review. Relative visual grading analysis of image quality criteria adapted from the European guidelines on radiology quality criteria for CT were used for studies completed with both the phantom-based or porcine-derived imaging protocols. In 5 out of 16 experimental combinations, the current clinical protocol was maintained. In 2 instances, the phantom protocol reduced radiation dose by 19% to 38%. In the remaining 9 instances, the optimization based on the porcine model further reduced radiation dose by 17% to 38%. The porcine model closely reflects anatomical structures in humans, allowing the grading of anatomical criteria as part of image quality review without radiation risks to human subjects. This study demonstrates that using a porcine model to evaluate CT optimization resulted in more radiation dose reduction than when imaging protocols were tested solely on quality assurance phantoms.

  2. SU-C-207A-03: Development of Proton CT Imaging System Using Thick Scintillator and CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Uesaka, M [The University of Tokyo, Tokyo (Japan); Nishio, T; Tsuneda, M [Hiroshima University, Hiroshima (Japan); Matsushita, K [Rikkyo University, Tokyo (Japan); Kabuki, S [Tokai University, Isehara (Japan)

    2016-06-15

    Purpose: In the treatment planning of proton therapy, Water Equivalent Length (WEL), which is the parameter for the calculation of dose and the range of proton, is derived by X-ray CT (xCT) image and xCT-WEL conversion. However, about a few percent error in the accuracy of proton range calculation through this conversion has been reported. The purpose of this study is to construct a proton CT (pCT) imaging system for an evaluation of the error. Methods: The pCT imaging system was constructed with a thick scintillator and a cooled CCD camera, which acquires the two-dimensional image of integrated value of the scintillation light toward the beam direction. The pCT image is reconstructed by FBP method using a correction between the light intensity and residual range of proton beam. An experiment for the demonstration of this system was performed with 70-MeV proton beam provided by NIRS cyclotron. The pCT image of several objects reconstructed from the experimental data was evaluated quantitatively. Results: Three-dimensional pCT images of several objects were reconstructed experimentally. A finestructure of approximately 1 mm was clearly observed. The position resolution of pCT image was almost the same as that of xCT image. And the error of proton CT pixel value was up to 4%. The deterioration of image quality was caused mainly by the effect of multiple Coulomb scattering. Conclusion: We designed and constructed the pCT imaging system using a thick scintillator and a CCD camera. And the system was evaluated with the experiment by use of 70-MeV proton beam. Three-dimensional pCT images of several objects were acquired by the system. This work was supported by JST SENTAN Grant Number 13A1101 and JSPS KAKENHI Grant Number 15H04912.

  3. Comparing Effective Doses During Image-Guided Core Needle Biopsies with Computed Tomography Versus C-Arm Cone Beam CT Using Adult and Pediatric Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Shlomo, A. [Soreq NRC, Radiation Protection Domain (Israel); Cohen, D.; Bruckheimer, E. [Schneider Children’s Medical Center, Section of Pediatric Cardiology (Israel); Bachar, G. N.; Konstantinovsky, R. [Rabin Medical Center, Department of Diagnostic Radiology (Israel); Birk, E. [Schneider Children’s Medical Center, Section of Pediatric Cardiology (Israel); Atar, E., E-mail: elia@clalit.org.il [Rabin Medical Center, Department of Diagnostic Radiology (Israel)

    2016-05-15

    PurposeTo compare the effective doses of needle biopsies based on dose measurements and simulations using adult and pediatric phantoms, between cone beam c-arm CT (CBCT) and CT.MethodEffective doses were calculated and compared based on measurements and Monte Carlo simulations of CT- and CBCT-guided biopsy procedures of the lungs, liver, and kidney using pediatric and adult phantoms.ResultsThe effective doses for pediatric and adult phantoms, using our standard protocols for upper, middle and lower lungs, liver, and kidney biopsies, were significantly lower under CBCT guidance than CT. The average effective dose for a 5-year old for these five biopsies was 0.36 ± 0.05 mSv with the standard CBCT exposure protocols and 2.13 ± 0.26 mSv with CT. The adult average effective dose for the five biopsies was 1.63 ± 0.22 mSv with the standard CBCT protocols and 8.22 ± 1.02 mSv using CT. The CT effective dose was higher than CBCT protocols for child and adult phantoms by 803 and 590 % for upper lung, 639 and 525 % for mid-lung, and 461 and 251 % for lower lung, respectively. Similarly, the effective dose was higher by 691 and 762 % for liver and 513 and 608 % for kidney biopsies.ConclusionsBased on measurements and simulations with pediatric and adult phantoms, radiation effective doses during image-guided needle biopsies of the lung, liver, and kidney are significantly lower with CBCT than with CT.

  4. Comparing Effective Doses During Image-Guided Core Needle Biopsies with Computed Tomography Versus C-Arm Cone Beam CT Using Adult and Pediatric Phantoms.

    Science.gov (United States)

    Ben-Shlomo, A; Cohen, D; Bruckheimer, E; Bachar, G N; Konstantinovsky, R; Birk, E; Atar, E

    2016-05-01

    To compare the effective doses of needle biopsies based on dose measurements and simulations using adult and pediatric phantoms, between cone beam c-arm CT (CBCT) and CT. Effective doses were calculated and compared based on measurements and Monte Carlo simulations of CT- and CBCT-guided biopsy procedures of the lungs, liver, and kidney using pediatric and adult phantoms. The effective doses for pediatric and adult phantoms, using our standard protocols for upper, middle and lower lungs, liver, and kidney biopsies, were significantly lower under CBCT guidance than CT. The average effective dose for a 5-year old for these five biopsies was 0.36 ± 0.05 mSv with the standard CBCT exposure protocols and 2.13 ± 0.26 mSv with CT. The adult average effective dose for the five biopsies was 1.63 ± 0.22 mSv with the standard CBCT protocols and 8.22 ± 1.02 mSv using CT. The CT effective dose was higher than CBCT protocols for child and adult phantoms by 803 and 590% for upper lung, 639 and 525% for mid-lung, and 461 and 251% for lower lung, respectively. Similarly, the effective dose was higher by 691 and 762% for liver and 513 and 608% for kidney biopsies. Based on measurements and simulations with pediatric and adult phantoms, radiation effective doses during image-guided needle biopsies of the lung, liver, and kidney are significantly lower with CBCT than with CT.

  5. Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay.

    Science.gov (United States)

    Paparo, Francesco; Piccazzo, Riccardo; Cevasco, Luca; Piccardo, Arnoldo; Pinna, Francesco; Belli, Fiorenza; Bacigalupo, Lorenzo; Biscaldi, Ennio; De Caro, Giovanni; Rollandi, Gian Andrea

    2014-10-01

    Positron emission tomography (PET) is a functional imaging technique that can investigate the metabolic characteristics of tissues. Currently, PET images are acquired and co-registered with a computed tomography (CT) scan (PET-CT), which is employed for correction of attenuation and anatomical localization. In spite of the high negative predictive value of PET, false-positive results may occur; indeed, Fluorine 18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) uptake is not specific to cancer. As (18)F-FDG uptake may also be seen in non-malignant infectious or inflammatory processes, FDG-avid lesions may necessitate biopsy to confirm or rule out malignancy. However, some PET-positive lesions may have little or no correlative ultrasound (US) and/or CT findings (i.e., low conspicuity on morphological imaging). Since it is not possible to perform biopsy under PET guidance alone, owing to intrinsic technical limitations, PET information has to be integrated into a CT- or US-guided biopsy procedure (multimodal US/PET-CT fusion imaging). The purpose of this pictorial essay is to describe the technique of multimodal imaging fusion between real-time US and PET/CT, and to provide an overview of the clinical settings in which this multimodal integration may be useful in guiding biopsy procedures in PET-positive abdominal lesions.

