WorldWideScience

Sample records for csp energy generation

  1. gCSP occam Code Generation for RMoX

    NARCIS (Netherlands)

    Groothuis, M.A.; Liet, Geert K.; Broenink, Johannes F.; Roebbers, H.W.; Sunter, J.P.E.; Welch, P.H.; Wood, D.C.

    2005-01-01

    gCSP is a graphical tool for creating and editing CSP diagrams. gCSP is used in our labs to generate the embedded software framework for our control systems. As a further extension to our gCSP tool, an occam code generator has been constructed. Generating occam from CSP diagrams gives opportunities

  2. Value generation of future CSP projects in North Africa

    International Nuclear Information System (INIS)

    Kost, Christoph; Engelken, Maximilian; Schlegl, Thomas

    2012-01-01

    This paper discusses the value generation potential for local and international industry in different development scenarios of the concentrating solar power (CSP) market in North Africa until 2030. It analyzes the economic impact resulting from the participation of North African and European companies during construction and operation of CSP plants. The assessment is based on a self-developed solar technologies market development model (STMD) that includes economic and technical requirements and constraints for the creation of a local CSP market. In-depth interviews with industry stakeholders provide specific input, validate the calculations and complement the quantitative model results and conclusions. Long-term potential for locally generated revenues from CSP plant construction are modeled and lead to a share of local revenues of up to 60%. Potential market size of solar power plants in North Africa could reach total revenues of 120 Billion euros and thus demand for components and services contribute to national gross domestic products significantly. Recommendations are given for regional industry cooperation and policy actions for the support of local and international CSP industry in North Africa in order to improve the investment environment and growth of renewable energies in the region. - Highlights: ►New economic model to evaluate value generation of CSP take-off in North Africa. ►CSP components are assessed regarding their potentials to be produced locally. ►Potential for locally generated revenues of CSP plants: 60% of total value. ►Socio-economic impacts of RE projects become more relevant to investment decisions.

  3. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    Science.gov (United States)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  4. Modelling of a Coil Steam Generator for CSP applications

    DEFF Research Database (Denmark)

    Pelagotti, Leonardo; Sørensen, Kim; Condra, Thomas Joseph

    2014-01-01

    The project investigates a new design for a CSP plant steam generation system, the Coil Steam Generator (CSG). This system allows faster start-ups and therefore higher daily energy production from the Sun. An analytical thermodynamic simulation model of the evaporator and a mechanical analysis...

  5. Embodied energy and emergy analyses of a concentrating solar power (CSP) system

    International Nuclear Information System (INIS)

    Zhang Meimei; Wang Zhifeng; Xu Chao; Jiang Hui

    2012-01-01

    Although concentrating solar power (CSP) technology has been projected as one of the most promising candidates to replace conventional power plants burning fossil fuels, the potential advantages and disadvantages of the CSP technology have not been thoroughly evaluated. To better understand the performance of the CSP technology, this paper presents an ecological accounting framework based on embodied energy and emergy analyses methods. The analyses are performed for the 1.5 MW Dahan solar tower power plant in Beijing, China and different evaluation indices used in the embodied energy and emergy analyses are employed to evaluate the plant performance. Our analysis of the CSP plant are compared with six Italian power plants with different energy sources and an American PV plant, which demonstrates the CSP is the superior technology. - Highlights: ► Embodied energy and emergy analyses are employed to evaluate the first solar tower power plant in China. ► Different evaluation indices are quantitatively analyzed to show the advantages of CSP technology. ► This analysis provides insights for making energy policy and investment decisions about CSP technology.

  6. Concentrated solar power (CSP innovation analysis in South Africa

    Directory of Open Access Journals (Sweden)

    Craig, Toyosi Onalapo

    2017-08-01

    Full Text Available South Africa aims to generate 42 per cent of its electricity from renewable energy technology sources by 2030. Concentrating solar power (CSP is one of the major renewable energy technologies that have been prioritised by South Africa, given the abundant solar resources available in the region. Seven CSP plants have been, or are being, built; three of them are already connected to the national grid. However, the impacts of this technology on South African research, development, and innovation have not been investigated to date. This paper thus analyses the CSP technologies in South Africa in terms of the existing technology adoption models and diffusion strategies, used by government and its agencies, to improve the development and deployment of these technologies. It is found that CSP has been treated generally like other renewable energy technologies through the Renewable Energy Independent Power Producer Procurement Programme (REIPPPP, although a tariff plan for CSP plants of the future has been made. No specific technology diffusion or adoption model for CSP was found; so this paper explores how it can be developed.

  7. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  8. Photoredox Generated Radicals in Csp2-Csp3 Bond Construction

    Science.gov (United States)

    Primer, David Neal

    The routine application of Csp3-hybridized nucleophiles in cross-coupling has been an ongoing pursuit in the agrochemical, pharmaceutical, and materials science industries for over 40 years. Unfortunately, despite numerous attempts to circumvent the problems associated with alkyl nucleophiles, application of these reagents in transition metal-catalyzed C-C bond-forming reactions has remained largely restricted. In recent years, many chemists have noted the lack of reliable, turnkey reactions that exist for the installation of Csp3-hybridized centers--reactions that would be useful for delivering molecules with enhanced three-dimensional topology and altered chemical properties. As such, a general method for alkyl nucleophile activation in cross-coupling would offer access to a host of compounds inaccessible by other means. From a mechanistic standpoint, the continued failure of alkylmetallics is inherent to the high energy intermediates associated with a traditional transmetalation. To overcome this problem, we have pioneered an alternate, single-electron pathway involving 1) initial oxidation of an alkylmetallic reagent, 2) oxidative alkyl radical capture at a metal center, and 3) subsequent reduction of the metal center to return its initial oxidation state. This series of steps constitutes a formal transmetalation that avoids the energy-demanding steps that plague a traditional anionic approach. Under this enabling paradigm, a host of alkyl precursors (alkyl-trifluoroborates and -silicates) have been generally used in cross-coupling for the first time. In summary, the synergistic use of an Ir photoredox catalyst and a Ni cross-coupling catalyst to mediate the cross-coupling of (hetero)aryl bromides with diverse alkyl radical precursors will be discussed. Methods for coupling various trifluoroborate classes (alpha-alkoxy, alpha-trifluoromethyl, secondary and tertiary alkyl) will be covered, focusing on their complementarity to traditional protocols. Finally, a

  9. Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil

    International Nuclear Information System (INIS)

    Soria, Rafael; Portugal-Pereira, Joana; Szklo, Alexandre; Milani, Rodrigo; Schaeffer, Roberto

    2015-01-01

    The production of electricity using concentrated solar power (CSP) technology is not yet possible in Brazil due to the technology’s high capital costs and the lack of a local industry. However, this study introduces a low-cost approach to CSP in Brazil by describing and simulating the operation of hybrid CSP plants that use sustainably managed biomass in Brazil’s semiarid northeast. Biomass hybridisation of a CSP plant with a solar multiple (SM) of 1.2 and a biomass fill fraction (BFF) of 30% can generate electricity at 110 USD/MWh. The high direct normal irradiation (DNI) and the availability of local low-cost biomass in Brazil’s semiarid northeast suggest the possibility of developing a CSP industry capable of supplying low-cost components under a national program framework, with the co-benefits of local job and income generation. For example, the deployment of 10 CSP plants of 30 MWe each would generate 760 direct and indirect jobs during the 24 months of plant construction and approximately 2100 annual jobs associated with the operation and maintenance (O&M) of the generating units. These 10 new units would generate additional local income on the order of USD 57 million. - Highlights: • CSP plant with supplementary biomass hybridisation is a strategic option for Brazil. • DNI and biomass availability in Brazil's semiarid can foster local CSP industry. • LCOE of CSP would cost 11 cent USD/kWh becoming competitive at solar auctions. • Co-benefits of local job and income generation due to CSP in Brazil are high.

  10. Feasibility Study on HYSOL CSP

    DEFF Research Database (Denmark)

    Nielsen, Lars Henrik; Skytte, Klaus; Pérez, Cristian Hernán Cabrera

    2016-01-01

    Concentrating Solar Power (CSP) plants utilize thermal conversion of direct solar irradiation. A trough or tower configuration focuses solar radiation and heats up oil or molten salt that subsequently in high temperature heat exchangers generate steam for power generation. High temperature molten...... salt can be stored and the stored heat can thus increase the load factor and the usability for a CSP plant, e.g. to cover evening peak demand. In the HYSOL concept (HYbrid SOLar) such configuration is extended further to include a gas turbine fuelled by upgraded biogas or natural gas. The optimised...... integrated HYSOL concept, therefore, becomes a fully dispatchable (offering firm power) and fully renewable energy source (RES) based power supply alternative, offering CO2-free electricity in regions with sufficient solar resources. The economic feasibility of HYSOL configurations is addressed in this paper...

  11. Initial review and analysis of the direct environmental impacts of CSP in the northern Cape, South Africa

    Science.gov (United States)

    Rudman, Justine; Gauché, Paul; Esler, Karen J.

    2016-05-01

    The Integrated Resource Plan (IRP) of 2010 and the IRP Update provide the most recent guidance to the electricity generation future of South Africa (SA) and both plans include an increased proportion of renewable energy generation capacity. Given that SA has abundant renewable energy resource potential, this inclusion is welcome. Only 600 MW of the capacity allocated to concentrating solar power (CSP) has been committed to projects in the Northern Cape and represents roughly a fifth of the capacity that has been included in the IRP. Although CSP is particularly new in the electricity generation system of the country, the abundant solar resources of the region with annual DNI values of above 2900 kWh/m2 across the arid Savannah and Nama-Karoo biomes offer a promising future for the development of CSP in South Africa. These areas have largely been left untouched by technological development activities and thus renewable energy projects present a variety of possible direct and indirect environmental, social and economic impacts. Environmental Impact Assessments do focus on local impacts, but given that ecological processes often extend to regional- and landscape scales, understanding this scaled context is important to the alignment of development- and conservation priorities. Given the capacities allocated to CSP for the future of SA's electricity generation system, impacts on land, air, water and biodiversity which are associated with CSP are expected to increase in distribution and the understanding thereof deems valuable already from this early point in CSP's future in SA. We provide a review of direct impacts of CSP on the natural environment and an overview of the anticipated specific significance thereof in the Northern Cape.

  12. CSP: A Multifaceted Hybrid Architecture for Space Computing

    Science.gov (United States)

    Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron

    2014-01-01

    Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.

  13. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    Energy Technology Data Exchange (ETDEWEB)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  14. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  15. Value as a parameter to consider in operational strategies for CSP plants

    Science.gov (United States)

    de Meyer, Oelof; Dinter, Frank; Govender, Saneshan

    2017-06-01

    This paper introduced a value parameter to consider when analyzing operational strategies for CSP plants. The electric system in South Africa, used as case study, is severely constrained with an influx of renewables in the early phase of deployment. The energy demand curve for the system is analyzed showing the total wind and solar photovoltaic contributions for winter and summer. Due to the intermittent nature and meteorological operating conditions of wind and solar photovoltaic plants, the value of CSP plants within the electric system is introduced. Analyzing CSP plants based on the value parameter alone will remain only a philosophical view. Currently there is no quantifiable measure to translate the philosophical view or subjective value and it solely remains the position of the stakeholder. By introducing three other parameters, Cost, Plant and System to a holistic representation of the Operating Strategies of generation plants, the Value parameter can be translated into a quantifiable measure. Utilizing the country's current procurement program as case study, CSP operating under the various PPA within the Bid Windows are analyzed. The Value Cost Plant System diagram developed is used to quantify the value parameter. This paper concluded that no value is obtained from CSP plants operating under the Bid Window 1 & 2 Power Purchase Agreement. However, by recognizing the dispatchability potential of CSP plants in Bid Window 3 & 3.5, the value of CSP in the electric system can be quantified utilizing Value Added Relationship VCPS-diagram. Similarly ancillary services to the system were analyzed. One of the relationships that have not yet been explored within the industry is an interdependent relationship. It was emphasized that the cost and value structure is shared between the plant and system. Although this relationship is functional when the plant and system belongs to the same entity, additional value is achieved by marginalizing the cost structure. A

  16. Analysis of Methodologies for Identifying Exclusion Zones for Concentrating Solar Power (CSP); Analisis de Metodologias de Identificacion de Zonas de Exclusion para Estudios de Potencial de Energia Electrica Termosolar (CSP)

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, P.; Ramirez, L.; Navarro, A. A.; Polo, J.; Zarza, E.

    2013-07-01

    The aim of this study is the proposal of a valid and unique methodology to any territory of the potential for solar power generation, reducing subjectivity and enabling comparison of results from the examination of several existing methodologies for CSP, particularly those developed by the Institute for diversification and saving of Energy (IDAE), Greenpeace, National renewable energy laboratory (NREL) and the German Aerospace Center (DLR). Subsequently, we apply and compare the results obtained with those already installed CSP plants, giving an idea of the suitability of each methodology to locate plants in areas considered suitable. (Author)

  17. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    Science.gov (United States)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  18. AnalysisThe Availability of Using Concentrated Solar Power (CSP as Electricity Source in Al-Hilla City

    Directory of Open Access Journals (Sweden)

    Wisam Shamkhi Jaber

    2017-03-01

    Full Text Available The needing of using clean energy increases every year because of the negative impact of emissions from electricity power plant and to reduce the costs of generating power by using natural energies like solar, wind, and other sources. The availability of using solar energy as source of producing electricity in Al-Hilla city by using Concentrating Solar Power (CSP was investigated in this research. The major parameters in this study were the city position, and the annually amount of solar received, also, number of charts related to solar parameters for the management of CSP were derived and showed in this research. The using of CSP as electricity power can be important solution to force the problem of high cost of electricity power fuel needed and the lack of power produced because of increasing of power consumed specially in summer season.

  19. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  20. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  1. PyCSP - controlled concurrency

    DEFF Research Database (Denmark)

    Vinter, Brian; Friborg, Rune Møllegaard; Bjørndalen, John Markus

    2010-01-01

    Producing readable and correct programs while at the same time taking advantage of multi-core architectures is a challenge. PyCSP is an implementation of Communicating Sequential Processes algebra (CSP) for the Python programming language, that take advantage of CSP's formal and verifiable approach...... to controlling concurrency and the readability of Python source code. We describe PyCSP, demonstrate it through examples and demonstrate how PyCSP compares to Pthreads in a master-worker benchmark....

  2. PV integration into a CSP plant

    Science.gov (United States)

    Carvajal, Javier López; Barea, Jose M.; Barragan, Jose; Ortega, Carlos

    2017-06-01

    This paper describes a preliminary techno-economic analysis of the integration of a PV plant into an optimized Parabolic Trough Plant in order to reduce the online consumptions and thus, increase the net electricity injected into the grid. The idea is to assess the feasibility of such project and see what configuration would be the optimal. An extra effort has been made in terms of modelling as the analysis has to be done to the integrated CSP + PV plant instead of analyzing them independently. Two different technologies have been considered for the PV plant, fix and one-axis tracking. Additionally three different scenarios have been considered for the CSP plant auxiliary consumptions as they are essential for determining the optimal PV plant (the higher the auxiliary consumption the higher the optimal PV plant). As could be expected, the results for all cases with PV show an improvement in terms of electricity generation and also in terms of LCOE with respect to the CSP plant. Such improvement is slightly higher with tracking technology for this specific study. Although this exercise has been done to an already designed CSP plant (so only the PV plant had to be optimized), the methodology could be applied for the optimization of an integrated CSP + PV plant during the design phase.

  3. Energy loss function for biological material: poly(CSP)

    International Nuclear Information System (INIS)

    Fung, A.Y.C.; Zaider, M.

    1994-01-01

    In this paper calculated cross sections are presented for the interaction of electrons with poly(CSP), a single-stranded chain that contains one cytosine sugar phosphate unit in the elementary cell. To model a single strand of helical DNA (e.g. the base stacking), the Watson-Crick model for the geometry of poly(CSP) has been used. The use, for computational simplicity, of a single, rather than a double stranded polynucleotide may be justified on the basis of previous calculations indicating that -to a good approximation - the electronic structure (other than excitation states) of complementary base pairs may be described as a superposition of the corresponding structures of the individual components. (Author)

  4. CSPBuilder - CSP based Scientific Workflow Modelling

    DEFF Research Database (Denmark)

    Friborg, Rune Møllegaard; Vinter, Brian

    2008-01-01

    This paper introduces a framework for building CSP based applications, targeted for clusters and next generation CPU designs. CPUs are produced with several cores today and every future CPU generation will feature increasingly more cores, resulting in a requirement for concurrency that has not pr...

  5. CSP for Executable Scientific Workflows

    DEFF Research Database (Denmark)

    Friborg, Rune Møllegaard

    and can usually benefit performance-wise from both multiprocessing, cluster and grid environments. PyCSP is an implementation of Communicating Sequential Processes (CSP) for the Python programming language and takes advantage of CSP's formal and verifiable approach to controlling concurrency...... on multi-processing and cluster computing using PyCSP. Additionally, McStas is demonstrated to utilise grid computing resources using PyCSP. Finally, this thesis presents a new dynamic channel model, which has not yet been implemented for PyCSP. The dynamic channel is able to change the internal...... synchronisation mechanisms on-the-fly, depending on the location and number of channel-ends connected. Thus it may start out as a simple local pipe and evolve into a distributed channel spanning multiple nodes. This channel is a necessary next step for PyCSP to allow for complete freedom in executing CSP...

  6. PyCSP - controlled concurrency

    DEFF Research Database (Denmark)

    Friborg, Rune Møllegaard; Vinter, Brian; Bjørndalen, John Markus

    Producing readable and correct programs while at the same time taking advantage of multi-core architectures is a challenge. PyCSP is an implementation of Communicating Sequential Processes algebra (CSP) for the Python programming language, taking advantage of CSP’s formal and verifiable approach...... to controlling concurrency and the readability of Python source code. We describe PyCSP, demonstrate it through examples and demonstrate how PyCSP compares to Pthreads using a benchmark....

  7. A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture

    Science.gov (United States)

    Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.

    2005-01-01

    Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.

  8. Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Du, Ershun [Tsinghua University; Zhang, Ning [Tsinghua University; Kang, Chongqing [Tsinghua University; Xia, Qing [Tsinghua University

    2018-04-24

    Concentrating solar power (CSP) plants are able to provide both renewable energy and operational flexibility at the same time due to its thermal energy storage (TES). It is ideal generation to power systems lacking in flexibility to accommodate variable renewable energy (VRE) generation such as wind power and photovoltaics. However, its investment cost currently is too high to justify its benefit in terms of providing renewable energy only. In this paper we evaluate the economic benefit of CSP in high renewable energy penetrated power systems from two aspects: generating renewable energy and providing operational flexibility to help accommodating VRE. In order to keep the same renewable energy penetration level during evaluation, we compare the economic costs between the system with a high share of VRE and another in which some part of the VRE generation is replaced by CSP generation. The generation cost of a power system is analyzed through chronological operation simulation over a whole year. The benefit of CSP is quantified into two parts: (1) energy benefit - the saving investment of substituted VRE generation and (2) flexibility benefit - the reduction in operating cost due to substituting VRE with CSP. The break-even investment cost of CSP is further discussed. The methodology is tested on a modified IEEE RTS-79 system. The economic justifications of CSP are demonstrated in two practical provincial power systems with high penetration of renewable energy in northwestern China, Qinghai and Gansu, where the former province has massive inflexible thermal power plants but later one has high share of flexible hydro power. The results suggest that the CSP is more beneficial in Gansu system than in Qinghai. The levelized benefit of CSP, including both energy benefit and flexibility benefit, is about 0.177-0.191 $/kWh in Qinghai and about 0.238-0.300 $/kWh in Gansu, when replacing 5-20% VRE generation with CSP generation.

  9. Selective C(sp2)-C(sp) bond cleavage: the nitrogenation of alkynes to amides.

    Science.gov (United States)

    Qin, Chong; Feng, Peng; Ou, Yang; Shen, Tao; Wang, Teng; Jiao, Ning

    2013-07-22

    Breakthrough: A novel catalyzed direct highly selective C(sp2)-C(sp) bond functionalization of alkynes to amides has been developed. Nitrogenation is achieved by the highly selective C(sp2)-C(sp) bond cleavage of aryl-substituted alkynes. The oxidant-free and mild conditions and wide substrate scope make this method very practical. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Moroccan solar plan. A comparative analysis of CSP and PV utilization until 2020

    International Nuclear Information System (INIS)

    Richts, Christoph

    2012-01-01

    The present master thesis conducts technical and economic simulations of large-scale Photovoltaic (PV) and Concentrated Solar Power (CSP) plants for the Moroccan Solar Plan. It provides a database of performance indicators such as energy yields, capacity factors, typical efficiencies and losses of technical components, LCOE, and difference costs (DC: LCOE minus avoided costs of the conventional power system) for fixed tilted, 1-axis horizontal, 1-axis vertical and 2-axis tracking PV and CSP with no, 6, 12 and 18 full load hours of thermal storage. HelioClim irradiation data of 2005 for the sites in Ouarzazate, Ain Ben Mathar, Boujdour, Laayoune and Tarfaya is used ranging between 1,927 - 2,428 kWh/m 2 /y (DNI) and 1,968 - 2,154 kWh/m 2 /y (GHI). In the base scenario minimum LCOE are 9.6 - 5.4 EURct/kWh for PV (2012 - 2020) varying between 0.90 - 1.55 EURct/kWh among sites and technologies. CSP reaches 12.8 - 9.2 EURct/kWh and a bandwidth of 2.3 - 1.6 EURct/kWh. Average DC are lowest for horizontal 1-axis tracking (0.4 and -7.7 EURct/kWh for plants built in 2012 and 2020 respectively) and CSP with 6 hours of storage (1.3 and -3.5 EURct/kWh). PV is cheaper for all sites and technologies due to higher learning curves and less initial investment, but cannot contribute to coverage of the daily evening peak in Morocco. Four different MSP-scenarios with 2000 MW of solar energy require total investments of 3.7 - 7.5 billion EUR and yield 7.9% - 12.8% of the electricity demand in 2020 (given a growth 7%/y) depending on the ratio of PV and CSP utilization. The average LCOE are 8.3 - 11.7 EURct/kWh and the total discounted DC (10%/y) are -254 - 391 million EUR. Thus, solar energy is partly less expensive than a business-as-usual scenario. An extensive sensitivity analysis for WACC and price escalation of conventional energy shows that for only PV and only CSP scenarios in 55 and 22 out of 72 cases the DC are negative - although no environmental costs for conventional

  11. PyCSP - Communicating Sequential Processes for Python

    DEFF Research Database (Denmark)

    Vinter, Brian; Bjørndalen, John Markus; Anshus, Otto Johan

    CSP presently supports the core CSP abstractions. We introduce the PyCSP library, its implementation, a few performance benchmarks, and show example code using PyCSP. An early prototype of PyCSP has been used in this year's Extreme Multiprogramming Class at the CS department, university of Copenhagen......The Python programming language is effective for rapidly specifying programs and experimenting with them. It is increasingly being used in computational sciences, and in teaching computer science. CSP is effective for describing concurrency. It has become especially relevant with the emergence...... of commodity multi-core architectures. We are interested in exploring how a combination of Python and CSP can benefit both the computational sciences and the hands-on teaching of distributed and parallel computing in computer science. To make this possible, we have developed PyCSP, a CSP library for Python. Py...

  12. The Moroccan solar plan. A comparative analysis of CSP and PV utilization until 2020

    Energy Technology Data Exchange (ETDEWEB)

    Richts, Christoph

    2012-02-15

    The present master thesis conducts technical and economic simulations of large-scale Photovoltaic (PV) and Concentrated Solar Power (CSP) plants for the Moroccan Solar Plan. It provides a database of performance indicators such as energy yields, capacity factors, typical efficiencies and losses of technical components, LCOE, and difference costs (DC: LCOE minus avoided costs of the conventional power system) for fixed tilted, 1-axis horizontal, 1-axis vertical and 2-axis tracking PV and CSP with no, 6, 12 and 18 full load hours of thermal storage. HelioClim irradiation data of 2005 for the sites in Ouarzazate, Ain Ben Mathar, Boujdour, Laayoune and Tarfaya is used ranging between 1,927 - 2,428 kWh/m{sup 2}/y (DNI) and 1,968 - 2,154 kWh/m{sup 2}/y (GHI). In the base scenario minimum LCOE are 9.6 - 5.4 EURct/kWh for PV (2012 - 2020) varying between 0.90 - 1.55 EURct/kWh among sites and technologies. CSP reaches 12.8 - 9.2 EURct/kWh and a bandwidth of 2.3 - 1.6 EURct/kWh. Average DC are lowest for horizontal 1-axis tracking (0.4 and -7.7 EURct/kWh for plants built in 2012 and 2020 respectively) and CSP with 6 hours of storage (1.3 and -3.5 EURct/kWh). PV is cheaper for all sites and technologies due to higher learning curves and less initial investment, but cannot contribute to coverage of the daily evening peak in Morocco. Four different MSP-scenarios with 2000 MW of solar energy require total investments of 3.7 - 7.5 billion EUR and yield 7.9% - 12.8% of the electricity demand in 2020 (given a growth 7%/y) depending on the ratio of PV and CSP utilization. The average LCOE are 8.3 - 11.7 EURct/kWh and the total discounted DC (10%/y) are -254 - 391 million EUR. Thus, solar energy is partly less expensive than a business-as-usual scenario. An extensive sensitivity analysis for WACC and price escalation of conventional energy shows that for only PV and only CSP scenarios in 55 and 22 out of 72 cases the DC are negative - although no environmental costs for conventional

  13. On purpose simulation model for molten salt CSP parabolic trough

    Science.gov (United States)

    Caranese, Carlo; Matino, Francesca; Maccari, Augusto

    2017-06-01

    The utilization of computer codes and simulation software is one of the fundamental aspects for the development of any kind of technology and, in particular, in CSP sector for researchers, energy institutions, EPC and others stakeholders. In that extent, several models for the simulation of CSP plant have been developed with different main objectives (dynamic simulation, productivity analysis, techno economic optimization, etc.), each of which has shown its own validity and suitability. Some of those models have been designed to study several plant configurations taking into account different CSP plant technologies (Parabolic trough, Linear Fresnel, Solar Tower or Dish) and different settings for the heat transfer fluid, the thermal storage systems and for the overall plant operating logic. Due to a lack of direct experience of Molten Salt Parabolic Trough (MSPT) commercial plant operation, most of the simulation tools do not foresee a suitable management of the thermal energy storage logic and of the solar field freeze protection system, but follow standard schemes. ASSALT, Ase Software for SALT csp plants, has been developed to improve MSPT plant's simulations, by exploiting the most correct operational strategies in order to provide more accurate technical and economical results. In particular, ASSALT applies MSPT specific control logics for the electric energy production and delivery strategy as well as the operation modes of the Solar Field in off-normal sunshine condition. With this approach, the estimated plant efficiency is increased and the electricity consumptions required for the plant operation and management is drastically reduced. Here we present a first comparative study on a real case 55 MWe Molten Salt Parabolic Trough CSP plant placed in the Tibetan highlands, using ASSALT and SAM (System Advisor Model), which is a commercially available simulation tool.

  14. CSP Design Model and Tool Support

    NARCIS (Netherlands)

    Volkerink, H.J.; Volkerink, H.J.; Hilderink, G.H.; Broenink, Johannes F.; Vervoort, Wiek; Welch, P.H.; Bakkers, André

    The CSP paradigm is known as a powerful concept for designing and analysing the architectural and behavioural parts of concurrent software. Although the theory of CSP is useful for mathematicians, the programming language occam has been derived from CSP that is useful for any engineering practice.

  15. Designing Animation Facilities for gCSP

    NARCIS (Netherlands)

    van der Steen, T.T.J.; Groothuis, M.A.; Broenink, Johannes F.

    To improve feedback on how concurrent CSP-based programs run, the graphical CSP design tool has been extended with animation facilities. The state of processes, constructs, and channel ends are indicated with colours both in the gCSP diagrams and in the composition tree (hierarchical tree showing

  16. The value of dispatchability of CSP plants in the electricity systems of Morocco and Algeria

    International Nuclear Information System (INIS)

    Brand, Bernhard; Boudghene Stambouli, Amine; Zejli, Driss

    2012-01-01

    This paper examines the effects of an increased integration of concentrated solar power (CSP) into the conventional electricity systems of Morocco and Algeria. A cost-minimizing linear optimization tool was used to calculate the best CSP plant configuration for Morocco's coal-dominated power system as well as for Algeria, where flexible gas-fired power plants prevail. The results demonstrate that in both North African countries, storage-based CSP plants offer significant economic advantages over non-storage, low-dispatchable CSP configurations. However, in a generalized renewable integration scenario, where CSP has to compete with other renewable generation technologies, like wind or photovoltaic (PV) power, it was found that the cost advantages of dispatchability only justify CSP investments when a relatively high renewable penetration is targeted in the electricity mix. - Highlights: ► Market model to optimize CSP plant configuration in North African power systems. ► Value of storage-based CSP plants compared to non-dispatchable configurations: 28–55 €/MWh. ► Assessment of Morocco's and Algeria's renewable electricity targets until 2030. ► CSP becomes more competitive with intermittent technologies when high RES-E quota are targeted.

  17. Deadlock Detection Based on Automatic Code Generation from Graphical CSP Models

    NARCIS (Netherlands)

    Jovanovic, D.S.; Liet, Geert K.; Broenink, Johannes F.; Karelse, F.

    2004-01-01

    The paper describes a way of using standard formal analysis tools for checking deadlock freedom in graphical models for CSP descriptions of concurrent systems. The models capture specification of a possible concurrent implementation of a system to be realized. Building the graphical models and

  18. Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model

    International Nuclear Information System (INIS)

    Fichter, Tobias; Soria, Rafael; Szklo, Alexandre; Schaeffer, Roberto; Lucena, Andre F.P.

    2017-01-01

    One of the technologies that stand out as an alternative to provide additional flexibility to power systems with large penetration of variable renewable energy (VRE), especially for regions with high direct normal irradiation (DNI), is concentrated solar power (CSP) plants coupled to thermal energy storage (TES) and back-up (BUS) systems. Brazil can develop this technology domestically, especially in its Northeast region, where most of VRE capacity is being deployed and where lies most of the CSP potential of the country. This work applies the Capacity Expansion Model REMix-CEM, which allows considering dispatch constraints of thermal power plants in long-term capacity expansion optimization. REMix-CEM calculates the optimal CSP plant configuration and its dispatch strategy from a central planning perspective. Results showed that the hybridization of CSP plants with jurema-preta biomass (CSP-BIO) becomes a least-cost option for Brazil by 2040. CSP-BIO contributes to the Northeast power system by regularizing the energy imbalance that results from the large-scale VRE expansion along with conventional inflexible power plants. CSP-BIO plants are able to increase frequency response and operational reserve services and can provide the required additional flexibility that the Northeast power system of Brazil will require into the future. - Highlights: • Concentrating solar power (CSP) plants provide flexibility to power systems. • CSP configuration is optimized endogenously during capacity expansion optimization. • CSP hybridized with biomass supports grid-integration of variable renewable energy. • CSP become the least-cost option for the Northeast power system of Brazil by 2040.

  19. Economic opportunities resulting from a global deployment of concentrated solar power (CSP) technologies-The example of German technology providers

    International Nuclear Information System (INIS)

    Vallentin, Daniel; Viebahn, Peter

    2010-01-01

    Several energy scenario studies consider concentrated solar power (CSP) plants as an important technology option to reduce the world's CO 2 emissions to a level required for not letting the global average temperature exceed a threshold of 2-2.4 o C. A global ramp up of CSP technologies offers great economic opportunities for technology providers as CSP technologies include highly specialised components. This paper analyses possible value creation effects resulting from a global deployment of CSP until 2050 as projected in scenarios of the International Energy Agency (IEA) and Greenpeace International. The analysis focuses on the economic opportunities of German technology providers since companies such as Schott Solar, Flabeg or Solar Millennium are among the leading suppliers of CSP technologies on the global market.

  20. CSP electricity cost evolution and grid parities based on the IEA roadmaps

    International Nuclear Information System (INIS)

    Hernández-Moro, J.; Martínez-Duart, J.M.

    2012-01-01

    The main object of this paper consists in the development of a mathematical closed-form expression for the evaluation, in the period 2010–2050, of the levelized costs of energy (LCOE) of concentrating solar power (CSP) electricity. For this purpose, the LCOE is calculated using a life-cycle cost method, based on the net present value, the discounted cash flow technique and the technology learning curve approach. By this procedure, the LCOE corresponding to CSP electricity is calculated as a function of ten independent variables. Among these parameters, special attention has been put on the evaluation of the available solar resource, the analysis of the IEA predicted values for the cumulative installed capacity, the initial (2010) cost of the system, the discount and learning rates, etc. One significant contribution of our work is that the predicted evolution of the LCOEs strongly depend, not only on the particular values of the cumulative installed capacity function in the targeted years, but mainly on the specific curved time-paths which are followed by this function. The results obtained in this work are shown both graphically and numerically. Finally, the implications that the results could have in energy planning policies and grid parity calculations are discussed. - Highlights: ► A mathematical closed expression has been developed for calculating the evolution of CSP electricity costs. ► Our technique for the prediction of CSP electricity costs and grid parities is based on IEA Roadmaps. ► The time-table (2010–2050) of cumulative installed CSP capacity is key to electricity cost predictions. ► CSP grid parities can occur within next decade for sites with proper solar resources.

  1. Durability of coconut shell powder (CSP) concrete

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Senin, M. S.; Shamsuddin, S. M.; Anak Guntor, N. A.; Zuki, S. S. Mohd; Khalid, F. S.; Azhar, A. T. S.; Razak, N. H. S.

    2017-11-01

    The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65 MPa, 45.6 MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.

  2. A review of Andasol 3 and perspective for parabolic trough CSP plants in South Africa

    Science.gov (United States)

    Dinter, Frank; Möller, Lucas

    2016-05-01

    Andasol 3 is a 50 MW parabolic trough concentrating solar power plant with thermal energy storage in Andalusia, southern Spain. Having started operating in 2011 as one of the first plants of its kind in Spain it has been followed by more than 50 in the country since. For the reason that CSP plants with storage have the potential to compete against fossil fuel fired plants much better than any other renewable energy source a long-term review of such a plant operating on a commercial scale is needed. With data at hand documenting Andasol 3's operation over the course of one year between July 2013 and June 2014 we intend to provide such a review. We calculated the plants overall efficiency, its capacity factor, the gross energy generation as well as auxiliary powers on a monthly basis to reflect upon its overall performance. It was also looked at the benefits caused by the thermal energy storage and especially how steadily and reliably the plant was able to operate. With basic background information about physical, geographical and meteorological aspects influencing the solar resource, its variation and a CSP plant's performance a qualitative estimation for a parabolic trough plant located in South Africa was made.

  3. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers

    International Nuclear Information System (INIS)

    Lilliestam, Johan; Bielicki, Jeffrey M.; Patt, Anthony G.

    2012-01-01

    Coal power coupled with Carbon [Dioxide] Capture and Storage (CCS), and Concentrating Solar Power (CSP) technologies are often included in the portfolio of climate change mitigation options intended to decarbonize electricity systems. Both of these technologies can provide baseload electricity, are in early stages of maturity, and have benefits, costs, and obstacles. We compare and contrast CCS applied to coal-fired power plants with CSP. At present, both technologies are more expensive than existing electricity-generating options, but costs should decrease with large-scale deployment, especially in the case of CSP. For CCS, technological challenges still remain, storage risks must be clarified, and regulatory and legal uncertainties remain. For CSP, current challenges include electricity transmission and business models for a rapid and extensive expansion of high-voltage transmission lines. The need for international cooperation may impede CSP expansion in Europe. Highlights: ► Both technologies could provide low-carbon base load power. ► Both technologies require new networks, for either CO 2 or power transmission. ► CSP is closer to being a viable technology ready for pervasive diffusion. ► The costs associated with market saturation would be lower for CSP. ► The regulatory changes required for CSP diffusion are somewhat greater than for CCS.

  4. The cost of integration of parabolic trough CSP plants in isolated Mediterranean power systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Hadjipaschalis, Ioannis; Kourtis, George

    2010-01-01

    In this work, a technical and economic analysis concerning the integration of parabolic trough concentrated solar power (CSP) technologies, with or without thermal storage capability, in an existing typical small isolated Mediterranean power generation system, in the absence of a feed-in tariff scheme, is carried out. In addition to the business as usual (BAU) scenario, five more scenarios are examined in the analysis in order to assess the electricity unit cost with the penetration of parabolic trough CSP plants of 50 MWe or 100 MWe, with or without thermal storage capability. Based on the input data and assumptions made, the simulations indicated that the scenario with the utilization of a single parabolic trough CSP plant (either 50 MWe or 100 MWe and with or without thermal storage capability) in combination with BAU will effect an insignificant change in the electricity unit cost of the generation system compared to the BAU scenario. In addition, a sensitivity analysis on natural gas price, showed that increasing fuel prices and the existence of thermal storage capability in the CSP plant make this scenario marginally more economically attractive compared to the BAU scenario. (author)

  5. Tårs 10000 m2 CSP + Flat Plate Solar Collector Plant - Cost-Performance Optimization of the Design

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Tian, Zhiyong

    2016-01-01

    , was established. The optimization showed that there was a synergy in combining CSP and FP collectors. Even though the present cost per m² of the CSP collectors is high, the total energy cost is minimized by installing a combination of collectors in such solar heating plant. It was also found that the CSP......A novel solar heating plant with Concentrating Solar Power (CSP) collectors and Flat Plate (FP) collectors has been put into operation in Tårs since July 2015. To investigate economic performance of the plant, a TRNSYS-Genopt model, including a solar collector field and thermal storage tank...

  6. The techno-economic optimization of a 100MWe CSP-desalination plant in Arandis, Namibia

    Science.gov (United States)

    Dall, Ernest P.; Hoffmann, Jaap E.

    2017-06-01

    Energy is a key factor responsible for a country's economic growth and prosperity. It is closely related to the main global challenges namely: poverty mitigation, global environmental change and food and water security [1.]. Concentrating solar power (CSP) is steadily gaining more market acceptance as the cost of electricity from CSP power plants progressively declines. The cogeneration of electricity and water is an attractive prospect for future CSP developments as the simultaneous production of power and potable water can have positive economic implications towards increasing the feasibility of CSP plant developments [2.]. The highest concentrations of direct normal irradiation are located relatively close to Western coastal and Middle-Eastern North-African regions. It is for this reason worthwhile investigating the possibility of CSP-desalination (CSP+D) plants as a future sustainable method for providing both electricity and water with significantly reduced carbon emissions and potential cost reductions. This study investigates the techno-economic feasibility of integrating a low-temperature thermal desalination plant to serve as the condenser as opposed to a conventional dry-cooled CSP plant in Arandis, Namibia. It outlines the possible benefits of the integration CSP+D in terms of overall cost of water and electricity. The high capital costs of thermal desalination heat exchangers as well as the pumping of seawater far inland is the most significant barrier in making this approach competitive against more conventional desalination methods such as reverse osmosis. The compromise between the lowest levelized cost of electricity and water depends on the sizing and the top brine temperature of the desalination plant.

  7. Solar Thermoelectricity via Advanced Latent Heat Storage: A Cost-Effective Small-Scale CSP Application

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Rea, J.; Olsen, Michele L.; Oshman, C.; Hardin, C.; Alleman, Jeff; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.

    2017-06-27

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and

  8. Solar thermoelectricity via advanced latent heat storage: A cost-effective small-scale CSP application

    Science.gov (United States)

    Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; Oshman, C.; Hardin, C.; Alleman, J.; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2017-06-01

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and

  9. General introduction CSP Technologies and grid management

    OpenAIRE

    Hoffschmidt, Bernhard

    2017-01-01

    Der Vortrag gibt einen Überblick über alle relevanten CSP Technologien und beschreibt die besondere Charakteristik der Stromproduktion sowie die aktuelle und mittelfristige Markt- und Kostensituation. Für eine weitere Kostenreduktion wird der Vorteil eines PV-CSP Hybrid Kraftwerks beschrieben.

  10. Accelerated thermal and mechanical testing of CSP assemblies

    Science.gov (United States)

    Ghaffarian, R.

    2000-01-01

    Chip Scale Packages (CSP) are now widely used for many electronic applications including portable and telecommunication products. A test vehicle (TV-1) with eleven package types and pitches was built and tested by the JPL MicrotypeBGA Consortium during 1997 to 1999. Lessons learned by the team were published as a guidelines document for industry use. The finer pitch CSP packages which recently became available were indluded in the next test vehicle of the JPL CSP Consortium.

  11. Concentrating solar power. Its potential contribution to a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    This report summarises the findings and recommendations of a study of concentrating solar power (CSP). The study has examined the potential contribution of CSP in Europe, the Middle East and North Africa (the MENA region) over the period to 2050, and the scientific and technical developments that will be required to realise that potential. This study critically reviews existing work and describes the scientific consensus on the status and prospects of this technology. It also identifies key outstanding issues and where knowledge gaps need to be filled for CSP to fulfil its potential contribution in Europe and the MENA region. Based on these findings, the study makes recommendations on how to improve national and European support programmes for CSP development and deployment. Specific aims of the study have been the following: (1) to review the current status of CSP technologies and identify the technological developments and research and development (R and D) needed to achieve reliable operation and cost competitiveness with fossil fuelled electricity generation; (2) to consider how issues associated with the intermittent nature of CSP for electricity generation due to the daily pattern of insolation and the potential for cloudy days can best be addressed; (3) to identify the environmental impacts and infrastructure requirements of CSP, and comment on the significance of these in relation to other options for electricity supply; and, consequently, (4) to develop a view of the potential contribution that CSP located in Europe, the Middle East and North Africa could make to the energy mix in those regions by 2020 and 2050. This report focuses primarily on the generation of electricity from CSP, but it is recognised that there are other potentially significant 'products' from CSP such as process steam for industry, water desalination, alternative energy carriers such as hydrogen and syngas, and decontamination of water supplies. Although not discussed in

  12. A CSP plant combined with biomass CHP using ORC-technology in Bronderslev Denmark

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Yuan, Guofeng

    2017-01-01

    A new CSP plant combined with biomass CHP, using ORC technology, will be built and taken into operation in Bronderslev, Denmark during spring 2017. The price for Biomass is expected to increase with more and more use of this very limited energy source and then CSP will be cost effective in the long...... run, also in the Danish climate. Oil is used as heat transfer fluid instead of steam giving several advantages in this application for district heating at high latitudes. Total efficiencies and costs, competitive to PV plants. are expected....

  13. Modelling of a cross flow evaporator for CSP application

    DEFF Research Database (Denmark)

    Sørensen, Kim; Franco, Alessandro; Pelagotti, Leonardo

    2016-01-01

    ) applications. Heat transfer and pressure drop prediction methods are an important tool for design and modelling of diabatic, two-phase, shell-side flow over a horizontal plain tubes bundle for a vertical up-flow evaporator. With the objective of developing a model for a specific type of cross flow evaporator...... the available correlations for the definition of two-phase flow heat transfer, void fraction and pressure drop in connection with the operation of steam generators, focuses attention on a comparison of the results obtained using several different models resulting by different combination of correlations......Heat exchangers consisting of bundles of horizontal plain tubes with boiling on the shell side are widely used in industrial and energy systems applications. A recent particular specific interest for the use of this special heat exchanger is in connection with Concentrated Solar Power (CSP...

  14. Machine-Checkable Timed CSP

    Science.gov (United States)

    Goethel, Thomas; Glesner, Sabine

    2009-01-01

    The correctness of safety-critical embedded software is crucial, whereas non-functional properties like deadlock-freedom and real-time constraints are particularly important. The real-time calculus Timed Communicating Sequential Processes (CSP) is capable of expressing such properties and can therefore be used to verify embedded software. In this paper, we present our formalization of Timed CSP in the Isabelle/HOL theorem prover, which we have formulated as an operational coalgebraic semantics together with bisimulation equivalences and coalgebraic invariants. Furthermore, we apply these techniques in an abstract specification with real-time constraints, which is the basis for current work in which we verify the components of a simple real-time operating system deployed on a satellite.

  15. Development and implementation of a dynamic TES dispatch control component in a PV-CSP techno-economic performance modelling tool

    Science.gov (United States)

    Hansson, Linus; Guédez, Rafael; Larchet, Kevin; Laumert, Bjorn

    2017-06-01

    The dispatchability offered by thermal energy storage (TES) in concentrated solar power (CSP) and solar hybrid plants based on such technology presents the most important difference compared to power generation based only on photovoltaics (PV). This has also been one reason for recent hybridization efforts of the two technologies and the creation of Power Purchase Agreement (PPA) payment schemes based on offering higher payment multiples during daily hours of higher (peak or priority) demand. Recent studies involving plant-level thermal energy storage control strategies are however to a large extent based on pre-determined approaches, thereby not taking into account the actual dynamics of thermal energy storage system operation. In this study, the implementation of a dynamic dispatch strategy in the form of a TRNSYS controller for hybrid PV-CSP plants in the power-plant modelling tool DYESOPT is presented. In doing this it was attempted to gauge the benefits of incorporating a day-ahead approach to dispatch control compared to a fully pre-determined approach determining hourly dispatch only once prior to annual simulation. By implementing a dynamic strategy, it was found possible to enhance technical and economic performance for CSP-only plants designed for peaking operation and featuring low values of the solar multiple. This was achieved by enhancing dispatch control, primarily by taking storage levels at the beginning of every simulation day into account. The sequential prediction of the TES level could therefore be improved, notably for evaluated plants without integrated PV, for which the predicted storage levels deviated less than when PV was present in the design. While also featuring dispatch performance gains, optimal plant configurations for hybrid PV-CSP was found to present a trade-off in economic performance in the form of an increase in break-even electricity price when using the dynamic strategy which was offset to some extent by a reduction in

  16. South African CSP projects under the REIPPP programme - Requirements, challenges and opportunities

    Science.gov (United States)

    Relancio, Javier; Cuellar, Alberto; Walker, Gregg; Ettmayr, Chris

    2016-05-01

    Thus far seven Concentrated Solar Power (CSP) projects have been awarded under the Renewable Energy Independent Power Producer Procurement Programme (REIPPPP), totalling 600MW: one project is in operation, four under construction and two on their way to financial close. This provides an excellent opportunity for analysis of key features of the projects that have contributed to or detracted from the programme's success. The paper draws from Mott MacDonald's involvement as Technical Advisor on the seven CSP projects that have been successful under the REIPPPP to date as well as other global CSP developments. It presents how various programme requirements have affected the implementation of projects, such as the technical requirements, time of day tariff structure, economic development requirements and the renewable energy grid code. The increasingly competitive tariffs offered have encouraged developers to investigate efficiency maximising project configurations and cost saving mechanisms, as well as featuring state of the art technology in their proposals. The paper assesses the role of the project participants (developers, lenders and government) with regards to these innovative technologies and solutions. In our paper we discuss the status of projects and the SA market, analysing the main challenges and opportunities that in turn have influenced various aspects such as technology choice, operational regimes and supply chain arrangements.

