WorldWideScience

Sample records for ct imaging impact

  1. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality : a digital phantom study

    NARCIS (Netherlands)

    Bernatowicz, K; Keall, P; Mishra, P; Knopf, A; Lomax, A; Kipritidis, J

    PURPOSE: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on

  2. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging

    International Nuclear Information System (INIS)

    Liu Chi; Pierce II, Larry A; Alessio, Adam M; Kinahan, Paul E

    2009-01-01

    Our aim is to investigate the impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging using a population of patient respiratory traces. A total of 1295 respiratory traces acquired during whole body PET/CT imaging were classified into three types according to the qualitative shape of their signal histograms. Each trace was scaled to three diaphragm motion amplitudes (6 mm, 11 mm and 16 mm) to drive a whole body PET/CT computer simulation that was validated with a physical phantom experiment. Three lung lesions and one liver lesion were simulated with diameters of 1 cm and 2 cm. PET data were reconstructed using the OS-EM algorithm with attenuation correction using CT images at the end-expiration phase and respiratory-averaged CT. The errors of the lesion maximum standardized uptake values (SUV max ) and lesion volumes between motion-free and motion-blurred PET/CT images were measured and analyzed. For respiration with 11 mm diaphragm motion and larger quiescent period fraction, respiratory motion can cause a mean lesion SUV max underestimation of 28% and a mean lesion volume overestimation of 130% in PET/CT images with 1 cm lesions. The errors of lesion SUV max and volume are larger for patient traces with larger motion amplitudes. Smaller lesions are more sensitive to respiratory motion than larger lesions for the same motion amplitude. Patient respiratory traces with relatively larger quiescent period fraction yield results less subject to respiratory motion than traces with long-term amplitude variability. Mismatched attenuation correction due to respiratory motion can cause SUV max overestimation for lesions in the lower lung region close to the liver dome. Using respiratory-averaged CT for attenuation correction yields smaller mismatch errors than those using end-expiration CT. Respiratory motion can have a significant impact on static oncological PET/CT imaging where SUV and/or volume measurements are important. The impact

  3. Combined FDG PET/CT imaging for restaging of colorectal cancer patients: impact of image fusion on staging accuracy

    International Nuclear Information System (INIS)

    Strunk, H.; Jaeger, U.; Flacke, S.; Hortling, N.; Bucerius, J.; Joe, A.; Reinhardt, M.; Palmedo, H.

    2005-01-01

    Purpose: To evaluate the diagnostic impact of positron emission tomography (PET) with fluorine-18-labeled deoxy-D-glucose (FDG) combined with non-contrast computed tomography (CT) as PET-CT modality in restaging colorectal cancer patients. Material and methods: In this retrospective study, 29 consecutive patients with histologically proven colorectal cancer (17 female, 12 male, aged 51-76 years) underwent whole body scans in one session on a dual modality PET-CT system (Siemens Biograph) 90 min. after i.v. administration of 370 MBq 18 F-FDG. The CT imaging was performed with 40 mAs, 130 kV, slice-thickness 5 mm and without i.v. contrast administration. PET and CT images were reconstructed with a slice-thickness of 5 mm in coronal, sagittal and transverse planes. During a first step of analysis, PET and CT images were scored blinded and independently by a group of two nuclear medicine physicians and a group of two radiologists, respectively. For this purpose, a five-point-scale was used. The second step of data-analysis consisted of a consensus reading by both groups. During the consensus reading, first a virtual (meaning mental) fusion of PET and CT images and afterwards the 'real' fusion (meaning coregistered) PET-CT images were also scored with the same scale. The imaging results were compared with histopathology findings and the course of disease during further follow-up. Results: The total number of malignant lesions detected with the combined PET/CT were 86. For FDG-PET alone it was n=68, and for CT alone n=65. Comparing PET-CT and PET, concordance was found in 81 of 104 lesions. Discrepancies predominantly occurred in the lung, where PET alone often showed true positive results in lymph nodes and soft tissue masses, where CT often was false negative. Comparing mental fusion and 'real' co-registered images, concordance was found in 94 of 104 lesions. In 13 lesions or, respectively, in 7 of 29 patients, a relevant information was gathered using fused images

  4. Impact of imaging quality of change pitch on coronary CTA with 64-detector row CT

    International Nuclear Information System (INIS)

    Li Xiang; Jin Chaolin; Zhang Shutong

    2009-01-01

    Objective: To investigate the impact of imaging quality of pitch on coronary CT angiography (CTA) with 64-detector row CT. Methods: 566 patients were divided into four groups according to heart rate (≤ 50, 51 ∼ 70, 71 ∼ 80 and ≥ 80 bpm). Three dimensional reconstructions were used such as volume rendering (VR), maximum intensity projection(MIP) and curved planar reformation (CPR). Each group was divided into control group and experimential group randomly, using normal pitch and revised pitch respectively, and the imaging quality and influencing factors were analyzed among the four groups. Results: There was significant difference in imaging quality among the four groups (P < 0.05). Each group had difference in imaging quality with normal pitch and revised pitch. Conclusions: The revised pitch helps to improve the imaging quality and meet the demand of diagnosis. (authors)

  5. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours

    International Nuclear Information System (INIS)

    Hillel, P.G.; Beek, E.J.R. van; Taylor, C.; Lorenz, E.; Bax, N.D.S.; Prakash, V.; Tindale, W.B.

    2006-01-01

    AIM: With a combined gamma camera/CT imaging system, CT images are obtained which are inherently registered to the emission images and can be used for the attenuation correction of SPECT and for mapping the functional information from these nuclear medicine tomograms onto anatomy. The aim of this study was to evaluate the clinical impact of SPECT/CT using such a system for somatostatin receptor imaging (SRI) of neuroendocrine tumours. MATERIALS AND METHODS: SPECT/CT imaging with 111 In-Pentetreotide was performed on 29 consecutive patients, the majority of whom had carcinoid disease. All SPECT images were first reported in isolation and then re-reported with the addition of the CT images for functional anatomical mapping (FAM). RESULTS: Fifteen of the 29 SPECT images were reported as abnormal, and in 11 of these abnormal images (73%) FAM was found to either establish a previously unknown location (7/11) or change the location (4/11) of at least one lesion. The revised location could be independently confirmed in 64% of these cases. Confirmation of location was not possible in the other patients due to either a lack of other relevant investigations, or the fact that lesions seen in the SPECT images were not apparent in the other investigations. FAM affected patient management in 64% of the cases where the additional anatomical information caused a change in the reported location of lesions. CONCLUSION: These results imply that FAM can improve the reporting accuracy for SPECT SRI with significant impact on patient management

  6. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Vincent; Podgorsak, Matthew B.; Tran, Tuan-Anh; Malhotra, Harish K.; Wang, Iris Z. [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2011-07-15

    Purpose: Traditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning. Methods: Testing phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU. Results: Results show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show

  7. Hybrid imaging, PET-CT and SPECT-CT: What impact on nuclear medicine education and practice in France?

    International Nuclear Information System (INIS)

    Mundler, O.

    2009-01-01

    To define the policy of our specialty with a consensus opinion, a questionnaire entitled 'hybrid imaging' was sent to practicing nuclear medicine specialist physicians in France to obtain their opinion on the impact of this recent method in training and in the practice of nuclear medicine and on the relations between nuclear medicine specialists and other medical imaging specialists. This questionnaire, written by the office of the French Society of Nuclear Medicine (F.S.N.M.) and molecular imaging, was divided into four parts: Profile and experience in hybrid imaging, Relations with radiologists, Practice of CT scans with hybrid equipment, and the Future of the specialty and of training in nuclear medicine. The response rate was 60%, i.e. 374 completed questionnaires. Overall, the responses were uniform, whatever the respondent's experience, type and place of practice. Regular participation in hybrid imaging practice was the reply provided by the majority of respondents. In terms of relations with radiologists, such contacts existed in over 85% of cases and are considered as being of high quality in over 90% of cases. The vast majority of practitioners believe that hybrid imaging will become the standard. Opinions on the diagnostic use of CT scans are divided, as well as their interpretation by a radiologist, a nuclear medicine specialist or by both. In the opinion of the vast majority, hybrid equipment systems should be managed by nuclear medicine specialists. With regard to the future, nuclear medicine should remain an independent specialty with enhanced training in morphological imaging and a residency training program whose length should be increased to 5 years. (author)

  8. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    International Nuclear Information System (INIS)

    Lemmens, Catherine; Nuyts, Johan; Dupont, Patrick; Montandon, Marie-Louise; Ratib, Osman; Zaidi, Habib

    2008-01-01

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of 18 F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring

  9. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemmens, Catherine; Nuyts, Johan; Dupont, Patrick [Department of Nuclear Medicine and Medical Imaging Center, University Hospital Gasthuisberg and Katholieke Universiteit Leuven, Leuven (Belgium); Montandon, Marie-Louise; Ratib, Osman; Zaidi, Habib [Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva (Switzerland)], E-mail: catherine.lemmens@uz.kuleuven.be

    2008-08-21

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of {sup 18}F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring.

  10. Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: Evaluation of the impact on daily dose coverage

    International Nuclear Information System (INIS)

    Wang Lu; Hayes, Shelly; Paskalev, Kamen; Jin Lihui; Buyyounouski, Mark K.; Ma, Charlie C.-M.; Feigenberg, Steve

    2009-01-01

    Purpose: To investigate the dosimetric impact of using 4D CT and multiphase (helical) CT images for treatment planning target definition and the daily target coverage in hypofractionated stereotactic body radiotherapy (SBRT) of lung cancer. Materials and methods: For 10 consecutive patients treated with SBRT, a set of 4D CT images and three sets of multiphase helical CT scans, taken during free-breathing, end-inspiration and end-expiration breath-hold, were obtained. Three separate planning target volumes (PTVs) were created from these image sets. A PTV 4D was created from the maximum intensity projection (MIP) reconstructed 4D images by adding a 3 mm margin to the internal target volume (ITV). A PTV 3CT was created by generating ITV from gross target volumes (GTVs) contoured from the three multiphase images. Finally, a third conventional PTV (denoted PTV conv ) was created by adding 5 mm in the axial direction and 10 mm in the longitudinal direction to the GTV (in this work, GTV = CTV = clinical target volume) generated from free-breathing helical CT scans. Treatment planning was performed based on PTV 4D (denoted as Plan-1), and the plan was adopted for PTV 3CT and PTV conv to form Plan-2 and Plan-3, respectively, by superimposing 'Plan-1' onto the helical free-breathing CT data set using modified beam apertures that conformed to either PTV 3CT or PTV conv . We first studied the impact of PTV design on treatment planning by evaluating the dosimetry of the three PTVs under the three plans, respectively. Then we examined the effect of the PTV designs on the daily target coverage by utilizing pre-treatment localization CT (CT-on-rails) images for daily GTV contouring and dose recalculation. The changes in the dose parameters of D 95 and D 99 (the dose received by 95% and 99% of the target volume, respectively), and the V p (the volume receiving the prescription dose) of the daily GTVs were compared under the three plans before and after setup error correction

  11. Image and surgery-related costs comparing cone beam CT and panoramic imaging before removal of impacted mandibular third molars

    DEFF Research Database (Denmark)

    Petersen, Lars Bo; Olsen, Kim Rose; Christensen, Jennifer Heather

    2014-01-01

    resource utilization. Differences in resources used for surgical and post-surgical management were calculated for each patient. Results: Converted to monetary units, the total costs for panoramic imaging equalized (sic)49.29 and for CBCT examination (sic)184.44. Modifying effects on this outcome......Objectives: The aim of this prospective clinical study was to derive the absolute and relative costs of cone beam CT (CBCT) and panoramic imaging before removal of an impacted mandibular third molar. Furthermore, the study aimed to analyse the influence of different cost-setting scenarios...... on the outcome of the absolute and relative costs and the incremental costs related to surgery. Methods: A randomized clinical trial compared complications following surgical removal of a mandibular third molar, where the pre-operative diagnostic method had been panoramic imaging or CBCT. The resources implied...

  12. Impact of CT perfusion imaging on the assessment of peripheral chronic pulmonary thromboembolism: clinical experience in 62 patients.

    Science.gov (United States)

    Le Faivre, Julien; Duhamel, Alain; Khung, Suonita; Faivre, Jean-Baptiste; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine

    2016-11-01

    To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. • Dual-energy computed tomography generates standard diagnostic imaging and lung perfusion analysis. • Depiction of CPE on central arteries relies on standard diagnostic imaging. • Detection of peripheral CPE is improved by perfusion imaging.

  13. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    International Nuclear Information System (INIS)

    Bernatowicz, K.; Knopf, A.; Lomax, A.; Keall, P.; Kipritidis, J.; Mishra, P.

    2015-01-01

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm 3 spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results: Averaged

  14. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Bernatowicz, K., E-mail: kingab@student.ethz.ch; Knopf, A.; Lomax, A. [Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI 5232, Switzerland and Department of Physics, ETH Zürich, Zürich 8092 (Switzerland); Keall, P.; Kipritidis, J., E-mail: john.kipritidis@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006 (Australia); Mishra, P. [Brigham and Womens Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-01-15

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results

  15. Impact of image denoising on image quality, quantitative parameters and sensitivity of ultra-low-dose volume perfusion CT imaging

    International Nuclear Information System (INIS)

    Othman, Ahmed E.; Brockmann, Carolin; Afat, Saif; Pjontek, Rastislav; Nikoubashman, Omid; Brockmann, Marc A.; Wiesmann, Martin; Yang, Zepa; Kim, Changwon; Nikolaou, Konstantin; Kim, Jong Hyo

    2016-01-01

    To examine the impact of denoising on ultra-low-dose volume perfusion CT (ULD-VPCT) imaging in acute stroke. Simulated ULD-VPCT data sets at 20 % dose rate were generated from perfusion data sets of 20 patients with suspected ischemic stroke acquired at 80 kVp/180 mAs. Four data sets were generated from each ULD-VPCT data set: not-denoised (ND); denoised using spatiotemporal filter (D1); denoised using quanta-stream diffusion technique (D2); combination of both methods (D1 + D2). Signal-to-noise ratio (SNR) was measured in the resulting 100 data sets. Image quality, presence/absence of ischemic lesions, CBV and CBF scores according to a modified ASPECTS score were assessed by two blinded readers. SNR and qualitative scores were highest for D1 + D2 and lowest for ND (all p ≤ 0.001). In 25 % of the patients, ND maps were not assessable and therefore excluded from further analyses. Compared to original data sets, in D2 and D1 + D2, readers correctly identified all patients with ischemic lesions (sensitivity 1.0, kappa 1.0). Lesion size was most accurately estimated for D1 + D2 with a sensitivity of 1.0 (CBV) and 0.94 (CBF) and an inter-rater agreement of 1.0 and 0.92, respectively. An appropriate combination of denoising techniques applied in ULD-VPCT produces diagnostically sufficient perfusion maps at substantially reduced dose rates as low as 20 % of the normal scan. (orig.)

  16. SU-G-206-02: Impact of Focal Spot Sizes On CT Image Quality

    International Nuclear Information System (INIS)

    Bache, S; Rong, J

    2016-01-01

    Purpose: To quantify a radiology team’s assessment of image quality differences between two CT scanner models currently in clinical use, with emphasis on spatial resolution that could be impacted by focal spot size. Methods: Modulation Transfer Functions (MTF) measurements were performed by scanning the impulse source insert module of the Catphan 600 at 120/140 kVp with both large (LFS) and small (SFS) focal spots and reconstructed to 2.5mm and 5.0mm thicknesses on a GE Discovery CT750 HD and a LightSpeed VCT CT scanner. MTFs were calculated by summing the 2D PSF along one-dimension to obtain line-spread-function (LSF), and calculating the Fourier Transform of the zero-padded and background corrected LSF. Spatial resolution performance was evaluated by comparing MTF curves, 50% and 10% MTF cutoff, and total area under the MTF curve (AUC). In addition, images of the Catphan high-contrast module and a Kagaku anthropomorphic body phantom were acquired from the HD scanner for visual comparisons. Results: For each scanner model, SFS was superior to LFS spatial resolution with respect to 50%/10% MTF cutoff and AUC. For the HD, 50%/10% cutoff was 4.29/7.22cm-1 for the LFS and 4.43/7.45cm-1 for the SFS. VCT outperformed HD, with 50%/10% cutoff of 4.40/7.29 cm-1 for LFS and 4.62/7.47cm-1 for SFS. Scanner model performance in order of decreasing AUC performance was VCT SFS (7.43), HD SFS (7.20), VCT LFS (7.09) and HD LFS (6.93). Visual evaluations of Kagaku phantom images confirmed that VCT outperformed HD. Conclusion: VCT outperformed HD and small focal spot is desired for either model over large focal spot in term of spatial resolution – in agreement with radiologist feedback of overall image quality. In-depth evaluations of clinical impact and focal spot selection mechanisms is currently being assessed.

  17. Impact of SPECT/CT in imaging inflammation and infection; Wertigkeit der SPECT/CT fuer die nuklearmedizinische Entzuendungsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R. [Klinikum Bremen-Mitte, Bremen (Germany). Klinik fuer Nuklearmedizin; Kuwert, T. [Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik

    2011-03-15

    Even today infection remains a significant concern, and the diagnosis and localization of infectious foci is an important health issue. As an established infection-imaging modality, nuclear medicine plays a vital health-care role in the diagnosis and subsequent effective treatment of this condition. Several techniques in nuclear medicine significantly aid infection diagnosis, including triple-phase bone scanning, {sup 18}F-FDG-PET and imaging with {sup 111}In-oxine-, {sup 99m}Tc-HMPAO-labeled leukocytes. Each radiopharmaceutical has specific advantages and disadvantages that makes it suitable to diagnose different infectious processes (e.g., soft-tissue sepsis, inflammatory bowel disease, osteomyelitis, occult fever, fever of unknown origin, and infections commonly found in immuno-compromised patients). However, their clinical applications may be limited by the relatively low spatial resolution and the lack of anatomic landmarks of a highly specific tracer with only scarce background uptake to use as a framework for orientation. Anatomic imaging modalities such as CT provide a high-quality assessment of structural abnormalities related to infection, but these structural abnormalities may be unspecific. Furthermore, to detect infection before anatomical changes are present, functional imaging could have some advantages over anatomical imaging. Scintigraphic studies have demonstrated high sensitivity and specificity to an infectious process. Diagnosis and precise delineation of infection may be challenging in certain clinical scenarios, rendering decisions concerning further patient management difficult. The SPECT/CT-technology combines the acquisition of SPECT and CT data with the same imaging device enabling perfect overlay of anatomical and functional images. SPECT/CT imaging data has been shown to be beneficial for many clinical settings such as indeterminate findings in bone scintigraphy, orthopaedic disorders, endocrine, and neuroendocrine tumors. Therefore

  18. Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnert, Georg; Sterzer, Sergej; Kahraman, Deniz; Dietlein, Markus; Drzezga, Alexander; Kobe, Carsten [University Hospital of Cologne, Department of Nuclear Medicine, Cologne (Germany); Boellaard, Ronald [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Scheffler, Matthias; Wolf, Juergen [University Hospital of Cologne, Lung Cancer Group Cologne, Department I of Internal Medicine, Center for Integrated Oncology Cologne Bonn, Cologne (Germany)

    2016-02-15

    In oncological imaging using PET/CT, the standardized uptake value has become the most common parameter used to measure tracer accumulation. The aim of this analysis was to evaluate ultra high definition (UHD) and ordered subset expectation maximization (OSEM) PET/CT reconstructions for their potential impact on quantification. We analyzed 40 PET/CT scans of lung cancer patients who had undergone PET/CT. Standardized uptake values corrected for body weight (SUV) and lean body mass (SUL) were determined in the single hottest lesion in the lung and normalized to the liver for UHD and OSEM reconstruction. Quantitative uptake values and their normalized ratios for the two reconstruction settings were compared using the Wilcoxon test. The distribution of quantitative uptake values and their ratios in relation to the reconstruction method used were demonstrated in the form of frequency distribution curves, box-plots and scatter plots. The agreement between OSEM and UHD reconstructions was assessed through Bland-Altman analysis. A significant difference was observed after OSEM and UHD reconstruction for SUV and SUL data tested (p < 0.0005 in all cases). The mean values of the ratios after OSEM and UHD reconstruction showed equally significant differences (p < 0.0005 in all cases). Bland-Altman analysis showed that the SUV and SUL and their normalized values were, on average, up to 60 % higher after UHD reconstruction as compared to OSEM reconstruction. OSEM and HD reconstruction brought a significant difference for SUV and SUL, which remained constantly high after normalization to the liver, indicating that standardization of reconstruction and the use of comparable SUV measurements are crucial when using PET/CT. (orig.)

  19. Impact of CT perfusion imaging on the assessment of peripheral chronic pulmonary thromboembolism: clinical experience in 62 patients

    Energy Technology Data Exchange (ETDEWEB)

    Le Faivre, Julien; Khung, Suonita; Faivre, Jean-Baptiste; Remy, Jacques; Remy-Jardin, Martine [University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Duhamel, Alain [University of Lille, Department of Biostatistics, Lille (France); Lamblin, Nicolas [University of Lille, Department of Cardiology, Cardiology Hospital, Lille (France)

    2016-11-15

    To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. (orig.)

  20. Electronic noise in CT detectors: Impact on image noise and artifacts.

    Science.gov (United States)

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  1. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nyflot, Matthew J., E-mail: nyflot@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 (United States); Lee, Tzu-Cheng [Department of Bioengineering, University of Washington, Seattle, Washington 98195-6043 (United States); Alessio, Adam M.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, Washington 98195-6043 (United States); Wollenweber, Scott D.; Stearns, Charles W. [GE Healthcare, Waukesha, Wisconsin 53188 (United States); Bowen, Stephen R. [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 and Department of Radiology, University of Washington, Seattle, Washington 98195-6043 (United States)

    2015-01-15

    Purpose: Respiratory-correlated positron emission tomography (PET/CT) 4D PET/CT is used to mitigate errors from respiratory motion; however, the optimal CT attenuation correction (CTAC) method for 4D PET/CT is unknown. The authors performed a phantom study to evaluate the quantitative performance of CTAC methods for 4D PET/CT in the ground truth setting. Methods: A programmable respiratory motion phantom with a custom movable insert designed to emulate a lung lesion and lung tissue was used for this study. The insert was driven by one of five waveforms: two sinusoidal waveforms or three patient-specific respiratory waveforms. 3DPET and 4DPET images of the phantom under motion were acquired and reconstructed with six CTAC methods: helical breath-hold (3DHEL), helical free-breathing (3DMOT), 4D phase-averaged (4DAVG), 4D maximum intensity projection (4DMIP), 4D phase-matched (4DMATCH), and 4D end-exhale (4DEXH) CTAC. Recovery of SUV{sub max}, SUV{sub mean}, SUV{sub peak}, and segmented tumor volume was evaluated as RC{sub max}, RC{sub mean}, RC{sub peak}, and RC{sub vol}, representing percent difference relative to the static ground truth case. Paired Wilcoxon tests and Kruskal–Wallis ANOVA were used to test for significant differences. Results: For 4DPET imaging, the maximum intensity projection CTAC produced significantly more accurate recovery coefficients than all other CTAC methods (p < 0.0001 over all metrics). Over all motion waveforms, ratios of 4DMIP CTAC recovery were 0.2 ± 5.4, −1.8 ± 6.5, −3.2 ± 5.0, and 3.0 ± 5.9 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. In comparison, recovery coefficients for phase-matched CTAC were −8.4 ± 5.3, −10.5 ± 6.2, −7.6 ± 5.0, and −13.0 ± 7.7 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. When testing differences between phases over all CTAC methods and waveforms, end-exhale phases were significantly more accurate (p = 0.005). However, these differences were driven by

  2. Deep inspiration breath-hold radiotherapy for lung cancer: impact on image quality and registration uncertainty in cone beam CT image guidance

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte F; Bangsgaard, Jens Peter

    2016-01-01

    OBJECTIVE: We investigated the impact of deep inspiration breath-hold (DIBH) and tumour baseline shifts on image quality and registration uncertainty in image-guided DIBH radiotherapy (RT) for locally advanced lung cancer. METHODS: Patients treated with daily cone beam CT (CBCT)-guided free...

  3. Dual source CT imaging

    International Nuclear Information System (INIS)

    Seidensticker, Peter R.; Hofmann, Lars K.

    2008-01-01

    The introduction of Dual Source Computed Tomography (DSCT) in 2005 was an evolutionary leap in the field of CT imaging. Two x-ray sources operated simultaneously enable heart-rate independent temporal resolution and routine spiral dual energy imaging. The precise delivery of contrast media is a critical part of the contrast-enhanced CT procedure. This book provides an introduction to DSCT technology and to the basics of contrast media administration followed by 25 in-depth clinical scan and contrast media injection protocols. All were developed in consensus by selected physicians on the Dual Source CT Expert Panel. Each protocol is complemented by individual considerations, tricks and pitfalls, and by clinical examples from several of the world's best radiologists and cardiologists. This extensive CME-accredited manual is intended to help readers to achieve consistently high image quality, optimal patient care, and a solid starting point for the development of their own unique protocols. (orig.)

  4. CT images of gossypiboma

    International Nuclear Information System (INIS)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee

    1994-01-01

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment

  5. CT images of gossypiboma

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee [College of Medicine, Kon-Kuk University, Seoul (Korea, Republic of)

    1994-04-15

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment.

  6. Do TSH, FT3, and FT4 Impact BAT Visualization of Clinical FDG-PET/CT Images?

    Directory of Open Access Journals (Sweden)

    Ryuichi Nishii

    2018-01-01

    Full Text Available Objective. We retrospectively analyzed activated BAT visualization on FDG-PET/CT in patients with various conditions and TH levels to clarify the relationships between visualization of BAT on FDG-PET/CT and the effect of TH. Methods. Patients who underwent clinical FDG-PET/CT were reviewed and we categorized patients into 5 groups: (i thyroid hormone withdrawal (THW group; (ii recombinant human thyrotropin (rhTSH group; (iii hypothyroidism group; (iv hyperthyroidism group; and (v BAT group. A total of sixty-two FDG-PET/CT imaging studies in fifty-nine patients were performed. To compare each group, gender; age; body weight; serum TSH, FT3, and FT4 levels; and outside temperature were evaluated. Results. No significant visualization of BAT was noted in any of the images in the THW, rhTSH, hypothyroidism, and hyperthyroidism groups. All patients in the BAT group were in a euthyroid state. When the BAT-negative and BAT-positive patient groups were compared, it was noted that the minimum and maximum temperature on the day of the PET study and maximum temperature of the one day before the PET study were significantly lower in BAT-positive group than in all those of other groups. Conclusions. Elevated TSH condition before RIT, hyperthyroidism, or hypothyroidism did not significantly impact BAT visualization of clinical FDG-PET/CT images.

  7. Do TSH, FT3, and FT4 Impact BAT Visualization of Clinical FDG-PET/CT Images?

    Science.gov (United States)

    Nishii, Ryuichi; Nagamachi, Shigeki; Mizutani, Youichi; Terada, Tamasa; Kiyohara, Syogo; Wakamatsu, Hideyuki; Fujita, Seigo; Higashi, Tatsuya; Yoshinaga, Keiichiro; Saga, Tsuneo; Hirai, Toshinori

    2018-01-01

    We retrospectively analyzed activated BAT visualization on FDG-PET/CT in patients with various conditions and TH levels to clarify the relationships between visualization of BAT on FDG-PET/CT and the effect of TH. Patients who underwent clinical FDG-PET/CT were reviewed and we categorized patients into 5 groups: (i) thyroid hormone withdrawal (THW) group; (ii) recombinant human thyrotropin (rhTSH) group; (iii) hypothyroidism group; (iv) hyperthyroidism group; and (v) BAT group. A total of sixty-two FDG-PET/CT imaging studies in fifty-nine patients were performed. To compare each group, gender; age; body weight; serum TSH, FT3, and FT4 levels; and outside temperature were evaluated. No significant visualization of BAT was noted in any of the images in the THW, rhTSH, hypothyroidism, and hyperthyroidism groups. All patients in the BAT group were in a euthyroid state. When the BAT-negative and BAT-positive patient groups were compared, it was noted that the minimum and maximum temperature on the day of the PET study and maximum temperature of the one day before the PET study were significantly lower in BAT-positive group than in all those of other groups. Elevated TSH condition before RIT, hyperthyroidism, or hypothyroidism did not significantly impact BAT visualization of clinical FDG-PET/CT images.

  8. CT image of thymoma

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Nobuo; Shudo, Yuji; Jahana, Masanobu; Matsuki, Tsutomu; Kotani, Kazuhiko (Tottori Univ., Yonago (Japan). School of Medicine)

    1983-10-01

    Computor tomographic images of 11 patients who had had thymectomy for myasthenia gravis or thymoma were studied retrospectively. Of those 11 patients, malignant thymoma and benign condition including normal thymus were 6 and 5 respectively. On CT, calcification and lobulation with irregular margin seem to be reliable findings of malignancy. Defect or abscence of fatty plane and non-homogenous density are ancillary.

  9. CT image of thymoma

    International Nuclear Information System (INIS)

    Morioka, Nobuo; Shudo, Yuji; Jahana, Masanobu; Matsuki, Tsutomu; Kotani, Kazuhiko

    1983-01-01

    Computor tomographic images of 11 patients who had had thymectomy for myasthenia gravis or thymoma were studied retrospectively. Of those 11 patients, malignant thymoma and benign condition including normal thymus were 6 and 5 respectively. On CT, calcification and lobulation with irregular margin seem to be reliable findings of malignancy. Defect or abscence of fatty plane and non-homogenous density are ancillary. (author)

  10. Pulmonary hypertension CT imaging

    International Nuclear Information System (INIS)

    Nedevska, A.

    2013-01-01

    Full text: The right heart catheterization is the gold standard in the diagnosis and determines the severity of pulmonary hypertension. The significant technical progress of noninvasive diagnostic imaging methods significantly improves the pixel density and spatial resolution in the study of cardiovascular structures, thus changes their role and place in the overall diagnostic plan. Learning points: What is the etiology, clinical manifestation and general pathophysiological disorders in pulmonary hypertension. What are the established diagnostic methods in the diagnosis and follow-up of patients with pulmonary hypertension. What is the recommended protocol for CT scanning for patients with clinically suspected or documented pulmonary hypertension. What are the important diagnostic findings in CT scan of a patient with pulmonary hypertension. Discussion: The prospect of instantaneous complex - anatomical and functional cardiopulmonary and vascular diagnostics seems extremely attractive. The contrast enhanced multislice computed (CT ) and magnetic resonance imaging are very suitable methods for imaging the structures of the right heart, with the possibility of obtaining multiple projections and three-dimensional imaging reconstructions . There are specific morphological features that, if carefully analyzed, provide diagnostic information. Thus, it is possible to avoid or at least reduce the frequency of use of invasive diagnostic cardiac catheterization in patients with pulmonary hypertension. Conclusion: This review focuses on the use of contrast-enhanced CT for comprehensive evaluation of patients with pulmonary hypertension and presents the observed characteristic changes in the chest, lung parenchyma , the structures of the right half of the heart and pulmonary vessels

  11. Impact of low-energy CT imaging on selection of positive oral contrast media concentration.

    Science.gov (United States)

    Patino, Manuel; Murcia, Diana J; Iamurri, Andrea Prochowski; Kambadakone, Avinash R; Hahn, Peter F; Sahani, Dushyant V

    2017-05-01

    To determine to what extent low-energy CT imaging affects attenuation of gastrointestinal tract (GIT) opacified with positive oral contrast media (OCM). Second, to establish optimal OCM concentrations for low-energy diagnostic CT exams. One hundred patients (38 men and 62 women; age 62 ± 11 years; BMI 26 ± 5) with positive OCM-enhanced 120-kVp single-energy CT (SECT), and follow-up 100-kVp acquisitions (group A; n = 50), or 40-70-keV reconstructions from rapid kV switching-single-source dual-energy CT (ssDECT) (group B; n = 50) were included. Luminal attenuation from different GIT segments was compared between exams. Standard dose of three OCM and diluted solutions (75%, 50%, and 25% concentrations) were introduced serially in a gastrointestinal phantom and scanned using SECT (120, 100, and 80 kVp) and DECT (80/140 kVp) acquisitions on a ssDECT scanner. Luminal attenuation was obtained on SECT and DECT images (40-70 keV), and compared to 120-kVp scans with standard OCM concentrations. Luminal attenuation was higher on 100-kVp (328 HU) and on 40-60-keV images (410-924 HU) in comparison to 120-kVp scans (298 HU) in groups A and B (p < 0.05). Phantom: There was an inverse correlation between luminal attenuation and X-ray energy, increasing up to 527 HU on low-kVp and 999 HU on low-keV images (p < 0.05). 25% and 50% diluted OCM solutions provided similar or higher attenuation than 120 kVp, at low kVp and keV, respectively. Low-energy CT imaging increases the attenuation of GIT opacified with positive OCM, permitting reduction of 25%-75% OCM concentration.

  12. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell; Knutsen, Bjoern Helge; Roeislien, Jo; Olsen, Dag Rune

    2007-01-01

    The purpose of this study is to investigate whether the method of applicator reconstruction and/or the applicator orientation influence the dose calculation to points around the applicator for brachytherapy of cervical cancer with CT-based treatment planning. A phantom, containing a fixed ring applicator set and six lead pellets representing dose points, was used. The phantom was CT scanned with the ring applicator at four different angles related to the image plane. In each scan the applicator was reconstructed by three methods: (1) direct reconstruction in each image (DR) (2) reconstruction in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method was significantly lower (p < 0.05) than for the DR and MPR methods for all but two points. All applicator orientations had similar dose calculation reproducibility. Using library plans for applicator reconstruction gives the most reproducible dose calculation. However, with restrictive guidelines for applicator reconstruction the uncertainties for all methods are low compared to other factors influencing the accuracy of brachytherapy

  13. Clinical impact of PET/CT imaging after adjuvant therapy in patients with oral cavity squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huan-Chun [Chang Gung Memorial Hospital and Chang Gung University, Department of Nuclear Medicine and Molecular Imaging Center, Taoyuan (China); Kang, Chung-Jan; Huang, Shiang-Fu; Liao, Chun-Ta [Chang Gung Memorial Hospital and Chang Gung University, Department of Otorhinolaryngology, Head and Neck Surgery, Taoyuan (China); Wang, Hung-Ming [Chang Gung Memorial Hospital and Chang Gung University, Department of Medical Oncology, Taoyuan (China); Lin, Chien-Yu [Chang Gung Memorial Hospital and Chang Gung University, Department of Radiation Oncology, Taoyuan (China); Lee, Li-Yu [Chang Gung Memorial Hospital and Chang Gung University, Department of Pathology, Taoyuan (China); Yen, Tzu-Chen [Chang Gung Memorial Hospital and Chang Gung University, Department of Nuclear Medicine and Molecular Imaging Center, Taoyuan (China); Chang Gung Memorial Hospital at Linkou, Department of Nuclear Medicine, Taoyuan (China)

    2017-09-15

    This single-center retrospective study of prospectively collected data was aimed at comparing the clinical outcomes of positron emission tomography/computed tomography (PET/CT) for patients with oral cavity squamous cell carcinoma (OSCC) with symptomatic recurrences identified by PET/CT imaging following adjuvant therapy (Group A) versus those of cases with asymptomatic recurrences diagnosed through periodic post-adjuvant therapy PET/CT surveillance (Group B). We also sought to establish the priority of salvage therapy in the two study groups. We identified 111 patients with advanced resected OSCC who developed recurrences following adjuvant therapy (51 in Group A and 60 in Group B). Histopathology served as the gold standard for recurrent lesions. The impact of post-adjuvant therapy PET/CT surveillance was examined with Kaplan-Meier curves and Cox proportional hazards regression models. The 2-year DSS and OS rates were marginally or significantly higher in Group B than in Group A (P = 0.073 and P = 0.025, respectively). Time-dependent ROC curve analysis demonstrated that the optimal cutoff values for time to positive PET/CT findings in relation to OS were 12 months for Group A and 9 months for Group B, respectively. Independent risk factors identified in multivariate analyses were used to devise two prognostic scoring systems for 2-year DSS and OS in each study group (all P < 0.001). Scheduled periodic PET/CT surveillance is a valuable tool for early detection of recurrent lesion(s) in asymptomatic OSCC patients who bear risk factors for disease recurrence. The presence of clinical symptoms and a short time to positive PET/CT findings were adverse prognostic factors for clinical outcome in patients with advanced OSCC. The priority of salvage therapy is discussed in each patient subgroup according to the devised prognostic scoring systems. (orig.)

  14. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality - preliminary findings

    International Nuclear Information System (INIS)

    Mieville, Frederic A.; Gudinchet, Francois; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Bochud, Francois O.; Verdun, Francis R.

    2011-01-01

    Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI vol 4.8-7.9 mGy, DLP 37.1-178.9 mGy.cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone. (orig.)

  15. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality - preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Mieville, Frederic A. [University Hospital Center and University of Lausanne, Institute of Radiation Physics, Lausanne (Switzerland); University Hospital Center and University of Lausanne, Institute of Radiation Physics - Medical Radiology, Lausanne (Switzerland); Gudinchet, Francois; Rizzo, Elena [University Hospital Center and University of Lausanne, Department of Radiology, Lausanne (Switzerland); Ou, Phalla; Brunelle, Francis [Necker Children' s Hospital, Department of Radiology, Paris (France); Bochud, Francois O.; Verdun, Francis R. [University Hospital Center and University of Lausanne, Institute of Radiation Physics, Lausanne (Switzerland)

    2011-09-15

    Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI{sub vol} 4.8-7.9 mGy, DLP 37.1-178.9 mGy.cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone. (orig.)

  16. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Y; Bowsher, J; Yan, S; Cai, J; Das, S; Yin, F [Duke University Medical Center, Durham, NC (United States)

    2014-06-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medical Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.

  17. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    International Nuclear Information System (INIS)

    Cui, Y; Bowsher, J; Yan, S; Cai, J; Das, S; Yin, F

    2014-01-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with 18 F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medical Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy

  18. Deep inspiration breath-hold radiotherapy for lung cancer: impact on image quality and registration uncertainty in cone beam CT image guidance

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte F; Bangsgaard, Jens Peter

    2016-01-01

    OBJECTIVE: We investigated the impact of deep inspiration breath-hold (DIBH) and tumour baseline shifts on image quality and registration uncertainty in image-guided DIBH radiotherapy (RT) for locally advanced lung cancer. METHODS: Patients treated with daily cone beam CT (CBCT)-guided free...... for the craniocaudal direction in FB, where it was >3 mm. On the 31st fraction, the intraobserver uncertainty increased compared with the second fraction. This increase was more pronounced in FB. Image quality scores improved in DIBH compared with FB for all parameters in all patients. Simulated tumour baseline shifts...... ≤2 mm did not affect the CBCT image quality considerably. CONCLUSION: DIBH CBCT improved image quality and reduced registration uncertainty in the craniocaudal direction in image-guided RT of locally advanced lung cancer. Baseline shifts ≤2 mm in DIBH during CBCT acquisition did not affect image...

  19. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    Science.gov (United States)

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p ASIR images (p ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  20. CT and MR image fusion using two different methods after prostate brachytherapy: impact on post-implant dosimetric assessment

    International Nuclear Information System (INIS)

    Servois, V.; El Khoury, C.; Lantoine, A.; Ollivier, L.; Neuenschwander, S.; Chauveinc, L.; Cosset, J.M.; Flam, T.; Rosenwald, J.C.

    2003-01-01

    To study different methods of CT and MR images fusion in patient treated by brachytherapy for localized prostate cancer. To compare the results of the dosimetric study realized on CT slices and images fusion. Fourteen cases of patients treated by 1125 were retrospectively studied. The CT examinations were realized with continuous section of 5 mm thickness, and MR images were obtained with a surface coil with contiguous section of 3 mm thickness. For the images fusion process, only the T2 weighted MR sequence was used. Two processes of images fusion were realized for each patient, using as reference marks the bones of the pelvis and the implanted seeds. A quantitative and qualitative appreciation was made by the operators, for each patient and both methods of images fusion. The dosimetric study obtained by a dedicated software was realized on CT images and all types of images fusion. The usual dosimetric indexes (D90, V 100 and V 150) were compared for each type of image. The quantitative results given by the software of images fusion showed a superior accuracy to the one obtained by the pelvic bony reference marks. Conversely, qualitative and quantitative results obtained by the operators showed a better accuracy of the images fusion based on iodine seeds. For two patients out of three presenting a D90 inferior to 145 Gy on CT examination, the D90 was superior to this norm when the dosimetry was based on images fusion, whatever the method used. The images fusion method based on implanted seed matching seems to be more precise than the one using bony reference marks. The dosimetric study realized on images fusion could allow to rectify possible errors, mainly due to difficulties in surrounding prostate contour delimitation on CT images. (authors)

  1. Dynamic CT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Caruso, Damiano; Eid, Marwen; Schoepf, U. Joseph; Jin, Kwang Nam; Varga-Szemes, Akos; Tesche, Christian; Mangold, Stefanie

    2016-01-01

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  2. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  3. The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynaecological cancers

    International Nuclear Information System (INIS)

    Tsai, Cheng-Chien; Kao, Pan-Fu; Yen, Tzu-Chen; Tsai, Chien-Sheng; Hong, Ji-Hong; Ng, Koon-Kwan; Lai, Chyong-Huey; Chang, Ting-Chang; Hsueh, Swei

    2003-01-01

    This study was performed to prospectively investigate the impact of image fusion in resolving discrepant findings between fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) or X-ray computed tomography (CT) in patients with gynaecological cancers. Discrepant findings were defined as lesions where the difference between the FDG-PET and MRI/CT images was assigned a value of at least 2 on a 5-point probability scale. The FDG-PET and MRI/CT images were taken within 1 month of each other. Image fusion between FDG-PET and CT was performed by automatic registration between the two images. During an 18-month period, 34 malignant lesions and seven benign lesions from 32 patients who had undergone either surgical excision or a CT-guided histopathological investigation were included for analysis. Among these cases, image fusion was most frequently required to determine the nature and/or the extent of abdominal and pelvic lesions (28/41, 68%), especially as regards peritoneal seeding (8/41, 20%). Image fusion was most useful in providing better localisation for biopsy (16/41, 39%) and in discriminating between lesions with pathological versus physiological FDG uptake (12/41, 29%). Image fusion changed the original diagnosis based on MRI/CT alone in 9/41 lesions (22%), and the original diagnosis based on FDG-PET alone in 5/41 lesions (12%). It led to alteration of treatment planning (surgery or radiotherapy) in seven of the 32 patients (22%). In patients with gynaecological cancers, the technique of image fusion is helpful in discriminating the nature of FDG-avid lesions, in effectively localising lesions for CT-guided biopsy and in providing better surgical or radiotherapy planning. (orig.)

  4. CT angiography of intracranial arterial vessels: impact of tube voltage and contrast media concentration on image quality

    International Nuclear Information System (INIS)

    Ramgren, Birgitta; Holtaas, Stig; Siemund, Roger; Dept. of Radiology, Lund Univ., Lund

    2012-01-01

    Background Computed tomography angiography (CTA) of intracranial arteries has high demands on image quality. Important parameters influencing vessel enhancement are injection rate, concentration of contrast media and tube voltage. Purpose To evaluate the impact of an increase of contrast media concentration from 300 to 400 mg iodine/mL (mgI/mL) and the effect of a decrease of tube voltage from 120 to 90 kVp on vessel attenuation and image quality in CT angiography of intracranial arteries. Material and Methods Sixty-three patients were included into three protocol groups: Group I, 300 mgI/mL 120 kVp; Group II, 400 mgI/mL 120 kVp; Group III, 400 mgI/mL 90 kVp. Hounsfield units (HU) were measured in the internal carotid artery (ICA) and the M1 and M2 segments of the middle cerebral artery. Image quality grading was performed regarding M1 and M2 segments, volume rendering and general image impression. Results The difference in mean HU in ICA concerning the effect of contrast media concentration was statistically significant (P = 0.03) in favor of higher concentration. The difference in ICA enhancement due to the effect of tube voltage was statistically significant (P < 0.01) in favor of lower tube voltage. The increase of contrast medium concentration raised the mean enhancement in ICA with 18% and the decrease of tube voltage raised the mean enhancement with 37%. Image quality grading showed a trend towards improved grading for higher contrast concentration and lower tube voltage. Statistically significant better grading was found for the combined effect of both measures except for general impression (P 0.01-0.05). Conclusion The uses of highly concentrated contrast media and low tube voltage are easily performed measures to improve image quality in CTA of intracranial vessel

  5. FDG PET/CT in pediatric primary bone tumours: comparison with conventional imaging (CI) and management impact assesment

    International Nuclear Information System (INIS)

    Stege, Claudia; London, Kevin; Cross, Siobhan; Howman-Giles, Robert; Onikul, Ella; Graf, Nicole; Pozza, L.D.

    2009-01-01

    Full text: To evaluate PET/CT in pediatric primary bone tumours (PBT), the accuracy, clinical impact, prognostic indicators in predicting tumour response to therapy and determining epiphyseal involvement were compared to Cl. Methods: A retrospective review of PET/CT scans with CI was performed. Lesions were compared to a reference standard: histopathology or follow up >6 mths. Pt based analysis was performed for clinical impact. Prognostic indicators (SUYmax, tumour size) were compared to histopathology response post chemotherapy. Results: 43 pts (average 12.9 yrs) with osteosarcoma (I 8), Ewing's sarcoma (21), PNE (4) were analysed. 109 PET/CT scans with CI scans were evaluated (371 lesions). 33 lesions were discordant. Accuracy of PET/CT was higher for all lesions than CI (95% vs92%) but sensitivity was lower (79% vs 83%). Excluding lung lesions, sensitivities increased for PET/CT and CI (92% vs 89%). 9pts had PET/CT staging and follow up with histopathological evaluation post chemotherapy: 2pts poor responders, 7 good responders. Good responders had a higher SUYmax at diagnosis compared to poor responders (av 13.84 vs 7.95) but reduced more [10.5(70%) vs 3.5( 45%)]following chemotherapy. There were no false negatives for epiphyseal involvement for PET/CT and CI but one PET/CT was false positive. Conclusion: PET/CT is less sensitive in small lung lesions, but more sensitive in other areas compared to Cl. SUYmax at diagnosis is a poor predictor of response, but percent decrease post therapy was associated with therapeutic response. Change in tumour size on MR is a poor predictor of response. There is improved clinical impact with PET/CT in patient management.