  6. Evaluation of dose reduction and image quality in CT colonography: Comparison of low-dose CT with iterative reconstruction and routine-dose CT with filtered back projection

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Koichi [Kameda Medical Center, Department of Radiology, Kamogawa, Chiba (Japan); Jichi Medical University, Department of Radiology, Tochigi (Japan); National Cancer Center, Cancer Screening Technology Division, Research Center for Cancer Prevention and Screening, Tokyo (Japan); Fujiwara, Masanori; Mogi, Tomohiro; Iida, Nao [Kameda Medical Center Makuhari, Department of Radiology, Chiba (Japan); Kanazawa, Hidenori; Sugimoto, Hideharu [Jichi Medical University, Department of Radiology, Tochigi (Japan); Mitsushima, Toru [Kameda Medical Center Makuhari, Department of Gastroenterology, Chiba (Japan); Lefor, Alan T. [Jichi Medical University, Department of Surgery, Tochigi (Japan)

    2015-01-15

    To prospectively evaluate the radiation dose and image quality comparing low-dose CT colonography (CTC) reconstructed using different levels of iterative reconstruction techniques with routine-dose CTC reconstructed with filtered back projection. Following institutional ethics clearance and informed consent procedures, 210 patients underwent screening CTC using automatic tube current modulation for dual positions. Examinations were performed in the supine position with a routine-dose protocol and in the prone position, randomly applying four different low-dose protocols. Supine images were reconstructed with filtered back projection and prone images with iterative reconstruction. Two blinded observers assessed the image quality of endoluminal images. Image noise was quantitatively assessed by region-of-interest measurements. The mean effective dose in the supine series was 1.88 mSv using routine-dose CTC, compared to 0.92, 0.69, 0.57, and 0.46 mSv at four different low doses in the prone series (p < 0.01). Overall image quality and noise of low-dose CTC with iterative reconstruction were significantly improved compared to routine-dose CTC using filtered back projection. The lowest dose group had image quality comparable to routine-dose images. Low-dose CTC with iterative reconstruction reduces the radiation dose by 48.5 to 75.1 % without image quality degradation compared to routine-dose CTC with filtered back projection. (orig.)

  7. A combined learning algorithm for prostate segmentation on 3D CT images.

    Science.gov (United States)

    Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei

    2017-11-01

    Segmentation of the prostate on CT images has many applications in the diagnosis and treatment of prostate cancer. Because of the low soft-tissue contrast on CT images, prostate segmentation is a challenging task. A learning-based segmentation method is proposed for the prostate on three-dimensional (3D) CT images. We combine population-based and patient-based learning methods for segmenting the prostate on CT images. Population data can provide useful information to guide the segmentation processing. Because of inter-patient variations, patient-specific information is particularly useful to improve the segmentation accuracy for an individual patient. In this study, we combine a population learning method and a patient-specific learning method to improve the robustness of prostate segmentation on CT images. We train a population model based on the data from a group of prostate patients. We also train a patient-specific model based on the data of the individual patient and incorporate the information as marked by the user interaction into the segmentation processing. We calculate the similarity between the two models to obtain applicable population and patient-specific knowledge to compute the likelihood of a pixel belonging to the prostate tissue. A new adaptive threshold method is developed to convert the likelihood image into a binary image of the prostate, and thus complete the segmentation of the gland on CT images. The proposed learning-based segmentation algorithm was validated using 3D CT volumes of 92 patients. All of the CT image volumes were manually segmented independently three times by two, clinically experienced radiologists and the manual segmentation results served as the gold standard for evaluation. The experimental results show that the segmentation method achieved a Dice similarity coefficient of 87.18 ± 2.99%, compared to the manual segmentation. By combining the population learning and patient-specific learning methods, the proposed method is

  8. Optimization of dual-wavelength intravascular photoacoustic imaging of atherosclerotic plaques using Monte Carlo optical modeling

    Science.gov (United States)

    Dana, Nicholas; Sowers, Timothy; Karpiouk, Andrei; Vanderlaan, Donald; Emelianov, Stanislav

    2017-10-01

    Coronary heart disease (the presence of coronary atherosclerotic plaques) is a significant health problem in the industrialized world. A clinical method to accurately visualize and characterize atherosclerotic plaques is needed. Intravascular photoacoustic (IVPA) imaging is being developed to fill this role, but questions remain regarding optimal imaging wavelengths. We utilized a Monte Carlo optical model to simulate IVPA excitation in coronary tissues, identifying optimal wavelengths for plaque characterization. Near-infrared wavelengths (≤1800 nm) were simulated, and single- and dual-wavelength data were analyzed for accuracy of plaque characterization. Results indicate light penetration is best in the range of 1050 to 1370 nm, where 5% residual fluence can be achieved at clinically relevant depths of ≥2 mm in arteries. Across the arterial wall, fluence may vary by over 10-fold, confounding plaque characterization. For single-wavelength results, plaque segmentation accuracy peaked at 1210 and 1720 nm, though correlation was poor (primary wavelength (≈1.0). Results suggest that, without flushing the luminal blood, a primary and secondary wavelength near 1210 and 1350 nm, respectively, may offer the best implementation of dual-wavelength IVPA imaging. These findings could guide the development of a cost-effective clinical system by highlighting optimal wavelengths and improving plaque characterization.

  9. Quantitative evaluation of mucosal vascular contrast in narrow band imaging using Monte Carlo modeling

    Science.gov (United States)

    Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-06-01

    Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.

  10. MR vs CT imaging: low rectal cancer tumour delineation for three-dimensional conformal radiotherapy.

    LENUS (Irish Health Repository)

    O'Neill, B D P

    2009-06-01

    Modern three-dimentional radiotherapy is based upon CT. For rectal cancer, this relies upon target definition on CT, which is not the optimal imaging modality. The major limitation of CT is its low inherent contrast resolution. Targets defined by MRI could facilitate smaller, more accurate, tumour volumes than CT. Our study reviewed imaging and planning data for 10 patients with locally advanced low rectal cancer (defined as < 6 cm from the anal verge on digital examination). Tumour volume and location were compared for sagittal pre-treatment MRI and planning CT. CT consistently overestimated all tumour radiological parameters. Estimates of tumour volume, tumour length and height of proximal tumour from the anal verge were larger on planning CT than on MRI (p < 0.05). Tumour volumes defined on MRI are smaller, shorter and more distal from the anal sphincter than CT-based volumes. For radiotherapy planning, this may result in smaller treatment volumes, which could lead to a reduction in dose to organs at risk and facilitate dose escalation.

  11. Characteristic MR and CT imaging findings of hepatobiliary paragonimiasis and their pathologic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunyan; Hu, Yajun; Chen, Weixia [Dept of Radiology, West China Hospital of Sichuan Univ., Sichuan (China)], e-mail: wxchen25@126.com

    2012-06-15

    Background: Hepatobiliary paragonimiasis (HP) is not commonly encountered and may be confused with hepatobiliary tumors; however, computed tomography (CT) and magnetic resonance imaging (MRI) features of HP allow this entity to be distinguished from other diseases. Purpose: To present the CT and MRI findings in patients with HP and to describe some specific imaging findings along with their pathological correlations. Material and Methods: Imaging and clinical findings of 21 patients (9 boys/men and 12 girls/women; age range 3-67 years; mean age 40 years) who were diagnosed with HP were retrospectively evaluated. Among these patients, 16 underwent CT examination only, two had MR examination only, and three underwent both CT and MR. All patients underwent surgery, and the HP diagnosis was confirmed by the surgical and histopathologic results. Results: Chronic abdominal pain or back pain was reported by 14 patients, severe abdominal pain with acute onset was reported by one patient, and six patients were asymptomatic and were discovered incidentally. Peripheral eosinophilia was present in 14 patients (14/21, 66.7%), and abnormal liver function tests were found in 16 patients (16/21, 76.2%). Of the 19 patients who underwent CT imaging, 17 patients showed multiple mixed hypodense lesions or multiple cysts with inlaying septation with separate irregular rims or circular enhancement on post-contrast CT images. Tunnel-shaped micro abscesses and necrotic cavities were found in the lesions of 12 of those 17 patients. The other two patients showed smaller cystic masses. MRI showed faveolate T1 hypointense and T2 hyperintense areas in the liver parenchyma with rim or peripheral enhancement. Nodular or circular hyperintense materials were found scattered in the lesions on T1-weighted imaging. Conclusion: CT and MRI can reveal the radiological-pathological features of HP. Together with laboratory findings, MRI and CT findings may provide diagnostic clues, especially in endemic