  17. Analysis of regulation and economic incentives of the hybrid CSP HYSOL

    DEFF Research Database (Denmark)

    Baldini, Mattia; Pérez, Cristian Hernán Cabrera

    2016-01-01

    The European HYSOL project, developed over the last three years in the solar thermal plant Manchasol (Ciudad Real, Spain), has been successfully completed, demonstrating that hybridisation of CSP with other energy sources (renewable and fossil) ensures power supply to the power grid in a stable...

  18. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  19. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.

    Science.gov (United States)

    Yang, Banghua; Li, Huarong; Wang, Qian; Zhang, Yunyuan

    2016-06-01

    Feature extraction of electroencephalogram (EEG) plays a vital role in brain-computer interfaces (BCIs). In recent years, common spatial pattern (CSP) has been proven to be an effective feature extraction method. However, the traditional CSP has disadvantages of requiring a lot of input channels and the lack of frequency information. In order to remedy the defects of CSP, wavelet packet decomposition (WPD) and CSP are combined to extract effective features. But WPD-CSP method considers less about extracting specific features that are fitted for the specific subject. So a subject-based feature extraction method using fisher WPD-CSP is proposed in this paper. The idea of proposed method is to adapt fisher WPD-CSP to each subject separately. It mainly includes the following six steps: (1) original EEG signals from all channels are decomposed into a series of sub-bands using WPD; (2) average power values of obtained sub-bands are computed; (3) the specified sub-bands with larger values of fisher distance according to average power are selected for that particular subject; (4) each selected sub-band is reconstructed to be regarded as a new EEG channel; (5) all new EEG channels are used as input of the CSP and a six-dimensional feature vector is obtained by the CSP. The subject-based feature extraction model is so formed; (6) the probabilistic neural network (PNN) is used as the classifier and the classification accuracy is obtained. Data from six subjects are processed by the subject-based fisher WPD-CSP, the non-subject-based fisher WPD-CSP and WPD-CSP, respectively. Compared with non-subject-based fisher WPD-CSP and WPD-CSP, the results show that the proposed method yields better performance (sensitivity: 88.7±0.9%, and specificity: 91±1%) and the classification accuracy from subject-based fisher WPD-CSP is increased by 6-12% and 14%, respectively. The proposed subject-based fisher WPD-CSP method can not only remedy disadvantages of CSP by WPD but also discriminate

  20. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Caixia [State Grid Energy Research Inst., Beijing (China)

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  1. Addressing forecast uncertainty impact on CSP annual performance

    Science.gov (United States)

    Ferretti, Fabio; Hogendijk, Christopher; Aga, Vipluv; Ehrsam, Andreas

    2017-06-01

    This work analyzes the impact of weather forecast uncertainty on the annual performance of a Concentrated Solar Power (CSP) plant. Forecast time series has been produced by a commercial forecast provider using the technique of hindcasting for the full year 2011 in hourly resolution for Ouarzazate, Morocco. Impact of forecast uncertainty has been measured on three case studies, representing typical tariff schemes observed in recent CSP projects plus a spot market price scenario. The analysis has been carried out using an annual performance model and a standard dispatch optimization algorithm based on dynamic programming. The dispatch optimizer has been demonstrated to be a key requisite to maximize the annual revenues depending on the price scenario, harvesting the maximum potential out of the CSP plant. Forecasting uncertainty affects the revenue enhancement outcome of a dispatch optimizer depending on the error level and the price function. Results show that forecasting accuracy of direct solar irradiance (DNI) is important to make best use of an optimized dispatch but also that a higher number of calculation updates can partially compensate this uncertainty. Improvement in revenues can be significant depending on the price profile and the optimal operation strategy. Pathways to achieve better performance are presented by having more updates both by repeatedly generating new optimized trajectories but also more often updating weather forecasts. This study shows the importance of working on DNI weather forecasting for revenue enhancement as well as selecting weather services that can provide multiple updates a day and probabilistic forecast information.

  2. Assessing the future of a CSP industry in Morocco

    International Nuclear Information System (INIS)

    Mahia, Ramon; Arce, Rafael de; Medina, Eva

    2014-01-01

    This article presents the results of a survey on the feasibility of, and difficulties in, establishing a locally CSP manufacturing industry in Morocco. First, the survey explores which specific components of the CSP production chain could be manufactured in Morocco today and which would require moderate or significant changes being made in that country over the next decade. This paper contributes to demonstrating the potential for a CSP manufacturing industry in Morocco at the present time, ideal business models and current restrictions. Second, on the one hand this survey provides insight into the entrepreneurial, policy- and market-related barriers hampering the development of this industry and, on the other, the relative advantages offered by Morocco for the development of a CSP sector. Complementing the empirical findings on foreign direct investment determinants, this exercise stresses the key relevance of the economic context not only in terms of size, stability and predictability of the market, but also in regard to the critical importance of institutional and policy-related issues such as stability and public policy commitment. The results show that prior experience of firms in developing areas is a crucial issue in the accurate assessment of the risks and benefits associated with FDI decisions. - Highlights: • A CSP industry in Morocco is viable under certain adjustments in the next decade. • Policy related barriers are more critical than entrepreneurial or market obstacles. • It urges to provide a legislative and administrative support for CSP initiatives. • The volume of installed CSP capacity in the region doesn't reach a critical level. • Some foreign investors might have a negative miss perception of Moroccan reality

  3. Properties of concrete containing coconut shell powder (CSP) as a filler

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.

    2017-11-01

    Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.

  4. Middle East and North Africa Region Assessment of the Local Manufacturing Potential for Concentrated Solar Power (CSP) Projects

    Energy Technology Data Exchange (ETDEWEB)

    Gazzo, A.; Gousseland, P.; Verdier, J. [Ernst and Young et Associes, Neuilly-Sur-Seine (France); Kost, C.; Morin, G.; Engelken, M.; Schrof, J.; Nitz, P.; Selt, J.; Platzer, W. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany); Ragwitz, M.; Boie, I.; Hauptstock, D.; Eichhammer, W. [Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (Germany)

    2011-01-15

    The MENA CSP (Middle East and North Africa - Concentrated Solar Power) plan is an ambitious scheme with an appeal to anyone concerned about climate change and convinced by the need for clean, renewable power. But what does it really mean for the average citizen of say Morocco or Tunisia? The World Bank sees potential for significant job and wealth creation in solar energy producing countries. If the CSP market grows rapidly over the next few years, equipment manufacturing will be essential to supply this new sector. This study proposes roadmaps and an action plan to help develop the potential of locally manufactured CSP components in the existing industry and for new market entrants.

  5. Classifying regularized sensor covariance matrices: An alternative to CSP

    NARCIS (Netherlands)

    Roijendijk, L.M.M.; Gielen, C.C.A.M.; Farquhar, J.D.R.

    2016-01-01

    Common spatial patterns ( CSP) is a commonly used technique for classifying imagined movement type brain-computer interface ( BCI) datasets. It has been very successful with many extensions and improvements on the basic technique. However, a drawback of CSP is that the signal processing pipeline

  6. Classifying regularised sensor covariance matrices: An alternative to CSP

    NARCIS (Netherlands)

    Roijendijk, L.M.M.; Gielen, C.C.A.M.; Farquhar, J.D.R.

    2016-01-01

    Common spatial patterns (CSP) is a commonly used technique for classifying imagined movement type brain computer interface (BCI) datasets. It has been very successful with many extensions and improvements on the basic technique. However, a drawback of CSP is that the signal processing pipeline

  7. Electro-Kinetic Pumping with Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies

    Directory of Open Access Journals (Sweden)

    Emmanuel O.B. Ogedengbe

    2012-12-01

    Full Text Available Parametric studies of the effects of slip irreversibility in concentrating solar power (CSP-powered bio-digester assemblies are investigated. Complexities regarding the identification of the appropriate electro-kinetic phenomena for certain electrolyte phases are reviewed. The application of exergy analysis to the design of energy conversion devices, like solar thermal collectors, for the required heat of formation in a downdraft waste food bio-digester, is discussed. Thermal management in the silicon-based substrate of the energy system is analyzed. The rectangular-shaped micro-channels are simulated with a finite-volume, staggered coupling of the pressure-velocity fields. Entropy generation transport within the energy system is determined and coupled with the solution procedure. Consequently, the effects of channel size perturbation, Reynolds number, and pressure ratios on the thermal performance and exergy destruction are presented. A comparative analysis of the axial heat conduction for thermal management in energy conversion devices is proposed.

  8. Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bryner, Elliott [Soutwest Research Inst., San Antonio, TX (United States); Brun, Klaus [Soutwest Research Inst., San Antonio, TX (United States); Coogan, Shane [Soutwest Research Inst., San Antonio, TX (United States); Cunningham, C. Seth [Soutwest Research Inst., San Antonio, TX (United States); Poerner, Nathan [Soutwest Research Inst., San Antonio, TX (United States)

    2016-02-26

    The objective of this project is to increase Concentrated Solar Power (CSP) tower air receiver and gas turbine temperature capabilities to 1,000ºC by the development of a novel gas turbine combustor, which can be integrated on a megawatt-scale gas turbine, such as the Solar Turbines Mercury 50™. No combustor technology currently available is compatible with the CSP application target inlet air temperature of 1,000°C. Autoignition and flashback at this temperature prevent the use of conventional lean pre-mix injectors that are currently employed to manage NOx emissions. Additional challenges are introduced by the variability of the high-temperature heat source provided by the field of solar collectors, the heliostat in CSP plants. For optimum energy generation from the power turbine, the turbine rotor inlet temperature (TRIT) should remain constant. As a result of changing heat load provided to the solar collector from the heliostat, the amount of energy input required from the combustion system must be adjusted to compensate. A novel multi-bank lean micro-mix injector has been designed and built to address the challenges of high-temperature combustion found in CSP applications. The multi-bank arrangement of the micro-mix injector selectively injects fuel to meet the heat addition requirements to maintain constant TRIT with changing solar load. To validate the design, operation, and performance of the multi-bank lean micro-mix injector, a novel combustion test facility has been designed and built at Southwest Research Institute® (SwRI®) in San Antonio, TX. This facility, located in the Turbomachinery Research Facility, provides in excess of two kilograms per second of compressed air at nearly eight bar pressure. A two-megawatt electric heater raises the inlet temperature to 800°C while a secondary gas-fired heater extends the operational temperature range of the facility to 1,000°C. A combustor test rig connected to the heater has been designed and built to

  9. A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data

    DEFF Research Database (Denmark)

    Mosher, J.; Sako, M.; Corlies, L.

    2012-01-01

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data...

  10. Solar Power Potential of Tanzania: Identifying CSP and PV Hot Spots through a GIS Multicriteria Decision Making Analysis

    DEFF Research Database (Denmark)

    Aly, Ahmed; Jensen, Steen Solvang; Pedersen, Anders Branth

    2017-01-01

    More than one billion people are still living without access to electricity today. More than half of them are living in Sub-Saharan Africa. There is a noticeable shortage of energy related information in Africa, especially for renewable energies. Due to lacking studies and researches on integrating...... renewable energy technologies, the Tanzanian official generation expansion plan till 2035 showed high dependency on fossil fuel and a negligible role of renewables other than large hydropower. This study investigates the spatial suitability for large-scale solar power installations in Tanzania through using...... technology-specific suitability map categorizes all the non-excluded areas into most suitable, suitable, moderately suitable, and least suitable areas. The study also suggests four hot spots (i.e. specific recommended locations) for Concentrated Solar Power (CSP) installations and four hot spots...

  11. Constraint satisfaction problems CSP formalisms and techniques

    CERN Document Server

    Ghedira, Khaled

    2013-01-01

    A Constraint Satisfaction Problem (CSP) consists of a set of variables, a domain of values for each variable and a set of constraints. The objective is to assign a value for each variable such that all constraints are satisfied. CSPs continue to receive increased attention because of both their high complexity and their omnipresence in academic, industrial and even real-life problems. This is why they are the subject of intense research in both artificial intelligence and operations research. This book introduces the classic CSP and details several extensions/improvements of both formalisms a

  12. Economic assessment and optimal operation of CSP systems with TES in California electricity markets

    Science.gov (United States)

    Dowling, Alexander W.; Dyreson, Ana; Miller, Franklin; Zavala, Victor M.

    2017-06-01

    The economics and performance of concentrated power (CSP) systems with thermal energy storage (TES) inherently depend on operating policies and the surrounding weather conditions and electricity markets. We present an integrated economic assessment framework to quantify the maximum possible revenues from simultaneous energy and ancillary services sales by CSP systems. The framework includes both discrete start-up/shutdown restrictions and detailed physical models. Analysis of coinci-dental historical market and meteorological data reveals provision of ancillary services increases market revenue 18% to 37% relative to energy-only participation. Surprisingly, only 53% to 62% of these revenues are available through sole participation in the day-ahead market, indicating significant opportunities at faster timescales. Motivated by water-usage concerns and permitting requirements, we also describe a new nighttime radiative-enhanced dry-cooling system with cold-side storage that consumes no water and offers higher effciencies than traditional air-cooled designs. Operation of this new system is complicated by the cold-side storage and inherent coupling between the cooling system and power plant, further motivating integrated economic analysis.

  13. Evaluating the potential of concentrating solar power generation in Northwestern India

    International Nuclear Information System (INIS)

    Purohit, Ishan; Purohit, Pallav; Shekhar, Shashaank

    2013-01-01

    To accelerate the decarburization in the Indian power sector, concentrating solar power (CSP) needs to play an important role. CSP technologies have found significant space in the Jawaharlal Nehru National Solar Mission (JNNSM) of the Indian government in which 20,000 MW grid connected solar power projects have been targeted by 2022 with 50% capacity for CSP. In this study a preliminary attempt has been made to assess the potential of CSP generation in the Northwestern (NW) regions of India; which seems a high potential area as it has the highest annual solar radiation in India, favorable meteorological conditions for CSP and large amount of waste land. The potential of CSP systems in NW India is estimated on the basis of a detailed solar radiation and land resource assessment. The energy yield exercise has been carried out for the representative locations using System Advisor Model for four commercially available CSP technologies namely Parabolic Trough Collector (PTC), Central receiver system (CRS), Linear Fresnel Reflector (LFR) and Parabolic Dish System (PDS). The financial viability of CSP systems at different locations in NW India is also analyzed in this study. On the basis of a detailed solar radiation and land resource assessment, the maximum theoretical potential of CSP in NW India is estimated over 2000 GW taking into accounts the viability of different CSP technologies and land suitability criteria. The technical potential is estimated over 1700 GW at an annual direct normal incidence (DNI) over 1800 kW h/m 2 and finally, the economic potential is estimated over 700 GW at an annual DNI over 2000 kW h/m 2 in NW India. It is expected that in near future locations with lower DNI values could also become financially feasible with the development of new technologies, advancement of materials, economy of scale, manufacturing capability along with the enhanced policy measures etc. With an annual DNI over 1600 kW h/m 2 it is possible to exploit over 2000 GW CSP

  14. Renewable Energy Zones for the Africa Clean Energy Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Grace C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Deshmukh, Ranjit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Ndhlukula, Kudakwashe [International Renewable Energy Agency (IRENA), Abu Dhabi (United Arab Emirates); Radojicic, Tijana [International Renewable Energy Agency (IRENA), Abu Dhabi (United Arab Emirates); Reilly, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2015-07-01

    Multi-criteria Analysis for Planning Renewable Energy (MapRE) is a study approach developed by the Lawrence Berkeley National Laboratory with the support of the International Renewable Energy Agency (IRENA). The approach combines geospatial, statistical, energy engineering, and economic methods to comprehensively identify and value high-quality wind, solar PV, and solar CSP resources for grid integration based on techno-economic criteria, generation profiles (for wind), and socio-environmental impacts. The Renewable Energy Zones for the Africa Clean Energy Corridor study sought to identify and comprehensively value high-quality wind, solar photovoltaic (PV), and concentrating solar power (CSP) resources in 21 countries in the East and Southern Africa Power Pools to support the prioritization of areas for development through a multi-criteria planning process. These countries include Angola, Botswana, Burundi, Djibouti, Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Lesotho, Libya, Malawi, Mozambique, Namibia, Rwanda, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia, and Zimbabwe. The study includes the methodology and the key results including renewable energy potential for each region.

  15. Concentrated Solar Power as part of the European energy supply. The realization of large-scale solar power plants. Options, constraints and recommendations

    International Nuclear Information System (INIS)

    Bouwmans, I.; Carton, L.J.; Dijkema, G.P.J.; Stikkelman, R.M.; De Vries, L.J.

    2006-01-01

    Next to solar cells and solar collectors for decentralized power generation Concentrated Solar Power (CSP) technology is available and proven for large-scale application of solar energy. However, after 20 years of demonstration projects and semi-commercial installations, CSP is still not widely used. In this quick-scan an overview is given of strong and weak points of CSP, as well as its' options and constraints with regard to a sustainable energy supply, focusing on technical, economical and administrative constraints and chances in Europe and European Union member states [nl

  16. Fuel from the Sky: Solar Power's Potential for Western Energy Supply

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, A.

    2002-07-01

    A reliable and affordable supply of electricity is essential to protect public health and safety and to sustain a vigorous economy in the West. Renewable energy in the form of wind or solar provides one of the means of meeting the demand for power while minimizing adverse impacts on the environment, increasing fuel diversity, and hedging against fuel price volatility. Concentrating solar power (CSP) is the most efficient and cost-effective way to generate electricity from the sun. Hundreds of megawatts of CSP solar-generating capacity could be brought on-line within a few years and make a meaningful contribution to the energy needs of the West.

  17. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandias extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  18. Generation of Electric Energy and Desalinating Water from Solar Energy and the Oceans Hydropower

    Science.gov (United States)

    Elfikky, Niazi

    Brief.All warnings and fears about the environment in our Earth planet due to the serious effects of the industrial revolution were certainly predicted early. But the eager contest and the powerful desire for more profits beside the human interest for welfare and development closed all minds about the expected severe destuctive impacts on our earth planet. Also, we have to remember that the majority of the African, Asian and Latin American countries are still in the first stage of their development and if they will be left to generate all their demand of energy by the conventional machine e.g (Fossil Fuel, Biofuel and Nuclear Fuel), then our Earth planet will confront an endless and ceasless severe destructive impacts due to the encroach of the released hot Carbon Doxide and hot vapours of Acids which will never forgive any fruitful aspect in our Earth Planet from destruction. 1. Importance of the New Project. Building the Extra cheap, clean Power plants with safe and smooth Operation in addition to the long life time in service for generating enough and plentiful electric energy the sustainable renwable resources will invigorate the foresaking of all Nuclear, Fossil and Biofuel power plants to avoide the nuclear hazards and stop releasing the hot carbon doxide, hot acids for the recovery of our ill environment. Also, the main sustainable, renewable, and cheap resources for generating the bulky capacity of the electric energy in our project are the Sun and the Oceans in addition to all Seas Surrounding all Continents in our Earth planet. Therefore, our recourses are so much enormous plentiful, clean, and renewable. 2. .Generation of Electricity from Solar Energy by Photovoltiac Cells (PVCs) or Concentrated Solar Power (CSP). Characteristics of Photovoltiac Cells (PVCs). It is working only by Sun's Light (Light photons) and its efficiency will decrease as the Solar Thermal Radiation will increase, i.e. as the temerature of the Solar Voltiac will increase, its output

  19. Takaful Operators’ Corporate Social Performance (CSP: An Industry Perspective

    Directory of Open Access Journals (Sweden)

    Muhamat Amirul Afif

    2017-01-01

    Full Text Available Takaful operators which are part of Islamic financial institutions (IFIs derive their fundamental principles from shariah. These religious based institutions are expected to fulfill the two important roles in their business operations: commercially profitable and socially responsible. Nevertheless, their societal role is rarely measured and discussed. Therefore, this study appraised the societal role of takaful operators by assessing the components which have been proposed under the corporate social performance (CSP theme for IFIs. This study has arranged structured interview sessions with the Chief Investment Officers and Heads of Investment of each of the eleven takaful operators in Malaysia. The Delphi-style technique was adopted when developing the interview questions. The questions were developed in the form of a five-point Likert scale, addressing specific issues on CSP of takaful operators. In addition, information on takaful operators’ CSR activities, zakat and tax payment were gathered from the companies’ websites and annual report of takaful operators. The study concludes that takaful operators in Malaysia have achieved their societal role through two channels: CSP programmes financed from companies’ profits and fulfillment of CSP as a result of business-community agenda. This study covers every takaful operator in Malaysia and the results reflect industry opinion.

  20. The Climate Services Partnership (CSP): Working Together to Improve Climate Services Worldwide

    Science.gov (United States)

    Zebiak, S.; Brasseur, G.; Members of the CSP Coordinating Group

    2012-04-01

    Throughout the world, climate services are required to address urgent needs for climate-informed decision-making, policy and planning. These needs were explored in detail at the first International Conference on Climate Services (ICCS), held in New York in October 2011. After lengthy discussions of needs and capabilities, the conference culminated in the creation of the Climate Services Partnership (CSP). The CSP is an informal interdisciplinary network of climate information users, providers, donors and researchers interested in improving the provision and development of climate services worldwide. Members of the Climate Services Partnership work together to share knowledge, accelerate learning, develop new capacities, and establish good practices. These collaborative efforts will inform and support the evolution and implementation of the Global Framework for Climate Services. The Climate Services Partnership focuses its efforts on three levels. These include: 1. encouraging and sustaining connections between climate information providers, users, donors, and researchers 2. gathering, synthesizing and disseminating current knowledge on climate services by way of an online knowledge management platform 3. generating new knowledge on critical topics in climate service development and provision, through the creation of focused working groups on specific topics To date, the Climate Services Partnership has made progress on all three fronts. Connections have been fostered through outreach at major international conferences and professional societies. The CSP also maintains a website and a monthly newsletter, which serves as a resource for those interested in climate services. The second International Conference on Climate Services (ICCS2) will be held in Berlin in September. The CSP has also created a knowledge capture system that gathers and disseminates a wide range of information related to the development and provision of climate services. This includes an online

  1. Low cost anti-soiling coatings for CSP collector mirrors and heliostats

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton Barton [ORNL; Polyzos, Georgios [ORNL; Schaeffer, Daniel A [ORNL; Lee, Dominic F [ORNL; Datskos, Panos G [ORNL

    2014-01-01

    Most concentrating solar power (CSP) facilities in the USA are located in the desert southwest of the country where land and sunshine are abundant. But one of the significant maintenance problems and cost associated with operating CSP facilities in this region is the accumulation of dust, sand and other pollutants on the collector mirrors and heliostats. In this paper we describe the development of low cost, easy to apply anti-soiling coatings based on superhydrophobic (SH) functionalized nano silica materials and polymer binders that posses the key requirements necessary to inhibit particulate deposition on and sticking to CSP mirror surfaces, and thereby significantly reducing mirror cleaning costs and facility downtime.

  2. Rhodium(III)-Catalyzed Amidation of Unactivated C(sp(3) )-H Bonds.

    Science.gov (United States)

    Wang, He; Tang, Guodong; Li, Xingwei

    2015-10-26

    Nitrogenation by direct functionalization of C-H bonds represents an important strategy for constructing C-N bonds. Rhodium(III)-catalyzed direct amidation of unactivated C(sp(3) )-H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp(3) )-H bonds are amidated under rhodium catalysis in high efficiency using 3-substituted 1,4,2-dioxazol-5-ones as the amide source. The protocol broadens the scope of rhodium(III)-catalyzed C(sp(3) )-H activation chemistry, and is applicable to the late-stage functionalization of natural products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Prospects of concentrating solar power to deliver key energy services in a developing country

    Energy Technology Data Exchange (ETDEWEB)

    Karakosta, Charikleia; Pappas, Charalampos; Psarras, John [National Technical University of Athens, School of Electrical and Computer Engineering, Management and Decision Support Systems Lab (NTUA-EPU), 9, Iroon Polytechniou str., 15780, Athens (Greece)

    2011-07-01

    One of today's greatest challenges is the response to the worldwide continuously increasing energy demand. The need for supply of electricity is getting greater year by year. In addition, climate change problems and the limited fossil resources require new sustainable electricity generation options, which utilize Renewable Energy Sources (RES) and are economical in the meantime. Concentrating Solar Power (CSP) generation is a proven renewable energy technology that has the potential to become cost-effective in the future. This analysis explores for Chile the potential of CSP to deliver key energy services for the country. The specific technology has a significant technical potential within Chile, but 'somehow' do not receive sufficient attention from relevant stakeholders, because of gaps either in stakeholders' awareness of the technology or in domestic research and development (R and D) and/or public/private investment. The aim of this paper is to establish a well-informed discussion on the feasibility and potential of the specific sustainable energy technology, namely the CSP technology, within a given country context and particularly Chile. It provides an overview of the fundamental (macro-economic) forces within an economy and identifies some of the blockages and barriers that can be expected when introducing a new technology.

  4. Control oriented concentrating solar power (CSP) plant model and its applications

    Science.gov (United States)

    Luo, Qi

    Solar receivers in concentrating solar thermal power plants (CSP) undergo over 10,000 start-ups and shutdowns, and over 25,000 rapid rate of change in temperature on receivers due to cloud transients resulting in performance degradation and material fatigue in their expected lifetime of over 30 years. The research proposes to develop a three-level controller that uses multi-input-multi-output (MIMO) control technology to minimize the effect of these disturbances, improve plant performance, and extend plant life. The controller can be readily installed on any vendor supplied state-of-the-art control hardware. We propose a three-level controller architecture using multi-input-multi-output (MIMO) control for CSP plants that can be implemented on existing plants to improve performance, reliability, and extend the life of the plant. This architecture optimizes the performance on multiple time scalesreactive level (regulation to temperature set points), tactical level (adaptation of temperature set points), and strategic level (trading off fatigue life due to thermal cycling and current production). This controller unique to CSP plants operating at temperatures greater than 550 °C, will make CSPs competitive with conventional power plants and contribute significantly towards the Sunshot goal of 0.06/kWh(e), while responding with agility to both market dynamics and changes in solar irradiance such as due to passing clouds. Moreover, our development of control software with performance guarantees will avoid early stage failures and permit smooth grid integration of the CSP power plants. The proposed controller can be implemented with existing control hardware infrastructure with little or no additional equipment. In the thesis, we demonstrate a dynamics model of CSP, of which different components are modelled with different time scales. We also show a real time control strategy of CSP control oriented model in steady state. Furthermore, we shown different controllers

  5. The role of CSP in the electricity system of South Africa - technical operation, grid constraints, market structure and economics

    Science.gov (United States)

    Kost, Christoph; Friebertshäuser, Chris; Hartmann, Niklas; Fluri, Thomas; Nitz, Peter

    2017-06-01

    This paper analyses the role of solar technologies (CSP and PV) and their interaction in the South African electricity system by using a fundamental electricity system modelling (ENTIGRIS-SouthAfrica). The model is used to analyse the South African long-term electricity generation portfolio mix, optimized site selection and required transmission capacities until the year 2050. Hereby especially the location and grid integration of solar technology (PV and CSP) and wind power plants is analysed. This analysis is carried out by using detailed resource assessment of both technologies. A cluster approach is presented to reduce complexity by integrating the data in an optimization model.

  6. Techno-economic evaluation of concentrating solar power generation in India

    International Nuclear Information System (INIS)

    Purohit, Ishan; Purohit, Pallav

    2010-01-01

    The Jawaharlal Nehru National Solar Mission (JNNSM) of the recently announced National Action Plan on Climate Change (NAPCC) by the Government of India aims to promote the development and use of solar energy for power generation and other uses with the ultimate objective of making solar competitive with fossil-based energy options. The plan includes specific goals to (a) create an enabling policy framework for the deployment of 20,000 MW of solar power by 2022; (b) create favourable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership; (c) promote programmes for off grid applications, reaching 1000 MW by 2017 and 2000 MW by 2022, (d) achieve 15 million m 2 solar thermal collector area by 2017 and 20 million by 2022, and (e) deploy 20 million solar lighting systems for rural areas by 2022. The installed capacity of grid interactive solar power projects were 6 MW until October 2009 that is far below from their respective potential. In this study, a preliminary attempt towards the technical and economic assessment of concentrating solar power (CSP) technologies in India has been made. To analyze the techno-economic feasibility of CSP technologies in Indian conditions two projects namely PS-10 (based on power tower technology) and ANDASOL-1 (based on parabolic trough collector technology) have been taken as reference cases for this study. These two systems have been simulated at several Indian locations. The preliminary results indicate that the use of CSP technologies in India make financial sense for the north-western part of the country (particularly in Rajasthan and Gujarat states). Moreover, internalization of secondary benefits of carbon trading under clean development mechanism of the Kyoto Protocol further improves the financial feasibility of CSP systems at other locations considered in this study. It may be noted that the locations blessed with annual direct solar radiation more than 1800 k

  7. Modeling and simulations of a 30 MWe solar electric generating system using parabolic trough collectors in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Usta, Yasemin [Anyl Asansor Ltd (Turkey)], email: syusta@gmail.com; Baker, Derek [Middle East Technical University (Turkey)], email: dbaker@metu.edu.tr; Kaftanoglu, Bilgin [Atilim University (Turkey)], email: bilgink@atilim.edu.tr

    2011-07-01

    With the energy crisis and the increasing concerns about climate change, the interest in concentrating solar power (CSP) systems is growing in Turkey. The aim of this paper is to develop a model of a CSP system using a field of parabolic trough collectors and to assess the predicted performance of the system. A model was developed for a 30MWe solar generating system in Antalya, Turkey, using TRNSYS software, the solar thermal electric components library and information on an existing system in Kramer Junction, California, United States. Annual simulations were then performed for both systems in Antalya and California using weather data. It was found that the predictions were in good agreement with published data. In addition results showed that Antalya's system would generate 30% less than Kramer Junction's system on an annual basis. This paper provides useful information on modeling and simulation of CSP systems.

  8. A General Catalyst for Site-Selective C(sp(3))-H Bond Amination of Activated Secondary over Tertiary Alkyl C(sp(3))-H Bonds.

    Science.gov (United States)

    Scamp, Ryan J; Jirak, James G; Dolan, Nicholas S; Guzei, Ilia A; Schomaker, Jennifer M

    2016-06-17

    The discovery of transition metal complexes capable of promoting general, catalyst-controlled and selective carbon-hydrogen (C-H) bond amination of activated secondary C-H bonds over tertiary alkyl C(sp(3))-H bonds is challenging, as substrate control often dominates when reactive nitrene intermediates are involved. In this letter, we report the design of a new silver complex, [(Py5Me2)AgOTf]2, that displays general and good-to-excellent selectivity for nitrene insertion into propargylic, benzylic, and allylic C-H bonds over tertiary alkyl C(sp(3))-H bonds.

  9. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  10. Atropisomerism about aryl-Csp(3) bonds: the electronic and steric influence of ortho-substituents on conformational exchange in cannabidiol and linderatin derivatives.

    Science.gov (United States)

    Berber, Hatice; Lameiras, Pedro; Denhez, Clément; Antheaume, Cyril; Clayden, Jonathan

    2014-07-03

    Terpenylation reactions of substituted phenols were used to prepare cannabidiol and linderatin derivatives, and their structure and conformational behavior in solution were investigated by NMR and, for some representative examples, by DFT. VT-NMR spectra and DFT calculations were used to determine the activation energies of the conformational change arising from restricted rotation about the aryl-Csp(3) bond that lead to two unequally populated rotameric epimers. The NBO calculation was applied to explain the electronic stabilization of one conformer over another by donor-acceptor charge transfer interactions. Conformational control arises from a combination of stereoelectronic and steric effects between substituents in close contact with each other on the two rings of the endocyclic epoxide atropisomers. This study represents the first exploration of the stereoelectronic origins of atropisomerism around C(sp(2))-C(sp(3)) single bonds through theoretical calculations.

  11. A VAR2CSA:CSP conjugate capable of inducing dual specificity antibody responses

    DEFF Research Database (Denmark)

    Matondo, Sungwa; Thrane, Susan; Janitzek, Christoph Mikkel

    2017-01-01

    Catcher peptide. The covalent interaction between SpyTag/SpyCatcher enables the formation of DBL1x-DBL2x-ID2a:CSP conjugate vaccine. Immunogenicity and quality of antibody responses induced by the conjugate vaccine, as well as a control CSP-SpyCatcher vaccine, was tested in BALB/c mice.  Results: Serum samples...... obtained from mice immunized with the conjugate vaccine were able to recognize both untagged DBL1x-DBL2x-ID2a as well as CSP antigen. Moreover, the geometric mean anti-CSP antibody titer was 1.9-fold higher in serum (at day 35 and 55 post-first immunization) from mice immunized with the conjugate vaccine......, as compared to mice receiving the control vaccine.  Conclusion: The data obtained in this study serves as proof-of-concept for the simultaneous induction of antibodies directed against individual antigen components in a dual stage anti-malaria vaccine....

  12. BF3·Et2O-promoted cleavage of the Csp-Csp2 bond of 2-propynolphenols/anilines: route to C2-alkenylated benzoxazoles and benzimidazoles.

    Science.gov (United States)

    Song, Xian-Rong; Qiu, Yi-Feng; Song, Bo; Hao, Xin-Hua; Han, Ya-Ping; Gao, Pin; Liu, Xue-Yuan; Liang, Yong-Min

    2015-02-20

    A novel BF3·Et2O-promoted tandem reaction of easily prepared 2-propynolphenols/anilines and trimethylsilyl azide is developed to give C2-alkenylated benzoxazoles and benzimidazoles in moderate to good yields. Most reactions could be accomplished in 30 min at room temperature. This tandem process involves a Csp-Csp2 bond cleavage and a C-N bond formation. Moreover, both tertiary and secondary propargylic alcohols with diverse functional groups were tolerated under the mild conditions.

  13. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense.

    Directory of Open Access Journals (Sweden)

    Guoxia Liu

    Full Text Available Chemosensory proteins (CSPs are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1 was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde. This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity.

  14. Supercritical Carbon Dioxide Power Generation System Definition: Concept Definition and Capital Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Larry [Black & Veatch, Kansas City, MO (United States); Galluzzo, Geoff [Black & Veatch, Kansas City, MO (United States); Andrew, Daniel [Black & Veatch, Kansas City, MO (United States); Adams, Shannon [Black & Veatch, Kansas City, MO (United States)

    2016-06-30

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and 30 percent further reductions by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO2 cycle

  15. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  16. Automata learning algorithms and processes for providing more complete systems requirements specification by scenario generation, CSP-based syntax-oriented model construction, and R2D2C system requirements transformation

    Science.gov (United States)

    Hinchey, Michael G. (Inventor); Margaria, Tiziana (Inventor); Rash, James L. (Inventor); Rouff, Christopher A. (Inventor); Steffen, Bernard (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments, automata learning algorithms and techniques are implemented to generate a more complete set of scenarios for requirements based programming. More specifically, a CSP-based, syntax-oriented model construction, which requires the support of a theorem prover, is complemented by model extrapolation, via automata learning. This may support the systematic completion of the requirements, the nature of the requirement being partial, which provides focus on the most prominent scenarios. This may generalize requirement skeletons by extrapolation and may indicate by way of automatically generated traces where the requirement specification is too loose and additional information is required.

  17. LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025

    Science.gov (United States)

    Dieckmann, Simon; Dersch, Jürgen; Giuliano, Stefano; Puppe, Michael; Lüpfert, Eckhard; Hennecke, Klaus; Pitz-Paal, Robert; Taylor, Michael; Ralon, Pablo

    2017-06-01

    Concentrating Solar Power (CSP), with an installed capacity of 4.9 GW by 2015, is a young technology compared to other renewable power generation technologies. A limited number of plants and installed capacity in a small challenging market environment make reliable and transparent cost data for CSP difficult to obtain. The International Renewable Energy Agency (IRENA) and the DLR German Aerospace Center gathered and evaluated available cost data from various sources for this publication in order to yield transparent, reliable and up-to-date cost data for a set of reference parabolic trough and solar tower plants in the year 2015 [1]. Each component of the power plant is analyzed for future technical innovations and cost reduction potential based on current R&D activities, ongoing commercial developments and growth in market scale. The derived levelized cost of electricity (LCOE) for 2015 and 2025 are finally contrasted with published power purchase agreements (PPA) of the NOOR II+III power plants in Morocco. At 7.5% weighted average cost of capital (WACC) and 25 years economic life time, the levelized costs of electricity for plants with 7.5 (trough) respectively 9 (tower) full-load hours thermal storage capacity decrease from 14-15 -ct/kWh today to 9-10 -ct/kWh by 2025 for both technologies at direct normal irradiation of 2500 kWh/(m².a). The capacity factor increases from 41.1% to 44.6% for troughs and from 45.5% to 49.0% for towers. Financing conditions are a major cost driver and offer potential for further cost reduction with the maturity of the technology and low interest rates (6-7 - ct/kWh for 2% WACC at 2500 kWh/(m2.a) in 2025).

  18. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  19. Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function

    International Nuclear Information System (INIS)

    Li, Hongliang; Tan, Jing; Song, Xinmi; Wu, Fan; Tang, Mingzhu; Hua, Qiyun; Zheng, Huoqing; Hu, Fuliang

    2017-01-01

    As a frequently used neonicotinoid insecticide, imidacloprid can impair the chemoreceptive behavior of honey bees even at sublethal doses, while the physiochemical mechanism has not been further revealed. Here, multiple fluorescence spectra, thermodynamic method, and molecular docking were used to study the interaction and the functional inhibition of imidacloprid to the recombinant CSP1 protein in Asian honey bee, Apis cerana. The results showed that the fluorescence intensity (λ em  = 332 nm) of CSP1 could be significantly quenched by imidacloprid in a dynamic mode. During the quenching process, ΔH > 0, ΔS > 0, indicating that the acting forces of imidacloprid with CSP1 are mainly hydrophobic interactions. Synchronous fluorescence showed that the fluorescence of CSP1 was mainly derived from tryptophan, and the hydrophobicity of tryptophan decreased with the increase of imidacloprid concentration. Molecular docking predicted the optimal pose and the amino acid composition of the binding process. Circular dichroism (CD) spectra showed that imidacloprid reduced the α-helix of CSP1 and caused the extension of the CSP1 peptide chain. In addition, the binding of CSP1 to floral scent β-ionone was inhibited by nearly 50% of the apparent association constant (K A ) in the presence of 0.28–2.53 ng/bee of imidacloprid, and the inhibition rate of nearly 95% at 3.75 ng/bee of imidacloprid at sublethal dose level. This study initially revealed the molecular physiochemical mechanism that sublethal doses of neonicotinoid still interact and inhibit the physiological function of the honey bees' chemoreceptive system. - Highlights: • Sublethal doses of imidacloprid can directly interact with CSP1 in Apis cerana. • Sublethal imidacloprid can inhibit the function of CSP1 binding to semiochemicals. • The fluorescence intensity of CSP1 quenched by imidacloprid in a dynamic mode. • The binding between CSP1 and imidacloprid are driven by hydrophobic interactions.

  20. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-18

    We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal

  1. BdorCSP2 is important for antifeed and oviposition-deterring activities induced by Rhodojaponin-III against Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Rhodojaponin-III is a nonvolatile botanical grayanoid diterpene compound, which has antifeedant and oviposition deterrence effects against many kinds of insects. However, the molecular mechanism of the chemoreception process remains unknown. In this study, the important role of BdorCSP2 in the recognition of Rhodojaponin-III was identified. The full length cDNA encoding BdorCSP2 was cloned from legs of Bactrocera dorsalis. The results of expression pattern revealed that BdorCSP2 was abundantly expressed in the legs of adult B. dorsalis. Moreover, the expression of BdorCSP2 could be up-regulated by Rhodojaponin-III. In order to gain comprehensive understanding of the recognition process, the binding affinity between BdorCSP2 and Rhodojaponin-III was measured by fluorescence binding assay. Silencing the expression of BdorCSP2 through the ingestion of dsRNA could weaken the effect of oviposition deterrence and antifeedant of Rhodojaponin-III. These results suggested that BdorCSP2 of B. dorsalis could be involved in chemoreception of Rhodojaponin-III and played a critical role in antifeedant and oviposition behaviors induced by Rhodojaponin-III.

  2. Electro-Kinetic Pumping with Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies

    OpenAIRE

    Ogedengbe, Emmanuel; Rosen, Marc

    2012-01-01

    Parametric studies of the effects of slip irreversibility in concentrating solar power (CSP)-powered bio-digester assemblies are investigated. Complexities regarding the identification of the appropriate electro-kinetic phenomena for certain electrolyte phases are reviewed. The application of exergy analysis to the design of energy conversion devices, like solar thermal collectors, for the required heat of formation in a downdraft waste food bio-digester, is discussed. Thermal management in t...

  3. A New Method to Extract CSP Gather of Topography for Scattered Wave Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Pan

    2017-01-01

    Full Text Available The seismic method is one of the major geophysical tools to study the structure of the earth. The extraction of the common scatter point (CSP gather is a critical step to accomplish the seismic imaging with a scattered wave. Conventionally, the CSP gather is obtained with the assumption that the earth surface is horizontal. However, errors are introduced to the final imaging result if the seismic traces obtained at the rugged surface are processed using the conventional method. Hence, we propose the method of the extraction of the CSP gather for the seismic data collected at the rugged surface. The proposed method is validated by two numerical examples and expected to reduce the effect of the topography on the scattered wave imaging.

  4. Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation.

    Science.gov (United States)

    Porrini, Vanessa; Sarnico, Ilenia; Benarese, Marina; Branca, Caterina; Mota, Mariana; Lanzillotta, Annamaria; Bellucci, Arianna; Parrella, Edoardo; Faggi, Lara; Spano, Pierfranco; Imbimbo, Bruno Pietro; Pizzi, Marina

    2017-01-18

    CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer's disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia.

  5. Three Unique Implementations of Processes for PyCSP

    DEFF Research Database (Denmark)

    Friborg, Rune Møllegaard; Bjørndalen, John Markus; Vinter, Brian

    2009-01-01

    In this work we motivate and describe three unique implementations of processes for PyCSP: process, thread and greenlet based. The overall purpose is to demonstrate the feasibility of Communicating Sequential Processes as a framework for different application types and target platforms. The result...

  6. Electricity generation costs of concentrated solar power technologies in China based on operational plants

    DEFF Research Database (Denmark)

    Zhu, Zhao; Zhang, Da; Mischke, Peggy

    2015-01-01

    plants, and favorable renewable energy policies are expected to result in a large-scale CSP deployment in the next years. Detailed CSP studies for China are however hardly available. To fill this knowledge gap, this study collects plant-specific data in a national CSP database in collaboration with local...

  7. On the Path to SunShot - Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to develop, design, construct, and operate, and they require a much larger minimum effective scale—typically at least 50 MW, compared with PV systems that can be as small as a few kilowatts. In recent years, PV’s greater modularity and lower LCOE have made it more attractive to many solar project developers, and some large projects that were originally planned for CSP have switched to PV. However, the ability of CSP to use thermal energy storage—and thus provide continuous power for long periods when the sun is not shining—could give CSP a vital role in evolving electricity systems. Because CSP with storage can store energy when net demand is low and release that energy when demand is high, it increases the electricity system’s ability to balance supply and demand over multiple time scales. Such flexibility becomes increasingly important as more variable-generation renewable energy is added to the system. For example, one analysis suggests that, under a 40% renewable portfolio standard in California, CSP with storage could provide more than twice as much value to the electricity system as variable-generation PV. For this reason, enhanced thermal energy storage is a critical component of the SunShot Initiative’s 2020 CSP technology-improvement roadmap.

  8. A PRECISION PHOTOMETRIC COMPARISON BETWEEN SDSS-II AND CSP TYPE Ia SUPERNOVA DATA

    International Nuclear Information System (INIS)

    Mosher, J.; Sako, M.; Corlies, L.; Folatelli, G.; Frieman, J.; Kessler, R.; Holtzman, J.; Jha, S. W.; Marriner, J.; Phillips, M. M.; Morrell, N.; Stritzinger, M.; Schneider, D. P.

    2012-01-01

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

  9. Ligand-Promoted C(sp(3) )-H Olefination en Route to Multi-functionalized Pyrazoles.

    Science.gov (United States)

    Yang, Weibo; Ye, Shengqing; Schmidt, Yvonne; Stamos, Dean; Yu, Jin-Quan

    2016-05-17

    A Pd-catalyzed/N-heterocycle-directed C(sp(3) )-H olefination has been developed. The monoprotected amino acid ligand (MPAA) is found to significantly promote Pd-catalyzed C(sp(3) )-H olefination for the first time. Cu(OAc)2 instead of Ag(+) salts are used as the terminal oxidant. This reaction provides a useful method for the synthesis of alkylated pyrazoles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Review of concentrating solar thermal power industry in China: Status quo, problems, trend and countermeasures

    Science.gov (United States)

    Zou, Jiajun

    2018-01-01

    Concentrating solar thermal power (CSP) industry is a strategic emerging industry in China. Its further development is of great significance for promoting the energy revolution, achieving energy saving and emission reduction. In this paper, China’s CSP industry is systematically analysed. First of all, the status quo is elaborated from the perspectives of relevant policies and regulations, market and generation technology development. Secondly, the problems and the underlying reasons of China’s CSP industry are deeply studied. On this basis, the future trends of CSP are expounded on the three levels of policy, market and power generation technology. Finally, a series of feasible countermeasures are put forward, designed to promote the development of CSP industry and the transformation of energy structure.