  6. The impact of heart rate on image quality and reconstruction timing of dual-source CT coronary angiography

    International Nuclear Information System (INIS)

    Wang Yining; Jin Zhengyu; Kong Lingyan; Zhang Zhuhua; Song Lan; Mu Wenbin; Wang Yun; Zhao Wenmin; Zhang Shuyang; Lin Songbai

    2008-01-01

    Objective: To evaluate the impact of patient's heart rate (HR) on coronary CT angiography (CTA) image quality (IQ) and reconstruction timing in dual-source CT (DSCT). Methods Ninety-five patients with suspicion of coronary artery disease were examined with a DSCT scanner (Somatom Definition, Siemens) using 32 x 0.6 mm collimation. All patients were divided three groups according to the heart rate (HR): group 1, HR ≤ 70 beats per minute (bpm), n=26; group 2, HR >70 bpm to ≤90 bpm, n=37; group 3, HR > 90 bpm, n=32. No beta-blockers were taken before CT scan. 50- 60 ml of nonionic contrast agent were injected with a rate of 5 ml/s. Images were reconstructed from 10% to 100% of the R-R interval using single-segment reconstruction. Two readers independently assessed IQ of all coronary, segments using a 3-point scale from excellent (1) to non-assessable (3) for coronary segments and the relationship between IQ and the HR. Results: Overall mean IQ score was 1.31 ± 0.55 for all patients with 1.08 ± 0.27 for group 1, 1.32 ± 0.58 for group 2 and 1.47 ± 0.61 for group 3. The IQ was better in the LAD than the RCA and LCX (P<0.01). Only 1.4% (19/1386) of coronary artery segments were considered non-assessable due to the motion artifacts. Optimal image quality of all coronary segments in 74 patients (77.9%) can be achieved with one reconstruction data set. The best IQ was predominately in diastole (88.5%) in group 1, while the best IQ was in systole (84.4%) in group 3. Conclusions: DSCT can achieve the optimal IQ with a wide range of HR using single-segment reconstruction. With the increasing of HR, the timing of data reconstruction for the best IQ shifts from mid-diastole to systole. (authors)

  7. Impact of EBUS-TBNA on PET-CT Imaging of Mediastinal Nodes

    DEFF Research Database (Denmark)

    Sivapalan, Pradeesh; Naur, Therese Maria Henriette; Colella, Sara

    2017-01-01

    BACKGROUND: Positron emission tomography-computed tomography (PET-CT) with fluorine-18-fluorodeoxyglucose has a high sensitivity in detecting malignancy in patients suspected of lung cancer but a low specificity as inflammatory reactions can also result in metabolic activity. Furthermore, it is a......BACKGROUND: Positron emission tomography-computed tomography (PET-CT) with fluorine-18-fluorodeoxyglucose has a high sensitivity in detecting malignancy in patients suspected of lung cancer but a low specificity as inflammatory reactions can also result in metabolic activity. Furthermore......, it is assumed that invasive pulmonary procedures with biopsies from benign lesions can induce metabolic activity resulting in false-positive results. However, this hypothesis lacks solid evidence. We aimed to evaluate how often endobronchial ultrasound (EBUS) with biopsies from benign lesions are followed...

  8. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  9. Advances in CT imaging for urolithiasis

    Directory of Open Access Journals (Sweden)

    Yasir Andrabi

    2015-01-01

    Full Text Available Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT is highly sensitive (>95% and specific (>96% in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT and technological innovations in CT such as dual-energy CT (DECT has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice.

  10. A randomised clinical trial of routine versus selective CT imaging in acute abdomen: Impact of patient age on treatment costs and hospital resource use

    Energy Technology Data Exchange (ETDEWEB)

    Lehtimäki, Tiina T., E-mail: tiina.lehtimaki@kuh.fi [Department of Clinical Radiology, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210, Kuopio (Finland); Valtonen, Hannu, E-mail: hannu.valtonen@uef.fi [University of Eastern Finland, Department of Health and Social Management, Yliopistonranta 1, FI-70211 Kuopio (Finland); Miettinen, Pekka, E-mail: pekka.miettinen@satucon.fi [Department of Gastrointestinal Surgery, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210 Kuopio (Finland); Juvonen, Petri, E-mail: petri.juvonen@kuh.fi [Department of Gastrointestinal Surgery, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210 Kuopio (Finland); Paajanen, Hannu, E-mail: hannu.paajanen@kuh.fi [Department of Gastrointestinal Surgery, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210 Kuopio (Finland); University of Eastern Finland, Department of Clinical Medicine, Unit of Surgery, Yliopistonranta 1, FI-70211 Kuopio (Finland); Vanninen, Ritva, E-mail: ritva.vanninen@kuh.fi [Department of Clinical Radiology, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210, Kuopio (Finland); University of Eastern Finland, Department of Clinical Medicine, Unit of Radiology, Yliopistonranta 1, FI-70211 Kuopio (Finland)

    2017-02-15

    Objectives: To evaluate the impact of patient age on hospital resource use and treatment costs of acute abdominal pain (AAP). Materials and methods: A total of 300 adult patients with AAP were randomised to either computed tomography (CT, n = 150) or selective imaging practice (SIP, n = 150) groups. Final analysis included 254 patients, 143 (42 patients ≥65 years) in the CT and 111 (32 patients ≥65 years) in the SIP group. All CT group patients underwent abdominal CT whereas in the SIP group, imaging was based on the clinical assessment. For each patient, the hospital length of stay (LOS), the numbers and costs of diagnostic and treatment procedures arising from AAP were calculated and registered. The incremental cost-effectiveness ratio (ICER) and bootstrapped cost-effectiveness acceptability curve (CEAC) were estimated for routine CT. Results: Treatment costs, imaging costs and LOS increased in conjunction with aging in both study groups, and were generally higher in the CT group compared to the SIP group. In the SIP group, CT was undertaken in 34% (27/79) of the <65 year olds but in 59% (19/32) of the older patients (≥65 years) (p = 0.02). The proportion of patients with non-specific abdominal pain was significantly lower in patients ≥65 years than in their younger counterparts (p = 0.04). In the routine CT group, the ICER of obtaining a specific diagnosis was 1682 € for patients <65 years and 1055 € for patients ≥65 years. According to CEAC estimation, routine CT for every patient with AAP has a 95% probability of being cost-effective if society is willing to pay 14087 € for an additional specific diagnosis for patients <65 years but only 4204 € in those ≥65 years. Conclusion: Treatment costs of AAP increase in parallel with aging, and the costs are generally higher with routine CT compared to selective imaging. The probability of obtaining a specific diagnosis of AAP increases with aging. If obtaining a specific diagnosis is deemed crucial

  11. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    DEFF Research Database (Denmark)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell

    2007-01-01

    in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method...

  12. Image mottle in abdominal CT.

    Science.gov (United States)

    Ende, J F; Huda, W; Ros, P R; Litwiller, A L

    1999-04-01

    To investigate image mottle in conventional CT images of the abdomen as a function of radiographic technique factors and patient size. Water-filled phantoms simulating the abdomens of adult (32 cm in diameter) and pediatric (16 cm in diameter) patients were used to investigate image mottle in CT as a function of x-ray tube potential and mAs. CT images from 39 consecutive patients with noncontrast liver scans and 49 patients with iodine contrast scans were analyzed retrospectively. Measurements were made of the mean liver parenchyma Hounsfield unit value and the corresponding image mottle. For a given water phantom and x-ray tube potential, image mottle was proportional to the mAs-0.5. Increasing the phantom diameter from 16 cm (pediatric) to 32 cm increased the mottle by a factor of 2.4, and increasing the x-ray tube potential from 80 kVp to 140 kVp reduced the mottle by a factor of 2.5. All patients were scanned at 120 kVp, with no correlation between patient size and the x-ray tube mAs. The mean mottle level was 7.8 +/- 2.2 and 10.0 +/- 2.5 for the noncontrast and contrast studies, respectively. An increase in patient diameter of 3 cm would require approximately 65% more mAs to maintain the same level of image mottle. The mottle in abdominal CT images may be controlled by adjusting radiographic technique factors, which should be adjusted to take into account the size of the patient undergoing the examination.

  13. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging

    International Nuclear Information System (INIS)

    Hulme, K. W.; Kappadath, S. C.

    2014-01-01

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI vol = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in 99m Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI vol = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ 140 keV on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed 99m Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect

  14. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  15. Impact of deep learning on the normalization of reconstruction kernel effects in imaging biomarker quantification: a pilot study in CT emphysema

    Science.gov (United States)

    Jin, Hyeongmin; Heo, Changyong; Kim, Jong Hyo

    2018-02-01

    Differing reconstruction kernels are known to strongly affect the variability of imaging biomarkers and thus remain as a barrier in translating the computer aided quantification techniques into clinical practice. This study presents a deep learning application to CT kernel conversion which converts a CT image of sharp kernel to that of standard kernel and evaluates its impact on variability reduction of a pulmonary imaging biomarker, the emphysema index (EI). Forty cases of low-dose chest CT exams obtained with 120kVp, 40mAs, 1mm thickness, of 2 reconstruction kernels (B30f, B50f) were selected from the low dose lung cancer screening database of our institution. A Fully convolutional network was implemented with Keras deep learning library. The model consisted of symmetric layers to capture the context and fine structure characteristics of CT images from the standard and sharp reconstruction kernels. Pairs of the full-resolution CT data set were fed to input and output nodes to train the convolutional network to learn the appropriate filter kernels for converting the CT images of sharp kernel to standard kernel with a criterion of measuring the mean squared error between the input and target images. EIs (RA950 and Perc15) were measured with a software package (ImagePrism Pulmo, Seoul, South Korea) and compared for the data sets of B50f, B30f, and the converted B50f. The effect of kernel conversion was evaluated with the mean and standard deviation of pair-wise differences in EI. The population mean of RA950 was 27.65 +/- 7.28% for B50f data set, 10.82 +/- 6.71% for the B30f data set, and 8.87 +/- 6.20% for the converted B50f data set. The mean of pair-wise absolute differences in RA950 between B30f and B50f is reduced from 16.83% to 1.95% using kernel conversion. Our study demonstrates the feasibility of applying the deep learning technique for CT kernel conversion and reducing the kernel-induced variability of EI quantification. The deep learning model has a

  16. Impact of iterative reconstruction on image quality and radiation dose in multidetector CT of large body size adults

    International Nuclear Information System (INIS)

    Desai, Gaurav S.; Uppot, Raul N.; Kambadakone, Avinash R.; Yu, Elaine W.; Sahani, Dushyant V.

    2012-01-01

    To compare image quality and radiation dose using Adaptive Statistical Iterative Reconstruction (ASiR) and Filtered Back Projection (FBP) in patients weighing ≥91 kg. In this Institution Review Board-approved retrospective study, single-phase contrast-enhanced abdominopelvic CT examinations of 100 adults weighing ≥91 kg (mean body weight: 107.6 ± 17.4 kg range: 91-181.9 kg) with (1) ASiR and (2) FBP were reviewed by two readers in a blinded fashion for subjective measures of image quality (using a subjective standardized numerical scale and objective noise) and for radiation exposure. Imaging parameters and radiation dose results of the two techniques were compared within weight and BMI sub-categories. All examinations were found to be of adequate quality. Both subjective (mean = 1.4 ± 0.5 vs. 1.6 ± 0.6, P < 0.05) and objective noise (13.0 ± 3.2 vs.19.5 ± 5.7, P < 0.0001) were lower with ASiR. Average radiation dose reduction of 31.5 % was achieved using ASiR (mean CTDIvol. ASiR: 13.5 ± 7.3 mGy; FBP: 19.7 ± 9.0 mGy, P < 0.0001). Other measures of image quality were comparable between the two techniques. Trends for all parameters were similar in patients across weight and BMI sub-categories. In obese individuals, abdominal CT images reconstructed using ASiR provide diagnostic images with reduced image noise at lower radiation dose. circle CT images in obese adults are noisy, even with high radiation dose. (orig.)

  17. Impact of iterative reconstruction on image quality and radiation dose in multidetector CT of large body size adults

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Gaurav S.; Uppot, Raul N.; Kambadakone, Avinash R. [Harvard Medical School, Department of Abdominal Imaging and Intervention, Massachusetts General Hospital, Boston, MA (United States); Yu, Elaine W. [Harvard Medical School, Massachusetts General Hospital, Boston, MA (United States); Sahani, Dushyant V. [Harvard Medical School, Department of Abdominal Imaging and Intervention, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, Department of Radiology, Division of Abdominal Imaging and Intervention, Massachusetts General Hospital, Boston, MA (United States)

    2012-08-15

    To compare image quality and radiation dose using Adaptive Statistical Iterative Reconstruction (ASiR) and Filtered Back Projection (FBP) in patients weighing {>=}91 kg. In this Institution Review Board-approved retrospective study, single-phase contrast-enhanced abdominopelvic CT examinations of 100 adults weighing {>=}91 kg (mean body weight: 107.6 {+-} 17.4 kg range: 91-181.9 kg) with (1) ASiR and (2) FBP were reviewed by two readers in a blinded fashion for subjective measures of image quality (using a subjective standardized numerical scale and objective noise) and for radiation exposure. Imaging parameters and radiation dose results of the two techniques were compared within weight and BMI sub-categories. All examinations were found to be of adequate quality. Both subjective (mean = 1.4 {+-} 0.5 vs. 1.6 {+-} 0.6, P < 0.05) and objective noise (13.0 {+-} 3.2 vs.19.5 {+-} 5.7, P < 0.0001) were lower with ASiR. Average radiation dose reduction of 31.5 % was achieved using ASiR (mean CTDIvol. ASiR: 13.5 {+-} 7.3 mGy; FBP: 19.7 {+-} 9.0 mGy, P < 0.0001). Other measures of image quality were comparable between the two techniques. Trends for all parameters were similar in patients across weight and BMI sub-categories. In obese individuals, abdominal CT images reconstructed using ASiR provide diagnostic images with reduced image noise at lower radiation dose. circle CT images in obese adults are noisy, even with high radiation dose. (orig.)

  18. DELAYED FDG-PET/CT IMAGES IN PATIENTS WITH BRAIN TUMORS - IMPACT ON VISUAL AND SEMIQUANTITATIVE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Pavel H. Bochev

    2013-01-01

    Full Text Available Background: Despite the extensive use of FDG-PET/CT its role in brain tumor assessment remains controversial mostly because of the physiologically high brain uptake which easily obscures pathological processes. The wide availability of FDG, however, maintains the interest in FDG neuro-oncological applications. Objective: to evaluate the use of a late registration at 180min in patients with brain tumors, studied with FDG-PET/CT based on visual and semiquantitative analysis. Materials and methods: 38 patients with brain neoplasms and non-tumor structural lesions underwent a selective brain 18F-FDG PET/CT at two time points at 60 and 180 minutes after administration. Visual assessment was made by two readers with interobserver agreement calculation. Region ratio comparison with three different reference regions - the contralateral one, the white matter, and the cerebellum was used as a base for semiquantitative analysis. Results: Visual analysis showed better delineation of malignant lesion on late registrations with higher inter/intraobserver agreement as compared to the early images. Semiquantitative analysis demonstrated significant differences in early and late indices of metastases and gliomas, but failed in distinguishing gliomas from metastatic lesions and benign lesions.Conclusion: Delayed brain images with FDG-PET/CT at 180 min after injection provide better tumor delineation, higher accuracy, lower interobserver variations. The use of semiquantitative indices, irrespective of the reference region used, is of limited value

  19. Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT angiography after intracranial aneurysm clipping

    Energy Technology Data Exchange (ETDEWEB)

    Dunet, Vincent; Bernasconi, Martine; Hajdu, Steven David; Meuli, Reto Antoine; Zerlauth, Jean-Baptiste [Lausanne University Hospital, Department of Diagnostic and Interventional Radiology, Lausanne (Switzerland); Daniel, Roy Thomas [Lausanne University Hospital, Department of Neurosurgery, Lausanne (Switzerland)

    2017-09-15

    We aimed to assess the impact of metal artifact reduction software (MARs) on image quality of gemstone spectral imaging (GSI) dual-energy (DE) cerebral CT angiography (CTA) after intracranial aneurysm clipping. This retrospective study was approved by the institutional review board, which waived patient written consent. From January 2013 to September 2016, single source DE cerebral CTA were performed in 45 patients (mean age: 60 ± 9 years, male 9) after intracranial aneurysm clipping and reconstructed with and without MARs. Signal-to-noise (SNR), contrast-to-noise (CNR), and relative CNR (rCNR) ratios were calculated from attenuation values measured in the internal carotid artery (ICA) and middle cerebral artery (MCA). Volume of clip and artifacts and relative clip blurring reduction (rCBR) ratios were also measured at each energy level with/without MARs. Variables were compared between GSI and GSI-MARs using the paired Wilcoxon signed-rank test. MARs significantly reduced metal artifacts at all energy levels but 130 and 140 keV, regardless of clips' location and number. The optimal rCBR was obtained at 110 and 80 keV, respectively, on GSI and GSI-MARs images, with up to 96% rCNR increase on GSI-MARs images. The best compromise between metal artifact reduction and rCNR was obtained at 70-75 and 65-70 keV for GSI and GSI-MARs images, respectively, with up to 15% rCBR and rCNR increase on GSI-MARs images. MARs significantly reduces metal artifacts on DE cerebral CTA after intracranial aneurysm clipping regardless of clips' location and number. It may be used to reduce radiation dose while increasing CNR. (orig.)

  20. Functional Imaging: CT and MRI

    OpenAIRE

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advan...

  1. PET/CT imaging in head and neck tumors

    International Nuclear Information System (INIS)

    Roedel, R.; Palmedo, H.; Reichmann, K.; Reinhardt, M.J.; Biersack, H.J.; Straehler-Pohl, H.J.; Jaeger, U.

    2004-01-01

    To evaluate the usefulness of combined PET/CT examinations for detection of malignant tumors and their metastases in head and neck oncology. 51 patients received whole body scans on a dual modality PET/CT system. CT was performed without i.v. contrast. The results were compared concerning the diagnostic impact of native CT scan on FDG-PET images and the additional value of fused imaging. From 153 lesions were 97 classified as malignant on CT and 136 on FDG/PET images, as suspicious for malignancy in 33 on CT and 7 on FDG-PET and as benign in 23 on CT and 10 on FDG-PET. With combined PET/CT all primary and recurrent tumors could be found, the detection rate in patients with unknown primary tumors was 45%. Compared to PET or CT alone the sensitivity, specifity and accuracy could be significantly improved by means of combined PET/CT. Fused PET/CT imaging with [F18]-FDG and native CT-scanning enables accurate diagnosis in 93% of lesions and 90% of patients with head and neck oncology. (orig.) [de

  2. Impact of the adaptive statistical iterative reconstruction technique on image quality in ultra-low-dose CT

    International Nuclear Information System (INIS)

    Xu, Yan; He, Wen; Chen, Hui; Hu, Zhihai; Li, Juan; Zhang, Tingting

    2013-01-01

    Aim: To evaluate the relationship between different noise indices (NIs) and radiation dose and to compare the effect of different reconstruction algorithm applications for ultra-low-dose chest computed tomography (CT) on image quality improvement and the accuracy of volumetric measurement of ground-glass opacity (GGO) nodules using a phantom study. Materials and methods: A 11 cm thick transverse phantom section with a chest wall, mediastinum, and 14 artificial GGO nodules with known volumes (919.93 ± 64.05 mm 3 ) was constructed. The phantom was scanned on a Discovery CT 750HD scanner with five different NIs (NIs = 20, 30, 40, 50, and 60). All data were reconstructed with a 0.625 mm section thickness using the filtered back-projection (FBP), 50% adaptive statistical iterative reconstruction (ASiR), and Veo model-base iterative reconstruction algorithms. Image noise was measured in six regions of interest (ROIs). Nodule volumes were measured using a commercial volumetric software package. The image quality and the volume measurement errors were analysed. Results: Image noise increased dramatically from 30.7 HU at NI 20 to 122.4 HU at NI 60, with FBP reconstruction. Conversely, Veo reconstruction effectively controlled the noise increase, with an increase from 9.97 HU at NI 20 to only 15.1 HU at NI 60. Image noise at NI 60 with Veo was even lower (50.8%) than that at NI 20 with FBP. The contrast-to-noise ratio (CNR) of Veo at NI 40 was similar to that of FBP at NI 20. All artificial GGO nodules were successfully identified and measured with an average relative volume measurement error with Veo at NI 60 of 4.24%, comparable to a value of 10.41% with FBP at NI 20. At NI 60, the radiation dose was only one-tenth that at NI 20. Conclusion: The Veo reconstruction algorithms very effectively reduced image noise compared with the conventional FBP reconstructions. Using ultra-low-dose CT scanning and Veo reconstruction, GGOs can be detected and quantified with an acceptable

  3. SU-E-T-391: Evaluation of Image Parameters Impact On the CT Calibration Curve for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z; Reyhan, M; Huang, Q; Zhang, M; Yue, N; Chen, T [Rutgers University, New Brunswick, NJ (United States)

    2015-06-15

    Purpose: The calibration of the Hounsfield units (HU) to relative proton stopping powers (RSP) is a crucial component in assuring the accurate delivery of proton therapy dose distributions to patients. The purpose of this work is to assess the uncertainty of CT calibration considering the impact of CT slice thickness, position of the plug within the phantom and phantom sizes. Methods: Stoichiometric calibration method was employed to develop the CT calibration curve. Gammex 467 tissue characterization phantom was scanned in Tomotherapy Cheese phantom and Gammex 451 phantom by using a GE CT scanner. Each plug was individually inserted into the same position of inner and outer ring of phantoms at each time, respectively. 1.25 mm and 2.5 mm slice thickness were used. Other parameters were same. Results: HU of selected human tissues were calculated based on fitted coefficient (Kph, Kcoh and KKN), and RSP were calculated according to the Bethe-Bloch equation. The calibration curve was obtained by fitting cheese phantom data with 1.25 mm thickness. There is no significant difference if the slice thickness, phantom size, position of plug changed in soft tissue. For boney structure, RSP increases up to 1% if the phantom size and the position of plug changed but keep the slice thickness the same. However, if the slice thickness varied from the one in the calibration curve, 0.5%–3% deviation would be expected depending on the plug position. The Inner position shows the obvious deviation (averagely about 2.5%). Conclusion: RSP shows a clinical insignificant deviation in soft tissue region. Special attention may be required when using a different slice thickness from the calibration curve for boney structure. It is clinically practical to address 3% deviation due to different thickness in the definition of clinical margins.

  4. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality--preliminary findings.

    Science.gov (United States)

    Miéville, Frédéric A; Gudinchet, François; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Bochud, François O; Verdun, Francis R

    2011-09-01

    Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI(vol) 4.8-7.9 mGy, DLP 37.1-178.9 mGy·cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. The best image quality for all clinical images was obtained with 20% and 40% ASIR (p ASIR above 50%, image quality significantly decreased (p ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone.

  5. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance

    OpenAIRE

    McLaughlin, P. D.; Murphy, K. P.; Hayes, S. A.; Carey, K.; Sammon, J.; Crush, L.; O’Neill, F.; Normoyle, B.; McGarrigle, A. M.; Barry, J. E.; Maher, M. M.

    2014-01-01

    Objectives The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR). Methods Thirty-three patients with clinically suspected renal colic were prospectively included. Conventional dose (CD-CT) and LD-CT data sets were contemporaneously acquired. LD-CT images were reconstructed with 40 %, 70 % and 90 % ASiR. Image quality was sub...

  6. Impact of organ-specific dose reduction on the image quality of head and neck CT angiography

    International Nuclear Information System (INIS)

    Schimmoeller, L.; Lanzman, R.S.; Heusch, P.; Dietrich, S.; Miese, F.; Aissa, J.; Heusner, T.A.; Antoch, G.; Kroepil, P.

    2013-01-01

    Organ-specific dose reduction (OSDR) algorithms can reduce radiation on radiosensitive organs up to 59 %. This study evaluates the influence of a new OSDR algorithm on image quality of head and neck computed tomographic angiography (CTA) in clinical routine. Sixty-two consecutive patients (68 ± 13 years) were randomised into two groups and imaged using 128-row multidetector CT. Group A (n = 31) underwent conventional CTA and group B (n = 31) CTA with a novel OSDR algorithm. Subjective and objective image quality were statistically compared. Subjective image quality was rated on a five-point scale. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated with region-of-interest measurements. The SNR of the common carotid artery and middle cerebral artery was 53.6 ± 22.7 and 43.3 ± 15.3 (group A) versus 54.1 ± 20.5 and 46.2 ± 14.6 (group B). The CNR was 40.0 ± 19.3 and 29.7 ± 12.0 (group A) compared with 40.7 ± 16.8 and 32.9 ± 10.9 (group B), respectively. Subjective image quality was excellent in both groups (mean score 4.4 ± 0.7 versus 4.4 ± 0.6). Differences between the two groups were not significant. The novel OSDR algorithm does not compromise image quality of head and neck CTA. Its application can be recommended for CTA in clinical routine to protect the thyroid gland and ocular lenses from unnecessary high radiation. (orig.)

  7. CT and MR imaging of craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, M. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Takahashi, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Higano, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Kurihara, N. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Ikeda, H. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Neurosurgery; Sakamoto, K. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology

    1997-05-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  8. CT and MR imaging of craniopharyngioma

    International Nuclear Information System (INIS)

    Tsuda, M.; Takahashi, S.; Higano, S.; Kurihara, N.; Ikeda, H.; Sakamoto, K.

    1997-01-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  9. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  10. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  11. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  12. The significance of a uniform definition of pathological lymph nodes in Hodgkin lymphoma: Impact of different thresholds for positive lymph nodes in CT imaging on staging and therapy

    International Nuclear Information System (INIS)

    Vorwerk, Hilke; Obenauer, Silvia; Schmidberger, Heinz; Hess, Clemens F.; Weiss, Elisabeth

    2008-01-01

    Background and Purpose: The most commonly used approach for the assessment for differentiating malignant versus reactive lymph nodes is the measurement of the cross-section diameter of the lymph nodes in the transversal CT-planes. The intention of this article is to assess the impact of varying definitions of pathological lymph node size in CT-imaging in patients with Hodgkin lymphoma and to evaluate its effect on staging, chemotherapy regimes and radiation field size. Materials and methods: Pretherapeutic CT-scans of 10 consecutive patients with Hodgkin lymphoma have been evaluated based on two different definitions for malignant lymph node size; the classification of the German study group for Hodgkin lymphoma (1.0 cm) and the classification according to the results of the Cotswold consensus meeting 1989 (1.5 cm). Results: Applying the definitions of the DHSG and the Cotswold meeting we found more affected lymph node regions compared to the evaluation of the referring institutions in 9/10 and 6/10 patients, higher stages in 2/10 and 1/10 patients, more intense chemotherapy regimes in 3/10 and 1/10 and larger radiation fields in 10/10 and 6/10 patients, respectively. Conclusions: Varying definitions of pathologic lymph node size and inconsequent application of definitions reduce the comparability between different studies and within each study

  13. Image Registration for PET/CT and CT Images with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lee, Hak Jae; Kim, Yong Kwon; Lee, Ki Sung; Choi, Jong Hak; Kim, Chang Kyun; Moon, Guk Hyun; Joo, Sung Kwan; Kim, Kyeong Min; Cheon, Gi Jeong

    2009-01-01

    Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  14. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance.

    Science.gov (United States)

    McLaughlin, P D; Murphy, K P; Hayes, S A; Carey, K; Sammon, J; Crush, L; O'Neill, F; Normoyle, B; McGarrigle, A M; Barry, J E; Maher, M M

    2014-04-01

    The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR). Thirty-three patients with clinically suspected renal colic were prospectively included. Conventional dose (CD-CT) and LD-CT data sets were contemporaneously acquired. LD-CT images were reconstructed with 40 %, 70 % and 90 % ASiR. Image quality was subjectively and objectively measured. Images were also clinically interpreted. Mean ED was 0.48 ± 0.07 mSv for LD-CT compared with 4.43 ± 3.14 mSv for CD-CT. Increasing the percentage ASiR resulted in a step-wise reduction in mean objective noise (p ASiR LD-CT images had higher diagnostic acceptability and spatial resolution than 90 % ASiR LD-CT images (p ASiR LD-CT with two false positives and 16 false negatives (diameter = 2.3 ± 0.7 mm) equating to a sensitivity and specificity of 72 % and 94 %. Seventy % ASiR LD-CT had a sensitivity and specificity of 87 % and 100 % for detection of calculi >3 mm. Reconstruction of LD-CT images with 70 % ASiR resulted in superior image quality than FBP, 40 % ASIR and 90 % ASIR. LD-CT with ASIR demonstrates high sensitivity and specificity for detection of calculi >3 mm. • Low-dose CT studies for urinary calculus detection were performed with a mean dose of 0.48 ± 0.07 mSv • Low-dose CT with 70 % ASiR detected calculi >3 mm with a sensitivity and specificity of 87 % and 100 % • Reconstruction with 70 % ASiR was superior to filtered back projection, 40 % ASiR and 90 % ASiR images.

  15. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  16. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  17. SPECT/CT workflow and imaging protocols

    International Nuclear Information System (INIS)

    Beckers, Catherine; Hustinx, Roland

    2014-01-01

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  18. Imaging fusion (SPECT/CT) in degenerative disease of spine

    International Nuclear Information System (INIS)

    Bernal, P.; Ucros, G.; Bermudez, S.; Ocampo, M.

    2007-01-01

    Full text: Objective: To determine the utility of Fusion Imaging SPECT/CT in degenerative pathology of the spine and to establish the impact of the use of fusion imaging in spinal pain due to degenerative changes of the spine. Materials and methods: 44 Patients (M=21, F=23) average age of 63 years and with degenerative pathology of spine were sent to Diagnosis Imaging department in FSFB. Bone scintigraphy (SPECT), CT of spine (cervical: 30%, Lumbar 70%) and fusion imaging were performed in all of them. Bone scintigraphy was carried out in a gamma camera Siemens Diacam double head attached to ESOFT computer. The images were acquired in matrix 128 x 128, 20 seg/imag, 64 images. CT of spine was performed same day or two days after in Helycoidal Siemens somatom emotion CT. The fusion was done in a Dicom workstation in sagital, axial and coronal reconstruction. The findings were evaluated by 2 Nuclear Medicine physicians and 2 radiologists of the staff of FSFB in an independent way. Results: Bone scan (SPECT) and CT of 44 patients were evaluated. CT showed facet joint osteoarthrities in 27 (61.3%) patients, uncovertebral joint arthrosis in 7 (15.9%), bulging disc in 9(20.4%), spinal nucleus lesion in 7(15.9%), osteophytes in 9 (20.4%), spinal foraminal stenosis in 7 (15.9%), spondylolysis/spondylolisthesis in 4 (9%). Bone scan showed facet joint osteoarthrities in 29 (65.9%), uncovertebral joint arthrosis in 4 (9%), osteophytes in 9 (20.4%) and normal 3 (6.8%). The imaging fusion showed coincidence findings (main lesion in CT with high uptake in scintigraphy) in 34 patients (77.2%) and no coincidence in 10 (22.8%). In 15 (34.09%) patients the fusion provided additional information. The analysis of the findings of CT and SPECT showed similar results in most of the cases and the fusion didn't provide additional information but it allowed to confirm the findings but when the findings didn't match where the CT showed several findings and SPECT only one area with high uptake

  19. Impact of FDG-PET/CT on Radiotherapy Volume Delineation in Non-Small-Cell Lung Cancer and Correlation of Imaging Stage With Pathologic Findings

    International Nuclear Information System (INIS)

    Faria, Sergio L.; Menard, Sonia; Devic, Slobodan; Sirois, Christian; Souhami, Luis; Lisbona, Robert; Freeman, Carolyn R.

    2008-01-01

    Purpose: Fluorodeoxyglucose-positron emission tomography (FDG-PET)/computed tomography (CT) is more accurate than CT in determining the extent of non-small-cell lung cancer. We performed a study to evaluate the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT without using any mathematical algorithm and to correlate the findings with the pathologic examination findings. Methods and Materials: A total of 32 patients with proven non-small-cell lung cancer, pathologic specimens from the mediastinum and lung primary, and pretreatment chest CT and FDG-PET/CT scans were studied. For each patient, two data sets of theoretical gross tumor volumes were contoured. One set was determined using the chest CT only, and the second, done separately, was based on the co-registered FDG-PET/CT data. The disease stage of each patient was determined using the TNM staging system for three data sets: the CT scan only, FDG-PET/CT scan, and pathologic findings. Results: Pathologic examination altered the CT-determined stage in 22 (69%) of 32 patients and the PET-determined stage in 16 (50%) of 32 patients. The most significant alterations were related to the N stage. PET altered the TNM stage in 15 (44%) of 32 patients compared with CT alone, but only 7 of these 15 alterations were confirmed by the pathologic findings. With respect to contouring the tumor volume for radiotherapy, PET altered the contour in 18 (56%) of 32 cases compared with CT alone. Conclusion: The contour of the tumor volume of non-small-cell lung cancer patients with co-registered FDG-PET/CT resulted in >50% alterations compared with CT targeting, findings similar to those of other publications. However, the significance of this change is unknown. Furthermore, pathologic examination showed that PET is not always accurate and histologic examination should be obtained to confirm the findings of PET whenever possible

  20. Prevalence of Os Trigonum on CT Imaging

    NARCIS (Netherlands)

    Zwiers, Ruben; Baltes, Thomas P. A.; Opdam, Kim T. M.; Wiegerinck, Johannes I.; van Dijk, C. Niek

    2017-01-01

    The os trigonum is known as one of the main causes of posterior ankle impingement. In the literature, a wide variation of occurrence has been reported. All foot and/or ankle computed tomography (CT) scans made between January 2012 and December 2013 were reviewed. CT images were assessed, blinded for

  1. The stylohyoid chain: CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uysal Ramadan, Selma, E-mail: uysalselma@yahoo.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Goekharman, Dilek, E-mail: gokharman@ttnet.net.t [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Kosar, Pinar, E-mail: pkosar@hotmail.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Kacar, Mahmut, E-mail: mkacar1961@gamil.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey); Kosar, Ugur, E-mail: ugurkosar@hotmail.co [Department of Radiology, Ankara Training and Research Hospital, Ankara 06590 (Turkey)

    2010-09-15

    We aimed in this report to discuss the embryology, anatomy, theories of ossification and symptoms, clinical presentation, and diagnosis of the stylohyoid chain (SHC) variations, together with the role of radiographs, computed tomography (CT) and three-dimensional (3D)-CT in showing these variations. Because CT/3D-CT additionally facilitates visualization of the entire SHC with different axes, it is the most valuable method for establishing the relationship between the SHC and the surrounding tissue. SHC variation can be discovered during CT performed for indications other than ossified SHC. It is important to diagnose whether or not the SHC is ossified, since one of the treatment procedures in ossified SHC is total excision. If the clinician and radiologist are aware of these variations observed in the SHC, patients with vague symptoms may be spared unnecessary investigations and may be properly diagnosed earlier.

  2. Cochlear anatomy: CT and MR imaging

    International Nuclear Information System (INIS)

    Martinez, Manuel; Bruno, Claudio; Martin, Eduardo; Canale, Nancy; De Luca, Laura; Spina, Juan C. h

    2002-01-01

    The authors present a brief overview of the normal cochlear anatomy with CT and MR images in order to allow a more complete identification of the pathological findings in patients with perceptive hipoacusia. (author)

  3. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  4. Modified CT imaging by reduction factor transformations

    International Nuclear Information System (INIS)

    Doehring, W.; Linke, G.

    1981-01-01

    The possibilities of CT image modification which had existed so far for given matrix of attenuation values (window setting, highlighting, black-and-white or colour reversal and logarithmic distortion of the video signal) are supplemented by the method of attenuation value transformation. As a specific case a linear interval by interval attenuation value transformation is described. First of all, the intirety of the measured CT values is transformed into the corresponding CT quotients (CTQ) and then subdivided into 5 optional intervals. Each one freely selected CTQ value can be allocated to the first and to the last interval; the intermediate 3 intervals can be linearly transformed at random. The article discusses the influence of such a manipulation on CT image reproduction; this is of particular importance for the image visualisation of the results of quantitative organ analyses by means of computed tomography. The presented paper also points to the possibility of effecting further attenuation value transformations. (orig.) [de

  5. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  6. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  7. Study of CT image texture using deep learning techniques

    Science.gov (United States)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  8. Developing optimized CT scan protocols: Phantom measurements of image quality

    International Nuclear Information System (INIS)

    Zarb, Francis; Rainford, Louise; McEntee, Mark F.

    2011-01-01

    Purpose: The increasing frequency of computerized tomography (CT) examinations is well documented, leading to concern about potential radiation risks for patients. However, the consequences of not performing the CT examination and missing injuries and disease are potentially serious, impacting upon correct patient management. The ALARA principle of dose optimization must be employed for all justified CT examinations. Dose indicators displayed on the CT console as either CT dose index (CTDI) and/or dose length product (DLP), are used to indicate dose and can quantify improvements achieved through optimization. Key scan parameters contributing to dose have been identified in previous literature and in previous work by our group. The aim of this study was to optimize the scan parameters of mA; kV and pitch, whilst maintaining image quality and reducing dose. This research was conducted using psychophysical image quality measurements on a CT quality assurance (QA) phantom establishing the impact of dose optimization on image quality parameters. Method: Current CT scan parameters for head (posterior fossa and cerebrum), abdomen and chest examinations were collected from 57% of CT suites available nationally in Malta (n = 4). Current scan protocols were used to image a Catphan 600 CT QA phantom whereby image quality was assessed. Each scan parameter: mA; kV and pitch were systematically reduced until the contrast resolution (CR), spatial resolution (SR) and noise were significantly lowered. The Catphan 600 images, produced by the range of protocols, were evaluated by 2 expert observers assessing CR, SR and noise. The protocol considered as the optimization threshold was just above the setting that resulted in a significant reduction in CR and noise but not affecting SR at the 95% confidence interval. Results: The limit of optimization threshold was determined for each CT suite. Employing optimized parameters, CTDI and DLP were both significantly reduced (p ≤ 0.001) by

  9. Dual-energy CT in patients with abdominal malignant lymphoma: impact of noise-optimised virtual monoenergetic imaging on objective and subjective image quality.

    Science.gov (United States)

    Lenga, L; Czwikla, R; Wichmann, J L; Leithner, D; Albrecht, M H; D'Angelo, T; Arendt, C T; Booz, C; Hammerstingl, R; Vogl, T J; Martin, S S

    2018-06-05

    To investigate the impact of noise-optimised virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with malignant lymphoma at dual-energy computed tomography (DECT) examinations of the abdomen. Thirty-five consecutive patients (mean age, 53.8±18.6 years; range, 21-82 years) with histologically proven malignant lymphoma of the abdomen were included retrospectively. Images were post-processed with standard linear blending (M_0.6), traditional VMI, and VMI+ technique at energy levels ranging from 40 to 100 keV in 10 keV increments. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were objectively measured in lymphoma lesions. Image quality, lesion delineation, and image noise were rated subjectively by three blinded observers using five-point Likert scales. Quantitative image quality parameters peaked at 40-keV VMI+ (SNR, 15.77±7.74; CNR, 18.27±8.04) with significant differences compared to standard linearly blended M_0.6 (SNR, 7.96±3.26; CNR, 13.55±3.47) and all traditional VMI series (ptraditional VMI at abdominal DECT examinations. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  10. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakaura, Takeshi; Iyama, Yuji; Kidoh, Masafumi; Yokoyama, Koichi [Amakusa Medical Center, Diagnostic Radiology, Amakusa, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Oda, Seitaro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tokuyasu, Shinichi [Philips Electronics, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2016-03-15

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  11. Improving image quality in portal venography with spectral CT imaging

    International Nuclear Information System (INIS)

    Zhao, Li-qin; He, Wen; Li, Jian-ying; Chen, Jiang-hong; Wang, Ke-yang; Tan, Li

    2012-01-01

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  12. Improving image quality in portal venography with spectral CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li-qin, E-mail: zhaolqzr@sohu.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); He, Wen, E-mail: hewen1724@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Li, Jian-ying, E-mail: jianying.li@med.ge.com [CT Advanced Application and Research, GE Healthcare, 100176 China (China); Chen, Jiang-hong, E-mail: chenjianghong1973@hotmail.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Wang, Ke-yang, E-mail: ke7ke@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Tan, Li, E-mail: Litan@ge.com [CT product, GE Healthcare, 100176 China (China)

    2012-08-15

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  13. Primary staging of laryngeal and hypopharyngeal cancer: CT, MR imaging and dual-energy CT

    International Nuclear Information System (INIS)

    Kuno, Hirofumi; Onaya, Hiroaki; Fujii, Satoshi; Ojiri, Hiroya; Otani, Katharina; Satake, Mitsuo

    2014-01-01

    Laryngeal and hypopharyngeal cancer, in particular T4a disease associated with cartilage invasion and extralaryngeal spread, needs to be evaluated accurately because treatment can impact heavily on a patient's quality of life. Reliable imaging tools are therefore indispensible. CT offers high spatial and temporal resolution and remains the preferred imaging modality. Although cartilage invasion can be diagnosed with acceptable accuracy by applying defined criteria for combinations of erosion, lysis and transmural extralaryngeal spread, iodine-enhanced tumors and non-ossified cartilage are sometimes difficult to distinguish. MR offers high contrast resolution for images without motion artifacts, although inflammatory changes in cartilage sometimes resemble cartilage invasion. With dual-energy CT, combined iodine overlay images and weighted average images can be used for evaluation of cartilage invasion, since iodine enhancement is evident in tumor tissue but not in cartilage. Extralaryngeal spread can be evaluated from CT, MR or dual-energy CT images and the routes of tumor spread into the extralaryngeal soft tissue must be considered; (1) via the thyrohyoid membrane along the superior laryngeal neurovascular bundle, (2) via the inferior pharyngeal constrictor muscle, and (3) via the cricothyroid membrane. Radiologists need to understand the advantages and limitations of each imaging modality for staging of laryngeal and hypopharyngeal cancer

  14. Research of ART method in CT image reconstruction

    International Nuclear Information System (INIS)

    Li Zhipeng; Cong Peng; Wu Haifeng

    2005-01-01

    This paper studied Algebraic Reconstruction Technique (ART) in CT image reconstruction. Discussed the ray number influence on image quality. And the adopting of smooth method got high quality CT image. (authors)

  15. CT image registration in sinogram space.

    Science.gov (United States)

    Mao, Weihua; Li, Tianfang; Wink, Nicole; Xing, Lei

    2007-09-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy.

  16. CT image registration in sinogram space

    International Nuclear Information System (INIS)

    Mao Weihua; Li Tianfang; Wink, Nicole; Xing Lei

    2007-01-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy

  17. CT imaging features of anaplastic thyroid carcinoma

    International Nuclear Information System (INIS)

    Shi Zhenshan; You Ruixiong; Cao Dairong; Li Yueming; Zhuang Qian

    2013-01-01

    Objective: To investigate the CT characteristics of anaplastic thyroid carcinoma and evaluate the diagnostic value of CT in this disease. Methods: The CT findings of 10 patients with pathologically proved anaplastic thyroid carcinoma were retrospectively reviewed. The patients included 7 females and 3 males. Their age ranged from 25.0 to 78 years with median of 61 years. Multi-slices plain and post contrast CT scans were performed in all patients. Results: Unilateral thyroid was involved in 6 patients. Unilateral thyroid and thyroid isthmus were both involved in 2 patients due to big size. Bilateral thyroid were involved in 2 patients. The maximum diameter of anaplastic thyroid carcinoma ranged from 2.9-12.8 cm with mean of (4.5 ± 1.4) cm. All lesions demonstrated unclear margins and envelope invasion. The densities of all lesions were heterogeneous and obvious necrosis areas were noted on precontrast images. Seven lesions showed varied calcifications, and coarse granular calcifications were found in 5 lesions among them. All lesions showed remarkable heterogenous enhancement on post-contrast CT. The CT value of solid portion of the tumor increased 40 HU after contrast media administration. The ratios of CT value which comparing of the tumor with contralateral sternocleidomastoid muscle were 0.69-0.82 (0.76 ± 0.18) and 1.25-1.41 (1.33 ± 0.28) on pre and post CT, respectively. Enlarged cervical lymph nodes were found in 6 cases (60.0%). It showed obvious homogeneous enhancement or irregular ring-like enhancement on post-contrast images and dot calcifications were seen in 1 case. Conclusions: Relative larger single thyroid masses with coarse granular calcifications, necrosis,envelope invasion, remarkable heterogeneous enhancing and enlarged lymph nodes on CT are suggestive of anaplastic thyroid carcinoma. (authors)

  18. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China)

    2016-06-15

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  19. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    International Nuclear Information System (INIS)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L

    2016-01-01

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  20. SU-F-J-161: Prostate Contouring in Patients with Bilateral Hip Prostheses: Impact of Using Artifact-Reduced CT Images and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Elzibak, A; Loblaw, A; Morton, G; Vesprini, D; Liu, S; Chung, H; Davidson, M [Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

    2016-06-15

    Purpose: To investigate the usefulness of metal artifact reduction in CT images of patients with bilateral hip prostheses (BHP) for contouring the prostate and determine if the inclusion of MR images provides additional benefits. Methods: Five patients with BHP were CT scanned using our clinical protocol (140kV, 300mAs, 3mm slices, 1.5mm increment, Philips Medical Systems, OH). Images were reconstructed with the orthopaedic metal artifact reduction (O-MAR) algorithm. MRI scanning was then performed (1.5T, GE Healthcare, WI) with a flat table-top (T{sub 2}-weighted, inherent body coil, FRFSE, 3mm slices with 0mm gap). All images were transferred to Pinnacle (Version 9.2, Philips Medical Systems). For each patient, two data sets were produced: one containing the O-MAR-corrected CT images and another containing fused MRI and O-MAR-corrected CT images. Four genito-urinary radiation oncologists contoured the prostate of each patient on the O-MAR-corrected CT data. Two weeks later, they contoured the prostate on the fused data set, blinded to all other contours. During each contouring session, the oncologists reported their confidence in the contours (1=very confident, 3=not confident) and the contouring difficulty that they experienced (1=really easy, 4=very challenging). Prostate volumes were computed from the contours and the conformity index was used to evaluate inter-observer variability. Results: Larger prostate volumes were found on the O-MAR-corrected CT set than on the fused set (p< 0.05, median=36.9cm{sup 3} vs. 26.63 cm{sup 3}). No significant differences were noted in the inter-observer variability between the two data sets (p=0.3). Contouring difficulty decreased with the addition of MRI (p<0.05) while the radiation oncologists reported more confidence in their contours when MRI was fused with the O-MAR-corrected CT data (p<0.05). Conclusion: This preliminary work demonstrated that, while O-MAR correction to CT images improves visualization of anatomy, the

  1. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  2. Multislice CT imaging of pulmonary embolism

    International Nuclear Information System (INIS)

    Schoepf, J.U.; Kessler, M.A.; Rieger, C.T.; Herzog, P.; Wiesgigl, S.; Becker, C.R.; Exarhos, D.N.; Reiser, M.F.