  12. Characteristic MR and CT imaging findings of hepatobiliary paragonimiasis and their pathologic correlations.

    Science.gov (United States)

    Lu, Chun-yan; Hu, Ya-jun; Chen, Wei-xia

    2012-06-01

    Hepatobiliary paragonimiasis (HP) is not commonly encountered and may be confused with hepatobiliary tumors; however, computed tomography (CT) and magnetic resonance imaging (MRI) features of HP allow this entity to be distinguished from other diseases. To present the CT and MRI findings in patients with HP and to describe some specific imaging findings along with their pathological correlations. Imaging and clinical findings of 21 patients (9 boys/men and 12 girls/women; age range 3-67 years; mean age 40 years) who were diagnosed with HP were retrospectively evaluated. Among these patients, 16 underwent CT examination only, two had MR examination only, and three underwent both CT and MR. All patients underwent surgery, and the HP diagnosis was confirmed by the surgical and histopathologic results. Chronic abdominal pain or back pain was reported by 14 patients, severe abdominal pain with acute onset was reported by one patient, and six patients were asymptomatic and were discovered incidentally. Peripheral eosinophilia was present in 14 patients (14/21, 66.7%), and abnormal liver function tests were found in 16 patients (16/21, 76.2%). Of the 19 patients who underwent CT imaging, 17 patients showed multiple mixed hypodense lesions or multiple cysts with inlaying septation with separate irregular rims or circular enhancement on post-contrast CT images. Tunnel-shaped microabscesses and necrotic cavities were found in the lesions of 12 of those 17 patients. The other two patients showed smaller cystic masses. MRI showed faveolate T1 hypointense and T2 hyperintense areas in the liver parenchyma with rim or peripheral enhancement. Nodular or circular hyperintense materials were found scattered in the lesions on T1-weighted imaging. CT and MRI can reveal the radiological-pathological features of HP. Together with laboratory findings, MRI and CT findings may provide diagnostic clues, especially in endemic areas, that are very important for the selection of treatment

  13. Spectral CT imaging of vulnerable plaque with two independent biomarkers

    Science.gov (United States)

    Baturin, Pavlo; Alivov, Yahya; Molloi, Sabee

    2012-07-01

    The purpose of this paper is to investigate the feasibility of a novel four-material decomposition technique for assessing the vulnerability of plaque with two contrast materials spectral computer tomography (CT) using two independent markers: plaque's inflammation and spotty calcification. A simulation study was conducted using an energy-sensitive photon-counting detector for k-edge imaging of the coronary arteries. In addition to detecting the inflammation status, which is known as a biological marker of a plaque's vulnerability, we use spotty calcium concentration as an independent marker to test a plaque's vulnerability. We have introduced a new method for detecting and quantifying calcium concentrations in the presence of two contrast materials (iodine and gold), calcium and soft tissue background. In this method, four-material decomposition was performed on a pixel-by-pixel basis, assuming there was an arbitrary mixture of materials in the voxel. The concentrations of iodine and gold were determined by the k-edge material decomposition based on the maximum likelihood method. The calibration curves of the attenuation coefficients, with respect to the concentrations of different materials, were used to separate the calcium signal from both contrast materials and different soft tissues in the mixtures. Three different materials (muscle, blood and lipid) were independently used as soft tissue. The simulations included both ideal and more realistic energy resolving detectors to measure the polychromatic photon spectrum in single slice parallel beam geometry. The ideal detector was used together with a 3 cm diameter digital phantom to demonstrate the decomposition method while a more realistic detector and a 33 × 24 cm2 digital chest phantom were simulated to validate the vulnerability assessment technique. A 120 kVp spectrum was generated to produce photon flux sufficient for detecting contrast materials above the k-edges of iodine (33.2 keV) and gold (80.7 ke

  14. Investigations of different kilovoltage X-ray energy for three-dimensional converging stereotactic radiotherapy system: Monte Carlo simulations with CT data.

    Science.gov (United States)

    Deloar, Hossain M; Kunieda, Etsuo; Kawase, Takatsugu; Tsunoo, Takanori; Saitoh, Hidetoshi; Ozaki, Masahiro; Saito, Kimiaki; Takagi, Shunji; Sato, Osamu; Fujisaki, Tatsuya; Myojoyama, Atsushi; Sorell, Graham

    2006-12-01

    We are investigating three-dimensional converging stereotactic radiotherapy (3DCSRT) with suitable medium-energy x rays as treatment for small lung tumors with better dose homogeneity at the target. A computed tomography (CT) system dedicated for non-coplanar converging radiotherapy was simulated with BEAMnrc (EGS4) Monte-Carlo code for x-ray energy of 147.5, 200, 300, and 500 kilovoltage (kVp). The system was validated by comparing calculated and measured percentage of depth dose in a water phantom for the energy of 120 and 147.5 kVp. A thorax phantom and CT data from lung tumors (dose homogeneities of kVp energies with MV energies of 4, 6, and 10 MV. Three non-coplanar arcs (0 degrees and +/-25 degrees ) around the center of the target were employed. The Monte Carlo dose data format was converted to the XiO RTP format to compare dose homogeneity, differential, and integral dose volume histograms of kVp and MV energies. In terms of dose homogeneity and DVHs, dose distributions at the target of all kVp energies with the thorax phantom were better than MV energies, with mean dose absorption at the ribs (human data) of 100%, 85%, 50%, 30% for 147.5, 200, 300, and 500 kVp, respectively. Considering dose distributions and reduction of the enhanced dose absorption at the ribs, a minimum of 500 kVp is suitable for the lung kVp 3DCSRT system.

  15. [Evaluation of new technologies PET/CT nuclear imaging].

    Science.gov (United States)

    Giraldes, Maria Rosário

    2010-01-01

    Nuclear imaging has used initially anatomic and volumetric technologies as CT or MRI. In recent years new dimensions of non invasive studies, as PET, have shown a higher utility in the effectiveness of the treatment. The evaluation of need must be done according to a principle of Horizontal Equity, equal treatment for equal need and of a principle of Vertical Equity, Different treatment, at regional level, according to each hospital level. The evaluation of need has been made according to the Potential Demand by Potential User Groups: diabetes, type 2, (50 years and more); screening colorectal (50 years and more); morbidity by cancer; surgery of lung cancer; cardiology; heart surgery; acute chest pain in the emergency department. In a Macro Perspective need has been evaluated using the Population Estimations for 2007, at municipality level. Relatively to Lisbon and Porto data at locality level has been used, from the 2001 Census. According to Campos, J.R. (2007), in 2006, it existed 1 PET by 1 million inhabitants and after that date 2 more were created (Quadrantes and Hospital ad Luz), belonging to the private sector. Mores 15 PET are needed in the NHS, 1 PET for about 504128 inhabitants. According to The Potential Demand perspective 18 new PET are needed, 15 from the public sector. The private sector will cover progressively the demand. Dorado and Albertino (2002), in Spain, mention that the introduction of this new technique in our Health System must be done slowly due to the cost and complexity. In Portugal exists already 6 PET and this applies also. As a first priority the intervention in Oncology in the IPO (Coimbra). A priority must be given to the University Hospitals of Santa Maria and São João. The Central Hospitals of Viseu and VilaReal/Régua must have also 1 PET. A priority must be given to the interior in order to avoid transports of patients and families. In fourth place the HC Central Lisbon must have also 1 PET, which will go to the New Hospital