  11. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  12. Hardware support for CSP on a Java chip multiprocessor

    DEFF Research Database (Denmark)

    Gruian, Flavius; Schoeberl, Martin

    2013-01-01

    Due to memory bandwidth limitations, chip multiprocessors (CMPs) adopting the convenient shared memory model for their main memory architecture scale poorly. On-chip core-to-core communication is a solution to this problem, that can lead to further performance increase for a number of multithreaded...... applications. Programmatically, the Communicating Sequential Processes (CSPs) paradigm provides a sound computational model for such an architecture with message based communication. In this paper we explore hardware support for CSP in the context of an embedded Java CMP. The hardware support for CSP are on......-chip communication channels, implemented by a ring-based network-on-chip (NoC), to reduce the memory bandwidth pressure on the shared memory.The presented solution is scalable and also specific for our limited resources and real-time predictability requirements. CMP architectures of three to eight processors were...

  13. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    Science.gov (United States)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  14. Measurements of mirror soiling at a candidate CSP site

    CSIR Research Space (South Africa)

    Griffith, DJ

    2013-09-01

    Full Text Available Loss of mirror reflectivity due to soiling at Concentrated Solar Power (CSP) plants is a significant consideration for design and operation of the plant. Increasingly, a bankable case for establishment of a new plant will include an evaluation...

  15. Analyses of the use of natural gas in solar power plants (CSP) hybridization in the Sao Francisco Basin (BA); Analise do uso de gas natural na hibridizacao de plantas termosolares (CSP) na Bacia do Sao Francisco (BA)

    Energy Technology Data Exchange (ETDEWEB)

    Malagueta, Diego Cunha; Penafiel, Rafael Andres Soria; Szklo, Alexandre Salem; Dutra, Ricardo M.; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)

    2012-07-01

    This study assessed the feasibility of Concentrated Solar Power plants (CSP) in Northeast, Brazil. It focused on parabolic trough solar power plants, which is the most mature CSP technology; and evaluated plants rated at 100 MWe, dry cooling systems (due to the low water availability in Northeast), and with and without hybridization based on natural gas (degree of hybridization varying from 25 to 75%). Hence, the capacity factor of the simulated plants hovered between 23 and 98%, according to the degree of hybridization and the choice of the thermodynamic cycle of the natural gas fueled thermal system: Rankine or combined cycle. The CSP plants were simulated at Bom Jesus da Lapa, in the semi-arid region of Bahia. Given the prospects for natural gas resources in the Sao Francisco Basin, different scenarios for the gas prices were tested. Moreover, two scenarios were tested for the cost of the CSP plants, one based on the current financial environment and the other based on incentive policies, such as fiscal incentives and loans. Findings show that while simple plants levelized costs (LCOE) hovered around 520 R$/MWh, for hybrid plants LCOE may reach 140 to 190 R$/MWh. Therefore, this study proposed incentive policies to promote the increasing investment in hybrid CSP plants. (author)

  16. Efficient use of land to meet sustainable energy needs

    Science.gov (United States)

    Hernandez, Rebecca R.; Hoffacker, Madison K.; Field, Christopher B.

    2015-04-01

    The deployment of renewable energy systems, such as solar energy, to achieve universal access to electricity, heat and transportation, and to mitigate climate change is arguably the most exigent challenge facing humans today. However, the goal of rapidly developing solar energy systems is complicated by land and environmental constraints, increasing uncertainty about the future of the global energy landscape. Here, we test the hypothesis that land, energy and environmental compatibility can be achieved with small- and utility-scale solar energy within existing developed areas in the state of California (USA), a global solar energy hotspot. We found that the quantity of accessible energy potentially produced from photovoltaic (PV) and concentrating solar power (CSP) within the built environment (`compatible’) exceeds current statewide demand. We identify additional sites beyond the built environment (`potentially compatible’) that further augment this potential. Areas for small- and utility-scale solar energy development within the built environment comprise 11,000-15,000 and 6,000 TWh yr-1 of PV and CSP generation-based potential, respectively, and could meet the state of California’s energy consumptive demand three to five times over. Solar energy within the built environment may be an overlooked opportunity for meeting sustainable energy needs in places with land and environmental constraints.

  17. S-CO2 for efficient power generation with energy storage

    OpenAIRE

    Cerio Vera, Marta

    2016-01-01

    Supercritical CO2 (s-CO2) power cycle has gained interest for concentrating solar power (CSP) application in the last decade to overcome the current low efficiency and high costs of the plants. This cycle is a potential option to replace the steam Rankine cycle due to its higher efficiency, more compact turbomachinery and possibility of including heat storage and direct heating. The purpose of this project is to determine the suitability of integrating s-CO2 power cycle into CSP plants with e...

  18. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation

    International Nuclear Information System (INIS)

    Köberle, Alexandre C.; Gernaat, David E.H.J.; Vuuren, Detlef P. van

    2015-01-01

    CSP and PV technologies represent energy sources with large potentials. We present cost-supply curves for both technologies using a consistent methodology for 26 regions, based on geoexplicit information on solar radiation, land cover type and slope, exploring individual potential and interdependencies. For present day, both CSP and PV supply curves start at $0.18/kWh, in North Africa, South America, and Australia. Applying accepted learning rates to official capacity targets, we project prices to drop to $0.11/kWh for both technologies by 2050. In an alternative “fast-learning” scenario, generation costs drop to $0.06–0.07/kWh for CSP, and $0.09/kWh for PV. Competition between them for best areas is explored along with sensitivities of their techno-economic potentials to land use restrictions and land cover type. CSP was found to be more competitive in desert sites with highest direct solar radiation. PV was a clear winner in humid tropical regions, and temperate northern hemisphere. Elsewhere, no clear winner emerged, highlighting the importance of competition in assessments of potentials. Our results show there is ample potential globally for both technologies even accounting for land use restrictions, but stronger support for RD&D and higher investments are needed to make CSP and PV cost-competitive with established power technologies by 2050. - Highlights: • A consistent assessment of global potential for CSP and PV, with cost-supply curves for 26 regions. • Combined global CSP and PV potential below US$0.35/kWh estimated at 135,128 TWh per year. • Competition for same land-based solar resource implies that potentials cannot be added. • Attractive areas are MENA, Northern Chile, Australia, China and Southwestern USA. • Costs are projected to go down over time, reaching US$0.06–0.11/KWh for attractive sites in 2050

  19. Solar Energy within the Central Valley, CA: Current Practices and Potential

    Science.gov (United States)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2015-12-01

    Utility-scale solar energy (USSE, ≥ 1 megawatt [MW]) systems are rapidly being deployed in the Central Valley of California, generating clean electricity and new job opportunities. Utility-scale solar energy systems require substantial quantities of land or space, often prompting an evaluation of environmental impacts and trade-offs when selecting their placement. Utilizing salt-contaminated agricultural land (as the sodium absorption and electrical conductivity values are unsuitably high), unsuitable for food production, and lands within the built environment (developed), can serve as a co-benefit opportunity when reclamation of these lands for USSE development is prioritized. In this study, we quantify the theoretical and generation-based solar energy potential for the Central Valley according to land-cover type, crop type, and for salt-contaminated lands. Further, we utilize the Carnegie Energy and Environmental Compatibility (CEEC) model to identify and prioritize solar energy, integrating environmental resource opportunities and constraints most relevant to the Central Valley. We use the CEEC model to generate a value-based environmental compatibility output for the Central Valley. The Central Valley extends across nearly 60,000 km2 of California with the potential of generating 21,800 - 30,300 TWh y-1 and 41,600 TWh y-1 of solar energy for photovoltaic (PV) and concentrating solar power (CSP), respectively. Pasture, hay, and cultivated crops comprise over half of the Central Valley, much of which is considered prime agriculture or of statewide or local importance for farming (28,200 km2). Together, approximately one-third of this region is salt-contaminated (16%) or developed (11%). This confers a generation-based potential of 5713 - 7891 TWh y-1 and 2770 TWh y-1 for PV and CSP, respectively. As energy, food, and land are inextricably linked, our study shows how land favorable for renewable energy systems can be used more effectively in places where land is

  20. Purification of cold-shock-like proteins from Stigmatella aurantiaca - molecular cloning and characterization of the cspA gene.

    Science.gov (United States)

    Stamm, I; Leclerque, A; Plaga, W

    1999-09-01

    Prominent low-molecular-weight proteins were isolated from vegetative cells of the myxobacterium Stigmatella aurantiaca and were found to be members of the cold-shock protein family. A first gene of this family (cspA) was cloned and sequenced. It encodes a protein of 68 amino acid residues that displays up to 71% sequence identity with other bacterial cold-shock(-like) proteins. A cysteine residue within the RNP-2 motif is a peculiarity of Stigmatella CspA. A cspA::(Deltatrp-lacZ) fusion gene construct was introduced into Stigmatella by electroporation, a method that has not been used previously for this strain. Analysis of the resultant transformants revealed that cspA transcription occurs at high levels during vegetative growth at 20 and 32 degrees C, and during fruiting body formation.

  1. TGGs for Transforming UML to CSP

    DEFF Research Database (Denmark)

    Greenyer, Joel; Kindler, Ekkart; Rieke, Jan

    Contest. The second transformation problem, a transformation from UML activity diagrams to CSP processes, i.e. a transformation between two models, is a typical application for Triple Graph Grammars (TGGs). We present our contributed solution, presenting the TGG rules and the implementation of our TGG...... interpreter. Moreover, we point out the advantages of our soulution as well as some restrictions of the current implementation. This paper will only briefly state the transformation problem and focus on our TGG approach and the discussion of the rules....

  2. High performance and thermally stable tandem solar selective absorber coating for concentrated solar thermal power (CSP) application

    Science.gov (United States)

    Prasad, M. Shiva; Kumar, K. K. Phani; Atchuta, S. R.; Sobha, B.; Sakthivel, S.

    2018-05-01

    A novel tandem absorber system (Mn-Cu-Co-Ox-ZrO2/SiO2) developed on an austenitic stainless steel (SS-304) substrate to show an excellent optical performance (αsol: 0.96; ɛ: 0.23@500 °C). In order to achieve this durable tandem, we experimented with two antireflective layers such as ZrO2-SiO2 and nano SiO2 layer on top of Mn-Cu-Co-Ox-ZrO2 layer. We optimized the thickness of antireflective layers to get good tandem system in terms of solar absorptance and emittance. Field emission scanning electron microscopy (FESEM), UV-Vis-NIR and Fourier transform infrared spectroscopy (FTIR) were used to characterize the developed coatings. Finally, the Mn-Cu-Co-Ox-ZrO2/SiO2 exhibits high temperature resistance up to 800 °C, thus allow an increase in the operating temperature of CSP which may lead to high efficiency. We successfully developed a high temperature resistant tandem layer with easy manufacturability at low cost which is an attractive candidate for concentrated solar power generation (CSP).

  3. An interplay among FIS, H-NS and guanosine tetraphosphate modulates transcription of the Escherichia coli cspA gene under physiological growth conditions

    Directory of Open Access Journals (Sweden)

    Anna eBrandi

    2016-05-01

    Full Text Available CspA, the most characterized member of the csp gene family of Escherichia coli, is highly expressed not only in response to cold stress, but also during the early phase of growth at 37°C. Here, we investigate at molecular level the antagonistic role played by the nucleoid proteins FIS and H-NS in the regulation of cspA expression under non-stress conditions. By means of both probing experiments and immunological detection, we demonstrate in vitro the existence of binding sites for these proteins on the cspA regulatory region, in which FIS and H-NS bind simultaneously to form composite DNA-protein complexes. While the in vitro promoter activity of cspA is stimulated by FIS and repressed by H-NS, a compensatory effect is observed when both proteins are added in the transcription assay. Consistently with these findings, inactivation of fis and hns genes reversely affect the in vivo amount of cspA mRNA. In addition, by means of strains expressing a high level of the alarmone guanosine tetraphosphate ((pppGpp and in vitro transcription assays, we show that the cspA promoter is sensitive to (pppGpp inhibition. The (pppGpp-mediated expression of fis and hns genes is also analyzed, thus clarifying some aspects of the regulatory loop governing cspA transcription.

  4. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities.

    Science.gov (United States)

    Ramirez, Jose Luis; Short, Sarah M; Bahia, Ana C; Saraiva, Raul G; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-10-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.

  5. Intramolecular apical metal-H-Csp3 interaction in molybdenum and silver complexes.

    Science.gov (United States)

    Ciclosi, Marco; Lloret, Julio; Estevan, Francisco; Sanaú, Mercedes; Pérez-Prieto, Julia

    2009-07-14

    The reaction of HTIMP3 (HTIMP3=tris[1-diphenylphosphino)-3-methyl-1H-indol-2-yl]methane) with AgBF4 and Mo(CO)3(NCCH3)3 leads to Ag(HTIMP3)BF4 and Mo(CO)3(HTIMP3), respectively. The metal centre is coordinated to the three phosphorus atoms of the HTIMP3 ligand, which adopts a facial coordination mode, placing a H-Csp3 hydrogen atom at the apical position close to the metal centre. The solid-state structure of Mo(CO)3(HTIMP3) has been determined by X-ray crystallography, and the data have been used as input parameters for obtaining the optimised geometry of the complex using the B3PW91 functional. The silver structure has been modelled from the X-ray parameters of the molybdenum structure. In addition, theoretical calculations on the H-Csp3 downfield shift upon metal coordination has also been performed. They reproduce the experimental H-Csp3 chemical shifts well and supports that proton deshielding is mainly due to the presence of the metal, since the hydrogen is already located in the cone created by the aromatic-phosphino arms in the free ligand.

  6. Enhancement of the REMix energy system model. Global renewable energy potentials, optimized power plant siting and scenario validation

    Energy Technology Data Exchange (ETDEWEB)

    Stetter, Daniel

    2014-04-10

    As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool

  7. Enhancement of the REMix energy system model. Global renewable energy potentials, optimized power plant siting and scenario validation

    International Nuclear Information System (INIS)

    Stetter, Daniel

    2014-01-01

    As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool

  8. Synergies of solar energy across a land-food-energy-water nexus

    Science.gov (United States)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2017-12-01

    Land-cover change from energy development, including solar energy, presents trade-offs for the production of food and the conservation of natural ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development can mitigate land scarcity, water shortages, and conservation is understudied. Here, we test whether projected electricity needs for the state of California (CA, United States [US]) can be met within land-cover types that can also generate environmental, social and fiscal co-benefits (techno-ecological synergies) including: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics). Additionally, we analyze general spatial trends and patterns related to clustering and proximity of techno-ecological opportunities and land-cover types (e.g. contamination sites and cities). In total, the Central Valley, a globally significant agricultural region, encompasses 15% of CA, 8,415 km2 of which was identified as potentially synergistic land for solar energy. These areas comprise a capacity-based energy potential of 17,348 TWh y-1 for photovoltaic (PV) and 1,655 TWh y-1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Further, 60% of contaminated lands are clustered within and up to 10 km of the 10 most populated cities in the Central Valley, where energy is consumed. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy development sprawl in landscapes characterized by complex nexus issues.

  9. Thermal stability of multilayered Pt-Al2O3 nanocoatings for high temperature CSP systems

    CSIR Research Space (South Africa)

    Nuru, ZY

    2015-10-01

    Full Text Available B), 115-120 Thermal stability of multilayered Pt-Al2O3 nanocoatings for high temperature CSP systems Z.Y. Nuru a, b, *, L. Kotsedi a, b, C.J. Arendse c, D. Motaung d, B. Mwakikunga d, K. Roro d, e, M. Maaza a, b a UNESCO-UNISA Africa Chair... Pretoria, South Africa e R&D Core-Energy, Council for Scientific and Industrial Research, P O Box 395, 0001 Pretoria, South Africa Abstract This contribution reports on the effect of thermal annealing on sputtered Pt–Al(sub2)O(sub3) multilayered...

  10. Primary fibroblasts from CSP? mutation carriers recapitulate hallmarks of the adult onset neuronal ceroid lipofuscinosis

    OpenAIRE

    Benitez, Bruno A.; Sands, Mark S.

    2017-01-01

    Mutations in the co- chaperone protein, CSP?, cause an autosomal dominant, adult-neuronal ceroid lipofuscinosis (AD-ANCL). The current understanding of CSP? function exclusively at the synapse fails to explain the autophagy-lysosome pathway (ALP) dysfunction in cells from AD-ANCL patients. Here, we demonstrate unexpectedly that primary dermal fibroblasts from pre-symptomatic mutation carriers recapitulate in vitro features found in the brains of AD-ANCL patients including auto-fluorescent sto...

  11. Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function.

    Science.gov (United States)

    Li, Hongliang; Tan, Jing; Song, Xinmi; Wu, Fan; Tang, Mingzhu; Hua, Qiyun; Zheng, Huoqing; Hu, Fuliang

    2017-04-29

    As a frequently used neonicotinoid insecticide, imidacloprid can impair the chemoreceptive behavior of honey bees even at sublethal doses, while the physiochemical mechanism has not been further revealed. Here, multiple fluorescence spectra, thermodynamic method, and molecular docking were used to study the interaction and the functional inhibition of imidacloprid to the recombinant CSP1 protein in Asian honey bee, Apis cerana. The results showed that the fluorescence intensity (λ em  = 332 nm) of CSP1 could be significantly quenched by imidacloprid in a dynamic mode. During the quenching process, ΔH > 0, ΔS > 0, indicating that the acting forces of imidacloprid with CSP1 are mainly hydrophobic interactions. Synchronous fluorescence showed that the fluorescence of CSP1 was mainly derived from tryptophan, and the hydrophobicity of tryptophan decreased with the increase of imidacloprid concentration. Molecular docking predicted the optimal pose and the amino acid composition of the binding process. Circular dichroism (CD) spectra showed that imidacloprid reduced the α-helix of CSP1 and caused the extension of the CSP1 peptide chain. In addition, the binding of CSP1 to floral scent β-ionone was inhibited by nearly 50% of the apparent association constant (K A ) in the presence of 0.28-2.53 ng/bee of imidacloprid, and the inhibition rate of nearly 95% at 3.75 ng/bee of imidacloprid at sublethal dose level. This study initially revealed the molecular physiochemical mechanism that sublethal doses of neonicotinoid still interact and inhibit the physiological function of the honey bees' chemoreceptive system. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. An investigation into multi-dimensional prediction models to estimate the pose error of a quadcopter in a CSP plant setting

    Science.gov (United States)

    Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann

    2016-05-01

    The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.

  13. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  14. Bounded Delay Timing Analysis of a Class of CSP Programs

    DEFF Research Database (Denmark)

    Hulgaard, Henrik; Burns, Steven M.

    1997-01-01

    We describe an algebraic technique for performing timing analysis of a class of asynchronous circuits described as CSP programs (including Martin's probe operator) with the restrictions that there is no OR-causality and that guard selection is either completely free or mutually exclusive...

  15. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  16. Phenomenological Studies on Sodium for CSP Applications: A Safety Review

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Andraka, Charles E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Sodium as a heat transfer fluid (HTF) can achieve temperatures above 700°C to improve power cycle performance for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF’s (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transport starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable latent operating conditions that match proposed high temperature, isothermal input power cycles. This advantage could increase the receiver and system efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium systems, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Operation and maintenance experience from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.

  17. Concentrated Solar Power as part of the European energy supply. The realization of large-scale solar power plants. Options, constraints and recommendations; Concentrated Solar Power als onderdeel van de Europese energievoorziening. De realisatie van grootschalige zonnecentrales. Mogelijkheden, obstakels en advies

    Energy Technology Data Exchange (ETDEWEB)

    Bouwmans, I.; Carton, L.J.; Dijkema, G.P.J.; Stikkelman, R.M.; De Vries, L.J. [Energy and Industry Group, Faculty of Technology, Policy and Management, Delft University of Technology, Delft (Netherlands)

    2006-07-01

    Next to solar cells and solar collectors for decentralized power generation Concentrated Solar Power (CSP) technology is available and proven for large-scale application of solar energy. However, after 20 years of demonstration projects and semi-commercial installations, CSP is still not widely used. In this quick-scan an overview is given of strong and weak points of CSP, as well as its' options and constraints with regard to a sustainable energy supply, focusing on technical, economical and administrative constraints and chances in Europe and European Union member states. [Dutch] Naast zonnecellen en zonnecollectoren voor decentrale opwekking is er een technologie die geschikt is voor grootschalige ontsluiting van de zon: Concentrated Solar Power, kortweg CSP. Bewezen in een aantal demonstratie- en pre-commerciele installaties blijft toepassing van deze technologie ook na 20 jaar beperkt. Daarom staat in deze notitie, die het resultaat is van een quickscan, de volgende vraag centraal: Wat zijn de sterktes, zwaktes, mogelijkheden en barrieres van CSP-technologie als onderdeel van een duurzame energievoorziening en welke technisch-economische en bestuurlijke barrieres en kansen zijn er voor Europa en de lidstaten van de EU?.

  18. Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles.

    Science.gov (United States)

    Zhang, Ya-Nan; Ye, Zhan-Feng; Yang, Ke; Dong, Shuang-Lin

    2014-02-25

    Insect chemosensory proteins (CSPs) are proposed to capture and transport hydrophobic chemicals across the sensillum lymph to olfactory receptors (ORs), but this has not been clarified in moths. In this study, we built on our previously reported segment sequence work and cloned the full length CSP19 gene (SinfCSP19) from the antennae of Sesamia inferens by using rapid amplification of cDNA ends. Quantitative real time-PCR (qPCR) assays indicated that the gene was expressed in a unique profile, i.e. predominant in antennae and significantly higher in male than in female. To explore the function, recombinant SinfCSP19 was expressed in Escherichia coli cells and purified by Ni-ion affinity chromatography. Binding affinities of the recombinant SinfCSP19 with 39 plant volatiles, 3 sex pheromone components and 10 pheromone analogs were measured using fluorescent competitive binding assays. The results showed that 6 plant volatiles displayed high binding affinities to SinfCSP19 (Ki = 2.12-8.75 μM), and more interesting, the 3 sex pheromone components and analogs showed even higher binding to SinfCSP19 (Ki = 0.49-1.78 μM). Those results suggest that SinfCSP19 plays a role in reception of female sex pheromones of S. inferens and host plant volatiles. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes.

    Science.gov (United States)

    Loepfe, Chantal; Raimann, Eveline; Stephan, Roger; Tasara, Taurai

    2010-07-01

    The cold shock protein (Csp) family comprises small, highly conserved proteins that bind nucleic acids to modulate various bacterial gene expressions. In addition to cold adaptation functions, this group of proteins is thought to facilitate various cellular processes to promote normal growth and stress adaptation responses. Three proteins making up the Listeria monocytogenes Csp family (CspA, CspB, and CspD) promote both cold and osmotic stress adaptation functions in this bacterium. The contribution of these three Csps in the host cell invasion processes of L. monocytogenes was investigated based on human Caco-2 and murine macrophage in vitro cell infection models. The DeltacspB, DeltacspD, DeltacspAB, DeltacspAD, DeltacspBD, and DeltacspABD strains were all significantly impaired in Caco-2 cell invasion compared with the wild-type strain, whereas in the murine macrophage infection assay only, the double (DeltacspBD) and triple (DeltacspABD) csp mutants were also significantly impaired in cell invasion compared with the wild-type strain. The DeltacspBD and DeltacspABD mutants displayed the most severely impaired invasion phenotypes. The invasion ability of these two mutant strains was also further analyzed using cold-stress-exposed organisms. In both cell infection models a significant reduction in invasiveness was observed after cold stress exposure of Listeria organisms. The negative impact of cold stress on subsequent cell invasion ability was, however, more severe in cold-sensitive csp mutants (DeltacspBD and DeltacspABD) compared with the wild type. The impaired macrophage invasion and intracellular growth of DeltacspBD and DeltacspABD also led us to examine oxidative stress resistance capacity in these two mutant strains. Both strains also displayed higher oxidative stress sensitivity relative to the wild-type strain. Our data indicate that besides cold and osmotic stress adaptation roles, Csp family proteins also promote efficient host cell invasion and

  20. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  1. Large-Scale Power Production Potential on U.S. Department of Energy Lands

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, Alicen J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagne, Douglas A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hillesheim, Michael B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Walker, H. A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Jeff [Colorado School of Mines, Golden, CO (United States); Boak, Jeremy [Colorado School of Mines, Golden, CO (United States); Washington, Jeremy [Colorado School of Mines, Golden, CO (United States); Sharp, Cory [Colorado School of Mines, Golden, CO (United States)

    2017-11-03

    This report summarizes the potential for independent power producers to generate large-scale power on U.S. Department of Energy (DOE) lands and export that power into a larger power market, rather than serving on-site DOE loads. The report focuses primarily on the analysis of renewable energy (RE) technologies that are commercially viable at utility scale, including photovoltaics (PV), concentrating solar power (CSP), wind, biomass, landfill gas (LFG), waste to energy (WTE), and geothermal technologies. The report also summarizes the availability of fossil fuel, uranium, or thorium resources at 55 DOE sites.

  2. Fruitful symbiosis: Why an export bundled with wind energy is the most feasible option for North African concentrated solar power

    International Nuclear Information System (INIS)

    Kost, Christoph; Pfluger, Benjamin; Eichhammer, Wolfgang; Ragwitz, Mario

    2011-01-01

    The idea of generating electricity in North Africa using concentrating solar thermal power (CSP) has been around for some time now but has recently gained momentum through the Mediterranean Solar Plan (MSP) and the formation of the Desertec Industrial Initiative. This paper argues that while the large-scale deployment of CSP in North Africa does not seem economically attractive for either European or African institutions or countries on their own at present, combining domestic use and electricity exports could be profitable for both parties. A detailed economic portfolio covering both solar and wind power plants can achieve competitive price levels, which would accelerate the diffusion of solar technology in North Africa. This portfolio could be financed partially by exporting electricity from solar thermal plants in North Africa via HVDC interconnections to European consumers. Sharing the costs in this way makes it possible to generate solar electricity for the domestic market at a reasonable cost. Some of the electricity produced from the solar power plants and wind parks in North Africa is sold on European energy markets in the form of a long-term contracted solar-wind portfolio, which would qualify for support from the financial incentive schemes of the European Member States (e.g. feed-in tariffs). This transfer of green electricity could help to meet the targets for energy from renewable energy sources (RES) in the EU Member States as the new EU Directive of 2009 opened the European electricity market to imports from third states. - Research highlights: → This paper describes a feasible approach to financing a larger deployment of CSP in North Africa. → The proposed portfolio includes local consumption and electricity export to Europe. → Bundling wind with solar power as a business model for exporting solar electricity. → Prices of the solar-wind mix are competitive with other renewable energy sources. → Scenario outlook for the North African CSP

  3. Fruitful symbiosis: Why an export bundled with wind energy is the most feasible option for North African concentrated solar power

    Energy Technology Data Exchange (ETDEWEB)

    Kost, Christoph, E-mail: christoph.kost@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg (Germany); Pfluger, Benjamin, E-mail: benjamin.pfluger@isi.fraunhofer.de [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany); Eichhammer, Wolfgang, E-mail: wolfgang.eichhammer@isi.fraunhofer.de [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany); Ragwitz, Mario, E-mail: mario.ragwitz@isi.fraunhofer.de [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany)

    2011-11-15

    The idea of generating electricity in North Africa using concentrating solar thermal power (CSP) has been around for some time now but has recently gained momentum through the Mediterranean Solar Plan (MSP) and the formation of the Desertec Industrial Initiative. This paper argues that while the large-scale deployment of CSP in North Africa does not seem economically attractive for either European or African institutions or countries on their own at present, combining domestic use and electricity exports could be profitable for both parties. A detailed economic portfolio covering both solar and wind power plants can achieve competitive price levels, which would accelerate the diffusion of solar technology in North Africa. This portfolio could be financed partially by exporting electricity from solar thermal plants in North Africa via HVDC interconnections to European consumers. Sharing the costs in this way makes it possible to generate solar electricity for the domestic market at a reasonable cost. Some of the electricity produced from the solar power plants and wind parks in North Africa is sold on European energy markets in the form of a long-term contracted solar-wind portfolio, which would qualify for support from the financial incentive schemes of the European Member States (e.g. feed-in tariffs). This transfer of green electricity could help to meet the targets for energy from renewable energy sources (RES) in the EU Member States as the new EU Directive of 2009 opened the European electricity market to imports from third states. - Research Highlights: > This paper describes a feasible approach to financing a larger deployment of CSP in North Africa. > The proposed portfolio includes local consumption and electricity export to Europe. > Bundling wind with solar power as a business model for exporting solar electricity. > Prices of the solar-wind mix are competitive with other renewable energy sources. > Scenario outlook for the North African CSP market in

  4. Synthesis and characterization in monkey of [{sup 11}C]SP203 as a radioligand for imaging brain metabotropic glutamate 5 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Simeon, Fabrice G.; Liow, Jeih-San; Zhang, Yi; Hong, Jinsoo; Gladding, Robert L.; Zoghbi, Sami S.; Innis, Robert B.; Pike, Victor W. [National Institutes of Health, Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States)

    2012-12-15

    [{sup 18}F]SP203 (3-fluoro-5-(2-(2-([{sup 18}F]fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile) is an effective high-affinity and selective radioligand for imaging metabotropic 5 receptors (mGluR5) in human brain with PET. To provide a radioligand that may be used for more than one scanning session in the same subject in a single day, we set out to label SP203 with shorter-lived {sup 11}C (t{sub 1/2} = 20.4 min) and to characterize its behavior as a radioligand with PET in the monkey. Iodo and bromo precursors were obtained by cross-coupling 2-fluoromethyl-4-((trimethylsilyl)ethynyl)-1,3-thiazole with 3,5-diiodofluorobenzene and 3,5-dibromofluorobenzene, respectively. Treatment of either precursor with [{sup 11}C]cyanide ion rapidly gave [{sup 11}C]SP203, which was purified with high-performance liquid chromatography. PET was used to measure the uptake of radioactivity in brain regions after injecting [{sup 11}C]SP203 intravenously into rhesus monkeys at baseline and under conditions in which mGluR5 were blocked with 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP). The emergence of radiometabolites in monkey blood in vitro and in vivo was assessed with radio-HPLC. The stability of [{sup 11}C]SP203 in human blood in vitro was also measured. The iodo precursor gave [{sup 11}C]SP203 in higher radiochemical yield (>98 %) than the bromo precursor (20-52 %). After intravenous administration of [{sup 11}C]SP203 into three rhesus monkeys, radioactivity peaked early in brain (average 12.5 min) with a regional distribution in rank order of expected mGluR5 density. Peak uptake was followed by a steady decline. No radioactivity accumulated in the skull. In monkeys pretreated with MTEP before [{sup 11}C]SP203 administration, radioactivity uptake in brain was again high but then declined more rapidly than in the baseline scan to a common low level. [{sup 11}C]SP203 was unstable in monkey blood in vitro and in vivo, and gave predominantly less lipophilic radiometabolites

  5. A Method to Assess Flux Hazards at CSP Plants to Reduce Avian Mortality

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Clifford K.; Wendelin, Timothy; Horstman, Luke; Yellowhair, Julius

    2017-06-27

    A method to evaluate avian flux hazards at concentrating solar power plants (CSP) has been developed. A heat-transfer model has been coupled to simulations of the irradiance in the airspace above a CSP plant to determine the feather temperature along prescribed bird flight paths. Probabilistic modeling results show that the irradiance and assumed feather properties (thickness, absorptance, heat capacity) have the most significant impact on the simulated feather temperature, which can increase rapidly (hundreds of degrees Celsius in seconds) depending on the parameter values. The avian flux hazard model is being combined with a plant performance model to identify alternative heliostat standby aiming strategies that minimize both avian flux hazards and negative impacts on plant performance.

  6. On the Path to SunShot. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report examines the remaining challenges to achieving the competitive concentrating solar power (CSP) costs and large-scale deployment envisioned under the U.S. Department of Energy's SunShot Initiative. Although CSP costs continue to decline toward SunShot targets, CSP acceptance and deployment have been hindered by inexpensive photovoltaics (PV). However, a recent analysis found that thermal energy storage (TES) could increase CSP's value--based on combined operational and capacity benefits--by up to 6 cents/kWh compared to variable-generation PV, under a 40% renewable portfolio standard in California. Thus, the high grid value of CSP-TES must be considered when evaluating renewable energy options. An assessment of net system cost accounts for the difference between the costs of adding new generation and the avoided cost from displacing other resources providing the same level of energy and reliability. The net system costs of several CSP configurations are compared with the net system costs of conventional natural-gas-fired combustion-turbine (CT) and combined-cycle plants. At today's low natural gas prices and carbon emission costs, the economics suggest a peaking configuration for CSP. However, with high natural gas prices and emission costs, each of the CSP configurations compares favorably against the conventional alternatives, and systems with intermediate to high capacity factors become the preferred alternatives. Another analysis compares net system costs for three configurations of CSP versus PV with batteries and PV with CTs. Under current technology costs, the least-expensive option is a combination of PV and CTs. However, under future cost assumptions, the optimal configuration of CSP becomes the most cost-effective option.

  7. Cationic osteogenic peptide P15-CSP coatings promote 3-D osteogenesis in poly(epsilon-caprolactone) scaffolds of distinct pore size.

    Science.gov (United States)

    Li, Xian; Ghavidel Mehr, Nima; Guzmán-Morales, Jessica; Favis, Basil D; De Crescenzo, Gregory; Yakandawala, Nandadeva; Hoemann, Caroline D

    2017-08-01

    P15-CSP is a biomimetic cationic fusion peptide that stimulates osteogenesis and inhibits bacterial biofilm formation when coated on 2-D surfaces. This study tested the hypothesis that P15-CSP coatings enhance 3-D osteogenesis in a porous but otherwise hydrophobic poly-(ɛ-caprolactone) (PCL) scaffold. Scaffolds of 84 µm and 141 µm average pore size were coated or not with Layer-by-Layer polyelectrolytes followed by P15-CSP, seeded with adult primary human mesenchymal stem cells (MSCs), and cultured 10 days in proliferation medium, then 21 days in osteogenic medium. Atomic analyses showed that P15-CSP was successfully captured by LbL. After 2 days of culture, MSCs adhered and spread more on P15-CSP coated pores than PCL-only. At day 10, all constructs contained nonmineralized tissue. At day 31, all constructs became enveloped in a "skin" of tissue that, like 2-D cultures, underwent sporadic mineralization in areas of high cell density that extended into some 141 µm edge pores. By quantitative histomorphometry, 2.5-fold more tissue and biomineral accumulated in edge pores versus inner pores. P15-CSP specifically promoted tissue-scaffold integration, fourfold higher overall biomineralization, and more mineral deposits in the outer 84 µm and inner 141 µm pores than PCL-only (p pore surfaces with 3-D topography. Biomineralization deeper than 150 µm from the scaffold edge was optimally attained with the larger 141 µm peptide-coated pores. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2171-2181, 2017. © 2017 Wiley Periodicals, Inc.

  8. Exploring the Effect of Climate Perturbations on Water Availability for Renewable Energy Development in the Indian Wells Valley, California

    Science.gov (United States)

    Rey, David M.

    Energy and water are connected through the water-use cycle (e.g. obtaining, transporting, and treating water) and thermoelectric energy generation, which converts heat to electricity via steam-driven turbines. As the United States implements more renewable energy technologies, quantifying the relationships between energy, water, and land-surface impacts of these implementations will provide policy makers the strengths and weaknesses of different renewable energy options. In this study, a MODFLOW model of the Indian Wells Valley (IWV), in California, was developed to capture the water, energy, and land-surface impacts of potential proposed 1) solar, 2) wind, and 3) biofuel implementations. The model was calibrated to pre-existing groundwater head data from 1985 to present to develop a baseline model before running two-year predictive scenarios for photovoltaic (PV), concentrating solar power (CSP), wind, and biofuel implementations. Additionally, the baseline model was perturbed by decreasing mountain front recharge values by 5%, 10%, and 15%, simulating potential future system perturbations under a changing climate. These potential future conditions were used to re-run each implementation scenario. Implementation scenarios were developed based on population, typical energy use per person, existing land-use and land-cover type within the IWV, and previously published values for water use, surface-area use, and energy-generation potential for each renewable fuel type. The results indicate that the quantity of water needed, localized drawdown from pumping water to meet implementation demands, and generation efficiency are strongly controlled by the fuel type, as well as the energy generating technology and thermoelectric technologies implemented. Specifically, PV and wind-turbine (WT) implementations required less than 1% of the estimated annual aquifer recharge, while technologies such as biofuels and CSP, which rely on thermoelectric generation, ranged from 3% to 20

  9. Both the caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Daniel P Denning

    Full Text Available Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3, of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell

  10. Design and prototyping of real-time systems using CSP and CML

    DEFF Research Database (Denmark)

    Rischel, Hans; Sun, Hong Yan

    1997-01-01

    A procedure for systematic design of event based systems is introduced by means of the Production Cell case study. The design is documented by CSP style processes, which allow both verification using formal techniques and also validation of a rapid prototype in the functional language CML...

  11. Enantioselective carbenoid insertion into C(sp3–H bonds

    Directory of Open Access Journals (Sweden)

    J. V. Santiago

    2016-05-01

    Full Text Available The enantioselective carbenoid insertion into C(sp3–H bonds is an important tool for the synthesis of complex molecules due to the high control of enantioselectivity in the formation of stereogenic centers. This paper presents a brief review of the early issues, related mechanistic studies and recent applications on this chemistry area.

  12. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  13. Mise en Scene: Conversion of Scenarios to CSP Traces for the Requirements-to-Design-to-Code Project

    Science.gov (United States)

    Carter. John D.; Gardner, William B.; Rash, James L.; Hinchey, Michael G.

    2007-01-01

    The "Requirements-to-Design-to-Code" (R2D2C) project at NASA's Goddard Space Flight Center is based on deriving a formal specification expressed in Communicating Sequential Processes (CSP) notation from system requirements supplied in the form of CSP traces. The traces, in turn, are to be extracted from scenarios, a user-friendly medium often used to describe the required behavior of computer systems under development. This work, called Mise en Scene, defines a new scenario medium (Scenario Notation Language, SNL) suitable for control-dominated systems, coupled with a two-stage process for automatic translation of scenarios to a new trace medium (Trace Notation Language, TNL) that encompasses CSP traces. Mise en Scene is offered as an initial solution to the problem of the scenarios-to-traces "D2" phase of R2D2C. A survey of the "scenario" concept and some case studies are also provided.

  14. Ethanol steam reforming heated up by molten salt CSP : reactor assessment

    NARCIS (Netherlands)

    Falco, de M.; Gallucci, F.

    2010-01-01

    In this paper hydrogen production via reforming of ethanol has been studied in a novel hybrid plant consisting in a ethanol reformer and a concentrating solar power (CSP) plant using molten salt as heat carrier fluid. The heat needed for the reforming of ethanol has been supplied to the system by

  15. Ethanol steam reforming heated up by molten salt CSP: Reactor assessment

    NARCIS (Netherlands)

    De Falco, Marcello; Gallucci, F.

    2010-01-01

    In this paper hydrogen production via reforming of ethanol has been studied in a novel hybrid plant consisting in a ethanol reformer and a concentrating solar power (CSP) plant using molten salt as heat carrier fluid. The heat needed for the reforming of ethanol has been supplied to the system by

  16. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Univ. of Texas, El Paso, TX (United States)

    2017-05-05

    High fidelity computational models of thermocline-based thermal energy storage (TES) were developed. The research goal was to advance the understanding of a single tank nanofludized molten salt based thermocline TES system under various concentration and sizes of the particles suspension. Our objectives were to utilize sensible-heat that operates with least irreversibility by using nanoscale physics. This was achieved by performing computational analysis of several storage designs, analyzing storage efficiency and estimating cost effectiveness for the TES systems under a concentrating solar power (CSP) scheme using molten salt as the storage medium. Since TES is one of the most costly but important components of a CSP plant, an efficient TES system has potential to make the electricity generated from solar technologies cost competitive with conventional sources of electricity.

  17. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  18. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  19. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  20. Energy generation device

    International Nuclear Information System (INIS)

    Araki, Takashi; Tatsumi, Masami; Tada, Koji.

    1990-01-01

    In a reaction estimated as nuclear fusion, a portion near of electrode is heated locally to a high temperature by the heat of the reaction generated on the electrode, by which the electrode is melted or heavy water is boiled. Then, Continuous reaction is difficult and not practical. In view of the above, a cathode made of deuterium absorbing materials is put into heavy water and electric current is supplied, to continuously take place the reaction and an anode is disposed in a cylindrical cathode to cause reaction of energy generation therein in order to continuously take out the generated energy to the outside safely. Further, heavy water is circulated inside the cylindrical cathode to externally take out heavy water the temperature of which is elevated by the generated energy, and fresh heavy water is supplied to the inside of the cylindrical cathode. Thus, heavy water does not boil on the electrode, temperature elevation can be suppressed and melting of the electrode itself can be prevented. (N.H.)

  1. Catalysis for alternative energy generation

    CERN Document Server

    2012-01-01

    Summarizes recent problems in using catalysts in alternative energy generation and proposes novel solutions  Reconsiders the role of catalysis in alternative energy generation  Contributors include catalysis and alternative energy experts from across the globe

  2. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University.

    Science.gov (United States)

    Okeniyi, Joshua O; Atayero, Aderemi A; Popoola, Segun I; Okeniyi, Elizabeth T; Alalade, Gbenga M

    2018-04-01

    This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT). Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment.

  3. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University

    Directory of Open Access Journals (Sweden)

    Joshua O. Okeniyi

    2018-04-01

    Full Text Available This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT. Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management, Learning analytics, Nigerian university, Education data mining

  4. Optimal Renewable Energy Integration into Refinery with CO2 Emissions Consideration: An Economic Feasibility Study

    Science.gov (United States)

    Alnifro, M.; Taqvi, S. T.; Ahmad, M. S.; Bensaida, K.; Elkamel, A.

    2017-08-01

    With increasing global energy demand and declining energy return on energy invested (EROEI) of crude oil, global energy consumption by the O&G industry has increased drastically over the past few years. In addition, this energy increase has led to an increase GHG emissions, resulting in adverse environmental effects. On the other hand, electricity generation through renewable resources have become relatively cost competitive to fossil based energy sources in a much ‘cleaner’ way. In this study, renewable energy is integrated optimally into a refinery considering costs and CO2 emissions. Using Aspen HYSYS, a refinery in the Middle East was simulated to estimate the energy demand by different processing units. An LP problem was formulated based on existing solar energy systems and wind potential in the region. The multi-objective function, minimizing cost as well as CO2 emissions, was solved using GAMS to determine optimal energy distribution from each energy source to units within the refinery. Additionally, an economic feasibility study was carried out to determine the viability of renewable energy technology project implementation to overcome energy requirement of the refinery. Electricity generation through all renewable energy sources considered (i.e. solar PV, solar CSP and wind) were found feasible based on their low levelized cost of electricity (LCOE). The payback period for a Solar CSP project, with an annual capacity of about 411 GWh and a lifetime of 30 years, was found to be 10 years. In contrast, the payback period for Solar PV and Wind were calculated to be 7 and 6 years, respectively. This opens up possibilities for integrating renewables into the refining sector as well as optimizing multiple energy carrier systems within the crude oil industry

  5. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  6. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  7. Excerpts from the report: "BeyondTMY - Meteorological data sets for CSP/STE performance simulations"

    Science.gov (United States)

    Nielsen, Kristian Pagh; Vignola, Frank; Ramírez, Lourdes; Blanc, Philippe; Meyer, Richard; Blanco, Manuel

    2017-06-01

    In order to facilitate comprehensive economic modeling of CSP/STE power plants realistic long-term meteorological datasets with temporal resolution down to 1 minute is a main premise. Currently available standard datasets do not fulfil this premise. The datasets also need to combine the high quality of well-maintained ground-based irradiance measurements and the global coverage of satellite-derived data. Even with the best available data it is necessary to account for the uncertainty in this and the sampling uncertainty from finite time-series to enable the optimal statistical characterization. It is a general challenge that satellite-derived data lack the required temporal resolution, and also often does not cover periods with major volcanic eruptions. Here we see prospects in synthetically generated realistic datasets, although research and development work is required on how to optimally produce and quality assure these.

  8. Micromotor-based energy generation.

    Science.gov (United States)

    Singh, Virendra V; Soto, Fernando; Kaufmann, Kevin; Wang, Joseph

    2015-06-01

    A micromotor-based strategy for energy generation, utilizing the conversion of liquid-phase hydrogen to usable hydrogen gas (H2), is described. The new motion-based H2-generation concept relies on the movement of Pt-black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt-black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen-oxygen fuel cell car by an on-board motion-based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on-site energy generation for powering external devices or meeting growing demands on the energy grid. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Potential of Coconut Shell Powder (CSP) and Coconut Shell Activated Carbon (CSAC) Composites as Electromagnetic Interference (EMI) Absorbing Material

    International Nuclear Information System (INIS)

    Siti Nurbazilah Abdul Jabal; Seok, Y.B.; Hoon, W.F.