    2001-01-01

    In recent years CT has been established as the method of choice for the diagnosis of central pulmonary embolism (PE) to the level of the segmental arteries. The key advantage of CT over competing modalities is the reliable detection of relevant alternative or additional disease causing the patient's symptoms. Although the clinical relevance of isolated peripheral emboli remains unclear, the alleged poor sensitivity of CT for the detection of such small clots has to date prevented the acceptance of CT as the gold standard for diagnosing PE. With the advent of multislice CT we can now cover the entire chest of a patient with 1-mm slices within one breath-hold. In comparison with thicker sections, the detection rate of subsegmental emboli can be significantly increased with 1-mm slices. In addition, the interobserver correlation which can be achieved with 1-mm sections by far exceeds the reproducibility of competing modalities. Meanwhile use of multislice CT for a combined diagnosis of PE and deep venous thrombosis with the same modality appears to be clinically accepted. In the vast majority of patients who receive a combined thoracic and venous multislice CT examination the scan either confirms the suspected diagnosis or reveals relevant alternative or additional disease. The therapeutic regimen is usually chosen based on the functional effect of embolic vascular occlusion. With the advent of fast CT scanning techniques, also functional parameters of lung perfusion can be non-invasively assessed by CT imaging. These advantages let multislice CT appear as an attractive modality for a non-invasive, fast, accurate, and comprehensive diagnosis of PE, its causes, effects, and differential diagnoses. (orig.)

  3. CT image in Reye syndrome

    International Nuclear Information System (INIS)

    Murayama, Takashi; Sakuma, Nobuko; Ishikawa, Akashi; Saito, Yoko; Takebayashi, Takeyasu; Kuwashima, Shigeru

    1983-01-01

    In a male infant with infantile spasms which had been observed, Reye's syndrome occurred at the age of 1 year and 6 months. CT findings, before the onset of Reye's syndrome, in the acute stage of the disease, and in the recovering stage, were obtained. The features of the disease were shown as low-absorption areas in the frontal and fronto-temporal areas of the head, and also strongly degenerative findings in the same areas, even in the recovery stage. This seemed to be characteristic to Reye's syndrome, and the basis of the suggestion was discussed. (Ueda, J.)

  4. Obscure pulmonary masses: bronchial impaction revealed by CT

    International Nuclear Information System (INIS)

    Pugatch, R.D.; Gale, M.E.

    1983-01-01

    Dilated bronchi impacted with mucus or tumor are recognized on standard chest radiographs because they are surrounded by aerated pulmonary parenchyma. When imaged in different projections, these lesions produce a variety of appearances that are generally familiar. This report characterizes less familiar computed tomographic (CT) findings in eight patients with pathologic bronchial distension of congenital, neoplastic, or infectious etiologies and correlates them with chest films. In seven patients, CT readily revealed dilated bronchi and/or regional lung hypodensity. In four of these cases, CT led to the initial suspicion of dilated bronchi. CT should be used early in the evaluation of atypical pulmonary mass lesions or to confirm suspected bronchial impaction because of the high probability it will reveal diagnostic features

  5. Clinical impact of PSMA-based 18F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy

    International Nuclear Information System (INIS)

    Mena, Esther; Lindenberg, Maria L.; Bergvall, Ethan; Ton, Anita T.; McKinney, Yolanda; Eclarinal, Philip; Choyke, Peter L.; Turkbey, Baris; Shih, Joanna H.; Adler, Stephen; Harmon, Stephanie; Weaver, Juanita; Forest, Alicia; Citrin, Deborah; Dahut, William; Afari, George; Bhattacharyya, Sibaprasad; Mease, Ronnie C.; Pomper, Martin G.; Merino, Maria J.; Pinto, Peter; Wood, Bradford J.; Jacobs, Paula

    2018-01-01

    The purpose of our study was to assess 18 F-DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body 18 F-DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with 18 F-DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of 18 F-DCFBC PET/CT on clinical management and treatment decisions was established after 6 months' patient clinical follow-up. Forty-one patients (60.3%) showed at least one positive 18 F-DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The 18 F-DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. 18 F-DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive 18 F-DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive 18 F-DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. 18 F-DCFBC detects recurrences in 60.3% of a population of patients with biochemical recurrence, but results

  6. Clinical impact of PSMA-based 18F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy.

    Science.gov (United States)

    Mena, Esther; Lindenberg, Maria L; Shih, Joanna H; Adler, Stephen; Harmon, Stephanie; Bergvall, Ethan; Citrin, Deborah; Dahut, William; Ton, Anita T; McKinney, Yolanda; Weaver, Juanita; Eclarinal, Philip; Forest, Alicia; Afari, George; Bhattacharyya, Sibaprasad; Mease, Ronnie C; Merino, Maria J; Pinto, Peter; Wood, Bradford J; Jacobs, Paula; Pomper, Martin G; Choyke, Peter L; Turkbey, Baris

    2018-01-01

    The purpose of our study was to assess 18 F-DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body 18 F-DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with 18 F-DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of 18 F-DCFBC PET/CT on clinical management and treatment decisions was established after 6 months' patient clinical follow-up. Forty-one patients (60.3%) showed at least one positive 18 F-DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The 18 F-DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. 18 F-DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive 18 F-DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive 18 F-DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. 18 F-DCFBC detects recurrences in 60.3% of a population of patients with biochemical recurrence, but

  7. Clinical impact of PSMA-based {sup 18}F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Esther [Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD (United States); Lindenberg, Maria L.; Bergvall, Ethan; Ton, Anita T.; McKinney, Yolanda; Eclarinal, Philip; Choyke, Peter L.; Turkbey, Baris [Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD (United States); Shih, Joanna H. [National Cancer Institute, NIH, Division of Cancer treatment and Diagnosis: Biometric Research Program, Bethesda, MD (United States); Adler, Stephen; Harmon, Stephanie; Weaver, Juanita; Forest, Alicia [National Cancer Institute, Campus at Frederick, Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick, MD (United States); Citrin, Deborah [Radiation Oncology Branch, Center for Cancer Research. National Cancer Institute, NIH, Bethesda, MD (United States); Dahut, William [National Cancer Institute, NIH, Genitourinary Malignancies Branch, Bethesda, MD (United States); Afari, George; Bhattacharyya, Sibaprasad [Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD (United States); Mease, Ronnie C.; Pomper, Martin G. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Merino, Maria J. [Laboratory of Pathology, NCI, NIH, Bethesda, MD (United States); Pinto, Peter [National Cancer Institute, NIH, Urologic Oncology Branch, Bethesda, MD (United States); Wood, Bradford J. [National Cancer Institute, NIH, Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, Bethesda, MD (United States); Jacobs, Paula [National Cancer Institute, NIH, Cancer Imaging Program, Rockville, MD (United States)

    2018-01-15

    The purpose of our study was to assess {sup 18}F-DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body {sup 18}F-DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with {sup 18}F-DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of {sup 18}F-DCFBC PET/CT on clinical management and treatment decisions was established after 6 months' patient clinical follow-up. Forty-one patients (60.3%) showed at least one positive {sup 18}F-DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The {sup 18}F-DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. {sup 18}F-DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive {sup 18}F-DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive {sup 18}F-DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. {sup 18}F-DCFBC detects recurrences in 60.3% of a population of

  8. CT imaging of necrosive fasciitis

    International Nuclear Information System (INIS)

    Schulze, M.; Overkamp, D.; Joanoviciu, S.; Horger, M.

    2008-01-01

    NF is a rare but dramatic and often fatal infection of the fascii and adjoining soft tissues. Contrary to the Fournier's definition, it is most common in elderly people. Patients with immune problems have a higher risk (e.g. Diabetes mellitus, alcohol or drug abuse, AIDS, leukaemia, chemotherapy and immunosuppressive medication). Predisposition factors are diverticulitis, insect bites, or surgical interventions (Uppot RN, Levy HM, PLatel PH, Radiology 2003; 226; 115; Wysoki MG, Santora TA, Shah RM et al. Necrotizing fasciitis: CT characteristics, Radiology 1997; 203;859). Men are affected more frequently than women. In principle, NF may occur everywhere in the body but incidence in the region of the scrotum, perineum and lower extremities are the most common. (orig.)

  9. Fast parallel algorithm for CT image reconstruction.

    Science.gov (United States)

    Flores, Liubov A; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2012-01-01

    In X-ray computed tomography (CT) the X rays are used to obtain the projection data needed to generate an image of the inside of an object. The image can be generated with different techniques. Iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions and from a small number of projections. Their use may be important in portable scanners for their functionality in emergency situations. However, in practice, these methods are not widely used due to the high computational cost of their implementation. In this work we analyze iterative parallel image reconstruction with the Portable Extensive Toolkit for Scientific computation (PETSc).

  10. CT imaging spectrum of infiltrative renal diseases.

    Science.gov (United States)

    Ballard, David H; De Alba, Luis; Migliaro, Matias; Previgliano, Carlos H; Sangster, Guillermo P

    2017-11-01

    Most renal lesions replace the renal parenchyma as a focal space-occupying mass with borders distinguishing the mass from normal parenchyma. However, some renal lesions exhibit interstitial infiltration-a process that permeates the renal parenchyma by using the normal renal architecture for growth. These infiltrative lesions frequently show nonspecific patterns that lead to little or no contour deformity and have ill-defined borders on CT, making detection and diagnosis challenging. The purpose of this pictorial essay is to describe the CT imaging findings of various conditions that may manifest as infiltrative renal lesions.

  11. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  12. Imaging of abdominal tumours: CT or MRI?

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.

    2009-01-01

    The scope of this review is to discuss a theoretical approach to imaging policy, particularly in the perspective of radiation risk reduction. Decisions are ideally driven by empirical evidence about efficacy and risk, e.g., in classical hierarchical efficacy model. As a result of the paucity of empirical evidence (inevitable because of rapid technological development), a pragmatic model is needed. This should avoid overemphasis of factors that currently seem to hamper change, namely personal preference, local expertise, infrastructure, availability. Extrapolation of current general knowledge about CT and MRI demonstrates how a pragmatic approach can be applied in the real world with intermediate goals such as (1) channeling patients from CT to MRI, and (2) reducing CT-delivered radiation. Increased utilisation of MRI in body imaging requires optimisation of scan protocols and equipment, and, being a very operator-dependent modality, the active involvement of the radiologist. In CT dose reduction the main challenge is to benchmark the minimum radiation-dose requirement, and therefore the minimum required image quality that is diagnostically acceptable. As this will ultimately depend on pre-test likelihoods in institutional populations, it is difficult to issue general guidance, and local assessment remains a cornerstone in this effort. (orig.)

  13. PET CT imaging: the Philippine experience

    International Nuclear Information System (INIS)

    Santiago, Jonas Y.

    2011-01-01

    Currently, the most discussed fusion imaging is PET CT. Fusion technology has tremendous potential in diagnostic imaging to detect numerous conditions such as tumors, Alzheimer's disease, dementia and neural disorders. The fusion of PET with CT helps in the localization of molecular abnormalities, thereby increasing diagnostic accuracy and differentiating benign or artefact lesions from malignant diseases. It uses a radiotracer called fluro deoxyglucose that gives a clear distinction between pathological and physiological uptake. Interest in this technology is increasing and additional clinical validation are likely to induce more health care providers to invest in combined scanners. It is hope that in time, a better appreciation of its advantages over conventional and traditional imaging modalities will be realized. The first PET CT facility in the country was established at the St. Luke's Medical Center in Quezon City in 2008 and has since then provided a state-of-the art imaging modality to its patients here and those from other countries. The paper will present the experiences so far gained from its operation, including the measures and steps currently taken by the facility to ensure optimum workers and patient safety. Plans and programs to further enhance the awareness of the Filipino public on this advanced imaging modality for an improved health care delivery system may also be discussed briefly. (author)

  14. A prospective randomised multi-centre study of the impact of Ga-68 PSMA-PET/CT imaging for staging high risk prostate cancer prior to curative-intent surgery or radiotherapy (proPSMA study): clinical trial protocol.

    Science.gov (United States)

    Hofman, Michael S; Murphy, Declan G; Williams, Scott G; Nzenza, Tatenda; Herschtal, Alan; De Abreu Lourenco, Richard; Bailey, Dale L; Budd, Ray; Hicks, Rodney J; Francis, Roslyn J; Lawrentschuk, Nathan

    2018-05-03

    Accurate staging of patients with prostate cancer is important for therapeutic decision making. Relapse following surgery or radiotherapy of curative intent is not uncommon and, in part, represents a failure of staging with current diagnostic imaging techniques to detect disease spread. Prostate-specific-membrane-antigen (PSMA) positron emission tomography / computed tomography (PET/CT) is a new whole body scanning technique that enables visualisation of prostate cancer with high contrast. The hypotheses of this study are that (a) PSMA-PET/CT has improved diagnostic performance compared to conventional imaging, (b) PSMA-PET/CT should be used as a first-line diagnostic test for staging, (c) the improved diagnostic performance of PSMA-PET/CT will result in significant management impact and (d) there are economic benefits if PSMA-PET/CT is incorporated into the management algorithm. This is a prospective, multi-centre study in which patients with untreated high-risk prostate cancer will be randomised to Gallium-68-PSMA11-PET/CT or conventional imaging, consisting of computer tomography of the abdomen/pelvis and bone scintigraphy with SPECT/CT. Inclusion criteria are newly diagnosed prostate cancer patients with select high-risk prostate cancer defined as International Society of Urological Pathology (ISUP) grade group ≥ 3 (primary Gleason grade 4, or any Gleason grade 5), PSA ≥ 20ng/mL or clinical stage ≥ T3. Patients with negative, equivocal or oligometastatic disease on first line-imaging will cross-over to receive the other imaging arm. The primary objective is to compare the accuracy of PSMA-PET/CT to conventional imaging for detecting nodal or distant metastatic disease. Histopathologic, imaging and clinical follow-up at six months will define the primary endpoint according to a pre-defined scoring system. Secondary objectives include comparing management impact, the number of equivocal studies, the incremental value of second-line imaging in patients who

  15. CT Imaging of Craniofacial Fibrous Dysplasia

    Directory of Open Access Journals (Sweden)

    Zerrin Unal Erzurumlu

    2015-01-01

    Full Text Available Fibrous dysplasia is a benign fibroosseous bone dysplasia that can involve single (monostotic or multiple (polyostotic bones. Monostotic form is more frequent in the jaws. It is termed as craniofacial fibrous dysplasia, when it involves, though rarely, adjacent craniofacial bones. A 16-year-old girl consulted for a painless swelling in the right posterior mandible for two years. Panoramic radiography revealed ground-glass ill-defined lesions in the three different regions of the maxilla and mandible. Axial CT scan (bone window showed multiple lesions involving skull base and facial bones. Despite lesions in the skull base, the patient had no abnormal neurological findings. The lesion was diagnosed as fibrous dysplasia based on radiological and histopathological examination. In this paper, CT findings and differential diagnosis of CFD are discussed. CT is a useful imaging technique for CFD cases.

  16. Algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images

    International Nuclear Information System (INIS)

    Ogino, Takashi; Egawa, Sunao

    1991-01-01

    New algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images were developed. One, designated plane weighting method, is to correct CT value in proportion to the position of the beam element passing through the voxel. The other, designated solid weighting method, is to correct CT value in proportion to the length of the beam element passing through the voxel and the volume of voxel. Phantom experiments showed fair spatial resolution in the transverse direction. In the longitudinal direction, however, spatial resolution of under slice thickness could not be obtained. Contrast resolution was equivalent for both methods. In patient studies, the reconstructed radiotherapy simulation image was almost similar in visual perception of the density resolution to a simulation film taken by X-ray simulator. (author)

  17. Evaluation of pulmonary emphysema by the fused image of CT image and ventilation SPECT image

    International Nuclear Information System (INIS)

    Okuda, Ituko; Maruno, Hiromasa; Mori, Kazuaki; Kohno, Tadashi; Kokubo, Takashi

    2007-01-01

    We evaluated pulmonary emphysema using a diagnostic device that could obtain a CT image, a ventilation single photon emission computed tomography (SPECT) image and a lung perfusion SPECT image in one examination. The fused image made from the CT image and SPECT image had very little position gap between images, and the precision was high. From the fused image, we were able to detect the areas in which emphysematous change was the most marked in the CT image, while the accumulation decrease was most remarkable in the ventilation SPECT image. Thus it was possible to obtain an accurate status of pulmonary emphysema, and our method was regarded as a useful technique. (author)

  18. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  19. Brain CT image and handedness of schizophrenia

    International Nuclear Information System (INIS)

    Hirose, Katsutoshi; Maehara, Katsuya; Iizuka, Reiji; Mikami, Akihiro.

    1989-01-01

    Brain CT images were reviewed of 98 schizophrenic patients and 90 healthy persons in relation to handedness and aging. CT images were further reconstructed to examine morphologically subtle changes in each region. Schizophrenic patients had progressive brain atrophy and dilated lateral ventricles, especially on the left side and in the posterior part of the lateral ventricle. These findings were more marked in left-handed than in right-handed schizophrenic patients. According to age groups, there were significant differences between schizophrenic and normal persons over the age of 40. The incidence of left handedness was significantly higher in schizophrenic patients in their fourties than the age-matched normal persons (31.4% vs 15.1%). Morphological abnormality and laterality might be due to the same pathologic consequences. (N.K.)

  20. Parallel CT image reconstruction based on GPUs

    International Nuclear Information System (INIS)

    Flores, Liubov A.; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2014-01-01

    In X-ray computed tomography (CT) iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions from a small number of projections. However, in practice, these methods are not widely used due to the high computational cost of their implementation. Nowadays technology provides the possibility to reduce effectively this drawback. It is the goal of this work to develop a fast GPU-based algorithm to reconstruct high quality images from under sampled and noisy projection data. - Highlights: • We developed GPU-based iterative algorithm to reconstruct images. • Iterative algorithms are capable to reconstruct images from under sampled set of projections. • The computer cost of the implementation of the developed algorithm is low. • The efficiency of the algorithm increases for the large scale problems

  1. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Cong Peng; Li Zhipeng; Wu Haifeng

    2004-01-01

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  2. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  3. Clinical PET/CT imaging. Promises and misconceptions

    International Nuclear Information System (INIS)

    Czernin, J.; Auerbach, M.A.

    2005-01-01

    PET/CT is now established as the most important imaging tool in oncology. PET/CT stages and restages cancer with a higher accuracy than PET or CT alone. The sometimes irrational approach to combine state of the art PET with the highest end CT devices should give way to a more reasonable equipment design tailored towards the specific clinical indications in well-defined patient populations. The continuing success of molecular PET/CT now depends more upon advances in molecular imaging with the introduction of targeted imaging probes for individualized therapy approaches in cancer patients and less upon technological advances of imaging equipment. (orig.)

  4. 3D Interpolation Method for CT Images of the Lung

    Directory of Open Access Journals (Sweden)

    Noriaki Asada

    2003-06-01

    Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

  5. Impact of model-based iterative reconstruction on low-contrast lesion detection and image quality in abdominal CT: a 12-reader-based comparative phantom study with filtered back projection at different tube voltages

    Energy Technology Data Exchange (ETDEWEB)

    Euler, Andre; Stieltjes, Bram; Eichenberger, Reto; Reisinger, Clemens; Hirschmann, Anna; Zaehringer, Caroline; Kircher, Achim; Streif, Matthias; Bucher, Sabine; Buergler, David; D' Errico, Luigia; Kopp, Sebastien; Wilhelm, Markus [University Hospital Basel, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Szucs-Farkas, Zsolt [Hospital Centre of Biel, Institute of Radiology, Biel (Switzerland); Schindera, Sebastian T. [University Hospital Basel, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Cantonal Hospital Aarau, Institute of Radiology, Aarau (Switzerland)

    2017-12-15

    To evaluate the impact of model-based iterative reconstruction (MBIR) on image quality and low-contrast lesion detection compared with filtered back projection (FBP) in abdominal computed tomography (CT) of simulated medium and large patients at different tube voltages. A phantom with 45 hypoattenuating lesions was placed in two water containers and scanned at 70, 80, 100, and 120 kVp. The 120-kVp protocol served as reference, and the volume CT dose index (CTDI{sub vol}) was kept constant for all protocols. The datasets were reconstructed with MBIR and FBP. Image noise and contrast-to-noise-ratio (CNR) were assessed. Low-contrast lesion detectability was evaluated by 12 radiologists. MBIR decreased the image noise by 24% and 27%, and increased the CNR by 30% and 29% for the medium and large phantoms, respectively. Lower tube voltages increased the CNR by 58%, 46%, and 16% at 70, 80, and 100 kVp, respectively, compared with 120 kVp in the medium phantom and by 9%, 18% and 12% in the large phantom. No significant difference in lesion detection rate was observed (medium: 79-82%; large: 57-65%; P > 0.37). Although MBIR improved quantitative image quality compared with FBP, it did not result in increased low-contrast lesion detection in abdominal CT at different tube voltages in simulated medium and large patients. (orig.)

  6. Optimising imaging parameters in experimental spiral CT

    International Nuclear Information System (INIS)

    Tiitola, M.; Vehmas, T.; Kivisaari, R.P.; Kivisaari, L.

    1997-01-01

    Purpose: This in vitro study was conducted to analyse lesion detection and relative radiation exposure in different CT techniques. Material and Methods: We used a plastic phantom (12 x 8 x 2 cm) containing holes filled with air or fluid of varying densities to simulate lesions. This was imaged with Siemens Somatom Plus S and GE High Speed Advantage units. We varied table feeds (3 and 6 mm/s in Siemens and 3 and 4.5 mm/s in GE) and increments (2 mm and 4 mm) while keeping collimation at 3 mm. The SmartScan program of GE and the reformating algorithm of Siemens were also analysed. To evaluate the different methods, the phatnom lesions were counted by 3 observers. Radiation exposures associated with each technique were also measured. Results: The images reformatted to a coronal direction were significantly inferior (p<0.01) to those in other techniques. The use of SmartScan did not influence lesion detection, nor did changes in pitch or increment. Spiral and non-spiral techniques proved to be equal. Radiation exposure was lowest when a greater pitch or the SmartScan program was used. Conclusion: Radiation exposure in CT can be limited without significantly impairing the image quality by using low-dose techniques. Reformatting to a coronal direction should be used with care as it debases the image quality. (orig.)

  7. Impact of motion compensation and partial volume correction for 18F-NaF PET/CT imaging of coronary plaque

    Science.gov (United States)

    Cal-González, J.; Tsoumpas, C.; Lassen, M. L.; Rasul, S.; Koller, L.; Hacker, M.; Schäfers, K.; Beyer, T.

    2018-01-01

    Recent studies have suggested that 18F-NaF-PET enables visualization and quantification of plaque micro-calcification in the coronary tree. However, PET imaging of plaque calcification in the coronary arteries is challenging because of the respiratory and cardiac motion as well as partial volume effects. The objective of this work is to implement an image reconstruction framework, which incorporates compensation for respiratory as well as cardiac motion (MoCo) and partial volume correction (PVC), for cardiac 18F-NaF PET imaging in PET/CT. We evaluated the effect of MoCo and PVC on the quantification of vulnerable plaques in the coronary arteries. Realistic simulations (Biograph TPTV, Biograph mCT) and phantom acquisitions (Biograph mCT) were used for these evaluations. Different uptake values in the calcified plaques were evaluated in the simulations, while three ‘plaque-type’ lesions of 36, 31 and 18 mm3 were included in the phantom experiments. After validation, the MoCo and PVC methods were applied in four pilot NaF-PET patient studies. In all cases, the MoCo-based image reconstruction was performed using the STIR software. The PVC was obtained from a local projection (LP) method, previously evaluated in preclinical and clinical PET. The results obtained show a significant increase of the measured lesion-to-background ratios (LBR) in the MoCo  +  PVC images. These ratios were further enhanced when using directly the tissue-activities from the LP method, making this approach more suitable for the quantitative evaluation of coronary plaques. When using the LP method on the MoCo images, LBR increased between 200% and 1119% in the simulated data, between 212% and 614% in the phantom experiments and between 46% and 373% in the plaques with positive uptake observed in the pilot patients. In conclusion, we have built and validated a STIR framework incorporating MoCo and PVC for 18F-NaF PET imaging of coronary plaques. First results indicate an improved

  8. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  9. The Impact of Different Levels of Adaptive Iterative Dose Reduction 3D on Image Quality of 320-Row Coronary CT Angiography: A Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Sarah Feger

    Full Text Available The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA, reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D and compared to filtered back projection (FBP with quantum denoising software (QDS.Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR, contrast-to-noise ratio (CNR, contour sharpness was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal.Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p ≤ 0.001 at 20/21 measurement points; compared with FBP/QDS. Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP.On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness.Clinicaltrials.gov NCT00967876.

  10. Clinical PET/CT Atlas: A Casebook of Imaging in Oncology

    International Nuclear Information System (INIS)

    2015-01-01

    Integrated positron emission tomography/computed tomography (PET/CT) has evolved since its introduction into the commercial market more than a decade ago. It is now a key procedure, particularly in oncological imaging. Over the last years in routine clinical service, PET/CT has had a significant impact on diagnosis, treatment planning, staging, therapy, and monitoring of treatment response and has therefore played an important role in the care of cancer patients. The high sensitivity from the PET component and the specificity of the CT component give this hybrid imaging modality the unique characteristics that make PET/CT, even after over 10 years of clinical use, one of the fastest growing imaging modalities worldwide. This publication combines over 90 comprehensive cases covering all major indications of fluorodeoxyglucose (18F-FDG)-PET/CT as well as some cases of clinically relevant special tracers. The cases provide an overview of what the specific disease can look like in PET/CT, the typical pattern of the disease’s spread as well as likely pitfalls and teaching points. This PET/CT Atlas will allow professionals interested in PET/CT imaging to embrace the variety of oncological imaging by providing clinically relevant teaching files on the effectiveness and diagnostic quality of FDG-PET/CT imaging in routine applications

  11. CT urethrography. New imaging technique of the urethra

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Munechika, Hirotsugu

    2005-01-01

    The purpose of the study is to assess the usefulness of CT urethrography for evaluation of the posterior urethra and surrounding structures. The CT images were performed with 4 channel multidetector row CT unit. Twenty-six cases (12 cases of CT urethrography and 14 cases of conventional urethrography) were included in this study. 3D-volume rendering (VR) images and VR-multiplaner reconstruction (MPR) sagittal images were compared with conventional retrograde urethrography (RUG) images to evaluate the following anatomical structures; the inferior wall of bladder, the neck of bladder, the posterior urethra, and the prostate. Two radiologists undertook a task of evaluation of the images. There was no significant difference in image quality between RUG and 3D-VR. However, VR-MPR sagittal images were significantly better than RUG or 3D-VR images in any anatomical structures set up beforehand for evaluation. CT urerthrography was useful for evaluation of the posterior urethra and surrounding structures. (author)

  12. CT and MR imaging of the kidney and adrenal glands: CT of the kidney

    International Nuclear Information System (INIS)

    Levine, E.

    1987-01-01

    Because of its high diagnostic yield, safety, and cost-effectiveness, CT has become a major imaging technique for evaluating the kidney. CT is highly accurate for determining the nature and extent of renal masses, and this has become the main indication for renal CT. However, CT is also valuable in assessing patients with renal cystic disease, trauma, inflammatory disease, infarction, hemorrhage and hydronephrosis of unknown cause. This presentation reviews the normal CT anatomy of the kidneys and the usefulness of CT in the diagnosis of all these conditions. Examination techniques are discussed with particular emphasis on avoiding diagnostic pitfalls and tailoring the examination to the nature of the clinical problem. CT findings in various renal disorders are compared with those of other imaging techniques, particularly US and angiography, and the place of CT in the diagnostic approach to these disorders is considered

  13. Cirrhosis: CT and MR imaging evaluation

    International Nuclear Information System (INIS)

    Brancatelli, Giuseppe; Federle, Michael P.; Ambrosini, Roberta; Lagalla, Roberto; Carriero, Alessandro; Midiri, Massimo; Vilgrain, Valerie

    2007-01-01

    In this article, we present the CT and MR imaging characteristics of the cirrhotic liver. We describe the altered liver morphology in different forms of viral, alcoholic and autoimmune end-stage liver disease. We present the spectrum of imaging findings in portal hypertension, such as splenomegaly, ascites and varices. We describe the patchy and lacelike patterns of fibrosis, along with the focal confluent form. The process of hepatocarcinogenesis is detailed, from regenerative to dysplastic nodules to overt hepatocellular carcinoma. Different types of non-neoplastic focal liver lesions occurring in the cirrhotic liver are discussed, including arterially enhancing nodules, hemangiomas and peribiliary cysts. We show different conditions causing liver morphology changes that can mimic cirrhosis, such as congenital hepatic fibrosis, 'pseudo-cirrhosis' due to breast metastases treated with chemotherapy, Budd-Chiari syndrome, sarcoidosis and cavernous transformation of the portal vein

  14. Cirrhosis: CT and MR imaging evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brancatelli, Giuseppe [Sezione di Radiologia, Ospedale Specializzato in Gastroenterologia, ' Saverio de Bellis' -IRCCS, 70013 Castellana Grotte (Bari) (Italy) and Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy) and Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, 15213 Pittsburgh, PA (United States)]. E-mail: gbranca@yahoo.com; Federle, Michael P. [Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, 15213 Pittsburgh, PA (United States); Ambrosini, Roberta [Department of Diagnostic and Interventional Radiology, ' Maggiore della Carita' University Hospital, ' A.Avogadro' Eastern Piemonte University, Corso Mazzini 18, Novara (Italy); Lagalla, Roberto [Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy); Carriero, Alessandro [Department of Diagnostic and Interventional Radiology, ' Maggiore della Carita' University Hospital, ' A.Avogadro' Eastern Piemonte University, Corso Mazzini 18, Novara (Italy); Midiri, Massimo [Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy); Vilgrain, Valerie [Service de Radiologie, Hopital Beaujon, 100 Boulevard du General Leclerc, 92118 Clichy (France)

    2007-01-15

    In this article, we present the CT and MR imaging characteristics of the cirrhotic liver. We describe the altered liver morphology in different forms of viral, alcoholic and autoimmune end-stage liver disease. We present the spectrum of imaging findings in portal hypertension, such as splenomegaly, ascites and varices. We describe the patchy and lacelike patterns of fibrosis, along with the focal confluent form. The process of hepatocarcinogenesis is detailed, from regenerative to dysplastic nodules to overt hepatocellular carcinoma. Different types of non-neoplastic focal liver lesions occurring in the cirrhotic liver are discussed, including arterially enhancing nodules, hemangiomas and peribiliary cysts. We show different conditions causing liver morphology changes that can mimic cirrhosis, such as congenital hepatic fibrosis, 'pseudo-cirrhosis' due to breast metastases treated with chemotherapy, Budd-Chiari syndrome, sarcoidosis and cavernous transformation of the portal vein.

  15. Abdominal wall hernias: imaging with spiral CT

    International Nuclear Information System (INIS)

    Stabile Ianora, A.A.; Midiri, M.; Vinci, R.; Rotondo, A.; Angelelli, G.

    2000-01-01

    Computed tomography is an accurate method of identifying the various types of abdominal wall hernias, especially if they are clinically occult, and of distinguishing them from other diseases such as hematomas, abscesses and neoplasia. In this study we examined the CT images of 94 patients affected by abdominal wall hernias observed over a period of 6 years. Computed tomography clearly demonstrates the anatomical site of the hernial sac, the content and any occlusive bowel complications due to incarceration or strangulation. Clinical diagnosis of external hernias is particularly difficult in obese patients or in those with laparotic scars. In these cases abdominal imaging is essential for a correct preoperative diagnosis and to determine the most effective treatment. (orig.)

  16. Neural network and its application to CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  17. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  18. The influence of respiratory motion on CT image volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid (Spain)

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  19. Evaluation of Marfan syndrome: MR imaging versus CT

    International Nuclear Information System (INIS)

    Soulen, R.L.; Fishman, E.K.; Pyeritz, R.E.; Gott, V.L.; Zerhouni, E.A.

    1986-01-01

    Twenty-five patients with Marfan, syndrome underwent both CT and MR imaging. MR imaging were interpreted in blinded fashion and then compared with CT scans MR imaging was found to be equivalent to CT in the detection of aortic, dural, and hip abnormalities in patients not operated on. MR imaging was superior to CT in the evaluation of postoperative patients because the artifact produced by Bjork-Shirley or St. Jude valves precludes adequate evaluation of the aortic root on CT while producing only a small inferior field distortion (a ''pseudo-ventricular septal defect'') on MR imaging. The absence of radiation exposure is another major advantage of MR imaging in this relatively young population requiring serial studies. The authors conclude that MR imaging is the modality of choice for the evaluation and follow-up of patients with Marfan syndrome and offers an appropriate means of screening their kindred

  20. Impact of tumor attachment to the pleura measured by a pretreatment CT image on outcome of stage I NSCLC treated with stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yamamoto, Takaya; Kadoya, Noriyuki; Shirata, Yuko; Koto, Masashi; Sato, Kiyokazu; Matsushita, Haruo; Sugawara, Toshiyuki; Umezawa, Rei; Kubozono, Masaki; Ishikawa, Yojiro; Kozumi, Maiko; Takahashi, Noriyoshi; Ito, Kengo; Katagiri, Yu; Takeda, Ken; Jingu, Keiichi

    2015-01-01

    Pleural invasion status is known to be a predictor of survival after pulmonary resection for non-small cell lung cancer. Our goal was to determine whether the length of tumor attachment to the pleura on a pretreatment CT image has prognostic value as an alternative to pleural invasion status for stage I non-small cell lung cancer treated with stereotactic body radiotherapy (SBRT). A total of 90 tumors in 87 patients (males: 68, females: 19) who received SBRT between March 2005 and September 2011 in our institution were reviewed. The median age of the patients was 78 years (range, 48-90 years). The median tumor diameter was 2.2 cm (range, 0.9-4.2 cm). The prescribed dose was typically 48 Gy in 4 fractions, 60 Gy in 8 fractions or 60 Gy in 15 fractions to the isocenter with 6 MV X-ray using 4 non-coplanar and 3 coplanar static beams. The lengths of attachment were measured using pretreatment CT images at the lung window. Cumulative incidence rates were calculated using Kaplan-Meier curves, and univariate and multivariate analyses for in-field tumor control, locoregional control (LRC), freedom from distant metastasis and freedom from progression (FFP) were performed using a Cox proportional hazards model. Of the 90 tumors, 42 tumors were attached to the pleura (median, 14.7 mm; range, 4.3-36.0 mm), 21 tumors had pleural indentation and 27 tumors had no attachment. The median follow-up period for survivors was 46.1 months. The 3-year in-field control, LRC, FFP and overall survival rates were 91.2%, 75.3%, 63.8% and 68.6%, respectively. SBRT dose and tumor diameter were independently significant predictors of in-field control (p = 0.02 and p = 0.04, respectively). Broad attachment to the pleura, the length being more than 14.7 mm, was a negative independent predictor of LRC and FFP (p = 0.02 and p = 0.01, respectively). Pleural attachment status on a pretreatment CT image might be an important predictor of LRC and FFP

  1. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  2. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  3. In vivo microCT imaging of rodent cerebral vasculature

    International Nuclear Information System (INIS)

    Seo, Youngho; Hasegawa, Bruce H; Hashimoto, Tomoki; Nuki, Yoshitsugu

    2008-01-01

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I tube x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml -1 at 1.2 ml min -1 ) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel (∼85 μm) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid arteries and major cerebral blood vessels

  4. In vivo microCT imaging of rodent cerebral vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Youngho; Hasegawa, Bruce H [Center for Molecular and Functional Imaging, Department of Radiology, University of California, San Francisco, CA 94143 (United States); Hashimoto, Tomoki; Nuki, Yoshitsugu [Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143 (United States)], E-mail: youngho.seo@radiology.ucsf.edu

    2008-04-07

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I{sub tube} x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml{sup -1} at 1.2 ml min{sup -1}) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel ({approx}85 {mu}m) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid

  5. Cardiac MR imaging: Comparison with echocardiography and dynamic CT

    International Nuclear Information System (INIS)

    Colletti, P.M.; Norris, S.; Raval, J.; Boswell, W.; Lee, K.; Ralls, P.; Haywood, J.; Halls, J.

    1986-01-01

    The authors compared gated cardiac MR imaging with two-dimensional and Doppler echocardiography and dynamic CT. Gated cardiac MR imaging (VISTA unit, 0.5 T) was performed in 55 patients with a variety of conditions. Accuracy of diagnosis was compared. CT showed arterial, valvular, and pericardial calcifications not seen on MR imaging. Many lesions were seen as well on CT as on MR imaging. Two-dimensional echocardiography was superior in demonstrating wall motion and valvular disease. MR imaging was superior in demonstrating myocardial structures

  6. CT and MR imaging of rhinocerebral mucormycosis

    International Nuclear Information System (INIS)

    Press, G.A.; Weindling, S.M.; Hesselink, J.R.

    1987-01-01

    Eight patients with biopsy-proven rhinocerebral mucormycosis had postcontrast CT. MR examination (1.5T) was also performed in two patients. Unilateral maxillary and ethmoid sinus disease with orbital apex extension was seen in five of six patients examined preoperatively. T2-weighted images showed intracranial extension as hyperintensity and mass effect in gray matter and white matter of frontal and temporal lobes, hypothalamus, thalamus, and pons in two patients. In the region of septic thrombosis of the cavernous sinus and internal carotid artery, MR detected inflammatory tissue of mixed signal intensity replacing the expected carotid signal void and petrous apex. Resolution of MR findings correlated with clinical improvement in one surviving patient

  7. Superiority of CT imaging reconstruction on Linux OS

    International Nuclear Information System (INIS)

    Lin Shaochun; Yan Xufeng; Wu Tengfang; Luo Xiaomei; Cai Huasong

    2010-01-01

    Objective: To compare the speed of CT reconstruction using the Linux and Windows OS. Methods: Shepp-Logan head phantom in different pixel size was projected to obtain the sinogram by using the inverse Fourier transformation, filtered back projection and Radon transformation on both Linux and Windows OS. Results: CT image reconstruction using the Linux operating system was significantly better and more efficient than Windows. Conclusion: CT image reconstruction using the Linux operating system is more efficient. (authors)

  8. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance.

    LENUS (Irish Health Repository)

    McLaughlin, P D

    2014-04-01

    The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR).

  9. Multislice CT imaging of anomalous coronary arteries

    International Nuclear Information System (INIS)

    Shi Heshui; Aschoff, Andrik J.; Brambs, Hans-Juergen; Hoffmann, Martin H.K.

    2004-01-01

    The purpose of the present study was to evaluate the role of 16 multislice computed tomography (MSCT) to identify the origin of anomalous coronary arteries and to confirm their anatomic course in relation to the great vessels. Accuracy of coronary artery disease (CAD) detection was a secondary aim and was tested with conventional angiograms (CA) serving as standard of reference. Two hundred and forty-two consecutive patients referred for noninvasive coronary CT imaging were reviewed for the study. Sixteen patients (6.6%) with anomalous coronary arteries were detected and included as the study group. MSCT and CA images were analyzed in a blinded fashion for accuracy of anomalous artery origin and path detection. Results were compared in a secondary consensus evaluation. Accuracy ratios to detect CAD with MSCT in all vessels were calculated. Coronary anomalies for all 16 patients were correctly displayed on MSCT. CA alone achieved correct identification of the abnormality in only 53% (P=0.016). Sensitivity and specificity of MSCT to detect significantly stenosed vessels was 90 and 92%. 16-MSCT is accurate to delineate abnormally branching coronary arteries and allows sufficiently accurate detection of obstructive coronary artery disease in distal branches. It should therefore be considered as a prime non-invasive imaging tool for suspected coronary anomalies. (orig.)

  10. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  11. Segmentation of liver tumors on CT images

    International Nuclear Information System (INIS)

    Pescia, D.

    2011-01-01

    This thesis is dedicated to 3D segmentation of liver tumors in CT images. This is a task of great clinical interest since it allows physicians benefiting from reproducible and reliable methods for segmenting such lesions. Accurate segmentation would indeed help them during the evaluation of the lesions, the choice of treatment and treatment planning. Such a complex segmentation task should cope with three main scientific challenges: (i) the highly variable shape of the structures being sought, (ii) their similarity of appearance compared with their surrounding medium and finally (iii) the low signal to noise ratio being observed in these images. This problem is addressed in a clinical context through a two step approach, consisting of the segmentation of the entire liver envelope, before segmenting the tumors which are present within the envelope. We begin by proposing an atlas-based approach for computing pathological liver envelopes. Initially images are pre-processed to compute the envelopes that wrap around binary masks in an attempt to obtain liver envelopes from estimated segmentation of healthy liver parenchyma. A new statistical atlas is then introduced and used to segmentation through its diffeomorphic registration to the new image. This segmentation is achieved through the combination of image matching costs as well as spatial and appearance prior using a multi-scale approach with MRF. The second step of our approach is dedicated to lesions segmentation contained within the envelopes using a combination of machine learning techniques and graph based methods. First, an appropriate feature space is considered that involves texture descriptors being determined through filtering using various scales and orientations. Then, state of the art machine learning techniques are used to determine the most relevant features, as well as the hyper plane that separates the feature space of tumoral voxels to the ones corresponding to healthy tissues. Segmentation is then

  12. An attenuation correction method for PET/CT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Yamazaki, Tomohiro; Haneishi, Hideaki

    2006-01-01

    In PET/CT systems, accurate attenuation correction can be achieved by creating an attenuation map from an X-ray CT image. On the other hand, respiratory-gated PET acquisition is an effective method for avoiding motion blurring of the thoracic and abdominal organs caused by respiratory motion. In PET/CT systems employing respiratory-gated PET, using an X-ray CT image acquired during breath-holding for attenuation correction may have a large effect on the voxel values, especially in regions with substantial respiratory motion. In this report, we propose an attenuation correction method in which, as the first step, a set of respiratory-gated PET images is reconstructed without attenuation correction, as the second step, the motion of each phase PET image from the PET image in the same phase as the CT acquisition timing is estimated by the previously proposed method, as the third step, the CT image corresponding to each respiratory phase is generated from the original CT image by deformation according to the motion vector maps, and as the final step, attenuation correction using these CT images and reconstruction are performed. The effectiveness of the proposed method was evaluated using 4D-NCAT phantoms, and good stability of the voxel values near the diaphragm was observed. (author)

  13. Interactive machine learning for postprocessing CT images of hardwood logs

    Science.gov (United States)

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2003-01-01

    This paper concerns the nondestructive evaluation of hardwood logs through the analysis of computed tomography (CT) images. Several studies have shown that the commercial value of resulting boards can be increased substantially if log sawing strategies are chosen using prior knowledge of internal log defects. Although CT imaging offers a potential means of obtaining...

  14. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT

    International Nuclear Information System (INIS)

    Gervaise, Alban; Osemont, Benoit; Lecocq, Sophie; Blum, Alain; Noel, Alain; Micard, Emilien; Felblinger, Jacques

    2012-01-01

    To evaluate the impact of Adaptive Iterative Dose Reduction (AIDR) on image quality and radiation dose in phantom and patient studies. A phantom was examined in volumetric mode on a 320-detector CT at different tube currents from 25 to 550 mAs. CT images were reconstructed with AIDR and with Filtered Back Projection (FBP) reconstruction algorithm. Image noise, Contrast-to-Noise Ratio (CNR), Signal-to-Noise Ratio (SNR) and spatial resolution were compared between FBP and AIDR images. AIDR was then tested on 15 CT examinations of the lumbar spine in a prospective study. Again, FBP and AIDR images were compared. Image noise and SNR were analysed using a Wilcoxon signed-rank test. In the phantom, spatial resolution assessment showed no significant difference between FBP and AIDR reconstructions. Image noise was lower with AIDR than with FBP images with a mean reduction of 40%. CNR and SNR were also improved with AIDR. In patients, quantitative and subjective evaluation showed that image noise was significantly lower with AIDR than with FBP. SNR was also greater with AIDR than with FBP. Compared to traditional FBP reconstruction techniques, AIDR significantly improves image quality and has the potential to decrease radiation dose. (orig.)