  16. Flair MR imaging in the Detection of subarachnoid hemorrhage : comparison with CT and T1-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Min, Soo Hyun; Kim, Soo Youn; Lee, Ghi Jai; Shim, Jae Chan; Oh, Tae Kyung; Kim, Ho Kyun [College of Medicine, Jnje University, Seoul (Korea, Republic of)

    2000-03-01

    To compare the findings of fluid-attenuated inversion recovery (FLAIR) MR imaging in the detection of subarachnoid hemorrhage (SAH), with those of precontrast CT and T1-weighted MR imaging. In 13 patients (14 cases) with SAH, FLAIR MR images were retrospectively analyzed and compared with CT (10 patients, 11 cases) and T1-weighted MR images (9 cases). SAH was confirmed on the basis of high density along the subarachnoid space, as seen on precontrast CT, or lumbar puncture. MR imaging was performed on a 1.0T unit. FLAIR MR and CT images were obtained during the acute stage(less than 3 days after ictus) in 10 and 9 cases, respectively, during the subacute stage (4-14 days after ictus) in two cases and one, respectively, and during the chronic stage (more than 15 days after ictus) in two cases and one, respectively. CT was performed before FLAIR MR imaging, and the interval between CT and FLAIR ranged from 24 hours (6 cases) to 2-3 (2 cases) or 4-7 days (3 cases). In each study, the conspicuity of visualization of SAH was graded as excellent, good, fair, or negative at five locations (sylvian fissure, cortical sulci, anterior basal cistern, posterior basal cistern, and perimesencephalic cistern). In all cases, subarachnoid hemorrhages were demonstrated as high signal intensity areas on FLAIR images. The detection rates for SAH on CT and T1-weighted MR images were 100% (11/11) and 89% (8/9), respectively. FLAIR was superior to T1-weighted imaging in the detection of SAH at all sites except the anterior basal cistern (p less than 0.05) and superior to CT in the detection of SAH at the cortical sulci (p less than 0.05). On FLAIR MR images, subarachnoid hemorrhages at all stages are demonstrated as high signal intensity areas; the FLAIR MR sequence is thus considered useful in the detection of SAH. In particular FLAIR is more sensitive than CT for the detection of SAH in the cortical sulci. (author)

  17. Comparison of image registration based measures of regional lung ventilation from dynamic spiral CT with Xe-CT.

    Science.gov (United States)

    Ding, Kai; Cao, Kunlin; Fuld, Matthew K; Du, Kaifang; Christensen, Gary E; Hoffman, Eric A; Reinhardt, Joseph M

    2012-08-01

    Regional lung volume change as a function of lung inflation serves as an index of parenchymal and airway status as well as an index of regional ventilation and can be used to detect pathologic changes over time. In this paper, the authors propose a new regional measure of lung mechanics-the specific air volume change by corrected Jacobian. The authors compare this new measure, along with two existing registration based measures of lung ventilation, to a regional ventilation measurement derived from xenon-CT (Xe-CT) imaging. 4DCT and Xe-CT datasets from four adult sheep are used in this study. Nonlinear, 3D image registration is applied to register an image acquired near end inspiration to an image acquired near end expiration. Approximately 200 annotated anatomical points are used as landmarks to evaluate registration accuracy. Three different registration based measures of regional lung mechanics are derived and compared: the specific air volume change calculated from the Jacobian (SAJ); the specific air volume change calculated by the corrected Jacobian (SACJ); and the specific air volume change by intensity change (SAI). The authors show that the commonly used SAI measure can be derived from the direct SAJ measure by using the air-tissue mixture model and assuming there is no tissue volume change between the end inspiration and end expiration datasets. All three ventilation measures are evaluated by comparing to Xe-CT estimates of regional ventilation. After registration, the mean registration error is on the order of 1 mm. For cubical regions of interest (ROIs) in cubes with size 20 mm × 20 mm × 20 mm, the SAJ and SACJ measures show significantly higher correlation (linear regression, average r(2) = 0.75 and r(2) = 0.82) with the Xe-CT based measure of specific ventilation (sV) than the SAI measure. For ROIs in slabs along the ventral-dorsal vertical direction with size of 150 mm × 8 mm × 40 mm, the SAJ, SACJ, and SAI all show high correlation (linear

  18. Image quality of an investigational imaging panel for use with the imaging beam line cone-beam CT.

    Science.gov (United States)

    Beltran, Chris

    2012-01-05

    The purpose of this study was to measure and compare the contrast-to-noise ratio (CNR) as a function of dose for the cone-beam CT (CBCT) produced by the imaging beam line (IBL) for the standard and an investigational imaging panel. Two Siemens Artiste linear accelerators were modified at our institution such that the MV-CBCT would operate under an investigational IBL. The imaging panel from one of the machines was replaced with an investigational imaging panel. After the modification, a set of CBCT for a large and small phantom consisting of eight tissue-equivalent inserts was acquired for the standard imager and for the investigational imager with and without the standard copper plate. Ten dose settings for each phantom using the IBL in combination with the standard and investigational imaging panel were acquired. The CNR for each tissue-equivalent insert was calculated. Resolution measurements in line pairs per mm (lp/mm) of the CBCT for the various imaging panel setups were made. In addition, CBCT images of two patients that were imaged with each panel configuration were displayed for a group of physicians and therapists who were asked to identify the best and worst CBCT for each patient. This was used as a qualitative judge of practical image quality. The CNR of the muscle insert for the large phantom with 1.5 cGy at isocenter was 1.3 for the standard imager, 1.5 for the investigational imager with the copper plate, and 1.9 without the plate. Under the same conditions, the CNR of the trabecular bone insert was 5.9, 7.3, and 9.7, respectively. For the small phantom with the same dose to isocenter, the CNR for muscle was 1.7, 2.1, and 3.3, respectively. For the trabecular bone, the CNR was 8.1, 9.6, and 12.1 respectively. The resolution for 1 cGy at isocenter was 0.37 lp/mm for the standard imager, 0.32 and 0.33 for the investigational imager with and without the copper plate. The qualitative test ranked the CBCT of the investigational imager without the copper

  19. Comparative assessment of three image reconstruction techniques for image quality and radiation dose in patients undergoing abdominopelvic multidetector CT examinations

    Science.gov (United States)

    Desai, G S; Thabet, A; Elias, A Y A; Sahani, D V

    2013-01-01

    Objective To compare image quality and radiation dose of abdominal CT examinations reconstructed with three image reconstruction techniques. Methods In this Institutional Review Board-approved study, contrast-enhanced (CE) abdominopelvic CT scans from 23 patients were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASiR) and iterative reconstruction in image space (IRIS) and were reviewed by two blinded readers. Subjective (acceptability, sharpness, noise and artefacts) and objective (noise) measures of image quality were recorded for each image data set. Radiation doses in CT dose index (CTDI) dose–length product were also calculated for each examination type and compared. Imaging parameters were compared using the Wilcoxon signed rank test and a paired t-test. Results All 69 CECT examinations were of diagnostic quality and similar for overall acceptability (mean grade for ASiR, 3.9±0.3; p=0.2 for Readers 1 and 2; IRIS, 3.9±0.4, p=0.2; FBP, 3.8±0.9). Objective noise was considerably lower with both iterative techniques (pASiR and IRIS). Recorded mean radiation dose, i.e. CTDIvol, was 24% and 10% less with ASiR (11.4±3.4 mGy; preconstructed with ASiR and IRIS provide diagnostic images with reduced image noise and 10–24% lower radiation dose than FBP. Advances in knowledge CT images reconstructed with FBP are frequently noisy on lowering the radiation dose. Newer iterative reconstruction techniques have different approaches to produce images with less noise; ASiR and IRIS provide diagnostic abdominal CT images with reduced image noise and radiation dose compared with FBP. This has been documented in this study. PMID:23255538

  20. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  1. Extracting Information From Previous Full-Dose CT Scan for Knowledge-Based Bayesian Reconstruction of Current Low-Dose CT Images.