    2016-01-01

    Agriculture waste is potentially useful as an alternative material to absorb and attenuate electromagnetic interference (EMI). This research highlights the use of coconut shell powder (CSP) and coconut shell activated carbon (CSAC) as raw materials with epoxy resin and amine hardener composite to absorb microwave signals over frequency of 1 - 8 GHz. In order to investigate the suitability of these raw materials as EMI absorbing material, carbon composition of the raw materials is determined through CHNS Elemental Analysis. The surface morphology of the raw materials in term of porosity is investigated by using TM3000 Scanning Electron Microscope (SEM). The complex permittivity of the composites is determined by using high temperature dielectric probe in conjunction with Network Analyzer. From the result, the Carbon% of CSP and CSAC is 46.70 % and 84.28 % respectively. In term of surface morphology, the surface porosity of CSP and CSAC is in the range of 2 μm and 1 μm respectively. For the dielectric properties, the dielectric constant and the dielectric loss factor for CSP and CSAC is 4.5767 and 64.8307 and 1.2144 and 13.8296 respectively. The materials more potentially useful as substitute materials for electromagnetic interference (EMI) absorbing are discussed. (author)

  10. Iridium complexes containing mesoionic C donors: selective C(sp3)-H versus C(sp2)-H bond activation, reactivity towards acids and bases, and catalytic oxidation of silanes and water.

    Science.gov (United States)

    Petronilho, Ana; Woods, James A; Mueller-Bunz, Helge; Bernhard, Stefan; Albrecht, Martin

    2014-11-24

    Metalation of a C2-methylated pyridylimidazolium salt with [IrCp*Cl2]2 affords either an ylidic complex, resulting from C(sp(3))-H bond activation of the C2-bound CH3 group if the metalation is performed in the presence of a base, such as AgO2 or Na2CO3, or a mesoionic complex via cyclometalation and thermally induced heterocyclic C(sp(2))-H bond activation, if the reaction is performed in the absence of a base. Similar cyclometalation and complex formation via C(sp(2))-H bond activation is observed when the heterocyclic ligand precursor consists of the analogous pyridyltriazolium salt, that is, when the metal bonding at the C2 position is blocked by a nitrogen rather than a methyl substituent. Despite the strongly mesoionic character of both the imidazolylidene and the triazolylidene, the former reacts rapidly with D(+) and undergoes isotope exchange at the heterocyclic C5 position, whereas the triazolylidene ligand is stable and only undergoes H/D exchange under basic conditions, where the imidazolylidene is essentially unreactive. The high stability of the Ir-C bond in aqueous solution over a broad pH range was exploited in catalytic water oxidation and silane oxidation. The catalytic hydrosilylation of ketones proceeds with turnover frequencies as high as 6,000 h(-1) with both the imidazolylidene and the triazolylidene system, whereas water oxidation is enhanced by the stronger donor properties of the imidazol-4-ylidene ligands and is more than three times faster than with the triazolylidene analogue. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solar Energy a Path to India's Prosperity

    Science.gov (United States)

    Chandra, Yogender Pal; Singh, Arashdeep; Kannojiya, Vikas; Kesari, J. P.

    2018-05-01

    Solar energy technology has grabbed a worldwide interest and attention these days. India also, having a huge solar influx and potential, is not falling back to feed its energy demand through non-conventional energy sources such as concentrating solar power (CSP) and photovoltaic (PV). This work will try to add some comprehensive insight on solar energy framework, policy, outlook and socio-economic challenges of India. This includes its prominent areas of working such as grid independent and `utility-scale' power production using CSP or PV power plants, rural as well as urban electrification using PV, solar powered public transportation systems, solar power in agrarian society—water pumping, irrigation, waste management and so on and so forth. Despite the fact that, a vast legion of furtherance and advancement has been done during the last decade of solar energy maturation and proliferation, improvements could be suggested so as to augment the solar energy usage in contrast to conventional energy sources in India.

  12. EUROSUNMED. Euro-Mediterranean cooperation on research and training in sun based renewable energies

    International Nuclear Information System (INIS)

    Slaoui, Abdelilah

    2013-01-01

    Here we present the different aspects of the EUROSUNMED project. The scientific targets of EUROSUNMED are the development of new technologies in three energy field areas, namely photovoltaics (PV), concentrated solar power (CSP) and grid integration (GI), in strong collaboration with research institutes, universities and SMSs from Europe in the north side of the Mediterranean sea and from Morocco and Egypt from the south of the sea. the focus in PV will be on thin film (Si, CZTS) based solar cells and modules while the goal in CSP field is to design and test new heliostats as well as novel solutions for energy storage compatible with these technologies. The project aims at producing components that will be tested under specific conditions of MPC (hot climate, absence of water, etc.). Such investigations are complemented with studies on grid integration of energy sources from PV and CSP in Morocco and Egypt context. Additionally, the consortium envisages training PhD students and post-docs in these interdisciplinary fields (chemistry, physics, materials science) in a close and fruitful collaboration between academic institutions and industry from EU and MPCs. The consortium is well placed around leading academic groups in materials science and engineering devices and equipments for the development of PV and CSP, and also in the promotion of the renewable energies in general. Moreover, technology transfer and research infrastructure development in the targeted areas will be provided. Disseminating the results of the projects will be done through the organization of summer schools and stakeholders involved in the 3 selected energy area and beyond. Another outreach of the project will be the proposal for a roadmap on the technological aspects (research, industry, implementation) of the PV, CSP and grid area as well as on the best practice for the continuation of strong collaboration between the EU and MPCS partners and beyond for mutual interest. (author)

  13. Energy generation

    CSIR Research Space (South Africa)

    Osburn, L

    2009-02-01

    Full Text Available Current perceptions conjure images of photovoltaic panels and wind turbines when green building or sustainable development is discussed. How energy is used and how it is generated are core components of both green building and sustainable...

  14. Energy demand of electricity generation

    International Nuclear Information System (INIS)

    Drahny, M.

    1992-01-01

    The complex energy balance method was applied to selected electricity generation subsystems. The hydroelectric, brown coal based, and nuclear based subsystems are defined. The complex energy balance basically consists in identifying the mainstream and side-stream energy inputs and outputs for both the individual components and the entire electricity generation subsystem considered. Relationships for the complete energy balance calculation for the i-th component of the subsystem are given, and its side-stream energy inputs and outputs are defined. (J.B.). 4 figs., 4 refs

  15. Rhodium(III)-Catalyzed Activation of C(sp3)-H Bonds and Subsequent Intermolecular Amidation at Room Temperature.

    Science.gov (United States)

    Huang, Xiaolei; Wang, Yan; Lan, Jingbo; You, Jingsong

    2015-08-03

    Disclosed herein is a Rh(III)-catalyzed chelation-assisted activation of unreactive C(sp3)-H bonds, thus enabling an intermolecular amidation to provide a practical and step-economic route to 2-(pyridin-2-yl)ethanamine derivatives. Substrates with other N-donor groups are also compatible with the amidation. This protocol proceeds at room temperature, has a relatively broad functional-group tolerance and high selectivity, and demonstrates the potential of rhodium(III) in the promotive functionalization of unreactive C(sp3)-H bonds. A rhodacycle having a SbF6(-) counterion was identified as a plausible intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solar electricity imports from the Middle East and North Africa to Europe

    International Nuclear Information System (INIS)

    Trieb, Franz; Schillings, Christoph; Pregger, Thomas; O'Sullivan, Marlene

    2012-01-01

    The huge solar resources in the MENA countries (Middle East and North Africa), significant improvements in concentrating solar power (CSP) technology and in power transmission technologies, and the urgent need to remove carbon emissions from the European (EU) energy system lead to an increased interest in an EU-MENA electricity grid interconnection. As contribution to the current discussions about DESERTEC, MedGrid and other initiatives this article describes the approach and results of an analysis of possible solar electricity import corridors from MENA to Europe including Turkey. The study is based on solar energy potentials of the MENA countries identified by remote sensing, reviewed performance and cost data of generation and transmission technologies, and geographic data and information systems (GIS) for the spatial analysis. CSP plants combined with high temperature heat storage and high voltage direct current (HVDC) overhead lines and sea cables represent the key technologies for implementing this promising option for renewable energy import/export. The total technical solar power generation potential from remote sensing analysis in the seven MENA countries considered was calculated to about 538,000 TWh/yr. This huge potential implies that less than 0.2% of the land suitable for CSP plants would be enough to supply 15% of the electricity demand expected in Europe in the year 2050. A GIS analysis of potential future HVDC corridors led to the description and characterization of 33 possible import routes to main European centers of demand. - Highlights: ► Concentrating Solar Power in the Mediterranean Region (MED-CSP 2005) (www.dlr.de/tt/med-csp). ► Trans-Mediterranean Interconnection for Concentrating Solar Power (TRANS-CSP 2006) (www.dlr.de/tt/trans-csp). ► Concentrating Solar Power for Seawater Desalination (AQUA-CSP 2007) (www.dlr.de/tt/aqua-csp). ► Risk of Energy Availability: Common Corridors for Europe Supply Security (REACCESS 2009) (http

  17. Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of Borrelia burgdorferi

    International Nuclear Information System (INIS)

    Caesar, Joseph J. E.; Wallich, Reinhard; Kraiczy, Peter; Zipfel, Peter F.; Lea, Susan M.

    2013-01-01

    B. burgdorferi binds complement factor H using a dimeric surface protein, CspA (BbCRASP-1). Presented here is a new structure of CspA that suggests that there is a degree of flexibility between subunits which may have implications for complement regulator binding. Borrelia burgdorferi has evolved many mechanisms of evading the different immune systems across its range of reservoir hosts, including the capture and presentation of host complement regulators factor H and factor H-like protein-1 (FHL-1). Acquisition is mediated by a family of complement regulator-acquiring surface proteins (CRASPs), of which the atomic structure of CspA (BbCRASP-1) is known and shows the formation of a homodimeric species which is required for binding. Mutagenesis studies have mapped a putative factor H binding site to a cleft between the two subunits. Presented here is a new atomic structure of CspA which shows a degree of flexibility between the subunits which may be critical for factor H scavenging by increasing access to the binding interface and allows the possibility that the assembly can clamp around the bound complement regulators

  18. SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws

    Science.gov (United States)

    Cooke, Daniel; Rushton, Nelson

    2013-01-01

    With the introduction of new parallel architectures like the cell and multicore chips from IBM, Intel, AMD, and ARM, as well as the petascale processing available for highend computing, a larger number of programmers will need to write parallel codes. Adding the parallel control structure to the sequence, selection, and iterative control constructs increases the complexity of code development, which often results in increased development costs and decreased reliability. SequenceL is a high-level programming language that is, a programming language that is closer to a human s way of thinking than to a machine s. Historically, high-level languages have resulted in decreased development costs and increased reliability, at the expense of performance. In recent applications at JSC and in industry, SequenceL has demonstrated the usual advantages of high-level programming in terms of low cost and high reliability. SequenceL programs, however, have run at speeds typically comparable with, and in many cases faster than, their counterparts written in C and C++ when run on single-core processors. Moreover, SequenceL is able to generate parallel executables automatically for multicore hardware, gaining parallel speedups without any extra effort from the programmer beyond what is required to write the sequen tial/singlecore code. A SequenceL-to-C++ translator has been developed that automatically renders readable multithreaded C++ from a combination of a SequenceL program and sample data input. The SequenceL language is based on two fundamental computational laws, Consume-Simplify- Produce (CSP) and Normalize-Trans - pose (NT), which enable it to automate the creation of parallel algorithms from high-level code that has no annotations of parallelism whatsoever. In our anecdotal experience, SequenceL development has been in every case less costly than development of the same algorithm in sequential (that is, single-core, single process) C or C++, and an order of magnitude less

  19. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 75 FR 13740 - Office of Innovation and Improvement; Overview Information; Charter Schools Program (CSP) Grants...

    Science.gov (United States)

    2010-03-23

    ... DEPARTMENT OF EDUCATION Office of Innovation and Improvement; Overview Information; Charter Schools Program (CSP) Grants for National Leadership Activities; Notice Inviting Applications for New... of public schools have been identified for improvement, corrective action, or restructuring under...

  1. Review of Thermal Materials for CSP Plants and LCOE Evaluation for Performance Improvement using Chilean Strategic Minerals: Lithium Salts and Copper Foams

    Directory of Open Access Journals (Sweden)

    Gustavo Cáceres

    2016-01-01

    Full Text Available The improvement of solar thermal technologies in emerging economies like Chile is particularly attractive because the country is endowed with one of the most consistently high solar potentials, lithium and copper reserves. In recent years, growing interests for lithium based salts and copper foams in application of thermal technologies could change the landscape of Chile transforming its lithium reserves and copper availability into competitive energy produced in the region. This study reviews the technical advantages of using lithium based salts—applied as heat storage media and heat transfer fluid—and copper foam/Phase Change Materials (PCM alternatives—applied as heat storage media—within tower and parabolic trough Concentrated Solar Power (CSP plants, and presents a first systematic evaluation of the costs of these alternatives based on real plant data. The methodology applied is based on material data base compilation of price and technical properties, selection of CSP plant and estimation of amount of required material, and analysis of Levelized Cost of Electricity (LCOE. Results confirm that some lithium based salts are effective in reducing the amount of required material and costs for the Thermal Energy Storage (TES systems for both plant cases, with savings of up to 68% and 4.14% in tons of salts and LCOE, respectively. Copper foam/PCM composites significantly increase thermal conductivity, decreasing the volume of the TES system, but costs of implementation are still higher than traditional options.

  2. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  3. Aerobic Asymmetric Dehydrogenative Cross-Coupling between Two C(sp3)-H Groups Catalyzed by a Chiral-at-Metal Rhodium Complex.

    Science.gov (United States)

    Tan, Yuqi; Yuan, Wei; Gong, Lei; Meggers, Eric

    2015-10-26

    A sustainable C-C bond formation is merged with the catalytic asymmetric generation of one or two stereocenters. The introduced catalytic asymmetric cross-coupling of two C(sp3)-H groups with molecular oxygen as the oxidant profits from the oxidative robustness of a chiral-at-metal rhodium(III) catalyst and exploits an autoxidation mechanism or visible-light photosensitized oxidation. In the latter case, the catalyst serves a dual function, namely as a chiral Lewis acid for catalyzing enantioselective enolate chemistry and at the same time as a visible-light-driven photoredox catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High energy neutron generator

    International Nuclear Information System (INIS)

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  5. Selective C(sp3)−H aerobic oxidation enabled by decatungstate photocatalysis in flow

    NARCIS (Netherlands)

    Laudadio, G.; Govaerts, S.; Wang, Y.; Ravelli, D.; Koolman, H.; Fagnoni, M.; Djuric, S.; Noel, T.

    2018-01-01

    A mild and selective C(sp3)−H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both

  6. On issues of constructing an exception handling mechanism for CSP-based process-oriented concurrent software

    NARCIS (Netherlands)

    Jovanovic, D.S.; Orlic, B.; Broenink, Johannes F.; Broenink, J.F.; Roebers, H.W.; Sunter, J.P.E.; Welch, P.H.; Wood, D.C.

    2005-01-01

    This paper discusses issues, possibilities and existing approaches for fitting an exception handling mechanism (EHM) in CSP-based process-oriented software architectures. After giving a survey on properties desired for a concurrent EHM, specific problems and a few principal ideas for including

  7. A multifunctional energy-saving magnetic field generator

    Science.gov (United States)

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  8. The future prospect of PV and CSP solar technologies: An expert elicitation survey

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Catenacci, Michela; Fiorese, Giulia; Verdolini, Elena

    2012-01-01

    In this paper we present and discuss the results of an expert elicitation survey on solar technologies. Sixteen leading European experts from the academic world, the private sector and international institutions took part in this expert elicitation survey on Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies. The survey collected probabilistic information on (1) how Research, Development and Demonstration (RD and D) investments will impact the future costs of solar technologies and (2) the potential for solar technology deployment both in OECD and non-OECD countries. Understanding the technological progress and the potential of solar PV and CPS technologies is crucial to draft appropriate energy policies. The results presented in this paper are thus relevant for the policy making process and can be used as better input data in integrated assessment and energy models. - Highlights: ► With constant public support at least one solar technology will become cost-competitive with fossil fuels. ► Demonstration should become a key area of funding. ► Without climate policy (carbon price), by 2030 solar technologies will not be cost-competitive. ► The EU will first achieve a breakthrough in production costs. ► The share of electricity production from solar will never exceed 30%.

  9. Inductive line energy storage generator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The inductive energy storage (IES) generator has long been considered to be the most efficient system for energy usage in large pulsed power system at the MA level. A number of parameters govern the efficiency of energy transfer between the storage capacitors and the load, and the level of current deliverable to the load. For high power system, the energy storage capacitors are arranged as a Marx generator. The primary constraints are the inductances in the various parts of the circuit, in particular, the upstream inductance between the Marx and the POS, and the downstream inductance between the POS and the load. This paper deals with the effect of replacing part of the upstream inductance with a transmission line and introduces the new concept of an inductive line for energy storage (ILES). Extensive parametric scans were carried out on circuit simulations to investigate the effect of this upstream transmission line. A model was developed to explain the operation of the ILES design based on the data obtained. Comparison with an existing IES generator shows that the ILES design offers a significant improvement in the maximum current and hence energy delivered to an inductive load. (author). 5 figs., 1 ref.

  10. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  11. WTO Compliance Status of the Conservation Security Program (CSP) and the Conservation Reserve Program (CRP)

    National Research Council Canada - National Science Library

    Schnepf, Randy

    2007-01-01

    .... This report is not a legal opinion, but describes both the CSP and CRP programs, the WTO Annex II provisions that govern compliance, and the potential issues involved in evaluating the compliance status of the two programs. This report will be updated as events warrant.

  12. Rhenium-catalyzed dehydrogenative olefination of C(sp(3))-H bonds with hypervalent iodine(III) reagents.

    Science.gov (United States)

    Gu, Haidong; Wang, Congyang

    2015-06-07

    A dehydrogenative olefination of C(sp(3))-H bonds is disclosed here, by merging rhenium catalysis with an alanine-derived hypervalent iodine(III) reagent. Thus, cyclic and acyclic ethers, toluene derivatives, cycloalkanes, and nitriles are all successfully alkenylated in a regio- and stereoselective manner.

  13. Solar energy development impacts on land cover change and protected areas.

    Science.gov (United States)

    Hernandez, Rebecca R; Hoffacker, Madison K; Murphy-Mariscal, Michelle L; Wu, Grace C; Allen, Michael F

    2015-11-03

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥ 1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km(2) of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km(2) of change. Less than 15% of USSE installations are sited in "Compatible" areas. The majority of "Incompatible" USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  14. Alternative energy and distributed generation: thinking generations ahead

    International Nuclear Information System (INIS)

    Hunt, P.D.

    2001-01-01

    Alternative Energy will be discussed in the context of Distributed Generation, which is defined as a delivery platform for micro-power generation, close to the end-users, that can also supplement regional electricity grids. Many references in the paper pertain to Alberta. This is for two reasons: First, familiarity by the author, and more importantly, Alberta is the first region in Canada that has de-regulated it's electricity sector. De-regulation allows independent and smaller power generators to enter the market. Focussing on Alberta, with some references to other Canadian provinces and USA, electricity consumption trends will be reviewed and the pressures to decentralize electricity generation discussed. Re-structuring of the electricity sector, convergence of power generation and natural gas industries, advances in technologies, and environmental concerns are collectively contributing to the creation of a new business called 'Distributed Generation'. Efficiency benefits of combined heat and power associated with the more prominent emerging distributed generation technologies like micro-turbines and fuel cells, will be highlighted. Areas of research, development and demonstration that will enable the successful deployment of Distributed Generation will be suggested with respect to Generation Technologies, Systems Controls, Supporting Infrastructure, and Socio-Political Barriers. Estimates of investments in the various alternative energy technologies will be presented. Using current trends and emerging technologies the Paper will conclude with some predictions of future scenarios. (author)

  15. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum

    Science.gov (United States)

    2014-01-01

    Background Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. Results The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. Conclusion There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system. PMID:24731213

  16. Exploring the Potential Competitiveness of Utility-Scale Photovoltaics plus Batteries with Concentrating Solar Power, 2015–2030

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stekli, Joseph [Dept. of Energy (DOE), Washington DC (United States). Office of Solar Energy Technologies Program

    2016-08-01

    Declining costs of both solar photovoltaics (PV) and battery storage have raised interest in the creation of “solar-plus-storage” systems to provide dispatchable energy and reliable capacity. There has been limited deployment of PV-plus-energy storage systems (PV+ESS), and the actual configuration and performance of these systems for dispatchable energy are in the early stages of being defined. In contrast, concentrating solar power with thermal energy storage (CSP+TES) has been deployed at scale with the proven capability of providing a dispatchable, reliable source of renewable generation. A key question moving forward is how to compare the relative costs and benefits of PV+ESS and CSP+TES. While both technologies collect solar radiation and produce electricity, they do so through very different mechanisms, which creates challenges for direct comparison. Nonetheless, it is important to establish a framework for comparison and to identify cost and performance targets to aid meeting the nation’s goals for clean energy deployment. In this paper, we provide a preliminary assessment comparing the cost of energy from CSP+TES and PV+ESS that focuses on a single metric: levelized cost of energy (LCOE). We begin by defining the configuration of each system, which is particularly important for PV+ESS systems. We then examine a range of projected cost declines for PV, batteries, and CSP. Finally, we summarize the estimated LCOE over a range of configuration and cost estimates. We conclude by acknowledging that differences in these technologies present challenges for comparison using a single performance metric. We define systems with similar configurations in some respects. In reality, because of inherent differences in CSP+TES and PV+ESS systems, they will provide different grid services and different value. For example, depending on its configuration, a PV+ESS system may provide additional value over CSP+TES by providing more flexible operation, including certain

  17. Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-Couplings

    KAUST Repository

    Chatupheeraphat, Adisak

    2018-02-20

    A ligand-controlled and site-selective nickel catalyzed Suzuki-Miyaura cross-coupling reaction with aromatic esters and alkyl organoboron reagents as coupling partners was developed. This methodology provides a facile route for C(sp2)-C(sp3) bond formation in a straightforward fashion by successful suppression of the undesired β-hydride elimination process. By simply switching the phosphorus ligand, the ester substrates are converted into the alkylated arenes and ketone products, respectively. The utility of this newly developed protocol was demonstrated by its wide substrate scope, broad functional group tolerance and application in the synthesis of key intermediates for the synthesis of bioactive compounds. DFT studies on the oxidative addition step helped rationalizing this intriguing reaction chemoselectivity: whereas nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step leading to the alkylated product via a decarbonylative process, nickel complexes with monodentate phosphorus ligands favor activation of the C(acyl)-O bond, which later generates the ketone product.

  18. P50/P90 Analysis for Solar Energy Systems Using the System Advisor Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, A. P.; Gilman, P.; Kasberg, M.

    2012-06-01

    To secure competitive financing for a solar energy generation project, the economic risk associated with interannual solar resource variability must be quantified. One way to quantify this risk is to calculate exceedance probabilities representing the amount of energy expected to be produced by a plant. Many years of solar radiation and metereological data are required to determine these values, often called P50 or P90 values for the level of certainty they represent. This paper describes the two methods implemented in the National Renewable Energy Laboratory's System Advisor Model (SAM) to calculate P50 and P90 exceedance probabilities for solar energy projects. The methodology and supporting data sets are applicable to photovoltaic, solar water heating, and concentrating solar power (CSP) systems.

  19. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  20. Concentrating Solar Power. Report April 2009

    Energy Technology Data Exchange (ETDEWEB)

    Pihl, Erik (Chalmers Univ. of Technology, Enery and Environment, Goeteborg (Sweden))

    2009-04-15

    Concentrating solar power (CSP) technologies offer ways to utilise solar radiation by concentrating the light. In a concentrated form, the light can be utilised more cost efficiently. It is focused with mirrors or lenses and used either as a heat source in thermal power cycles (thermal CSP) or as a light source for high efficiency photovoltaic cells (concentrating photovoltaics, CPV). All concentrating systems use tracking to follow the movement of the sun, in two or three dimensions, and require direct sunlight (no diffusing clouds). CSP plants are often more complex, component wise than those based on flat PV. The extra cost of complexity is generally more than offset by the larger scales, the less need for expensive materials such as purified silicon and a better fit with the current energy infrastructure. Some thermal CSP plants offer great possibilities to deal with the intermittency of solar energy, as the heat generated can be stored in the form of a heated liquid in large tanks for many hours with little additional cost, and drive the thermal power generation also during cloudy periods or at night. CSP is growing rapidly and can be an important portion of future low-carbon energy systems. A prerequisite is that expected cost reductions are, at least largely, realised. In regions with good solar conditions (Mediterranean countries, US Southwest, Middle East, Australia etc), CSP systems already in the short-term future can satisfy significant shares of the power demand, to decrease CO{sub 2} emissions. Less solar-intensive regions (Northern Europe, much of North America etc) can be supplied with CSP power from solar-rich regions by using long distance power grids, for instance the high voltage DC cables being deployed and developed today

  1. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  2. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  3. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  4. "Social Capitalism" in Renewable energy generation:

    DEFF Research Database (Denmark)

    Clark, Woodrow W; Li, Xing

    2010-01-01

    to develop a wide range of renewable energy generation including solar, wind, geothermal and run of the river. Because China practices “social capitalism” as expressed in it's recurrent Five Year National Plans since 1999, the national government and all the provinces have programs, unlike many western......With a population of over 1.3 billion people, demand for renewable energy is expected to grow to a USD $12 billion market in the near term. Under Renewable Energy Law (REL) in February 2005 in the People's Republic of China (PRC) passed by the National Congress, renewable energy projects...... will be able to receive a range of financial incentives starting in 2006, which will more than double the PRC current renewable energy generation from 7% to 15% by 2020. Most of the increase will be in hydroelectric generated power. Nonetheless, the nation and especially the provinces are moving rapidly...

  5. Renewable Energy Country Attractiveness Indices

    International Nuclear Information System (INIS)

    2011-02-01

    Since 2003 Ernst and Young team has been releasing quarterly data that ranks national renewable energy markets, and their suitability for individual technologies. The Country Attractiveness Indices now track the relative attractiveness of 30 countries' renewable energy markets across a selection of technologies each quarter. The Renewable Energy Country Attractiveness Indices publication scores and comments on various technologies, including: on-shore wind, off-shore wind, solar PV, solar CSP, biomass, and geothermal.

  6. Generating Community, Generating Justice? The production and circulation of value in community energy initiatives

    Directory of Open Access Journals (Sweden)

    Taylor Chase Dotson

    2016-12-01

    Full Text Available In this paper, we explore the potentialities and interconnections between existing and hypothetical community energy systems and the concept of generative justice. New York State’s more recent official energy plan, for instance, includes provisions for community-scale microgrids, and several European nations offer significant financial support to citizens interested in building micro and intermediate-scale renewable energy systems. Such efforts and technologies appear to promise some degree of generative justice, returning much of the value generated by distributed renewable energy back to the community producing it. However, most currently conceived and implemented community energy systems recirculate value in very narrow and limited ways. Building upon an analysis of New York energy policy and on-the-ground cases, we explore community energy’s potential. What kinds of value are being generated by community energy systems and for whom? How could such efforts be more generative of justice across a broad range of values, not just electrons and dollars? Through the attempt to broaden thinking not only about community energy systems but also the concept of generative justice, we connect technological and organizational configurations of community energy systems and the forms of value they have the potential to generate: including, the production of grassroots energy and organizational expertise, the capacity for local and personal autonomy in energy planning and decision-making, and the enhancement of an affective sense and embodied experience of community. Finally, we examine some of the barriers to realizing more generatively just community energy systems. 

  7. Draft genome of Kocuria polaris CMS 76or(T) isolated from cyanobacterial mats, McMurdo Dry Valley, Antarctica: an insight into CspA family of proteins from Kocuria polaris CMS 76or(T).

    Science.gov (United States)

    Gundlapally, Sathyanarayana Reddy; Ara, Srinivas; Sisinthy, Shivaji

    2015-10-01

    Kocuria polaris strain CMS 76or(T) is a gram-positive, orange-pigmented bacterium isolated from a cyanobacterial mat sample from a pond located in McMurdo Dry Valley, Antarctica. It is psychrotolerant, orange pigmented, hydrolyses starch and Tween 80 and reduces nitrate. We report the 3.78-Mb genome of K. polaris strain CMS 76or(T), containing 3416 coding sequences, including one each for 5S rRNA, 23S rRNA, 16S rRNA and 47 tRNA genes, and the G+C content of DNA is 72.8%. An investigation of Csp family of proteins from K. polaris strain CMS 76or(T) indicated that it contains three different proteins of CspA (peg.319, peg.2255 and 2832) and the length varied from 67 to 69 amino acids. The three different proteins contain all the signature amino acids and two RNA binding regions that are characteristic of CspA proteins. Further, the CspA from K. polaris strain CMS 76or(T) was different from CspA of four other species of the genus Kocuria, Cryobacterium roopkundense and E. coli indirectly suggesting the role of CspA of K. polaris strain CMS 76or(T) in psychrotolerant growth of the bacterium.

  8. Urban energy generation and the role of cities

    DEFF Research Database (Denmark)

    Groth, Niels Boje; Fertner, Christian; Große, Juliane

    2016-01-01

    Although a major part of energy consumption happens in cities, contemporary energy generation is less obviously connected to the urban structure. Energy based on fossil fuels and consumed in transportation is produced at global scale; energy for electricity is usually distributed through a national...... or continental grid; energy for heating, if related to district heating systems or the use of local/regional resources for its generation (e.g. biomass, waste), has a more local or at least regional character. In the latter case, electricity might be a by-product of combined-heat-power plants, but still feeding...... on energy generation and distribution. However, contemporary focus on sustainable and efficient use of resources and energy at local level, mainstreaming of renewable energy production and ideas of urban energy harvesting put energy generation again on the local agenda. The role of cities can be twofold: (1...

  9. Socio-economic effects of a HYSOL CSP plant located in different countries: An input output analysis

    NARCIS (Netherlands)

    Corona, B.; López, A.; San Miguel, G.

    2016-01-01

    The aim of this paper is to estimate the socioeconomic effects associated with the production of electricity by a CSP plant with HYSOL configuration, using Input Output Analysis. These effects have been estimated in terms of production of Goods and Services (G&S), multiplier effect, value added,

  10. Energy for a sustainable post-carbon society

    Directory of Open Access Journals (Sweden)

    Antonio García-Olivares

    2016-09-01

    Full Text Available A feasible way to avoid the risk of energy decline and to combat climate change is to build a worldwide, 100% renewable energy mix. Renewable energy can be scaled up to the range of 12 electric terawatts (TWe if 10% of continental shelves are exploited with floating turbines to depths as low as 225 m, 5% of continents with ground turbines, and 5% of the main deserts with concentrating solar power (CSP farms. However, a globally electrified economy cannot grow much above 12 TWe without approaching the limit of terrestrial copper reserves. New photovoltaic silicon panels do not use silver metallization pastes and could contribute up to 1 TW of decentralized residential power. Hydroelectricity has a potential of 1 TW but a fraction of this would have to be sacrificed for energy storage purposes. Hydro, CSP, wave energy and grid integration at continental scales may be sufficient to fit supply to demand, avoiding intermittency. The renewable energy mix would have an energy return on energy invested about 18, which is 25% lower than the estimated present one. That should be sufficient to sustain an industrialized economy provided that the substitution of electricity for fossil fuels is done intelligently.

  11. Conceptual study on deep-underground energy generation base

    International Nuclear Information System (INIS)

    Hayano, M.; Okawa, T.

    1992-01-01

    Mitsubishi Atomic Power Industries, Inc. (MAPI) and Taisei Corporation have started a conceptual study on a deep-underground energy generation base for future cities in the 21st century around the metropolitan area, which will be increasingly important from viewpoints of the autonomy and sharing of the energy supply to the future cities. The energy generation base consists of a gas cooled reactor with naturally safety features as the energy source, an electric generation base using the Alkali Metal Thermo-electric Converter (AMTEC), a hydrogen production plant with the Solid Polymer Electrolyte (SPE), a hydrogen storage plant with the Metal Hydride (MH), and a desalination plant. This paper describes a concept of the energy generation base and the structure in the deep-underground, in soft soil, then the basic system of each plant, and finally discusses the feasibility of the deep-underground energy generation base. (author)

  12. 75 FR 39220 - Charter Schools Program (CSP) Grants for Replication and Expansion of High-Quality Charter Schools

    Science.gov (United States)

    2010-07-08

    ... DEPARTMENT OF EDUCATION Charter Schools Program (CSP) Grants for Replication and Expansion of High-Quality Charter Schools AGENCY: Office of Innovation and Improvement, Department of Education. ACTION... notice inviting applications for new awards for FY 2010 for the Charter Schools Program Grants for...

  13. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  14. Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae

    International Nuclear Information System (INIS)

    Pearce, Matthew; Shemfe, Mobolaji; Sansom, Christopher

    2016-01-01

    Highlights: • Hydrothermal liquefaction and concentrated solar power provide integrated biofuel technology. • Heat kinetics and energy efficiency Aspen plus modelling of CSP and HTL. • Microalgae biofuel minimum fuel sales price of $1.23/kg. - Abstract: Integration of Hydrothermal Liquefaction (HTL) of microalgae biomass with concentrated solar power thermal processing (CSP) for bio-oil production is a potential processing pathway for energy efficient generation of renewable biofuels. Solar HTL infrastructure avoids additional bolt-on components of conventional solar parabolic trough systems used for electricity production including heat transfer fluids, counter current heat exchangers, fluid transfer interconnectivity and electrical power control systems. The absence of such capital intensive additional equipment considerably reduces the production costs of solar HTL biofuels compared to electricity generation from conventional CSP power systems. An economic and market appraisal of variance and system economic resilience is presented. It is hypothesised that the combination of nutrient recycling with HTL/CSP unification has the potential for economically sustainable microalgae bio-oil production. A microalgae biofuel minimum fuel sales price of $1.23/kg has been modelled. Further experimental work would be able to validate this integrated model.

  15. modelling of hydropower reservoir variables for energy generation

    African Journals Online (AJOL)

    Osondu

    the River Niger (Kainji and Jebba dams) in Nigeria for energy generation using multilayer ... coefficient showed that the networks are reliable for modeling energy generation as a function of ... through turbines and electric generator system.

  16. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  17. Energy and environmental evaluation of tri-generation energy systems

    International Nuclear Information System (INIS)

    Chicco, G.; Mancarella, P.

    2008-01-01

    Tri generation facilities manufactured with various technologies represent an important alternative solution for the development more efficient energy systems and low environmental impact. Are described the issues related to modelling and energy and environmental evaluation [it

  18. RESGen: Renewable Energy Scenario Generation Platform

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Pinson, Pierre

    2016-01-01

    studies remains. Consequently, our aim here is to propose an open-source platform for space-time probabilistic forecasting of renewable energy generation (wind and solar power). This document covers both methodological and implementation aspects, to be seen as a companion document for the open......-source scenario generation platform. It can generate predictive densities, trajectories and space-time interdependencies for renewable energy generation. The underlying model works as a post-processing of point forecasts. For illustration, two setups are considered: the case of day-ahead forecasts to be issued......Space-time scenarios of renewable power generation are increasingly used as input to decision-making in operational problems. They may also be used in planning studies to account for the inherent uncertainty in operations. Similarly using scenarios to derive chance-constraints or robust...

  19. Wind energy generation and pollution control

    International Nuclear Information System (INIS)

    Mohibullah; Mohd Nishat Anwar

    2009-01-01

    Full text: In India, power generation from wind has emerged as one of the most successful programme. It is making meaningful contributions to the overall power requirements in some of the states. India is emerging as fifth nation in wind power generation. As per the projections made by Ministry of New and Renewable Energy, Govt. of India, 10 % of the total capacity of power generation will come from renewable energy sources by the year 2012. It is envisaged that 50 % of this capacity may come from wind power alone. The paper describes a WECS (Wind Energy Conversion Systems) structure implemented in the MATLAB-Simulink simulation environment by using the specialized PSB toolbox, designed for modeling and simulation of electrical equipment. A study is made to show effectiveness in pollution control. An analytical study is also made regarding the potential of wind energy in limiting the amount of green house gases added into the atmosphere per year in different states in India. The amount of green house gases which are saved in the process are calculated for nine wind potential sites in India. The amount of green house gases saved is considerable to reduce environmental pollution and saving in carbon credit. Approximately an amount of 70681 Euro per year may be saved if the scheme is implemented and use of wind energy known in India is fully utilized for power generation. (author)

  20. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  1. Second Generation Novel High Temperature Commercial Receiver & Low Cost High Performance Mirror Collector for Parabolic Solar Trough

    Energy Technology Data Exchange (ETDEWEB)

    Stettenheim, Joel [Norwich Technologies, White River Junction, VT (United States)

    2016-02-29

    Norwich Technologies (NT) is developing a disruptively superior solar field for trough concentrating solar power (CSP). Troughs are the leading CSP technology (85% of installed capacity), being highly deployable and similar to photovoltaic (PV) systems for siting. NT has developed the SunTrap receiver, a disruptive alternative to vacuum-tube concentrating solar power (CSP) receivers, a market currently dominated by the Schott PTR-70. The SunTrap receiver will (1) operate at higher temperature (T) by using an insulated, recessed radiation-collection system to overcome the energy losses that plague vacuum-tube receivers at high T, (2) decrease acquisition costs via simpler structure, and (3) dramatically increase reliability by eliminating vacuum. It offers comparable optical efficiency with thermal loss reduction from ≥ 26% (at presently standard T) to ≥ 55% (at high T), lower acquisition costs, and near-zero O&M costs.

  2. Can agriculture generate clean energy?

    International Nuclear Information System (INIS)

    Van Zeijts, H.; Oosterveld, E.B.; Timmerman, E.A.

    1994-01-01

    Fossil fuels meet a large part of the energy requirements in Europe. The carbon dioxide produced by using these fuels contributes to the greenhouse effect. By generating energy from vegetable fibres (biomass) the emission of greenhouse gasses can be reduced. As well as an ecological advantage, the cultivation of crops for the supply of energy could also improve the moderate to bad economical results of Dutch arable farms. So far research into the use of biomass as a source of energy has been mainly concerned with its technical and economic feasibility. Our research also assesses the ecological sustainability of the cultivation and use of energy crops. The principal questions we have answered are: how harmful to the environment is the cultivation of energy crops?; what are the direct and indirect environmental effects of fitting energy crops into the cropping plan?; what indirect effects are to be expected at a regional and national level?; on balance, how much energy is produced in the entire cultivation, transport and processing chain?; What effect does this have on the emission of greenhouse gases?; what is the overall conclusion for the various crops with regard to sustainability? The conclusions of this research could help policy makers answer the question whether it is useful from the point of view of sustainability to stimulate the generation of energy from biomass. We have assessed the effects of the cultivation and use of energy crops on: the emission of minerals and pesticides; the use of energy and the emission of greenhouse gases; the fixation of carbon from CO2; the use of by-products and waste products; dehydration; erosion; the contribution to natural values; the contribution to scenic values; and use of space. In the overall assessment each criterion was given equal weight. This choice is arbitrary: in practice, the ratios are different in each situation. We have studied nine crops and their processing chains. Rape is converted into bio-diesel oil by

  3. Who's hot, who's not? Effects of concentrating solar power heliostats on soil temperature at Ivanpah Solar Electric Generating System, Mojave Desert, USA

    Science.gov (United States)

    Grodsky, S.; Hernandez, R. R.

    2017-12-01

    Solar energy development may function as a contemporary, anthropogenic driver of disturbance when sited in natural ecosystems. Orientation and density of solar modules, including heliostats at concentrating solar power (CSP) facilities, may affect soils via shading and altered surface-water flow. Meanwhile, soil attributes like temperature and moisture may affect nutrient cycling, plant germination and growth, and soil biota. We tested effects of CSP heliostats on soil temperature at Ivanpah Solar Electric Generating System (ISEGS) in the Mojave Desert, USA. We implemented experimental treatments based on preconstruction rare plant [e.g., Mojave milkweed (Asclepias nyctaginifolia)] protection areas (hereafter "halos"), site preparation activities, and heliostat density throughout three, replicated CSP blocks (i.e., tower and associated heliostats), including: (1) No Halos (Bladed) - high site preparation intensity, high heliostat density immediately surrounding towers; (2) No Halos (Mowed) - moderate site preparation intensity, moderate to low heliostat density as distance increases from towers; and (3) Halos - no site preparation, no heliostats. We also established control sites within 1,600 km of ISEGS in undisturbed desert. We observed significant differences in soil temperature across treatments. We recorded significantly lower soil temperatures in the No Halos (Bladed) treatments (26.7°C) and No Halos (Mowed) treatments (29.9°C) than in the Halos treatments (32.9°C) and controls (32.1°C). We also determined that soil temperatures in the Halos treatments and controls did not significantly differ. Our results indicated that shading from high-density heliostat configuration significantly reduced soil temperature relative to low-density heliostat configuration and areas without CSP. Shading from heliostats and consequential fluctuation in soil temperatures may affect local-scale distribution of flora and fauna, leading to altered "bottom-up" ecological

  4. Design of a small scale stand-alone solar thermal co-generation plant for an isolated region in Egypt

    International Nuclear Information System (INIS)

    Abdelhady, Suzan; Borello, Domenico; Tortora, Eileen

    2014-01-01

    Highlights: • In the selected area, connection to the grid is very difficult and expensive. • The integrated unsteady CSP/ORC system, was modeled TRNSYS. • Assuming a CSP of 200,000 m 2 , 6 MW e and 21.5 MW th can be obtained. • The energy is sufficient to feed more than 3,300 rural users and two big factories. • PER = 1.43, LCOE = 1.25 USD/kW h and the GHG emissions are reduced of 7300 toe/year. - Abstract: Most of Egypt’s population is concentrated in the Nile Valley (5% of Egypt’s area), while the western desert occupies an area of 50% of the total area of Egypt with a small number of inhabitants. The New Valley is the largest governorates in Egypt which occupies 45.8% of the total area of the Country and 65% of the Western Desert and it is the least densely populated governorate in Egypt. However, New Valley has started to receive the migrated people from the Nile valley and Delta region and the demand for the energy is continuously increasing. However, the rural area in New Valley still suffers from lack of access to energy services. The very high transmission losses and costs are the main challenges for electrification in this area. Then, it is worth to investigate the opportunities for distributed energy generation. This area of Egypt receives some of the highest solar radiation in the world (up to 3000 kW h per square meters per year), making it a prime location for use of this resource. In this study, performance and economic assessment of a small scale stand-alone solar thermal co-generation plant using diathermic oil is presented. This configuration is considered as a promising and sustainable solution to provide electricity and heat to an isolated area satisfying the local loads. Parabolic trough plant has been modeled in TRNSYS simulation environment integrated with the Solar Thermal Electric Components (STEC) model library. Both solar and power cycle performances have been modeled based on the solar energy data of the plant site. The

  5. Energy Management Optimization for Cellular Networks under Renewable Energy Generation Uncertainty

    KAUST Repository

    Rached, Nadhir B.

    2017-03-28

    The integration of renewable energy (RE) as an alternative power source for cellular networks has been deeply investigated in literature. However, RE generation is often assumed to be deterministic; an impractical assumption for realistic scenarios. In this paper, an efficient energy procurement strategy for cellular networks powered simultaneously by the smart grid (SG) and locally deployed RE sources characterized by uncertain processes is proposed. For a one-day operation cycle, the mobile operator aims to reduce its total energy cost by optimizing the amounts of energy to be procured from the local RE sources and SG at each time period. Additionally, it aims to determine the amount of extra generated RE to be sold back to SG. A chance constrained optimization is first proposed to deal with the RE generation uncertainty. Then, two convex approximation approaches: Chernoff and Chebyshev methods, characterized by different levels of knowledge about the RE generation, are developed to determine the energy procurement strategy for different risk levels. In addition, their performances are analyzed for various daily scenarios through selected simulation results. It is shown that the higher complex Chernoff method outperforms the Chebyshev one for different risk levels set by the operator.

  6. Energy Management Optimization for Cellular Networks under Renewable Energy Generation Uncertainty

    KAUST Repository

    Rached, Nadhir B.; Ghazzai, Hakim; Kadri, Abdullah; Alouini, Mohamed-Slim

    2017-01-01

    The integration of renewable energy (RE) as an alternative power source for cellular networks has been deeply investigated in literature. However, RE generation is often assumed to be deterministic; an impractical assumption for realistic scenarios. In this paper, an efficient energy procurement strategy for cellular networks powered simultaneously by the smart grid (SG) and locally deployed RE sources characterized by uncertain processes is proposed. For a one-day operation cycle, the mobile operator aims to reduce its total energy cost by optimizing the amounts of energy to be procured from the local RE sources and SG at each time period. Additionally, it aims to determine the amount of extra generated RE to be sold back to SG. A chance constrained optimization is first proposed to deal with the RE generation uncertainty. Then, two convex approximation approaches: Chernoff and Chebyshev methods, characterized by different levels of knowledge about the RE generation, are developed to determine the energy procurement strategy for different risk levels. In addition, their performances are analyzed for various daily scenarios through selected simulation results. It is shown that the higher complex Chernoff method outperforms the Chebyshev one for different risk levels set by the operator.