  15. Calcium scoring in unenhanced and enhanced CT data of the aorta-iliacal arteries: impact of image acquisition, reconstruction, and analysis parameter settings

    Energy Technology Data Exchange (ETDEWEB)

    Komen, N. (Dept. of Surgery, Univ. Medical Center Rotterdam, Erasmus MC, Rotterdam (Netherlands); Dept. of Surgery, Univ. Hospital Antwerp, Edegem (Belgium)), email: nielskomen@hotmail.com; Klitsie, P.; Jeekel, J.; Lange, J.F. (Dept. of Surgery, Univ. Medical Center Rotterdam, Erasmus MC, Rotterdam (Netherlands)); Hermans, J.J.; Niessen, W.J. (Dept. of Radiology, Univ. Medical Center Rotterdam, Erasmus MC, Rotterdam (Netherlands)); Kleinrensink, G.J. (Dept. of Neurosciences and Anatomy, Univ. Medical Center Rotterdam, Erasmus MC, Rotterdam (Netherlands))

    2011-11-15

    Background. Several studies have been published on the matter of abdominal aortic and iliac calcifications and the association to clinical entities such as diabetes mellitus and renal failure. However, comparing of these studies is questionable since quantification methods for atherosclerosis differ. Purpose. To evaluate the effect of image acquisition settings, reconstruction parameters, and analysis methods on calcium quantification in the abdominal aorta. Material and Methods. Calcium scores were retrospectively determined on standardized abdominal CT scans of 15 patients. Two researchers obtained calcium scores with 10 different lower thresholds (LT) (130, 145, 160, 175, 200, 300, 400, 500, 600, 1000) in CT scans with and without contrast enhancement, with slice thicknesses (ST) varying between 2.0-5.0 mm for the non-contrast-enhanced series and between 1.0-5.0 mm for the contrast-enhanced series. In addition calcium scores obtained with two convolution kernels (B10f, B20f) were compared. Inter-observer variability was calculated. Results. Calcium scoring at higher STs is overestimated compared to smaller STs and this effect was more pronounced with increasing calcium loads. Concerning the convolution kernel, scores obtained with kernel B10f were overestimated compared to kernel B20f. Increase of LT resulted in a decrease of the calcium score and scoring in contrast-enhanced series resulted in higher scores compared to non-contrast-enhanced series. These effects are more apparent in patients with higher calcium loads. Calcium scoring reproducibility with the reference standard is limited for the aorta-iliac trajectory, whereas scoring with the remaining settings is reproducible. Conclusion. Scores obtained with different settings cannot be compared. The inter-observer reproducibility was limited using the reference standard and practical difficulties were substantial. Scoring with higher LT, ST, and contrast enhancement is faster and has less practical

  16. TU-G-207-01: CT Imaging Using Energy-Sensitive Photon-Counting Detectors

    International Nuclear Information System (INIS)

    Taguchi, K.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  17. Importance of PET/CT for imaging of colorectal cancer

    International Nuclear Information System (INIS)

    Meinel, F.G.; Schramm, N.; Graser, A.; Reiser, M.F.; Rist, C.; Haug, A.R.

    2012-01-01

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has emerged as a very useful imaging modality in the management of colorectal carcinoma. Data from the literature regarding the role of PET/CT in the initial diagnosis, staging, radiotherapy planning, response monitoring and surveillance of colorectal carcinoma is presented. Future directions and economic aspects are discussed. Computed tomography (CT), magnetic resonance imaging (MRI) and FDG-PET for colorectal cancer and endorectal ultrasound for rectal cancer. Combined FDG-PET/CT. While other imaging modalities allow superior visualization of the extent and invasion depth of the primary tumor, PET/CT is most sensitive for the detection of distant metastases of colorectal cancer. We recommend a targeted use of PET/CT in cases of unclear M staging, prior to metastasectomy and in suspected cases of residual or recurrent colorectal carcinoma with equivocal conventional imaging. The role of PET/CT in radiotherapy planning and response monitoring needs to be determined. Currently there is no evidence to support the routine use of PET/CT for colorectal screening, staging or surveillance. To optimally exploit the synergy between morphologic and functional information, FDG-PET should generally be performed as an integrated FDG-PET/CT with a contrast-enhanced CT component in colorectal carcinoma. (orig.) [de

  18. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  19. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  20. High Dose MicroCT Does Not Contribute Toward Improved MicroPET/CT Image Quantitative Accuracy and Can Limit Longitudinal Scanning of Small Animals

    Directory of Open Access Journals (Sweden)

    Wendy A. McDougald

    2017-10-01

    Full Text Available Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1 to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2 to evaluate the absorbed dose associated with varying CT parameters.Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA software implemented by Mediso. Measured Hounsfield Unit (HU in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC, uniformity and quantitative bias were also measured.Results: Only less than 2 and 1% of CT acquisition protocols yielded water HU values < −80 and air HU values < −840, respectively. Four out of 11 CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration.Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed toward improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  1. Accelerated Compressed Sensing Based CT Image Reconstruction.

    Science.gov (United States)

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  2. Accelerated Compressed Sensing Based CT Image Reconstruction

    Directory of Open Access Journals (Sweden)

    SayedMasoud Hashemi

    2015-01-01

    Full Text Available In X-ray computed tomography (CT an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  3. Task-based optimization of image reconstruction in breast CT

    Science.gov (United States)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  4. Measurement of parapharyngeal space using CT images

    International Nuclear Information System (INIS)

    Ichimura, Keiichi; Kase, Yasuhiro; Iinuma, Toshitaka

    1991-01-01

    Parapharyngeal space can be defined as a potential space surrounded by deglutitional and masticator muscles and their covering, superficial and middle layer of deep cervical fascia. Parapharyngeal space has traditionally been divided by styloid process and fascia of tensor veli palatini muscle (nasopharyngeal level) or fascia of stylopharyngeus muscle (oropharyngeal level) into two compartments, prestyloid and poststyloid spaces. The latter is often called as carotid space. Prestyloid portion exclusively contains fat tissue, which yields hypoabsorption area in CT films and high density area in MRI. In most of papers in radiological journals, the term of parapharyngeal space is regarded as its prestyloid portion which is clearly identified. Axial CT images of 144 patients without any naso- or oropharyngeal lesions were analyzed. Two reference levels of nasopharynx were adopted for the study. The upper level passes through the plane of fossa of Rosenmuller, and the lower reference level transects soft palate. The following parameters of the space were measured; Length and width of the whole space, length and width of prestyloid fatty space, and furthermore, width of pre- and poststyloid space, that were divided by a imaginary line pararell to the axis of the whole space (the upper level); Length and width of the whole space, length of base and height of a triangle of the prestyloid part (the lower level). While parapharyngeal space was symmmetrical in the upper level, the rate of asymmetry amounted to a fourth in the lower level. Prestyloid space was broader than poststyloid one in the upper level. Men were dominant in length of the space in both the upper and the lower level and in length of the base of fatty space in the lower level. There was no difference between any age groups other than in fatty area in the lower level. Teens tended to be narrow, while 60's and older were wide. (author)

  5. Ring artifacts removal from synchrotron CT image slices

    International Nuclear Information System (INIS)

    Wei Zhouping; Chapman, Dean; Wiebe, Sheldon

    2013-01-01

    Ring artifacts can occur in reconstructed images from x-ray Computerized Tomography (CT) as full or partial concentric rings superimposed on the scanned structures. Due to the data corruption by those ring artifacts in CT images, qualitative and quantitative analysis of these images are compromised. In this paper, we propose to correct the ring artifacts on the reconstructed synchrotron radiation (SR) CT image slices. The proposed correction procedure includes the following steps: (1). transform the reconstructed CT images into polar coordinates; (2) apply discrete two-dimensional (2D) wavelet transform to the polar image to decompose it into four image components: low pass band image component, as well as the components from horizontal, vertical and diagonal details bands; (3). apply 2D Fourier transform to the vertical details band image component only, since the ring artifacts become vertical lines in the polar coordinates; (4). apply Gaussian filtering in Fourier domain along the abscissa direction to suppress the vertical lines, since the information of the vertical lines in Fourier domain is completely condensed to that direction; (5). perform inverse Fourier transform to get the corrected vertical details band image component; (6). perform inverse wavelet transform to get the corrected polar image; (7). transform the corrected polar image back to Cartesian coordinates to get the CT image slice with reduced ring artifacts. This approach has been successfully used on CT data acquired from the Biomedical Imaging and Therapy (BMIT) beamline in Canadian Light Source (CLS), and the results show that the ring artifacts in original SR CT images have been effectively suppressed with all the structure information in the image preserved.

  6. CT and MRI techniques for imaging around orthopedic hardware

    Energy Technology Data Exchange (ETDEWEB)

    Do, Thuy Duong; Skornitzke, Stephan; Weber, Marc-Andre [Heidelberg Univ. (Germany). Dept. of Clinical Radiology; Sutter, Reto [Uniklinik Balgrist, Zurich (Switzerland). Radiology

    2018-01-15

    Orthopedic hardware impairs image quality in cross-sectional imaging. With an increasing number of orthopedic implants in an aging population, the need to mitigate metal artifacts in computed tomography and magnetic resonance imaging is becoming increasingly relevant. This review provides an overview of the major artifacts in CT and MRI and state-of-the-art solutions to improve image quality. All steps of image acquisition from device selection, scan preparations and parameters to image post-processing influence the magnitude of metal artifacts. Technological advances like dual-energy CT with the possibility of virtual monochromatic imaging (VMI) and new materials offer opportunities to further reduce artifacts in CT and MRI. Dedicated metal artifact reduction sequences contain algorithms to reduce artifacts and improve imaging of surrounding tissue and are essential tools in orthopedic imaging to detect postoperative complications in early stages.

  7. Reconstruction CT imaging of the hypopharynx and the larynx

    International Nuclear Information System (INIS)

    Okuno, Tetsuji; Fujimura, Akiko; Murakami, Yasushi; Shiga, Hayao

    1986-01-01

    The multiplanar reconstruction CT imaging of the hypopharynx and the larynx was performed on a total of 20 cases: 8 with laryngeal carcinomas, 6 with hypopharyngeal carcinomas, 4 with vocal cord paralyses due to various causes, 1 with laryngeal amyloidosis, 1 with inflammatory granuloma of the hypopharynx. Coronal, segittal, and parasagittal reconstruction images were obtained from either 1 or 2 mm overlapping axial scans with 4 or 5 mm slice thickness (3 cases) using 5 sec scan times during queit breathing. In 15 cases with coronal reconstruction imaging, the anatomical derangements of the laryngopharyngeal structures especially along the undersurface of the true vocal cord to the false cord level, the lateral wall of the pyriform sinus, and the paraglottic space were demonstrated more clearly than the axial CT imaging. In 5 cases with sagittal reconstruction imaging, the vertical extension of the lesions through the anterior commisure was more clearly depicted than the axial CT imaging. In 8 cases with parasagittal reconstruction imaging, which is along the vocal fold or across the aryepiglottic fold, pathological changes along the aryepiglottic fold, the arytenoid-corniculate cartilage complex, and the tip of the pyriform sinus were more clearly demonstrated than the axial CT imaging. In determining the feasibility of conservation surgery of the larynx and the hypopharynx, reconstruction CT imaging is recommended as the diagnostic procedure of a choice, which would supplement the findings of the routine axial CT imaging. (author)

  8. Imaging of Acute Mesenteric Ischemia Using Multidetector CT and CT Angiography in a Porcine Model

    OpenAIRE

    Rosow, David E.; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S.; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I.; Mueller, Peter R.; Castillo, Carlos Fernández-del; Warshaw, Andrew L.; Thayer, Sarah P.

    2005-01-01

    Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly f...

  9. Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study.

    Science.gov (United States)

    Chirindel, Alin; Adebahr, Sonja; Schuster, Daniel; Schimek-Jasch, Tanja; Schanne, Daniel H; Nemer, Ursula; Mix, Michael; Meyer, Philipp; Grosu, Anca-Ligia; Brunner, Thomas; Nestle, Ursula

    2015-06-01

    Evaluation of the effect of co-registered 4D-(18)FDG-PET/CT for SBRT target delineation in patients with central versus peripheral lung tumors. Analysis of internal target volume (ITV) delineation of central and peripheral lung lesions in 21 SBRT-patients. Manual delineation was performed by 4 observers in 2 contouring phases: on respiratory gated 4DCT with diagnostic 3DPET available aside (CT-ITV) and on co-registered 4DPET/CT (PET/CT-ITV). Comparative analysis of volumes and inter-reader agreement. 11 cases of peripheral and 10 central lesions were evaluated. In peripheral lesions, average CT-ITV was 6.2 cm(3) and PET/CT-ITV 8.6 cm(3), resembling a mean change in hypothetical radius of 2 mm. For both CT-ITVs and PET/CT-ITVs inter reader agreement was good and unchanged (0.733 and 0.716; p=0.58). All PET/CT-ITVs stayed within the PTVs derived from CT-ITVs. In central lesions, average CT-ITVs were 42.1 cm(3), PET/CT-ITVs 44.2 cm(3), without significant overall volume changes. Inter-reader agreement improved significantly (0.665 and 0.750; p1 ml in average for all observers. The addition of co-registered 4DPET data to 4DCT based target volume delineation for SBRT of centrally located lung tumors increases the inter-observer agreement and may help to avoid geographic misses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  11. Influence of iterative image reconstruction on CT-based calcium score measurements

    NARCIS (Netherlands)

    van Osch, Jochen A. C.; Mouden, Mohamed; van Dalen, Jorn A.; Timmer, Jorik R.; Reiffers, Stoffer; Knollema, Siert; Greuter, Marcel J. W.; Ottervanger, Jan Paul; Jager, Piet L.

    Iterative reconstruction techniques for coronary CT angiography have been introduced as an alternative for traditional filter back projection (FBP) to reduce image noise, allowing improved image quality and a potential for dose reduction. However, the impact of iterative reconstruction on the

  12. Dual scan CT image recovery from truncated projections

    Science.gov (United States)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  13. CT and MR imaging characteristics of infantile hepatic hemangioendothelioma

    International Nuclear Information System (INIS)

    Feng Shiting; Chan Tao; Ching, A.S.C.; Sun Canhui; Guo Huanyi; Fan Miao; Meng Quanfei; Li Ziping

    2010-01-01

    Aim: This study aims to analyze computed tomography (CT) and magnetic resonance (MR) imaging features of infantile hepatic hemangioendotheliomas before and after treatment. Materials and methods: CT and MR examinations of seven infants with biopsy proven hepatic hemangioendotheliomas were retrospectively analyzed. The distribution, number, size, imaging appearance, enhancement pattern and post-treatment changes of the tumors were evaluated. Results: A total of 153 hepatic hemangioendotheliomas were detected on CT (111) and MR (42) imaging. In six infants, 109/111 (98.2%) tumors were hypodense and 2/111 (1.8%) lesions contained calcification on unenhanced CT. On MR imaging, all 42 lesions in one infant were heterogeneously T1-hypointense and T2-hyperintense compared to the normal liver parenchyma. Contrast-enhanced CT and MRI showed peripheral rim (51.6%), uniform (48.4%), fibrillary (33.3%), and nodular (28.8%) contrast enhancement in the hepatic arterial phase. Homogeneous (100%), rim (98.2%) and mixed enhancement patterns were noted in tumors 2.0 cm and 1.0-2.0 cm in diameter respectively in the hepatic arterial phase. In three patients who underwent steroid therapy, follow-up CT examination demonstrated tumor size reduction and increased intra-tumoral calcification in two patients. Conclusion: Infantile hepatic hemangioendotheliomas show some typical imaging features and size-dependent pattern of contrast enhancement on CT and MR imaging, which allow accurate imaging diagnosis and post-treatment evaluation.

  14. Development of a 3-dimensional CT using an image intensifier

    International Nuclear Information System (INIS)

    Toyofuku, Fukai

    1992-01-01

    A prototype of three-dimensional CT (Fluoroscopic CT) has been developed using an image intensifier as a two-dimensional X-ray detector. A patient on a rotating table is projected onto an image intensifier by a cone beam of X-ray from the X-ray tube. A total of 390 projection images covering 180 degrees are acquired in a single scan (13 sec) and stored on a digital frame recorder (512 x 256 x 8-bit x 480). The transverse axial images are reconstructed by using the usual CT reconstruction algorithm, while longitudinal section images such as sagittal, coronal, oblique, and panoramic images are obtained by directly back-projecting the filtered projection image onto the sections. The radiation exposure was measured with an ionization chamber, and the exposure of the present fluoroscopic CT is about 10 to 20 times less than that of conventional X-ray CT. A similar monochromatic X-ray CT system has also been developed using synchrotron radiation. Large area parallel X-rays are obtained from a wiggler beam using a silicon crystal with [311] asymmetric reflection. By taking two images above and below iodine K-absorption edge (33.17 keV), iodine image is obtained. (author)

  15. PET/CT. Dose-escalated image fusion?

    International Nuclear Information System (INIS)

    Brix, G.; Beyer, T.

    2005-01-01

    Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hard- and software of PET/CT systems. (orig.)

  16. SPECT/CT imaging in children with papillary thyroid carcinoma

    International Nuclear Information System (INIS)

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E.

    2011-01-01

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  17. CT myocardial perfusion imaging. Ready for prime time?

    Energy Technology Data Exchange (ETDEWEB)

    Takx, Richard A.P.; Celeng, Csilla [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Schoepf, U.J. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Ashley River Tower, Heart and Vascular Center, Charleston, SC (United States)

    2018-03-15

    The detection of functional coronary artery stenosis with coronary CT angiography (CCTA) is suboptimal. Additional CT myocardial perfusion imaging (CT-MPI) may be helpful to identify patients with myocardial ischaemia in whom coronary revascularization therapy would be beneficial. CT-MPI adds incremental diagnostic and prognostic value over obstructive disease on CCTA. It allows for the quantitation of myocardial blood flow and calculation of coronary flow reserve and shows good correlation with {sup 15}O-H{sub 2}O positron emission tomography and invasive fractional flow reserve. In addition, patients prefer CCTA/CT-MPI over SPECT, MRI and invasive coronary angiography. CT-MPI is ready for clinical use for detecting myocardial ischaemia caused by obstructive disease. Nevertheless, the clinical utility of CT-MPI to identify ischaemia in patients with non-obstructive/microvascular disease still has to be established. (orig.)

  18. CT images of infantile viral encephalitis

    International Nuclear Information System (INIS)

    Sugimoto, Tateo; Okazaki, Hitoshi; Woo, Man

    1985-01-01

    Cranial CT scanning was undertaken in 40 patients with infantile viral encephalitis seen from 1977 to 1983. According to the pathogenic viruses, abnormal CT findings were detected most frequently in cases of herpes simplex encephalitis (HSE), followed by non-eruptive viral encephalitis, measles encephalitis, and rubella encephalitis in that order, which coincided well with neurological prognosis. Although CT findings lay within a normal range in cases of measles encephalitis, except a case in which cerebral ventricle was slightly dilated, the degree of consciousness disturbance was unfavorable and it persisted long. This revealed that there is no distinct correlation between the degree of consciousness disturbance and CT findings. Normal CT findings were detected in 13% of patients aged less than 5 years and 76.5% of patients aged 5 years or more. In many patients who had an attack of viral encephalitis at the age of 5 years or more, epileptic seizures occurred frequently, even though CT findings were normal. (Namekawa, K.)

  19. A modified VMAT adaptive radiotherapy for nasopharyngeal cancer patients based on CT-CT image fusion

    International Nuclear Information System (INIS)

    Jin, Xiance; Han, Ce; Zhou, Yongqiang; Yi, Jinling; Yan, Huawei; Xie, Congying

    2013-01-01

    To investigate the feasibility and benefits of a modified adaptive radiotherapy (ART) by replanning in the initial CT (iCT) with new contours from a repeat CT (rCT) based on CT-CT image fusion for nasopharyngeal cancer (NPC) patients underwent volumetric modulated arc radiotherapy (VMAT). Nine NPC patients underwent VMAT treatment with a rCT at 23rd fraction were enrolled in this study. Dosimetric differences for replanning VMAT plans in the iCT and in the rCT were compared. Volumetric and dosimetric changes of gross tumor volume (GTV) and organs at risk (OARs) of this modified ART were also investigated. No dosimetric differences between replanning in the iCT and in the rCT were observed. The average volume of GTV decreased from 78.83 ± 38.42 cm 3 in the iCT to 71.44 ± 37.46 cm 3 in the rCT, but with no significant difference (p = 0.42).The average volume of the left and right parotid decreased from 19.91 ± 4.89 cm 3 and 21.58 ± 6.16 cm 3 in the iCT to 11.80 ± 2.79 cm 3 and 13.29 ± 4.17 cm 3 in the rCT (both p < 0.01), respectively. The volume of other OARs did not shrink very much. No significant differences on PTV GTV and PTV CTV coverage were observed for replanning with this modified ART. Compared to the initial plans, the average mean dose of the left and right parotid after re-optimization were decreased by 62.5 cGy (p = 0.05) and 67.3 cGy (p = 0.02), respectively, and the V5 (the volume receiving 5 Gy) of the left and right parotids were decreased by 7.8% (p = 0.01) and 11.2% (p = 0.001), respectively. There was no significant difference on the dose delivered to other OARs. Patients with NPC undergoing VMAT have significant anatomic and dosimetric changes to parotids. Repeat CT as an anatomic changes reference and re-optimization in the iCT based on CT-CT image fusion was accurate enough to identify the volume changes and to ensure safe dose to parotids

  20. FDG-PET/CT Imaging for Staging and Target Volume Delineation in Preoperative Conformal Radiotherapy of Rectal Cancer

    International Nuclear Information System (INIS)

    Bassi, Maria Chiara; Turri, Lucia; Sacchetti, Gianmauro; Loi, Gianfranco; Cannillo, Barbara; La Mattina, Pierdaniele; Brambilla, Marco; Inglese, Eugenio; Krengli, Marco

    2008-01-01

    Purpose: To investigate the potential impact of using 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) on staging and target volume delineation for patients affected by rectal cancer and candidates for preoperative conformal radiotherapy. Methods and Materials: Twenty-five patients diagnosed with rectal cancer T3-4 N0-1 M0-1 and candidates for preoperative radiotherapy underwent PET/CT simulation after injection of 5.18 MBq/kg of FDG. Clinical stage was reassessed on the basis of FDG-PET/CT findings. The gross tumor volume (GTV) and the clinical target volume (CTV) were delineated first on CT and then on PET/CT images. The PET/CT-GTV and PET/CT-CTV were analyzed and compared with CT-GTV and CT-CTV, respectively. Results: In 4 of 25 cases (24%), PET/CT affected tumor staging or the treatment purpose. In 3 of 25 cases (12%) staged N0 M0, PET/CT showed FDG uptake in regional lymph nodes and in a case also in the liver. In a patient with a single liver metastasis PET/CT detected multiple lesions, changing the treatment intent from curative to palliative. The PET/CT-GTV and PET/CT-CTV were significantly greater than the CT-GTV (p = 0.00013) and CT-CTV (p = 0.00002), respectively. The mean difference between PET/CT-GTV and CT-GTV was 25.4% and between PET/CT-CTV and CT-CTV was 4.1%. Conclusions: Imaging with PET/CT for preoperative radiotherapy of rectal cancer may lead to a change in staging and target volume delineation. Stage variation was observed in 12% of cases and a change of treatment intent in 4%. The GTV and CTV changed significantly, with a mean increase in size of 25% and 4%, respectively

  1. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  2. Biodistribution of 125I-labeled anti-endoglin antibody using SPECT/CT imaging: Impact of in vivo deiodination on tumor accumulation in mice

    International Nuclear Information System (INIS)

    Karmani, Linda; Levêque, Philippe; Bouzin, Caroline; Bol, Anne; Dieu, Marc; Walrand, Stephan; Vander Borght, Thierry; Feron, Olivier; Grégoire, Vincent; Bonifazi, Davide

    2016-01-01

    Introduction: Radiolabeled antibodies directed against endoglin (CD105) are promising tools for imaging and antiangiogenic cancer therapy. To validate iodinated antibodies as reliable tracers, we investigated the influence of the radiolabeling method (direct or indirect) on their in vivo stability. Methods: Anti-CD105 mAbs were radioiodinated directly using chloramine-T ( 125 I-anti-CD105-mAbs) or indirectly using D-KRYRR peptide as a linker ( 125 I-KRYRR-anti-CD105-mAbs). The biodistribution was studied in B16 tumor-bearing mice via SPECT/CT imaging. Results: Radioiodinated mAbs were stable in vitro. In vivo, thyroid showed the most important increase of uptake after 24 h for 125 I-anti-CD105-mAbs (91.9 ± 4.0%ID/ml) versus 125 I-KRYRR-anti-CD105-mAbs (4.4 ± 0.6%ID/ml). Tumor uptake of 125 I-anti-CD105-mAbs (0.9 ± 0.3%ID/ml) was significantly lower than that of 125 I-KRYRR-anti-CD105-mAbs (4.7 ± 0.2%ID/ml). Conclusions: An accurate characterization of the in vivo stability of radioiodinated mAbs and the choice of an appropriate method for the radioiodination are required, especially for novel targets. The indirect radioiodination of internalizing anti-CD105 mAbs leads to more stable tracer by decreasing in vivo deiodination and improves the tumor retention of radioiodinated mAbs. Advances in knowledge and implications for patient care: To date, the only antiangiogenic antibody approved for clinical indications is bevacizumab. There is a need to develop more antibodies that have targets highly expressed on tumor endothelium. CD105 represents a promising marker of angiogenesis, but its therapeutic relevance in cancer needs to be further investigated. In this context, this study suggests the potential use of indirectly iodinated anti-CD105 mAbs for tumor imaging and for therapeutic purposes.

  3. CT and MR imaging features of hydrocephalus

    International Nuclear Information System (INIS)

    Shier, C.K.; George, A.E.; de Leon, M.J.; Stylopoulos, L.A.; Pinto, R.S.

    1989-01-01

    Sylvian fissure and sulcal enlargement is generally perceived as indicative of cortical atrophy and has been used by surgeons in cases of suspected hydrocephalus as a criterion for exclusion from ventricular shunting procedure. The authors have observed sylvian fissure collapse following ventricular shunting in several patients with communicating hydrocephalus (CH). The purpose of this study was to determine the incidence of this finding in patients with CH. The pre- and postshunt CT and MR images of 30 patients with communicating hydrocephalus were reviewed. As anticipated, after shunting a diminution in caliber of the lateral ventricle bodies, temporal horns, and third ventricle occurred in a majority of cases. However, sulcal width paradoxically decreased in 13% of cases after shunt, and sylvian fissure size decreased in seven patients after shunt (23%). In summary, large sylvian fissures and focally dilated sulci do not rule out the presence of hydrocephalus and may in fact act as cerebrospinal fluid reservoirs in cases of obstruction higher along the cerebral convexities

  4. The findings and the role of axial CT imaging and 3D imaging of gastric lesion by spiral CT

    International Nuclear Information System (INIS)

    Lee, Dong Ho; Ko, Young Tae

    1996-01-01

    The purpose of this study is to assess the efficacy of axial CT imaging and 3D imaging by spiral CT in the detection and evaluation of gastric lesion. Seventy-seven patients with pathologically-proven gastric lesions underwent axial CT and 3D imaging by spiral CT. There were 49 cases of advanced gastric carcinoma(AGC), 21 of early gastric carcinoma (EGC), three of benign ulcers, three of leiomyomas, and one case of lymphoma. Spiral CT was performed with 3-mm collimation, 4.5mm/sec table feed, and 1-1.5-mm reconstruction interval after the ingestion of gas. 3D imaging was obtained using the SSD technique, and on analysis a grade was given(excellent, good, poor). Axial CT scan was performed with 5-mm collimation, 7mm/sec table feed, and 5-mm reconstruction interval after the ingestion of water. Among 49 cases of AGC, excellent 3D images were obtained in seven patients (14.3%), good 3D images in 30(61.2%), and poor 3D images in 12(24.5%). Among the 12 patients with poor images, the cancers were located at the pyloric antrum in eight cases, were AGC Borrmann type 4 in three cases, and EGC-mimicking lesion in one case. Using axial CT scan alone, Borrmann's classification based tumor morphology were accurately identified in 67.3% of cases, but using 3D imaging, the corresponding figure was 85.7%. In 33 cases receiving surgery, good correlation between axial CT scan and pathology occurred in 72.7% of T class, and 69.7% of N class. Among 21 cases of EGC, excellent 3D images were obtained in three patients (14.3%), good 3D images in 14 (66.7%), and poor 3D images in two (9.5%). The other two cases of EGC were not detected. By axial CT scan, no tumor was detected in four cases, and there were two doubtful cases. 3D images of three benign ulcers were excellent in one case and good in two. 3D images of three leiomyomas and one lymphoma were excellent. Combined axial CT imaging and 3D imaging by spiral CT has the potential to accurately diagnose gastric lesions other than AGC

  5. Holographic observation of magnetic resonance image CT of intracranial tumors

    International Nuclear Information System (INIS)

    Iwata, Kinjiro; Watanabe, Saburo; Yuasa, Hiromi; Yamada, Takahisa; Hoshino, Daisaku; Suzuki, Masane; Saito, Takayuki.

    1987-01-01

    In 1975, we developed a new method of 3-dimensional observation of CT pictures using Gabor's holography principle. In this study, we are reporting our experience with the multi-tomogram holography using magnetic resonance image CT in order to reconstruct 3-dimensional viewing of the central nervous system and intracranial lesions. (J.P.N.)

  6. Imaging of acute mesenteric ischemia using multidetector CT and CT angiography in a porcine model.

    Science.gov (United States)

    Rosow, David E; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I; Mueller, Peter R; Fernández-del Castillo, Carlos; Warshaw, Andrew L; Thayer, Sarah P

    2005-12-01

    Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly facilitates the use of CT angiography (CTA) in the clinical setting. We sought to determine whether M.D.CT-CTA could accurately demonstrate vascular anatomy and capture the earliest stages of mesenteric ischemia in a porcine model. Pigs underwent embolization of branches of the superior mesenteric artery, then imaging by M.D.CT-CTA with three-dimensional reconstruction protocols. After scanning, diseased bowel segments were surgically resected and pathologically examined. Multidetector row CT and CT angiography reliably defined normal and occluded mesenteric vessels in the pig. It detected early changes of ischemia including poor arterial enhancement and venous dilatation, which were seen in all ischemic animals. The radiographic findings--compared with pathologic diagnoses-- predicted ischemia, with a positive predictive value of 92%. These results indicate that M.D.CT-CTA holds great promise for the early detection necessary for successful treatment of acute mesenteric ischemia.

  7. PET/CT Atlas on Quality Control and Image Artefacts

    International Nuclear Information System (INIS)

    2014-01-01

    Combined positron emission tomography (PET)/computed tomography (CT) imaging has become a routine procedure in diagnostic radiology and nuclear medicine. The clinical review of both PET and PET/CT images requires a thorough understanding of the basics of image formation as well as an appreciation of variations of inter-patient and intra-patient image appearance. Such variations may be caused by variations in tracer accumulation and metabolism, and, perhaps more importantly, by image artefacts related to methodological pitfalls of the two modalities. This atlas on quality control (QC) and PET/CT artefacts provides guidance on typical image distortions in clinical PET/CT usage scenarios. A number of cases are presented to provide nuclear medicine and radiology professionals with an assortment of examples of possible image distortions and errors in order to support the correct interpretation of images. About 70 typical PET and PET/CT cases, comprised of image sets and cases, have been collected in this book, and all have been catalogued and have explanations as to the causes of and solutions to each individual image problem. This atlas is intended to be used as a guide on how to take proper QC measures, on performing situation and problem analysis, and on problem prevention. This book will be especially useful to medical physicists, physicians, technologists and service engineers in the clinical field

  8. Diagnostic impact of SPECT-CT in the assessment of endocrine tumors

    International Nuclear Information System (INIS)

    El Badaoui, A.; Clermont, H. de; Valli, N.; Caignon, J.M.; Fernandez, P.; Allard, M.; Barat, J.L.; Ducassou, D.; Clermont, H. de; Valli, N.; Caignon, J.M.; Fernandez, P.; Allard, M.; Barat, J.L.; Ducassou, D.; Clermont, H. de; Allard, M.

    2008-01-01

    Image fusion using single photon emission computed tomography - computed tomography (SPECT - CT) associates functional and morphological images. This study evaluates the added value of SPECT- CT, obtained with a hybrid SPECT- CT gamma camera, on anatomic localization and diagnostic impact in assessment of endocrine tumours and pheochromocytomas. Method: Six months prospective study was undertaken including 33 consecutive exams encompassing 20 Somatostatin Receptor Scintigraphies (S.R.S.) and 13 123 I-meta-iodo-benzyl-guanidine (Mibg) scans. Two experienced nuclear medicine physicians independently analysed independently planar and SPECT images in a first time, then, SPECT- CT fused images in a second time. They evaluated two parameters: SPECT- CT impact on anatomic localization (L.A.) and its diagnostic impact (I.D.). Each parameter was scored according three levels of evaluation. Results: An added value of SPECT- CT images was evidenced in 55% of cases on the anatomic localization and in 41% of the patients on the diagnostic impact. Therefore, a more important benefit was noted when SPECT was positive (L.A.: 90%; I.D.: 70%) than when it was negative (L.A.: 15%; I.D.: 8%). Furthermore, the added value proved higher for the S;R.S. compared to Mibg scans. Conclusion: SPECT- CT fusion images obtained by a hybrid system is more relevant to determine anatomic localization and more accurate than SPECT alone, particularly in the assessment of endocrine tumours. The added value of SPECT- CT seems to be lower for Mibg scans in the assessment of pheochromocytomas. (authors)

  9. SU-E-T-365: Dosimetric Impact of Dental Amalgam CT Image Artifacts On IMRT and VMAT Head and Neck Plans

    Energy Technology Data Exchange (ETDEWEB)

    Cao, N; Young, L; Parvathaneni, U; Liao, J; Richard, P; Ford, E; Sandison, G [University of Washington, Department of Radiation Oncology, Seattle, WA (United States)

    2014-06-01

    Purpose: The presence of high density dental amalgam in patient CT image data sets causes dose calculation errors for head and neck (HN) treatment planning. This study assesses and compares dosimetric variations in IMRT and VMAT treatment plans due to dental artifacts. Methods: Sixteen HN patients with similar treatment sites (oropharynx), tumor volume and extensive dental artifacts were divided into two groups: IMRT (n=8, 6 to 9 beams) and VMAT (n=8, 2 arcs with 352° rotation). All cases were planned with the Pinnacle 9.2 treatment planning software using the collapsed cone convolution superposition algorithm and a range of prescription dose from 60 to 72Gy. Two different treatment plans were produced, each based on one of two image sets: (a)uncorrected; (b)dental artifacts density overridden (set to 1.0g/cm{sup 3}). Differences between the two treatment plans for each of the IMRT and VMAT techniques were quantified by the following dosimetric parameters: maximum point dose, maximum spinal cord and brainstem dose, mean left and right parotid dose, and PTV coverage (V95%Rx). Average differences generated for these dosimetric parameters were compared between IMRT and VMAT plans. Results: The average absolute dose differences (plan a minus plan b) for the VMAT and IMRT techniques, respectively, caused by dental artifacts were: 2.2±3.3cGy vs. 37.6±57.5cGy (maximum point dose, P=0.15); 1.2±0.9cGy vs. 7.9±6.7cGy (maximum spinal cord dose, P=0.026); 2.2±2.4cGy vs. 12.1±13.0cGy (maximum brainstem dose, P=0.077); 0.9±1.1cGy vs. 4.1±3.5cGy (mean left parotid dose, P=0.038); 0.9±0.8cGy vs. 7.8±11.9cGy (mean right parotid dose, P=0.136); 0.021%±0.014% vs. 0.803%±1.44% (PTV coverage, P=0.17). Conclusion: For the HN plans studied, dental artifacts demonstrated a greater dose calculation error for IMRT plans compared to VMAT plans. Rotational arcs appear on the average to compensate dose calculation errors induced by dental artifacts. Thus, compared to VMAT, density

  10. CT and MR imaging findings of sinonasal angiomatous polyps

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jing [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Man, Fengyuan [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing (China); Deng, Kai [Department of Radiology, Qingdao No. 4 People' s Hospital, Qingdao, Shandong (China); Zheng, Yuanyuan [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Hao, Dapeng, E-mail: haodp_2009@163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Xu, Wenjian, E-mail: cjr.xuwenjian@vip.163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China)

    2014-03-15

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP.

  11. CT and MR imaging findings of sinonasal angiomatous polyps

    International Nuclear Information System (INIS)

    Zou, Jing; Man, Fengyuan; Deng, Kai; Zheng, Yuanyuan; Hao, Dapeng; Xu, Wenjian

    2014-01-01

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP

  12. Recurrent postoperative sciatica: Evaluation with MR imaging and enhanced CT

    International Nuclear Information System (INIS)

    Duoauferrier, R.; Frocrain, L.; Husson, J.L.

    1987-01-01

    The authors prospectively compared surface coil MR (SCMR) imaging and CT with iodinate contrast enhancement in 50 patients with recurrent postoperative sciatica. Of the 50 patients enrolled in the study, surgical treatment was elected in 27 patients after independent examination of SCMR imaging and enhanced CT. All predictions made with the 27 SCMR images were surgically confirmed. The surgical findings were 20 recurrent disk herniations, five recurrent disk herniations with scar tissue, one disk herniation above the level of diskectomy, and one disk herniation below the level of diskectomy. The surgical findings of the 12 patients who had scar tissue on CT were seven recurrent disk herniations, four recurrent disk herniations with scar tissue, and one disk herniation below the operated level. SCMR imaging was more sensitive and more specific than CT to differentiate scar tissue from recurrent disk herniation

  13. MR imaging and CT findings after liver transplantation

    International Nuclear Information System (INIS)

    Langer, M.; Langer, R.; Scholz, A.; Zwicker, C.; Astinet, F.

    1990-01-01

    The aim of the paper is to evaluate MR imaging and dynamic CT as noninvasive procedures to image signs of graft failure after an orthotopic liver transplantation (OLT). Thirty MR studies and 50 dynamic CT examinations were performed within 20 days after OLT. MR examinations were performed with a 0.5-T Siemens Magnetom. CT scans were obtained by using a Siemens Somatom Plus. In all patients, MR images demonstrated a perivascular rim of intermediate signal intensity on T1-weighted and increased signal intensity on T2-weighted images in the hilum of the liver; in 20/26, this was seen in peripheral areas also. In all patients, a perivascular area of low attenuation was diagnosed at angio-CT

  14. Correlative Imaging in a Patient with Cystic Thymoma: CT, MR and PET/CT Comparison

    International Nuclear Information System (INIS)

    Romeo, Valeria; Esposito, Alfredo; Maurea, Simone; Camera, Luigi; Mainenti, Pier Paolo; Palmieri, Giovannella; Buonerba, Carlo; Salvatore, Marco

    2015-01-01

    Cystic thymoma is a rare variant of thymic neoplasm characterized by almost complete cystic degeneration with mixed internal structure. We describe a case of a 60 year-old woman with a cystic thymoma studied with advanced tomographic imaging stydies. CT, MRI and PET/CT with 18 F-FDG were performed; volumetric CT and MRI images provided better anatomic evaluation for pre-operative assessment, while PET/CT was helpful for lesion characterization based on 18 F-FDG uptake. Although imaging studies are mandatory for pre-operative evaluation of cystic thymoma, final diagnosis still remains surgical. A 60-year-old woman with recent chest pain and no history of previous disease was admitted to our departement to investigate the result of a previous chest X-ray that showed bilateral mediastinal enlargement; for this purpose, enhanced chest CT scan was performed using a 64-rows scanner (Toshiba, Aquilion 64, Japan) before and after intravenous bolus administration of iodinated non ionic contrast agent; CT images demonstrated the presence of a large mediastinal mass (11×8 cm) located in the anterior mediastinum who extended from the anonymous vein to the cardio-phrenic space, compressing the left atrium and causing medium lobe atelectasis; bilateral pleural effusion was also present. In conclusion, correlative imaging plays a foundamental role for the diagnostic evaluation of patient with cystic thymoma. In particular, volumetric CT and MRI studies can provide better anatomic informations regarding internal structure and local tumor spread for pre-operative assessment. Conversely, metabolic imaging using 18 F-FDG PET/CT is helpful for lesion characterization differentiating benign from malignant lesion on the basis of intense tracer uptake. The role of PET/MRI is still under investigation. However, final diagnosis still remains surgical even though imaging studies are mandatory for pre-operative patient management

  15. Impact of new technologies on dose reduction in CT

    International Nuclear Information System (INIS)

    Lee, Ting-Yim; Chhem, Rethy K.

    2010-01-01

    The introduction of slip ring technology enables helical CT scanning in the late 1980's and has rejuvenated CT's role in diagnostic imaging. Helical CT scanning has made possible whole body scanning in a single breath hold and computed tomography angiography (CTA) which has replaced invasive catheter based angiography in many cases because of its easy of operation and lesser risk to patients. However, a series of recent articles and accidents have heightened the concern of radiation risk from CT scanning. Undoubtedly, the radiation dose from CT studies, in particular, CCTA studies, are among the highest dose studies in diagnostic imaging. Nevertheless, CT has remained the workhorse of diagnostic imaging in emergent and non-emergent situations because of their ubiquitous presence in medical facilities from large academic to small regional hospitals and their round the clock accessibility due to their ease of use for both staff and patients as compared to MR scanners. The legitimate concern of radiation dose has sparked discussions on the risk vs benefit of CT scanning. It is recognized that newer CT applications, like CCTA and perfusion, will be severely curtailed unless radiation dose is reduced. This paper discusses the various hardware and software techniques developed to reduce radiation dose to patients in CT scanning. The current average effective dose of a CT study is ∼10 mSv, with the implementation of dose reduction techniques discussed herein; it is realistic to expect that the average effective dose may be decreased by 2-3 fold.

  16. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  17. Lung cancer mimicking lung abscess formation on CT images

    OpenAIRE

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Patient: Male, 64 Final Diagnosis: Lung pleomorphic carcinoma Symptoms: Cough • fever Medication: — Clinical Procedure: — Specialty: Oncology Objective: Unusual clinical course Background: The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resemble...

  18. Castleman disease of the neck: CT and MR imaging findings

    International Nuclear Information System (INIS)

    Jiang, Xin-hua; Song, Hao-ming; Liu, Qing-yu; Cao, Yun; Li, Guo-hong; Zhang, Wei-dong

    2014-01-01

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases

  19. Castleman disease of the neck: CT and MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin-hua [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Song, Hao-ming [Department of Cardiology, Shanghai Tongji Hospital, Shanghai 200065 (China); Liu, Qing-yu [Department of Radiology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120 (China); Cao, Yun [Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Li, Guo-hong [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Zhang, Wei-dong, E-mail: dongw.z@163.com [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China)

    2014-11-15

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases.

  20. Clinical applications of SPECT/CT in imaging the extremities

    International Nuclear Information System (INIS)

    Huellner, Martin W.; Strobel, Klaus

    2014-01-01

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  1. Clinical applications of SPECT/CT in imaging the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, Martin W. [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland); Strobel, Klaus [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland)

    2014-05-15

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  2. Image quality assessment for CT used on small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co [Universidad Nacional de Colombia, Departamento de Física, Grupo de Física Médica (Colombia)

    2016-07-07

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  3. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  4. 'Ready-access' CT imaging for an orthopaedic trauma clinic.

    LENUS (Irish Health Repository)

    Cawley, D

    2011-03-01

    \\'Ready-Access\\' to CT imaging facilities in Orthopaedic Trauma Clinics is not a standard facility. This facility has been available at the regional trauma unit, in Merlin Park Hospital, Galway for the past four years. We reviewed the use of this facility over a 2-year period when 100 patients had CT scans as part of their trauma clinic assessment. The rate of CT scan per clinic was 0.6. The mean waiting time for a CT scan was 30 minutes. 20 (20%) new fractures were confirmed, 33 (33%) fractures were out-ruled, 25 (25%) fractures demonstrated additional information and 8 (8%) had additional fractures. 20 (20%) patients were discharged and 12 (12%) patients were admitted as a result of the CT scan. It adds little time and cost to CT scanning lists.

  5. Three-dimensional multislice CT imaging of otitis media

    International Nuclear Information System (INIS)

    Suzuki, Miyako; Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro; Wada, Akihiro; Ando, Ichiro

    2002-01-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  6. Three-dimensional multislice CT imaging of otitis media

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Miyako [Yanagibasi Hospital, Tokyo (Japan); Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro [Juntendo Univ., Tokyo (Japan). School of Medicine; Wada, Akihiro; Ando, Ichiro [Juntendo Univ., Chiba (Japan). Urayasu Hospital

    2002-07-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  7. Comparison of CT scanning and radionuclide imaging in liver disease

    International Nuclear Information System (INIS)

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient

  8. Skeletal scintigraphy and SPECT/CT in orthopedic imaging

    International Nuclear Information System (INIS)

    Klaeser, B.; Walter, M.; Krause, T.

    2011-01-01

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  9. Diagnostic imaging analysis of the impacted mesiodens

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jeong Jun; Choi, Bo Ram; Jeong, Hwan Seok; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2010-06-15

    The research was performed to predict the three dimensional relationship between the impacted mesiodens and the maxillary central incisors and the proximity with the anatomic structures by comparing their panoramic images with the CT images. Among the patients visiting Seoul National University Dental Hospital from April 2003 to July 2007, those with mesiodens were selected (154 mesiodens of 120 patients). The numbers, shapes, orientation and positional relationship of mesiodens with maxillary central incisors were investigated in the panoramic images. The proximity with the anatomical structures and complications were investigated in the CT images as well. The sex ratio (M : F) was 2.28 : 1 and the mean number of mesiodens per one patient was 1.28. Conical shape was 84.4% and inverted orientation was 51.9%. There were more cases of anatomical structures encroachment, especially on the nasal floor and nasopalatine duct, when the mesiodens was not superimposed with the central incisor. There were, however, many cases of the nasopalatine duct encroachment when the mesiodens was superimpoised with the apical 1/3 of central incisor (52.6%). Delayed eruption (55.6%), crown rotation (66.7%) and crown resorption (100%) were observed when the mesiodens was superimposed with the crown of the central incisor. It is possible to predict three dimensional relationship between the impacted mesiodens and the maxillary central incisors in the panoramic images, but more details should be confirmed by the CT images when necessary.

  10. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  11. Development of information preserving data compression algorithm for CT images

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio

    1989-01-01

    Although digital imaging techniques in radiology develop rapidly, problems arise in archival storage and communication of image data. This paper reports on a new information preserving data compression algorithm for computed tomographic (CT) images. This algorithm consists of the following five processes: 1. Pixels surrounding the human body showing CT values smaller than -900 H.U. are eliminated. 2. Each pixel is encoded by its numerical difference from its neighboring pixel along a matrix line. 3. Difference values are encoded by a newly designed code rather than the natural binary code. 4. Image data, obtained with the above process, are decomposed into bit planes. 5. The bit state transitions in each bit plane are encoded by run length coding. Using this new algorithm, the compression ratios of brain, chest, and abdomen CT images are 4.49, 4.34. and 4.40 respectively. (author)

  12. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus

    2010-01-01

    -invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy......, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and computed tomography (CT) are used to communicate the actual image data created by the modalities. Care must be taken for data security...