    Science.gov (United States)

    Zhang, Hao; Han, Hao; Liang, Zhengrong; Hu, Yifan; Liu, Yan; Moore, William; Ma, Jianhua; Lu, Hongbing

    2016-03-01

    Markov random field (MRF) model has been widely employed in edge-preserving regional noise smoothing penalty to reconstruct piece-wise smooth images in the presence of noise, such as in low-dose computed tomography (LdCT). While it preserves edge sharpness, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it may compromise clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodules or colon polyps. This study aims to shift the edge-preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF's neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of muscle, fat, bone, lung, etc. from previous full-dose CT (FdCT) scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of the proposed reconstruction framework, experiments using clinical patient scans were conducted. The experimental outcomes showed a dramatic gain by the a priori knowledge for LdCT image reconstruction using the commonly-used Haralick texture measures. Thus, it is conjectured that the texture-preserving LdCT reconstruction has advantages over the edge-preserving regional smoothing paradigm for texture-specific clinical applications.

  2. A framework based on hidden Markov trees for multimodal PET/CT image co-segmentation.

    Science.gov (United States)

    Hanzouli-Ben Salah, Houda; Lapuyade-Lahorgue, Jerome; Bert, Julien; Benoit, Didier; Lambin, Philippe; Van Baardwijk, Angela; Monfrini, Emmanuel; Pieczynski, Wojciech; Visvikis, Dimitris; Hatt, Mathieu

    2017-11-01

    The purpose of this study was to investigate the use of a probabilistic quad-tree graph (hidden Markov tree, HMT) to provide fast computation, robustness and an interpretational framework for multimodality image processing and to evaluate this framework for single gross tumor target (GTV) delineation from both positron emission tomography (PET) and computed tomography (CT) images. We exploited joint statistical dependencies between hidden states to handle the data stack using multi-observation, multi-resolution of HMT and Bayesian inference. This framework was applied to segmentation of lung tumors in PET/CT datasets taking into consideration simultaneously the CT and the PET image information. PET and CT images were considered using either the original voxels intensities, or after wavelet/contourlet enhancement. The Dice similarity coefficient (DSC), sensitivity (SE), positive predictive value (PPV) were used to assess the performance of the proposed approach on one simulated and 15 clinical PET/CT datasets of non-small cell lung cancer (NSCLC) cases. The surrogate of truth was a statistical consensus (obtained with the Simultaneous Truth and Performance Level Estimation algorithm) of three manual delineations performed by experts on fused PET/CT images. The proposed framework was applied to PET-only, CT-only and PET/CT datasets, and were compared to standard and improved fuzzy c-means (FCM) multimodal implementations. A high agreement with the consensus of manual delineations was observed when using both PET and CT images. Contourlet-based HMT led to the best results with a DSC of 0.92 ± 0.11 compared to 0.89 ± 0.13 and 0.90 ± 0.12 for Intensity-based HMT and Wavelet-based HMT, respectively. Considering PET or CT only in the HMT led to much lower accuracy. Standard and improved FCM led to comparatively lower accuracy than HMT, even when considering multimodal implementations. We evaluated the accuracy of the proposed HMT-based framework for PET/CT image

  3. Clinical Applications of a CT Window Blending Algorithm: RADIO (Relative Attenuation-Dependent Image Overlay).

    Science.gov (United States)

    Mandell, Jacob C; Khurana, Bharti; Folio, Les R; Hyun, Hyewon; Smith, Stacy E; Dunne, Ruth M; Andriole, Katherine P

    2017-06-01

    A methodology is described using Adobe Photoshop and Adobe Extendscript to process DICOM images with a Relative Attenuation-Dependent Image Overlay (RADIO) algorithm to visualize the full dynamic range of CT in one view, without requiring a change in window and level settings. The potential clinical uses for such an algorithm are described in a pictorial overview, including applications in emergency radiology, oncologic imaging, and nuclear medicine and molecular imaging.

  4. A new Level-set based Protocol for Accurate Bone Segmentation from CT Imaging

    OpenAIRE

    Pinheiro, Manuel; Alves, J. L.

    2015-01-01

    In this work it is proposed a medical image segmentation pipeline for accurate bone segmentation from CT imaging. It is a two-step methodology, with a pre-segmentation step and a segmentation refinement step. First, the user performs a rough segmenting of the desired region of interest. Next, a fully automatic refinement step is applied to the pre-segmented data. The automatic segmentation refinement is composed by several sub-stpng, namely image deconvolution, image cropping and interpolatio...

  5. CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis

    Science.gov (United States)

    Zheng, Xiaoming; Kim, Ted M.; Davidson, Rob; Lee, Seongju; Shin, Cheongil; Yang, Sook

    2014-03-01

    The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer's VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.

  6. Carotid plaque characterization using CT and MRI scans for synergistic image analysis

    Science.gov (United States)

    Getzin, Matthew; Xu, Yiqin; Rao, Arhant; Madi, Saaussan; Bahadur, Ali; Lennartz, Michelle R.; Wang, Ge

    2014-09-01

    Noninvasive determination of plaque vulnerability has been a holy grail of medical imaging. Despite advances in tomographic technologies , there is currently no effective way to identify vulnerable atherosclerotic plaques with high sensitivity and specificity. Computed tomography (CT) and magnetic resonance imaging (MRI) are widely used, but neither provides sufficient information of plaque properties. Thus, we are motivated to combine CT and MRI imaging to determine if the composite information can better reflect the histological determination of plaque vulnerability. Two human endarterectomy specimens (1 symptomatic carotid and 1 stable femoral) were imaged using Scanco Medical Viva CT40 and Bruker Pharmascan 16cm 7T Horizontal MRI / MRS systems. μCT scans were done at 55 kVp and tube current of 70 mA. Samples underwent RARE-VTR and MSME pulse sequences to measure T1, T2 values, and proton density. The specimens were processed for histology and scored for vulnerability using the American Heart Association criteria. Single modality-based analyses were performed through segmentation of key imaging biomarkers (i.e. calcification and lumen), image registration, measurement of fibrous capsule, and multi-component T1 and T2 decay modeling. Feature differences were analyzed between the unstable and stable controls, symptomatic carotid and femoral plaque, respectively. By building on the techniques used in this study, synergistic CT+MRI analysis may provide a promising solution for plaque characterization in vivo.

  7. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion

    Science.gov (United States)

    Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei

    2017-02-01

    Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.

  8. Automatic Lung Tumor Segmentation on PET/CT Images Using Fuzzy Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Yu Guo

    2014-01-01

    Full Text Available The combination of positron emission tomography (PET and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice’s similarity coefficient (DSC was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  9. Computed tomography (CT)-compatible remote center of motion needle steering robot: Fusing CT images and electromagnetic sensor data.