  7. Polymorphisms in Plasmodium vivax Circumsporozoite Protein (CSP) Influence Parasite Burden and Cytokine Balance in a Pre-Amazon Endemic Area from Brazil

    Science.gov (United States)

    Ribeiro, Bruno de Paulo; Cassiano, Gustavo Capatti; de Souza, Rodrigo Medeiros; Cysne, Dalila Nunes; Grisotto, Marcos Augusto Grigolin; de Azevedo dos Santos, Ana Paula Silva; Marinho, Cláudio Romero Farias; Machado, Ricardo Luiz Dantas; Nascimento, Flávia Raquel Fernandes

    2016-01-01

    Mechanisms involved in severe P. vivax malaria remain unclear. Parasite polymorphisms, parasite load and host cytokine profile may influence the course of infection. In this study, we investigated the influence of circumsporozoite protein (CSP) polymorphisms on parasite load and cytokine profile in patients with vivax malaria. A cross-sectional study was carried out in three cities: São Luís, Cedral and Buriticupu, Maranhão state, Brazil, areas of high prevalence of P. vivax. Interleukin (IL)-2, IL-4, IL-10, IL-6, IL-17, tumor necrosis factor alpha (TNF-α, interferon gamma (IFN-γ and transforming growth factor beta (TGF-β were quantified in blood plasma of patients and in supernatants from peripheral blood mononuclear cell (PBMC) cultures. Furthermore, the levels of cytokines and parasite load were correlated with VK210, VK247 and P. vivax-like CSP variants. Patients infected with P. vivax showed increased IL-10 and IL-6 levels, which correlated with the parasite load, however, in multiple comparisons, only IL-10 kept this association. A regulatory cytokine profile prevailed in plasma, while an inflammatory profile prevailed in PBMC culture supernatants and these patterns were related to CSP polymorphisms. VK247 infected patients showed higher parasitaemia and IL-6 concentrations, which were not associated to IL-10 anti-inflammatory effect. By contrast, in VK210 patients, these two cytokines showed a strong positive correlation and the parasite load was lower. Patients with the VK210 variant showed a regulatory cytokine profile in plasma, while those infected with the VK247 variant have a predominantly inflammatory cytokine profile and higher parasite loads, which altogether may result in more complications in infection. In conclusion, we propose that CSP polymorphisms is associated to the increase of non-regulated inflammatory immune responses, which in turn may be associated with the outcome of infection. PMID:26943639

  8. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira; Aquino, Afonso Rodrigues de

    2007-01-01

    The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. Once outlined the environmental impacts from each form of electric energy generation, they were correlated and compared considering the area of the power plant implantation, the generation capacity, the efficiency, the power and the cost per kW. There is no totally clean form of electric energy generation. There is, however, generation without emission of gases responsible for the green house effect. Therefore, all forms of energy generation are important for a country; in other words, the best situation is the diversity of the energy matrix. (author)

  9. Energy generation x environmental impact

    International Nuclear Information System (INIS)

    Oliveira, Thalles Rodrigues

    2011-01-01

    This work aims: to analyze the various sources of energy giving a general idea of the good and bad points for each power generation model, and its impact in the environment, with the purpose of considering the best available options; research on alternative sources of energy production as well as Brazil's resources in a particular source of energy and point out their strengths and weaknesses; report the best options to take advantage of the available resources for energy production in Triangulo Mineiro, a region within Minas Gerais state

  10. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction II: Nonplanar Molecules.

    Science.gov (United States)

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-11-14

    The crystal structure prediction (CSP) of a given compound from its molecular diagram is a fundamental challenge in computational chemistry with implications in relevant technological fields. A key component of CSP is the method to calculate the lattice energy of a crystal, which allows the ranking of candidate structures. This work is the second part of our investigation to assess the potential of the exchange-hole dipole moment (XDM) dispersion model for crystal structure prediction. In this article, we study the relatively large, nonplanar, mostly flexible molecules in the first five blind tests held by the Cambridge Crystallographic Data Centre. Four of the seven experimental structures are predicted as the energy minimum, and thermal effects are demonstrated to have a large impact on the ranking of at least another compound. As in the first part of this series, delocalization error affects the results for a single crystal (compound X), in this case by detrimentally overstabilizing the π-conjugated conformation of the monomer. Overall, B86bPBE-XDM correctly predicts 16 of the 21 compounds in the five blind tests, a result similar to the one obtained using the best CSP method available to date (dispersion-corrected PW91 by Neumann et al.). Perhaps more importantly, the systems for which B86bPBE-XDM fails to predict the experimental structure as the energy minimum are mostly the same as with Neumann's method, which suggests that similar difficulties (absence of vibrational free energy corrections, delocalization error,...) are not limited to B86bPBE-XDM but affect GGA-based DFT-methods in general. Our work confirms B86bPBE-XDM as an excellent option for crystal energy ranking in CSP and offers a guide to identify crystals (organic salts, conjugated flexible systems) where difficulties may appear.

  11. Energy Generation in the Human Body by the Human Cells ...

    African Journals Online (AJOL)

    We adapted the thermodynamics equation for energy generation in a diesel engine in modeling energy generation in human body by the human cells by doing a thorough study on both systems and saw that the process of energy generation is the same in them. We equally saw that the stages involved in energy generation ...

  12. Distributed generation - customer owned generation - Duke Energy case study

    Energy Technology Data Exchange (ETDEWEB)

    Iung, Anderson M. [Duke Energy International, Geracao Paranapanema S.A., SP (Brazil). Market Analysis Dept.; Ribeiro, Paulo F. [Calvin College, Grand Rapids, MI (United States); Oliveira, A.R. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Distributed generation (DG) is getting more attractive. Although unit costs show strong economies of scale for all generation technology types, there is a potential niche market for DG technology to drive growth in addition to environmental concern issues. Duke Energy encourages the installation of cost effective small scale costumer owned generation. The objective of this article is to evaluate some aspects of DG connection in the Duke's distribution system regarding power quality, voltage stability, system protection, power balance control policy and the economical viability. (author)

  13. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira

    2007-01-01

    Electric energy has an important function in the modem world; it is fundamental for progress and development. The electricity discovery allowed improvements in several areas: health, water and food supply, quality of life and sanitary conditions, and contributed also to the establishment of the capitalist and consumption society. The use of oil as an energy generation source was the impulse for the industrial revolution and machines, motors and generators were developed contributing to the progress This also brought the pollutant gases emission (CO 2 , CO, SO x and NO x ) and other substances that had contributed to the greenhouse effect, the ozone hole and the acid rain, modifying the balance of the planet. The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. The discovery and the development of nuclear energy in Brazil and in the world as well as the functioning of a nuclear power plant, the impacts generated by its operation and decommissioning are presented. The history, functioning and development of hydroelectric energy generation in Brazil, characterized by the great plants, are related to environmental aspects The environmental

  14. Study of energy recovery and power generation from alternative energy source

    Directory of Open Access Journals (Sweden)

    Abdulhakim Amer A. Agll

    2014-11-01

    Full Text Available The energy requirement pattern of world is growing up and developing technology. The available sources, while exhausting and not friendly to the environment, are highly used. Looking at partial supply and different options of environment problems associated with usage, renewable energy sources are getting attention. MSW (Municipal solid waste composition data had been collected from 1997 to 2009, in Benghazi Libya, to evaluate the waste enthalpy. An incinerator with capacity of 47,250 kg/h was confirmed to burn all the quantity of waste generated by the city through the next 15 years. Initial study was performed to investigate energy flow and resource availability to insure sustainable MSW required by the incinerator to work at its maximum capacity during the designated period. The primary purpose of the paper is to discuss the design of Rankin steam cycle for the generation of both power (PG and combined heat power (CHP. In the power generation case, the system was found to be able to generate electrical power of 13.1 MW. Including the combined heat power case, the results showed that the system was able to produce 6.8 million m3/year of desalinated water and generate 11.33 MW of electricity. In conclusion, the CHP designed system has the greatest potential to maximize energy saving, due to the optimal combination of heat production and electricity generation.

  15. Technologies for power and thermal energy generation. Bring our energies together

    International Nuclear Information System (INIS)

    2014-05-01

    On behalf of ADEME, the DREAL and the Region of Brittany and produced by ENEA, consulting company in energy and sustainable development, this brochure presents main technologies for power and thermal energy generation in an effort to maintain objectivity (efficiency, intrinsic features of each technology and key figures as regards power and energy). If most of the technologies are operational or in development in Brittany, such as ocean energy, the scope has been extended to encompass all existing technologies in France in order to give useful references. The French Brittany is a peninsula, with regards to both its geographic situation and its energy context. The region has decided to investigate energy and climate issue through the Brittany Energy Conference and to commit for energy transition. Discussions which have taken place since 2010 at the regional level as well as the national debate on energy transition in 2013 have highlighted the need for educational tools for the main energy generation technologies. Thus, the purpose of this brochure is to share energy stakes with a broad audience

  16. An innovative approach for energy generation from waves

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habaibeh, A. [Advanced Design and Manufacturing Engineering Centre, School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); Su, D. [School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); McCague, J. [Technical Director, Ocean Navitas Ltd., Lincolnshire (United Kingdom); Knight, A. [Marketing and Communications Manager, Ocean Navitas Ltd., Lincolnshire (United Kingdom)

    2010-08-15

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a {+-}0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves. (author)

  17. An innovative approach for energy generation from waves

    International Nuclear Information System (INIS)

    Al-Habaibeh, A.; Su, D.; McCague, J.; Knight, A.

    2010-01-01

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a ±0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves.

  18. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  19. modelling of hydropower reservoir variables for energy generation

    African Journals Online (AJOL)

    Osondu

    the River Niger (Kainji and Jebba dams) in Nigeria for energy generation using multilayer ... coefficient showed that the networks are reliable for modeling energy generation as a function of ... water, like wind and sun, is a renewable resource.

  20. Dependability of wind energy generators with short-term energy storage.

    Science.gov (United States)

    Sørensen, B

    1976-11-26

    Power fluctuations and power duration curves for wind energy generators, including energy storage facilities of a certain capacity, are compared to those of typical nuclear reactors. A storage system capable of delivering the yearly average power output for about 10 hours already makes the dependability of the wind energy system comparable to that of a typical nuclear plant.

  1. Selective C(sp3 )-H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow.

    Science.gov (United States)

    Laudadio, Gabriele; Govaerts, Sebastian; Wang, Ying; Ravelli, Davide; Koolman, Hannes F; Fagnoni, Maurizio; Djuric, Stevan W; Noël, Timothy

    2018-04-03

    A mild and selective C(sp 3 )-H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C-H bonds (30 examples). The ability to selectively oxidize natural scaffolds, such as (-)-ambroxide, pregnenolone acetate, (+)-sclareolide, and artemisinin, exemplifies the utility of this new method. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation

    NARCIS (Netherlands)

    Köberle, Alexandre C.; Gernaat, David E H J; van Vuuren, Detlef P.

    2015-01-01

    CSP and PV technologies represent energy sources with large potentials. We present cost-supply curves for both technologies using a consistent methodology for 26 regions, based on geoexplicit information on solar radiation, land cover type and slope, exploring individual potential and

  3. Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2012-01-01

    Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their hig......Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics....... Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP...

  4. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  5. Hydrogen generator characteristics for storage of renewably-generated energy

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Bartela, Łukasz; Węcel, Daniel; Dubiel, Klaudia

    2017-01-01

    The paper presents a methodology for determining the efficiency of a hydrogen generator taking the power requirements of its auxiliary systems into account. Authors present results of laboratory experiments conducted on a hydrogen generator containing a PEM water electrolyzer for a wide range of device loads. On the basis of measurements, the efficiency characteristics of electrolyzers were determined, including that of an entire hydrogen generator using a monitored power supply for its auxiliary devices. Based on the results of the experimental tests, the authors have proposed generalized characteristics of hydrogen generator efficiency. These characteristics were used for analyses of a Power-to-Gas system cooperating with a 40 MW wind farm with a known yearly power distribution. It was assumed that nightly-produced hydrogen is injected into the natural gas transmission system. An algorithm for determining the thermodynamic and economic characteristics of a Power-to-Gas installation is proposed. These characteristics were determined as a function of the degree of storage of the energy produced in a Renewable Energy Sources (RES) installation, defined as the ratio of the amount of electricity directed to storage to the annual amount of electricity generated in the RES installation. Depending on the degree of storage, several quantities were determined. - Highlights: • The efficiency characteristics of PEM electrolyzer are determined. • Generalized characteristics of hydrogen generator efficiency are proposed. • Method of choice of electrolyser nominal power for Power-to-Gas system was proposed. • Development of Power-to-Gas systems requires implementation of support mechanisms.

  6. Dynamic modeling, simulation and control of energy generation

    CERN Document Server

    Vepa, Ranjan

    2013-01-01

    This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli

  7. Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.

    Science.gov (United States)

    Kim, Seon-Hee; Bae, Young-An; Seoh, Ju-Young; Yang, Hyun-Jong

    2017-06-01

    Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium . Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii -infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

  8. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  9. Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton.

    Science.gov (United States)

    Townsley, Loni; Sison Mangus, Marilou P; Mehic, Sanjin; Yildiz, Fitnat H

    2016-07-15

    The ability to sense and adapt to temperature fluctuation is critical to the aquatic survival, transmission, and infectivity of Vibrio cholerae, the causative agent of the disease cholera. Little information is available on the physiological changes that occur when V. cholerae experiences temperature shifts. The genome-wide transcriptional profile of V. cholerae upon a shift in human body temperature (37°C) to lower temperatures, 15°C and 25°C, which mimic those found in the aquatic environment, was determined. Differentially expressed genes included those involved in the cold shock response, biofilm formation, type VI secretion, and virulence. Analysis of a mutant lacking the cold shock gene cspV, which was upregulated >50-fold upon a low-temperature shift, revealed that it regulates genes involved in biofilm formation and type VI secretion. CspV controls biofilm formation through modulation of the second messenger cyclic diguanylate and regulates type VI-mediated interspecies killing in a temperature-dependent manner. Furthermore, a strain lacking cspV had significant defects for attachment and type VI-mediated killing on the surface of the aquatic crustacean Daphnia magna Collectively, these studies reveal that cspV is a major regulator of the temperature downshift response and plays an important role in controlling cellular processes crucial to the infectious cycle of V. cholerae Little is known about how human pathogens respond and adapt to ever-changing parameters of natural habitats outside the human host and how environmental adaptation alters dissemination. Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, experiences fluctuations in temperature in its natural aquatic habitats and during the infection process. Furthermore, temperature is a critical environmental signal governing the occurrence of V. cholerae and cholera outbreaks. In this study, we showed that V. cholerae reprograms its transcriptome in response to

  10. Employment impacts of solar energy in Turkey

    International Nuclear Information System (INIS)

    Cetin, Muejgan; Egrican, Niluefer

    2011-01-01

    Solar energy is considered a key source for the future, not only for Turkey, also for all of the world. Therefore the development and usage of solar energy technologies are increasingly becoming vital for sustainable economic development. The main objective of this study is investigating the employment effects of solar energy industry in Turkey. Some independent reports and studies, which analyze the economic and employment impacts of solar energy industry in the world have been reviewed. A wide range of methods have been used in those studies in order to calculate and to predict the employment effects. Using the capacity targets of the photovoltaic (PV) and concentrated solar power (CSP) plants in the solar Roadmap of Turkey, the prediction of the direct and indirect employment impacts to Turkey's economy is possible. As a result, solar energy in Turkey would be the primary source of energy demand and would have a big employment effects on the economics. That can only be achieved with the support of governmental feed-in tariff policies of solar energy and by increasing research-development funds. - Highlights: → The objective of the study, is investigating employment effects of solar energy. → Using the capacity targets of the PV and CSP plants in solar roadmap of Turkey. → Direct employment has been calculated by constructing of the solar power plant. → If multiplier effect is accepted as 2, total employment will be doubled. → Validity of the figures depends on the government's policies.

  11. Measurement of ex vivo ELISpot interferon-gamma recall responses to Plasmodium falciparum AMA1 and CSP in Ghanaian adults with natural exposure to malaria.

    Science.gov (United States)

    Ganeshan, Harini; Kusi, Kwadwo A; Anum, Dorothy; Hollingdale, Michael R; Peters, Bjoern; Kim, Yohan; Tetteh, John K A; Ofori, Michael F; Gyan, Ben A; Koram, Kwadwo A; Huang, Jun; Belmonte, Maria; Banania, Jo Glenna; Dodoo, Daniel; Villasante, Eileen; Sedegah, Martha

    2016-02-01

    Malaria eradication requires a concerted approach involving all available control tools, and an effective vaccine would complement these efforts. An effective malaria vaccine should be able to induce protective immune responses in a genetically diverse population. Identification of immunodominant T cell epitopes will assist in determining if candidate vaccines will be immunogenic in malaria-endemic areas. This study therefore investigated whether class I-restricted T cell epitopes of two leading malaria vaccine antigens, Plasmodium falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1), could recall T cell interferon-γ responses from naturally exposed subjects using ex vivo ELISpot assays. Thirty-five subjects aged between 24 and 43 years were recruited from a malaria-endemic urban community of Ghana in 2011, and their peripheral blood mononuclear cells (PBMCs) were tested in ELISpot IFN-γ assays against overlapping 15mer peptide pools spanning the entire CSP and AMA1 antigens, and 9-10mer peptide epitope mixtures that included previously identified and/or predicted human leukocyte antigen (HLA) class 1-restricted epitopes from same two antigens. For CSP, 26 % of subjects responded to at least one of the nine 15mer peptide pools whilst 17 % responded to at least one of the five 9-10mer HLA-restricted epitope mixtures. For AMA1, 63 % of subjects responded to at least one of the 12 AMA1 15mer peptide pools and 51 % responded to at least one of the six 9-10mer HLA-restricted epitope mixtures. Following analysis of data from the two sets of peptide pools, along with bioinformatics predictions of class I-restricted epitopes and the HLA supertypes expressed by a subset of study subjects, peptide pools that may contain epitopes recognized by multiple HLA supertypes were identified. Collectively, these results suggest that natural transmission elicits ELISpot IFN-γ activities to class 1-restricted epitopes that are largely HLA-promiscuous. These

  12. Metal photonics and plasmonics for energy generation

    Science.gov (United States)

    Nagpal, Prashant

    Energy generation from renewable sources and conservation of energy are important goals for reducing our carbon footprint on the environment. Important sources of renewable energy like sun and geothermal energy are difficult to harness because of their energetically broad radiation. Most of our current energy requirements are met through consumption of fossil fuels, and more than 60% of this energy is released to the environment as "waste heat". Thus, converting heat from sun, or inefficient furnaces and automobiles can provide an important source of energy generation. In the present work, I describe design, fabrication, and characterization two and three dimensional patterned metals. These nanofabricated structures can be used as selective emitters to tailor the glow of hot objects. The tailored radiation can then be converted efficiently into electricity using an infrared photocell. This thermophotovoltaic conversion can be very efficient, and useful for converting heat-to-electricity from a wide variety of sources.

  13. Preliminary analysis of the PreFlexMS molten salt once-through steam generator dynamics and control strategy

    Science.gov (United States)

    Trabucchi, Stefano; Casella, Francesco; Maioli, Tommaso; Elsido, Cristina; Franzini, Davide; Ramond, Mathieu

    2017-06-01

    Concentrated Solar Power plants (CSP) coupled with thermal storage have the potential to guarantee both flexible and continuous energy production, thus being competitive with conventional fossil fuel and hydro power plants, in terms of dispatchability and provision of ancillary services. Hence, the plant equipment and control design have to be focused on flexible operation on one hand, and on plant safety concerning the molten salt freezing on the other hand. The PreFlexMS European project aims to introduce a molten salt Once-Through Steam Generator (OTSG) within a Rankine cycle based power unit, a technology that has greater flexibility potential if compared to steam drum boilers, currently used in CSP plants. The dynamic modelling and simulation from the early design stages is, thus, of paramount importance, to assess the plant dynamic behavior and controllability, and to predict the achievable closed-loop dynamic performance, potentially saving money and time during the detailed design, construction and commissioning phases. The present paper reports the main results of the analysis carried out during the first part of the project, regarding the system analysis and control design. In particular, two different control systems have been studied and tested with the plant dynamic model: a decentralized control strategy based on PI controllers and a Linear Model Predictive Control (LMPC).

  14. Concentrating Solar Power and Water Issues in the U.S. Southwest

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Nathan [Western States Water Council, Murray, UT (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tovar-Hastings, Angelica [National Renewable Energy Lab. (NREL), Golden, CO (United States); Komor, Paul [Univ. of Colorado, Boulder, CO (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Mehta, Shweta [Stanford Univ., CA (United States)

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  15. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  16. Multi-Generation Concentrating Solar-Hydrogen Power System for Sustainable Rural Development

    Energy Technology Data Exchange (ETDEWEB)

    Krothapalli, A.; Greska, B.

    2007-07-01

    This paper describes an energy system that is designed to meet the demands of rural populations that currently have no access to grid-connected electricity. Besides electricity, it is well recognized that rural populations need at least a centralized refrigeration system for storage of medicines and other emergency supplies, as well as safe drinking water. Here we propose a district system that will employ a multi-generation concentrated solar power (CSP) system that will generate electricity and supply the heat needed for both absorption refrigeration and membrane distillation (MD) water purification. The electricity will be used to generate hydrogen through highly efficient water electrolysis and individual households can use the hydrogen for generating electricity, via affordable proton exchange membrane (PEM) fuel cells, and as a fuel for cooking. The multi-generation system is being developed such that its components will be easy to manufacture and maintain. As a result, these components will be less efficient than their typical counterparts but their low cost-to-efficiency ratio will allow for us to meet our installation cost goal of $1/Watt for the entire system. The objective of this paper is to introduce the system concept and discuss the system components that are currently under development. (auth)

  17. Effects of distributing wind energy generation over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    Using data from 60 meteorological stations distributed all over Europe in conjunction with the National Grid Model (NGM) from the Rutherford Appleton Laboratory, the effects of the large-scale distribution of wind energy generation are studied. In some regions of Europe, wind energy already covers a significant proportion of the electricity demand. But the intermittence of the wind resource is always a limiting factor when penetration levels are high. Studies for single countries have shown that distributing the generation over a large area reduces the variability of the output and hence makes wind energy more appealing to utilities, since the stability requirement of the network are easier to fulfil. The data are analysed in terms of absolute highs and lows, temporal and spatial correlations. To assess the financial benefits, the NGM is used to evaluate the match of electricity demand and generation as well as the possibel savings of fossil fuel in an electricity grid incorporating various capacities of wind energy generation. To assess the value of wind energy on a trans-national scale, the European plant mix is modelled, and the NGM is used to simulate the scheduling of these plants in the presence of different penetrations of wind energy. (au) EU-JOULE-3. 11 refs.

  18. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Science.gov (United States)

    Konkel, R Steven

    2013-01-01

    In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in

  19. Recent advances in C(sp3–H bond functionalization via metal–carbene insertions

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2016-04-01

    Full Text Available The recent development of intermolecular C–H insertion in the application of C(sp3–H bond functionalizations, especially for light alkanes, is reviewed. The challenging problem of regioselectivity in C–H bond insertions has been tackled by the use of sterically bulky metal catalysts, such as metal porphyrins and silver(I complexes. In some cases, high regioselectivity and enantioselectivity have been achieved in the C–H bond insertion of small alkanes. This review highlights the most recent accomplishments in this field.

  20. Achieving stringent climate targets. An analysis of the role of transport and variable renewable energies using energy-economy-climate models

    Energy Technology Data Exchange (ETDEWEB)

    Pietzcker, Robert Carl

    2014-07-01

    technologies photovoltaics (PV) and concentrating solar power (CSP) in REMIND confirms the dominant role of these variable renewable energies for the decarbonization of the power sector. Recent cost reductions have brought PV to cost-competitiveness in regions with high midday electricity demand and high solar irradiance. The representation of system integration costs in REMIND is found to have significant impact on the competition between PV and CSP in the model: the low integration requirements of CSP equipped with thermal storage and hydrogen co-firing make CSP competitive at high shares of variable renewable energies, which leads to substantial deployment of both PV and CSP in low stabilization scenarios. A cross-model study of transport sector decarbonization confirms the earlier finding that the transport sector is not very reactive to intermediate carbon price levels: Until 2050, transport decarbonization lags 10-30 years behind the decarbonization of other sectors, and liquid fuels dominate the transport sector. In the long term, however, transportation does not seem to be an insurmountable barrier to stringent climate targets: As the price signals on CO{sub 2} increase further, transport emissions can be reduced substantially - if either hydrogen fuel cells or electromobility open a route to low-carbon energy carriers, or second generation biofuels (possibly in combination with CCS) allow the use of liquid-based transport modes with low emissions. The last study takes up the fundamental question of this thesis and analyses the trade-off between the stringency of a climate target and the resulting techno-economic requirements and costs. We find that transforming the global energy-economy system to keep a two-thirds likelihood of limiting global warming to below 2 C is achievable at moderate economic implications. This result is contingent on the near-term implementation of stringent global climate policies and full availability of several technologies that are still in

  1. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  2. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  3. Global renewable energy-based electricity generation and smart grid system for energy security.

    Science.gov (United States)

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  4. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Directory of Open Access Journals (Sweden)

    M. A. Islam

    2014-01-01

    Full Text Available Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  5. Benefits of production extension and shifting with thermal storage for a 1MW CSP-ORC plant in Morocco

    Science.gov (United States)

    Bennouna, El Ghali; Mimet, Abdelaziz; Frej, Hicham

    2016-05-01

    The importance of thermal storage for commercial CSP (concentrated Solar Power) plants has now become obvious, this regardless of the solar technology used and the power cycle. The availability of a storage system to a plant operator brings a lot of possibilities for production management, cash flow optimization and grid stabilizing. In particular, and depending on plant location and local grid strategy, thermal storage can contribute, when wisely used, to control production and adapt it to the demand and / or power unbalances and varying prices. Storage systems design, sizing and configuration are proper to each power plant, hence systems that are now widely installed within large commercial solar plants are not necessarily suited for small scale decentralized production, and will not have the same effects. In this paper the benefits of thermal storage are studied for a 1MWe CSP plant with an ORC (Organic Rankine Cycle), this plant has many specific features which call for a detail analysis about the appropriate storage design and optimum operating strategies for decentralized solutions.

  6. Intelligent control of energy-saving power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyuan; Zhang, Guoqing; Guo, Zhizhong [Harbin Institute of Technology, Harbin (China). Dept. of Electrical Engineering

    2013-07-01

    Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind of city science and technology innovation, which has the characteristics of environmental protection and sustainable utilization. Making full use of vehicle impact speed control humps, we design a new kind of highway speed control humps combined with solar electric generation system integration. Developing green energy, energy saving and environment protection can be achieved.

  7. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  8. Regenesys utility scale energy storage. Overview report of combined energy storage and renewable generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The first part of the paper briefly discusses the advantages and disadvantages of various forms of renewable energy sources with respect to the United Kingdom. It discusses the intermittent nature of wind and solar power and the less intermittent nature of hydro power and energy from biomass. The need to store energy generated, particularly from the intermittent sources, is discussed with special reference to electric batteries and pumped storage. If the energy cannot be stored and delivered when required, then the commercial viability of the source will be adversely affected - the economics and how this fits with NETA are discussed briefly. The second part of the paper is an overview of some relevant literature discussing (a) how the problems of fluctuating supplies may be managed, (b) an analytical assessment of the contribution from wind farms, (c) how fluctuations in wind power can be smoothed using sodium-sulfur batteries, (d) how small generators can get together and reduce trading costs and imbalance exposure under NETA, (e) the benefits of large-scale energy storage to network management and embedded generation, (f) distribution networks, (g) embedded generation and network management issues and (h) costs and benefits of embedded generation. The work was carried out as part of the DTI New and Renewable Energy Programme managed by Future Energy Solutions.

  9. Regenesys utility scale energy storage. Overview report of combined energy storage and renewable generation

    International Nuclear Information System (INIS)

    2004-01-01

    The first part of the paper briefly discusses the advantages and disadvantages of various forms of renewable energy sources with respect to the United Kingdom. It discusses the intermittent nature of wind and solar power and the less intermittent nature of hydro power and energy from biomass. The need to store energy generated, particularly from the intermittent sources, is discussed with special reference to electric batteries and pumped storage. If the energy cannot be stored and delivered when required, then the commercial viability of the source will be adversely affected - the economics and how this fits with NETA are discussed briefly. The second part of the paper is an overview of some relevant literature discussing (a) how the problems of fluctuating supplies may be managed, (b) an analytical assessment of the contribution from wind farms, (c) how fluctuations in wind power can be smoothed using sodium-sulfur batteries, (d) how small generators can get together and reduce trading costs and imbalance exposure under NETA, (e) the benefits of large-scale energy storage to network management and embedded generation, (f) distribution networks, (g) embedded generation and network management issues and (h) costs and benefits of embedded generation. The work was carried out as part of the DTI New and Renewable Energy Programme managed by Future Energy Solutions

  10. Feasibility Study on HYSOL CSP

    DEFF Research Database (Denmark)

    Nielsen, Lars Henrik; Baldini, Mattia; Skytte, Klaus

    2016-01-01

    integrated HYSOL concept, therefore, becomes a fully dispatchable (offering firm power) and fully renewable energy source (RES) based power supply alternative, offering CO2-free electricity in regions with sufficient solar resources. The economic feasibility of HYSOL configurations is addressed in this paper....... The CO2 free HYSOL alternative is discussed relative to conventional reference firm power generation technologies. In particular the HYSOL performance relative to new power plants based on natural gas (NG) such as open cycle or combined cycle gas turbines (OCGT or CCGT) are in focus. The feasibility...

  11. Analysis and comparison between a concentrating solar and a photovoltaic power plant

    International Nuclear Information System (INIS)

    Desideri, Umberto; Campana, Pietro Elia

    2014-01-01

    Highlights: • The performance of CSP and PV plants were compared with similar assumptions. • The influence of the site on the performance of CSP and PV plants is determined. • CSP plants performance is always higher in locations where DNI is prevailing. • CSP levelized electricity costs are generally lower than those from PV plants. • PV plants may produce larger amounts of electricity where the DNI is not prevailing. - Abstract: Solar energy is a source, which can be exploited in two main ways to generate power: direct conversion into electric energy using photovoltaic panels and by means of a thermodynamic cycle. In both cases the amount of energy, which can be converted, is changing daily and seasonally, causing a discontinuous electricity production. In order to limit this drawback, concentrated solar power plants (CSP) and photovoltaic plants (PV) can be equipped with a storage system that can be configured not only for covering peak-loads but also for the base-load after the sunset or before the sunrise. In CSP plants it is the sun’s thermal energy to be stored, whereas in PV applications it is the electrical energy to be stored in batteries, although this is not economically and environmentally feasible in large-scale power plants. The main aim of this paper is to study the performance of concentrated solar power plants equipped with molten salts thermal storage to cover a base load of 3 MW el . In order to verify the possibility of storing effectively the thermal energy and to design a plant for base load operation, two locations were chosen for the study: Gela in southern Italy, and Luxor in Egypt. The electricity production of the CSP facilities has been analyzed and then compared with the electricity production of PV plants. Two different comparisons were done, one by sizing the PV plant to provide the same peak power and one using the same collectors surface. This paper has also highlighted some important issues in site selection and in

  12. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected

  13. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  15. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    Full Text Available Background . In 1984, the Alaska Department of Commerce and Economic Development (DCED issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW by January 2012. Method . This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1. (Alaska Department of Commerce and Economic Development, S. Konkel, 1984. It provides a foundation and baseline for understanding the development of this renewable energy source. Results . Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion . State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: a. changing environmental conditions in remote Alaska

  16. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  17. Embedded generation for industrial demand response in renewable energy markets

    International Nuclear Information System (INIS)

    Leanez, Frank J.; Drayton, Glenn

    2010-01-01

    Uncertainty in the electrical energy market is expected to increase with growth in the percentage of generation using renewable resources. Demand response can play a key role in giving stability to system operation. This paper discusses the embedded generation for industrial demand response in renewable energy markets. The methodology of the demand response is explained. It consists of long-term optimization and stochastic optimization. Wind energy, among all the renewable resources, is becoming increasingly popular. Volatility in the wind energy sector is high and this is explained using examples. Uncertainty in the wind market is shown using stochastic optimization. Alternative techniques for generation of wind energy were seen to be needed. Embedded generation techniques include co-generation (CHP) and pump storage among others. These techniques are analyzed and the results are presented. From these results, it is seen that investment in renewables is immediately required and that innovative generation technologies are also required over the long-term.

  18. Steam generation from solar energy

    International Nuclear Information System (INIS)

    Gozzi, M.

    2001-01-01

    The vapor for thermoelectric use is one of the most promoted methods for electric power generation from solar energy. The new plants are becoming more and more safe, and anyway in some cases the natural gas makes easy the production of electricity [it

  19. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    Science.gov (United States)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  20. Solar energy promises realized?

    International Nuclear Information System (INIS)

    Oudshoff, B.

    2010-01-01

    The US market for solar cells grew 36% in 2009. Thousands of new jobs were created, many millions are invested and new businesses see new opportunities. Optimism among investors, incentivising government policy and new technological developments all contribute to these positive developments. This article provides an update of the incentive measures and their effects and a brief overview of the three solar energy technologies: photovoltaic (PV), solar thermal and concentrated solar power (CSP) [nl

  1. Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol

    International Nuclear Information System (INIS)

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2008-01-01

    Renewable energy has been in the limelight ever since the price of crude petroleum oil increases to the unprecedented height of US$96 per barrel recently. This is due to the diminishing oil reserves in the world and political instabilities in some oil-exporting countries. The advantages of renewable energy compared to fossil fuels are enormous in terms of environment and availability. Biofuels like bioethanol and biodiesel are currently being produced from agricultural products such as sugarcane and rapeseed oil, respectively. Collectively, these biofuels from food sources are known as first-generation biofuels. Although first-generation biofuels have the potential to replace fossil fuels as the main source of energy supply, its production is surrounded by certain issues like tropical forests' destruction. Instead, second-generation bioethanol, which utilizes non-edible sources such as lignocellulose biomass to produce ethanol, has been shown to be more suitable as the source of renewable energy. However, there are challenges and obstacles such as cost, technology and environmental issues that need to be overcome. Hence, the introduction of energy policy is crucial in promoting and implementing second-generation bioethanol effectively and subsequently become a major source of renewable energy

  2. Chemical looping fluidized-bed concentrating solar power system and method

    Science.gov (United States)

    Ma, Zhiwen

    2017-07-11

    A concentrated solar power (CSP) plant comprises a receiver configured to contain a chemical substance for a chemical reaction and an array of heliostats. Each heliostat is configured to direct sunlight toward the receiver. The receiver is configured to transfer thermal energy from the sunlight to the chemical substance in a reduction reaction. The CSP plant further comprises a first storage container configured to store solid state particles produced by the reduction reaction and a heat exchanger configured to combine the solid state particles and gas through an oxidation reaction. The heat exchanger is configured to transfer heat produced in the oxidation reaction to a working fluid to heat the working fluid. The CSP plant further comprises a power turbine coupled to the heat exchanger, such that the heated working fluid turns the power turbine, and a generator coupled to and driven by the power turbine to generate electricity.

  3. Carbon Dioxide-Mediated C(sp3)-H Arylation of Amine Substrates.

    Science.gov (United States)

    Kapoor, Mohit; Liu, Daniel; Young, Michael C

    2018-05-25

    Elaborating amines via C-H functionalization has been an important area of research over the past decade but has generally relied on an added directing group or sterically hindered amine approach. Since free-amine-directed C(sp 3 )-H activation is still primarily limited to cyclization reactions and to improve the sustainability and reaction scope of amine-based C-H activation, we present a strategy using CO 2 in the form of dry ice that facilitates intermolecular C-H arylation. This methodology has been used to enable an operationally simple procedure whereby 1° and 2° aliphatic amines can be arylated selectively at their γ-C-H positions. In addition to potentially serving as a directing group, CO 2 has also been demonstrated to curtail the oxidation of sensitive amine substrates.

  4. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors.

    Science.gov (United States)

    Grahn, M; Azar, C; Williander, M I; Anderson, J E; Mueller, S A; Wallington, T J

    2009-05-01

    The regionalized Global Energy Transition (GET-R 6.0) model has been modified to include a detailed description of light-duty vehicle options and used to investigate the potential impact of carbon capture and storage (CCS) and concentrating solar power (CSP) on cost-effective fuel/vehicle technologies in a carbon-constrained world. Total CO2 emissions were constrained to achieve stabilization at 400-550 ppm, by 2100, at lowesttotal system cost The dominantfuel/vehicle technologies varied significantly depending on CO2 constraint future cost of vehicle technologies, and availability of CCS and CSP. For many cases, no one technology dominated on a global scale. CCS provides relatively inexpensive low-CO2 electricity and heatwhich prolongs the use of traditional ICEVs. CSP displaces fossil fuel derived electricity, prolongs the use of traditional ICEVs, and promotes electrification of passenger vehicles. In all cases considered, CCS and CSP availability had a major impact on the lowest cost fuel/vehicle technologies, and alternative fuels are needed in response to expected dwindling oil and natural gas supply potential by the end of the century.

  5. Comparison of the dielectric electroactive polymer generator energy harvesting cycles

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    The Dielectric ElectroActive Polymer (DEAP) generator energy harvesting cycles have been in the spotlight of the scientific interest for the past few years. Indeed, several articles have demonstrated thorough and comprehensive comparisons of the generator fundamental energy harvesting cycles......, namely Constant Charge (CC), Constant Voltage (CV) and Constant E-field (CE), based on averaged theoretical models. Yet, it has not been possible until present to validate the outcome of those comparisons via respective experimental results. In this paper, all three primary energy harvesting cycles...... are experimentally compared, based upon the coupling of a DEAP generator with a bidirectional non-isolated power electronic converter, by means of energy gain, energy harvesting efficiency and energy conversion efficiency....

  6. Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data

    International Nuclear Information System (INIS)

    Braun, Frauke G.; Hooper, Elizabeth; Wand, Robert; Zloczysti, Petra

    2011-01-01

    Improved understanding of the innovative pathways of renewable energy technologies is vital if we are to make the transition to a low carbon economy. This study presents new evidence on innovation and industry dynamics in concentrating solar power (CSP) technologies. Though CSP is undergoing a renaissance, existing innovation studies have explored innovative activity in solar technologies in general, ignoring the major differences between solar photovoltaic and CSP technologies. This study, based on patent data, examines the level and dynamics of innovative activity in CSP between 1978 and 2004. Our unique contribution, based on engineering expertise and detailed datawork, is a classification system mapping CSP technologies to the International Patent Classification (IPC) system. The innovation performance of CSP is found to be surprisingly weak compared to the patent boom in other green technologies. Performance was strong around 1980 before falling dramatically, and has only recently begun to show signs of recovery. Innovation and R and D are concentrated in high-tech countries; the US, Germany and Japan, which do not necessarily have high domestic CSP potential. Large CSP potential is, therefore, not a sufficient condition for innovation. Innovators must possess economic and scientific capabilities. - Research highlights: → We develop a new classification system which allows us to map innovation in CSP technologies to the International Patent Classification System. → Evidence of innovation patterns in concentrating solar power technologies is presented. → Innovation performance in CSP is surprisingly weak compared to patenting in other green technologies, despite its strong potential as a low carbon power generation technology.

  7. Synthesis of benzimidazoles by PIDA-promoted direct C(sp2)-H imidation of N-arylamidines.

    Science.gov (United States)

    Huang, Jinbo; He, Yimiao; Wang, Yong; Zhu, Qiang

    2012-10-29

    A metal-free synthesis of diversified benzimidazoles from N-arylamidines through a phenyliodine(III) diacetate (PIDA) promoted intramolecular direct C(sp(2))-H imidation has been developed. The reaction proceeds smoothly at 0 °C or ambient temperature to provide the desired products in good to excellent yields. The synthesis of 2-alkyl- or 2-alkyl-fused benzimidazoles, which are generally inaccessible by similar Pd- or Cu-catalyzed approaches, can also be achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  9. Solar hybrid power plants: Solar energy contribution in reaching full dispatchability and firmness

    Science.gov (United States)

    Servert, Jorge F.; López, Diego; Cerrajero, Eduardo; Rocha, Alberto R.; Pereira, Daniel; Gonzalez, Lucía

    2016-05-01

    Renewable energies for electricity generation have always been considered as a risk for the electricity system due to its lack of dispatchability and firmness. Renewable energies penetration is constrained to strong grids or else its production must be limited to ensure grid stability, which is kept by the usage of hydropower energy or fossil-fueled power plants. CSP technology has an opportunity to arise not only as a dispatchable and firm technology, but also as an alternative that improves grid stability. To achieve that objective, solar hybrid configurations are being developed, being the most representative three different solutions: SAPG, ISCC and HYSOL. A reference scenario in Kingdom of Saudi Arabia (KSA) has been defined to compare these solutions, which have been modelled, simulated and evaluated in terms of dispatchability and firmness using ratios defined by the authors. The results show that: a) SAPG obtains the highest firmness KPI values, but no operation constraints have been considered for the coal boiler and the solar energy contribution is limited to 1.7%, b) ISCC provides dispatchable and firm electricity production but its solar energy contribution is limited to a 6.4%, and c) HYSOL presents the higher solar energy contribution of all the technologies considered: 66.0% while providing dispatchable and firm generation in similar conditions as SAPG and ISCC.

  10. Distributed coordination of energy storage with distributed generators

    NARCIS (Netherlands)

    Yang, Tao; Wu, Di; Stoorvogel, Antonie Arij; Stoustrup, Jakob

    2016-01-01

    With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal DER coordination problem considering

  11. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics.

    Directory of Open Access Journals (Sweden)

    Kristian E Swearingen

    2016-04-01

    Full Text Available Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP, conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens.

  12. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  13. Nuclear energy in medium and long term energy generation of Turkey

    International Nuclear Information System (INIS)

    Sarici, L. E.; Yilmaz, S.; Guray, B. S.

    2001-01-01

    In this study; objectives and activities of Nuclear Power Plants Department and Turkish Electricity Generation and Transmission Corporation is briefly mentioned. A brief history of electricity generation, development of Turkish electrical energy sector and development of the installed capacity of country is presented. The history and future perspectives of AKZuyu Nuclear Power Plant Project is sharply outlined. In the light of the current situation in electricity generation and demand projections, importance of nuclear power among the other future electricity generation alternatives of Turkey is underlined

  14. On the Path to SunShot. Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    This report provides insights into photovoltaic (PV) and concentrating solar power (CSP) manufacturing in the context of the U.S. Department of Energy's SunShot Initiative. Although global PV price reductions and deployment have been strong recently, PV manufacturing faces challenges. Slowing rates of manufacturing cost reductions, combined with the relatively low price of incumbent electricity generating sources in most large global PV markets, may constrain profit opportunities for firms and poses a potential challenge to the sustainable operation and growth of the global PV manufacturing base. In the United States, manufacturers also face a factors-of-production cost disadvantage compared with competing nations. However, the United States is one of the world's most competitive and innovative countries as well as one of the best locations for PV manufacturing. In conjunction with strong projected PV demand in the United States and across the Americas, these advantages could increase the share of PV technologies produced by U.S. manufacturers as the importance of innovation-driven PV cost reductions increases. Compared with PV, CSP systems are much more complex and require a much larger minimum effective scale, resulting in much higher total CAPEX requirements for system construction, lengthier development cycles, and ultimately higher costs of energy produced. The global lack of consistent CSP project development creates challenges for companies that manufacture specialty CSP components, and the potential lack of a near-term U.S. market could hinder domestic CSP manufacturers. However, global and U.S. CSP deployment is expected to expand beyond 2020, and U.S. CSP manufacturers could benefit from U.S. innovation advantages similar to those associated with PV. Expansion of PV and CSP manufacturing also presents U.S. job-growth opportunities.

  15. Use of non-conventional energy sources for power generation

    International Nuclear Information System (INIS)

    Umapathaiah, R.; Sharma, N.D.

    1999-01-01

    India being a developing country, cannot afford to meet the power and energy demand only from conventional sources. Power generation can be augmented by using non-conventional energy sources. Sufficient importance must be given for recovery of energy from industrial/urban waste. Solar heating system must replace industrial and domestic sectors. Solar photovoltaic, biogas plant, biomass based gasified system must also be given sufficient place in energy sector. More thrust has to be given for generation of power by using sugar cane which is a perennial source

  16. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    2001-01-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO 2 on generation, and awareness of energy environmental concerns. (author)

  17. Axial Permanent Magnet Generator for Wearable Energy Harvesting

    DEFF Research Database (Denmark)

    Högberg, Stig; Sødahl, Jakob Wagner; Mijatovic, Nenad

    2016-01-01

    An increasing demand for battery-free electronics is evident by the rapid increase of wearable devices, and the design of wearable energy harvesters follows accordingly. An axial permanent magnet generator was designed to harvest energy from human body motion and supplying it to a wearable......W, respectively) with an iron yoke is subject to losses that exceed the realistic input power, and was therefore deemed infeasible. A generator without the iron yoke was concluded to perform well as a wearable energy harvester. An experimental investigation of a prototype revealed an output power of almost 1 m...

  18. Resonant wave energy harvester based on dielectric elastomer generator

    Science.gov (United States)

    Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco

    2018-03-01

    Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.

  19. Analysis of the energy portfolio for electricity generation

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.; Esquivel E, J.

    2016-09-01

    The planning of electricity generation systems considers several factors that must be taken into account in order to design systems that are economical, reliable and sustainable. For this purpose, the Financial Portfolio Theory is applicable to the energy portfolio or the diversification of electricity generation technologies, such as is the combined cycle, wind, thermoelectric and nuclear. This paper presents an application of the Portfolio Theory to the national energy system, based on the total generation costs for each technology, which allows determining the average variance portfolio and the respective share of each of the electricity generation technologies considered, obtaining a portfolio of electricity generation with the maximum possible return for the risk taken in the investments. This paper describes the basic aspects of the Portfolio Theory and its methodology, in which matrices are implemented for the solution of the resulting Lagrange system. (Author)

  20. Numerical study on design for wave energy generation of a floater for energy absorption

    International Nuclear Information System (INIS)

    Li, Kui Ming; Parthasarathy, Nanjundan; Choi, Yoon Hwan; Lee, Yeon Won

    2012-01-01

    In order to design a wave energy generating system of a floater type, a 6 DOF motion technique was applied to the three Dimensional CFD analysis on a floating body and the behavior was interpreted according to the nature of the incoming waves. Waves in a tank model were generated using a single floater comparing with that of a Pelamis wave energy converter. In this paper, we focus on four variables, namely the wave height, angular velocity, diameter and length of the floater. The process was carried out in three stages and it was found that there are energy absorption differences in different parameters of wave height, length and the diameter of a floater during simulation, thus leading for the necessity of an optimal design for wave energy generation

  1. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  2. A new type of hydrogen generator-HHEG (high-compressed hydrogen energy generator)

    International Nuclear Information System (INIS)

    Harada, H.; Tojima, K.; Takeda, M.; Nakazawa, T.