  13. Improving the quality of brain CT image from Wavelet filters

    International Nuclear Information System (INIS)

    Pita Machado, Reinaldo; Perez Diaz, Marlen; Bravo Pino, Rolando

    2012-01-01

    An algorithm to reduce Poisson noise is described using Wavelet filters. Five tomographic images of patients and a head anthropomorphic phantom were used. They were acquired with two different CT machines. Due to the original images contain the acquisition noise; some simulated free noise lesions were added to the images and after that the whole images were contaminated with noise. Contaminated images were filtered with 9 Wavelet filters at different decomposition levels and thresholds. Image quality of filtered and unfiltered images was graded using the Signal to Noise ratio, Normalized Mean Square Error and the Structural Similarity Index, as well as, by the subjective JAFROC methods with 5 observers. Some filters as Bior 3.7 and dB45 improved in a significant way head CT image quality (p<0.05) producing an increment in SNR without visible structural distortions

  14. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Pt. 2

    International Nuclear Information System (INIS)

    Alt, Celine D.; Kauczor, Hans-Ulrich; Hallscheidt, Peter; Brocker, Kerstin A.; Eichbaum, Michael; Sohn, Christof; Arnegger, Florian U.

    2011-01-01

    To compose diagnostic standard operating procedures for both clinical and imaging assessment for vulvar and vaginal cancer, for vaginal sarcoma, and for ovarian cancer. The literature was reviewed for diagnosing the above mentioned malignancies in the female pelvis. Special focus herein lies in tumor representation in MRI, followed by the evaluation of CT and PET/CT for this topic. MRI is a useful additional diagnostic complement but by no means replaces established methods of gynecologic diagnostics and ultrasound. In fact, MRI is only implemented in the guidelines for vulvar cancer. According to the current literature, CT is still the cross-sectional imaging modality of choice for evaluating ovarian cancer. PET/CT appears to have advantages for staging and follow-up in sarcomas and cancers of the ovaries. (orig.)

  15. Advances in fusion of PET, SPET, CT und MRT images

    International Nuclear Information System (INIS)

    Pietrzyk, U.

    2003-01-01

    Image fusion as part of the correlative analysis for medical images has gained ever more interest and the fact that combined systems for PET and CT are commercially available demonstrates the importance for medical diagnostics, therapy and research oriented applications. In this work the basics of image registration, its different strategies and the mathematical and physical background are described. A successful image registration is an essential prerequisite for the next steps, namely correlative medical image analysis. Means to verify image registration and the different modes for integrated display are presented and its usefulness is discussed. Possible limitations in applying image fusion in order to avoid misinterpretation will be pointed out. (orig.) [de

  16. SU-F-J-114: On-Treatment Imagereconstruction Using Transit Images of Treatment Beams Through Patient and Thosethrough Planning CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H; Cho, S [KAIST, Yuseong-gu, Daejeon (Korea, Republic of); Cheong, K [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Jung, J [East Carolina University Greenville, NC (United States); Jung, S [Samsung Medical Cener, Gangnam-gu, Seoul (Korea, Republic of); Kim, J [Yonsei Cancer Center, Seoul (Korea, Republic of); Yeo, I [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically, represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.

  17. SU-F-J-114: On-Treatment Imagereconstruction Using Transit Images of Treatment Beams Through Patient and Thosethrough Planning CT Images

    International Nuclear Information System (INIS)

    Lee, H; Cho, S; Cheong, K; Jung, J; Jung, S; Kim, J; Yeo, I

    2016-01-01

    Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically, represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.

  18. Impact of 18F-FDG-PET/CT on staging and irradiation of patients with locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Paskeviciute, Brigita; Boelling, Tobias; Brinkmann, Markus; Rudykina, Ganna; Ernst, Iris; Willich, Normann; Koenemann, Stefan; Stegger, Lars; Schober, Otmar; Weckesser, Matthias

    2009-01-01

    To investigate the impact of fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) on planning of neoadjuvant radiotherapy for locally advanced rectal cancer (LARC) patients. From January 2003 to December 2007, a total of 36 patients with LARC underwent a retroprospective PET/CT study for radiotherapy-planning purposes. Gross tumor volume (GTV), clinical target volume (CTV) and planning target volume (PTV) were defined in a retrospective analysis by a blinded reader. The hypothetical boost volume was defined primarily on CT alone, and afterwards on the fused PET/CT dataset. The CT- and PET/CT-based GTVs were quantitatively compared and percentage of overlap (OV%) was calculated and analyzed. The impact of PET/CT on radiation treatment planning and overall patient management was evaluated. PET/CT-GTVs were smaller than CT-GTVs (p < 0.05). PET/CT imaging resulted in a change of overall management for three patients (8 %). In 16 of 35 patients (46 %), PET/CT resulted in a need for modification of the usual target volumes (CT-PTV) because of detection of a geographic miss. FDG-PET/CT had significant impact on radiotherapy planning and overall treatment of patients with LARC. (orig.)

  19. 13N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness

    International Nuclear Information System (INIS)

    Siegrist, Patrick T.; Husmann, Lars; Knabenhans, Martina; Gaemperli, Oliver; Valenta, Ines; Hoefflinghaus, Tobias; Scheffel, Hans; Stolzmann, Paul; Alkadhi, Hatem; Kaufmann, Philipp A.

    2008-01-01

    The purpose of the study is to determine the impact of 13 N-ammonia positron emission tomography (PET) myocardial perfusion imaging (MPI) on clinical decision making and its cost-effectiveness. One hundred consecutive patients (28 women, 72 men; mean age 60.9 ± 12.0 years; range 24-85 years) underwent 13 N-ammonia PET scanning (and computed tomography, used only for attenuation correction) to assess myocardial perfusion in patients with known (n = 79) or suspected (n = 8) coronary artery disease (CAD), or for suspected small-vessel disease (SVD; n = 13). Before PET, the referring physician was asked to determine patient treatment if PET would not be available. Four weeks later, PET patient management was reassessed for each patient individually. Before PET management strategies would have been: diagnostic angiography (62 of 100 patients), diagnostic angiography and percutaneous coronary intervention (PCI; 6 of 100), coronary artery bypass grafting (CABG; 3 of 100), transplantation (1 of 100), or conservative medical treatment (28 of 100). After PET scanning, treatment strategies were altered in 78 patients leading to: diagnostic angiography (0 of 100), PCI (20 of 100), CABG (3 of 100), transplantation (1 of 100), or conservative medical treatment (76 of 100). Patient management followed the recommendations of PET findings in 97% of the cases. Cost-effectiveness analysis revealed lower costs of EUR206/patient as a result of PET scanning. In a population with a high prevalence of known CAD, PET is cost-effective and has an important impact on patient management. (orig.)

  20. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  1. Lung cancer mimicking lung abscess formation on CT images.

    Science.gov (United States)

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  2. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  3. CT and MR imaging after middle ear surgery

    International Nuclear Information System (INIS)

    Koesling, Sabrina; Bootz, F.

    2001-01-01

    This article describes the current value of imaging in patients after stapes surgery and surgery after chronic otitis media including cholesteatoma. Possibilities and limits of computed tomography (CT) and MRI are described and most important investigation parameters are mentioned. After otosclerosis surgery, CT is the method of first choice in detection of reasons for vertigo and/or recurrent hearing loss in the later postoperative phase. CT may show the position and condition of prosthesis, scarring around the prosthesis and otospongiotic foci. Sometimes, it gives indirect hints for perilymphatic fistulas and incus necrosis. MRI is able to document inner ear complications. CT has a high negative predictive value in cases with a free cavity after mastoidectomy. Localized opacities or total occlusion are difficult to distinguish by CT alone. MRI provides important additional information in the differentiation of cholesterol granuloma, cholesteatoma, effusion, granulation and scar tissue

  4. CT and MR imaging after middle ear surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, Sabrina E-mail: sabrina.koesling@medizin.uni-halle.de; Bootz, F

    2001-11-01

    This article describes the current value of imaging in patients after stapes surgery and surgery after chronic otitis media including cholesteatoma. Possibilities and limits of computed tomography (CT) and MRI are described and most important investigation parameters are mentioned. After otosclerosis surgery, CT is the method of first choice in detection of reasons for vertigo and/or recurrent hearing loss in the later postoperative phase. CT may show the position and condition of prosthesis, scarring around the prosthesis and otospongiotic foci. Sometimes, it gives indirect hints for perilymphatic fistulas and incus necrosis. MRI is able to document inner ear complications. CT has a high negative predictive value in cases with a free cavity after mastoidectomy. Localized opacities or total occlusion are difficult to distinguish by CT alone. MRI provides important additional information in the differentiation of cholesterol granuloma, cholesteatoma, effusion, granulation and scar tissue.

  5. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...

  6. Multidetector row CT for imaging the paediatric tracheobronchial tree

    International Nuclear Information System (INIS)

    Papaioannou, Georgia; Young, Carolyn; Owens, Catherine M.

    2007-01-01

    The introduction of multidetector row computed tomography (MDCT) scanners has altered the approach to imaging the paediatric thorax. In an environment where the rapid acquisition of CT data allows general hospitals to image children instead of referring them to specialist paediatric centres, it is vital that general radiologists have access to protocols appropriate for paediatric applications. Thus a dramatic reduction in the delivered radiation dose is ensured with optimal contrast bolus delivery and timing, and inappropriate repetition of the scans is avoided. This article focuses on the main principles of volumetric CT imaging that apply generically to all MDCT scanners. We describe the reconstruction techniques for imaging the paediatric thorax and the low-dose protocols used in our institution on a 16-slice detector CT scanner. Examples of the commonest clinical applications are also given. (orig.)

  7. Intrathoracic kidney. Diagnostic value of CT scan imaging

    International Nuclear Information System (INIS)

    Baillet, A.M.; Escure, M.N.

    1988-01-01

    Two cases are reported of an ectopic right kidney that was partially intrathoracic in position. Diagnosis was simple from CT scan imaging appearances, the examination being performed to investigate an intrathoracic mass. Images showed a tissular mass within a fatty zone in sections without contrast and the typical appearance of the kidney on sections with contrast [fr

  8. Improved CT imaging in diagnosis of ankylosing spondylitis

    International Nuclear Information System (INIS)

    Mai Yuanfeng; Sun Haixing; Ling Jian; Kuang Jianyi; Pan Ximin

    2006-01-01

    Objective: To evaluate the improved CT imaging of sacroiliac joint in diagnosis of ankylosing spondylitis (AS). Methods: 22 patients, diagnosed as AS by clinical and radiography, undertook both conventional and improved CT imaging. All images were comparatively studied. Results: With conventional CT imaging, in the 44 joints of 22 cases, unremarkable images were obtained in 3 cases; early stage AS was found in 15 joints of 9 cases; AS in progressive stage was revealed in 8 cases/16 joints, stabled AS was presented in 2 cases/4 joints. There were 23 joints in 12 cases diagnosed as early term by improved imaging, progressive staged AS was shown in 8 cases/16 joints as, stable AS was demonstrated in 2 cases/4 joints. Conclusion: The improved imaging is sensitive in the diagnosis of early staged AS, for the application of thin slice scan, which helps to reduce partial volume effect. Scanning along the longitudinal axis of the sacroiliac joint extends the observation of erosion of the joint surface. For progressive or stable staged AS, the alterations of bone and joint space are prominent, improved CT imaging is not superior to the conventional. (authors)

  9. CT imaging of cervical spinal vascular malformation

    International Nuclear Information System (INIS)

    Ueda, Takashi; Iwamoto, Munehisa; Miyamoto, Etsuo; Kuriyama, Tsuyoshi; Hayama, Tsuneto

    1982-01-01

    The patient had a history of the onset of motor paralysis of the right upper and lower extremities. Eight years later, numbness of the right upper extremity and a severe neck pain developed, and transverse paralysis of the lower extremities appeared in about 10 hours. CT demonstrated the presence of spinal vascular abnormality. Angiography suggested arteriovenous malformation of glomus type. (Chiba, N.)

  10. CT imaging of cervical spinal vascular malformation

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takashi; Iwamoto, Munehisa; Miyamoto, Etsuo; Kuriyama, Tsuyoshi; Hayama, Tsuneto [Wakayama Red Cross Hospital, Wakayama (Japan)

    1982-05-01

    The patient had a history of the onset of motor paralysis of the right upper and lower extremities. Eight years later, numbness of the right upper extremity and a severe neck pain developed, and transverse paralysis of the lower extremities appeared in about 10 hours. CT demonstrated the presence of spinal vascular abnormality. Angiography suggested arteriovenous malformation of glomus type.

  11. Enabling image fusion for a CT guided needle placement robot

    Science.gov (United States)

    Seifabadi, Reza; Xu, Sheng; Aalamifar, Fereshteh; Velusamy, Gnanasekar; Puhazhendi, Kaliyappan; Wood, Bradford J.

    2017-03-01

    Purpose: This study presents development and integration of hardware and software that enables ultrasound (US) and computer tomography (CT) fusion for a FDA-approved CT-guided needle placement robot. Having real-time US image registered to a priori-taken intraoperative CT image provides more anatomic information during needle insertion, in order to target hard-to-see lesions or avoid critical structures invisible to CT, track target motion, and to better monitor ablation treatment zone in relation to the tumor location. Method: A passive encoded mechanical arm is developed for the robot in order to hold and track an abdominal US transducer. This 4 degrees of freedom (DOF) arm is designed to attach to the robot end-effector. The arm is locked by default and is released by a press of button. The arm is designed such that the needle is always in plane with US image. The articulated arm is calibrated to improve its accuracy. Custom designed software (OncoNav, NIH) was developed to fuse real-time US image to a priori-taken CT. Results: The accuracy of the end effector before and after passive arm calibration was 7.07mm +/- 4.14mm and 1.74mm +/-1.60mm, respectively. The accuracy of the US image to the arm calibration was 5mm. The feasibility of US-CT fusion using the proposed hardware and software was demonstrated in an abdominal commercial phantom. Conclusions: Calibration significantly improved the accuracy of the arm in US image tracking. Fusion of US to CT using the proposed hardware and software was feasible.

  12. CT perfusion imaging in the management of posterior reversible encephalopathy

    International Nuclear Information System (INIS)

    Casey, S.O.; McKinney, A.; Teksam, M.; Liu, H.; Truwit, C.L.

    2004-01-01

    A 13-year-old girl with a renal transplant presented with hypertension and seizures. CT and MRI demonstrated typical bilateral parietal, occipital and posterior frontal cortical and subcortical edema, thought to represent posterior reversible encephalopathy syndrome. The cause was presumed to be hypertension. Antihypertensive therapy was started, lowering of the blood pressure in the range of 110-120 mmHg systolic. However, stable xenon (Xe) CT perfusion imaging revealed ischemia within the left parietal occipital region. The antihypertensive was adjusted which increased both the systolic and diastolic blood pressure by 31 mm Hg. The patient was re-imaged with Xe CT and was found to have resolution of the ischemic changes within the left parietal occipital region. In this report, we present a case in which stable Xe CT was used to monitor the degree of cerebral perfusion and guide titration of antihypertensive therapy. Such brain perfusion monitoring may have helped to prevent infarction of our patient. (orig.)

  13. Pediatric renal leukemia: spectrum of CT imaging findings

    International Nuclear Information System (INIS)

    Hilmes, Melissa A.; Dillman, Jonathan R.; Mody, Rajen J.; Strouse, Peter J.

    2008-01-01

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  14. Pediatric renal leukemia: spectrum of CT imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Hilmes, Melissa A. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); Vanderbilt University Children' s Hospital, Section of Pediatric Radiology, Nashville, TN (United States); Dillman, Jonathan R. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Mody, Rajen J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Division of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Ann Arbor, MI (United States); Strouse, Peter J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States)

    2008-04-15

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  15. CT and MR imaging in the evaluation of leptomeningeal metastases

    International Nuclear Information System (INIS)

    Xiao Jiahe; Wang Dayou; Deng Kaihong

    1999-01-01

    Objective: To study the manifestations of leptomeningeal metastases on CT and MR imaging, and evaluate the diagnostic significance of both modalities for this disease. Methods: Clinical and neuroradiological data of 21 cases with leptomeningeal metastases were retrospectively reviewed. In this series, 16 patients were studied by CT and 7 patients by MRI, 2 patients by both CT and MRI. Results: Abnormal enhancement of pia and subarachnoid space, appearing as diffuse pattern in 10 cases, nodular pattern in 8 cases and mixed pattern with diffuse plus nodules in 3 cases, were visualized by CE-CT and Gd-MRI. Diffuse enhancement followed the convolutions of gyri and surface of brainstem, and extended into cerebral cisterns and sulci. the foci appeared as enhanced nodules 0.2-3.0 cm in diameter and 1 or more in number. Nodules with infiltration of cerebral parenchymal were found in 4 patients. In 86% of all cases, diffuse or nodular foci occurred in basilar systems and adjacent cerebellar and cerebral sulci. There were 4 cases associated with ependymal nodular enhancement and 10 cases with widened irregular tentorial enhancement. Intracerebral metastases in 9 cases and hydrocephalus in 13 cases were found in this series. Conclusions: CE-CT and Gd-MRI are had significant clinical diagnostic value for leptomeningeal metastases, Gd-MRI is superior to CE-CT. Because of the limitation in the evaluation of leptomeningeal invasion by neoplasms on CT and MRI, definitive diagnosis of leptomeningeal metastases depends on combination of clinical and imaging data

  16. CT and MR imaging of gynecological emergency disease

    International Nuclear Information System (INIS)

    Fujii, Shinya; Kinoshita, Toshibumi; Tahara, Takatoshi; Matsusue, Eiji; Ogawa, Toshihide

    2004-01-01

    We describe the CT and MRI findings of gynecologic emergency diseases: pelvic inflammatory disease, ectopic pregnancy, ovarian hemorrhage, ovarian torsion, rupture of ovarian tumor, eclampsia, and HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome. Diagnostic keys to these diseases are presented in this review. CT and MRI play a complementary role to sonography in accurately diagnosing these diseases. In situations that require an exact, immediate diagnosis, radiologists should be familiar with the key imaging findings. (author)

  17. Atlas of Skeletal SPECT/CT Clinical Images

    International Nuclear Information System (INIS)

    2016-01-01

    The atlas focuses specifically on single photon emission computed tomography/computed tomography (SPECT/CT) in musculoskeletal imaging, and thus illustrates the inherent advantages of the combination of the metabolic and anatomical component in a single procedure. In addition, the atlas provides information on the usefulness of several sets of specific indications. The publication, which serves more as a training tool rather than a textbook, will help to further integrate the SPECT and CT experience in clinical practice by presenting a series of typical cases with many different patterns of SPECT/CT seen in bone scintigraphy

  18. Combined CT Angiography and CT Venography in Thromboembolic disease: clinical impact

    International Nuclear Information System (INIS)

    Bouzas, R.; Migueles, Y.; Gomez, S.; Mallo, R.; Garcia-Tejedor, J. L.; Diaz Vega, M. J.

    2002-01-01

    Combined CT Venography and Pulmonary Angiography was described in 1998 as a tool for diagnostic Thromboembolic Disease. The purpose is to relate our own experience with this technique in a population with suspected pulmonary embolism. 46 consecutive patients with suspected pulmonary embolism underwent combined CT Venography after Pulmonary CT Angiography to depict Deep Venous Thrombosis (DVT). CT Venography where obtained with a 3 minutes delay from injection, without additional intravenous contrast, from upper abdomen to fibular head. A prospective study from emergency reports where used. The reports where aimed by nine different radiologist at diary emergency room (images where not retrospective review). We report if a pulmonary embolus or deep venous thrombus or another alternative diagnostic where done. An endo luminal thrombus in any pulmonary arteries was assessed as a positive study for PE. A Thrombus in the leg veins or in an abdominal vein without diminished size of vein was assessed as an acute DVT. In those patients with a CT negative to Thromboembolic Disease was the clinician who decide if more proves where needed. Those patients without evidence in CT of Thromboembolic Disease where asked for symptoms related to the episode in a 3 months period after initial CT. Patients free of symptoms for 3 months without anticoagulation therapy where considered true negative for CT. CT shows Thromboembolic Disease in 23 of 46 patients. 21PE, 14 DVT 2 of 14 patients with DVT don't show PE, CT excluded thromboembolic disease in 23 patients and in 15 of those patients an alternative diagnostic was shown. In 22 of those 23 patients CT excluded correctly Thromboembolic Disease. One patient result in a false negative CT, Pulmonary Angiography of that patient shows us a subsegmentary embolus. (Author) 9 refs

  19. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  20. Optimizing {sup 18}F-FDG PET/CT imaging of vessel wall inflammation: the impact of {sup 18}F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Mani, Venkatesh; Fayad, Zahi A. [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Moncrieff, Colin [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Machac, Josef [Mount Sinai School of Medicine, Division of Nuclear Medicine, Department of Radiology, New York, NY (United States); Fuster, Valentin [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); The Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid (Spain); Farkouh, Michael E. [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Mount Sinai School of Medicine, Cardiovascular Imaging Clinical Trials Unit, New York, NY (United States); Tawakol, Ahmed [Massachusetts General Hospital, Harvard University, Cardiac MR PET CT Program, Boston, MA (United States); Rudd, James H.F. [Cambridge University, Division of Cardiovascular Medicine, Cambridge (United Kingdom)

    2014-02-15

    {sup 18}F-FDG PET is increasingly used for imaging of vessel wall inflammation. However, limited data are available on the impact of methodological variables, i.e. prescan fasting glucose, FDG circulation time and injected FDG dose, and of different FDG uptake parameters, in vascular FDG PET imaging. Included in the study were 195 patients who underwent vascular FDG PET/CT of the aorta and the carotids. Arterial standardized uptake values ({sub mean}SUV{sub max}), target-to-background ratios ({sub mean}TBR{sub max}) and FDG blood-pool activity in the superior vena cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake values classified according to the tertiles of prescan fasting glucose levels, the FDG circulation time, and the injected FDG dose were compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood-pool FDG uptake. Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l, showing a favorable relationship between arterial and blood-pool FDG uptake. FDG circulation times showed negative associations with aortic{sub mean}SUV{sub max} values as well as SVC and JV FDG blood-pool activity, but positive correlations with aortic and carotid{sub mean}TBR{sub max} values. Prescan glucose levels were negatively associated with aortic and carotid{sub mean}TBR{sub max} and carotid{sub mean}SUV{sub max} values, but were positively correlated with SVC blood-pool uptake. The injected FDG dose failed to show any significant association with vascular FDG uptake. FDG circulation times and prescan blood glucose levels significantly affect FDG uptake in the aortic and carotid walls and may bias the results of image interpretation in patients undergoing vascular FDG PET/CT. The injected FDG dose was less critical. Therefore, circulation times of about 2.5 h and prescan glucose levels less than 7.0 mmol

  1. Automatic segmentation of liver structure in CT images

    International Nuclear Information System (INIS)

    Bae, K.T.; Giger, M.L.; Chen, C.; Kahn, C.E. Jr.

    1993-01-01

    The segmentation and three-dimensional representation of the liver from a computed tomography (CT) scan is an important step in many medical applications, such as in the surgical planning for a living-donor liver transplant and in the automatic detection and documentation of pathological states. A method is being developed to automatically extract liver structure from abdominal CT scans using a priori information about liver morphology and digital image-processing techniques. Segmentation is performed sequentially image-by-image (slice-by-slice), starting with a reference image in which the liver occupies almost the entire right half of the abdomen cross section. Image processing techniques include gray-level thresholding, Gaussian smoothing, and eight-point connectivity tracking. For each case, the shape, size, and pixel density distribution of the liver are recorded for each CT image and used in the processing of other CT images. Extracted boundaries of the liver are smoothed using mathematical morphology techniques and B-splines. Computer-determined boundaries were compared with those drawn by a radiologist. The boundary descriptions from the two methods were in agreement, and the calculated areas were within 10%

  2. Three-dimensional-CT imaging of colorectal disease with thin collimation helical CT scanning

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Koizumi, Koichi; Sakai, Tatsuya; Kai, Shunkichi; Takatsu, Kazuaki; Maruyama, Masakazu

    1998-01-01

    We have conducted research on three-dimensional (3D)-CT-colonoscopy with thin collimation helical CT scanning over the past three years. This has lately become a subject of special interest. 3D-CT-colonoscopy has three kinds of visualizing methods depending on the threshold setting of CT values. The first one is the virtual endoscopy method which is displayed in a similar fashion to colonoscopic images. The second one is the air image method using the air in the digestive tract as a contrast medium. The third one is the pseudo-tract method which has characteristics of both virtual endoscopy and the air image method and visualizes in a shape of the digestive tract. The image visualized by 3D-CT-colonoscopy is similar to that of conventional colonoscopy and barium enema study, which is obtained with minimal invasion to patients. Obvious advanced carcinomas were easily visualized, and even a small flat polyp measuring 5 mm in size, was able to be observed retrospectively. The characteristics of our method are that we can easily make an examination in a short time and with little dependence on expert technique. Also patients have little discomfort compared to that experienced during colonoscopy and barium enema study. Important features are as follows; long calculation time, insufficient air insufflation, fecal material in the patient''s bowel, whole abdominal scan, and spatial resolution. In the near future, a multislice CT scanner system will have ability to overcome these problems. Therefore, 3D-CT-colonoscopy might be applied in the future for first line examination as a mass screening for colorectal carcinoma. (author)

  3. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  4. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  5. Skeletal metastasis as detected by 18F-FDG PET with negative CT of the PET/CT: Frequency and impact on cancer staging and or management

    Directory of Open Access Journals (Sweden)

    Fatma Ahmed

    2016-10-01

    Full Text Available Objectives: The aim of our study is to assess the frequency of detection of PET positive CT negative skeletal metastases (SM and determine the impact of such detection on staging and/or management in patients who had FDG PET/CT as part of the cancer work up.Methods: We retrospectively reviewed 2000 18F-FDG PET/CT scans of known cancer patients. A log was kept to record cases of suspected SM with or without bone changes from the low-dose non-contrast CT. The presence or absence of SM was evaluated based on available pathological and clinical data. The impact of detection of such lesions on cancer staging and/or management was evaluated by a board certified oncologist.Results: Of the 2000 cases, 18F-FDG PET/CT suggested SM in 146/2000 (7.3%. Of those 146 cases, 105 (72% were positive on both PET and CT. The remaining 41 (28% had PET positive CT negative bone lesions. SM was confirmed in 36/41 (88% PET positive/CT negative cases. This was based on biopsy, imaging or clinical follow-up. The detection of PET positive CT negative SM did not change staging or management in 7/36 (19.4%. However, staging and/or management was affected in 29/36 (80.6%. Conclusions: SM is not uncommon in 18F-FDG PET/CT, as it accounts for 146/2000 (7.3% of cases. PET demonstrated FDG-avid SM without a CT abnormality in at least 36/146 (25%. Patients staging and or management changed in 29/36 (80.5%. We concluded that 18F-FDG PET is sensitive in detection of SM with significant impact on staging & or management. Key words18F-FDG PET/CT, Skeletal metastasis, PET positive, CT negative

  6. Dual-energy CT and ceramic or titanium prostheses material reduce CT artifacts and provide superior image quality of total knee arthroplasty.

    Science.gov (United States)

    Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut

    2018-06-07

    To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface

  7. Variation in the quality of CT images of the upper abdomen when CT automatic exposure control is employed

    International Nuclear Information System (INIS)

    Aizawa, Isao; Muramatsu, Yoshihisa; Nomura, Keiichi; Shimizu, Fuminori

    2010-01-01

    The aim of this study was to analyze the reason for variation of image quality in the upper abdomen CT with the use of CT-automatic exposure control (AEC). The CT investigated was 3D modulation in the 16 multi detector row CT (MDCT) and lung cancer screening CT (LSCT) phantom was used to simulate the patient. When there was a phase difference, an image noise increase of around 15% at the maximum was accepted. It is concluded that the major reason for variation in image quality is respiratory motion and the importance of respiration control must be recognized. (author)

  8. Kinematic CT and MR imaging of the patellofemoral joint

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Heller, M.

    1999-01-01

    Anterior knee pain is a frequently encountered orthopedic symptom and is often associated with patellofemoral malalignment, which may cause chondromalacia of the patella. The difficulty in determining the patellar position between 0 and 30 of knee flexion with a conventional axial radiographic examination is well known. The introduction of computed tomography (CT) and magnetic resonance (MR) imaging for the diagnosis of knee joint abnormalities has enabled assessment of the patellar position in this critical range. More recently, emphasis has been placed on dynamic visualization of patellar motion to detect an abnormal tracking pattern. The important influence of the quadriceps muscle on the patellar tracking pattern is well known and has been examined during active knee extension by the use of ultrafast CT, and motion-triggered and ultrafast MR imaging. This article provides an overview of the current status of kinematic CT and MR imaging in the diagnosis of patellofemoral alignment, its clinical implications, and future directions. (orig.)

  9. Recurrent postoperative sciatica: Evaluation with MR imaging and enhanced CT

    International Nuclear Information System (INIS)

    Duvauferrier, R.; Frocain, L.; Husson, J.L.

    1987-01-01

    The authors prospectively compared MR imaging performed with a surface coil and CT performed with iodinated contrast agent enhancement in 50 patients with recurrent postoperative sciatica. Surgical decision was an objective measure of accuracy. Surgical treatment was selected for 27 patients. All 27 underwent MR imaging. The 15 patients who underwent CT/surgical treatment were included in the 27 indications of SCMR. All predictions based on MR imaging findings were confirmed at surgery. There were 25 recurrent disk herniations, including five with scar tissue, and two disk herniations above or below the level of the diskectomy. In the 12 patients with scar tissue detected on CT there were seven recurrent disk hernitions, four recurrent disk herniations with scar tissue, and one disk herniation below the level of the diskectomy

  10. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  11. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  12. Colonic surveillance by CT colonography using axial images only

    International Nuclear Information System (INIS)

    Bruzzi, John F.; Brennan, Darren D.; Fenlon, Helen M.; Moss, Alan C.; MacMathuna, Padraic

    2004-01-01

    Patients at increased risk of colon cancer require strict colon surveillance. Our objective was to establish the efficacy of 2D axial CT colonography as a surveillance test when performed in routine clinical practice. Eighty-two patients at increased risk of colon cancer underwent CT colonography followed by conventional colonoscopy on the same morning. CT colonography studies were performed on a four-ring multidetector CT scanner (100 mAs, 120 kVp, 4 x 2.5 collimation) and were interpreted by two radiologists using 2D axial images only. Results were correlated with findings at colonoscopy. Note was made of subsequent histology reports from polypectomy specimens. A total of 52 polyps were detected at colonoscopy. Using 2D axial images alone, with no recourse to 2D multiplanar or 3D views, the sensitivity of CT colonography was 100, 33 and 19% for polyps larger than 9, 6-9 and smaller than 6 mm, respectively. Per-patient specificities were 98.8, 96 and 81.5%, respectively. Twenty-nine percent of polyps smaller than 1 cm were adenomatous and there were no histological features of severe dysplasia. CT colonography is a useful colon surveillance tool for patients at increased risk of colon cancer. It has a high specificity for identifying patients who should proceed to colonoscopy and polypectomy, while allowing further colon examination to be deferred in patients with normal studies. Using 2D axial images only, CT colonography can be performed as part of the daily CT workload, with a very low rate of referral for unnecessary colonoscopy. (orig.)

  13. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    International Nuclear Information System (INIS)

    Sattler, Bernhard; Lee, John A.; Lonsdale, Markus; Coche, Emmanuel

    2010-01-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  14. Choline-PET/CT for imaging prostate cancer; Cholin-PET/CT zur Bildgebung des Prostatakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Bernd Joachim [Klinik- und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Treiber, U.; Schwarzenboeck, S.; Souvatzoglou, M. [Klinik fuer Urologie, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany)

    2010-09-15

    PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives are increasingly being used for imaging of prostate cancer. The value of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in biochemical recurrence of prostate cancer has been examined in many studies and demonstrates an increasing importance. Primary prostate cancer can be detected with moderate sensitivity using PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives - the differentiation between benign prostatic hyperplasia, prostatitis or high-grade intraepithelial neoplasia (HGPIN) is not always possible. At the present time [{sup 11}C]choline PET/CT is not recommended in the primary setting but may be utilized in clinically suspected prostate cancer with repeatedly negative prostate biopsies, in preparation of a focused re-biopsy. Promising results have been obtained for the use of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in patients with biochemical recurrence. The detection rate of choline PET and PET/CT for local, regional, and distant recurrence in patients with a biochemical recurrence shows a linear correlation with PSA values at the time of imaging and reaches about 75% in patients with PSA > 3 ng/mL. At PSA values below 1 ng/mL, the recurrence can be diagnosed with choline PET/CT in approximately 1/3 of the patients. PET and PET/CT with [{sup 11}C]- and [{sup 18}F]choline derivates can be helpful for choosing a therapeutic strategy in the sense of an individualized treatment: since an early diagnosis of recurrence is crucial to the choice of optimal treatment. The localization of the site of recurrence - local recurrence, lymph node metastasis or systemic dissemination - has important influence on the therapy regimen. (orig.)

  15. The utilization of dual source CT in imaging of polytrauma

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, S. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)], E-mail: savvas.nicolaou@vch.ca; Eftekhari, A.; Sedlic, T.; Hou, D.J.; Mudri, M.J.; Aldrich, John; Louis, L. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)

    2008-12-15

    Despite the growing role of imaging, trauma remains the leading cause of death in people below the age of 45 years in the western industrialized countries. Trauma has been touted as the largest epidemic in the 20th century. The advent of MDCT has been the greatest advance in trauma care in the last 25 years. However, there are still challenges in CT imaging of the polytrauma individual including time restraints, diagnostic errors, radiation dose effects and bridging the gap between anatomy and physiology. This article will analyze these challenges and provide possible solutions offered by the unique design of the dual source CT scanner.

  16. The utilization of dual source CT in imaging of polytrauma

    International Nuclear Information System (INIS)

    Nicolaou, S.; Eftekhari, A.; Sedlic, T.; Hou, D.J.; Mudri, M.J.; Aldrich, John; Louis, L.

    2008-01-01

    Despite the growing role of imaging, trauma remains the leading cause of death in people below the age of 45 years in the western industrialized countries. Trauma has been touted as the largest epidemic in the 20th century. The advent of MDCT has been the greatest advance in trauma care in the last 25 years. However, there are still challenges in CT imaging of the polytrauma individual including time restraints, diagnostic errors, radiation dose effects and bridging the gap between anatomy and physiology. This article will analyze these challenges and provide possible solutions offered by the unique design of the dual source CT scanner

  17. CT imaging of complications of catheter ablation for atrial fibrillation

    International Nuclear Information System (INIS)

    Shroff, G.S.; Guirguis, M.S.; Ferguson, E.C.; Oldham, S.A.A.; Kantharia, B.K.

    2014-01-01

    The complication rate following radiofrequency catheter ablation for atrial fibrillation is low (<5%). Complications include pericardial effusion, cardiac tamponade, pulmonary vein stenosis, oesophageal ulceration or perforation, atrio-oesophageal fistula formation, stroke/transient ischaemic attack, phrenic nerve injury, haematoma at the puncture site, and femoral arteriovenous fistula. Among available imaging tools, computed tomography (CT) can be very useful in diagnosing complications of the procedure, particularly in the subacute and delayed stages after ablation. This review illustrates CT imaging of several of the common and uncommon complications of radiofrequency catheter ablation

  18. PET/CT Imaging and Radioimmunotherapy of Prostate Cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Tagawa, Scott T; Goldsmith, Stanley J

    2011-01-01

    disease (ideal for antigen access and antibody delivery). Furthermore, prostate cancer is also radiation sensitive. Prostate-specific membrane antigen is expressed by virtually all prostate cancers, and represents an attractive target for RIT. Antiprostate-specific membrane antigen RIT demonstrates......Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an important role in the clinical management of patients with prostate cancer. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis...... of anatomic, functional, and molecular imaging information. Positron emission tomography (PET)/computed tomography (CT) in oncology is emerging as an important imaging tool. The most common radiotracer for PET/CT in oncology, (18)F-fluorodeoxyglucose (FDG), is not very useful in the imaging of prostate cancer...

  19. Image quality of cone beam CT on respiratory motion

    International Nuclear Information System (INIS)

    Zhang Ke; Li Minghui; Dai Jianrong; Wang Shi

    2011-01-01

    In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform, an image quality phantom, and a kV X-ray CBCT. A total of 21 motion states in the superior-inferior direction and the anterior-posterior direction, separately or together, was simulated by considering different respiration amplitudes, periods and hysteresis. The influence of motion on CBCT image quality was evaluated with the quality indexes of low contrast visibility, geometric accuracy, spatial resolution and uniformity of CT values. The results showed that the quality indexes were affected by the motion more prominently in AP direction than in SI direction, and the image quality was affected by the respiration amplitude more prominently than the respiration period and the hysteresis. The CBCT image quality and its characteristics influenced by the respiration motion, and may be exploited in finding solutions. (authors)

  20. 256-slice CT coronary angiography in atrial fibrillation: The impact of mean heart rate and heart rate variability on image quality

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang-Kuang [Department of Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); College of Medicine, Fu Jen Catholic University, Taipei, Taiwan (China); Hsu, Shih-Ming [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan (China); Mok, Greta S.P. [Department of Electrical and Electronics Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Law, Wei-Yip; Lu, Kun-Mu [Department of Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); Yang, Ching-Ching, E-mail: g39220003@yahoo.com.tw [Department of Radiological Technology, Tzu Chi College of Technology, 880, Sec.2, Chien-kuo Rd. Hualien 970, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, 155 Li-Nong St., Sec. 2, Taipei 112, Taiwan (China)

    2011-08-21

    Objective: The aim of this study was to evaluate the image quality of 256-MDCT in atrial fibrillation and to compare the findings with those among patients in sinus rhythm. Materials: All reconstructed images were evaluated by two independent experienced readers blinded to patient information, heart rate, and ECG results to assess the diagnostic quality of images of the coronary artery segments using axial images, multi-planar reformations, maximum intensity projections, and volume rendering technique. Results: No statistical significance was detected in terms of the overall image quality between patients in sinus rhythm and with atrial fibrillation. Pearson's correlation analysis showed no significant association between image quality and mean heart rate no matter for patients in sinus rhythm or with atrial fibrillation. Similarly, there was no correlation between image quality and heart rate variability for either patients in sinus rhythm or with atrial fibrillation. Our results showed that the optimal reconstruction window depends on patient's HR, and the pattern for patients in atrial fibrillation is similar to that obtained from non-atrial fibrillation patients. Conclusion: This study shows the potential of using 256-MDCT coronary angiography in patients with atrial fibrillation. Our results suggest that when appropriate reconstruction timing window is applied, patients with atrial fibrillation do not have to be excluded from MDCT coronary angiographic examinations.

  1. 256-slice CT coronary angiography in atrial fibrillation: The impact of mean heart rate and heart rate variability on image quality

    International Nuclear Information System (INIS)

    Chen, Liang-Kuang; Hsu, Shih-Ming; Mok, Greta S.P.; Law, Wei-Yip; Lu, Kun-Mu; Yang, Ching-Ching; Wu, Tung-Hsin

    2011-01-01

    Objective: The aim of this study was to evaluate the image quality of 256-MDCT in atrial fibrillation and to compare the findings with those among patients in sinus rhythm. Materials: All reconstructed images were evaluated by two independent experienced readers blinded to patient information, heart rate, and ECG results to assess the diagnostic quality of images of the coronary artery segments using axial images, multi-planar reformations, maximum intensity projections, and volume rendering technique. Results: No statistical significance was detected in terms of the overall image quality between patients in sinus rhythm and with atrial fibrillation. Pearson's correlation analysis showed no significant association between image quality and mean heart rate no matter for patients in sinus rhythm or with atrial fibrillation. Similarly, there was no correlation between image quality and heart rate variability for either patients in sinus rhythm or with atrial fibrillation. Our results showed that the optimal reconstruction window depends on patient's HR, and the pattern for patients in atrial fibrillation is similar to that obtained from non-atrial fibrillation patients. Conclusion: This study shows the potential of using 256-MDCT coronary angiography in patients with atrial fibrillation. Our results suggest that when appropriate reconstruction timing window is applied, patients with atrial fibrillation do not have to be excluded from MDCT coronary angiographic examinations.

  2. Utilization of CT images for the quantification of FDG uptake

    International Nuclear Information System (INIS)

    Karidioula, I.; De Freitas, D.; Cachin, F.; Geissler, B.; Jullien, Ph.; Maublant, J.

    2006-01-01

    The aim of this study was to evaluate an automatic method based on a computed tomography (CT) derived region of interest (ROI) to quantify the mean standardized uptake value (SUVm) of 18 F-fluoro-deoxy-glucose (FDG) in pulmonary lesions detected by positron emission tomography (PET). A total of 164 pairs of slices were selected in a series of PET/CT studies performed in 26 patients presenting lung tumours of various forms and complexities. On each matched CT slice, a ROI was obtained by growth-region segmentation starting from a pixel contained in the tumour. The obtained ROI was then applied to the PET image to calculate SUVm. Results were compared with the conventional manual method using a geometric ROI positioned directly on the PET lesion. The automatic delineation of the tumour from the CT image was successful in 136 sections (83%). The SUVm calculated by the manual and automatic method were respectively (mean±standard deviation) 5.05±2.39 and 6.70±3.18 (p<0.05). The ROI size (in number of pixels) was respectively 28±23 and 21±17 (p<0.05). The variability of the automatic method was 0% versus 20% for the manual method. SUV of FDG in PET/CT can be calculated with an excellent reproducibility by using the CT-derived limits of the lesion

  3. CT imaging and histopathological features of renal epithelioid angiomyolipomas

    International Nuclear Information System (INIS)

    Cui, L.; Zhang, J.-G.; Hu, X.-Y.; Fang, X.-M.; Lerner, A.; Yao, X.-J.; Zhu, Z.-M.

    2012-01-01

    Aim: To describe computed tomography (CT) imaging and histopathological manifestations of renal epithelioid angiomyolipomas (EAMLs) for better understanding and cognition in the diagnosis of this new category of renal tumours. Materials and methods: Clinical data and CT images from 10 cases of EAML were retrospectively analysed. All patients underwent CT with and without contrast medium administration, with multiplanar reconstruction (MPR) when needed. Results: Plain CT manifestations of EAMLs were a higher density of mass (10–25 HU) than renal parenchyma, bulging contour of the involved kidney, absence of fat, distinct edges without a lobulate appearance. Contrast-enhanced CT features were markedly heterogeneous enhancement (from rapid wash-in to slow wash-out), large tumour size without lobular appearance, complete capsule with distinct margins and frequent mild necrotic areas. Histopathological features were epithelioid cells with eosinophilic cytoplasm, large and deeply stained nuclei, and dense arrangement of tumour cells with patchy necrosis; diffuse sheets of epithelioid cells were positive for HMB-45 (melanoma-associated antigen) and negative for epithelial membrane antigen (EMA) staining. Conclusion: Multiple specific CT features correlated well with the histopathology and may play an important role in the primary diagnosis of EAMLs.

  4. Automatic anatomy recognition on CT images with pathology

    Science.gov (United States)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  5. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.

    Science.gov (United States)

    Xiang, Lei; Wang, Qian; Nie, Dong; Zhang, Lichi; Jin, Xiyao; Qiao, Yu; Shen, Dinggang

    2018-07-01

    Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis result back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeating this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate imaging datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding operations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image. Copyright © 2018. Published by Elsevier B.V.

  6. Image quality in CT perfusion imaging of the brain. The role of iodine concentration

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias; Bueltmann, Eva; Bode-Schnurbus, Lucas; Koenen, Dirk; Mielke, Eckhart; Heuser, Lothar [Knappschaftskrankenhaus Langendreer, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Ruhr-University Bochum, Bochum (Germany)

    2007-01-15

    The purpose of this study was to evaluate the impact of various iodine contrast concentrations on image quality in computed tomography (CT) perfusion studies. Twenty-one patients with suspicion of cerebral ischemia underwent perfusion CT using two different iodine contrast concentrations: 11 patients received iomeprol 300 (iodine concentration: 300 mg/ml) while ten received the same volume of iomeprol 400 (iodine concentration: 400 mg/ml). Scan parameters were kept constant for both groups. Maps of cerebral blood flow (CBF), cerebral blood volume (CBV), and time to peak (TTP) were calculated from two adjacent slices. Quantitative comparisons were based on measurements of the maximum enhancement [Hounsfield units (HU)] and signal-to-noise index (SNI) on CBF, CBV, and TTP images. Determinations of grey-to-white-matter delineation for each iodine concentration were performed by two blinded readers. Only data from the non-ischemic hemispheres were considered. Both maximum enhancement and SNI values were higher after iomeprol 400, resulting in significantly better image quality in areas of low perfusion. No noteworthy differences were found for normal values of CBF, CBV, and TTP. Qualitative assessment of grey/white matter contrast on CBF and CBV maps revealed better performance for iomeprol 400. For brain perfusion studies, highly concentrated contrast media such as iomeprol 400 is superior to iomeprol 300. (orig.)

  7. Image Quality Improvement after Implementation of a CT Accreditation Program

    International Nuclear Information System (INIS)

    Kim, You Sung; Jung, Seung Eun; Choi, Byung Gil; Shin, Yu Ri; Hwang, Seong Su; Ku, Young Mi; Lim, Yeon Soo; Lee, Jae Mun

    2010-01-01

    The purpose of this study was to evaluate any improvement in the quality of abdominal CTs after the utilization of the nationally based accreditation program. Approval was obtained from the Institutional Review Board, and informed consent was waived. We retrospectively analyzed 1,011 outside abdominal CTs, from 2003 to 2007. We evaluated images using a fill-up sheet form of the national accreditation program, and subjectively by grading for the overall CT image quality. CT scans were divided into two categories according to time periods; before and after the implementation of the accreditation program. We compared CT scans between two periods according to parameters pertaining to the evaluation of images. We determined whether there was a correlation between the results of a subjective assessment of the image quality and the evaluation scores of the clinical image. The following parameters were significantly different after the implementation of the accreditation program: identifying data, display parameters, scan length, spatial and contrast resolution, window width and level, optimal contrast enhancement, slice thickness, and total score. The remaining parameters were not significantly different between scans obtained from the two different periods: scan parameters, film quality, and artifacts. After performing the CT accreditation program, the quality of the outside abdominal CTs show marked improvement, especially for the parameters related to the scanning protocol

  8. Automated planning of breast radiotherapy using cone beam CT imaging

    International Nuclear Information System (INIS)

    Amit, Guy; Purdie, Thomas G.