    Science.gov (United States)

    Shahriari, Navid; Heerink, Wout; van Katwijk, Tim; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak

    2017-07-01

    Lung cancer is the most common cause of cancer-related death, and early detection can reduce the mortality rate. Patients with lung nodules greater than 10 mm usually undergo a computed tomography (CT)-guided biopsy. However, aligning the needle with the target is difficult and the needle tends to deflect from a straight path. In this work, we present a CT-compatible robotic system, which can both position the needle at the puncture point and also insert and rotate the needle. The robot has a remote-center-of-motion arm which is achieved through a parallel mechanism. A new needle steering scheme is also developed where CT images are fused with electromagnetic (EM) sensor data using an unscented Kalman filter. The data fusion allows us to steer the needle using the real-time EM tracker data. The robot design and the steering scheme are validated using three experimental cases. Experimental Case I and II evaluate the accuracy and CT-compatibility of the robot arm, respectively. In experimental Case III, the needle is steered towards 5 real targets embedded in an anthropomorphic gelatin phantom of the thorax. The mean targeting error for the 5 experiments is 1.78 ± 0.70 mm. The proposed robotic system is shown to be CT-compatible with low targeting error. Small nodule size and large needle diameter are two risk factors that can lead to complications in lung biopsy. Our results suggest that nodules larger than 5 mm in diameter can be targeted using our method which may result in lower complication rate. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Semi-automatic delineation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fitton, I. [European Georges Pompidou Hospital, Department of Radiology, 20 rue Leblanc, 75015, Paris (France); Cornelissen, S. A. P. [Image Sciences Institute, UMC, Department of Radiology, P.O. Box 85500, 3508 GA Utrecht (Netherlands); Duppen, J. C.; Rasch, C. R. N.; Herk, M. van [The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Radiotherapy, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Steenbakkers, R. J. H. M. [University Medical Center Groningen, Department of Radiation Oncology, Hanzeplein 1, 9713 GZ Groningen (Netherlands); Peeters, S. T. H. [UZ Gasthuisberg, Herestraat 49, 3000 Leuven, Belgique (Belgium); Hoebers, F. J. P. [Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO clinic), GROW School for Oncology and Development Biology Maastricht, 6229 ET Maastricht (Netherlands); Kaanders, J. H. A. M. [UMC St-Radboud, Department of Radiotherapy, Geert Grooteplein 32, 6525 GA Nijmegen (Netherlands); Nowak, P. J. C. M. [ERASMUS University Medical Center, Department of Radiation Oncology,Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2011-08-15

    Purpose: To develop a delineation tool that refines physician-drawn contours of the gross tumor volume (GTV) in nasopharynx cancer, using combined pixel value information from x-ray computed tomography (CT) and magnetic resonance imaging (MRI) during delineation. Methods: Operator-guided delineation assisted by a so-called ''snake'' algorithm was applied on weighted CT-MRI registered images. The physician delineates a rough tumor contour that is continuously adjusted by the snake algorithm using the underlying image characteristics. The algorithm was evaluated on five nasopharyngeal cancer patients. Different linear weightings CT and MRI were tested as input for the snake algorithm and compared according to contrast and tumor to noise ratio (TNR). The semi-automatic delineation was compared with manual contouring by seven experienced radiation oncologists. Results: A good compromise for TNR and contrast was obtained by weighing CT twice as strong as MRI. The new algorithm did not notably reduce interobserver variability, it did however, reduce the average delineation time by 6 min per case. Conclusions: The authors developed a user-driven tool for delineation and correction based a snake algorithm and registered weighted CT image and MRI. The algorithm adds morphological information from CT during the delineation on MRI and accelerates the delineation task.

  11. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose.

    Science.gov (United States)

    Haggerty, Jay E; Smith, Ethan A; Kunisaki, Shaun M; Dillman, Jonathan R

    2015-07-01

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (reconstruction method. CTDIvol was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose.

  12. Cardiovascular CT angiography in neonates and children : Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    NARCIS (Netherlands)

    Tricarico, Francesco; Hlavacek, Anthony M.; Schoepf, U. Joseph; Ebersberger, Ullrich; Nance, John W.; Vliegenthart, Rozemarijn; Cho, Young Jun; Spears, J. Reid; Secchi, Francesco; Savino, Giancarlo; Marano, Riccardo; Schoenberg, Stefan O.; Bonomo, Lorenzo; Apfaltrer, Paul

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose

  13. Impact of miscentering on patient dose and image noise in x-ray CT imaging : Phantom and clinical studies

    NARCIS (Netherlands)

    Habibzadeh, M. A.; Ay, M. R.; Asl, A. R. Kamali; Ghadiri, H.; Zaidi, H.

    The operation of the bowtie filter in x-ray CT is correct if the object being scanned is properly centered in the scanner's field-of-view. Otherwise, the dose delivered to the patient and image noise will deviate from optimal setting. We investigate the effect of miscentering on image noise and

  14. Usefulness of CT perfusion imaging in adult moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bo Bae; Kim, Young Joo; Song, Ha Hun; Kim, Ki Tae [College of Medicine, The Catholic University of Korea, Uijongbu (Korea, Republic of)

    2004-12-01

    The purpose of this study was to evaluate the role of perfusion CT in adult moyamoya disease. The study population consisted of 13 adult moyamoya patients (10 women and 3 men, mean age: 40.4 years) and 11 age-matched normal controls (5 men and 6 women, mean age: 43 years). We retrospectively assessed the perfusion CT scan both visually and by a quantitative regional analysis, and we assessed the relationship between the perfusion CT scan findings and the angiographic findings. The mean relative cerebral blood volume (rCBV) values in moyamoya patients were 8.0% for the MCA area, 6.4% for the PCA area, and 7.7% for the basal ganglia. The rCBV values in the patients were higher than those in the control group with statistical significance (p<0.0001). The time to peak enhancement (TTP) values of the MCA area and the basal ganglia were delayed more than those in the controls; this was statistically significant (p<0.05). Moderate correlation was found between the rCBV in the basal ganglia area and angiographic stage of the basal moyamoya vessels. Perfusion CT demonstrates a statisticaIly significant increase in rCBV in the MCA, PCA and basal ganglia areas and the TTP in the MCA and basal ganglia areas in patients with moyamoya disease. The visual brain perfusion patterns correIate with the extent and severity of the basal moyamoya vessels.

  15. Optimization of the alpha image reconstruction - an iterative CT-image reconstruction with well-defined image quality metrics.

    Science.gov (United States)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelrieß, Marc

    2017-09-01

    Optimization of the AIR-algorithm for improved convergence and performance. The AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  16. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany).

    2017-10-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  17. Postoperative evaluation after anterior cruciate ligament reconstruction: Measurements and abnormalities on radiographic and CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Cheol; Choi, Yun Sun; KIm, Hyoung Seop; Choi, Nam Hong [Nowon Eulji Medical Center, Eulji University, Seoul (Korea, Republic of)

    2016-11-15

    Reconstruction of a ruptured anterior cruciate ligament (ACL) is a well-established procedure for repair of ACL injury. Despite improvement of surgical and rehabilitation techniques over the past decades, up to 25% of patients still fail to regain satisfactory function after an ACL reconstruction. With development of CT imaging techniques for reducing metal artifacts, multi-planar reconstruction, and three-dimensional reconstruction, early post-operative imaging is increasingly being used to provide immediate feedback to surgeons regarding tunnel positioning, fixation, and device placement. Early post-operative radiography and CT imaging are easy to perform and serve as the baseline examinations for future reference.

  18. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease

    DEFF Research Database (Denmark)

    George, Richard T; Mehra, Vishal C; Chen, Marcus Y

    2014-01-01

    . MATERIALS AND METHODS: This study was approved by the institutional review board. Written informed consent was obtained from all patients. Sixteen centers enrolled 381 patients from November 2009 to July 2011. Patients underwent rest and adenosine stress CT perfusion imaging and rest and either exercise...... or pharmacologic stress SPECT before and within 60 days of coronary angiography. Images from CT perfusion imaging, SPECT, and coronary angiography were interpreted at blinded, independent core laboratories. The primary diagnostic parameter was the area under the receiver operating characteristic curve (Az...

  19. CT of jejunal diverticulitis: imaging findings, differential diagnosis, and clinical management

    Energy Technology Data Exchange (ETDEWEB)

    Macari, M.; Faust, M.; Liang, H.; Pachter, H.L

    2007-01-15

    Aim: To describe the imaging findings of jejunal diverticulitis as depicted at contrast-enhanced computed tomography (CT) and review the differential diagnosis and clinical management. Materials and Methods: CT and pathology databases were searched for the diagnosis of jejunal diverticulitis. Three cases were identified and the imaging and clinical findings correlated. Results: Jejunal diverticulitis presents as a focal inflammatory mass involving the proximal small bowel. A trial of medical management with antibiotics may be attempted. Surgical resection may be required if medical management is unsuccessful. Conclusion: The imaging findings at MDCT may allow a specific diagnosis of jejunal diverticulitis to be considered and may affect the clinical management of the patient.