    2004-01-01

    'Full text:' We have developed a new type of hydrogen generator named HHEG (High-compressed Hydrogen Energy Generator). HHEG can produce 35 MPa high-compressed hydrogen for fuel cell vehicle without any mechanical compressor. HHEG is a kind of PEM(proton exchange membrane)electrolysis. It was well known that compressed hydrogen could be generated by water electrolysis. However, the conventional electrolysis could not generate 35 MPa or higher pressure that is required for fuel cell vehicle, because electrolysis cell stack is destroyed in such high pressure. In HHEG, the cell stack is put in high-pressure vessel and the pressure difference of oxygen and hydrogen that is generated by the cell stack is always kept at nearly zero by an automatic compensator invented by Mitsubishi Corporation. The cell stack of HHEG is not so special one, but it is not broken under such high pressure, because the automatic compensator always offsets the force acting on the cell stack. Hydrogen for fuel cell vehicle must be produce by no emission energy such as solar and atomic power. These energies are available as electricity. So, water electrolysis is the only way of producing hydrogen fuel. Hydrogen fuel is also 35 MPa high-compressed hydrogen and will become 70 MPa in near future. But conventional mechanical compressor is not useful for such high pressure hydrogen fuel, because of the short lifetime and high power consumption. Construction of hydrogen station network is indispensable in order to come into wide use of fuel cell vehicles. For such network contraction, an on-site type hydrogen generator is required. HHEG can satisfy above these requirements. So we can conclude that HHEG is the only way of realizing the hydrogen economy. (author)

  3. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    This chapter introduces Energy System Analysis methodologies and tools, which can be used for identifying the best application of different Fuel Cell (FC) technologies to different regional or national energy systems. The main point is that the benefits of using FC technologies indeed depend...... on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... technologies are very often connected to the use of hydrogen, which has to be provided e.g. from electrolysers. Decentralised and distributed generation has the possibility of improving the overall energy efficiency and flexibility of energy systems. Therefore, energy system analysis tools and methodologies...

  4. Performance of cryogenic thermoelectric generators in LNG cold energy utilization

    International Nuclear Information System (INIS)

    Sun Wei; Hu Peng; Chen Zeshao; Jia Lei

    2005-01-01

    The cold energy of liquefied natural gas (LNG) is generally wasted when the LNG is extracted for utilization. This paper proposes cryogenic thermoelectric generators to recover this cold energy. The theoretical performance of the generator has been analyzed. An analytical method and numerical method of calculation of the optimum parameters of the generator have been demonstrated

  5. Solar energy for steam generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, Jr, A V; Orlando, A DeF; Magnoli, D

    1979-05-01

    Steam generation is a solar energy application that has not been frequently studied in Brazil, even though for example, about 10% of the national primary energy demand is utilized for processing heat generation in the range of 100 to 125/sup 0/C. On the other hand, substitution of automotive gasoline by ethanol, for instance, has received much greater attention even though primary energy demand for process heat generation in the range of 100 to 125/sup 0/C is of the same order of magnitude than for total automotive gasoline production. Generation of low-temperature steam is analyzed in this article using distributed systems of solar collectors. Main results of daily performance simulation of single flat-plate collectors and concentrating collectors are presented for 20/sup 0/S latitude, equinox, in clear days. Flat plate collectors considered are of the aluminum roll-bond absorber type, selective surface single or double glazing. Considering feedwater at 20/sup 0/C, saturated steam at 120/sup 0/C and an annual solar utilization factor of 50%, a total collector area of about 3,000 m/sup 2/ is necessary for the 10 ton/day plant, without energy storage. A fuel-oil back-up system is employed to complement the solar steam production, when necessary. Preliminary economic evaluation indicates that, although the case-study shows today a long payback period relative to subsidized fuel oil in the domestic market (over 20 years in the city of Rio de Janeiro), solar steam systems may be feasible in the medium term due to projected increase of fuel oil price in Brazil.

  6. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  7. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  8. Efficient, High-Power Mid-Infrared Laser for National Securityand Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Leily S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-02

    The LLNL fiber laser group developed a unique short-wave-infrared, high-pulse energy, highaverage- power fiber based laser. This unique laser source has been used in combination with a nonlinear frequency converter to generate wavelengths, useful for remote sensing and other applications in the mid-wave infrared (MWIR). Sources with high average power and high efficiency in this MWIR wavelength region are not yet available with the size, weight, and power requirements or energy efficiency necessary for future deployment. The LLNL developed Fiber Laser Pulsed Source (FiLPS) design was adapted to Erbium doped silica fibers for 1.55 μm pumping of Cadmium Silicon Phosphide (CSP). We have demonstrated, for the first time optical parametric amplification of 2.4 μm light via difference frequency generation using CSP with an Erbium doped fiber source. In addition, for efficiency comparison purposes, we also demonstrated direct optical parametric generation (OPG) as well as optical parametric oscillation (OPO).

  9. Experimental Research on the Characteristic of a Generator Used in Wave Energy Conversion

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Wu, Guoheng

    2018-01-01

    Due to the environmental issues like global warming and pollution, the exploration for ocean energy becomes important. Selecting the suitable generator for wave energy generation system is essential to improve the efficiency of power generation system. Thus, the object of the research is the generator of a self-adaptation inversion type wave energy absorption device. The major focus of this paper is the characteristics and the technique of the generator used in prototype. By setting up the generator performance test platform, the output voltage, efficiency and performance of the generator are tested to select the suitable generator for the wave energy generating system.

  10. Assessment of wind energy potential for electricity generation

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators .... can be connected to the national grid line to supplement the shortfall that arises during the dry ... systems are environmentally friendly. By generating ...

  11. Confab - Systematic generation of diverse low-energy conformers

    Directory of Open Access Journals (Sweden)

    O'Boyle Noel M

    2011-03-01

    Full Text Available Abstract Background Many computational chemistry analyses require the generation of conformers, either on-the-fly, or in advance. We present Confab, an open source command-line application for the systematic generation of low-energy conformers according to a diversity criterion. Results Confab generates conformations using the 'torsion driving approach' which involves iterating systematically through a set of allowed torsion angles for each rotatable bond. Energy is assessed using the MMFF94 forcefield. Diversity is measured using the heavy-atom root-mean-square deviation (RMSD relative to conformers already stored. We investigated the recovery of crystal structures for a dataset of 1000 ligands from the Protein Data Bank with fewer than 1 million conformations. Confab can recover 97% of the molecules to within 1.5 Å at a diversity level of 1.5 Å and an energy cutoff of 50 kcal/mol. Conclusions Confab is available from http://confab.googlecode.com.

  12. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  13. Co-provision in sustainable energy systems: the case of micro-generation

    International Nuclear Information System (INIS)

    Watson, Jim

    2004-01-01

    Electricity generation by individual households (known as micro-generation) is attracting an increasing amount of interest within government, industry and the research community. This paper focuses on the potential for micro-generation to contribute to a more active role for household energy consumers in the development and operation of the energy system. The paper applies the concept of energy service co-provision to aid an understanding of this more active role. It considers a number of alternative models for micro-generation investment that imply different kinds of co-provision by consumers and energy companies. The analysis focuses in particular on the economics of these models in the UK, the associated barriers to micro-generation investment, and the scope for overcoming these barriers through changes in fiscal rules. Having conducted this economic analysis, the paper concludes with a brief discussion of the wider implications of these models for consumer behaviour. In particular, it considers the impact of IT and control systems that might be employed to facilitate energy service co-provision that includes micro-generation

  14. Role of Energy Storage with Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  15. Behaviours, transmissions, generations: why is energy efficiency not enough?

    Energy Technology Data Exchange (ETDEWEB)

    Garabuau-Moussaoui, Isabelle (Electricite de France, Research and Development (France))

    2009-07-01

    Energy use is nowadays a very important question, in the context of global warming and expensive prices of energy. 'Energy conservation' is a paradox: environmental awareness increases, but also energy demand. Sociological knowledge concerning energy uses and energy savings remains important to understand the possible evolutions of practices and values and thus the possible future energy policies. Can the 'consumer society' become a 'less energy-intensive' society? This paper proposes to innovate with a 'new' way to analyse behaviours and to help policy makers to break the walls of 'the behavioural complexity'. We argue that energy efficiency, energy-using products and activities are socially embedded. More specifically, they depend on the 'social age' of people (children, teenagers, young adults, parents, old age people) and on their generation (events, experiences that people did live). The demonstration is based on the analysis of several qualitative studies carried out in France, showing that the generational and social ages analysis could be very efficient and innovative to understand: How are information, policies and energy-efficient technologies understood and embodied by people according to their age and their 'life story'? What kind of 'energy-related material culture' have people, and how does it evolve during the life? In a context of increasing energy demand, is it possible to change the energy-intensive 'socio-technical' mainstream towards a more sustainable way of life? What are the best moments during life for a behavioural change towards a less energy intensive way of life? Can we count on the new generation, to be more aware and less 'energy-intensive'?

  16. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    OpenAIRE

    Giacomo Canciello; Alberto Cavallo; Beniamino Guida

    2017-01-01

    A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like) are normally...

  17. Health evaluation of energy-generating sources

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The American Medical Association's House of Delegates, at its December 1976 Clinical Convention, requested that an evaluation be made of the health hazards of nuclear, fossil, and alternative energy-generating sources, for employees of energy-producing facilities as well as for the general population. This report is a summary evaluation of such hazards prepared in response to that request. This report, which was adopted by the House of Delegates on June 21, 1978, appears here in a revised and corrected version

  18. Grid parity. Holy Grail or hype? Photovoltaic solar electricity on its way to competitiveness

    International Nuclear Information System (INIS)

    Sinke, W.C.

    2009-05-01

    Solar energy has a huge global and European potential for sustainable generation of electricity, heat and fuels. Photovoltaic solar energy conversion (PV) and concentrating solar power (CSP) are the two options for electricity generation. In the longer term they may also be used to generate sustainable fuel, especially hydrogen, if that would turn out to be useful in the total energy mix. Because of the different nature of the PV and CSP conversion processes and the related distinctive features, they can be considered largely complementary Clearly, the combination of the two absolutely makes a winning team and may form (or even has to form) the basis of our future sustainable energy system. Grid parity is a rather simplified indicator of the competitiveness of PV. It is nevertheless very useful since it assumes the viewpoint of a potential investor in a PV system and has thus helped to define potential markets. Moreover the concept does roughly illustrate how long it takes PV to reach competitiveness in different segments of the electricity market. It may not be the Holy Grail but it is certainly no hype either. When used with care it is one key to the success of PV.

  19. An infrared-driven flexible pyroelectric generator for non-contact energy harvester

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-01

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm-2 near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat

  20. An innovative simulation tool for waste to energy generation opportunities

    Directory of Open Access Journals (Sweden)

    Bilal Abderezzak

    2017-03-01

    Full Text Available The new world energy policies encourage the use of renewable energy sources with clean technologies, and abandon progressively the fossil fuel dependence. Another energy generation trend called commonly the “Waste-to-Energy” solution, uses organic waste as a response for two major problems: energy generation and waste management. Thanks to the anaerobic digestion, the organic waste can provide a biogas composed essentially from Carbone dioxide (CO2 and Methane (CH4. This work aims essentially to help students, researchers and even decision makers to consider the importance of biogas generation. The proposed tool is the last version of our previous tool which is enhanced and completed. It presents the potential to produce biogas of any shortlisted kind of waste, including also some energy valorization ways. A technical economical data are introduced for eventual feasibility studies.

  1. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  2. An assessment for technical, economic, and environmental challenges facing renewable energy strategy in Egypt

    International Nuclear Information System (INIS)

    Abd El Aziz Mohi El Din, Ehab Mohamed Farouk

    2011-01-01

    Securing energy demand for next generations is one of the most challenges aspects facing any sustained development plans, due to the growing electric energy demand and Egypt as a country of limited fossil fuel resources has to diversify its energy portfolio by utilization of its renewable energy resources, mainly wind due to its economic potential and solar as proved by Egypt's wind and solar atlases. In the year 2009/2010, the total installed capacity in Egypt was 24726 MW with electricity generation 139,000 GWh, of which 89 % was delivered by thermal plants and about 10% from Hydro power with total installed 2800 MW and electricity generated is about 12863 GWh and 1% from Wind energy with total installed 550 MW and electricity generated 1542 GWh. In the solar energy field, the first solar thermal power plant of 140 MW with a solar share of 20 MW using parabolic trough technology was started the initial work since the 1 st of July with estimated total energy generated of 852GWh/year. Recently, Egypt has adopted an ambitious plan to cover 20% of the generated electricity by renewable energy by 2020, including a 12% contribution from wind energy, translating more than 7200 MW grid-connected wind farms. Such plan gives a room enough to the private investment to play the major role in realizing this goal. The plan includes also a 100 MW Solar thermal energy CSP with parabolic trough technology in Kom Ombo city, and also two PV plants in Hurgada and Kom Ombo with a total installed capacity 20 MW each. Due to the high investment cost of solar energy technologies, still limited in spread all over the world on the other hand wind energy has an economic potential and becomes a commercial technology but the future potential for solar energy due to the limited land for wind energy. Current study will evaluate the Egyptian strategy for renewable energy up to 2020 and find how much the planned projects from the Egyptian government will fulfill its target, the economic study

  3. Analysis of Solar Energy Generation Capacity Using Hesitant Fuzzy Cognitive Maps

    Directory of Open Access Journals (Sweden)

    Veysel Coban

    2017-01-01

    Full Text Available Solar energy is an important and reliable source of energy. Better understanding the concepts and relationships of the factors that affect solar energy generation capacity can enhance the usage of solar energy. This understanding can lead investors and governors in their solar power investments. However, solar power generation process is complicated, and the relations among the factors are vague and hesitant. In this paper, a hesitant fuzzy cognitive map for solar energy generation is developed and used for modeling and analyzing the ambiguous relations. The concepts and the relationships among them are defined by using expertsr opinions. Different scenarios are formed and evaluated with the proposed model.

  4. Policy approaches to renewable energy investment in the Mediterranean region

    Science.gov (United States)

    Patt, A.; Komendantova, N.; Battaglini, A.; Lilliestam, J.; Williges, K.

    2009-04-01

    Europe's climate policy objective of 20% renewable energy by 2020, and the call by the IPCC to reduce greenhouse gas emissions by 80% by 2050, pose major challenges for the European Union. Several policy options are available to move towards these objectives. In this paper, we will address the most critical policy and governance issues associated with one particular approach to scaling up renewable energy resources: reliance on large-scale energy generation facilities outside the European continent, such as onshore and offshore wind farms and concentrating solar power (CSP) facilities in the Mediterranean region. Several feasibility studies completed over the past three years (German Aerospace Center 2006; German Aerospace Center 2005; Czisch, Elektrotechnik 2005, p. 488; Lorenz, Pinner, Seitz, McKinsey Quarterly 2008, p.10; German Aerospace Center 2005; Knies 2008, The Club of Rome; Khosla, Breaking the Climate Deadlock Briefing Papers, 2008, p.19) have convincingly demonstrated that large-scale wind and CSP projects ought to be very attractive for a number of reasons, including cost, reliability of power supply, and technological maturity. According to these studies it would be technically possible for Europe to rely on large-scale wind and CSP for the majority of its power needs by 2050—indeed enough to completely replace its reliance on fossil fuels for power generation—at competitive cost over its current, carbon intensive system. While it has been shown to be technically feasible to develop renewable resources in North Africa to account for a large share of Europe's energy needs, doing so would require sustained double digit rates of growth in generating and long-distance transmission capacity, and would potentially require a very different high voltage grid architecture within Europe. Doing so at a large scale could require enormous up-front investments in technical capacity, financial instruments and human resources. What are the policy instruments best

  5. Multi-objective generation scheduling with hybrid energy resources

    Science.gov (United States)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  6. Claw-pole Synchronous Generator for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    PAVEL Valentina

    2013-05-01

    Full Text Available This paper presents a claw-poles generator for compressed air energy storage systems. It is presented the structure of such a system used for compensating of the intermittency of a small wind energy system. For equipping of this system it is chosen the permanent magnet claw pole synchronous generator obtained by using ring NdFeB permanentmagnets instead of excitation coil. In such a way the complexity of the scheme is reduced and the generator become maintenance free. The new magnetic flux density in the air-gap is calculated by magneticreluctance method and by FEM method and the results are compared with measured values in the old and new generator.

  7. Photosynthetic Energy Storage for the Built Environment: Modeling Energy Generation and Storage for Net-Zero Analysis

    Science.gov (United States)

    Lichter-Marck, Eli Morris

    There is a growing need to address the energy demand of the building sector with non-polluting, renewable energy sources. The Net Zero Energy Building (NZEB) mandate seeks to reduce the impact of building sector energy consumption by encouraging on-site energy generation as a way to offset building loads. However, current approaches to designing on-site generation fail to adequately match the fluctuating load schedules of the built environment. As a result, buildings produce highly variable and often-unpredictable energy import/export patterns that create stress on energy grids and increase building dependence on primary energy resources. This research investigates the potential of integrating emerging photo-electrochemical (PEC) technologies into on-site generation systems as a way to enable buildings to take a more active role in collecting, storing and deploying energy resources according to their own demand schedules. These artificially photosynthetic systems have the potential to significantly reduce variability in hour-to-hour and day-to-day building loads by introducing high-capacity solar-hydrogen into the built environment context. The Building Integrated Artificial Photosynthesis (BIAP) simulation framework presented here tests the impact of hydrogen based energy storage on NZEB performance metrics with the goal of developing a methodology that makes on-site energy generation more effective at alleviating excessive energy consumption in the building sector. In addition, as a design performance framework, the BIAP framework helps guide how material selection and scale up of device design might tie photo-electrochemical devices into parallel building systems to take full advantage of the potential outputs of photosynthetic building systems.

  8. VO2 thermochromic smart window for energy savings and generation

    Science.gov (United States)

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  9. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  10. De-risking concentrated solar power in emerging markets: The role of policies and international finance institutions

    International Nuclear Information System (INIS)

    Frisari, Gianleo; Stadelmann, Martin

    2015-01-01

    Concentrated solar power (CSP) is a promising technology for low-carbon energy systems, as combined with thermal storage it can store solar energy as heat, and deliver power more flexibly and when most needed by the grid. However, its high cost prevents its rapid deployment and affects its affordability in emerging economies. International financial institutions (IFIs) have emerged as key players to enable CSP in emerging economies, especially when cooperating with national policymakers. Through the analysis of two CSP plants in India and Morocco where IFIs provided the lion's share of finance, this paper aims to assess the effectiveness of their support and estimate the impact of IFIs financing on electricity production costs and mobilization of private investments. The two case studies show that public financial institutions can play a leading role in reducing the cost of CSP support on public budgets by providing concessional loans in countries where public and/or private finance would be too expensive, or extending maturities where commercial investors are present but poorly suited for project finance. Finally, we show that, combined with competitive tariff setting mechanism (tenders and auctions), public financial support can also be a cost-effective tool to engage private investors in CSP. -- Highlights: •We analyze the financial model of two large-scale concentrated solar power (CSP) plants in two emerging markets (India and Morocco). •We focus on the role of policies and public finance in reducing investment risks and generation costs. •Development banks' concessional loans can reduce the weight of CSP support on public budgets. •Even when non-concessional, development banks' loans can reduce investment costs by extending debt maturities. •Competitive tariff setting mechanisms can ensure cost-effectiveness of public financial support

  11. Virtual Generation (Energy Efficiency) The Cheapest Source For Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hasnie, Sohail

    2010-09-15

    Energy efficiency is the cheapest source of energy that has escaped the minds of the politicians in the developing countries. This paper argues for large scale utility led end use efficiency programs in a new paradigm, where 1 million efficient light bulbs is synonymous to a 50 MW power station that costs only 2% of the traditional fossil fuel power station and zero maintenance. Bulk procurement, setting up new standards and generation of certified emissions reduction is part of this strategy. It discusses implementation of a $20 million pilot in the Philippines supported by the Asian Development Bank.

  12. Implementation of a solar thermal electricity pilot plant (Concentrated Tower) of 1MW and introduction of a bus fleet of plug-in hybrids on the Ilha do Fundao, Rio de Janeiro, Brazil; Implementacao de uma planta piloto de heliotermia (Torre de Concentracao) de 1MW e introducao de uma frota de onibus hibridos plug-in na Ilha do Fundao

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Bruno Soares Moreira Cesar; Malagueta, Diego Cunha [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PPE/COPPE/UFRJ), RJ (Brazil). Programa de Planejamento Energetico

    2010-07-01

    The aim of this paper is to simulate a solar thermal electricity pilot plant at the Campus of the Federal University of Rio de Janeiro (UFRJ), at Fundao Island, which would generate part of the electricity demanded by the Technology Center (CT) of the UFRJ. Based on the electricity demand from UFRJ and the electric prices paid by the institution, this study proposes the construction of a 1MW Concentrated Solar Power (CSP) pilot plant and analyses the economical, energy and environmental viability of implementation of this plant, operating from 2015 to 2045. This CSP plant would cover a field of 0,01km{sup 2} and have a 30% of capacity factor. This study also evaluates the impact caused by the substitution of the current Campus internal bus fleet for plug-in hybrid electric buses. The current service is provided by Normandy, which operates 12 buses plus 1 backup. These new buses would be regularly partially recharged by the energy generated from CSP. All the simulations have been made with the RETScreen software, which simulated the operation of the CSP, the amount of electricity produced, the carbon emissions avoided, the acquisition and implementation of the plug-in hybrid electric bus fleet and the cash flow. Six scenarios generated were, namely A1, B1, C1 (all for lower costs for the CSP plants) and A2, B2, C2 (for higher costs). For a social discount rate around 8% and along 30 years, only the A1, C1 and C2 scenarios showed a non-negative cash flow. Also, the emissions avoided were around 222 tCO{sub 2}/yr (or 6.660 tCO{sub 2} over 30 years) in the A1 and A2 scenarios, and around 550 tCO{sub 2}/yr (or 16.512 tCO{sub 2} over 30 years) in all others scenarios. (author)

  13. Co-Generation and Renewables: Solutions for a Low-Carbon Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Co-generation and renewables: solutions for a low-carbon energy future shows that powerful synergies exist when co-generation and renewables work together. The report documents, for the first time, some of the little-known complementary aspects of the two technologies. It also re-emphasises the stand-alone benefits of each technology. Thus, decision makers can use the report as a 'one-stop shop' when they need credible information on co-generation, renewables and the possible synergies between the two. It also provides answers to policy makers' questions about the potential energy and environmental benefits of an increased policy commitment to both co-generation and renewables. Secure, reliable, affordable and clean energy supplies are fundamental to economic and social stability and development. Energy and environmental decision-makers are faced with major challenges that require action now in order to ensure a more sustainable future. More efficient use of, and cleaner primary energy sources can help to achieve this goal. Co-generation -- also known as combined heat and power (CHP) -- represents a proven, cost-effective and energy-efficient solution for delivering electricity and heat. Renewable sources provide clean and secure fuels for producing electricity and heat.

  14. Piezoelectric Energy Generation from Vehicle Traffic with Technoeconomic Analysis

    Directory of Open Access Journals (Sweden)

    Hiba Najini

    2017-01-01

    Full Text Available This paper presents a technical simulation based system to support the concept of generating energy from road traffic using piezoelectric materials. The simulation based system design replicates a real life system implementation. It investigates practicality and feasibility using a real-time simulation platform known as MATLAB-Simulink. The system design structure was proposed considering factors involved with the field of material sciences for piezoelectric generator modeling and field of power electronics for additional components in producing a realist outcome. It also ensures ease of vehicle performance, as this system utilizes energy source derived as kinetic energy released from vehicles into electrical power output, that is, obtained by harnessing kinetic energy due to strain of vehicles over asphalt road surface. Due to the real-time simulation platform, the system simulation predicts the effective global carbon footprint. In addition to evaluating technical viability, a technoeconomical business analysis provides a strategic perspective. By using the simulation based power generation results, an estimation of implementation cost and payback time in real life (for United Arab Emirates was derived, hence validating and predicting real-time economic outcome. This is followed by a comparative study with other sources of renewable energy based on levelized energy cost factor that justifies the performance of the proposed system over other renewable energy sources, in support of providing an economical solution on reducing global carbon footprint.

  15. The comparative study on the environmental impact for various energy generating systems

    International Nuclear Information System (INIS)

    Jung, J. T.; Ha, J. J.; Jung, H. S.

    2002-01-01

    The concern about environmental problem due to electricity generation is increasing. And the current debate about the environmental and socioeconomic effects of energy use is now turning towards the internalization of externalities imposed on society and the environment that are not accounted by the producers and consumers of energy. The result of internalization of externalities are to be used in the decision making of selecting available options. Therefore, the environmental impact analysis for various energy generating systems were made by using Life Cycle Assessment(LCA). According to the results, the environmental burden due to nuclear power generating systems is low comparing with other energy generating systems due to low usage of resources. The results will be used in the comparative study on the environmental impacts for various energy generating systems

  16. IgG2 antibodies against a clinical grade Plasmodium falciparum CSP vaccine antigen associate with protection against transgenic sporozoite challenge in mice.

    Directory of Open Access Journals (Sweden)

    Robert Schwenk

    Full Text Available The availability of a highly purified and well characterized circumsporozoite protein (CSP is essential to improve upon the partial success of recombinant CSP-based malaria vaccine candidates. Soluble, near full-length, Plasmodium falciparum CSP vaccine antigen (CS/D was produced in E. coli under bio-production conditions that comply with current Good Manufacturing Practices (cGMP. A mouse immunogenicity study was conducted using a stable oil-in-water emulsion (SE of CS/D in combination with the Toll-Like Receptor 4 (TLR4 agonist Glucopyranosyl Lipid A (GLA/SE, or one of two TLR7/8 agonists: R848 (un-conjugated or 3M-051 (covalently conjugated. Compared to Alum and SE, GLA/SE induced higher CS/D specific antibody response in Balb/c mice. Subclass analysis showed higher IgG2:IgG1 ratio of GLA/SE induced antibodies as compared to Alum and SE. TLR synergy was not observed when soluble R848 was mixed with GLA/SE. Antibody response of 3M051 formulations in Balb/c was similar to GLA/SE, except for the higher IgG2:IgG1 ratio and a trend towards higher T cell responses in 3M051 containing groups. However, no synergistic enhancement of antibody and T cell response was evident when 3M051 conjugate was mixed with GLA/SE. In C57Bl/6 mice, CS/D adjuvanted with 3M051/SE or GLA/SE induced higher CSP repeat specific titers compared to SE. While, 3M051 induced antibodies had high IgG2c:IgG1 ratio, GLA/SE promoted high levels of both IgG1 and IgG2c. GLA/SE also induced more potent T-cell responses compared to SE in two independent C57/BL6 vaccination studies, suggesting a balanced and productive T(H1/T(H2 response. GLA and 3M-051 similarly enhanced the protective efficacy of CS/D against challenge with a transgenic P. berghei parasite and most importantly, high levels of cytophilic IgG2 antibodies were associated with protection in this model. Our data indicated that the cGMP-grade, soluble CS/D antigen combined with the TLR4-containing adjuvant GLA/SE warrants

  17. Cooling design and evaluation for photovoltaic cells within constrained space in a CPV/CSP hybrid solar system

    International Nuclear Information System (INIS)

    Wang, Sheng; Shi, Junxiang; Chen, Hsiu-Hung; Schafer, Steven R.; Munir, Moiz; Stecker, Greg; Pan, Wei; Lee, Jong-Jan; Chen, Chung-Lung

    2017-01-01

    Highlights: • A practical cooling solution is proposed for a novel CPV/CSP hybrid solar system. • Both passive and active cooling techniques were systematically investigated. • Comprehensive experimental and numerical studies were conducted for optimal design. • Active cooling is in great need for a high waste heat flux of 21.8 W/cm 2 . • Passive cooling becomes attractive for a waste heat flux less than 13.0 W/cm 2 . - Abstract: A hybrid solar energy system has been designed by combining the advantages of concentrated solar power (CSP) technology and high performance concentrated photovoltaic (CPV) cells which outperforms either single technology. Thermal management is crucial to CPV cells in this hybrid solar system, as concentrated solar radiation onto the PV cells leads to higher heat flux. If the heat is not dissipated effectively, it can cause obvious temperature rise and efficiency reduction in the cell. In addition, the constrained space available for PV cell cooling in such hybrid solar systems presents more challenges. In this study both passive cooling and active cooling techniques were systematically investigated in both numerical and experimental ways. For the passive cooling method, two different designs from off-the-shelf heat pipes with radial fins or annular fins were proposed and studied under various heat rejection requirements. Results shows that heat pipes with radial fins exhibited narrow capability of dumping the heat, while heat pipes with annular fins presented better performances under the same conditions. Numerical optimal designs of annular fin numbers and fin gaps were then carried out and experimentally validated, indicating a capability of dumping moderate waste heat (∼45 W). For active cooling technique, a comprehensive study of designing plate fin heatsinks were conducted corresponding to high Ingress Protection (IP) rated off-the-shelf fans. Results show that with a less than 2 W fan power consumption, this active

  18. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    Directory of Open Access Journals (Sweden)

    Giacomo Canciello

    2017-01-01

    Full Text Available A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like are normally used for the rectification of the generator voltage to be used to supply a high-voltage DC bus. The regulation is obtained by acting on a DC/DC converter that imposes the field voltage of the exciter. In this paper, the field voltage is fed to the generator windings by using a second-order sliding mode controller, resulting into a stable, robust (against disturbances action and a fast convergence to the desired reference. By using this strategy, an energy management strategy is proposed that dynamically changes the voltage set point, in order to intelligently transfer power between two voltage busses. Detailed simulation results are provided in order to show the effectiveness of the proposed energy management strategy in different scenarios.

  19. ''Social capitalism'' in renewable energy generation: China and California comparisons

    International Nuclear Information System (INIS)

    Clark, Woodrow W. II.; Li, Xing

    2010-01-01

    With a population of over 1.3 billion people, demand for renewable energy is expected to grow to a USD $12 billion market in the near term. Under Renewable Energy Law (REL) in February 2005 in the People's Republic of China (PRC) passed by the National Congress, renewable energy projects will be able to receive a range of financial incentives starting in 2006, which will more than double the PRC current renewable energy generation from 7% to 15% by 2020. Most of the increase will be in hydroelectric generated power. Nonetheless, the nation and especially the provinces are moving rapidly to develop a wide range of renewable energy generation including solar, wind, geothermal and run of the river. Because China practices ''social capitalism'' as expressed in it's recurrent Five Year National Plans since 1999, the national government and all the provinces have programs, unlike many western and industrialized nations, to ''plan'' and provide for infrastructures. This paper concerns only the energy infrastructure sector and renewable energy generation in particular. The planning process includes financial incentives and investments which are a major part of the Chinese law focused on ''encouraging foreign investment industries''. The key part of the law is to guarantee long-term power purchase agreements with state owned and controlled ''utilities''. In short, China may have gotten the economics of the energy sector correct in its concern for planning and finance. The paper develops these energy infrastructure ideas along with the legal and financial requirements as ''lessons'' learned from the USA and especially California. These lessons now apply to China and allow it to learn from the American mistakes. Empirical data will be drawn from work done in China that examine the renewable energy generation and infrastructures and hence allow the RPC and its Provinces to ''leap frog ''the mistakes of other developed nations. Further lessons will be learned from provinces and

  20. Correlation energy generating potentials for molecular hydrogen

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1985-01-01

    A variety of local correlation energy functionals are currently in use. All of them depend, to some extent, on modeling the correlation energy of a homogeneous electron fluid. Since atomic and molecular charge densities are neither uniform nor slowly varying, it is important to attempt to use known high accuracy wave functions to learn about correlation energy functionals appropriate to such systems. We have extended the definition of the correlation energy generating potentials V/sub c/ introduced by Ros. A charge density response to correlation has been allowed for by inclusion of an electron--nuclear component V/sup e/n/sub c/ in addition to the electron--electron component V/sup e/e/sub c/. Two different definitions of V/sup e/n/sub c/ are given. We present the first calculations of V/sub c/ for a molecular system: H 2 . The results show that V/sup e/n/sub c/, in either definition, is by no means negligible. Moreover, V/sup e/e/sub c/ and both forms of V/sup e/n/sub c/ show significant nonlocal dependence on the charge density. Calculations with ten different model correlation energy functionals show that none of them is particularly sensitive to the charge density. However, they are quite sensitive to the parametrization of the electron fluid correlation energy. The schemes which include self-interaction corrections (SIC) are found to be superior to those of Kohn--Sham type. The correlation energy generating potentials implied by the SIC type and empirical correlation energy functionals are found to correspond roughly to averages of one of the accurate potentials

  1. Vibration Energy Harvesting on Vehicle Suspension Using Rotary and Linear Electromagnetic Generator

    Directory of Open Access Journals (Sweden)

    Arif Indro Sultoni

    2013-04-01

    Full Text Available In this paper, we discuss comparation of vehicle vibration energy harvesting between rotary and linear electromagnetic generator. We construct the two model of energy harvester mechanism and then analyze both of energy absorbtion and vehicle comfortability. Furthermore, we analyze both of energy absorbtion and vehicle comfortability. Vehicle is modeled as quarter car. Rotarty generator harvests 2.5 x 10-4 Watt. The other hand, linear generator has viscous characteristic and capable to generates 90 Watts with 12 Volt power supply for 0.03 m amplitude of bumpy road input. Linear generator reduces oscillation with 1.2 sec settling time. It is more comfort than the angular which has 3 sec in settling time. With unnevenees road input, mean power of this generator is 64 Watt.

  2. PREFACE: International conference on Computer Simulation in Physics and beyond (CSP2015)

    Science.gov (United States)

    2016-02-01

    The International conference on Computer Simulations in Physics and beyond (CSP2015) was held from 6-10 September 2015 at the campus of the Moscow Institute for Electronics and Mathematics (MIEM), National Research University Higher School of Economics, Moscow. Computer simulations are in increasingly popular tool for scientific research, supplementing experimental and analytical research. The main goal of the conference is contributing to the development of methods and algorithms which take into account trends in hardware development, which may help with intensive research. The conference also allowed senior scientists and students to have the opportunity to speak each other and exchange ideas and views on the developments in the area of high-performance computing in science. We would like to take this opportunity to thank our sponsors: the Russian Foundation for Basic Research, Federal Agency of Scientific Organizations, and Higher School of Economics.

  3. Complementary Strategies for Directed C(sp3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer.

    Science.gov (United States)

    Chu, John C K; Rovis, Tomislav

    2018-01-02

    The functionalization of C(sp 3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp 3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  5. Urban energy generation: The added value of photovoltaics in social housing

    International Nuclear Information System (INIS)

    Bahaj, A.S.; James, P.A.B.

    2007-01-01

    Social housing offers an alternative for low-to-medium income families and keyworkers (teachers, nurses, and police). In the United Kingdom (UK), this fairly priced, rental accommodation is normally owned by housing associations. This paper explores urban energy generation (micro-generation) focussing on photovoltaics (PV) and how its generated electricity can be used to provide added value in terms of demand reduction and contribute to a reduction in fuel poverty. It presents the results associated from in-depth monitoring of nine low-energy social housing units equipped with PV systems commissioned in 2004 in the South of England, UK. We report on energy load profiles and relate these to occupier behaviour and any changes in consumption that occur. The results highlight the impact of micro-generation showing a close correlation between occupant behaviour and energy consumption. Increased energy awareness can lead to changes in the way energy is used, reducing overall consumption but 'education' must be sustained to ensure long-term energy reductions. The financial benefit of operating high demand electrical appliances at the peak of the solar day as opposed to in the evening when overall demand on the central grid is higher is highlighted. The paper also draws conclusions allied to the challenges that PV micro-generation technology presents in the social housing context. (author)

  6. New circuits high-voltage pulse generators with inductive-capacitive energy storage

    International Nuclear Information System (INIS)

    Gordeev, V.S.; Myskov, G.A.

    2001-01-01

    The paper describes new electric circuits of multi-cascade generators based on stepped lines. The distinction of the presented circuits consists in initial storage of energy in electric and magnetic fields simultaneously. The circuit of each generator,relations of impedances,values of initial current and charge voltages are selected in such a manner that the whole of initially stored energy is concentrated at the generator output as a result of transient wave processes. In ideal case the energy is transferred with 100% efficiency to the resistive load where a rectangular voltage pulse is formed, whose duration is equals to the double electrical length of the individual cascade. At the same time there is realized a several time increase of output voltage as compared to the charge voltage of the generator. The use of the circuits proposed makes it possible to ensure a several time increase (as compared to the selection of the number of cascades) of the generator energy storage, pulse current and output electric power

  7. Questionnaire Study for The Use of Solar Energy and Wind Energy for The Generation of Electricity in Kuwait

    International Nuclear Information System (INIS)

    Tarawneh, Sultan; Rireh, Mohmd; Al-Razzi, Met'eb

    2015-01-01

    This research aims to study the acceptance of real management of designing electrical generation plants that work using solar energy and wind energy, to explain the benefits for the decision makers of the use of the solar energy and wind energy, and to define the most important obstacles that hinder the use of solar energy in generating electricity in spite of fulfilling the environmental conditions as clean energy and renewing energy contribute to sustainability of natural resources. The descriptive methodology was used by going back to reference material including books, and scientific journals and periodicals as well as scientific researches to identify the real management and design of electrical plant generation using solar energy and wind energy. A questionnaire was distributed among the study sample that was composed of the engineers working in energy field and electrical generation plants, the general institute for environment, Kuwait Institute for Scientific Research, and Kuwait Society of Engineers. 203 responses were received from the study sample. Results of the study showed the presence of obstacles and special problems related to the use of solar energy that face the decision makers with regard to the ability for acquiring important advanced technology and the huge financial support and the partnership of the private sector and training of unskilled human resources. And it was declared that there is a huge focus and attention in generation electrical energy from fossil fuel because of its presence and sustainability in investment in this field and the ability to fulfill the needs of the local market from energy.(author)

  8. Development of water demand coefficients for power generation from renewable energy technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2017-01-01

    Highlights: • Water consumption and withdrawals coefficients for renewable power generation were developed. • Six renewable energy sources (biomass, nuclear, solar, wind, hydroelectricity, and geothermal) were studied. • Life cycle water footprints for 60 electricity generation pathways were considered. • Impact of cooling systems for some power generation pathways was assessed. - Abstract: Renewable energy technology-based power generation is considered to be environmentally friendly and to have a low life cycle greenhouse gas emissions footprint. However, the life cycle water footprint of renewable energy technology-based power generation needs to be assessed. The objective of this study is to develop life cycle water footprints for renewable energy technology-based power generation pathways. Water demand is evaluated through consumption and withdrawals coefficients developed in this study. Sixty renewable energy technology-based power generation pathways were developed for a comprehensive comparative assessment of water footprints. The pathways were based on the use of biomass, nuclear, solar, wind, hydroelectricity, and geothermal as the source of energy. During the complete life cycle, power generation from bio-oil extracted from wood chips, a biomass source, was found to have the highest water demand footprint and wind power the lowest. During the complete life cycle, the water demand coefficients for biomass-based power generation pathways range from 260 to 1289 l of water per kilowatt hour and for nuclear energy pathways from 0.48 to 179 l of water per kilowatt hour. The water demand for power generation from solar energy-based pathways ranges from 0.02 to 4.39 l of water per kilowatt hour, for geothermal pathways from 0.04 to 1.94 l of water per kilowatt hour, and for wind from 0.005 to 0.104 l of water per kilowatt hour. A sensitivity analysis was conducted with varying conversion efficiencies to evaluate the impact of power plant performance on

  9. A thermal storage capacity market for non dispatchable renewable energies

    Science.gov (United States)

    Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz

    2017-06-01

    Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.

  10. Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project

    Science.gov (United States)

    Karagiannakis, George; Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.; Tescari, Stefania; Singh, Abhishek; Roeb, Martin; Lange, Matthias; Marcher, Johnny; Jové, Aleix; Prieto, Cristina; Rattenbury, Michael; Chasiotis, Andreas

    2017-06-01

    The present work provides an overview of activities performed in the framework of the EU-funded collaborative project RESTRUCTURE, the main goal of which was to develop and validate a compact structured reactor/heat exchanger for thermochemical storage driven by 2-step high temperature redox metal oxide cycles. The starting point of development path included redox materials qualification via both theoretical and lab-scale experimental studies. Most favorable compositions were cobalt oxide/alumina composites. Preparation of small-scale structured bodies included various approaches, ranging from perforated pellets to more sophisticated honeycomb geometries, fabricated by extrusion and coating. Proof-of-concept of the proposed novel reactor/heat exchanger was successfully validated in small-scale structures and the next step included scaling up of redox honeycombs production. Significant challenges were identified for the case of extruded full-size bodies and the final qualified approach related to preparation of cordierite substrates coated with cobalt oxide. The successful experimental evaluation of the pilot reactor/heat exchanger system constructed motivated the preliminary techno-economic evaluation of the proposed novel thermochemical energy storage concept. Taking into account experimental results, available technologies and standard design aspects a model for a 70.5 MWe CSP plant was defined. Estimated LCOE costs were calculated to be in the range of reference values for Combined Cycle Power Plants operated by natural gas. One of main cost contributors was the storage system itself, partially due to relatively high cost of cobalt oxide. This highlighted the need to identify less costly and equally efficient to cobalt oxide redox materials.

  11. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India

    Directory of Open Access Journals (Sweden)

    Deepak Bishoyi

    2017-09-01

    Full Text Available Solar energy is a key renewable energy source and the most abundant energy source on the globe. Solar energy can be converted into electric energy by using two different processes: by means of photovoltaic (PV conversion and the thermodynamic cycles. Concentrated solar power (CSP is viewed as one of the most promising alternatives in the field of solar energy utilization. Lifetime and efficiency of PV system are very less compared to the CSP technology. A 100 MW parabolic trough solar thermal power plant with 6 h of thermal energy storage has been evaluated in terms of design and thermal performance, based on the System Advisor Model (SAM. A location receiving an annual DNI of 2248.17 kW h/m2 in Rajasthan is chosen for the technical feasibility of hypothetical CSP plant. The plant design consists of 194 solar collector loops with each loop comprising of 8 parabolic trough collectors. HITEC solar salt is chosen as an HTF due to its excellent thermodynamic properties. The designed plant can generate annual electricity of 285,288,352 kW h with the plant efficiency of 21%. The proposed design of PTC based solar thermal power plant and its performance analysis encourages further innovation and development of solar thermal power plants in India.

  12. ALGORITHM TO CHOOSE ENERGY GENERATION MULTIPLE ROLE STATION

    Directory of Open Access Journals (Sweden)

    Alexandru STĂNESCU

    2014-05-01

    Full Text Available This paper proposes an algorithm that is based on a complex analysis method that is used for choosing the configuration of a power station. The station generates electric energy and hydrogen, and serves a "green" highway. The elements that need to be considered are: energy efficiency, location, availability of primary energy sources in the area, investment cost, workforce, environmental impact, compatibility with existing systems, meantime between failure.

  13. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Duic, Neven; Østergaard, Poul Alberg

    2016-01-01

    scientific understanding on how we can design and implement a suitable and least-cost transformation into a sustainable energy future. The concept of Smart Energy Systems emphasizes the importance of being coherent and cross-sectoral when the best solutions are to be found and how this also calls......This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th Generation District Heating and presents a number of selected papers from the 1st International Conference on the topic. All of the papers elaborate on or otherwise contribute to the theoretical...... for the active inclusion of the heating and cooling sectors. The concept of 4th Generation District Heating emphasizes that district heating and cooling are both important elements but also technologies that have to be developed further into a 4th generation version to be able to fulfil their roles in future...

  14. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hashiba, Takashi [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO{sub 2} on generation, and awareness of energy environmental concerns. (author)

  15. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.; Atoyo, Jonathan; Carnie, Matthew J.; Baran, Derya; Schroeder, Bob C.

    2017-01-01

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  16. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.

    2017-01-29

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  17. Future trends in electrical energy generation economics in the United States

    Science.gov (United States)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  18. Life cycle assessment of a HYSOL concentrated solar power plant: Analyzing the effect of geographic location

    NARCIS (Netherlands)

    Corona, B.; Ruiz, Diego; San Miguel, Guillermo

    2016-01-01

    Concentrating Solar Power (CSP) technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting

  19. Exploring the potential uptake of distributed energy generation

    International Nuclear Information System (INIS)

    Gardner, John; Ashworth, Peta; Carr-Cornish, Simone

    2007-01-01

    Full text: Global warming has been identified as an energy problem (Klare 2007). With a predicted increase in fossil fuel use for many years to come (IEA 2004) there is a need to find a future energy path that will meet our basic requirements for energy but also help to mitigate climate change (CSIRO 2006). Currently there are a range of technological solutions available, with each representing a different value proposition. Distributed Energy (DE) is one such technological solution, which involves the widespread use of small local power generators, located close to the end user. Such generators can be powered by a range of low emission and/or renewable sources. Until now, cheap electricity, existing infrastructure and reluctance for change both at a political and individual level has meant there has been little prospect for DE to be considered in Australia, except in some remote communities. However, with the majority of Australians now rating climate change as an issue of strategic importance to Australia (Ashworth, Pisarski and Littleboy 2006), it can be inferred that Australia's tolerance for generating greenhouse gas emissions has reduced, and that potential support for DE is increasing. It is therefore important to understand what factors might influence the potential adoption of DE. As part of a research project called the Intelligent Grid, CSIRO's Energy Transformed Flagship is aiming to identify the conditions under which Distributed Energy might be effectively implemented in Australia. One component of this project involves social research, which aims to understand the drivers and barriers to the uptake of DE technology by the community. This paper presents findings from two large-scale surveys (one of householders and one of businesses), designed to assess beliefs and knowledge about environmental issues, and about traditional and renewable energy sources. The surveys also assess current energy use, and identify preferences regarding DE technology. The

  20. Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials

    OpenAIRE

    Gutiérrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez Aseguinolaza, Javier; Barreneche Güerisoli, Camila; Calvet, Nicolas; Py, Xavier; Fernández Renna, Ana Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-01-01

    Today, one of the biggest challenges our society must face is the satisfactory supply, dispatchability and management of the energy. Thermal Energy Storage (TES) has been identified as a breakthrough concept in industrial heat recovery applications and development of renewable technologies such as concentrated solar power (CSP) plants or compressed air energy storage (CAES). A wide variety of potential heat storage materials has been identified depending on the implemented TES method: sensibl...