    2015-01-01

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation

  9. Three-dimensional CT endoscopic images of the larynx. Clinical application of helical CT

    International Nuclear Information System (INIS)

    Yumoto, Eiji; Sanuki, Tetsuji; Yasuhara, Yoshifumi; Ochi, Takashi

    1998-01-01

    Twenty-seven patients with several laryngeal ailments underwent helical computed tomography (CT) on 37 occasions. Ten of these 27 patients suffered from unilateral vocal fold paralysis (UVFP). Three-dimensional (3D) images of the laryngeal lumen viewed from various angles were produced for all sets of CT volumetric data, except for three which contained excessive motion artifacts. The present paper examined whether 3D endoscopic images could offer useful diagnostic and therapeutic information about UVFP. The 3D endoscopic images viewed from the tracheal side and the hemilaryngeal images viewed from the opposite side could delineate the vocal folds, ventricular fold and ventricle three-dimensionally. Atrophy and hypotonic changes to the vocal fold and expansion of the ventricle on the affected side were clearly shown. The 3D endoscopic images accurately showed the phonosurgical effects on the laryngeal structures. The 3D endoscopic images could be produced even when the vocal folds could not be observed with conventional endoscopy due to their overadduction. Multiplanar reconstruction (MPR) images in the coronal plane were reconstructed at a right angle to the glottic axis when the whole larynx was deviated. In addition, coronal MPR images showed a better resolution among the different layers of the vocal fold soft tissue than X-ray tomography. In conclusion, 3D endoscopic images combined with coronal MPR images can provide useful diagnostic an therapeutic information about UVFP, although motion artifacts may occur. (author)

  10. Imaging of jaw with dental CT software program: Normal Anatomy

    International Nuclear Information System (INIS)

    Kim, Myong Gon; Seo, Kwang Hee; Jung, Hak Young; Sung, Nak Kwan; Chung, Duk Soo; Kim, Ok Dong; Lee, Young Hwan

    1994-01-01

    Dental CT software program can provide reformatted cross-sectional and panoramic images that cannot be obtained with conventional axial and direct coronal CT scan. The purpose of this study is to describe the method of the technique and to identify the precise anatomy of jaw. We evaluated 13 mandibles and 7 maxillae of 15 subjects without bony disease who were being considered for endosseous dental implants. Reformatted images obtained by the use of bone algorithm performed on GE HiSpeed Advantage CT scanner were retrospectively reviewed for detailed anatomy of jaw. Anatomy related to neurovascular bundle(mandibular foramen, inferior alveolar canal, mental foramen, canal for incisive artery, nutrient canal, lingual foramen and mylohyoid groove), muscular insertion(mylohyoid line, superior and inferior genial tubercle and digastric fossa) and other anatomy(submandibular fossa, sublingual fossa, contour of alveolar process, oblique line, retromolar fossa, temporal crest and retromolar triangle) were well delineated in mandible. In maxilla, anatomy related to neurovascular bundle(greater palatine foramen and groove, nasopalatine canal and incisive foramen) and other anatomy(alveolar process, maxillary sinus and nasal fossa) were also well delineated. Reformatted images using dental CT software program provided excellent delineation of the jaw anatomy. Therefore, dental CT software program can play an important role in the preoperative assessment of mandible and maxilla for dental implants and other surgical conditions

  11. New frontiers in CT imaging of airway disease

    International Nuclear Information System (INIS)

    Grenier, Philippe A.; Beigelman-Aubry, Catherine; Fetita, Catalin; Preteux, Francoise; Brauner, Michel W.; Lenoir, Stephane

    2002-01-01

    Combining helical volumetric CT acquisition and thin-slice thickness during breath hold provides an accurate assessment of both focal and diffuse airway diseases. With multiple detector rows, compared with single-slice helical CT, multislice CT can cover a greater volume, during a simple breath hold, and with better longitudinal and in-plane spatial resolution and improved temporal resolution. The result in data set allows the generation of superior multiplanar and 3D images of the airways, including those obtained from techniques developed specifically for airway imaging, such as virtual bronchography and virtual bronchoscopy. Complementary CT evaluation at suspended or continuous full expiration is mandatory to detect air trapping that is a key finding for depicting an obstruction on the small airways. Indications for CT evaluation of the airways include: (a) detection of endobronchial lesions in patients with an unexplained hemoptysis; (b) evaluation of extent of tracheobronchial stenosis for planning treatment and follow-up; (c) detection of congenital airway anomalies revealed by hemoptysis or recurrent infection; (d) detection of postinfectious or postoperative airway fistula or dehiscence; and (e) diagnosis and assessment of extent of bronchiectasis and small airway disease. Improvement in image analysis technique and the use of spirometrically control of lung volume acquisition have made possible accurate and reproducible quantitative assessment of airway wall and lumen areas and lung density. This contributes to better insights in physiopathology of obstructive lung disease, particularly in chronic obstructive pulmonary disease and asthma. (orig.)

  12. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    International Nuclear Information System (INIS)

    Krengli, Marco; Inglese, Eugenio; Milia, Maria E; Turri, Lucia; Mones, Eleonora; Bassi, Maria C; Cannillo, Barbara; Deantonio, Letizia; Sacchetti, Gianmauro; Brambilla, Marco

    2010-01-01

    FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 × 10 -4 ) and CT-CTV (p = 2.9 × 10 -4 ). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 × 10 -5 ) and CT-CTV (p = 6 × 10 -5 ). FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

  13. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  14. Helical CT imaging of clinically suspected appendicitis: Correlation of CT and histological findings

    International Nuclear Information System (INIS)

    Wong, S.K.; Chan, L.P.; Yeo, A.

    2002-01-01

    PURPOSE: The diagnosis of appendicitis is traditionally made on the basis of clinical findings supported by laboratory results. The aim of our study was to determine the accuracy and feasibility of using a relatively new technique of computed tomography (CT) using only colonic contrast medium. MATERIALS AND METHODS: A total of 50 patients clinically diagnosed as having appendicitis were prospectively examined before surgery with thin-collimation helical CT from the L3 level to the acetabular roof with only rectally administered colon contrast medium. The hard copy CT images were reviewed jointly by two radiologists and a consensus was reached for each patient. The results were then compared with the surgical and histological findings at appendicectomy. RESULTS: There were 35 true-positives, one false-positive, 12 true-negatives and two false-negatives for CT. This yielded an accuracy of 94%, sensitivity of 95%, specificity of 92%, positive predictive value of 97% and negative predictive value of 86%. The appendix was identified in 45 patients (90%) and obscured by an inflammatory mass in the remaining five. An alternative diagnosis was found in 10 of 12 normal CT examinations (83%). CONCLUSION: Helical CT with rectal contrast medium is a quick, well tolerated and accurate test to diagnose appendicitis. It can offer alternative, possibly non-surgical diagnosis in patients who would otherwise have undergone laparotomy. Wong, S.K. et al. (2002)

  15. Impact of {sup 18}F-FDG PET/CT on the management of adrenocortical carcinoma: analysis of 106 patients

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Satoshi; Macapinlac, Homer A.; Chuang, Hubert H. [The University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Balachandran, Aparna [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Habra, Mouhammed Amir [The University of Texas MD Anderson Cancer Center, Department of Endocrine Neoplasia and Hormonal Disorders, Houston, TX (United States); Phan, Alexandria T. [The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX (United States); Bassett, Roland L. [The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, TX (United States)

    2014-11-15

    Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy. Limited data are available about on value of {sup 18}F-FDG PET/CT in ACC. We evaluated the impact of PET/CT on the management of ACC. We performed a retrospective review in patients with ACC who had undergone PET/CT. The impact of PET/CT on the management plan was evaluated by comparing the findings on PET/CT to the findings on contrast-enhanced CT. The sensitivity, specificity, and accuracy of each form of imaging were calculated. The correlations between PET/CT parameters, including maximum standardized uptake value (SUV{sub max}), total lesion glycolysis, and decline in SUV{sub max} after chemotherapy, and clinical outcome were evaluated. Included in the analysis were 106 patients with 180 PET/CT scans. Of the 106 patients, 7 underwent PET/CT only for initial staging, 84 underwent PET/CT only for restaging, and 15 underwent PET/CT for both initial staging and restaging. PET/CT changed the management plan in 1 of 22 patients (5 %) at initial staging and 9 of 99 patients (9 %) at restaging. In 5 of the patients in whom PET/CT changed the management plan, PET/CT showed response to chemotherapy but contrast-enhanced CT showed stable disease. Sensitivity, specificity, and accuracy were 100 %, 100 %, and 100 % for PET/CT at initial staging; 92.6 %, 100 %, and 96.4 % for CT at initial staging; 98.4 %, 100 %, and 99.5 % for PET/CT at restaging; and 96.8 %, 98.6 %, and 98.0 % for CT at restaging, respectively. No PET/CT parameters were associated with survival at either initial diagnosis or recurrence. PET/CT findings could substantially change the management plan in a small proportion of patients with ACC. Although lesion detection was similar between PET/CT and CT, PET/CT may be preferred for chemotherapeutic response assessment because it may predict response before anatomic changes are detected on CT. (orig.)

  16. CT-diskography in patients with sciatica. Comparison with plain CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dullerud, R. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology; Johansen, J.G. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology

    1995-09-01

    The findings at CT-diskography (CT-D), including recording of the pain introduced at contrast injection, were compared with plain CT and MR imaging in 111 disks in 101 patients aged 18 to 68 years. Six disks which were normal at CT had normal CT-D and 5 of them had normal signal on MR imaging. The degree of annular degeneration and the depth of the annular tears were significantly associated with each other and with loss of disk height, but not with size or location of the hernias. Only the depth of the tears was significantly associated with loss of signal on MR. However, frequently complete annular tears and severe annular degeneration were seen in association with small bulges and hernias, even in disks with normal or slightly reduced signal on MR and with normal height. The type and intensity of the pain introduced were associated with each other and with the depth of the annular tears, but not with the degree of annular degeneration, size of the hernia or the MR signal intensity of the disks. Annular degeneration and tears on one hand, and the type and intensity of pain introduced on the other, see to be related rather than separate phenomena. (orig./MG).

  17. CT-diskography in patients with sciatica. Comparison with plain CT and MR imaging

    International Nuclear Information System (INIS)

    Dullerud, R.; Johansen, J.G.

    1995-01-01

    The findings at CT-diskography (CT-D), including recording of the pain introduced at contrast injection, were compared with plain CT and MR imaging in 111 disks in 101 patients aged 18 to 68 years. Six disks which were normal at CT had normal CT-D and 5 of them had normal signal on MR imaging. The degree of annular degeneration and the depth of the annular tears were significantly associated with each other and with loss of disk height, but not with size or location of the hernias. Only the depth of the tears was significantly associated with loss of signal on MR. However, frequently complete annular tears and severe annular degeneration were seen in association with small bulges and hernias, even in disks with normal or slightly reduced signal on MR and with normal height. The type and intensity of the pain introduced were associated with each other and with the depth of the annular tears, but not with the degree of annular degeneration, size of the hernia or the MR signal intensity of the disks. Annular degeneration and tears on one hand, and the type and intensity of pain introduced on the other, see to be related rather than separate phenomena. (orig./MG)

  18. Role of FDG/CT in imaging of renal lesions

    International Nuclear Information System (INIS)

    Kochhar, R.; Manoharan, P.; Brown, R.K.; Dunnick, N.R.; Frey, K.A.; Wong, C.O.

    2010-01-01

    Full text: Focal incidental renal lesions are commonly encountered on positron emission tomography (PET)/computed tomography (CT) imaging. The wast majority of these lesions are benign. However, the interpretation of renal lesions can be problematic if the imaging criteria of simple cysts are not met. Limited literature exists on the characterisation of renal masses with metabolic imaging. The purpose of this article is to focus on the imaging features of benign and malignant renal masses with PET/CT. The lesions discussed include renal cyst, angiomyolipoma, oncocytoma, renal cell carcinoma, renal metastases and other infiltrating neoplastic processes affecting the kidney. Both the anatomical and metabolic features which characterise these benign and malignant entities are described. We emphasise the importance of viewing the CT component to identify the typical morphological features and discuss how to best use hybrid imaging for management of renal lesions. Metabolic imaging has a promising role in the imaging of renal lesions and can help prevent unnecessary biopsies and ensure optimal management of suspicious lesions.

  19. Dental imaging using laminar optical tomography and micro CT

    Science.gov (United States)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  20. Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI

    Science.gov (United States)

    Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian

    2005-04-01

    Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CTCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.

  1. Vascular imaging with spiral CT. The way to CY angiography

    International Nuclear Information System (INIS)

    Prokop, M.; Schaefer, C.; Kalender, W.A.; Polacin, A.; Galanski, M.

    1993-01-01

    Spiral CT is a technique that allows for high-quality two-dimensional angiographic projections and 3D imaging of vascular structures. The authors present the technical and methodological principles of the technique, including scan parameters and parameters of contrast application for various clinical imaging tasks. They present their experience with over 150 clinical cases using spiral CT angiography. Suitable applications of this technique include cogenital anomalies, aneurysms, dissections, stenoses, thrombi and vascular tumor involvement. Given a problem-adapted examination technique, pathologic changes in vessels of as little as 2 mm can be visualized. In some cases with complex vascular anatomy, spiral CT angiography can be superior to arterial angiography. (orig.) [de

  2. Cardiodiagnostic imaging. MRT, CT, echocardiography and other methods

    International Nuclear Information System (INIS)

    Erbel, R.; Kreitner, K.F.; Barkhausen, J.; Thelen, M.

    2007-01-01

    The book presents a differentiated approach to cardiac imaging. The focus is n cardio-MR/-CT and echocardiography. These are highly complex methods involving new equipment, new protocols and indications. The techniques are new and difficult to learn for everybody concerned. MR, CT and echocardiography must always be viewed in the context of other diagnostic methods. The interdisciplinary approach of the book addresses both radiologists and cardiologists and relies on the vast experience of the authors. The book offers more than 500 large high-quality reference images reflecting the latest state of the art. It has amethodological section in which the current methods are described (X-ray, echocardiography, nuclear medicine, angiography, CT, MRT etc.) along with their advantages and shortcomings, and a clinical section in which the main indications are described in the common standardized way (anatomy, clinical picture, interpretation, differential diagnosis). (orig.)

  3. Peritoneal Lymphomatosis Imaged by F-18 FDG PET/CT

    International Nuclear Information System (INIS)

    Park, Eun Kyung; Lee, Se Ryeon; Kim, Young Chul; Oh, Sun Young; Choe, Jae Gol

    2010-01-01

    Peritoneal lymphomatosis is uncommon, but when encountered is associated with aggressive histological subtypes of high-grade lymphoma, such as small-cell, large-cell, mixed large and small cell, non-cleaved, lymphoblastic Burkitt-like, and diffuse large B-cell lymphomas. The CT findings of peritoneal lymphomatosis are linear or nodular peritoneal thickening, retroperitoneal lymphadenopathy, omental and mesenteric involvement with streak-like infiltrations or a bulky mass, bowel wall thickening, hepatosplenomegaly, and ascites. The authors reports report the first FDG PET/CT images of diffuse large B-cell lymphoma of small bowel origin associated with peritoneal lymphomatosis in a 69-year-old man. The lesions demonstrated intense FDG uptake in PET/CT images.

  4. Radiation dose reduction using 100-kVp and a sinogram-affirmed iterative reconstruction algorithm in adolescent head CT: Impact on grey-white matter contrast and image noise.

    Science.gov (United States)

    Nagayama, Yasunori; Nakaura, Takeshi; Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro; Yuki, Hideaki; Hirarta, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    2017-07-01

    To retrospectively evaluate the image quality and radiation dose of 100-kVp scans with sinogram-affirmed iterative reconstruction (IR) for unenhanced head CT in adolescents. Sixty-nine patients aged 12-17 years underwent head CT under 120- (n = 34) or 100-kVp (n = 35) protocols. The 120-kVp images were reconstructed with filtered back-projection (FBP), 100-kVp images with FBP (100-kVp-F) and sinogram-affirmed IR (100-kVp-S). We compared the effective dose (ED), grey-white matter (GM-WM) contrast, image noise, and contrast-to-noise ratio (CNR) between protocols in supratentorial (ST) and posterior fossa (PS). We also assessed GM-WM contrast, image noise, sharpness, artifacts, and overall image quality on a four-point scale. ED was 46% lower with 100- than 120-kVp (p < 0.001). GM-WM contrast was higher, and image noise was lower, on 100-kVp-S than 120-kVp at ST (p < 0.001). CNR of 100-kVp-S was higher than of 120-kVp (p < 0.001). GM-WM contrast of 100-kVp-S was subjectively rated as better than of 120-kVp (p < 0.001). There were no significant differences in the other criteria between 100-kVp-S and 120-kVp (p = 0.072-0.966). The 100-kVp with sinogram-affirmed IR facilitated dramatic radiation reduction and better GM-WM contrast without increasing image noise in adolescent head CT. • 100-kVp head CT provides 46% radiation dose reduction compared with 120-kVp. • 100-kVp scanning improves subjective and objective GM-WM contrast. • Sinogram-affirmed IR decreases head CT image noise, especially in supratentorial region. • 100-kVp protocol with sinogram-affirmed IR is suited for adolescent head CT.

  5. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2010-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density is the most important physical property of voxel model. Traditionally, when creating the Monte Carlo input files, the average tissue parameters recommended in ICRP report were used to assign each voxel in the existing voxel models. However, as each tissue consists of many voxels in which voxels are different in their densities, the method of assigning average tissue parameters doesn't take account of the voxel's discrepancy, and can't represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the density of which was derived from CT number. In order to compare with the traditional method, we have constructed two models from a same cadaver specimen date set. A CT-based pelvic voxel model called Pelvis-CT model, was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model, was also constructed, the densities of which were taken from ICRP Publication. The CT images and color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometries. The results were compared with those of given in ICRP74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis-Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model were agreed well with that of ICRP74 data. (author)

  6. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2011-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density and elemental composition are the most important physical properties of voxel model. Usually, when creating the Monte Carlo input files, the average tissue densities recommended in ICRP Publication were used to assign each voxel in the existing voxel models. As each tissue consists of many voxels with different densities, the conventional method of average tissue densities failed to take account of the voxel's discrepancy, and therefore could not represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the densities of which were derived from CT number. In order to compare with the traditional method, we constructed two models from the cadaver specimen dataset. A CT-based pelvic voxel model called Pelvis-CT model was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model was also constructed, the densities of which were taken from ICRP Publication. The CT images and the color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were both ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometry. The results were compared with those of given in ICRP Publication 74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis- Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model agreed well with that of ICRP Publication 74 data. (author)

  7. How safe is teleradiological telediagnosis for CT imaging?

    International Nuclear Information System (INIS)

    Ricke, J.; Wolf, M.; Hosten, N.; Zielinski, C.; Liebig, T.; Lopez-Haenninen, E.; Lemke, A.J.; Siekmann, R.; Stroszczynski, C.; Schauer, W.; Amthauer, H.; Kleinholz, L.; Felix, R.

    1997-01-01

    Purpose: To define the value of teleradiographic studies, a comparison was carried out between digitised copies of CT examinations of the skull with the original images. Differences in image quality obtained from a digital scanner and a camera were quantified. Material and method: 56 CT examinations of the skull, 28 of which had discrete abnormalities, were chosen for ROC analysis. The original films were digitised with a Vidar VXR-12 scanner and Panasonic WV-160 and WV-PB 500 cameras. The images were evaluated by five radiologists after image transfer with Video Conference software to a personal computer. Results: For the analysis of the films the area under the ROC curve was 0.91±0.04, for the digital scanner it was 0.85±0.04, for camera WV-BP 500 0.89±0.06 and for camera WE-160 0.87±0.09. Comprison with the film findings showed a minimal p-value of 0.17 which indicated that there was no significant reduction in diagnostic value following digitisation. Conclusion: The probable reason for the slight deterioration using the digital scanner was the reduction to 75 dpi compared with 134 dpi on the CT films. The cameras produce image noise comparable to CT with low window settings and reduced local resolution. We expect similar results for CT with soft tissue windows or for MRT of the skull. Conventional radiographs containing high local resolution, wide grey scale and low image noise would presumably make higher demands on methods of digitisation. (orig.) [de

  8. Periodontoid pseudotumor: CT and MRI imaging

    International Nuclear Information System (INIS)

    Yu, Eugene; Montanera, Walter

    2005-01-01

    Periodontoid pseudotumor (PP) can be a severe and disabling disease. This disease process typically presents in elderly patients with a longstanding history of myelopathy. We reviewed four cases of PP in order to summarize the clinical and imaging features. (orig.)

  9. PET/CT for atherosclerotic plaque imaging

    International Nuclear Information System (INIS)

    Ben-Haim, S.; Technion Institute of Technology, Haifa; Israel, O.; Rambam Medical Center, Haifa

    2006-01-01

    Atherosclerosis is one of the leading causes of morbidity and mortality in the world. Rupture of atherosclerotic plaques and thrombi formation are the primary mechanisms of myocardial infarction or cerebrovascular accident. Angiography is considered to represent the gold standard technique for imaging of the arterial lumen. However, in recent years it has been realized that the primary determinant of the atherosclerotic plaque stability is the composition of the plaque and other imaging modalities have been suggested. The purpose of this review is to briefly summarize the knowledge accumulated to present date regarding the potential role of fluo deoxyglucose imaging in the assessment of atherosclerosis and to compare this modality to additional available imaging approaches for the detection of vulnerable plaques

  10. Dose calculation based on Cone Beam CT images

    DEFF Research Database (Denmark)

    Slot Thing, Rune

    in the pursuit of personalised adaptive radiotherapy. The main limiting factor in the extended use of CBCT imaging for personalised radiotherapy is the relatively poor CBCT image quality. The limited image quality of CBCT images is mainly caused by contamination from scattered radiation. There are, however......, several other factors contributing to the image quality degradation, and while one should, theoretically, be able to obtain CT-like image quality from CBCT scans, clinical image quality is often very far from this ideal realisation. The present thesis describes the investigation of potential image quality...... simulations to be performed prior to CBCT acquisition, and through optimisations of the simulation efficiency, simulations were performed in a time frame which allows a full clinical implementation of the method. In addition to the scatter estimation model, corrections for additional artefacts arising from...

  11. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  12. MRI, CT and TRUS imaging of seminal vesicle metastasis

    International Nuclear Information System (INIS)

    Larsson, P.; Blomqvist, L.; Norming, U.

    1997-01-01

    We present a case of a testicular germ-cell metastasis in the seminal vesicle. Diagnostic imaging with transrectal ultrasonography (TRUS), CT, and MRI was performed. This case emphasizes the role of MRI in the evaluation of patients with pathology in the pelvic region. (orig.)

  13. CT and MR imaging findings of sphenoidal masses

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Shoki; Higano, Shuichi (Tohoku Univ., Sendai (Japan). School of Medicine); Ishii, Kiyoshi (and others)

    1994-07-01

    CT and MR imaging findings of 57 sphenoidal masses were retrospectively reviewed to assess the possibility of differential diagnosis between them. Various kinds of masses such as pituitary adenoma, epipharyngeal cancer, mucocele, chordoma, chondroma, chondrosarcoma, distant metastasis, multiple myeloma, fibrous dysplasia, craniopharyngioma, hemangiopericytoma, giant cell tumor, primary sphenoidal cancer, malignant melanoma, leukemia, histiocytosis X, and giant cell tumor were included in this series. CT scanning was performed in all cases using a spin-echo pulse sequence. The relative density of the masses, bony changes and calcification were evaluated on CT, and on MR images, signal intensity of the masses relative to the normal gray matter, contrast enhancement and extension/contour were evaluated. Although no single feature appeared to be specific to the masses, detection of calcification on CT, identification of the normal pituitary gland as deformed or displaced on T1-weighted images, signal intensity on T2-weighted images, and extension of the masses seemed to be useful and should be examined in terms of their ability to assist in differential diagnosis. Finally, accommodative classification of sphenoidal masses primarily based on presumed origin or mode of extension was attempted. (author).

  14. Hydatid disease of the spleen; Ultrasonography, CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sinner, W.N. von; Stridbeck, H. (Dept. of Diagnostic Radiology, King Faisal Specialist Hospital, and Research Center, Riyadh (Saudi Arabia) Lund Univ. Hospital (Sweden))

    1992-09-01

    Seven patients with hydatid disease of the spleen were examined by radiography, ultrasound, CT, and in one case MR imaging. The observations were confirmed by patho-anatomic findings except in 2 patients where high indirect hemagglutination tests confirmed the diagnosis. (orig./MG).

  15. Nasal Chondromesenchymal Hamartoma: CT and MR Imaging Findings

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Kim, Hyung Jin; Kim, Ji Hye; Ko, Young Hyeh; Chung, Seung Kyu

    2009-01-01

    We report CT and MR imaging findings for a case of nasal chondromesenchymal hamartoma occurring in a 19-month-old boy. A nasal chondromesenchymal hamartoma is a rare benign pediatric hamartoma that can simulate malignancy. Although rare, knowledge of this entity is essential to avoid potentially harmful therapies

  16. FDG PET/CT imaging in canine cancer patients

    DEFF Research Database (Denmark)

    Hansen, Anders Elias; McEvoy, Fintan; Engelholm, Svend Aage

    2011-01-01

    2-Deoxy-2-[¹⁸F]fluoro-D-glucose positron emission tomography/computed tomography (FDG PET/CT) is becoming increasingly available as an imaging modality in veterinary medicine. The purpose of this study was to report semiquantitative standard uptake values (SUV) of malignant and nonmalignant tissues...

  17. Incidental finding of ovarian teratoma on post-therapy scan for papillary thyroid cancer and impact of SPECT/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jammah, Anwar Ali, E-mail: dranwarjammah@hotmail.com [Department of Medicine, King Saud University, Riyadh (Saudi Arabia); Driedger, Albert; Rachinsky, Irina [Department of Nuclear Medicine, University of Western Ontario, (Canada)

    2011-10-15

    A 41-year old woman post thyroidectomy and neck dissection is presented in this case. She initially presented goiter and an enlarged cervical lymph node. She had no family history of cancer or radiation therapy. She had total thyroidectomy and found to have papillary thyroid cancer (T4N1M0). Histopathology report revealed multifocal classical papillary thyroid carcinoma with lymphovascular invasion, extra-thyroidal extension, and positive lymph nodes. She was treated with 6.5 Gigabecquerel (GBq) of {sup 131}Iodine. Whole-body scan showed uptake in the neck and large focus in the left lower abdomen. Single-photon emission computed tomography SPECT/CT demonstrated a round shaped mass in the left pelvis. Pathology revealed cystic teratoma with benign thyroid tissue (struma ovarii), and no malignancy. Two months later, she had the second treatment with 5.5 GBq {sup 131}Iodine. Her follow-up stimulated and non-stimulated thyroglobulin levels were significantly lower, and there was no abnormal uptake in the follow- -up scan (author)

  18. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  19. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction.

    Science.gov (United States)

    Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R

    2012-04-01

    To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P ASIR levels of ≥40% (P ASIR levels ≥60% (P ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.

  20. Lesion concordance, image quality and artefacts in PET/CT. Results of a multicenter study

    International Nuclear Information System (INIS)

    Stergar, H.; Bockisch, A.; Krause, B.J.; Eschmann, S.M.; Juergens, K.U.; Kuehl, H.; Pfannenberg, A.C.; Stollfuss, J.; Weckesser, M.

    2010-01-01

    This study had three major objectives: (1.) to record the number of concordant (both in PET and CT) pathological lesions in different body regions/organs, (2.) to evaluate the image quality and (3.) to determine both, the quantity and the quality of artefacts in whole body FDG PET/CT scans. Routine whole body scans of 353 patients referred to FDG-PET/CT exams at 4 university hospitals were employed. All potentially malignant lesions in 13 different body regions/organs were classified as either concordant or suspicious in FDG-PET or CT only. In the latter case the diagnostic relevance of this disparity was judged. The image quality in PET and CT was rated as a whole and separately in 5 different body regions. Furthermore we investigated the frequency and site of artefacts caused by metal implants and oral or intravenous contrast media as well as the subjective co-registration quality (in 4 body regions) and the diagnostic impact of such artefacts or misalignment. In addition, the readers rated the diagnostic gain of adding the information from the other tomographic method. In total 1941 lesions (5.5 per patient) were identified, 1094 (56%) out of which were concordant. 602 (71%) out of the 847 remaining lesions were detected only with CT, 245 (29%) were only PET-positive. As expected, CT particularly depicted the majority of lesions in the lungs and abdominal organs. However, the diagnostic relevance was greater with PET-only positive lesions. Most of the PET/CT scans were performed with full diagnostic CT including administration of oral and intravenous contast media (> 80%). The image quality in PET and CT was rated excellent. Artefacts occurred in more than 60% of the scans and were mainly due to (dental) metal implants and contrast agent. Nevertheless there was almost no impact on diagnostic confidence if reading of the non attenuation corrected PET was included. The co-registration quality in general was also rated as excellent. Misalignment mostly occurred due

  1. Clinical feasibility of {sup 90}Y digital PET/CT for imaging microsphere biodistribution following radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Chadwick L.; Binzel, Katherine; Zhang, Jun; Knopp, Michael V. [The Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, Columbus, OH (United States); Wuthrick, Evan J. [The Ohio State University Wexner Medical Center, Department of Radiation Oncology, Columbus, OH (United States)

    2017-07-15

    The purpose of this study was to evaluate the clinical feasibility of next generation solid-state digital photon counting PET/CT (dPET/CT) technology and imaging findings in patients following {sup 90}Y microsphere radioembolization in comparison with standard of care (SOC) bremsstrahlung SPECT/CT (bSPECT/CT). Five patients underwent SOC {sup 90}Y bremsstrahlung imaging immediately following routine radioembolization with 3.5 ± 1.7 GBq of {sup 90}Y-labeled glass microspheres. All patients also underwent dPET/CT imaging at 29 ± 11 h following radioembolization. Matched pairs comparison was used to compare image quality, image contrast and {sup 90}Y biodistribution between dPET/CT and bSPECT/CT images. Volumetric assessments of {sup 90}Y activity using different isocontour thresholds on dPET/CT and bSPECT/CT images were also compared. Digital PET/CT consistently provided better visual image quality and {sup 90}Y-to-background image contrast while depicting {sup 90}Y biodistribution than bSPECT/CT. Isocontour volumetric assessment using a 1% threshold precisely outlined {sup 90}Y activity and the treatment volume on dPET/CT images, whereas a more restrictive 20% threshold on bSPECT/CT images was needed to obtain comparable treatment volumes. The use of a less restrictive 10% threshold isocontour on bSPECT/CT images grossly overestimated the treatment volume when compared with the 1% threshold on dPET/CT images. Digital PET/CT is clinically feasible for the assessment of {sup 90}Y microsphere biodistribution following radioembolization, and provides better visual image quality and image contrast than routine bSPECT/CT with comparable acquisition times. With further optimization and clinical validation, dPET technology may allow faster and more accurate imaging-based assessment of {sup 90}Y microsphere biodistribution. (orig.)

  2. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  3. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  4. Experimental validation of incomplete data CT image reconstruction techniques

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Hsiao, M.L.; Tam, K.C.

    1989-01-01

    X-ray CT inspection of large metal parts is often limited by x-ray penetration problems along many of the ray paths required for a complete CT data set. In addition, because of the complex geometry of many industrial parts, manipulation difficulties often prevent scanning over some range of angles. CT images reconstructed from these incomplete data sets contain a variety of artifacts which limit their usefulness in part quality determination. Over the past several years, the authors' company has developed 2 new methods of incorporating a priori information about the parts under inspection to significantly improve incomplete data CT image quality. This work reviews the methods which were developed and presents experimental results which confirm the effectiveness of the techniques. The new methods for dealing with incomplete CT data sets rely on a priori information from part blueprints (in electronic form), outer boundary information from touch sensors, estimates of part outer boundaries from available x-ray data, and linear x-ray attenuation coefficients of the part. The two methods make use of this information in different fashions. The relative performance of the two methods in detecting various flaw types is compared. Methods for accurately registering a priori information with x-ray data are also described. These results are critical to a new industrial x-ray inspection cell built for inspection of large aircraft engine parts

  5. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology

    Science.gov (United States)

    Fiedler, S.; Bravin, A.; Keyriläinen, J.; Fernández, M.; Suortti, P.; Thomlinson, W.; Tenhunen, M.; Virkkunen, P.; Karjalainen-Lindsberg, M.-L.

    2004-01-01

    Different modalities for imaging cancer-bearing breast tissue samples are described and compared. The images include clinical mammograms and computed tomography (CT) images, CT images with partly coherent synchrotron radiation (SR), and CT and radiography images taken with SR using the diffraction enhanced imaging (DEI) method. The images are evaluated by a radiologist and compared with histopathological examination of the samples. Two cases of lobular carcinoma are studied in detail. The indications of cancer are very weak or invisible in the conventional images, but the morphological changes due to invasion of cancer become pronounced in the images taken by the DEI method. The strands penetrating adipose tissue are seen clearly in the DEI-CT images, and the histopathology confirms that some strands contain the so-called 'Indian file' formations of cancer cells. The radiation dose is carefully measured for each of the imaging modalities. The mean glandular dose (MGD) for 50% glandular breast tissue is about 1 mGy in conventional mammography and less than 0.25 mGy in projection DEI, while in the clinical CT imaging the MGD is very high, about 45 mGy. The entrance dose of 95 mGy in DEI-CT imaging gives rise to an MGD of 40 mGy, but the dose may be reduced by an order of magnitude, because the contrast is very large in most images.

  6. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Science.gov (United States)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  7. New developments in imaging: Sonography, cine-CT, MRI

    International Nuclear Information System (INIS)

    Otto, R.J.; Higgins, C.B.

    1987-01-01

    The book can be conveniently subdivided into three sections: the first on magnetic resonance imaging the second on cine-computed tomography and the third on advances in ultrasound (US). The MR imaging section includes two chapters: the first on indications for MR in abdominal disease (a cookbook layout of indications for MR imaging versus CT) and the second on MR imaging of the heart. There are also chapters on MR imaging and US in the pelvis, contrast agent principles, and a chapter on imaging renal tumors. The third section, on US, contains chapters on the liver and gastrointenstinal disease, interventional US sonography during neurosurgery, state-of-the-art echocardiography. Doppler flow imaging, contrast media for sonography, endometrial sonography, and high-resolution US in the first trimester. The final chapter is presented as a scientific paper rather than as a chapter in a book and has no illustrations

  8. CT scan imaging in cervical infections

    International Nuclear Information System (INIS)

    Marsot-Dupuch, K.; Janklewicz, Ph.; Chabolle, F.

    1988-01-01

    Infections of face and neck represent serious and potentially life threatening conditions that are sometimes difficult to differentiate from neoplasic tumours, especially in subacute clinical forms. Conventional radiographic techniques offer interest for cervical masses, except Ultra-Sonographic examen, in sites regarding vascular axes, but carries little value for evaluating their spread the into different cervical spaces. On the other hand, C.T. is valuable to precise the location and the extent and to determine its inflammatory nature by studying the fats and the aponeurosis around it. It helps in the analysis of associated adjacent signs: soft tissue swelling, extensive obliteration of adjacent fats, swelling of cervical aponeurosis, thickening of adjacent muscles. These findings are documented by the study of fourteen patients, admitted in St-Antopine hospital. All abcesses, except one, were easy to diagnose because of their low central attenuation. False negative cases are possible and noted by other authors. So, in absence of response to appropriate therapy, surgery is necessary to eliminate a misdiagnosed abcess. Furthermore, it's sometimes possible to suspect an etiology (foreign body, tuberculosis) [fr

  9. Comparative evaluation of the porta hepatis/hepatoduodenal ligament with CT and MR imaging

    International Nuclear Information System (INIS)

    Silverman, P.M.; Feuerstein, I.M.; Zeman, R.K.; Jaffe, M.H.; Garra, B.S.

    1988-01-01

    CT and MR imaging were compared in a retrospective evaluation of 16 patients with abnormalities, predominantly neoplasms, of the porta hepatis/hepatoduodenal ligament. Masses on CT were of decreased density compared with that of liver and were seen in contrast to surrounding periportal fat. On MR images, T1-weighted images demonstrated findings similar to those of CT. T2-weighted images clearly depicted intrahepatic lesions but less distinctly depicted lesions surrounded by fat. Short inversion recovery (STIR) images better demonstrated tumor relative to fat. CT was better than all MR imaging sequences in one of 16 cases, whereas at least one MR imaging sequence was better than CT in six of 16. In nine cases, CT was equivalent to the best MR imaging sequence. In five of six cases where MR imaging was better than CT, STIR sequences were most favorable. In conclusion, MR imaging provided a valuable technique for assessing abnormalities of the porta hepatis/hepatoduodenal ligament

  10. CT guided stereotaxy based on scout view imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wester, K; Kjartansson, O; Bakke, S J

    1987-05-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing.

  11. CT guided stereotaxy based on scout view imaging

    International Nuclear Information System (INIS)

    Wester, K.; Kjartansson, O.; Bakke, S.J.; Rikshospitalet, Oslo

    1987-01-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing. (orig.)

  12. The relationship between image quality and trial slits CT-1010

    International Nuclear Information System (INIS)

    Yoshinaga, Toshihiko; Nakamura, Sumio; Kakoi, Iwao; Ohkubo, Mitsuo; Tomiyoshi, Tsukasa

    1980-01-01

    We had used trial slits for EMI scanner CT-1010 and CT images of good quality almost free artifacts could be obtained when the slice thickness decreased to 5 mm. In this study, we experimented changes of MTF (modulation transfer function) as the slice thickness changed. As a result, MTF got worse as the slice thickness decreased, but got better as the exposure dose increased. The high accuracy high definitions of a 10 mm slice thickness and a 5 mm one were nearly equal in MTF. (author)

  13. MR and CT imaging of cerebral fat embolism

    International Nuclear Information System (INIS)

    Li Ying; Xu Jianmin; Wan Xiaohong; Chen Yu; Guo Yi

    2003-01-01

    Objective: To summarize the clinical characteristics and imaging features of cerebral fat embolism (CFE). Methods: The clinical features and imaging appearances of 3 cases with acute CFE were analyzed. Results: (1) 3 non-head injured cases had sudden mental status changes after leg injury. (2) The main clinical manifestation was vigil coma. (3) MRI showed lesions of the brain in all 3 cases. Cranial CT showed lesions in only 1 case. (4) MRI and CT showed spotty and patchy symmetrical lesions, which were low signal on T 1 WI and high signal on T 2 WI, and low density on CT scan. The lesions were distributed in the white matter along the boundary zones of the major vascular territories, thalamus and basal ganglia, internal capsule, corpus callosum, brain stem, and cerebellum. The margins of the lesions were obscure. (5) 1 case received MRI examination after therapy for 3 months, which showed no lesions in the brain. Conclusion: Cerebral fat embolism has its own clinical features and imaging characteristics. MRI is superior to CT in diagnosing CFE

  14. Computer-assisted segmentation of CT images by statistical region merging for the production of voxel models of anatomy for CT dosimetry

    Czech Academy of Sciences Publication Activity Database

    Caon, M.; Sedlář, Jiří; Bajger, M.; Lee, G.

    2014-01-01

    Roč. 37, č. 2 (2014), s. 393-403 ISSN 0158-9938 Institutional support: RVO:67985556 Keywords : Voxel model * Image segmentation * Statistical region merging * CT dosimetry Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.882, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/sedlar-0428537.pdf

  15. CT, PET and MR-Imaging in experimental baromedical research

    DEFF Research Database (Denmark)

    Hansen, Kasper

    Pa pressurisation, and repeatedly after 500 kPa/min decompression. After MRI, venous bubble development was monitored using ultrasound. Second, preclinical μCT, PET/MRI, and high-field 9.4 T MR-Imaging systems evaluated changes in cerebral standard uptake value (SUV) of F-FDG, changes in cerebral blood flow (delta...... it is intrinsically difficult to study humans or animals inside a pressure chamber. We have developed a preclinical pressure chamber system compatible with CT, PET and MR-imaging during pressurisation up to 1.013 mPa, which allows for anatomical visualisations and measurements of certain physiological processes...... in vivo during pressurisation. Material and methods: Anaesthetised rats (simulated diving and control groups) underwent the following imaging protocols: First, a 3T clinical MRI-system was employed to evaluate in vivo cerebral relaxation parameters (T1, T2 and T2*). MRI was performed before, during 709 k...

  16. Pros and cons of organ shielding for CT imaging

    International Nuclear Information System (INIS)

    Samei, Ehsan

    2014-01-01

    With the increased importance of CT radiation dose to health care providers, patients and the general public, there is an increased responsibility to minimize patient dose effectively. Bismuth shields offer a simple strategy to reduce dose to certain anterior radiosensitive organs such as breasts and eyes. However, in order to reduce organ dose they must be used properly; improper use can lead to an actual increase in the patient dose. They also create a proportional increase in image noise in the section of the body adjacent to the shield and further reduce the quantitative precision of CT numbers. In addition, shielding can degrade the overall efficiency (by an order of approximately 10%) of the imaging process, reducing the theoretical image quality that can be expected from a certain level of patient dose. However, in spite of their significant disadvantages, there are certain clinical situations and practice considerations that provide qualified justification for their continued use. (orig.)

  17. FDG PET/CT imaging as a biomarker in lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Meignan, Michel; Itti, Emmanuel [Hopitaux Universitaires Henri Mondor, Paris-Est Creteil University, LYSA Imaging, Department of Nuclear Medicine, Creteil (France); Gallamini, Andrea [Nice University, Research, Innovation and Statistic Department, Antoine Lacassagne Cancer Center, Nice (France); Scientific Research Committee, S. Croce Hospital, Cuneo (Italy); Younes, Anas [Memorial Sloan Kettering Cancer Center, Lymphoma Service, New York, NY (United States)

    2015-04-01

    FDG PET/CT has changed the management of FDG-avid lymphoma and is now recommended as the imaging technique of choice for staging and restaging. The need for tailoring therapy to reduce toxicity in patients with a favourable outcome and for improving treatment in those with high-risk factors requires accurate diagnostic methods and a new prognostic algorithm to identify different risk categories. New drugs are used in relapsed/refractory patients. The role of FDG PET/CT as a biomarker in this context is summarized in this review. New trends in FDG metabolic imaging in lymphoma are addressed including metabolic tumour volume measurement at staging and integrative PET which combines PET data with clinical and molecular markers or other imaging techniques. The quantitative approach for response assessment which is under investigation and is used in large ongoing trials is compared with visual criteria. The place of FDG in the era of targeted therapy is discussed. (orig.)

  18. Imaging in covert ectopic ACTH secretion: a CT pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Sookur, Paul A.; Sahdev, Anju; Rockall, Andrea G.; Reznek, Rodney H. [St Bartholomew' s Hospital, Department of Academic Radiology, Dominion House, London (United Kingdom); Isidori, Andrea M. [Sapienza University of Rome, Department of Medical Pathophysiology, Rome (Italy); Monson, John P.; Grossman, Ashley B. [St Bartholomew' s Hospital, Department of Endocrinology, London (United Kingdom)

    2009-05-15

    The syndrome of ectopic adrenocorticotrophin secretion (EAS) is rare and is due to excess adrenocorticotrophin (ACTH) production from a nonpituitary tumour. These tumours can be covert, where the tumours are not readily apparent, and very small making them challenging to image. It is clinically and biochemically difficult to distinguish between covert EAS and Cushing's disease. The first-line investigation in locating the source of ACTH production is computed tomography (CT). The aim of this pictorial review is to illustrate the likely covert sites and related imaging findings. We review the CT appearances of tumours resulting in covert EAS and the associated literature. The most common tumours were bronchial carcinoid tumours, which appear as small, well-defined, round or ovoid pulmonary lesions. Rarer causes included thymic carcinoids, gastrointestinal carcinoids and pancreatic neuroendocrine tumours. Awareness of the imaging characteristics will aid identification of the source of ACTH production and allow potentially curative surgical resection. (orig.)

  19. MR and CT imaging patterns in post-varicella encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Darling, C.F. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Larsen, M.B. [Div. of Neurology, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Byrd, S.E. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Radkowski, M.A. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Palka, P.S. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Allen, E.D. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States)

    1995-06-01

    The aim of the investigation was to determine the patterns of cerebral involvement on computed tomography (CT) and magnetic resonance (MR) imaging in post-varicella encephalitis. Four children between the ages of 2 and 11 years presented over a 5-year period with a diagnosis of post-varicella encephalitis. Their imaging studies and clinical data were reviewed retrospectively. The medical histories of all four children were noncontributory except for recent bouts of chickenpox 1 week to 3 months prior to hospitalization. Three children presented with parkinsonian manifestations. Bilateral, symmetric hypodense, nonenhancing basal ganglia lesions were found on CT. These areas showed nonenhancing low signal intensity on T1-weighted images and high signal intensity on T2-weighted images on MR. One child presented with diffuse, multiple gray and white matter lesions of similar imaging characteristics; some lesions, however, did enhance. This child had no gait disturbances. Post-varicella encephalitis can produce two patterns of dramatic CT and MR findings. With an appropriate history and clinical findings, varicella as a cause of bilateral basal ganglia or diffuse cerebral lesions can be differentiated from other possible etiologies which include trauma, anoxia, metabolic disorders and demyelinating diseases. (orig.)