  20. Postoperative Evaluation after Anterior Cruciate Ligament Reconstruction: Measurements and Abnormalities on Radiographic and CT Imaging.

    Science.gov (United States)

    Kim, Minchul; Choi, Yun Sun; Kim, Hyoungseop; Choi, Nam-Hong

    2016-01-01

    Reconstruction of a ruptured anterior cruciate ligament (ACL) is a well-established procedure for repair of ACL injury. Despite improvement of surgical and rehabilitation techniques over the past decades, up to 25% of patients still fail to regain satisfactory function after an ACL reconstruction. With development of CT imaging techniques for reducing metal artifacts, multi-planar reconstruction, and three-dimensional reconstruction, early post-operative imaging is increasingly being used to provide immediate feedback to surgeons regarding tunnel positioning, fixation, and device placement. Early post-operative radiography and CT imaging are easy to perform and serve as the baseline examinations for future reference.

  1. CT baggage image enhancement using a combination of alpha-weighted mean separation and histogram equalization

    Science.gov (United States)

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2010-04-01

    Baggage scanning systems are used for detecting the presence of explosives and other prohibited items in baggage at security checkpoints in airports. However, the CT baggage images contain projection noise and are of low resolution. This paper introduces a new enhancement algorithm combining alpha-weighted mean separation and histogram equalization to enhance the CT baggage images while removing the background projection noise. A new enhancement measure is introduced for quantitative assessment of image enhancement. Simulations and a comparative analysis are given to demonstrate the new algorithm's performance.

  2. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    Science.gov (United States)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  3. New integrated Monte Carlo code for the simulation of high-resolution scanning electron microscopy images for metrology in microlithography

    Science.gov (United States)

    Ilgüsatiroglu, Emre; Illarionov, Alexey Yu.; Ciappa, Mauro; Pfäffli, Paul; Bomholt, Lars

    2014-04-01

    A new Monte Carlo code is presented that includes among others definition of arbitrary geometries with sub-nanometer resolution, high performance parallel computing capabilities, trapped charge, electric field calculation, electron tracking in electrostatic field, and calculation of 3D dose distributions. These functionalities are efficiently implemented thanks to the coupling of the Monte Carlo simulator with a TCAD environment. Applications shown are the synthesis of SEM linescans and images that focus on the evaluation of the impact of proximity effects and self charging on the quantitative extraction of critical dimensions in dense photoresist structures.

  4. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nyflot, Matthew J., E-mail: nyflot@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 (United States); Lee, Tzu-Cheng [Department of Bioengineering, University of Washington, Seattle, Washington 98195-6043 (United States); Alessio, Adam M.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, Washington 98195-6043 (United States); Wollenweber, Scott D.; Stearns, Charles W. [GE Healthcare, Waukesha, Wisconsin 53188 (United States); Bowen, Stephen R. [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 and Department of Radiology, University of Washington, Seattle, Washington 98195-6043 (United States)

    2015-01-15

    Purpose: Respiratory-correlated positron emission tomography (PET/CT) 4D PET/CT is used to mitigate errors from respiratory motion; however, the optimal CT attenuation correction (CTAC) method for 4D PET/CT is unknown. The authors performed a phantom study to evaluate the quantitative performance of CTAC methods for 4D PET/CT in the ground truth setting. Methods: A programmable respiratory motion phantom with a custom movable insert designed to emulate a lung lesion and lung tissue was used for this study. The insert was driven by one of five waveforms: two sinusoidal waveforms or three patient-specific respiratory waveforms. 3DPET and 4DPET images of the phantom under motion were acquired and reconstructed with six CTAC methods: helical breath-hold (3DHEL), helical free-breathing (3DMOT), 4D phase-averaged (4DAVG), 4D maximum intensity projection (4DMIP), 4D phase-matched (4DMATCH), and 4D end-exhale (4DEXH) CTAC. Recovery of SUV{sub max}, SUV{sub mean}, SUV{sub peak}, and segmented tumor volume was evaluated as RC{sub max}, RC{sub mean}, RC{sub peak}, and RC{sub vol}, representing percent difference relative to the static ground truth case. Paired Wilcoxon tests and Kruskal–Wallis ANOVA were used to test for significant differences. Results: For 4DPET imaging, the maximum intensity projection CTAC produced significantly more accurate recovery coefficients than all other CTAC methods (p < 0.0001 over all metrics). Over all motion waveforms, ratios of 4DMIP CTAC recovery were 0.2 ± 5.4, −1.8 ± 6.5, −3.2 ± 5.0, and 3.0 ± 5.9 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. In comparison, recovery coefficients for phase-matched CTAC were −8.4 ± 5.3, −10.5 ± 6.2, −7.6 ± 5.0, and −13.0 ± 7.7 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. When testing differences between phases over all CTAC methods and waveforms, end-exhale phases were significantly more accurate (p = 0.005). However, these differences were driven by

  5. Marriage Strategy of Structure and Composition Designs for Intensifying Ultrasound & MR & CT Trimodal Contrast Imaging.

    Science.gov (United States)

    Zhang, Kun; Chen, Hangrong; Li, Pei; Bo, Xiaowan; Li, Xiaolong; Zeng, Zeng; Xu, Huixiong

    2015-08-26

    Despite great efforts having been devoted to the design of multimodal imaging probe, almost all design principles of nanotheranostic agents subordinate to simple assemblies of building blocks, resulting in complex preparation process and discounted ability, that is, 1 + 1 design strategy, marriage of structure design and composition design that can maximize imaging ability of each building block, ultimately achieving 1 + 1 ≥ 2, has been established. Moreover, a high-efficient ultrasound (US) & MR & CT trimodal contrast agent acts as model to instantiate this design strategy, wherein nanoparticles-induced nonlinear scattering and rattle-type structure-induced double scattering enhancing US imaging, and uniform distribution of Mn(2+) paramagentic centers and "core-satellite" structure of Au atoms favoring enhanced MR imaging and CT imaging, respectively have been validated, achieving optimization of structure design. Importantly, the selected components, silica, Au and MnO are endowed with excellent biocompatibility, displaying the marriage strategy of composition design with aforementioned structure optimization. In in vivo evaluations, such a biocompatible trimodal probe is demonstrated of excellent performance in intensifying CT, MR and US imaging in vivo, especially after positively charged modification by PEI promoting more probes retained in tumor. More importantly, as a universal design strategy, the involved principles in constructing such a US&MR&CT trimodal imaging probe promise great potentials in guiding designs of other materials-based multimodal imaging probe.

  6. Influence of iterative image reconstruction on CT-based calcium score measurements

    NARCIS (Netherlands)

    van Osch, Jochen A. C.; Mouden, Mohamed; van Dalen, Jorn A.; Timmer, Jorik R.; Reiffers, Stoffer; Knollema, Siert; Greuter, Marcel J. W.; Ottervanger, Jan Paul; Jager, Piet L.