  1. Biosolar energy generation and harvesting from biomolecule-copolymer hybrid systems

    Science.gov (United States)

    Chu, Bong-Chieh Benjamin

    Alternative energy sources have become an increasingly important topic as energy needs outpace supply. Furthermore, as the world moves into the digital age of portable electronics, highly efficient and lightweight energy sources will need to be developed. Current technology, such as lithium ion batteries, provide enough power to run portable electronics for hours or days, but can still allow for improvement in their power density (W/kg). Utilizing energy-transducing membrane proteins, which are by nature highly efficient, it is possible to engineer biological-based energy sources with energy densities far greater than any solid-state systems. Furthermore, solar powered membrane proteins have the added benefit of a virtually unlimited supply of energy. This work has developed protein-polymer hybrid films and nanoscale vesicles for a variety of applications from fuel-cell technology to biological-based photovoltaics. Bacteriorhodopsin (BR), a light-activated proton pump, and Cytochrome C Oxidase (COX), a protein involved in the electron transport chain in mitochondria, were reconstituted into biomimetic triblock copolymer membranes. Block copolymer membranes mimic the amphiphilic nature of a natural lipid bilayer but exhibit greater mechanical stability due to UV-polymerizable endgroups. In BR/COX functionalized nanovesicles, proton gradients generated by the light-activated proton pumping of BR are used to drive COX in reverse to generate electrons, providing a hybrid biologically-active polymer to convert solar energy to chemical energy, and finally to electrical energy. This work has found protein activity in planar membranes through the photoelectric current generation by BR and the proton pumping activity of BR-functionalized polymer membranes deposited onto proton exchange membranes, as well as the coupled functionality of BR and COX through current generation in cyclic voltammetry and direct current measurements. Current switching between light and dark

  2. Experimental power reactor dc generator energy storage study

    International Nuclear Information System (INIS)

    Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

    1978-01-01

    This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection

  3. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  4. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  5. Trends of world energy consumption and possibilities of environment protective power generation

    International Nuclear Information System (INIS)

    Frischengruber, K.

    1991-01-01

    The population of the world will duplicate within the next three to four decades. The primary energy consumption will increase accordingly. Considering the limited reach of our fossil energy resources and their negative impact on the global climate, alternative strategies for the power generation have to be developed. The contribution of the renewable energy sources will be important, but not sufficient, due to their high generation costs. The nuclear power, which already today participates essentially in the energy supply, will remain one of the most important options for environment protecting energy generation. Especially for the developing countries, which -in general- have currently a not covered energy demand, the build up of reasonable energy generation structures means enormous volumes of investments, which can only be financed with the assistance of the industrialized countries. Those, on the other hand, have to economize their energy consumption and have to undertake any effort in continuing with the development of clean, safe and competitive renewable resources. To provide increasing world population with sufficient energy and at the same time to reduce CO 2 emissions is one of the biggest challenges that mankind has ever faced. (Author)

  6. Thermal energy storage using chloride salts and their eutectics

    International Nuclear Information System (INIS)

    Myers, Philip D.; Goswami, D. Yogi

    2016-01-01

    Achieving the goals of the U.S. Department of Energy (DOE) Sunshot initiative requires (1) higher operating temperatures for concentrating solar power (CSP) plants to increase theoretical efficiency, and (2) effective thermal energy storage (TES) strategies to ensure dispatchability. Current inorganic salt-based TES systems in large-scale CSP plants generally employ molten nitrate salts for energy storage, but nitrate salts are limited in application to lower temperatures—generally, below 600 °C. These materials are sufficient for parabolic trough power plants, but they are inadequate for use at higher temperatures. At the higher operating temperatures achievable in solar power tower-type CSP plants, chloride salts are promising candidates for application as TES materials, owing to their thermal stability and generally lower cost compared to nitrate salts. In light of this, a recent study was conducted, which included a preliminary survey of chloride salts and binary eutectic systems that show promise as high temperature TES media. This study provided some basic information about the salts, including phase equilibria data and estimates of latent heat of fusion for some of the eutectics. Cost estimates were obtained through a review of bulk pricing for the pure salts among various vendors. This review paper updates that prior study, adding data for additional salt eutectic systems obtained from the literature. Where possible, data are obtained from the thermodynamic database software, FactSage. Radiative properties are presented, as well, since at higher temperatures, thermal radiation becomes a significant mode of heat transfer. Material compatibility for inorganic salts is another important consideration (e.g., with regard to piping and/or containment), so a summary of corrosion studies with various materials is also presented. Lastly, cost data for these systems are presented, allowing for meaningful comparison among these systems and other materials for TES

  7. Classification of methods for annual energy harvesting calculations of photovoltaic generators

    International Nuclear Information System (INIS)

    Rus-Casas, C.; Aguilar, J.D.; Rodrigo, P.; Almonacid, F.; Pérez-Higueras, P.J.

    2014-01-01

    Highlights: • The paper presents a novel classification of methods for annual energy harvesting calculation of grid-connected PV systems. • The methods are classified in direct and indirect methods. • Direct methods directly calculate the energy. Indirect methods calculate the energy from the power. • The classification can help the PV professionals in order to choose the most suitable method for each application. - Abstract: Estimating the energy provided by the generators of grid-connected photovoltaic systems is important in order to analyze their economic viability and supervise their operation. The energy harvesting calculation of a photovoltaic generator is not trivial; there are a lot of methods for this calculation. The aim of this paper is to develop a novel classification of methods for annual energy harvesting calculation of a generator of a grid-connected photovoltaic system. The methods are classified in two groups: (1) those that indirectly calculate the energy, i.e. they first calculate the power and from this, they calculate the energy, and (2) those that directly calculate the energy. Furthermore, the indirect methods are grouped in two categories: those that first calculate the I–V curve of the generator and from this, they calculate the power, and those that directly calculate the power. The study has shown that the existing methods differ in simplicity and accuracy, so that the proposed classification is useful in order to choose the most suitable method for each specific application

  8. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  9. Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa

    International Nuclear Information System (INIS)

    Pfenninger, Stefan; Keirstead, James

    2015-01-01

    Despite the increasing importance of variable renewable power generation, baseload, that is stable and predictable power generators, remain the backbone of many countries’ power systems. We here compare CSP (concentrating solar power) and nuclear power as baseload electricity providers for the case of South Africa, which is adding significant new generation capacity, has an abundant solar resource, but also one existing and additional planned nuclear power plants. Both of these technologies are considered baseload-capable with sufficient available fuel (sunlight or fissible material) to provide large amounts of nearly emissions-free electricity. We find that under a range of technological learning assumptions, CSP compares favorably against nuclear on costs in the period to 2030, and has lower investment and environmental risks. The results suggest that while nuclear power may be an important low-emissions power technology in regions with little sun, in the case of South Africa, CSP could be capable of providing a stable baseload supply at lower cost than nuclear power, and may have other non-cost benefits. - Highlights: • We compare nuclear and CSP (concentrating solar power) as baseload generators. • CSP could be competitive with nuclear by 2030 on providing baseload. • CSP plants producing above baseload when possible are more competitive. • On environmental and investment risks, CSP compares favorably. • Both options may have a role in different parts of the world

  10. A novel method for energy harvesting simulation based on scenario generation

    Science.gov (United States)

    Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min

    2018-06-01

    Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.

  11. San Jose, California: Evaluating Local Solar Energy Generation Potential (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "San Jose, California: Evaluating Local Solar Energy Generation Potential" explains how the City of San Jose used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  12. Energy expenditure in adolescents playing new generation computer games.

    Science.gov (United States)

    Graves, Lee; Stratton, Gareth; Ridgers, N D; Cable, N T

    2008-07-01

    To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Cross sectional comparison of four computer games. Setting Research laboratories. Six boys and five girls aged 13-15 years. Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Predicted energy expenditure, compared using repeated measures analysis of variance. Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kl/kg/min), tennis (202.5 (31.5) kl/kg/min), and boxing (198.1 (33.9) kl/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kl/kg/min) (Pgames. Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children.

  13. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  14. The viability of balancing wind generation with large scale energy storage

    International Nuclear Information System (INIS)

    Nyamdash, Batsaikhan; Denny, Eleanor; O'Malley, Mark

    2010-01-01

    This paper studies the impact of combining wind generation and dedicated large scale energy storage on the conventional thermal plant mix and the CO 2 emissions of a power system. Different strategies are proposed here in order to explore the best operational strategy for the wind and storage system in terms of its effect on the net load. Furthermore, the economic viability of combining wind and large scale storage is studied. The empirical application, using data for the Irish power system, shows that combined wind and storage reduces the participation of mid-merit plants and increases the participation of base-load plants. Moreover, storage negates some of the CO 2 emissions reduction of the wind generation. It was also found that the wind and storage output can significantly reduce the variability of the net load under certain operational strategies and the optimal strategy depends on the installed wind capacity. However, in the absence of any supporting mechanism none of the storage devices were economically viable when they were combined with the wind generation on the Irish power system. - Research Highlights: → Energy storage would displace the peaking and mid-merit plants generations by the base-load plants generations. Energy storage may negate the CO 2 emissions reduction that is due to the increased wind generations. →Energy storage reduces the variation of the net load. →Under certain market conditions, merchant type energy storage is not viable.

  15. Novel ocean energy permanent magnet linear generator buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, K.; Agamloh, E.B.; Jouanne, A. von; Wallace, A.K.; Prudell, J.; Kimble, K.; Aills, J.; Schmidt, E.; Schacher, A. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-3211 (United States); Chan, P.; Sweeny, B. [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331-3211 (United States)

    2006-07-15

    This paper describes the research, design, construction and prototype testing process of a novel ocean energy direct drive permanent magnet linear generator buoy. The buoy employs the vertical component of the motion of ocean waves to power a linear generator. The generator consists of a permanent magnet field system (mounted on the central translator shaft) and an armature, in which the power is generated (mounted on the buoy). The translator shaft is anchored to the sea floor, and the buoy/floater moves armature coils relative to the permanent magnet translator to induce voltages. The electrical and mechanical structures of the buoy generator are provided, along with performance characteristics, including voltage, current and developed power. (author)

  16. Enhanced Control for a Direct-driven Permanent Synchronous Generator Wind-power Generation System with Flywheel Energy Storage Unit Under Unbalanced Grid Fault

    DEFF Research Database (Denmark)

    Yao, Jun; Zhou, Te; Hu, Weihao

    2015-01-01

    This article presents an enhanced control strategy for a direct-driven permanent synchronous generator based wind-power generation system with a flywheel energy storage unit. The behaviors of the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit under......, the DC-link voltage oscillations can be effectively suppressed during the unbalanced grid fault by controlling the flywheel energy storage unit. Furthermore, a proportional–integral-resonant controller is designed for the flywheel motor to eliminate the oscillations in the DC-link voltage. Finally......, the proposed coordinated control strategy for the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit has been validated by the simulation results of a 1-MW direct-driven permanent magnet synchronous generator wind power generation system with a flywheel energy...

  17. Emerging technologies in electricity generation : an energy market assessment

    International Nuclear Information System (INIS)

    2006-03-01

    Canada's National Energy Board (NEB) monitors the supply of electricity as well as its demand in both domestic and export markets. It monitors the main drivers affecting current trends in generation, demand, prices, infrastructure additions, and inter-regional and international trade. This document presented an assessment of renewable and other emerging technologies that are considered to have significant promise and increased application in Canada over the longer term. It provided comprehensive information on the status and prospects for these technologies, related issues and regional perspectives. Alternative and renewable resources and demand management are becoming more important in addressing air quality issues and supply adequacy. In preparation of this report, staff at the NEB participated in a series of informal meetings with electric utilities, independent power producers, provincial energy regulators, power system operators and those engaged in technology development. The report involved on-site information gathering at wind farms, small hydro facilities, biomass, solar and geothermal operations and other facilities associated with emerging energy technologies such as fuel cells and ocean energy. Clean coal technologies that refer to methods by which emissions from coal-fired generation can be reduced were also evaluated. It was noted that the prospects for emerging technologies vary among the provinces and territories depending on regional resources, provincial government policies and strategies regarding fuel preferences. It was noted that currently in Canada, only 3 per cent of the installed generating capacity consists of emerging technologies. This low penetration is due to the low cost of electricity derived from conventional sources and to the structure of the industry in which large publicly owned utilities have historically opted for large central generating stations. It was suggested that the large increase in fossil fuel prices, public concern

  18. Plasma generator utilizing dielectric member for carrying microwave energy

    International Nuclear Information System (INIS)

    Aklufi, M.E.; Brock, D.W.

    1991-01-01

    This patent describes a system in which electromagnetic energy is used to generate a plasma from a gas. It comprises a reaction chamber which is evacuated to less than ambient pressure and into which the gas is introduced; and a nonconductive member for carrying the electromagnetic energy and for emitting the electromagnetic energy so that a plasma is formed from the gas

  19. Renewable energy technology for off-grid power generation solar hybrid system

    International Nuclear Information System (INIS)

    Mohd Azhar Abd Rahman

    2006-01-01

    Off-grid power generation is meant to supply remote or rural area, where grid connection is almost impossible in terms of cost and geography, such as island, aborigine's villages, and areas where nature preservation is concern. Harnessing an abundance renewable energy sources using versatile hybrid power systems can offer the best, least-cost alternative solution for extending modern energy services to remote and isolated communities. The conventional method for off-grid power generation is using diesel generator with a renewable energy (RE) technology utilizing solar photovoltaic, wind, biomass, biogas and/or mini/micro hydro. A hybrid technology is a combination of multiple source of energy; such as RE and diesel generator and may also include energy storage such as battery. In our design, the concept of solar hybrid system is a combination of solar with diesel genset and battery as an energy storage. The main objective of the system are to reduce the cost of operation and maintenance, cost of logistic and carbon dioxide (CO 2 ) emission. The operational concept of solar hybrid system is that solar will be the first choice of supplying load and excess energy produced will be stored in battery. Genset will be a secondary source of energy. The system is controlled by a microprocessor-based controlled to manage the energy supplied and load demand. The solar hybrid system consists of one or two diesel generator with electronic control system, lead-acid battery system, solar PV, inverter module and system controller with remote monitoring capability. The benefits of solar hybrid system are: Improved reliability, Improved energy services, reduced emissions and pollution, provide continuous power supply, increased operational life, reduced cost, and more efficient use of power. Currently, such system has been installed at Middle and Top Station of Langkawi Cable Car, Langkawi and Aborigines Village Kg Denai, Rompin, Pahang. The technology is considered new in Malaysia

  20. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  1. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.

    Science.gov (United States)

    Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D

    2008-02-08

    We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.

  2. Probabilistic generation assessment system of renewable energy in Korea

    Directory of Open Access Journals (Sweden)

    Yeonchan Lee

    2016-01-01

    Full Text Available This paper proposes probabilistic generation assessment system introduction of renewable energy generators. This paper is focused on wind turbine generator and solar cell generator. The proposed method uses an assessment model based on probabilistic model considering uncertainty of resources (wind speed and solar radiation. Equivalent generation function of the wind and solar farms are evaluated. The equivalent generation curves of wind farms and solar farms are assessed using regression analysis method using typical least square method from last actual generation data for wind farms. The proposed model is applied to Korea Renewable Generation System of 8 grouped 41 wind farms and 9 grouped around 600 solar farms in South Korea.

  3. Challenges of deploying nuclear energy for power generation in Malaysia

    Science.gov (United States)

    Jaafar, Mohd Zamzam; Nazaruddin, Nurul Huda; Lye, Jonathan Tan Thiam

    2017-01-01

    Under the 10th Malaysia Plan (2010-2015) and the Economic Transformation Programme (ETP), nuclear energy was identified as a potential long-term option to be explored for electricity generation in Peninsular Malaysia. The energy sector in Malaysia currently faces several concerns including depleting domestic gas supply which will affect security and reliability of supply as well as overdependance on fossil fuels - mainly gas and imported coal, and nuclear energy may offer a possible solution to these issues as well as global climate change concern. Pursuing the nuclear option, Malaysia Nuclear Power Corporation (MNPC) is undertaking a series of comprehensive studies to facilitate an informed Government decision on the matter. This paper aims to discuss the many challenges towards the peaceful use of nuclear energy for electricity generation in the context of the New Energy Policy 2010 to achieve a balanced and sustainable energy mix. This effort will continue in the 11th Malaysia Plan (2016-2020) with emphasis on implementing a comprehensive communications plan and public awareness programme for the potential use of nuclear energy in the future. In analysing the challenges for the development of nuclear energy in Malaysia, the traditional triple bottom line (TBL) framework for sustainability, encompassing economic, social and environmental objectives is utilized. An additional factor, technical, is also included in the analysis to provide a more holistic view. It is opined that the main challenges of developing nuclear energy for electricity generation in a newcomer country like Malaysia can be attributed primarily to domestic non-technical factors compared to the technical factor.

  4. Solving the Container Stowage Problem (CSP) using Particle Swarm Optimization (PSO)

    Science.gov (United States)

    Matsaini; Santosa, Budi

    2018-04-01

    Container Stowage Problem (CSP) is a problem of containers arrangement into ships by considering rules such as: total weight, weight of one stack, destination, equilibrium, and placement of containers on vessel. Container stowage problem is combinatorial problem and hard to solve with enumeration technique. It is an NP-Hard Problem. Therefore, to find a solution, metaheuristics is preferred. The objective of solving the problem is to minimize the amount of shifting such that the unloading time is minimized. Particle Swarm Optimization (PSO) is proposed to solve the problem. The implementation of PSO is combined with some steps which are stack position change rules, stack changes based on destination, and stack changes based on the weight type of the stacks (light, medium, and heavy). The proposed method was applied on five different cases. The results were compared to Bee Swarm Optimization (BSO) and heuristics method. PSO provided mean of 0.87% gap and time gap of 60 second. While BSO provided mean of 2,98% gap and 459,6 second to the heuristcs.

  5. Optimized Energy Procurement for Cellular Networks with Uncertain Renewable Energy Generation

    KAUST Repository

    Rached, Nadhir B.

    2017-02-07

    Renewable energy (RE) is an emerging solution for reducing carbon dioxide (CO2) emissions from cellular networks. One of the challenges of using RE sources is to handle its inherent uncertainty. In this paper, a RE powered cellular network is investigated. For a one-day operation cycle, the cellular network aims to reduce energy procurement costs from the smart grid by optimizing the amounts of energy procured from their locally deployed RE sources as well as from the smart grid. In addition to that, it aims to determine the extra amount of energy to be sold to the electrical grid at each time period. Chance constrained optimization is first proposed to deal with the randomness in the RE generation. Then, to make the optimization problem tractable, two well- know convex approximation methods, namely; Chernoff and Chebyshev based-approaches, are analyzed in details. Numerical results investigate the optimized energy procurement for various daily scenarios and compare between the performances of the employed convex approximation approaches.

  6. Energy source options for the generation of electrical power in Taiwan

    International Nuclear Information System (INIS)

    Chang, Ching-Chih; Wang, Chih-Min

    2014-01-01

    Highlights: • Analyses of CO 2 emissions and cost in different generation energy source. • Solar, geothermal and wave energy are opportunity for reducing CO 2 emissions. • Expanding renewable energy support electrical industry sustainable development. - Abstract: This study sought to evaluate newly introduced energy policies with regard to economic development and environmental preservation by analyzing carbon dioxide emissions and the costs associated with various electrical power generation schemes. Nonlinear regression was used to measure the efficiency of technology aimed at CO 2 emission reduction and the Morris method was employed for sensitivity analysis. Our results indicate that new Taiwanese energy policies represent the lowest possible cost and the lowest possible CO 2 emissions per kW h currently possible. However, total CO 2 emissions under this plan fail to meet emissions targets established in 2000. This paper outlines a long-term plan for the transformation of the Taiwanese power generation industry from a major contributor of pollution into a largely green entity through the replacement of coal with renewable energy sources

  7. Control of the DC-DC Converter used into Energy Generation System

    International Nuclear Information System (INIS)

    Bizon, Nicu; Oproescu, Mihai

    2006-01-01

    This paper presents an investigation of the DC-DC Converter controller used into Energy Generation System. The full bridge is used into an Energy Generation System (EGS) as second power interface between the energy source and the high DC bus. The simulation results show that the DC-DC Converter behavior can be improved using a well designed PI control surface. The used Simulink models for the EGS blocks and some design considerations are presented, too. (authors)

  8. Development of graphite foam infiltrated with MgCl 2 for a latent heat based thermal energy storage (LHTES) system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Kim, Taeil; Zhao, Weihuan; Yu, Wenhua; France, David M.

    2016-08-01

    Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermal diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.

  9. A Motor/Generator for Flywheel Energy Storage System Levitated by Bulk Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Koh, C.S.; Yeon, J.U.; Jeoung, H.M.; Choi, J.H. [Chungbuk National University (Korea); Lee, H.J; Hong, G.W. [Korea Atomic Energy Research Institute (Korea)

    2000-06-01

    The energy storage systems are being widely researched for the high quality of the electric power. The FES(flywheel energy storage system)is especially, on the center of the research because it does not make any pollution and its life is long. The FES converts the electrical energy into the mechanical kinetic energy of the flywheel and reconverts the mechanical energy into the electrical energy, In order to store as much energy as possible, the flywheel is supposed to be rotated with very high speed. The motor/generator of the FES should be high efficient at high speed, and generate constant torque with respect to the rotation. In this paper, a motor/generator employing a Halbach array of permanent magnets is designed and constructed to meet the requirements, and its characteristics are examined. The magnetic field is analysed by using the magnetic surface charge method. The armature winding is designed for the harmonic components to be minimized by using the FFT. The sinusoidal currents for the motor driving are generated by the hysteresis current controller. A sample superconducting flywheel energy storage system is constructed with a duralumin flywheel which has a maximum rotating speed of 40,000[rpm] and a stored energy of 240[Wh] and its validity is examined through the experiment. (author). 15 refs., 17 figs., 2 tabs.

  10. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy

    International Nuclear Information System (INIS)

    Akrami, Ehsan; Chitsaz, Ata; Nami, Hossein; Mahmoudi, S.M.S.

    2017-01-01

    In this paper, a geothermal based multi-generation energy system, including organic Rankine cycle, domestic water heater, absorption refrigeration cycle and proton exchange membrane electrolyzer, is developed to generate electricity, heating, cooling and hydrogen. For this purpose, energetic, exergetic and exergoeconomic analysis are undertaken upon proposed system. Also, the effects of some important variables, i.e. geothermal water temperature, turbine inlet temperature and pressure, generator temperature, geothermal water mass flow rate and electrolyzer current density on the several parameters such as energy and exergy efficiencies of the proposed system, heating and cooling load, net electrical output power, hydrogen production, unit cost of each system products and total unit cost of the products are investigated. For specified conditions, the results show that energy and exergy efficiencies of the proposed multi-generation system are calculated about 34.98% and 49.17%, respectively. The highest and lowest total unit cost of the products estimated approximately 23.18 and 22.73 $/GJ, respectively, by considering that geothermal water temperature increases from 185 °C to 215 °C. - Highlights: • A multigeneration energy system based on geothermal energy is developed. • The energetic, exergetic and exergoeconomic analysis are undertaken upon proposed system. • The influences of several significant parameters are investigated. • The energy and exergy efficiencies of the entire system are calculated around 34.98% and 49.17%.

  11. Toward sustainable energy systems?

    CERN Multimedia

    CERN. Geneva; Tellez, Felix

    2006-01-01

    Solar Thermal Power Plants. On the verge to Commercialization Today several concentrating solar power (CSP) technologies are at the phase of a first commercial deployment for bulk power production in Europe. The present costs of electricity produced by these plants have to be decreased by a factor of 3-5 in order to compete with electricity from fossil power plants without any subsidy. Beside continuous implementation of CSP power plants in Europe, which stipulate cost reduction by mass production effects, further R&D activities are necessary to achieve the cost competitiveness. We will survey the status of the technology for CSP and identify essential R&D needs to reduce the cost of electricity. Concentrating Solar Power Technologies and Innovations Plataforma Solar de Almeria: the European Solar Thermal Test Center The Plataforma Solar de Almería (PSA) is the most complete laboratory for R&D activities concerning concentrated solar radiation. It was born in the early eighties as an IEA project ...

  12. Prediction of combustible waste generation and estimate of potential energy by applying waste to energy technologies in Korea

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Cho, Sung-Jin; Jung, Hae-Young; Lee, Ki-Bae; Seo, Yong-Chil

    2010-01-01

    In 2007 total waste generation rate in Korea was 318,670 ton,day. In general waste generation rate shows rising trend since 2000. Wastes are composed of municipal waste 14.9 % industrial waste 34.1 % and construction waste 51.0 %. Treatment of wastes by recycling was 81.1 % landfill 11.1 % incineration 5.3 % and ocean dumping 2.4 %. National waste energy policies have been influenced by various factors such as environmental problem economy technology level (could be made energy), and so on. Korea has the worlds third dense population density environmental pollution load per unit land area is the highest in OECD countries caused due to the fast development in economy, industrialization and urbanization in recent. Also, land area per person is just 2,072 m 2 . Landfill capacity reaches the upper limit, industrial waste generation is increasing. Searching new-renewable energy is vital to substitute fossil fuel considering its increasing price. Korea is the world's 10th biggest energy consuming country and 97% of energy depends on importing. Korea aims to increases supply of new-renewable energy by 5% until the 2011. In this study, we computed the amount of combustible waste from municipality generated by the multiple regression analysis. The existing technologies for converting waste to energy were surveyed and the technologies under development or utilizing in future were also investigated. Based on the technology utilization, the amount of energy using waste to energy technology could be estimated in future. (author)

  13. Capacitive Neutralization Dialysis for Direct Energy Generation.

    Science.gov (United States)

    Liu, Yue; Zhang, Yi; Ou-Yang, Wei; Bastos Sales, Bruno; Sun, Zhuo; Liu, Fei; Zhao, Ran

    2017-08-15

    Capacitive neutralization dialysis energy (CNDE) is proposed as a novel energy-harvesting technique that is able to utilize waste acid and alkaline solutions to produce electrical energy. CNDE is a modification based on neutralization dialysis. It was found that a higher NaCl concentration led to a higher open-circuit potential when the concentrations of acid and alkaline solutions were fixed. Upon closing of the circuit, the membrane potential was used as a driving force to move counter ions into the electrical double layers at the electrode-liquid interface, thereby creating an ionic current. Correspondingly, in the external circuit, electrons flow through an external resistor from one electrode to the other, thereby generating electrical energy directly. The influence of external resistances was studied to achieve greater energy extraction, with the maximum output of 110 mW/m 2 obtained by employing an external resistance of 5 Ω together with the AC-coated electrode.

  14. Turbulent energy generated by accelerations and shocks

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1986-01-01

    The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A 2 % (constant acceleration) and 9.3A 2 % (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs

  15. Micro-generation schemes: user behaviours and attitudes towards energy consumption.

    Science.gov (United States)

    Stedmon, Alex W; Winslow, Robin; Langley, Alyson

    2013-01-01

    In the last decade, there has been increasing pressure on developed nations to reduce their carbon emissions. Distributed micro-generation (MG) initiatives provide incentives for small-scale renewable energy generation, particularly by residential home-owners. This paper investigates the existing knowledge base to consider if living in a property with on-site renewable electricity generation may affect user attitudes and behaviours. This knowledge is interpreted from a human factors perspective by focussing on individual behaviour and social learning as well as identifying underlying user requirements and user needs. Suggestions are then made with regard to the effects that MG schemes may have on public attitudes and where further research efforts should be focused. There is evidence that renewable energy initiatives are likely to result in a shift in public behaviour, particularly towards reduced energy consumption where mechanisms for increased feedback can act as a facilitator to learning and motivator to change. The role of human factors/ergonomics in supporting renewable energy initiatives has not been fully exploited. A range of case studies explore user needs and awareness of renewable energy, presenting mixed evidence for reduced consumption. However, individual behaviour and social learning can be influenced through increased feedback that acts as a facilitator to change.

  16. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  17. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    Science.gov (United States)

    Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin

    2017-11-01

    In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  18. Water withdrawal and consumption reduction analysis for electrical energy generation system

    Science.gov (United States)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  19. Biomass for generation of electrical energy in the Bolivariana Republic of Venezuela

    International Nuclear Information System (INIS)

    Rodriguez Peraza, Alejandro; Perez Matos, Richard; Robles Guillen, Charlee

    2009-01-01

    In Venezuela, the MENPET (Ministry of Popular Power for Energy and Oil), advances a project to national level with the general objective to consider the potential of Biomass with power aims, in sugar plants and the following specific objectives: to determine the autogeneration of energy with cane bagasse used like fuel in the boilers that generate the steam, that needs the turbines to drive the generator ELTs, mills, centrifugal pumps, ventilators, etc. and the steam, destined to the process of sugar manufacture; To determine the leftover bagasse with possibility for co-generation of electrical energy in plant. The pressure and temperature of the steam generated in the boilers it is relatively low, but sufficient to obtain balance, between driving force and steam for processes. Increasing pressure and temperature of the steam, a turbine with a generator ELT can be driven, of greater power to cover needs with energy in factory and to have surpluses to inject to the distribution network, without increase of fuel costs; To determine the interchange of energy with the network of distribution, located in the surroundings of the plants. Energy to fortify the communities that inhabit the rural areas of the surroundings; To have a diagnosis, of the state of the distribution, communications nets, substation and circuit in these areas of rural development. (author)

  20. Creating a spatial multi-criteria decision support system for energy related integrated environmental impact assessment

    International Nuclear Information System (INIS)

    Wanderer, Thomas; Herle, Stefan

    2015-01-01

    By their spatially very distributed nature, profitability and impacts of renewable energy resources are highly correlated with the geographic locations of power plant deployments. A web-based Spatial Decision Support System (SDSS) based on a Multi-Criteria Decision Analysis (MCDA) approach has been implemented for identifying preferable locations for solar power plants based on user preferences. The designated areas found serve for the input scenario development for a subsequent integrated Environmental Impact Assessment. The capabilities of the SDSS service get showcased for Concentrated Solar Power (CSP) plants in the region of Andalusia, Spain. The resulting spatial patterns of possible power plant sites are an important input to the procedural chain of assessing impacts of renewable energies in an integrated effort. The applied methodology and the implemented SDSS are applicable for other renewable technologies as well. - Highlights: • The proposed tool facilitates well-founded CSP plant siting decisions. • Spatial MCDA methods are implemented in a WebGIS environment. • GIS-based SDSS can contribute to a modern integrated impact assessment workflow. • The conducted case study proves the suitability of the methodology

  1. Creating a spatial multi-criteria decision support system for energy related integrated environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wanderer, Thomas, E-mail: thomas.wanderer@dlr.de; Herle, Stefan, E-mail: stefan.herle@rwth-aachen.de

    2015-04-15

    By their spatially very distributed nature, profitability and impacts of renewable energy resources are highly correlated with the geographic locations of power plant deployments. A web-based Spatial Decision Support System (SDSS) based on a Multi-Criteria Decision Analysis (MCDA) approach has been implemented for identifying preferable locations for solar power plants based on user preferences. The designated areas found serve for the input scenario development for a subsequent integrated Environmental Impact Assessment. The capabilities of the SDSS service get showcased for Concentrated Solar Power (CSP) plants in the region of Andalusia, Spain. The resulting spatial patterns of possible power plant sites are an important input to the procedural chain of assessing impacts of renewable energies in an integrated effort. The applied methodology and the implemented SDSS are applicable for other renewable technologies as well. - Highlights: • The proposed tool facilitates well-founded CSP plant siting decisions. • Spatial MCDA methods are implemented in a WebGIS environment. • GIS-based SDSS can contribute to a modern integrated impact assessment workflow. • The conducted case study proves the suitability of the methodology.

  2. The influence of distributed generation penetration levels on energy markets

    International Nuclear Information System (INIS)

    Vahl, Fabrício Peter; Rüther, Ricardo; Casarotto Filho, Nelson

    2013-01-01

    Planning of national energy policies brings new dilemmas with the introduction of distributed generators (DG). Economic theory suggests that a perfectly competitive market would lead to efficient pricing. In the absence of competition, regulators play a fundamental role in attracting reasonably priced finance in order to maintain, refurbish and increase the infrastructure and provide services at a reasonable cost. Energy market price equilibrium is mainly dependent on suppliers, generators, energy sources and demand, represented by conventional utility grid users. Its behavior is similar to that of other commodities. As generation becomes less centralized with the increasing economic viability of renewable energy sources, new suppliers are being connected to the grid. Such evolution means the transition from a monopolistic market to a broader and more open environment, with an increasing number of competitors. We make use of variational inequalities to model a hypothetical DG market in different scenarios, from monopoly, to oligopoly, to open market. Such an approach enables different equilibrium outcomes due to different DG penetration levels. Based on these findings, we argue that energy policies for such markets must be developed according to each specific stage of the grid's lifecycle. We show how energy policies and market regulations may affect such a transition, which may be catastrophic if not managed properly, and which is dependent on the energy mix. -- Highlights: •DG affects energy markets depending on technologies, penetration and infrastructure. •Energy prices vary when the market moves from centralized to several suppliers. •Variational inequalities are presented to simulate a market under such transitions. •The increase of DG penetration level may present different energy prices variation. •If technical and political issues of smart grids are not improved, markets may crash

  3. Hybridization of concentrated solar power with biomass gasification in Brazil’s semiarid region

    International Nuclear Information System (INIS)

    Milani, Rodrigo; Szklo, Alexandre; Hoffmann, Bettina Susanne

    2017-01-01

    Highlights: • Assessment of three hybridization concepts between CSP and biomass gasification. • Modelling of a benchmark power plant for each of the hybridization concepts. • The method relies on using Aspentech Hysys and SAM for thermodynamic analysis. • Technical and economic performance of the three benchmark power plants as result. - Abstract: This study aims to propose and analyze different options for hybridizing Concentrated Solar Power (CSP) with biomass, through gasification for power generation. A hybrid CSP-biomass power plant through gasification is an innovative concept which allows the integration of combined cycle for power generation, sun-biomass hybridization and syngas storage. Therefore, this study addressed the proposition of the hybridization concept and the simulation of benchmark power plants for a suitable Brazilian site (high direct normal irradiation and low-cost biomass availability). Three power plant concepts are proposed and simulated in Aspentech Hysys and System Advisor Model (SAM): (i) Series design; (ii) Parallel design, and (iii) Steam Extraction design. For the same gasifier, the Series design holds the highest levelized cost, while the Parallel design presents the highest installed capacity, but the lowest capacity factor. Finally, the Steam Extraction design is placed between the other two proposed plants regarding the capacity factor and the annual energy generation.

  4. DESERTEC: energy for the planet

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The DESERTEC project, launched in 2007, aims to enable the countries of Europe, North Africa and the Middle East to cover a large part of their energy needs through the use of renewable energies by 2050. One of the instigators of this project is Gerhard Knies, former particle physicist at DESY (Deutsches Elektronen-Synchrotron). On several occasions he also took part in experiments at CERN, and on 3 February he returned to the Laboratory to present DESERTEC at a special colloquium.   By combining different sources of renewable energy, the DESERTEC project could supply the energy needs of the EU-MENA region countries. The red squares represent the total CSP surfaces needed to provide the present day electricity demands of the world, Europe and the MENA region. Source: DESERTEC Foundation, www.desertec.org The first stage of the project is to install solar power stations in the deserts of the North Africa and Middle East (MENA) region. Deserts are incomparable sources of clean energy and might hold ...

  5. Generator Requirements For Rural Electrification From Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Dzune Mipoung, Olivare; Pragasen, Pillay

    2010-09-15

    This paper addresses the issue of rural electrification from renewable energy. A brief introduction on biomass and wind electrical systems is given. The aim of this research is to propose optimal electrification system design for rural areas. This requires suitable generators selection as a starting point. Some generator types for rural electrification systems are introduced, followed by a discussion on the selection criteria. Simulation results of a typical electrification system for remote areas are obtained to support the safety aspect related to the individual generator types, in the event of accidental rotor motion. All simulations are done in Matlab-Simulink.

  6. A robust optimization approach for energy generation scheduling in microgrids

    International Nuclear Information System (INIS)

    Wang, Ran; Wang, Ping; Xiao, Gaoxi

    2015-01-01

    Highlights: • A new uncertainty model is proposed for better describing unstable energy demands. • An optimization problem is formulated to minimize the cost of microgrid operations. • Robust optimization algorithms are developed to transform and solve the problem. • The proposed scheme can prominently reduce energy expenses. • Numerical results provide useful insights for future investment policy making. - Abstract: In this paper, a cost minimization problem is formulated to intelligently schedule energy generations for microgrids equipped with unstable renewable sources and combined heat and power (CHP) generators. In such systems, the fluctuant net demands (i.e., the electricity demands not balanced by renewable energies) and heat demands impose unprecedented challenges. To cope with the uncertainty nature of net demand and heat demand, a new flexible uncertainty model is developed. Specifically, we introduce reference distributions according to predictions and field measurements and then define uncertainty sets to confine net and heat demands. The model allows the net demand and heat demand distributions to fluctuate around their reference distributions. Another difficulty existing in this problem is the indeterminate electricity market prices. We develop chance constraint approximations and robust optimization approaches to firstly transform and then solve the prime problem. Numerical results based on real-world data evaluate the impacts of different parameters. It is shown that our energy generation scheduling strategy performs well and the integration of combined heat and power (CHP) generators effectively reduces the system expenditure. Our research also helps shed some illuminations on the investment policy making for microgrids.

  7. Control of hybrid fuel cell/energy storage distributed generation system against voltage sag

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh, Amin; Golkar, Masoud Aliakbar [Electrical Engineering Department, K.N. Toosi University of Technology, Seyedkhandan, Dr. Shariati Ave, P.O. Box 16315-1355, Tehran (Iran)

    2010-06-15

    Fuel cell (FC) and energy storage (ES) based hybrid distributed power generation systems appear to be very promising for satisfying high energy and high power requirements of power quality problems in distributed generation (DG) systems. In this study, design of control strategy for hybrid fuel cell/energy storage distributed power generation system during voltage sag has been presented. The proposed control strategy allows hybrid distributed generation system works properly when a voltage disturbance occurs in distribution system and hybrid system stays connected to the main grid. Hence, modeling, controller design, and simulation study of a hybrid distributed generation system are investigated. The physical model of the fuel cell stack, energy storage and the models of power conditioning units are described. Then the control design methodology for each component of the hybrid system is proposed. Simulation results are given to show the overall system performance including active power control and voltage sag ride-through capability of the hybrid distributed generation system. (author)

  8. Optimal number of energy generators for biogas utilization in wastewater treatment facility

    International Nuclear Information System (INIS)

    Tsagarakis, Konstantinos P.

    2007-01-01

    A technoeconomic analysis has been undertaken considering the optimum number of energy producing generators using biogas coming from anaerobic digestion. Inputs for this analysis originate from available data on the first generator for energy production from biogas, installed in Greece at the wastewater treatment facility of Iraklio city. The data spans a period of 5.5 years of operation. It is concluded that the cost per kWh produced is 0.0876 Euro /kWh if one generator is used covering 15.9% of the facility's needs. If two generators are used, more biogas is utilized contributing 32.6% of the facility's needs at a marginal production cost of 0.0886 Euro /kWh. Similar estimations have been made for scenarios involving up to six generators. In contrast, the marginal cost of conventionally produced energy is 0.1383-0.2483 Euro /kWh

  9. Safety research of insulating materials of cable for nuclear power generating station

    Science.gov (United States)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  10. Generating heavy particles with energy and momentum conservation

    Science.gov (United States)

    Mereš, Michal; Melo, Ivan; Tomášik, Boris; Balek, Vladimír; Černý, Vladimír

    2011-12-01

    We propose a novel algorithm, called REGGAE, for the generation of momenta of a given sample of particle masses, evenly distributed in Lorentz-invariant phase space and obeying energy and momentum conservation. In comparison to other existing algorithms, REGGAE is designed for the use in multiparticle production in hadronic and nuclear collisions where many hadrons are produced and a large part of the available energy is stored in the form of their masses. The algorithm uses a loop simulating multiple collisions which lead to production of configurations with reasonably large weights. Program summaryProgram title: REGGAE (REscattering-after-Genbod GenerAtor of Events) Catalogue identifier: AEJR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1523 No. of bytes in distributed program, including test data, etc.: 9608 Distribution format: tar.gz Programming language: C++ Computer: PC Pentium 4, though no particular tuning for this machine was performed. Operating system: Originally designed on Linux PC with g++, but it has been compiled and ran successfully on OS X with g++ and MS Windows with Microsoft Visual C++ 2008 Express Edition, as well. RAM: This depends on the number of particles which are generated. For 10 particles like in the attached example it requires about 120 kB. Classification: 11.2 Nature of problem: The task is to generate momenta of a sample of particles with given masses which obey energy and momentum conservation. Generated samples should be evenly distributed in the available Lorentz-invariant phase space. Solution method: In general, the algorithm works in two steps. First, all momenta are generated with the GENBOD algorithm. There, particle production is modeled as a sequence of two

  11. Development of net energy ratio for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2012-01-01

    The conversion of biomass to four different outputs via gasification and catalytic methanation is a renewable technology that could reduce the use of fossil fuels and GHG emissions. This study investigates the energy aspects of producing electricity, heat, methanol and methane. The Gas Technology...... Institute (GTI) gasifier and Circulating Fluidized Bed (CFB) technologies are used for this quad generation process. Three different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.3–9.3. The lowest limit corresponds to the straw......-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim of this study was to evaluate the energy performance...

  12. Estimation of energy potential and power generation from tidal basin in coastal area of malaysia

    Directory of Open Access Journals (Sweden)

    Nazri Nazani

    2016-01-01

    Full Text Available This paper presents the potential of tidal energy in Malaysia. Malaysia is heavily depending on the fossil fuel to satisfy the energy demand. However, this reserve energy is reported will be depleted. The population growth also caused the demand on energy increase over the year. This situation can lead to the global warming and climate change that be a major concern around the world. As an alternative, renewable energy become a solution in order to reduce the usage of conventional energy such as fossil fuel, coal and gas. One of the renewable energy that can be used is from ocean energy. Since the tidal energy is not study thoroughly in Malaysia and Malaysia has a potential sites that can implement this tidal energy for electricity generation to meet the local demand. This tidal energy can be harnessed in several approach such as by using tidal barrage single basin with single mode generation consist ebb-mode and flood-mode of generation and the other approach of single mode is double-mode of generation. In order to meet the local demand, single-mode generation and double-mode generation was studied by getting the number of population at that area, the electricity demand then from that data the basin area is estimated for power generation. The result shows that double-mode generation is one of the approaches that meet the local demand for electricity.

  13. Renewable energy and decentralized power generation in Russia: an opportunity for German-Russian energy cooperation

    OpenAIRE

    Chukanov, Denis; Opitz, Petra; Pastukhova, Maria; Piani, Gianguido; Westphal, Kirsten

    2017-01-01

    Renewable and decentralized power generation are a centerpiece of Germany's domestic energy transition (Energiewende) and a major element of its international efforts to promote this goal. Recently, the renewables sector has also been advancing in Russia, albeit from a lower level. Thus, it is time to explore the status quo and analyze the potential for sustainable energy cooperation. In the context of the current deterioration in EURussian (energy) relations, crafting a sustainable energy pa...

  14. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise

  15. The impacts of renewable energy policies on renewable energy sources for electricity generating capacity

    Science.gov (United States)

    Koo, Bryan Bonsuk

    Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.

  16. Harnessing Alternative Energy Sources to Enhance the Design of a Wave Generator

    Science.gov (United States)

    Bravo, A.

    2017-12-01

    Wave energy has the power to replace a non-renewable source of electricity for a home near the ocean. I built a small-scale wave generator capable of producing approximately 5 volts of electricity. The generator is an array of 16 small generators, each consisting of 200 feet of copper wire, 12 magnets, and a buoy. I tested my design in the Pacific Ocean and was able to power a string of lights I had attached to the generator. While the waves in the ocean moved my buoys, my design was powered by the vertical motion of the waves. My generator was hit with significant horizontal wave motion, and I realized I wasn't taking advantage of that direction of motion. To make my generator produce more electricity, I experimented with capturing the energy of the horizontal motion of water and incorporated that into my generator design. My generator, installed in the ocean, is also exposed to sun and wind, and I am exploring the potential of solar and wind energy collection in my design to increase the electricity output. Once I have maximized my electricity output, I would like to explore scaling up my design.

  17. Energy-Water Nexus Relevant to Baseload Electricity Source Including Mini/Micro Hydropower Generation

    Science.gov (United States)

    Fujii, M.; Tanabe, S.; Yamada, M.

    2014-12-01

    Water, food and energy is three sacred treasures that are necessary for human beings. However, recent factors such as population growth and rapid increase in energy consumption have generated conflicting cases between water and energy. For example, there exist conflicts caused by enhanced energy use, such as between hydropower generation and riverine ecosystems and service water, between shale gas and ground water, between geothermal and hot spring water. This study aims to provide quantitative guidelines necessary for capacity building among various stakeholders to minimize water-energy conflicts in enhancing energy use. Among various kinds of renewable energy sources, we target baseload sources, especially focusing on renewable energy of which installation is required socially not only to reduce CO2 and other greenhouse gas emissions but to stimulate local economy. Such renewable energy sources include micro/mini hydropower and geothermal. Three municipalities in Japan, Beppu City, Obama City and Otsuchi Town are selected as primary sites of this study. Based on the calculated potential supply and demand of micro/mini hydropower generation in Beppu City, for example, we estimate the electricity of tens through hundreds of households is covered by installing new micro/mini hydropower generation plants along each river. However, the result is based on the existing infrastructures such as roads and electric lines. This means that more potentials are expected if the local society chooses options that enhance the infrastructures to increase micro/mini hydropower generation plants. In addition, further capacity building in the local society is necessary. In Japan, for example, regulations by the river law and irrigation right restrict new entry by actors to the river. Possible influences to riverine ecosystems in installing new micro/mini hydropower generation plants should also be well taken into account. Deregulation of the existing laws relevant to rivers and

  18. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  19. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  20. A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-06-01

    Full Text Available In this paper, an effective low-speed oscillating wave power generator and its energy storage system have been proposed. A vertical flux-switching permanent magnet (PM machine is designed as the generator while supercapacitors and batteries are used to store the energy. First, the overall power generation system is established and principles of the machine are introduced. Second, three modes are proposed for the energy storage system and sliding mode control (SMC is employed to regulate the voltage of the direct current (DC bus, observe the mechanical input, and feedback the status of the storage system. Finally, experiments with load and sinusoidal mechanical inputs are carried out to validate the effectiveness and stability of power generation for wave energy. The results show that the proposed power generation system can be employed in low-speed environment around 1 m/s to absorb random wave power, achieving over 60% power efficiency. The power generation approach can be used to capture wave energy in the future.