  20. Automatic labeling and segmentation of vertebrae in CT images

    Science.gov (United States)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  1. Fast and Automatic Ultrasound Simulation from CT Images

    Directory of Open Access Journals (Sweden)

    Weijian Cong

    2013-01-01

    Full Text Available Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

  2. Image quality of conventional images of dual-layer SPECTRAL CT: a phantom study.

    Science.gov (United States)

    van Ommen, F; Bennink, E; Vlassenbroek, A; Dankbaar, J W; Schilham, A M R; Viergever, M A; de Jong, H W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips), by means of phantom experiments. For both CT scanners conventional CT images were acquired using four adult scanning protocols: i) body helical, ii) body axial, iii) head helical and iv) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10% and 5% MTF of the iCT and IQon showed small but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with

  3. Radiation dose reduction using 100-kVp and a sinogram-affirmed iterative reconstruction algorithm in adolescent head CT: Impact on grey-white matter contrast and image noise

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Yasunori [Kumamoto City Hospital, Department of Radiology, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Nakaura, Takeshi; Yuki, Hideaki; Hirarta, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro [Kumamoto City Hospital, Department of Radiology, Kumamoto (Japan)

    2017-07-15

    To retrospectively evaluate the image quality and radiation dose of 100-kVp scans with sinogram-affirmed iterative reconstruction (IR) for unenhanced head CT in adolescents. Sixty-nine patients aged 12-17 years underwent head CT under 120- (n = 34) or 100-kVp (n = 35) protocols. The 120-kVp images were reconstructed with filtered back-projection (FBP), 100-kVp images with FBP (100-kVp-F) and sinogram-affirmed IR (100-kVp-S). We compared the effective dose (ED), grey-white matter (GM-WM) contrast, image noise, and contrast-to-noise ratio (CNR) between protocols in supratentorial (ST) and posterior fossa (PS). We also assessed GM-WM contrast, image noise, sharpness, artifacts, and overall image quality on a four-point scale. ED was 46% lower with 100- than 120-kVp (p < 0.001). GM-WM contrast was higher, and image noise was lower, on 100-kVp-S than 120-kVp at ST (p < 0.001). CNR of 100-kVp-S was higher than of 120-kVp (p < 0.001). GM-WM contrast of 100-kVp-S was subjectively rated as better than of 120-kVp (p < 0.001). There were no significant differences in the other criteria between 100-kVp-S and 120-kVp (p = 0.072-0.966). The 100-kVp with sinogram-affirmed IR facilitated dramatic radiation reduction and better GM-WM contrast without increasing image noise in adolescent head CT. (orig.)

  4. Fast bilateral filtering of CT-images

    Energy Technology Data Exchange (ETDEWEB)

    Steckmann, Sven; Baer, Matthias; Kachelriess, Marc [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. of Medical Physics (IMP)

    2011-07-01

    The Bilateral filter is able to get a lower noise level while retaining the edges in images. The downside of a bilateral filter is the high order of the problem itself. While having a Volume size of N with a dimension of d and a filter window of r the problem is of size N{sup d} . r{sup d}. In the literature there are some proposals for speeding up by reducing this order by approximating a component of the filter. This leads to inaccurate results which often implies non acceptable artifacts for medical imaging. A better way for medical imaging is to speed up the filter itself while leaving the basic structure intact. This is the way our implementation uses. We solve the problem of calculating the function of e{sup -x} in an efficient way on modern architectures, and the problem of vectorizing the filtering process. As result we implemented a filter which is 2.5 times faster than the highly optimized basic approach. By comparing the basic analytical approach with the final algorithm, the differences in quality of the computing process is negligible to the human eye. We are able to process a volume with 512{sup 3} voxels with a filter of 25 x 25 x 1 in 21 s on a modern Intel Xeon platform with two X5590 processors running at 3.33 GHz. (orig.)

  5. Automatic extraction of via in the CT image of PCB

    Science.gov (United States)

    Liu, Xifeng; Hu, Yuwei

    2018-04-01

    In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. In order to detect the via in the PCB base on the CT image automatically accurately and reliably, a novel algorithm for via extraction based on weighting stack combining the morphologic character of via is designed. Every slice data in the vertical direction of the PCB is superimposed to enhanced vias target. The OTSU algorithm is used to segment the slice image. OTSU algorithm of thresholding gray level images is efficient for separating an image into two classes where two types of fairly distinct classes exist in the image. Randomized Hough Transform was used to locate the region of via in the segmented binary image. Then the 3D reconstruction of via based on sequence slice images was done by volume rendering. The accuracy of via positioning and detecting from a CT images of PCB was demonstrated by proposed algorithm. It was found that the method is good in veracity and stability for detecting of via in three dimensional.

  6. PET/CT-guided biopsies of metabolically active bone lesions: applications and clinical impact

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, Bernd; Wartenberg, Jan; Weitzel, Thilo; Krause, Thomas [Bern University Hospital and University of Bern, Department of Nuclear Medicine, Inselspital, Bern (Switzerland); Wiskirchen, Jakub [Bern University Hospital and University of Bern, Department of Nuclear Medicine, Inselspital, Bern (Switzerland); University Hospital Tuebingen, Department of Radiology, Neuroradiology, and Nuclear Medicine, Tuebingen (Germany); Schmid, Ralph A. [Bern University Hospital and University of Bern, Department of Thoracic Surgery, Inselspital, Bern (Switzerland); Mueller, Michel D. [Bern University Hospital and University of Bern, Department of Obstetrics and Gynaecology, Inselspital, Bern (Switzerland)

    2010-11-15

    In a minority of cases a definite diagnosis and stage grouping in cancer patients is not possible based on the imaging information of PET/CT. We report our experience with percutaneous PET/CT-guided bone biopsies to histologically verify the aetiology of hypermetabolic bone lesions. We retrospectively reviewed the data of 20 consecutive patients who underwent multimodal image-guided bone biopsies using a dedicated PET/CT system in a step-by-step technique. Technical and clinical success rates of PET/CT-guided biopsies were evaluated. Questionnaires were sent to the referring physicians to assess the impact of biopsies on patient management and to check the clinical need for PET/CT-guided biopsies. Clinical indications for biopsy were to histologically verify the aetiology of metabolically active bone lesions without a morphological correlate confirming the suspicion of metastases in 15 patients, to determine the origin of suspected metastases in 3 patients and to evaluate the appropriateness of targeted therapy options in 2 patients. Biopsies were technically successful in all patients. In 19 of 20 patients a definite histological diagnosis was possible. No complications or adverse effects occurred. The result of PET/CT-guided bone biopsies determined a change of the planned treatment in overall 56% of patients, with intramodality changes, e.g. chemotherapy with palliative instead of curative intent, and intermodality changes, e.g. systemic therapy instead of surgery, in 22 and 50%, respectively. PET/CT-guided bone biopsies are a promising alternative to conventional techniques to make metabolically active bone lesions - especially without a distinctive morphological correlate - accessible for histological verification. PET/CT-guided biopsies had a major clinical impact in patients who otherwise cannot be reliably stage grouped at the time of treatment decisions. (orig.)

  7. Imaging of pancreatic adenocarcinoma with emphasis on multidetector CT

    International Nuclear Information System (INIS)

    Smith, S.L.; Rajan, P.S.

    2004-01-01

    Pancreatic adenocarcinoma is the fourth most frequent cause of cancer-related death. The incidence is increasing and the overall survival has altered little in recent years. Moreover, patients usually present late with inoperable disease and curative resection by standard pancreatico-duodenectomy (Whipple's procedure) is associated with significant morbidity. It should only be attempted in that small group of patients lacking radiological evidence of advanced disease. Despite the recent advances in body magnetic resonance imaging (MRI) and endoscopic ultrasound (EUS), computed tomography (CT) is the mainstay of staging in most centres and the recent development of multidetector CT machines (MDCT) has raised hope of an improvement in preoperative staging. This review focuses on the CT of pancreatic adenocarcinoma with particular emphasis on examination technique and on those criteria that determine resectability

  8. Imaging of pancreatic adenocarcinoma with emphasis on multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.L. E-mail: simon.smith@ipsh-tr.anglox.nhs.uk; Rajan, P.S

    2004-01-01

    Pancreatic adenocarcinoma is the fourth most frequent cause of cancer-related death. The incidence is increasing and the overall survival has altered little in recent years. Moreover, patients usually present late with inoperable disease and curative resection by standard pancreatico-duodenectomy (Whipple's procedure) is associated with significant morbidity. It should only be attempted in that small group of patients lacking radiological evidence of advanced disease. Despite the recent advances in body magnetic resonance imaging (MRI) and endoscopic ultrasound (EUS), computed tomography (CT) is the mainstay of staging in most centres and the recent development of multidetector CT machines (MDCT) has raised hope of an improvement in preoperative staging. This review focuses on the CT of pancreatic adenocarcinoma with particular emphasis on examination technique and on those criteria that determine resectability.

  9. Diagnosis and staging of breast cancer by SPECT images fused with CT images

    International Nuclear Information System (INIS)

    Li Yanjing; Zhu Qiaomei

    2007-01-01

    Objective: To evaluate the TNM staging value of 99mTc-MIBI scintimammotraphy with SPECT-CT images fusing for the diagnosis of breast cancer. Methods: 10 patients with breast cancer underwent scintimammography with 99mTc-MIBI, and SPECT images were fused with CT images. Images were compared with final diagnosis confirmed by histopathology. Results: Of the 19 breast cancer patients, one case of invasive ductal carcinoma showed false-negative. Among 18 cases of positive lesions, axillary metastases were involved in 10, supraclavicular nodes were also defined in 3, para-sternum nodes were involved in 2, 2 were missed and 1 cases without metastatic node. The axillary lymph nodes were divided into three levels with respect to their position relative to the pectoralis minor muscle by fused images. Conclusion: 99mTc-MIBI scintimammotraphy combined with SPECT-CT images fusing is of some clinical value in TNM staging of breast cancer. (authors)

  10. Evaluation of aortocoronary bypass graft patency by reconstructed CT image

    International Nuclear Information System (INIS)

    Kawakita, Seizaburo; Koide, Takashi; Saito, Yoshio; Yamamoto, Tadao; Iwasaki, Tadaaki

    1982-01-01

    Ten patients were examined in the period of three months from January to March 1981. The patients were operated from 1 month to 7 years before CT. A bypass to the left anterior descending artery (LAD) was grafted in 10 cases, 2 to the right coronary artery (RCA), 4 to an obtuse marginal artery (OM), and 1 to a diagonal artery. Image reconstruction was performed in 10 cases by using an image analytical computer Evaluskop. Appropriate planes for reconstruction were selected by trial and error methods upon observation of CT images. When gained picture of a graft course coincided with surgical records or angiography, the work of building images was concluded. On cross section, grafts to LAD were visualized in all 10 cases: 9 in the entire course and 1 in a proximal part of the graft. Two to RCA, 4 to OM and 1 to a diagonal were also successfully visualized. Reconstruction of graft images succeeded in 9 grafts of 6 cases. The course of a graft could be pursued from the proximal to the distal end adjacent to the cardiac chamber. The picture of a bypass to LAD was visualized in 6 of 10 grafts. Two bypass to RCA could be depicted, and 1 to OM was also found. However 3 to OM and 1 to a diagonal failed to be visualized throughout their courses in reconstructed images. I think that the causes of faillure mainly depended upon the course of the graft. When a graft was running arc-like surrounding the heart chamber, it was very difficult to depict its entire length in reconstructed images, though the graft could be detected in cross sections. These preliminary studies indicated that reconstruction of CT images had some benefits for the pursuit of graft courses. (J.P.N.)

  11. Parameters related to the image quality in computed tomography -CT

    International Nuclear Information System (INIS)

    Alonso, T.C.; Silva, T.A.; Mourão, A.P.; Silva, T.A.

    2015-01-01

    Quality control programs in computed tomography, CT, should be continuously reviewed to always ensure the best image quality with the lowest possible dose for the patient in the diagnostic process. The quality control in CT aims to design and implement a set of procedures that allows the verification of their operating conditions within the specified requirements for its use. In Brazil, the Ministry of Health (MOH), the Technical Rules (Resolution NE in 1016.) - Radiology Medical - 'Equipment and Safety Performance' establishes a reference to the analysis of tests on TC. A large number of factors such as image noise, slice thickness (resolution of the Z axis), low contrast resolution and high contrast resolution and the radiation dose can be affected by the selection of technical parameters in exams. The purpose of this study was to investigate how changes in image acquisition protocols modify its quality and determine the advantages and disadvantages between the different aspects of image quality, especially the reduction of patient radiation dose. A preliminary procedure is to check the operating conditions of the CT measurements were performed on a scanner with 64-MDCT scanner (GE Healthcare, BrightSpeed) in the service of the Molecular Imaging Center (Cimol) of the Federal University of Minas Gerais (UFMG). When performing the image quality tests we used a simulator, Catphan-600, this device has five modules, and in each you can perform a series of tests. Different medical imaging practices have different requirements for acceptable image quality. The results of quality control tests showed that the analyzed equipment is in accordance with the requirements established by current regulations. [pt

  12. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  13. Fractal Dimension Of CT Images Of Normal Parotid Glands

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Heo, Min Suk; You, Dong Soo

    1999-01-01

    This study was to investigate the age and sex differences of the fractal dimension of the normal parotid glands in the digitized CT images. The six groups, which were composed of 42 men and women from 20's, 40's and 60's and over were picked. Each group contained seven people of the same sex. The normal parotid CT images were digitized, and their fractal dimensions were calculated using Scion Image PC program. The mean of fractal dimensions in males was 1.7292 (+/-0.0588) and 1.6329 (+/-0.0425) in females. The mean of fractal dimensions in young males was 1.7617, 1.7328 in middle males, and 1.6933 in old males. The mean of fractal dimensions in young females was 1.6318, 1.6365 in middle females, and 1.6303 in old females. There was no statistical difference in fractal dimension between left and right parotid gland of the same subject (p>0.05). Fractal dimensions in male were decreased in older group (p 0.05). The fractal dimension of parotid glands in the digitized CT images will be useful to evaluate the age and sex differences.

  14. The appearance and effects of metallic implants in CT images

    International Nuclear Information System (INIS)

    Kairn, T.; Crowe, S.B.; Trapp, J.V.; Fogg, P.

    2013-01-01

    The computed tomography (CT) imaging artefacts that metallic medical implants produce in surrounding tissues are usually contoured and over-ridden during radiotherapy treatment planning. In cases where radiotherapy treatment beams unavoidably pass though implants, it is especially important to understand the imaging artefacts that may occur within the implants themselves. This study examines CT images of a set of simple metallic objects, immersed in water, in order to evaluate reliability and variability of CT numbers (Hounsfield units, HUs) within medical implants. Model implants with a range of sizes (heights from 2.2 to 49.6 mm), electron densities (from 2.3 to 7.7 times the electron density of water) and effective atomic numbers (from 3.9 to 9.0 times the effective atomic number of water in a CT X-ray beam) were created by stacking metal coins from several currencies. These 'implants' were CT scanned within a large (31.0 cm across) and a small (12.8 cm across) water phantom. Resulting HU values are as much as 50 % lower than the result of extrapolating standard electron density calibration data (obtained for tissue and bone densities) up to the metal densities and there is a 6 % difference between the results obtained by scanning with 120 and 140 kVp tube potentials. Profiles through the implants show localised cupping artefacts, within the implants, as well as a gradual decline in HU outside the implants that can cause the implants' sizes to be over estimated by 1.3–9.0 mm. These effects are exacerbated when the implants are scanned in the small phantom or at the side of the large phantom, due to reduced pre-hardening of the X-ray beam in these configurations. These results demonstrate the necessity of over-riding the densities of metallic implants, as well as their artefacts in tissue, in order to obtain accurate radiotherapy dose calculations.

  15. The appearance and effects of metallic implants in CT images.

    Science.gov (United States)

    Kairn, T; Crowe, S B; Fogg, P; Trapp, J V

    2013-06-01

    The computed tomography (CT) imaging artefacts that metallic medical implants produce in surrounding tissues are usually contoured and over-ridden during radiotherapy treatment planning. In cases where radiotherapy treatment beams unavoidably pass though implants, it is especially important to understand the imaging artefacts that may occur within the implants themselves. This study examines CT images of a set of simple metallic objects, immersed in water, in order to evaluate reliability and variability of CT numbers (Hounsfield units, HUs) within medical implants. Model implants with a range of sizes (heights from 2.2 to 49.6 mm), electron densities (from 2.3 to 7.7 times the electron density of water) and effective atomic numbers (from 3.9 to 9.0 times the effective atomic number of water in a CT X-ray beam) were created by stacking metal coins from several currencies. These 'implants' were CT scanned within a large (31.0 cm across) and a small (12.8 cm across) water phantom. Resulting HU values are as much as 50 % lower than the result of extrapolating standard electron density calibration data (obtained for tissue and bone densities) up to the metal densities and there is a 6 % difference between the results obtained by scanning with 120 and 140 kVp tube potentials. Profiles through the implants show localised cupping artefacts, within the implants, as well as a gradual decline in HU outside the implants that can cause the implants' sizes to be over estimated by 1.3-9.0 mm. These effects are exacerbated when the implants are scanned in the small phantom or at the side of the large phantom, due to reduced pre-hardening of the X-ray beam in these configurations. These results demonstrate the necessity of over-riding the densities of metallic implants, as well as their artefacts in tissue, in order to obtain accurate radiotherapy dose calculations.

  16. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  17. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  18. Automated image-matching technique for comparative diagnosis of the liver on CT examination

    International Nuclear Information System (INIS)

    Okumura, Eiichiro; Sanada, Shigeru; Suzuki, Masayuki; Tsushima, Yoshito; Matsui, Osamu

    2005-01-01

    When interpreting enhanced computer tomography (CT) images of the upper abdomen, radiologists visually select a set of images of the same anatomical positions from two or more CT image series (i.e., non-enhanced and contrast-enhanced CT images at arterial and delayed phase) to depict and to characterize any abnormalities. The same process is also necessary to create subtraction images by computer. We have developed an automated image selection system using a template-matching technique that allows the recognition of image sets at the same anatomical position from two CT image series. Using the template-matching technique, we compared several anatomical structures in each CT image at the same anatomical position. As the position of the liver may shift according to respiratory movement, not only the shape of the liver but also the gallbladder and other prominent structures included in the CT images were compared to allow appropriate selection of a set of CT images. This novel technique was applied in 11 upper abdominal CT examinations. In CT images with a slice thickness of 7.0 or 7.5 mm, the percentage of image sets selected correctly by the automated procedure was 86.6±15.3% per case. In CT images with a slice thickness of 1.25 mm, the percentages of correct selection of image sets by the automated procedure were 79.4±12.4% (non-enhanced and arterial-phase CT images) and 86.4±10.1% (arterial- and delayed-phase CT images). This automated method is useful for assisting in interpreting CT images and in creating digital subtraction images. (author)

  19. Tin-filter enhanced dual-energy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging.

    Science.gov (United States)

    Kaufmann, Sascha; Sauter, Alexander; Spira, Daniel; Gatidis, Sergios; Ketelsen, Dominik; Heuschmid, Martin; Claussen, Claus D; Thomas, Christoph

    2013-05-01

    To measure and compare the objective image quality of true noncontrast (TNC) images with virtual noncontrast (VNC) images acquired by tin-filter-enhanced, dual-source, dual-energy computed tomography (DECT) of upper abdomen. Sixty-three patients received unenhanced abdominal CT and enhanced abdominal DECT (100/140 kV with tin filter) in portal-venous phase. VNC images were calculated from the DECT datasets using commercially available software. The mean attenuation of relevant tissues and image quality were compared between the TNC and VNC images. Image quality was rated objectively by measuring image noise and the sharpness of object edges using custom-designed software. Measurements were compared using Student two-tailed t-test. Correlation coefficients for tissue attenuation measurements between TNC and VNC were calculated and the relative deviations were illustrated using Bland-Altman plots. Mean attenuation differences between TNC and VNC (HUTNC - HUVNC) image sets were as follows: right liver lobe -4.94 Hounsfield units (HU), left liver lobe -3.29 HU, vena cava -2.19 HU, spleen -7.46 HU, pancreas 1.29 HU, fat -11.14 HU, aorta 1.29 HU, bone marrow 36.83 HU (all P VNC and TNC series were observed for liver, vena portae, kidneys, pancreas, muscle and bone marrow (Pearson's correlation coefficient ≥0.75). Mean image noise was significantly higher in TNC images (P VNC and TNC images (P = .19). The Hounsfield units in VNC images closely resemble TNC images in the majority of the organs of the upper abdomen (kidneys, liver, pancreas). In spleen and fat, Hounsfield numbers in VNC images are tend to be higher than in TNC images. VNC images show a low image noise and satisfactory edge sharpness. Other criteria of image quality and the depiction of certain lesions need to be evaluated additionally. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  20. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?

    International Nuclear Information System (INIS)

    Pan, Xiaochuan; Sidky, Emil Y; Vannier, Michael

    2009-01-01

    Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scanners has remained virtually constant for the past 25 years—the reconstruction algorithm. Fundamental advances have been made in the solution of inverse problems, especially tomographic reconstruction, but these works have not been translated into clinical and related practice. The reasons are not obvious and seldom discussed. This review seeks to examine the reasons for this discrepancy and provides recommendations on how it can be resolved. We take the example of field of compressive sensing (CS), summarizing this new area of research from the eyes of practical medical physicists and explaining the disconnection between theoretical and application-oriented research. Using a few issues specific to CT, which engineers have addressed in very specific ways, we try to distill the mathematical problem underlying each of these issues with the hope of demonstrating that there are interesting mathematical problems of general importance that can result from in depth analysis of specific issues. We then sketch some unconventional CT-imaging designs that have the potential to impact on CT applications, if the link between applied mathematicians and engineers/physicists were stronger. Finally, we close with some observations on how the link could be strengthened. There is, we believe, an important opportunity to rapidly improve the performance of CT and related tomographic imaging techniques by addressing these issues. (topical review)

  1. Subtraction imaging of the ECG gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Tanegashima, K.; Fukui, M.; Hyodo, H.

    1987-05-01

    The subtracting manipulation of contrast-enhanced gated cardiac CT (GCCT) images was experimentally studied with TCT 60A - 30 type (Toshiba) for clinical use, thereby reducing the amount of contrast medium (CM). Initially the optimum relationship between the concentration of CM and its injected velocity was determined using the model of resected canine hearts and in actual dogs. The emphasized good-subtracted images were obtained when the difference of CT values was approximately 40 H.U. between cardiac cavity and myocardium. Such condition was feasible in the use of 25 % Diatrizoic acid and its injected velocity of 0.02 ml/kg/sec. Finally the reduction of the amount of CM by 1/3 became possible in clinical settings. The method is applicable to multi-slice GCCT in various heart diseases.

  2. Active contour based segmentation of resected livers in CT images

    Science.gov (United States)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  3. SU-E-I-13: Evaluation of Metal Artifact Reduction (MAR) Software On Computed Tomography (CT) Images

    International Nuclear Information System (INIS)

    Huang, V; Kohli, K

    2015-01-01

    Purpose: A new commercially available metal artifact reduction (MAR) software in computed tomography (CT) imaging was evaluated with phantoms in the presence of metals. The goal was to assess the ability of the software to restore the CT number in the vicinity of the metals without impacting the image quality. Methods: A Catphan 504 was scanned with a GE Optima RT 580 CT scanner (GE Healthcare, Milwaukee, WI) and the images were reconstructed with and without the MAR software. Both datasets were analyzed with Image Owl QA software (Image Owl Inc, Greenwich, NY). CT number sensitometry, MTF, low contrast, uniformity, noise and spatial accuracy were compared for scans with and without MAR software. In addition, an in-house made phantom was scanned with and without a stainless steel insert at three different locations. The accuracy of the CT number and metal insert dimension were investigated as well. Results: Comparisons between scans with and without MAR algorithm on the Catphan phantom demonstrate similar results for image quality. However, noise was slightly higher for the MAR algorithm. Evaluation of the CT number at various locations of the in-house made phantom was also performed. The baseline HU, obtained from the scan without metal insert, was compared to scans with the stainless steel insert at 3 different locations. The HU difference between the baseline scan versus metal scan was improved when the MAR algorithm was applied. In addition, the physical diameter of the stainless steel rod was over-estimated by the MAR algorithm by 0.9 mm. Conclusion: This work indicates with the presence of metal in CT scans, the MAR algorithm is capable of providing a more accurate CT number without compromising the overall image quality. Future work will include the dosimetric impact on the MAR algorithm

  4. Dual-source CT cardiac imaging: initial experience

    International Nuclear Information System (INIS)

    Johnson, Thorsten R.C.; Nikolaou, Konstantin; Wintersperger, Bernd J.; Rist, Carsten; Buhmann, Sonja; Reiser, Maximilian F.; Becker, Christoph R.; Leber, Alexander W.; Ziegler, Franz von; Knez, Andreas

    2006-01-01

    The relation of heart rate and image quality in the depiction of coronary arteries, heart valves and myocardium was assessed on a dual-source computed tomography system (DSCT). Coronary CT angiography was performed on a DSCT (Somatom Definition, Siemens) with high concentration contrast media (Iopromide, Ultravist 370, Schering) in 24 patients with heart rates between 44 and 92 beats per minute. Images were reconstructed over the whole cardiac cycle in 10% steps. Two readers independently assessed the image quality with regard to the diagnostic evaluation of right and left coronary artery, heart valves and left ventricular myocardium for the assessment of vessel wall changes, coronary stenoses, valve morphology and function and ventricular function on a three point grading scale. The image quality ratings at the optimal reconstruction interval were 1.24±0.42 for the right and 1.09±0.27 for the left coronary artery. A reconstruction of diagnostic systolic and diastolic images is possible for a wide range of heart rates, allowing also a functional evaluation of valves and myocardium. Dual-source CT offers very robust diagnostic image quality in a wide range of heart rates. The high temporal resolution now also makes a functional evaluation of the heart valves and myocardium possible. (orig.)

  5. Acute appendicitis in children: comparison of clinical diagnosis with ultrasound and CT imaging

    International Nuclear Information System (INIS)

    Karakas, S.P.; Guelfguat, M.; Springer, S.; Singh, S.P.; Leonidas, J.C.

    2000-01-01

    Background. There is strong evidence that imaging with ultrasound and CT can be of substantial diagnostic value in the diagnosis of acute appendicitis in children, but there is limited information of the impact of imaging on the management of these patients and its possible effect on surgical findings. Objective. We studied the impact of imaging in the management of acute appendicitis, in particular its effect on the rate of negative appendectomies and perforations. Patients and methods. We reviewed retrospectively the clinical records and imaging findings of 633 consecutive children and adolescents seen on an emergency basis with clinical suspicion of acute appendicitis. Two hundred seventy patients were operated upon on clinical evidence alone, while 360 were referred for US or CT, and occasionally both, because of doubtful clinical findings. Results. Acute appendicitis was found in 237 of those on clinical grounds alone, 68 of whom had perforation and related complications. Thus the rate of negative exploration and the rate of perforation were13 % and 29 %, respectively. One hundred eighty-two patients had preoperative US (sensitivity 74 %, specificity 94 %), 119 had CT (sensitivity 84 %, specificity 99 %), and 59 had both US and CT (sensitivity 75 %, specificity 100 %, but often with interpretation at variance with each other). The rate of negative appendectomy and perforation was 8 % and 23 %, respectively, for US, 5 % and 54 % for CT, and 9 % and 71 % when both examinations were performed. There is no statistical significance between the rates of diagnostic performance of US, CT, or their combination, nor between the negative appendectomy rates of each group, but the rate of perforation was significantly higher when CT was performed, alone or after US. Conclusion. The retrospective nature of the study prevents precise definition of the clinical characteristics and selection criteria for diagnostic examinations that may contribute to the management of children

  6. CT and MR imaging of high cervical intradural lipomas

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joo Hyeong; Choi, Woo Suk; Lee, Sun Wha; Lim, Jae Hoon; Leem, Woon; Kim, Gook Ki; Rhee, Bong Arm [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1988-04-15

    Intradural spinal lipoma occurs in less than 1% of all spinal cord tumors. It has been described at every level of the spinal canal, although its most common location is the cervicothoracic and thoracic region. However, lipoma located in the high cervical region is very unusual. We described two cases, a teenager and an adult, with progressive neurologic deficit from such a lipomatous tumor, which were evaluated by CT scanning and MR imaging.

  7. SPECT/CT imaging in general orthopedic practice.

    Science.gov (United States)

    Scharf, Stephen

    2009-09-01

    The availability of hybrid devices that combine the latest single-photon emission computed tomography (SPECT) imaging technology with multislice computed tomography (CT) scanning has allowed us to detect subtle, nonspecific abnormalities on bone scans and interpret them as specific focal areas of pathology. Abnormalities in the spine can be separated into those caused by pars fractures, facet joint arthritis, or osteophyte formation on vertebral bodies. Compression fractures can be distinguished from severe degenerative disease, both of which can cause intense activity across the spine on either planar or SPECT imaging. Localizing activity in patients who have had spinal fusion can provide tremendous insight into the causes of therapeutic failures. Infections of the spine now can be diagnosed with gallium SPECT/CT, despite the fact that gallium has long been abandoned because of its failure to detect spine infection on either planar or SPECT imaging. Small focal abnormalities in the feet and ankles can be localized well enough to make specific orthopedic diagnoses on the basis of their location. Moreover, when radiographic imaging provides equivocal or inadequate information, SPECT/CT can provide a road map for further diagnostic studies and has been invaluable in planning surgery. Our ability to localize activity within a bone or at an articular surface has allowed us to distinguish between fractures and joint disease. Increased activity associated with congenital anomalies, such as tarsal coalition and Bertolotti's syndrome have allowed us to understand the pathophysiology of these conditions, to confirm them as the cause of the patient's symptoms, and to provide information that is useful in determining appropriate clinical management. As our experience broadens, SPECT/CT will undoubtedly become an important tool in the evaluation and management of a wider variety of orthopedic patients.

  8. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Lyu, Kwang Yeul; Kim, Tae Hyung; Shin, Ji Yun

    2012-01-01

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  9. Cone-beam volume CT mammographic imaging: feasibility study

    Science.gov (United States)

    Chen, Biao; Ning, Ruola

    2001-06-01

    X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.

  10. Open source deformable image registration system for treatment planning and recurrence CT scans

    DEFF Research Database (Denmark)

    Zukauskaite, Ruta; Brink, Carsten; Hansen, Christian Rønn

    2016-01-01

    manually contoured eight anatomical regions-of-interest (ROI) twice on pCT and once on rCT. METHODS: pCT and rCT images were deformably registered using the open source software elastix. Mean surface distance (MSD) and Dice similarity coefficient (DSC) between contours were used for validation of DIR...

  11. Kinematic CT and MR imaging of the patellofemoral joint

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C.; Brossmann, J.; Heller, M. [Klinik fuer Radiologische Diagnostik, Christian-Albrechts-Universitaet, Kiel (Germany)

    1999-04-01

    Anterior knee pain is a frequently encountered orthopedic symptom and is often associated with patellofemoral malalignment, which may cause chondromalacia of the patella. The difficulty in determining the patellar position between 0 and 30 of knee flexion with a conventional axial radiographic examination is well known. The introduction of computed tomography (CT) and magnetic resonance (MR) imaging for the diagnosis of knee joint abnormalities has enabled assessment of the patellar position in this critical range. More recently, emphasis has been placed on dynamic visualization of patellar motion to detect an abnormal tracking pattern. The important influence of the quadriceps muscle on the patellar tracking pattern is well known and has been examined during active knee extension by the use of ultrafast CT, and motion-triggered and ultrafast MR imaging. This article provides an overview of the current status of kinematic CT and MR imaging in the diagnosis of patellofemoral alignment, its clinical implications, and future directions. (orig.) With 13 figs., 5 tabs., 47 refs.

  12. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  13. Solid models for CT/MR image display

    International Nuclear Information System (INIS)

    ManKovich, N.J.; Yue, A.; Kioumehr, F.; Ammirati, M.; Turner, S.

    1991-01-01

    Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. The authors have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the mode with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of >99.6 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents an accuracy study and discusses ways of assessing the quality of neurosurgical plans when 3-D models re made available as planning tools

  14. Application of CT perfusion imaging in radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Xia Guangrong; Liu Guimei; He Wen; Jin Guohua; Xie Ruming; Xu Yongxiang; Li Xiaobo; Li Xuebing

    2011-01-01

    Objective: To investigate the value of CT perfusion imaging in evaluation of therapeutic effect and prognosis in radiotherapy for lung cancer. Methods: Fifty-one cases of lung cancer who were unable or refused to be operated on, 36 males and 15 females, aged 37-80, underwent CT perfusion imaging, 29 of which only before radiotherapy and 22 before and after radiotherapy twice. The images were collected by cine dynamic scanning (5 mm/4 slices) and input into the GE AW4.0 workstation for data processing. The slice positions of CT imaging were determined according to the largest tumor size in CT scan. Regions of interest of tumor were drawn at the region corresponding to the original images of CT perfusion. Radiotherapy was performed after CT perfusion imaging. Relevant parameters, including blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface (PS) were calculated. The treatment response after radiotherapy was evaluated by RECIST. At 2 -4 weeks after the treatment, CT examination was conducted once more. Results: The tests of the 51 patients showed that the BV was 13.6 ml·100 g -1 , the BF was 129.5 ml·min -1 ·100 g -1 , the MTT was 9.1 s, and the PS was 10.0 ml· min -1 · 100 g -1 before radiotherapy. The tests of the 22 of the 51 patients showed that the values of BV and BF after radiotherapy were 7.6 ml· 100 g -1 and 97.8 ml·min -1 · 100 g -1 , respectively, both lower than those before radiotherapy (11.2 and 108.7 ml·min -1 ·100 g -1 , respectively), however, both not significantly (t=1.28, 0.40, P>0.05); and the values of MTT and PS after radiotherapy were 8.9 s and 7.8 ml·min -1 · 100 g -1 , respectively, both not significantly higher than those before radiotherapy (7.2 s and 6.8 ml· min -1 · 100 g -1 , respectively, t=-1.15, -0.57, P>0.05). The mean area of tumor after radiotherapy was 1189.6 mm 2 , significantly less than that before radiotherapy (1920.3 mm 2 , t=3.98, P<0.05). The MTT of the SCLC patients was 12

  15. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    International Nuclear Information System (INIS)

    Ireland, Rob H.; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-01-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 ± 0.80 mm and 4.96 ± 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 ± 1.22 mm and 4.96 ± 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy

  16. Preparing diagnostic 3D images for image registration with planning CT images

    International Nuclear Information System (INIS)

    Tracton, Gregg S.; Miller, Elizabeth P.; Rosenman, Julian; Chang, Sha X.; Sailer, Scott; Boxwala, Azaz; Chaney, Edward L.

    1997-01-01

    Purpose: Pre-radiotherapy (pre-RT) tomographic images acquired for diagnostic purposes often contain important tumor and/or normal tissue information which is poorly defined or absent in planning CT images. Our two years of clinical experience has shown that computer-assisted 3D registration of pre-RT images with planning CT images often plays an indispensable role in accurate treatment volume definition. Often the only available format of the diagnostic images is film from which the original 3D digital data must be reconstructed. In addition, any digital data, whether reconstructed or not, must be put into a form suitable for incorporation into the treatment planning system. The purpose of this investigation was to identify all problems that must be overcome before this data is suitable for clinical use. Materials and Methods: In the past two years we have 3D-reconstructed 300 diagnostic images from film and digital sources. As a problem was discovered we built a software tool to correct it. In time we collected a large set of such tools and found that they must be applied in a specific order to achieve the correct reconstruction. Finally, a toolkit (ediScan) was built that made all these tools available in the proper manner via a pleasant yet efficient mouse-based user interface. Results: Problems we discovered included different magnifications, shifted display centers, non-parallel image planes, image planes not perpendicular to the long axis of the table-top (shearing), irregularly spaced scans, non contiguous scan volumes, multiple slices per film, different orientations for slice axes (e.g. left-right reversal), slices printed at window settings corresponding to tissues of interest for diagnostic purposes, and printing artifacts. We have learned that the specific steps to correct these problems, in order of application, are: Also, we found that fast feedback and large image capacity (at least 2000 x 2000 12-bit pixels) are essential for practical application

  17. Semiautomatic segmentation of liver metastases on volumetric CT images

    International Nuclear Information System (INIS)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-01-01

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  18. The use of megavoltage CT (MVCT) images for dose recomputations

    International Nuclear Information System (INIS)

    Langen, K M; Meeks, S L; Poole, D O; Wagner, T H; Willoughby, T R; Kupelian, P A; Ruchala, K J; Haimerl, J; Olivera, G H

    2005-01-01

    Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation

  19. [Application of Low Dose Spiral CT in Diagnosing Impacted Teeth in Children and Adolescents].

    Science.gov (United States)

    Wang, Meng-tian; Li, Xue-sheng; Li, Kai-ming; Bao, Li; Ning, Gang

    2015-09-01

    [ABSTRACT] To determine the value of low dose spiral CT scanning in diagnosing impacted teeth of children and adolescents. A total of 153 children and adolescents with confirmed impacted teeth in West China Second University Hospital, Sichuan University were enrolled in this study. They were divided into 5 groups according to the different spiral CT scan parameters (tube current time product, scanning thickness and collimation value): Group A (n=30, 330 mAs, 6 X 0. 75 mm and 3. 0 mm), Group B (n=30, 140 mAs, 6 X 0. 75 mm and 3. 0 mm), Group C (n=30, 80 mAs, 6 X 0. 75 mm and 3. 0 mm), Group D (n=31, 80 mAs, 6 X 1. 50 mm and 5. 0 mm), and Group E (n=32, 50 mAs, 6 X 1. 50 mm and 5. 0 mm). There were no significant differences in general clinical features (P>0. 05) among the participants of the five groups. The phantoms were used to measure spatial resolution and contrast resolution of the scan images. Dose length product (DLP) was recorded during CT scanning for calculating effective dose (ED) of exposure. The quality of images was evaluated using a list of quality scoring criteria. (1) Under 330, 140, 80, 80 and 50 mAs, the images had a spatial resolution of 1.0 mm, with contrast resolution of 2. 0, 3. 0, 4. 5, 4. 5 and 6. 0 mm, respectively. (2) Significant differences in ED values were found among the five groups (F=1 064. 119, P=0. 000) and between every two of those groups (P0. 05). The diagnostic results of the spiral CT were consistent with those of orthodontic surgery. Low dose spiral CT scanning can meet the image quality requirements for diagnosing impacted teeth, minimizing radiation exposure effectively.

  20. Selecting optimal monochromatic level with spectral CT imaging for improving imaging quality in hepatic venography

    International Nuclear Information System (INIS)

    Sun Jun; Luo Xianfu; Wang Shou'an; Wang Jun; Sun Jiquan; Wang Zhijun; Wu Jingtao

    2013-01-01

    Objective: To investigate the effect of spectral CT monochromatic images for improving imaging quality in hepatic venography. Methods: Thirty patients underwent spectral CT examination on a GE Discovery CT 750 HD scanner. During portal phase, 1.25 mm slice thickness polychromatic images and optimal monochromatic images were obtained, and volume rendering and maximum intensity projection were created to show the hepatic veins respectively. The overall imaging quality was evaluated on a five-point scale by two radiologists. Inter-observer agreement in subjective image quality grading was assessed by Kappa statistics. Paired-sample t test were used to compare hepatic vein attenuation, hepatic parenchyma attenuation, CT value difference between the hepatic vein and the liver parenchyma, image noise, vein-to-liver contrast-to-noise ratio (CNR), the image quality score of hepatic venography between the two image data sets. Results: The monochromatic images at 50 keV were found to demonstrate the best CNR for hepatic vein.The hepatic vein attenuation [(329 ± 47) HU], hepatic parenchyma attenuation [(178 ± 33) HU], CT value difference between the hepatic vein and the liver parenchyma [(151 ± 33) HU], image noise (17.33 ± 4.18), CNR (9.13 ± 2.65), the image quality score (4.2 ± 0.6) of optimal monochromatic images were significantly higher than those of polychromatic images [(149 ± 18) HU], [(107 ± 14) HU], [(43 ±11) HU], 12.55 ± 3.02, 3.53 ± 1.03, 3.1 ± 0.8 (t values were 24.79, 13.95, 18.85, 9.07, 13.25 and 12.04, respectively, P < 0.01). In the comparison of image quality, Kappa value was 0.81 with optimal monochromatic images and 0.69 with polychromatic images. Conclusion: Monochromatic images of spectral CT could improve CNR for displaying hepatic vein and improve the image quality compared to the conventional polychromatic images. (authors)

  1. Improvement of image quality and dose management in CT fluoroscopy by iterative 3D image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, Oliver S.; Kupitz, Dennis; Powerski, Maciej; Mohnike, Konrad; Ricke, Jens [University Hospital Magdeburg, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Wybranski, Christian [University Hospital Magdeburg, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Cologne (Germany); Pech, Maciej [University Hospital Magdeburg, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Medical University of Gdansk, Second Department of Radiology, Gdansk (Poland); Amthauer, Holger [University Hospital Magdeburg, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Charite, Department of Nuclear Medicine, Berlin (Germany)

    2017-09-15

    The objective of this study was to assess the influence of an iterative CT reconstruction algorithm (IA), newly available for CT-fluoroscopy (CTF), on image noise, readers' confidence and effective dose compared to filtered back projection (FBP). Data from 165 patients (FBP/IA = 82/74) with CTF in the thorax, abdomen and pelvis were included. Noise was analysed in a large-diameter vessel. The impact of reconstruction and variables (e.g. X-ray tube current I) influencing noise and effective dose were analysed by ANOVA and a pairwise t-test with Bonferroni-Holm correction. Noise and readers' confidence were evaluated by three readers. Noise was significantly influenced by reconstruction, I, body region and circumference (all p ≤ 0.0002). IA reduced the noise significantly compared to FBP (p = 0.02). The effect varied for body regions and circumferences (p ≤ 0.001). The effective dose was influenced by the reconstruction, body region, interventional procedure and I (all p ≤ 0.02). The inter-rater reliability for noise and readers' confidence was good (W ≥ 0.75, p < 0.0001). Noise and readers' confidence were significantly better in AIDR-3D compared to FBP (p ≤ 0.03). Generally, IA yielded a significant reduction of the median effective dose. The CTF reconstruction by IA showed a significant reduction in noise and effective dose while readers' confidence increased. (orig.)

  2. Appearance and impact of post-operative intracranial clips and coils on whole-brain CT angiography and perfusion

    International Nuclear Information System (INIS)

    Roach, Cayce J.; Russell, Cheryl L.; Hanson, Eric H.; Bluett, Brent; Orrison, William W.

    2012-01-01

    Background: To evaluate the effect of vascular clips and endovascular coils placed for intracranial aneurysms and arteriovenous malformations on whole-brain computed tomography (CT) angiography and perfusion. Methods: A 320-detector row dynamic volume CT system imaged 11 patients following surgical placement of vascular clips or endovascular coils. The extent of clip and coil subtraction by automated software was evaluated using CT digital subtraction angiography and CT perfusion. Impact on CT perfusion values by retained intracranial devices was compared to age- and gender-matched controls. Results: Clip and coil subtraction on CT angiography was graded as good in 8 and moderate in 3 cases. A residual neck and additional aneurysm were noted in 1 of 11 patients. Post-procedural axial slice level CT perfusion values decreased in reliability with increasing proximity to the metallic devices secondary to beam hardening. However, the intracranial devices did not affect axial slice level CTP values of cerebral blood volume, cerebral blood flow and mean transit time outside of the level of the device. Time to peak values was globally decreased outside of the immediate vascular intervention region. Conclusions: Advances in CT technology have provided clinically useful subtraction of intracranial clips and coils. While CT perfusion values were altered in device subtraction areas and within beam hardening artifact areas; they can provide valuable postoperative information on whole-brain hemodynamics. In selected cases, the combination of CT angiography and whole-brain CT perfusion can offer an alternative to conventional angiography that is a more invasive option.

  3. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  4. CT and MR imaging of odontoid abnormalities: A pictorial review

    Directory of Open Access Journals (Sweden)

    Nishchint Jain

    2016-01-01

    Full Text Available Odontoid process is the central pillar of the craniovertebral junction. Imaging of this small structure continues to be a challenge for the radiologists due to complex bony and ligamentous anatomy. A wide range of developmental and acquired abnormalities of odontoid have been identified. Their accurate radiologic evaluation is important as different lesions have markedly different clinical course, patient management, and prognosis. This article seeks to provide knowledge for interpreting appearances of odontoid on computed tomography (CT and magnetic resonance imaging (MRI with respect to various disease processes, along with providing a quick review of the embryology and relevant anatomy.

  5. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.

    2009-01-01

    Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18 F-FDG and 123 I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children. (orig.)

  6. Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance

    International Nuclear Information System (INIS)

    Hasford, F.

    2015-01-01

    Fusion of medical images between different cross-sectional modalities is widely used, mostly where functional images are fused with anatomical data. Ultrasound has for some time now been the standard imaging technique used for treatment planning of prostate cancer cases. While this approach is laudable and has yielded some positive results, latest developments have been the integration of images from ultrasound and other modalities such as PET-CT to compliment missing properties of ultrasound images. This study has sought to enhance diagnosis and treatment of prostate cancers by developing MATLAB algorithms to fuse ultrasound and PET-CT images. The fused ultrasound-PET-CT image has shown to contain improved quality of information than the individual input images. The fused image has the property of reduced uncertainty, increased reliability, robust system performance, and compact representation of information. The objective of co-registering the ultrasound and PET-CT images was achieved by conducting performance evaluation of the ultrasound and PET-CT imaging systems, developing image contrast enhancement algorithm, developing MATLAB image fusion algorithm, and assessing accuracy of the fusion algorithm. Performance evaluation of the ultrasound brachytherapy system produced satisfactory results in accordance with set tolerances as recommended by AAPM TG 128. Using an ultrasound brachytherapy quality assurance phantom, average axial distance measurement of 10.11 ± 0.11 mm was estimated. Average lateral distance measurements of 10.08 ± 0.07 mm, 20.01 ± 0.06 mm, 29.89 ± 0.03 mm and 39.84 ± 0.37 mm were estimated for the inter-target distances corresponding to 10 mm, 20 mm, 30 mm and 40 mm respectively. Volume accuracy assessment produced measurements of 3.97 cm 3 , 8.86 cm 3 and 20.11 cm 3 for known standard volumes of 4 cm 3 , 9 cm 3 and 20 cm 3 respectively. Depth of penetration assessment of the ultrasound system produced an estimate of 5.37 ± 0.02 cm

  7. Coronary imaging techniques with emphasis on CT and MRI

    International Nuclear Information System (INIS)

    Lederlin, Mathieu; Latrabe, Valerie; Corneloup, Olivier; Cochet, Hubert; Montaudon, Michel; Laurent, Francois; Thambo, Jean-Benoit

    2011-01-01

    Coronary artery imaging in children is challenging, with high demands both on temporal and spatial resolution due to high heart rates and smaller anatomy. Although invasive conventional coronary angiography remains the benchmark technique, over the past 10 years, CT and MRI have emerged in the field of coronary imaging. The choice of hardware is important. For CT, the minimum requirement is a 64-channel scanner. The temporal resolution of the scanner is most important for optimising image quality and minimising radiation dose. Manufacturers have developed several modes of electrocardiographic (ECG) triggering to facilitate dose reduction. Recent technical advances have opened new possibilities in MRI coronary imaging. As a non-ionising radiation technique, MRI is of great interest in paediatric imaging. It is currently recommended in centres with appropriate expertise for the screening of patients with suspected congenital coronary anomalies. However, MRI is still not feasible in infants. This review describes and discusses the technical requirements and the pros and cons of all three techniques. (orig.)