    Iterative reconstruction techniques for coronary CT angiography have been introduced as an alternative for traditional filter back projection (FBP) to reduce image noise, allowing improved image quality and a potential for dose reduction. However, the impact of iterative reconstruction on the

  7. Region-Based 4D Tomographic Image Reconstruction: Application to Cardiac X-ray CT

    NARCIS (Netherlands)

    G. Van Eyndhoven (Geert); K.J. Batenburg (Joost); J. Sijbers (Jan)

    2015-01-01

    htmlabstractX-ray computed tomography (CT) is a powerful tool for noninvasive cardiac imaging. However, radiation dose is a major issue. In this paper, we propose an iterative reconstruction method that reduces the radiation dose without compromising image quality. This is achieved by exploiting

  8. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    NARCIS (Netherlands)

    Kok, P.; Dijkstra, J.; Botha, C.P.; Post, F.H.; Kaijzel, E.; Que, I.; Löwik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2007-01-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate

  9. Rapid Retrieval of Lung Nodule CT Images Based on Hashing and Pruning Methods

    Directory of Open Access Journals (Sweden)

    Ling Pan

    2016-01-01

    Full Text Available The similarity-based retrieval of lung nodule computed tomography (CT images is an important task in the computer-aided diagnosis of lung lesions. It can provide similar clinical cases for physicians and help them make reliable clinical diagnostic decisions. However, when handling large-scale lung images with a general-purpose computer, traditional image retrieval methods may not be efficient. In this paper, a new retrieval framework based on a hashing method for lung nodule CT images is proposed. This method can translate high-dimensional image features into a compact hash code, so the retrieval time and required memory space can be reduced greatly. Moreover, a pruning algorithm is presented to further improve the retrieval speed, and a pruning-based decision rule is presented to improve the retrieval precision. Finally, the proposed retrieval method is validated on 2,450 lung nodule CT images selected from the public Lung Image Database Consortium (LIDC database. The experimental results show that the proposed pruning algorithm effectively reduces the retrieval time of lung nodule CT images and improves the retrieval precision. In addition, the retrieval framework is evaluated by differentiating benign and malignant nodules, and the classification accuracy can reach 86.62%, outperforming other commonly used classification methods.

  10. Rapid Retrieval of Lung Nodule CT Images Based on Hashing and Pruning Methods.

    Science.gov (United States)

    Pan, Ling; Qiang, Yan; Yuan, Jie; Wu, Lidong

    2016-01-01

    The similarity-based retrieval of lung nodule computed tomography (CT) images is an important task in the computer-aided diagnosis of lung lesions. It can provide similar clinical cases for physicians and help them make reliable clinical diagnostic decisions. However, when handling large-scale lung images with a general-purpose computer, traditional image retrieval methods may not be efficient. In this paper, a new retrieval framework based on a hashing method for lung nodule CT images is proposed. This method can translate high-dimensional image features into a compact hash code, so the retrieval time and required memory space can be reduced greatly. Moreover, a pruning algorithm is presented to further improve the retrieval speed, and a pruning-based decision rule is presented to improve the retrieval precision. Finally, the proposed retrieval method is validated on 2,450 lung nodule CT images selected from the public Lung Image Database Consortium (LIDC) database. The experimental results show that the proposed pruning algorithm effectively reduces the retrieval time of lung nodule CT images and improves the retrieval precision. In addition, the retrieval framework is evaluated by differentiating benign and malignant nodules, and the classification accuracy can reach 86.62%, outperforming other commonly used classification methods.

  11. Image quality and dose optimisation for infant CT using a paediatric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Jack W.; Phelps, Andrew S.; Courtier, Jesse L.; Gould, Robert G.; MacKenzie, John D. [University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2016-05-15

    To optimise image quality and reduce radiation exposure for infant body CT imaging. An image quality CT phantom was created to model the infant body habitus. Image noise, spatial resolution, low contrast detectability and tube current modulation (TCM) were measured after adjusting CT protocol parameters. Reconstruction method (FBP, hybrid iterative and model-based iterative), image quality reference parameter, helical pitch and beam collimation were systematically investigated for their influence on image quality and radiation output. Both spatial and low contrast resolution were significantly improved with model-based iterative reconstruction (p < 0.05). A change in the helical pitch from 0.969 to 1.375 resulted in a 23 % reduction in total TCM, while a change in collimation from 20 to 40 mm resulted in a 46 % TCM reduction. Image noise and radiation output were both unaffected by changes in collimation, while an increase in pitch enabled a dose length product reduction of ∝6 % at equivalent noise. An optimised protocol with ∝30 % dose reduction was identified using model-based iterative reconstruction. CT technology continues to evolve and require protocol redesign. This work provides an example of how an infant-specific phantom is essential for leveraging this technology to maintain image quality while reducing radiation exposure. (orig.)

  12. Evaluation of whole-body MR to CT deformable image registration

    NARCIS (Netherlands)

    Akbarzadeh, A.; Gutierrez, D.; Baskin, A.; Ay, M. R.; Ahmadian, A.; Alam, N. Riahi; Loevblad, K. O.; Zaidi, H.

    2013-01-01

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole-body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based

  13. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Woo [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    With the technical development of ultrasonography (US), electromagnetic tracking-based fusion imaging of real-time US and computed tomography/magnetic resonance (CT/MR) images has been used for percutaneous hepatic intervention such as biopsy and radiofrequency ablation (RFA). Because of the fusion imaging technique, the fused CT or MR images show the same plane and move synchronously while performing real-time US. With this information, fusion imaging can enhance lesion detectability and reduce the false positive detection of focal hepatic lesions with poor sonographic conspicuity. Three-dimensional US can also be fused with realtime US for the percutaneous RFA of liver tumors requiring overlapping ablation. When fusion imaging is not sufficient for identifying small focal hepatic lesions, contrast-enhanced US can be added to fusion imaging.

  14. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention

    Directory of Open Access Journals (Sweden)

    Min Woo Lee

    2014-10-01

    Full Text Available

    With the technical development of ultrasonography (US, electromagnetic tracking-based fusion imaging of real-time US and computed tomography/magnetic resonance (CT/MR images has been used for percutaneous hepatic intervention such as biopsy and radiofrequency ablation (RFA. Because of the fusion imaging technique, the fused CT or MR images show the same plane and move synchronously while performing real-time US. With this information, fusion imaging can enhance lesion detectability and reduce the false positive detection of focal hepatic lesions with poor sonographic conspicuity. Three-dimensional US can also be fused with realtime US for the percutaneous RFA of liver tumors requiring overlapping ablation. When fusion imaging is not sufficient for identifying small focal hepatic lesions, contrast-enhanced US can be added to fusion imaging.

  15. Cardiac CT for the assessment of chest pain: Imaging techniques and clinical results

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Hans-Christoph, E-mail: christoph.becker@med.uni-muenchen.de [Ludwig-Maximilians-University, Grosshadern Clinic, Department of Clinical Radiology, Marchioninistr. 15, 81377 Munich (Germany); Johnson, Thorsten [Ludwig-Maximilians-University, Grosshadern Clinic, Department of Clinical Radiology, Marchioninistr. 15, 81377 Munich (Germany)

    2012-12-15

    Immediate and efficient risk stratification and management of patients with acute chest pain in the emergency department is challenging. Traditional management of these patients includes serial ECG, laboratory tests and further on radionuclide perfusion imaging or ECG treadmill testing. Due to the advances of multi-detector CT technology, dedicated coronary CT angiography provides the potential to rapidly and reliably diagnose or exclude acute coronary artery disease. Life-threatening causes of chest pain, such as aortic dissection and pulmonary embolism can simultaneously be assessed with a single scan, sometimes referred to as “triple rule out” scan. With appropriate patient selection, cardiac CT can accurately diagnose heart disease or other sources of chest pain, markedly decrease health care costs, and reliably predict clinical outcomes. This article reviews imaging techniques and clinical results for CT been used to evaluate patients with chest pain entering the emergency department.

  16. CT and MR imaging of the liver. Clinical importance of nutritional status

    Energy Technology Data Exchange (ETDEWEB)

    Leander, P.; Sjoeberg, S.; Hoeglund, P. [Malmoe Univ. Hospital (Sweden). Dept. of Diagnostic Radiology

    2000-03-01

    Purpose: In an experimental study in rats a correlation between nutritional status and hepatic attenuation in CT and signal intensities in MR imaging was shown. Is physiological nutritional status of importance in clinical CT and MR imaging? Material and methods: In a cross-over study including 12 healthy volunteers (6 women and 6 men, mean age 34 years), CT and MR imaging of the liver wer