  8. Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based Iterative Reconstruction Method using Coordinate Descent Optimization for CT Imaging Investigations.

    Science.gov (United States)

    Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael

    2018-06-01

    To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric

  9. Occipital condyle fracture and ligament injury: imaging by CT

    International Nuclear Information System (INIS)

    Bloom, A.I.; Neeman, Z.; Floman, Y.; Gomori, J.; Bar-Ziv, J.

    1996-01-01

    The true incidence of fracture of the occipital condyles is unknown. It may be associated with instability at the craniocervical joint. CT is the modality of choice for the demonstration of these fractures, but its use for imaging of the associated ligament injury has not been reported. In order to demonstrate normal anatomy, occipital condyle fracture and ligament injury, and to estimate the incidence of this lesion, 21 children and young adults with high-energy blunt craniocervical injury were examined prospectively. Thin-slice, axial, contiguous, CT was performed from the base of C2 to above the foramen magnum. Bone and soft tissue windows and coronal, sagittal, and curvilinear 2D reconstructions were performed. Five occipital condyle fractures were identified in four patients (19 %), with demonstration of alar ligament injury in two cases and local hematoma in one. In four, artifacts or rotation precluded assessment of ligaments. In all remaining cases normal bone and ligament anatomy was demonstrated. Fracture of the occipital condyles following craniocervical injury is not uncommon in children and young adults. Normal bone and ligament anatomy and pathology can be safely and clearly demonstrated in seriously injured patients and others using this CT technique. Increased awareness of this entity and a low threshold for performing CT should avoid the potentially serious consequences of a missed diagnosis. (orig.). With 8 figs., 2 tabs

  10. Three dimensional CT imaging of ossicular chain: a preliminary study

    International Nuclear Information System (INIS)

    Hu Chunhong; Zhong Shenbin; Fu Yindi; Zhu Wei; Wang Xueyuan; Chen Jianhua; Ding Yi

    2001-01-01

    Objective: To analysis the features of normal and abnormal ossicular chain in three dimensional images and asses the best parameters and its usefulness in diagnosis and treatment of chronic otitis media (COM). Methods: All patients, including 43 patients with normal ears and 24 ears with COM, were examined using spiral CT with inner ear software, 1-mm slice width and 1 pitch. SSD method was used in three dimensional reconstruction and the threshold was 100-300 Hu. Results: In normal cases, Malleus, incus, stapes crura, incudomalleal joints and incudostapedial joints were displayed well, but stapes footplate unsatisfactorily. The disruption of the ossicular chain showed in three-dimensional images in cases of chronic otitis media was in accord with that seen in the operation. Conclusion: It is very important for imaging with high quality through selecting proper parameters, and three-dimensional image can provide valuable information for surgery

  11. Dynamic CT perfusion image data compression for efficient parallel processing.

    Science.gov (United States)

    Barros, Renan Sales; Olabarriaga, Silvia Delgado; Borst, Jordi; van Walderveen, Marianne A A; Posthuma, Jorrit S; Streekstra, Geert J; van Herk, Marcel; Majoie, Charles B L M; Marquering, Henk A

    2016-03-01

    The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast results. However, the size of CTP datasets makes transfers to cloud infrastructures time-consuming and therefore not suitable in acute situations. To reduce this transfer time, this work proposes a fast and lossless compression algorithm for CTP data. The algorithm exploits redundancies in the temporal dimension and keeps random read-only access to the image elements directly from the compressed data on the GPU. To the best of our knowledge, this is the first work to present a GPU-ready method for medical image compression with random access to the image elements from the compressed data.

  12. Infective endocarditis detection through SPECT/CT images digital processing

    Science.gov (United States)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  13. CT imaging vs. traditional radiographic imaging for evaluating Harris Lines in tibiae

    DEFF Research Database (Denmark)

    Primeau, Charlotte; Jakobsen, Lykke Schrøder; Lynnerup, Niels

    2016-01-01

    This paper is the first to systematically investigate computer tomography (CT) images vs. ordinary flat plane radiography for evaluating Harris Lines (HL) on tibiae. Harris Lines are traditionally investigated using radiographic images and recorded as either present or absent, or by counting...

  14. Clinical value of FDG PET/CT in the diagnosis of suspected recurrent ovarian cancer: is there an impact of FDG PET/CT on patient management?

    International Nuclear Information System (INIS)

    Bilici, Ahmet; Ustaalioglu, Bala Basak Oven; Seker, Mesut; Salepci, Taflan; Gumus, Mahmut; Canpolat, Nesrin; Tekinsoy, Bulent

    2010-01-01

    The aim of this study was to evaluate the clinical value of FDG PET/CT in patients with suspected ovarian cancer recurrence as compared with diagnostic CT, and to assess the impact of the results of FDG PET/CT on treatment planning. Included in this retrospective study were 60 patients with suspected recurrent ovarian cancer who had previously undergone primary debulking surgery and had been treated with adjuvant chemotherapy. Diagnostic CT and FDG PET/CT imaging were performed for all patients as clinically indicated. The changes in the clinical management of patients according to the results of FDG PET/CT were also analysed. FDG PET/CT was performed in 21 patients with a previously negative or indeterminate diagnostic CT scan, but an elevated CA-125 level, and provided a sensitivity of 95% in the detection of recurrent disease. FDG PET/CT revealed recurrent disease in 19 patients. In 17 of 60 patients, the indication for FDG PET/CT was an elevated CA-125 level and an abnormal diagnostic CT scan to localize accurately the extent of disease. FDG PET/CT scans correctly identified recurrent disease in 16 of the 17 patients, a sensitivity of 94.1%. Moreover, FDG PET/CT was performed in 18 patients with clinical symptoms of ovarian cancer recurrence, an abnormal diagnostic CT scan, but a normal CA-125 level. In this setting, FDG PET/CT correctly confirmed recurrent disease in seven patients providing a sensitivity of 100% in determining recurrence. In four patients, FDG PET/CT was carried out for the assessment of treatment response. Three of four scans were classified as true-negative indicating a complete response. In the other patient, FDG PET/CT identified progression of disease. In total, 45 (75%) of the 60 patients had recurrent disease, in 14 (31.1%) documented by histopathology and in 31 (68.9%) on clinical follow-up, while 15 (25%) had no evidence of recurrent disease. The overall sensitivity, specificity, accuracy, and positive and negative predictive value

  15. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    International Nuclear Information System (INIS)

    Zhen, Xin; Chen, Haibin; Zhou, Linghong; Yan, Hao; Jiang, Steve; Jia, Xun; Gu, Xuejun; Mell, Loren K; Yashar, Catheryn M; Cervino, Laura

    2015-01-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses. (paper)

  16. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    Science.gov (United States)

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  17. The impact of the PET/CT in comparison with the same day contrast enhanced CT in breast cancer management

    International Nuclear Information System (INIS)

    Piperkova, E.; Raphael, B.; Altinyay, M.; Castellon, I.; Libes, R.; Abdel-Dayem, H.

    2006-01-01

    Full text: The aim of this study is to evaluate the impact of 18F-fluorodeoxyglucose FDG positron emission tomography with fused computerized tomography (PET/CT) in comparison with the same day contrast enhanced CT (CE-CT) in the breast cancer (BC) management. 68 studies in 48 BC patients, 8 for initial and 60 for restaging disease, after surgery, radiation/chemotherapy, for radiation therapy planning or evaluating treatment response were included. All patients underwent whole body PET/CT for diagnostic purposes followed by CE-CT diagnostic scans of selected body regions. PET/CT was performed approximately 90 minutes following 10-15 mCi of 18F-FDG on a GE Discovery PET/CT system. CT part acquired with low dose X-ray for localization and attenuation correction. The CE-CT was performed according to departmental protocol. Out of a total of 235 lesions in 68 PET/CT and CE-CT studies, 189 were concordant between PET/CT and CE-CT. However, there were 46 discordant lesions, which were verified by either follow-up or biopsy. PET/CT correctly identified 25 (True Positive-TP). CE-CT identified 2 TP lesions missed by PET/CT (False negative): one liver metastasis with necrosis, which is a known non-avid FDG, the other was a missed abdominal metastatic node, which did not change staging or treatment. PET/CT incorrectly identified 2 lesions (False Positive) while CE-CT incorrectly identified 17 FP. For evaluating treatment response in 40 follow up studies PET/CT reported complete response in 15, partial response in 11, stable disease in 2, progression in 5, and free of disease following surgery - in 7. The CE-CT described progression of the disease in 1 PET/CT true negative study and no progression in 2 TP PET/CT studies. In this study, PET/CT played more important role than CECT scans alone and provided an impact on the management of BC patients

  18. Peritoneal manifestations of fascioliasis on CT images: a new observation.

    Science.gov (United States)

    Song, Kyoung Doo; Lim, Jae Hoon; Kim, Mi Jeong; Jang, Yun Jin; Kim, Jae Woon; Cho, Seung Hyun; Kwon, Jung Hyeok

    2013-08-01

    To describe peritoneal manifestations of fascioliasis on CT. We reviewed CT images in 31 patients with fascioliasis confirmed by enzyme-linked immunosorbent assay (ELISA) (n = 24) or surgery (n = 7). Image analyses were performed to identify hepatic, biliary, and peritoneal abnormalities. Hepatic abnormalities were seen in 28 (90.3 %) of the 31 patients. The most common finding was caves sign, which was present in 25 (80.1 %) patients. Three patients (9.7 %) presented with biliary abnormalities exhibiting dilatation and enhancing wall thickening of the bile duct, wall thickening of the gallbladder, and elongated structures in the bile duct or gallbladder. Peritoneal abnormalities were seen in 14 (45.2 %) of the 31 patients. The most common peritoneal abnormality was mesenteric or omental infiltration, which was seen in 9 (29.0 %) patients. Other peritoneal findings included lymph node enlargement (n = 7), ascites (n = 7), thickening of ligamentum teres (n = 2), and peritoneal mass (n = 2). Peritoneal manifestations of fascioliasis are relatively common, and CT findings include mesenteric or omental infiltration, lymph node enlargement, ascites, thickening of the ligamentum teres, and peritoneal masses.

  19. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Siva, Shankar [Department of Radiation Oncology, Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3052 (Australia); Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J. [Centre for Cancer Imaging, Peter MacCallum Cancer Centre and Department of Medicine, University of Melbourne, Melbourne VIC 3002 (Australia)

    2014-01-15

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant

  20. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles

    International Nuclear Information System (INIS)

    Kipritidis, John; Keall, Paul J.; Siva, Shankar; Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J.

    2014-01-01

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with 68 Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V HU ) or Jacobian determinant of deformation (V Jac ). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV HU and ρV Jac ) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ m = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d 20 for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV HU ) with σ m = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d 20 ⩽ 0.68, with r ¯ =0.42±0.16 and d ¯ 20 =0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r ¯ and d ¯ 20 (p ¯ than for unscaled

  1. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.

  2. Investigating the effect of longitudinal micro-CT imaging on tumour growth in mice

    Energy Technology Data Exchange (ETDEWEB)

    Foster, W Kyle; Ford, Nancy L, E-mail: nlford@ryerson.ca [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)

    2011-01-21

    The aim of this study is to determine the impact of longitudinal micro-CT imaging on the growth of B16F1 tumours in C57BL/6 mice. Sixty mice received 2 x 10{sup 5} B16F1 cells subcutaneously in the hind flank and were divided into control (no scan), 'low-dose' (80 kVp, 70 mA, 8 s, 0.07 Gy), 'medium-dose' (80 kVp, 50 mA, 30 s, 0.18 Gy) and 'high-dose' (80 kVp, 50 mA, 50 s, 0.30 Gy) groups. All imaging was performed on a fast volumetric micro-CT scanner (GE Locus Ultra, London, Canada). Each mouse was imaged on days 4, 8, 12 and 16. After the final imaging session, each tumour was excised, weighed on an electronic balance, imaged to obtain the final tumour volume and processed for histology. Final tumour volume was used to evaluate the impact of longitudinal micro-CT imaging on the tumour growth. An ANOVA indicated no statistically significant difference in tumour volume (p = 0.331, {alpha} = {beta} = 0.1) when discriminating against a treatment-sized effect. Histological samples revealed no observable differences in apoptosis or cell proliferation. We conclude that four imaging sessions, using standard protocols, over the course of 16 days did not cause significant changes in final tumour volume for B16F1 tumours in female C57BL/6 mice (ANOVA, {alpha} = {beta} = 0.1, p = 0.331).

  3. Investigating the effect of longitudinal micro-CT imaging on tumour growth in mice

    International Nuclear Information System (INIS)

    Foster, W Kyle; Ford, Nancy L

    2011-01-01

    The aim of this study is to determine the impact of longitudinal micro-CT imaging on the growth of B16F1 tumours in C57BL/6 mice. Sixty mice received 2 x 10 5 B16F1 cells subcutaneously in the hind flank and were divided into control (no scan), 'low-dose' (80 kVp, 70 mA, 8 s, 0.07 Gy), 'medium-dose' (80 kVp, 50 mA, 30 s, 0.18 Gy) and 'high-dose' (80 kVp, 50 mA, 50 s, 0.30 Gy) groups. All imaging was performed on a fast volumetric micro-CT scanner (GE Locus Ultra, London, Canada). Each mouse was imaged on days 4, 8, 12 and 16. After the final imaging session, each tumour was excised, weighed on an electronic balance, imaged to obtain the final tumour volume and processed for histology. Final tumour volume was used to evaluate the impact of longitudinal micro-CT imaging on the tumour growth. An ANOVA indicated no statistically significant difference in tumour volume (p = 0.331, α = β = 0.1) when discriminating against a treatment-sized effect. Histological samples revealed no observable differences in apoptosis or cell proliferation. We conclude that four imaging sessions, using standard protocols, over the course of 16 days did not cause significant changes in final tumour volume for B16F1 tumours in female C57BL/6 mice (ANOVA, α = β = 0.1, p = 0.331).

  4. Evaluation of video-printer images as secondary CT images for clinical use

    International Nuclear Information System (INIS)

    Doi, K.; Rubin, J.

    1983-01-01

    Video-printer (VP) images of 24 abnormal views from a body CT scanner were made. Although the physical quality of printer images was poor, a group of radiologists and clinicians found that VP images are adequate to confirm the lesion described in the radiology report. The VP images can be used as secondary images, and they can be attached to a report as a part of the radiology service to increase communication between radiologists and clinicians and to prevent the loss of primary images from the radiology file

  5. Automatic segmentation of lumbar vertebrae in CT images

    Science.gov (United States)

    Kulkarni, Amruta; Raina, Akshita; Sharifi Sarabi, Mona; Ahn, Christine S.; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.

  6. Phantom-based standardization of CT angiography images for spot sign detection.

    Science.gov (United States)

    Morotti, Andrea; Romero, Javier M; Jessel, Michael J; Hernandez, Andrew M; Vashkevich, Anastasia; Schwab, Kristin; Burns, Joseph D; Shah, Qaisar A; Bergman, Thomas A; Suri, M Fareed K; Ezzeddine, Mustapha; Kirmani, Jawad F; Agarwal, Sachin; Shapshak, Angela Hays; Messe, Steven R; Venkatasubramanian, Chitra; Palmieri, Katherine; Lewandowski, Christopher; Chang, Tiffany R; Chang, Ira; Rose, David Z; Smith, Wade; Hsu, Chung Y; Liu, Chun-Lin; Lien, Li-Ming; Hsiao, Chen-Yu; Iwama, Toru; Afzal, Mohammad Rauf; Cassarly, Christy; Greenberg, Steven M; Martin, Renee' Hebert; Qureshi, Adnan I; Rosand, Jonathan; Boone, John M; Goldstein, Joshua N

    2017-09-01

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion.

  7. Phantom-based standardization of CT angiography images for spot sign detection

    International Nuclear Information System (INIS)

    Morotti, Andrea; Rosand, Jonathan; Romero, Javier M.; Jessel, Michael J.; Vashkevich, Anastasia; Schwab, Kristin; Greenberg, Steven M.; Hernandez, Andrew M.; Boone, John M.; Burns, Joseph D.; Shah, Qaisar A.; Bergman, Thomas A.; Suri, M.F.K.; Ezzeddine, Mustapha; Kirmani, Jawad F.; Agarwal, Sachin; Hays Shapshak, Angela; Messe, Steven R.; Venkatasubramanian, Chitra; Palmieri, Katherine; Lewandowski, Christopher; Chang, Tiffany R.; Chang, Ira; Rose, David Z.; Smith, Wade; Hsu, Chung Y.; Liu, Chun-Lin; Lien, Li-Ming; Hsiao, Chen-Yu; Iwama, Toru; Afzal, Mohammad Rauf; Qureshi, Adnan I.; Cassarly, Christy; Hebert Martin, Renee; Goldstein, Joshua N.

    2017-01-01

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p < 0.001). All spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion. (orig.)

  8. Phantom-based standardization of CT angiography images for spot sign detection

    Energy Technology Data Exchange (ETDEWEB)

    Morotti, Andrea; Rosand, Jonathan [Harvard Medical School, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Romero, Javier M. [Harvard Medical School, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, Neuroradiology Service, Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Jessel, Michael J.; Vashkevich, Anastasia; Schwab, Kristin; Greenberg, Steven M. [Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Hernandez, Andrew M.; Boone, John M. [University of California Davis, Department of Radiology, Sacramento, CA (United States); Burns, Joseph D. [Lahey Hospital and Medical Center, Department of Neurology, Burlington, MA (United States); Shah, Qaisar A. [Abington Memorial Hospital, Abington, PA (United States); Bergman, Thomas A. [Hennepin County Medical Center, Minneapolis, MN (United States); Suri, M.F.K. [St. Cloud Hospital, St. Cloud, MN (United States); Ezzeddine, Mustapha [University of Minnesota, Minneapolis, MN (United States); Kirmani, Jawad F. [JFK Medical Center, Stroke and Neurovascular Center, Edison, NJ (United States); Agarwal, Sachin [Columbia University Medical Center, New York, NY (United States); Hays Shapshak, Angela [University of Alabama at Birmingham, Birmingham, AL (United States); Messe, Steven R. [University of Pennsylvania, Philadelphia, PA (United States); Venkatasubramanian, Chitra [Stanford University, Stanford, CA (United States); Palmieri, Katherine [The University of Kansas Health System, Kansas City, KS (United States); Lewandowski, Christopher [Henry Ford Hospital, Detroit, MI (United States); Chang, Tiffany R. [University of Texas Medical School, Houston, TX (United States); Chang, Ira [Colorado Neurological Institute, Swedish Medical Center, Englewood, CO (United States); Rose, David Z. [Tampa General Hospital, University of South Florida College of Medicine, Tampa, FL (United States); Smith, Wade [UCSF Medical Center, San Francisco, CA (United States); Hsu, Chung Y.; Liu, Chun-Lin [China Medical University Hospital, Taichung (China); Lien, Li-Ming; Hsiao, Chen-Yu [Shin Kong Wu Ho-Su Memorial Hospital, Taipei (China); Iwama, Toru [Gifu University Hospital, Gifu (Japan); Afzal, Mohammad Rauf; Qureshi, Adnan I. [University of Minnesota, Zeenat Qureshi Stroke Research Center, Minneapolis, MN (United States); Cassarly, Christy; Hebert Martin, Renee [Medical University of South Carolina, Department of Public Health Sciences, Charleston, SC (United States); Goldstein, Joshua N. [Harvard Medical School, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA (United States); Collaboration: ATACH-II and NETT Investigators

    2017-09-15

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p < 0.001). All spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion. (orig.)

  9. The clinical impact of {sup 18}F-FDG PET/CT in extracranial pediatric germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Adam; Vali, Reza; Marie, Eman; Shammas, Amer [The Hospital for Sick Children and University of Toronto, Department of Medical Imaging, Nuclear Medicine, Toronto, ON (Canada); Shaikh, Furqan [The Hospital for Sick Children and University of Toronto, Division of Haematology and oncology, Toronto, ON (Canada)

    2017-10-15

    Extracranial germ cell tumors are an uncommon pediatric malignancy with limited information on the clinical impact of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in the literature. The purpose of this study was to evaluate and compare the clinical impact on management of {sup 18}F-FDG PET/CT with diagnostic computed tomography (CT) in pediatric extracranial germ cell tumor. The list of {sup 18}F-FDG PET/CT performed for extracranial germ cell tumor between May 2007 and November 2015 was obtained from the nuclear medicine database. {sup 18}F-FDG PET/CT and concurrent diagnostic CT were obtained and independently reviewed. Additionally, the patients' charts were reviewed for duration of follow-up and biopsy when available. The impact of {sup 18}F-FDG PET/CT compared with diagnostic CT on staging and patient management was demonstrated by chart review, imaging findings and follow-up studies. During the study period, 9 children (5 males and 4 females; age range: 1.6-17 years, mode age: 14 years) had 11 {sup 18}F-FDG PET/CT studies for the evaluation of germ cell tumor. Diagnostic CTs were available for comparison in 8 patients (10 {sup 18}F-FDG PET/CT studies). The average interval between diagnostic CT and PET/CT was 7.2 days (range: 0-37 days). In total, five lesions concerning for active malignancy were identified on diagnostic CT while seven were identified on PET/CT. Overall, {sup 18}F-FDG PET/CT resulted in a change in management in 3 of the 9 patients (33%). {sup 18}F-FDG PET/CT had a significant impact on the management of pediatric germ cell tumors in this retrospective study. Continued multicenter studies are required secondary to the rarity of this tumor to demonstrate the benefit of {sup 18}F-FDG PET/CT in particular clinical scenarios. (orig.)

  10. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    International Nuclear Information System (INIS)

    Poortman, Pieter; Lohle, Paul N.M.; Schoemaker, Cees M.; Cuesta, Miguel A.; Oostvogel, Henk J.M.; Lange-de Klerk, Elly S.M. de; Hamming, Jaap F.

    2010-01-01

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  11. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Poortman, Pieter [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: ppoortman@wlz.nl; Lohle, Paul N.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: plohle@elisabeth.nl; Schoemaker, Cees M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: mcschoemaker@elisabeth.nl; Cuesta, Miguel A. [Department of Surgery, VU Medical Centre, Amsterdam (Netherlands)], E-mail: ma.cuesta@vumc.nl; Oostvogel, Henk J.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: h.oostvogel@elisabeth.nl; Lange-de Klerk, Elly S.M. de [Department of Epidemiology and Biostatistics, VU Medical Centre, Amsterdam (Netherlands)], E-mail: esm.delange@vumc.nl; Hamming, Jaap F. [Department of Surgery, Leiden University Medical Centre (Netherlands)], E-mail: j.f.hamming@lumc.nl

    2010-04-15

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  12. PET/CT imaging: The incremental value of assessing the glucose metabolic phenotype and the structure of cancers in a single examination

    International Nuclear Information System (INIS)

    Czernin, Johannes; Benz, Matthias R.; Allen-Auerbach, Martin S.

    2010-01-01

    PET/CT with the glucose analogue FDG is emerging as the most important diagnostic imaging tool in oncology. More than 2000 PET/CT scanners are operational worldwide and its unique role for diagnosing, staging, restaging and therapeutic monitoring in cancer is undisputed. Studies conducted in thousands of cancer patients have clearly indicated that the combination of molecular PET with anatomical CT imaging provides incremental diagnostic value over PET or CT alone. State of the art imaging protocols combine fully diagnostic CT scans with quality whole body PET surveys. The current review briefly describes the biological alterations of cancer cells that result in their switch to a strongly glycolytic phenotype. Different whole body imaging protocols are discussed. We summarize the evidence for the incremental value of PET/CT over CT and PET alone using imaging of sarcoma as an example. Following this section we discuss the performance of FDG-PET/CT imaging for staging, restaging and monitoring of head and neck cancer, solitary lung nodules and lung cancer, breast cancer, colorectal cancer, lymphoma and unknown primary tumors. Finally, the recently emerging evidence of a substantial impact of PET/CT imaging on patient management is presented.

  13. Feasibility and preliminary results of SPECT/CT arthrography of the wrist in comparison with MR arthrography in patients with suspected ulnocarpal impaction

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Klaus [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland); Kantonsspital Luzern, Roentgeninstitut/Nuklearmedizin, Luzern (Switzerland); Steurer-Dober, Isabelle; Huellner, Martin W.; Sol Perez Lago, Maria del; Veit-Haibach, Patrick; Tornquist, Katharina [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland); Silva, Angela J. da [Advanced Molecular Imaging, Philips Healthcare, San Jose, CA (United States); Bodmer, Elvira; Wartburg, Urs von; Hug, Urs [Lucerne Cantonal Hospital, Division of Hand and Plastic Surgery, Lucerne (Switzerland)

    2014-03-15

    To evaluate the feasibility and performance of SPECT/CT arthrography of the wrist in comparison with MR arthrography in patients with suspected ulnocarpal impaction. This prospective study included 28 wrists of 27 patients evaluated with SPECT/CT arthrography and MR arthrography. Iodine contrast medium and gadolinium were injected into the distal radioulnar and midcarpal joints. Late-phase SPECT/CT was performed 3.5 h after intravenous injection of approximately 650 MBq {sup 99m}Tc-DPD. MR and SPECT/CT images were separately reviewed in relation to bone marrow oedema, radionuclide uptake, and tears in the scapholunate (SL) and lunotriquetral (LT) ligaments and triangular fibrocartilage complex (TFCC), and an overall diagnosis of ulnar impaction. MR, CT and SPECT/CT imaging findings were compared with each other, with the surgical findings in 12 patients and with clinical follow-up. The quality of MR arthrography and SPECT/CT arthrography images was fully diagnostic in 23 of 28 wrists (82 %) and 25 of 28 wrists (89 %), respectively. SPECT/CT arthrography was not diagnostic for ligament lesions due to insufficient intraarticular contrast in one wrist. MR and SPECT/CT images showed concordant findings regarding TFCC lesions in 22 of 27 wrists (81 %), SL ligament in 22 of 27 wrists (81 %) and LT ligament in 23 of 27 wrists (85 %). Bone marrow oedema on MR images and scintigraphic uptake were concordant in 21 of 28 wrists (75 %). MR images showed partial TFCC defects in four patients with normal SPECT/CT images. MR images showed bone marrow oedema in 4 of 28 wrists (14 %) without scintigraphic uptake, and scintigraphic uptake was present without MR bone marrow oedema in three wrists (11 %). Regarding diagnosis of ulnar impaction the concordance rate between CT and SPECT/CT was 100 % and reached 96 % (27 of 28) between MR and SPECT/CT arthrography. The sensitivity and specificity of MR, CT and SPECT/CT arthrography were 93 %, 100 % and 100 %, and 93 %, 93 % and 93

  14. 90Y microsphere therapy: does 90Y PET/CT imaging obviate the need for 90Y Bremsstrahlung SPECT/CT imaging?

    Science.gov (United States)

    Zade, Anand A; Rangarajan, Venkatesh; Purandare, Nilendu C; Shah, Sneha A; Agrawal, Archi R; Kulkarni, Suyash S; Shetty, Nitin

    2013-11-01

    Transarterial radioembolization using Y microspheres is a novel therapeutic option for inoperable hepatic malignancies. As these spheres are radiolucent, real-time assessment of their distribution during the infusion process under fluoroscopic guidance is not possible. Bremsstrahlung radiations arising from 90Y have conventionally been used for imaging its biodistribution. Recent studies have proved that sources of 90Y also emit positrons, which can further be used for PET/computed tomography (CT) imaging. This study aimed to assess the feasibility of 90Y PET/CT imaging in evaluating microsphere distributions and to compare its findings with those of Bremsstrahlung imaging. Thirty-five sessions of 90Y microsphere transarterial radioembolization were performed on 30 patients with hepatic malignancies. 90Y PET/CT imaging was performed within 3 h of therapy. Bremsstrahlung imaging was also performed for each patient. The imaging findings were compared for concordance in the distribution of microspheres. Exact one-to-one correspondence between 90Y PET/CT imaging and 90Y Bremsstrahlung imaging was observed in 97.14% of cases (i.e. in 34/35 cases). Discordance was observed only in one case in which 90Y PET/CT imaging resolved the microsphere uptake in the inferior vena cava tumor thrombus, which was, however, not visualized on Bremsstrahlung imaging. There is good concordance in the imaging findings of 90Y PET/CT and 90Y Bremsstrahlung imaging. 90Y PET/CT imaging scores over the conventionally used Bremsstrahlung imaging in terms of better resolution, ease of technique, and comparable image acquisition time. This makes it a preferred imaging modality for assessment of the distribution of 90Y microspheres.

  15. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  16. Has F.D.G. PET/CT an impact on the management of patients with anal carcinoma?

    International Nuclear Information System (INIS)

    Vercellino, L.; Nataf, V.; Kerrou, K.; Huchet, V.; Pascal, O.; Montravers, F.; Talbot, J.N.; De Parades, V.; Bauer, P.; Touboul, E.

    2010-01-01

    Purpose: To evaluate the impact of F.D.G. PET/C Ton the management of patients referred for the staging and/or the follow-up of anal carcinoma, and PET/CT on patient management. Patients and methods: We included patients referred to our department for anal carcinoma whose therapeutic management was evaluable thanks to follow-up data during at least 6 months. Results: Data of 44 patients were analysed: 22 had PET/CT for initial staging and 36 during follow-up. PET/CT had impact in nine patients out of 44 (20%) and it was relevant in eight of them. Conclusion: F.D.G. PET/CT is an accurate imaging modality in anal cancer, its impact on patient management is more obvious when persistence or recurrence of disease is suspected. (authors)

  17. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  18. CT and MR imaging of closed head trauma

    International Nuclear Information System (INIS)

    Park, Byung Moon; Kim, Wan Jin; Kim, Dae Ho; Lee, Hae Kyung; Chung, Moo Chan; Kwon, Kui Hyang; Kim, Ki Jeong

    1990-01-01

    The distribution and extent of traumatic lesions were evaluated with MR imaging in 40 patients with closed head injuries. The primary intraaxial lesions were classified into four main types, according to their topographical distribution within the brain ; cortical contusion (54%), diffuse axonal injury (35%), subcortical gray matter injury (4%), primary brain stem injury (7%). MR was found to be superior to CT and to be very useful in the detection of traumatic head lesions and T2WI were most useful for lesion detection. But T1WI proved to be also useful for detection of hemorrhage and anatomical localization

  19. CT imaging features of tuberculous spondylitis in children

    International Nuclear Information System (INIS)

    Song Min; Liu Wen; Fang Weijun; Wang Fukang; Li Ziping

    2009-01-01

    Objective: To investigate CT imaging features of tuberculous spondylitis in children. Methods: The CT imagings of two groups of patients with Tuberculous Spondylitis between January 2004 and March 2008 were retrospectively reviewed. One group included 28 children from 0 to 14 years old. Another group included 159 adults. All the patients were diagnosed as tuberculous spondylitis by pathology or biopsy, or by anti-turboelectric therapy. The CT imagings of the two groups were read retrospectively, including infections of vertebras and its appendix, the proportion of the total length of paravertebral abscess to the height of relative vertebra, the information of paravertebral abscess and dura mate of spinal cord and nerve root compression. Results The ratio of kyphosis in children group was 75% (21/28), higher than that in adults'. Tuberculous spondylitis in children was most often involved thoracic vertebra (53.7%,51/95). In children, involvement was more often seen than that of cervical vertebra and lumbar. The ratio of tuberculous spondylitis of children's cervical vertebrae was 10.5% (10/95)and of lumbar was 31.6% (30/95, while in adults that of cervical vertebrae was 3.3% (16/479)and of lumbar was 44.5% (213/479). There was statistical difference between them. The percentages of central type of tuberculous vertebral osteitis in chlidren was 57.1% (16/28)and was different with that in adults'(P=0.001 0.05). The incidence of dura mate of spinal cord or nerve root compression in children was 78.6%(22/28), much higher than that in adults (49.7%(79/159), P=0.005 <0.05). Conclusion: Special features of tuberculous spondylitis in childrencan be observed on CT imaging, kyphosis is often seen. The incidence of tuberculous spondylitis of thoracic vertebra and cervical vertebrae is high, central type of tuberculous vertebral osteitis in children is more popular than that in adults, but there is higher ratio of dura mate of spinal cord or nerve root compression in children

  20. Metastatic meningioma: positron emission tomography CT imaging findings.

    LENUS (Irish Health Repository)

    Brennan, C

    2010-12-01

    The imaging findings of a case of metastasing meningioma are described. The case illustrates a number of rare and interesting features. The patient presented with haemoptysis 22 years after the initial resection of an intracranial meningioma. CT demonstrated heterogeneous masses with avid peripheral enhancement without central enhancement. Blood supply to the larger lesion was partially from small feeding vessels from the inferior pulmonary vein. These findings correlate with a previously published case in which there was avid uptake of fluoro-18-deoxyglucose peripherally with lesser uptake centrally. The diagnosis of metastasing meningioma was confirmed on percutaneous lung tissue biopsy.

  1. Clinical and CT imaging features of abdominal fat necrosis

    International Nuclear Information System (INIS)

    Zhao Jinkun; Bai Renju

    2013-01-01

    Fat necrosis is a common pathological change at abdominal cross-sectional imaging, and it may cause abdominal pain, mimic pathological change of acute abdomen, or be asymptomatic and accompany other pathophysiologic processes. Fat necrosis is actually the result of steatosis by metabolism or mechanical injury. Common processes that are present in fat necrosis include epiploic appendagitis, infarction of the greater omentum, pancreatitis, and fat necrosis related to trauma or ischemia. As a common fat disease, fat necrosis should be known by clinicians and radiologists. Main content of this text is the clinical symptoms and CT findings of belly fat necrosis and related diseases. (authors)

  2. CT images of an anthropomorphic and anthropometric male pelvis phantom

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares

    2009-07-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  3. CT images of an anthropomorphic and anthropometric male pelvis phantom

    International Nuclear Information System (INIS)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de

    2009-01-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  4. CT and MR Imagings of Semicircular Canal Aplasia

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chung Hee; Hong, Hyun Sook; Yi, Beom Ha; Cha, Jang Gyu; Park, Seong Jin; Kim, Dae Ho; Lee, Hae Kyung; Kim, Shi Chan [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2009-07-15

    To evaluate the clinical, CT and MR imaging findings of semicircular canal (SCC) aplasia and to evaluate if a correlation exists between these findings and the associated anomalies or syndromes. This study retrospectively reviewed the CT and MRI findings of five patients with SCC aplasia. The CT and MR findings were analyzed for SCC, direction of facial nerve canal, cochlea, vestibule, oval or round window, middle ear ossicles, and internal auditory canal (IAC). The subjects included three boys and two girls ranging in age from one to 120 months (mean age; 51 months). Four of the subjects had the CHARGE syndrome, and one had the Goldenhar syndrome. Moreover, four subjects had sensorineural hearing loss and one had combined hearing loss. The course of the facial nerve canal was abnormal in all five cases. Moreover, trapped cochlea and dysplastic modiolus were each observed in one case. Four subjects had atresia of the oval window; whereas ankylosis of the ossicles was present in three subjects. IAC stenosis was present in one patient with the CHARGE syndrome. The aberrant course of the facial nerve canal, atresia of the oval window, and abnormal ossicles were frequently associated in patients with SCC aplasia. In addition, the Goldenhar and CHARGE syndromes were also commonly associated syndromes.

  5. Ultra-filtration measurement using CT imaging technology

    International Nuclear Information System (INIS)

    Lu Junfeng; Lu Wenqiang

    2009-01-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  6. Blind CT image quality assessment via deep learning strategy: initial study

    Science.gov (United States)

    Li, Sui; He, Ji; Wang, Yongbo; Liao, Yuting; Zeng, Dong; Bian, Zhaoying; Ma, Jianhua

    2018-03-01

    Computed Tomography (CT) is one of the most important medical imaging modality. CT images can be used to assist in the detection and diagnosis of lesions and to facilitate follow-up treatment. However, CT images are vulnerable to noise. Actually, there are two major source intrinsically causing the CT data noise, i.e., the X-ray photo statistics and the electronic noise background. Therefore, it is necessary to doing image quality assessment (IQA) in CT imaging before diagnosis and treatment. Most of existing CT images IQA methods are based on human observer study. However, these methods are impractical in clinical for their complex and time-consuming. In this paper, we presented a blind CT image quality assessment via deep learning strategy. A database of 1500 CT images is constructed, containing 300 high-quality images and 1200 corresponding noisy images. Specifically, the high-quality images were used to simulate the corresponding noisy images at four different doses. Then, the images are scored by the experienced radiologists by the following attributes: image noise, artifacts, edge and structure, overall image quality, and tumor size and boundary estimation with five-point scale. We trained a network for learning the non-liner map from CT images to subjective evaluation scores. Then, we load the pre-trained model to yield predicted score from the test image. To demonstrate the performance of the deep learning network in IQA, correlation coefficients: Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are utilized. And the experimental result demonstrate that the presented deep learning based IQA strategy can be used in the CT image quality assessment.

  7. Feasibility study of CT perfusion imaging for prostate carcinoma

    International Nuclear Information System (INIS)

    Cullu, Nesat; Kantarci, Mecit; Ogul, Hayri; Pirimoglu, Berhan; Karaca, Leyla; Kizrak, Yesim; Adanur, Senol; Koc, Erdem; Polat, Ozkan; Okur, Aylin

    2014-01-01

    The aim of this feasibility study was to obtain initial data with which to assess the efficiency of perfusion CT imaging (CTpI) and to compare this with magnetic resonance imaging (MRI) in the diagnosis of prostate carcinoma. This prospective study involved 25 patients with prostate carcinoma undergoing MRI and CTpI. All analyses were performed on T2-weighted images (T2WI), apparent diffusion coefficient (ADC) maps, diffusion-weighted images (DWI) and CTp images. We compared the performance of T2WI combined with DWI and CTp alone. The study was approved by the local ethics committee, and written informed consent was obtained from all patients. Tumours were present in 87 areas according to the histopathological results. The diagnostic performance of the T2WI+DWI+CTpI combination was significantly better than that of T2WI alone for prostate carcinoma (P < 0.001). The diagnostic value of CTpI was similar to that of T2WI+DWI in combination. There were statistically significant differences in the blood flow and permeability surface values between prostate carcinoma and background prostate on CTp images. CTp may be a valuable tool for detecting prostate carcinoma and may be preferred in cases where MRI is contraindicated. If this technique is combined with T2WI and DWI, its diagnostic value is enhanced. (orig.)

  8. CT and MR imaging features in patients with intracranial dolichoectasia

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Kuang Lung; Yu, In Kyu; Yoon, Sook Ja; Yoon, Yong Kyu [Eulji College of Medicine, Eulji Hospital, Seoul (Korea, Republic of)

    2000-02-01

    To describe the CT and MR imaging features in patients with intracranial dolichoectasia. The CT (n=3D21), MR (n=3D20) and MRA (n=3D11) imaging features seen in 28 patients (M:F=3D12:16 aged between 65 and 82 (mean, 65) years) with intracranial dolichoectasia were retrospectively reviewed with regard to involved sites, arterial changes (maximum diameter, wall calcification, high signal intensity in the involved artery, as seen on T1-weighted MR images), infarction, hemorrhagic lesion, compression of brain parenchyma or cranial nerves, hydrocephalus and brain atrophy. Involved sites were classified as either type 1 (involvement of only the posterior circulation), type 2 (only the anterior circulation), or type 3 (both). In order of frequency, involved sites were type 1 (43%), type 3 (36%) and type 2 (22%). Dolichoectasia was more frequently seen in the posterior circulation (79%) than in the anterior (57%). Arterial changes as seen on T1-weighted MR images, included dolichoectasia (mean maximum diameter 7.4 mm in the distal internal carotid artery, and 6.7 mm in the basilar artery), wall calcification (100% in involved arteries) and high signal intensity in involved. Cerebral infarction in the territory of the involved artery was found in all patients, and a moderate degree of infarct was 87%. Hemorrhagic lesions were found in 19 patients (68%); these were either lobar (53%), petechial (37%), or subarachnoid (16%), and three patients showed intracranial aneurysms, including one case of dissecting aneurysm. In 19 patients (68%), lesions were compressed lesions by the dolichoectatic arteries, and were found-in order of descending frequency-in the medulla, pons, thalamus, and cerebellopontine angle cistern. Obstructive hydrocephalus was found in two patients (7%), and 23 (82%) showed a moderate degree of brain atrophy. In patients with intracranial dolichoectasia, moderate degrees of cerebral infarction and brain atrophy in the territory of involved arteries, as well as

  9. Deep convolutional networks for pancreas segmentation in CT imaging

    Science.gov (United States)

    Roth, Holger R.; Farag, Amal; Lu, Le; Turkbey, Evrim B.; Summers, Ronald M.

    2015-03-01

    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to state-of-the-art segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% +/- 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.

  10. TH-C-18A-06: Combined CT Image Quality and Radiation Dose Monitoring Program Based On Patient Data to Assess Consistency of Clinical Imaging Across Scanner Models

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, O; Winslow, J; Samei, E [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: One of the principal challenges of clinical imaging is to achieve an ideal balance between image quality and radiation dose across multiple CT models. The number of scanners and protocols at large medical centers necessitates an automated quality assurance program to facilitate this objective. Therefore, the goal of this work was to implement an automated CT image quality and radiation dose monitoring program based on actual patient data and to use this program to assess consistency of protocols across CT scanner models. Methods: Patient CT scans are routed to a HIPPA compliant quality assurance server. CTDI, extracted using optical character recognition, and patient size, measured from the localizers, are used to calculate SSDE. A previously validated noise measurement algorithm determines the noise in uniform areas of the image across the scanned anatomy to generate a global noise level (GNL). Using this program, 2358 abdominopelvic scans acquired on three commercial CT scanners were analyzed. Median SSDE and GNL were compared across scanner models and trends in SSDE and GNL with patient size were used to determine the impact of differing automatic exposure control (AEC) algorithms. Results: There was a significant difference in both SSDE and GNL across scanner models (9–33% and 15–35% for SSDE and GNL, respectively). Adjusting all protocols to achieve the same image noise would reduce patient dose by 27–45% depending on scanner model. Additionally, differences in AEC methodologies across vendors resulted in disparate relationships of SSDE and GNL with patient size. Conclusion: The difference in noise across scanner models indicates that protocols are not optimally matched to achieve consistent image quality. Our results indicated substantial possibility for dose reduction while achieving more consistent image appearance. Finally, the difference in AEC methodologies suggests the need for size-specific CT protocols to minimize variability in image

  11. TH-C-18A-06: Combined CT Image Quality and Radiation Dose Monitoring Program Based On Patient Data to Assess Consistency of Clinical Imaging Across Scanner Models

    International Nuclear Information System (INIS)

    Christianson, O; Winslow, J; Samei, E

    2014-01-01

    Purpose: One of the principal challenges of clinical imaging is to achieve an ideal balance between image quality and radiation dose across multiple CT models. The number of scanners and protocols at large medical centers necessitates an automated quality assurance program to facilitate this objective. Therefore, the goal of this work was to implement an automated CT image quality and radiation dose monitoring program based on actual patient data and to use this program to assess consistency of protocols across CT scanner models. Methods: Patient CT scans are routed to a HIPPA compliant quality assurance server. CTDI, extracted using optical character recognition, and patient size, measured from the localizers, are used to calculate SSDE. A previously validated noise measurement algorithm determines the noise in uniform areas of the image across the scanned anatomy to generate a global noise level (GNL). Using this program, 2358 abdominopelvic scans acquired on three commercial CT scanners were analyzed. Median SSDE and GNL were compared across scanner models and trends in SSDE and GNL with patient size were used to determine the impact of differing automatic exposure control (AEC) algorithms. Results: There was a significant difference in both SSDE and GNL across scanner models (9–33% and 15–35% for SSDE and GNL, respectively). Adjusting all protocols to achieve the same image noise would reduce patient dose by 27–45% depending on scanner model. Additionally, differences in AEC methodologies across vendors resulted in disparate relationships of SSDE and GNL with patient size. Conclusion: The difference in noise across scanner models indicates that protocols are not optimally matched to achieve consistent image quality. Our results indicated substantial possibility for dose reduction while achieving more consistent image appearance. Finally, the difference in AEC methodologies suggests the need for size-specific CT protocols to minimize variability in image

  12. CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Torres, Andrew S; Bonitatibus, Peter J; Yeh, Benjamin M

    2016-03-01

    To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions. Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution. The solutions were imaged within a modified 32-cm CT dose index phantom at 80, 100, 120, and 140 kVp at CT. To simulate larger body sizes, 0.2-, 0.5-, and 1.0-mm-thick copper filters were applied. CT image contrast was measured and corrected for measured concentrations and presence of chlorine in some compounds. Each element tested provided higher image contrast than iodine at some tube potential levels. Over the range of tube potentials that are clinically practical for average-sized and larger adults-that is, 100 kVp and higher-barium, gadolinium, ytterbium, and tantalum provided consistently increased image contrast compared with iodine, respectively demonstrating 39%, 56%, 34%, and 24% increases at 100 kVp; 39%, 66%, 53%, and 46% increases at 120 kVp; and 40%, 72%, 65%, and 60% increases at 140 kVp, with no added x-ray filter. The consistently high image contrast produced with 100-140 kVp by tantalum compared with bismuth and iodine at equal mass concentration suggests that tantalum could potentially be favorable for use as a clinical CT contrast agent.

  13. Skeletal scintigraphy and SPECT/CT