  1. Can Dutch co-generation survive threats of the liberalisation of the energy markets

    International Nuclear Information System (INIS)

    Battjes, J.J.; Rijkers, F.A.M.

    2000-07-01

    The paper presents an analysis of the effects of liberalisation of the Dutch energy markets on the future development of combined heat and power generation (co-generation) in the Netherlands. First, it reviews the historical growth in co-generation in the Netherlands and the supportive policy measures that have contributed to this growth. Second, the liberalisation process of the Dutch electricity market and the Dutch gas market is described. Subsequently, we discuss the impacts of these new market structures on co-generation by using two scenarios for the Dutch energy markets. Our assessment of the impacts is mainly focused on the cost-effectiveness of co-generation projects. We determine the key aspects that influence the cost-effectiveness of a co-generation project and analyse some of the calculations for different small-scale and large-scale co-generation projects. Based on the results, we conclude that investments in new co-generation plants are unlikely in the short term and the existing plants can barely produce with a positive cash flow. As many parties have an interest in reducing the negative effects of a liberalised energy market on co-generation, approaches are sought to improve the cost-effectiveness of co-generation in the Netherlands. We describe several optional supportive measures for co-generation mainly resulting from the determination of the barriers for co-generation. Moreover, Dutch authorities have already responded to these barriers by preparing policy measures such as investment subsidies and exemption from the energy tax. 2 refs

  2. A normative price for energy from an electricity generation system: An Owner-dependent Methodology for Energy Generation (system) Assessment (OMEGA). Volume 1: Summary

    Science.gov (United States)

    Chamberlain, R. G.; McMaster, K. M.

    1981-10-01

    The utility owned solar electric system methodology is generalized and updated. The net present value of the system is determined by consideration of all financial benefits and costs (including a specified return on investment). Life cycle costs, life cycle revenues, and residual system values are obtained. Break even values of system parameters are estimated by setting the net present value to zero. While the model was designed for photovoltaic generators with a possible thermal energy byproduct, it applicability is not limited to such systems. The resulting owner-dependent methodology for energy generation system assessment consists of a few equations that can be evaluated without the aid of a high-speed computer.

  3. A normative price for energy from an electricity generation system: An Owner-dependent Methodology for Energy Generation (system) Assessment (OMEGA). Volume 1: Summary

    Science.gov (United States)

    Chamberlain, R. G.; Mcmaster, K. M.

    1981-01-01

    The utility owned solar electric system methodology is generalized and updated. The net present value of the system is determined by consideration of all financial benefits and costs (including a specified return on investment). Life cycle costs, life cycle revenues, and residual system values are obtained. Break even values of system parameters are estimated by setting the net present value to zero. While the model was designed for photovoltaic generators with a possible thermal energy byproduct, it applicability is not limited to such systems. The resulting owner-dependent methodology for energy generation system assessment consists of a few equations that can be evaluated without the aid of a high-speed computer.

  4. The environmental interactions of tidal and wave energy generation devices

    OpenAIRE

    Frid, C.; Andonegi, E.; Depestele, J.; Judd, A.; Rihan, D.; Rogers, S.I.; Kenchington, E.

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other...

  5. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  6. Quantum random bit generation using energy fluctuations in stimulated Raman scattering.

    Science.gov (United States)

    Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J

    2013-12-02

    Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

  7. Real time system design of motor imagery brain-computer interface based on multi band CSP and SVM

    Science.gov (United States)

    Zhao, Li; Li, Xiaoqin; Bian, Yan

    2018-04-01

    Motion imagery (MT) is an effective method to promote the recovery of limbs in patients after stroke. Though an online MT brain computer interface (BCT) system, which apply MT, can enhance the patient's participation and accelerate their recovery process. The traditional method deals with the electroencephalogram (EEG) induced by MT by common spatial pattern (CSP), which is used to extract information from a frequency band. Tn order to further improve the classification accuracy of the system, information of two characteristic frequency bands is extracted. The effectiveness of the proposed feature extraction method is verified by off-line analysis of competition data and the analysis of online system.

  8. Tidal Energy System for On-Shore Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for

  9. The future of energy generation sector in Brazil

    International Nuclear Information System (INIS)

    Assis, Gino de

    2000-01-01

    The importance of energy on the life of modern man is evaluated considering environmental and strategic issues. Energetic crisis that happened on the recent past of Brazil and United States of America are reviewed and analysed in the light of the particular strategic matters of each country. A tentative projection of the profile of the electrical energy generator industry of Brazil is done based on the past experiences, on the present scenario and on the future potentials. (author)

  10. Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

    OpenAIRE

    Hussain Ali Bekhet; Nor Hamisham Harun

    2016-01-01

    The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable ener...

  11. Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City

    Directory of Open Access Journals (Sweden)

    K. M. Nazmul Islam

    2016-01-01

    Full Text Available Increased generation of methane (CH4 from municipal solid wastes (MSW alarms the world to take proper initiative for the sustainable management of MSW, because it is 34 times stronger than carbon dioxide (CO2. Mounting land scarcity issue around the world brands the waste to energy (WtE strategy for MSW management in urban areas as a promising option, because WtE not only reduces the land pressure problem, but also generates electricity, heat, and green jobs. The goal of this study is to evaluate the renewable electricity generation potential and associated carbon reduction of MSW management in Bangladesh using WtE strategies. The study is conducted in two major cities of Bangladesh: Dhaka and Chittagong. Six different WtE scenarios are evaluated consisting of mixed MSW incineration and landfill gas (LFG recovery system. Energy potential of different WtE strategy is assessed using standard energy conversion model and subsequent GHGs emissions models. Scenario A1 results in highest economic and energy potential and net negative GHGs emission. Sensitivity analysis by varying MSW moisture content reveals higher energy potential and less GHGs emissions from MSW possessing low moisture content. The study proposes mixed MSW incineration that could be a potential WtE strategy for renewable electricity generation in Bangladesh.

  12. Electric power in the competitive market - Investing capital for cleaner energy generation still a rewarding business? New perspectives for electrical energy efficiency improvement, the cogeneration technology, and renewable energy generation

    International Nuclear Information System (INIS)

    Schwanhold, E.

    2000-01-01

    The meeting gathered policymakers, members of the energy industry, the business consulting professions, and scientific institutes and relevant technology companies. New perspectives have been discussed in the context of required framework conditions and processes that have to/can be put in place, or further developed, in order to create a concrete basis or stronger incentives for realisation of climate protection and environmental policy goals in the energy sector. There have been two panel discussions on the issue of whether investing in clean generation technologies will be rewarding. Five papers each presented to these panels have been analysed and prepared for separate retrieval from the database, as well as five papers each of the discussion forum A, ''New perspectives for energy efficiency measures and contracting partnerships'', and the discussion forum B, ''New perspectives for distributed power generation with CHP systems''. From the discussion forum C, ''New perspectives for renewable energy sources'', one paper has been prepared for separate retrieval. (CB) [de

  13. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    International Nuclear Information System (INIS)

    None

    2005-01-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R and D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R and D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan

  14. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  15. Economic and Environmental Considerations for Zero-emission Transport and Thermal Energy Generation on an Energy Autonomous Island

    Directory of Open Access Journals (Sweden)

    Fontina Petrakopoulou

    2018-01-01

    Full Text Available The high cost and environmental impact of fossil-fuel energy generation in remote regions can make renewable energy applications more competitive than business-as-usual scenarios. Furthermore, energy and transport are two of the main sectors that significantly contribute to global greenhouse gas emissions. This paper focuses on the generation of thermal energy and the transport sector of a fossil fuel-based energy independent island in Greece. We evaluate (1 technologies for fully renewable thermal energy generation using building-specific solar thermal systems and (2 the replacement of the vehicle fleet of the island with electric and hydrogen-fueled vehicles. The analysis, based on economic and environmental criteria, shows that although solar thermal decreases greenhouse gases by 83%, when compared to the current diesel-based situation, it only becomes economically attractive with subsidy scenarios equal to or higher than 50%. However, in the transport sector, the sum of fuel and maintenance costs of fuel-cell and electric vehicles is found to be 45% lower than that of the current fleet, due to their approximately seven times lower fuel cost. Lastly, it will take approximately six years of use of the new vehicles to balance out the emissions of their manufacturing phase.

  16. The Potential of Concentrated Solar Power for Remote Mine Sites in the Northern Territory, Australia

    Directory of Open Access Journals (Sweden)

    M. H. Baig

    2015-01-01

    Full Text Available The Northern Territory (NT is among the regions in Australia and the world with the highest solar radiation intensities. The NT has many mine sites which consume significant amount of fossil fuel with consequent greenhouse gas (GHG emissions. The environmental concern related to the fossil fuel consumption and availability of immense solar energy resource in the NT open the possibilities for considering the provision of power to the mining sites using proven solar technologies. Concentrating solar power (CSP systems are deemed as the potential alternatives to current fossil fuel based generating systems in mining industry in the NT. The finding is based on consideration of the major factors in determining the feasibility of CSP system installation, with particular reference to the NT mine sites. These are plant design requirements, climatic, environmental, and other requirements, and capital and operating costs. Based on these factors, four mine sites have been identified as having the potential for CSP plants installation. These are McArthur River Mine, Ranger Mine, Northern Territory Gold Mines, and Tanami Operations. Each site could be served by one CSP plant to cater for the needs of mining operation and the local communities.

  17. Forecast of power generation and heat production from renewable energy sources

    Directory of Open Access Journals (Sweden)

    Pydych Tadeusz

    2017-01-01

    Full Text Available The share of renewable energy sources (RES in the end use of energy in the UE will increase from the present level of about 25% to 50 % in 2030 according to the assumptions of the European Commission. In Poland the RES Act was passed in 2015. The act defines mechanisms and instruments for supporting the production of electricity and heat from renewable energy sources. Statistics (2003–2014 of electricity generation and heat production from RES in Poland were used in the research. Because of amendments to regulations connected with promoting RES and the emissions trading system (ETS as well as the uncertainty associated with further directions of the energy and environmental policy, generation of electricity and heat based on the use of RES must be modelled while taking risk into account. A number of dynamic processes incorporating random events may be modelled by stochastic equations using Ito calculus. By applying Euler’s method to solve stochastic differential equations (SDE, it is possible to simulate the development of the use of renewable energy carriers in electricity generation and heat production in the future.

  18. Numerical simulation of a hybrid CSP/Biomass 5 MWel power plant

    Science.gov (United States)

    Soares, João; Oliveira, Armando

    2017-06-01

    The fundamental benefit of using renewable energy systems is undeniable since they rely on a source that will not run out. Nevertheless, they strongly depend on meteorological conditions (solar, wind, etc.), leading to uncertainty of instantaneous energy supply and consequently to grid connection issues. An interesting concept is renewable hybridisation. This consists in the strategic combination of different renewable sources in the power generation portfolio by taking advantage of each technology. Hybridisation of concentrating solar power with biomass denotes a powerful way of assuring system stability and reliability. The main advantage is dispatchability through the whole extent of the operating range. Regarding concentrating solar power heat transfer fluid, direct steam generation is one of the most interesting concepts. Nevertheless, it presents itself technical challenges that are mostly related to the two-phase fluid flow in horizontal pipes, as well as the design of an energy storage system. Also, the use of reheat within the turbine is usually indirectly addressed, hindering system efficiency. These challenges can be addressed through hybridisation with biomass. In this paper, a hybrid renewable electricity generation system is presented. The system relies on a combination of solar and biomass sources to drive a 5 MWel steam turbine. System performance is analysed through numerical simulation using Ebsilon professional software. The use of direct reheat in the turbine is addressed. Results show that hybridisation results in an enhancement of system dispatchability and generation stability. Furthermore, hybridisation enhanced the annual solar field and power block efficiencies, and thus the system annual efficiency (from 7.6% to 20%). The use of direct reheat eliminates steam wetness in the last turbine stage and also improves system efficiency.

  19. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  20. The role of nuclear energy in the generation of electricity in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1981-01-01

    A comparative calculation of the potential of conventional electricity-generating energy sources-hydroelectric, coal, nuclear - according to different cost levels of generated energy is presented. Assuming a plausible estimate of the demand increase for electricity in the country, calculations show that nuclear energy will have an important role in Brazil only in the second decade of the next century. The potential of some other alternative electricity generating sources is calculated - shale and biomass (bagasse and biogas of vinhoto are discussed) - indicating that by that time nuclear energy will indeed be an option, but not necessarily the only one or the best. Finally a chronological table has been worked out indicating a construction schedule for the reactors in case the option is for nuclear energy - keeping in mind that this option does not depend exclusively on technical and economic but also political criteria and therefore requires a democratic decision-making process. (Author) [pt

  1. Redox-neutral rhodium-catalyzed C-H functionalization of arylamine N-oxides with diazo compounds: primary C(sp(3))-H/C(sp(2))-H activation and oxygen-atom transfer.

    Science.gov (United States)

    Zhou, Bing; Chen, Zhaoqiang; Yang, Yaxi; Ai, Wen; Tang, Huanyu; Wu, Yunxiang; Zhu, Weiliang; Li, Yuanchao

    2015-10-05

    An unprecedented rhodium(III)-catalyzed regioselective redox-neutral annulation reaction of 1-naphthylamine N-oxides with diazo compounds was developed to afford various biologically important 1H-benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by-products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp(3) )H bond and C(sp(2) )H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)-catalyzed coupling of readily available tertiary aniline N-oxides with α-diazomalonates was also developed under external oxidant-free conditions to access various aminomandelic acid derivatives by an O-atom-transfer reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Promoting energy-saving and environmentally friendly generation dispatching model in China: Phase development and case studies

    International Nuclear Information System (INIS)

    Ding, Yi; Yang, Hongliang

    2013-01-01

    Energy saving and environmental protection are important conditions for the sustainable development of Chinese economy. However current widely used generation scheduling model based on predefined production quota and tariff results in heavy energy consumption and severe environment pollution. From 2007, as concerns over energy shortage and environmental pollution, the Chinese authorities introduced the implementation of energy-saving generation dispatching model, which is an important approach to facilitating energy-saving and reduction of pollutant emission. The objective of implementing energy-saving generation dispatching model is to prioritize the use of renewable energy resources and new power plants with high efficiency without compromising power system security and reliability. This paper analyzes the necessity and feasibility of implementing energy-efficient and environmentally friendly generation scheduling models in China. The institutional and technical barriers impeding the implementation of energy-saving generation dispatching model are identified. The development of advanced energy-saving generation scheduling models towards competitive market models and phased planning programs are emphasized in this paper. The effectiveness and experience of provinces piloted energy-saving generation dispatching projects are also discussed. - Highlights: ► Introducing problems of current power generation scheduling model in China. ► Discussing necessity of implementing ESGD model and corresponding barriers. ► Proposing phased planning programs for developing ESGD models. ► Discussing the effectiveness and experience of provinces piloted ESGD projects

  3. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  4. COMBINED SYSTEMS OF ENERGY GENERATION – A CHARACTERISATION AND CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Jan Gilewski

    2014-09-01

    Full Text Available The study presents issues concerning technical solutions of combined systems of energy generation which can be used primarily in low-level power plants, installed in various types of public utility sites. A detailed description is given of selected ways of powering combined energy generation systems, presenting conceptual outlines of their operation and information on their advantages, disadvantages and applications. The following systems are introduced: gas-steam, back-pressure steam turbine, extraction-condensing steam turbine, gas turbine, gas microturbine, Stirling engine, fuel cells and internal combustion piston engine. Moreover, the study addresses economic aspects of energy generation in combined systems, discussing different methodologies of cost calculation, including the one used by the European Union. The article also gives a detailed review of piston engine combined-system aggregates available in the Polish market. Type series of associated systems designed for low-power appliances are shown, produced by Polish and foreign companies such as Viessmann, Centrum Elektroniki Stosowanej CES, H. Cegielski – Poznań, KWE Technika Energetyczna, TEDOM Poland or the EPS System.

  5. Feasibility of biogas and energy generation from poultry manure in Brazil.

    Science.gov (United States)

    Ribeiro, Eruin M; Mambeli Barros, Regina; Tiago Filho, Geraldo Lúcio; Dos Santos, Ivan Felipe S; Sampaio, Luma C; Dos Santos, Ticiane V; da Silva, Fernando dGB; Silva, Ana Paula M; de Freitas, João Victor R

    2018-03-01

    The aim of the present study is to experimentally measure the volume and composition of biogas produced from the anaerobic biodigestion of laying-hen manure from poultry farms in Itanhandu-MG, Brazil, so that the biogas can be used to generate energy. Two experiments (E1 and E2) were used to characterise the biogas quantities and compositions at room temperature and at a controlled temperature of 36 °C, respectively. The biogas production and calculated net power from the exploitation of biogas energy were compared with the results obtained from methods proposed by the Environmental Company of the State of São Paulo (CETESB, an acronym in Portuguese) using the 'Biogas: Generation and energy use - effluent and rural waste' software 1.0, Brasília-DF, Brazil. In addition, after a time equal to the hydraulic retention time subsequent to biodigester loading, the parameters were analysed and correlated with the organic matter content in the substrates. The effluents were subsequently compared with verify the degree of degradability. The biogas volumes were estimated to be 0.143 m 3  kg VTS -1 for E1 and 0.283 m 3  kg VTS -1 for E2. If the poultry farm considered in this case study uses manure to generate energy, then the estimated energy generation based on the data from experiments E1 and E2 will result in net energy values of 683 MW h y -1 and 27,160 MW h y -1 , given 620 MW h y -1 for sludge heating in E2. The energy production values from the simulations of the E1 and E2 experiments did not demonstrate economic viability under the studied conditions.

  6. Quantum mechanical energy-based screening of combinatorially generated library of tautomers. TauTGen: a tautomer generator program.

    Science.gov (United States)

    Harańczyk, Maciej; Gutowski, Maciej

    2007-01-01

    We describe a procedure of finding low-energy tautomers of a molecule. The procedure consists of (i) combinatorial generation of a library of tautomers, (ii) screening based on the results of geometry optimization of initial structures performed at the density functional level of theory, and (iii) final refinement of geometry for the top hits at the second-order Möller-Plesset level of theory followed by single-point energy calculations at the coupled cluster level of theory with single, double, and perturbative triple excitations. The library of initial structures of various tautomers is generated with TauTGen, a tautomer generator program. The procedure proved to be successful for these molecular systems for which common chemical knowledge had not been sufficient to predict the most stable structures.

  7. Raw materials for energy generation in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, D S

    1976-03-01

    Canada is self-sufficient in energy. The energy demand in Canada up to the end of the century is predicted, and the present and future of the oil, gas, coal and uranium industries are considered. Since it is now Canadian policy to restrict export of energy sources, in the future Canada will probably make more domestic use of its coal reserves. An increase is forecast in the use of coal for electricity generation and as a feedstock for synthetic gas. A long lead time and large capital expenditure will be needed before coal can be transported from western Canada to markets in the east of the country. A relatively small amount of the coal reserves are extractable by surface mining, and new underground mining techniques will be needed to extract the extremely friable coal from the deformed seams in the mountains.

  8. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants

    International Nuclear Information System (INIS)

    Weißbach, D.; Ruprecht, G.; Huke, A.; Czerski, K.; Gottlieb, S.; Hussein, A.

    2013-01-01

    The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power. - Highlights: ► Nuclear, “renewable” and fossil energy are comparable on a uniform physical basis. ► Energy storage is considered for the calculation, reducing the ERoEI remarkably. ► All power systems generate more energy than they consume. ► Photovoltaics, biomass and wind (buffered) are below the economical threshold

  9. Performance analysis of different ORC configurations for thermal energy and LNG cold energy hybrid power generation system

    Science.gov (United States)

    Sun, Zhixin; Wang, Feng; Wang, Shujia; Xu, Fuquan; Lin, Kui

    2017-01-01

    This paper presents a thermal energy and Liquefied natural gas (LNG) cold energy hybrid power generation system. Performances of four different Organic Rankine cycle (ORC) configurations (the basic, the regenerative, the reheat and the regenerative-reheat ORCs) are studied based on the first and the second law of thermodynamics. Dry organic fluid R245fa is selected as the typical working fluid. Parameter analysis is also conducted in this paper. The results show that regeneration could not increase the thermal efficiency of the thermal and cold energy hybrid power generation system. ORC with the reheat process could produce more specific net power output but it may also reduce the system thermal efficiency. The basic and the regenerative ORCs produce higher thermal efficiency while the regenerative-reheat ORC performs best in the exergy efficiency. A preheater is necessary for the thermal and cold energy hybrid power generation system. And due to the presence of the preheater, there will be a step change of the system performance as the turbine inlet pressure rises.

  10. Household consumption of different generations. Purchase of electric appliances and energy; Hushaallens konsumtion i olika generationer. Inkoep av eldriven hushaallsutrustning och energi

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson-Kanyama, Annika; Stenerus, Ann-Sofie

    2008-02-15

    Considering that energy efficiency is an important task for the future, this study shows to what extent generation affiliation and other household characteristics affect consumption of primarily electrical household appliances and energy. The material used is a number of studies concerning household expenditures as well as average prices for goods and energy. Material from 1958, 1978, 1985, 1995 and 2003-2005 have been used. This report also includes a discussion regarding opportunities for energy efficiency. The term generation is explained in this context and earlier studies with relevance to generation affiliation and energy are summarized. An analysis of consumption habits among different generations highlights that the generations living in Sweden today experienced substantially different consumption opportunities during childhood and youth. Some generations have memories of much lower consumption levels, memories which could be recalled with the right policy instruments. The consumption experiences of the veteran generation are studied from 1958 up to 2003-2005, and this study also includes a comparison between the consumption levels in families with children in the 1950s and today. The current Swedish population have very different frames of reference concerning possible consumption styles. However, no generation would easily accept a more energy efficient lifestyle, because all generations have adapted to the increased consumption opportunities with high mobility and easy access. The analysis of household purchases of electrical appliances is based on information from 6 700 households (2003-2005) and 4 400 households (1985). The results are both surprising and expected. Generation affiliation is important for explaining expenditure levels for equipment for entertainment and information, where the youngest generations spend the most. But there are also differences related to gender as well as differences related to income and dwelling type. The differences

  11. Load following generation in nuclear power plants by latent thermal energy storage

    International Nuclear Information System (INIS)

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  12. Improving the network infeed accuracy of non-dispatchable generators with energy storage devices

    International Nuclear Information System (INIS)

    Koeppel, Gaudenz; Korpaas, Magnus

    2008-01-01

    The power output of generators based on renewable energy sources is often difficult to predict due to the non-deterministic behaviour of the energy source. Particularly in the case of wind turbines this leads to unpredicted line loading and requires balancing energy, at relatively high costs, depending on market structures. Consequently, the income from the production from such non-dispatchable generators can be significantly reduced by the penalty costs incurred. This paper investigates the potential of operating an energy storage device in parallel with the non-dispatchable generator in order to compensate the inaccuracies of the forecasted infeed and to avoid infeed deviations. A time series based simulation methodology is discussed, suitable for any type of non-dispatchable generator. The methodology contains a procedure for simulating different forecast errors, applying an exponentially weighted moving average approach. Analysis procedures and system performance indices are introduced for the evaluation of the configuration's performance. The applicability is shown in two case studies, using measurement data from a wind turbine and from a photovoltaic system. Both case studies show that the suggested configuration considerably improves the reliability or dependability of the network infeed, in turn reducing the demand for balancing energy and back-up generation. The relation between forecast error magnitude and required energy capacity is identified and the coherence of the time series analysis is discussed. (author)

  13. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  14. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gueymard, Christian [Solar Consulting Services, Daytona Beach, FL (United States); Wilbert, Stefan [German Aerospace Center (DLR), Cologne (Germany); Renne, Dave [Dave Renne Renewables, LLC, Boulder, CO (United States)

    2017-12-01

    As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar power plants; however, solar resource information is of particular interest for large installations, because they require substantial investment, sometimes exceeding 1 billion dollars in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. Additionally, with the deployment of large amounts of distributed photovoltaics, there is an urgent need to integrate this source of generation to ensure the reliability and stability of the grid. Forecasting generation from the various sources will allow for larger penetrations of these generation sources because utilities and system operators can then ensure stable grid operations. Developed by the foremost experts in the field who have come together under the umbrella of the International Energy Agency's Solar Heating and Cooling Task 46, this handbook summarizes state-of-the-art information about all the above topics.

  15. Land-Sparing Opportunities for Solar Energy Development in Agricultural Landscapes: A Case Study of the Great Central Valley, CA, United States.

    Science.gov (United States)

    Hoffacker, Madison K; Allen, Michael F; Hernandez, Rebecca R

    2017-12-19

    Land-cover change from energy development, including solar energy, presents trade-offs for land used for the production of food and the conservation of ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development on nonconventional surfaces can mitigate land scarcity is understudied. Here, we evaluate the land sparing potential of solar energy development across four nonconventional land-cover types: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics), within the Great Central Valley (CV, CA), a globally significant agricultural region where land for food production, urban development, and conservation collide. Furthermore, we calculate the technical potential (TWh year -1 ) of these land sparing sites and test the degree to which projected electricity needs for the state of California can be met therein. In total, the CV encompasses 15% of CA, 8415 km 2 of which was identified as potentially land-sparing for solar energy development. These areas comprise a capacity-based energy potential of at least 17 348 TWh year -1 for photovoltaic (PV) and 2213 TWh year -1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy sprawl in agricultural landscapes.

  16. A Study on Energy Security for Electricity Generation in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Fairuz Suzana Mohd Chachuli

    2013-01-01

    The study was analyzed 12 case studies comprises of energy strategies proposed by the Government for electricity generation in Peninsular Malaysia using the simulation by Model for Energy Supply System Alternatives and their General Environmental Impacts (MESSAGE) software for period of year 2009 until 2030. From this study it was found that the appropriate and efficient case study to overcome the energy security issues in Peninsular Malaysia is integrated energy strategies particularly on nuclear energy, electricity import from Sarawak and the development of renewable energy resources. The total expansion cost for the case study is RM19.489 billion with the increament only 3.27 % compared with reference case. The total CO 2 emission for this scenario is 1.825 M tonne with declination up to 27.16 % compared with reference case. Due to limited time and crucial problem on domestic natural gas supply to the power generation industry, the Government should formulate a comprehensive energy strategy to support the mission of Malaysia to become one of the developed country and high income country by year 2020. (author)

  17. Photovoltaic energy mini-generation: Future perspectives for Portugal

    International Nuclear Information System (INIS)

    Carvalho, Duarte; Wemans, Joao; Lima, Joao; Malico, Isabel

    2011-01-01

    This paper evaluates the benefits of developing the mini-generation PV market in Portugal. It presents the legal framework and current status of the Portuguese PV electricity sector, and compares the country to other European nations: France, Germany, Greece, Italy, Spain and the United Kingdom. A model that combines PVGIS with a self-developed financial tool is used to assess the feasibility of a 150 kW mini-generation system using five different technologies: fixed mount, single-axis tracking, double-axis tracking, low concentration and medium concentration (MCPV). The profitability of the mini-generation systems in the seven countries studied is calculated and compared. According to this analysis, MCPV and, of the conventional technologies, the single-axis tracking systems are the most profitable technologies. Despite the attractiveness of the current Portuguese feed-in tariffs and of the abundant solar resource, investors are discouraged and the country's PV market is far from mature. Specific mini-generation regulations should focus on a fast and transparent licensing procedure and should promote the access to financing. This would attract new investments, which would result in the growth of the PV electricity produced, and would help Portugal to meet its European Union Renewable Energy targets. - Highlights: → This work promotes the development of a mini-generation PV market in Portugal. → The Portuguese current status and legal framework is compared to other EU countries. → The profitability of 5 different PV technologies is compared for 7 European countries. → The Portuguese growth potential for PV energy is still big. → Portugal, due to its radiation levels, presents excellent investment opportunities.

  18. Molten Salt: Concept Definition and Capital Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Larry [Black & Veatch, Kansas City, MO (United States); Andrew, Daniel [Black & Veatch, Kansas City, MO (United States); Adams, Shannon [Black & Veatch, Kansas City, MO (United States); Galluzzo, Geoff [Black & Veatch, Kansas City, MO (United States)

    2016-06-30

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO2

  19. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    Science.gov (United States)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  20. Stochastic techno-economic assessment based on Monte Carlo simulation and the Response Surface Methodology: The case of an innovative linear Fresnel CSP (concentrated solar power) system

    International Nuclear Information System (INIS)

    Bendato, Ilaria; Cassettari, Lucia; Mosca, Marco; Mosca, Roberto

    2016-01-01

    Combining technological solutions with investment profitability is a critical aspect in designing both traditional and innovative renewable power plants. Often, the introduction of new advanced-design solutions, although technically interesting, does not generate adequate revenue to justify their utilization. In this study, an innovative methodology is developed that aims to satisfy both targets. On the one hand, considering all of the feasible plant configurations, it allows the analysis of the investment in a stochastic regime using the Monte Carlo method. On the other hand, the impact of every technical solution on the economic performance indicators can be measured by using regression meta-models built according to the theory of Response Surface Methodology. This approach enables the design of a plant configuration that generates the best economic return over the entire life cycle of the plant. This paper illustrates an application of the proposed methodology to the evaluation of design solutions using an innovative linear Fresnel Concentrated Solar Power system. - Highlights: • A stochastic methodology for solar plants investment evaluation. • Study of the impact of new technologies on the investment results. • Application to an innovative linear Fresnel CSP system. • A particular application of Monte Carlo simulation and response surface methodology.

  1. Implementing China's national energy conservation policies at state-owned electric power generation plants

    International Nuclear Information System (INIS)

    Zhao Xiaofan; Ortolano, Leonard

    2010-01-01

    China's 11th Five-Year Guideline identified energy conservation as one of the country's fundamental policies and established a mandatory target: 20% reduction in national average energy intensity by 2010. Despite the various policies, laws, and administrative reforms to support energy conservation, China fell behind schedule for meeting its conservation targets in 2006 and 2007. Using a combination of available literature and an interview-based case study, this paper examines the implementation of energy conservation and investigates impediments to achieving China's conservation goal in the electric power generation sector. Three key impediments are detailed: (1) municipal governments' incentives to overlook conservation-related central directives primarily because of budget pressures linked to financial decentralization, (2) procedural obstacles in the form of time required to obtain project approvals for high-efficiency power generation units, and (3) financial obstacles making it difficult for power generation enterprises to raise capital for energy conservation projects. An interview-based case study of a state-owned coal-fired electric power generation company demonstrates the influence of the aforementioned obstacles. While procedural obstacles are notable, they can be managed. However, electricity pricing reforms and/or stronger subsidy programs will be needed to address the financial obstacles facing Chinese power generation companies.

  2. Regulatory actions to expand the offer of distributed generation from renewable energy sources in Brazil

    International Nuclear Information System (INIS)

    Pepitone da Nóbrega, André; Cabral Carvalho, Carlos Eduardo

    2015-01-01

    The composition of the Brazilian electric energy matrix has undergone transformations in recent years. However, it has still maintained significant participation of renewable energy sources, in particular hydropower plants of various magnitudes. Reasons for the growth of other renewable sources of energy, such as wind and solar, include the fact that the remaining hydropower capacity is mainly located in the Amazon, which is far from centers of consumption, the necessity of diversifying the energy mix and reducing dependence on hydrologic regimes, the increase in environmental restrictions, the increase of civil construction and land costs.Wind power generation has grown most significantly in Brazil. Positive results in the latest energy auctions show that wind power generation has reached competitive pricing. Solar energy is still incipient in Brazil, despite its high potential for conversion into electric energy. This energy source in the Brazilian electric energy matrix mainly involves solar centrals and distributed generation. Biomass thermal plants, mainly the ones that use bagasse of sugar cane, also have an important role in renewable generation in Brazil.This paper aims to present an overview of the present situation and discuss the actions and the regulations to expand the offer of renewable distributed generation in Brazil, mainly from wind power, solar and biomass energy sources. (full text)

  3. Turbulence generation through intense localized sources of energy

    Science.gov (United States)

    Maqui, Agustin; Donzis, Diego

    2015-11-01

    Mechanisms to generate turbulence in controlled conditions have been studied for nearly a century. Most common methods include passive and active grids with a focus on incompressible turbulence. However, little attention has been given to compressible flows, and even less to hypersonic flows, where phenomena such as thermal non-equilibrium can be present. Using intense energy from lasers, extreme molecule velocities can be generated from photo-dissociation. This creates strong localized changes in both the hydrodynamics and thermodynamics of the flow, which may perturb the flow in a way similar to an active grid to generate turbulence in hypersonic flows. A large database of direct numerical simulations (DNS) are used to study the feasibility of such an approach. An extensive analysis of single and two point statistics, as well as spectral dynamics is used to characterize the evolution of the flow towards realistic turbulence. Local measures of enstrophy and dissipation are studied to diagnose the main mechanisms for energy exchange. As commonly done in compressible flows, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Further results for cases that assimilate laboratory conditions will be discussed. The authors gratefully acknowledge the support of AFOSR.

  4. Renewable energy technologies for electricity generation

    International Nuclear Information System (INIS)

    Thorpe, T.W.

    1993-01-01

    The output of electricity supplied by some renewable sources cannot be easily predicted in advance because of their dependence on naturally varying phenomena (e.g. wind or sunshine). To accommodate this variability within the grid, additional amounts of conventional plant might be maintained in reserve, which would add to the overall system cost. This paper examines some aspects of renewable energy technologies for electricity generation as well as factors to be considered in the incorporation of renewables within a grid. 7 refs, 3 figs, 2 tabs

  5. Study on generation investment decision-making considering multi-agent benefit for global energy internet

    Science.gov (United States)

    Li, Pai; Huang, Yuehui; Jia, Yanbing; Liu, Jichun; Niu, Yi

    2018-02-01

    Abstract . This article has studies on the generation investment decision in the background of global energy interconnection. Generation investment decision model considering the multiagent benefit is proposed. Under the back-ground of global energy Interconnection, generation investors in different clean energy base not only compete with other investors, but also facing being chosen by the power of the central area, therefor, constructing generation investment decision model considering multiagent benefit can be close to meet the interests demands. Using game theory, the complete information game model is adopted to solve the strategies of different subjects in equilibrium state.

  6. Next generation solar energy. From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the International Conference between 12th and 14th December, 2011 in Erlangen (Federal Republic of Germany) the following lectures were presented: (1) The opto-electronic physics required to approach the Shockley-Queisser efficiency limit (E. Yablonovitch); (2) The Shockley-Queisser-limit and beyond (G.H. Bauer); (3) Designing composite nanomaterials for photovoltaic devices (B. Rech); (4) Light-Material interactions in energy conversion (H. Atwater); (5) Functional imaging of hybrid nanostructures - Visualizing mechanisms of solar energy utilization (L. Lauhon); (6) Are photosynthetic proteins suitable for PV applications (Y. Rosenwaks); (7) Detailed balance limit in photovoltaic systems (U. Rau); (8) Plasmonics and nanophotonics for next generation photovoltaics (E. Garnett); (9) Dispersion, wave propagation and efficiency analysis of nanowire solar cells (B. Witzigmann); (10) Application of nanostructures to next generation photovoltaics - Opportunities and challenges from an industrial research perspective (L. Tsakalakos); (11) Triplet states in organic and organometallic photovoltaic cells (K.S. Schanze); (12) New photoelectrode architectures (J.T. Hupp); (13) Dendrimers for optoelectronic and photovoltaic applications (P. Ceroni); (14) Photon management with luminescent materials (J. Goldschmidt); (15) Economical aspects of next generation solar cell technologies (W. Hoffmann); (16) Scalability in solar energy conversion - First-row transition metal-based chromophores for dye-sensitized solar cells (J. McCusker); (17) Designing organic materials for photovoltaic devices (A. Harriman); (18) Molecular photovoltaics - What can we learn from model studies (B. Albinsson); (19) Porphyrin-sensitised titanium dioxide solar cells (D. Officer); (20) Light-harvesting: Charge separation, and charge-transportation properties of novel materials for organic photovoltaics (H. Imahori); (21) Phthalocyanines for molecular photovoltaics (T. Torres); (22) Photophysics of

  7. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    Science.gov (United States)

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  8. In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles

    Science.gov (United States)

    Ali, H. K.; Braun, R. D.

    2014-06-01

    This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.

  9. Building generation four: results of Canadian research program on generation IV energy technologies

    International Nuclear Information System (INIS)

    Anderson, T.; Leung, L.K.H.; Guzonas, D.; Brady, D.; Poupore, J.; Zheng, W.

    2014-01-01

    A collaborative grant program has been established between Natural Sciences and Engineering Research Council (NSERC) of Canada, Natural Resources Canada (NRCan), and Atomic Energy of Canada Limited (AECL) to support research and development (R&D) for the Canadian SuperCritical Water-cooled Reactor (SCWR) concept, which is one of six advanced nuclear reactor systems being studied under the Generation-IV International Forum (GIF). The financial support for this grant program is provided by NSERC and NRCan. The grant fund has supported university research investigating the neutronic, fuel, thermal-hydraulics, chemistry and material properties of the Canadian SCWR concept. Twenty-two universities have actively collaborated with experts from AECL Nuclear Laboratories and NRCan's CanmetMATERIALS (CMAT) Laboratory to advance the technologies, enhance their infrastructure, and train highly qualified personnel. Their R&D findings have been contributed to GIF fulfilling Canada's commitments. The unique collaborative structure and the contributions to Canada's nuclear science and technology of the NSERC/NRCan/AECL Generation IV Energy Technologies Program are presented. (author)

  10. Next-generation reactors in the national energy strategy

    International Nuclear Information System (INIS)

    McGoff, D.J.

    1991-01-01

    In February 1991, the Bush Administration released the National Energy Strategy designed to provide an adequate and balanced energy supply. The strategy provides for major increases in energy efficiency and conservation. Even with these savings, however, there will be a need for substantial increases in base-load electrical generating capacity to sustain economic growth. The strategy identifies the actions required to allow nuclear power to cleanly and safely meet a substantial portion of this needed additional base-load capacity after the turn of the century. On June 27, 1991, the US Department of Energy (DOE) transmitted to Congress the Strategic Plan for Civilian Reactor Development, which reflects the initiative identified in the National Energy Strategy. The strategic plan identifies the advanced light water reactor (ALWR) as the basis for expanded use of nuclear power. The second advanced reactor concept that is being pursued is the modular high-temperature gas-cooled reactor (MHTGR)

  11. Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems

    International Nuclear Information System (INIS)

    Chen, Jun; Rabiti, Cristian

    2017-01-01

    Hybrid energy systems consisting of multiple energy inputs and multiple energy outputs have been proposed to be an effective element to enable ever increasing penetration of clean energy. In order to better understand the dynamic and probabilistic behavior of hybrid energy systems, this paper proposes a model combining Fourier series and autoregressive moving average (ARMA) to characterize historical weather measurements and to generate synthetic weather (e.g., wind speed) data. In particular, Fourier series is used to characterize the seasonal trend in historical data, while ARMA is applied to capture the autocorrelation in residue time series (e.g., measurements with seasonal trends subtracted). The generated synthetic wind speed data is then utilized to perform probabilistic analysis of a particular hybrid energy system configuration, which consists of nuclear power plant, wind farm, battery storage, natural gas boiler, and chemical plant. Requirements on component ramping rate, economic and environmental impacts of hybrid energy systems, and the effects of deploying different sizes of batteries in smoothing renewable variability, are all investigated. - Highlights: • Computational model to synthesize artificial wind speed data with consistent characteristics with database. • Fourier series to capture seasonal trends in the database. • Monte Carlo simulation and probabilistic analysis of hybrid energy systems. • Investigation of the effect of battery in smoothing variability of wind power generation.

  12. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    Science.gov (United States)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-11-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.

  13. Promoting energy-saving and environmentally friendly generation dispatching model in China: Phase development and case studies

    DEFF Research Database (Denmark)

    Ding, Yi; Yang, Hongliang

    2013-01-01

    Energy saving and environmental protection are important conditions for the sustainable development of Chinese economy. However current widely used generation scheduling model based on predefined production quota and tariff results in heavy energy consumption and severe environment pollution. From...... 2007, as concerns over energy shortage and environmental pollution, the Chinese authorities introduced the implementation of energy-saving generation dispatching model, which is an important approach to facilitating energy-saving and reduction of pollutant emission. The objective of implementing energy......-saving generation dispatching model is to prioritize the use of renewable energy resources and new power plants with high efficiency without compromising power system security and reliability. This paper analyzes the necessity and feasibility of implementing energy-efficient and environmentally friendly generation...

  14. Second generation wave energy device - the clam concept

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.

    1981-01-01

    A device concept is presented which has arisen from a system approach adopted by a research group with considerable experience in the discipline of wave energy. The Clam, which can be classified as a spine-based pneumatic terminator, is deemed to be a second generation wave energy device in that it tries to utilize system components already identified as attractive, while at the same time avoiding known problem areas. A working model of this wave power device at an engineering scale is discussed for trials in real waves. 3 refs.

  15. Does Renewable Energy Still Need Subsidy

    Directory of Open Access Journals (Sweden)

    Dr. Eng. Mohamed Mostafa El Khayat

    2017-12-01

    Full Text Available For many decades, it has been stated that renewable energy, RE, needs subsidy, otherwise it will not be able to compete or sustain. For a certain level, this statement was valid. In this period, the investment costs for both wind and photovoltaic, PV, were high. In other words, production costs of both of them reached around 7.0 and 13.0 Cent US$ per kWh. On the other hand, oil and natural gas, NG, prices were low; i.e. less than US$ 30.0 per oil barrel and around US$ 4.0 per million British thermal unit, MMBTU, of NG. Also, policies of promoting RE were limited; almost there are two main policies, Feed-in-Tariff, FiT, in limited developed countries and international tenders. As a result, investment in RE was usually led by developed countries and minor share from the developing countries. This was the scene of RE before around 10 years. Nowadays, the scene of RE totally differs. Starting from the policies side, through auctions in both solar and wind energies, new records of prices have been reached. In numbers, in the field of wind energy Morocco and Egypt already signed contracts with prices lower than 4.0 US$ Cents/kWh. For PV, there is a dramatic devaluation in the prices. Now we are speaking for less than 0.7 million US$ per MW for turnkey projects. As a result, during the last couple of years, the global RE market witnessed a bundle of an outstanding prices, El-Sewihan Project at Abu Dhabi, 2.42 US$ Cent/kWh. Mexico and Dubai projects, 3.6 and 3.0 US$ Cent/kWh. Few days ago, Dubai Electricity and Water Authority, DEWA, received $9.45 cents per kilowatt-hour for its 200MW concentrated solar power (CSP plant. All these figures, and others, gave us important messages; 1 Despite low prices of oil and NG, RE is able to compete and offer outstanding prices, 2 Wind and PV technologies do not need any kind of subsidy, rather than they need a real free market to compete, 3 CSP is a low hanging fruit and it will witness a frog-leap during the

  16. Main influence factors on the final energy generation cost of a nuclear power plant in comparison with other energy sources

    International Nuclear Information System (INIS)

    Souza, J.A.M. de; Glardon, C.; Schmidt, R.M.

    1981-01-01

    The main factors in the construction and in the operation of nuclear power plants that affect the final energy generation cost are presented. The structure of the energy generation cost, of the nuclear fuel cost and the total investment are studied. (E.G.) [pt

  17. Generating energy dependent neutron flux maps for effective ...

    African Journals Online (AJOL)

    For activation analysis and irradiation scheme of miniature neutron source reactor, designers or engineers usually require information on thermal neutron flux levels and other energy group flux levels (such as fast, resonance and epithermal). A methodology for readily generating such flux maps and flux profiles for any ...

  18. Estimates of the generation of available potential energy by infrared radiation

    Science.gov (United States)

    Hansen, A. R.; Nagle, R. L.

    1984-01-01

    Data from the National Meteorological Center and net outgoing infrared radiation (IR) data measured by NOAA satellites for January 1977 are used to compute estimates of the spectral and spatial contributions to the net generation of available potential energy in the Northern Hemisphere due to infrared radiation. Although these estimates are necessarily crude, the results obtained indicate that IR causes destruction of both zonal and eddy available potential energy. The contributions from midlatitudes to the zonal and eddy generation are about -5.0 W/sq m and about -0.6 W/sq m, respectively. The eddy generation is due almost entirely to stationary wavenumbers one and two. Comparison with earlier studies and computation of Newtonian cooling coefficients are discussed.

  19. Small Distributed Renewable Energy Generation for Low Voltage Distribution Networks

    Directory of Open Access Journals (Sweden)

    Chindris M.

    2016-08-01

    Full Text Available Driven by the existing energy policies, the use of renewable energy has increased considerably all over the world in order to respond to the increasing energy consumption and to reduce the environmental impact of the electricity generation. Although most policy makers and companies are focusing on large applications, the use of cheap small generation units, based on local renewable resources, has become increasingly attractive for the general public, small farms and remote communities. The paper presents several results of a research project aiming to identify the power quality issues and the impact of RES based distributed generation (DG or other non-linear loads on low voltage (LV distribution networks in Romania; the final goal is to develop a Universal Power Quality Conditioner (UPQC able to diminish the existing disturbances. Basically, the work analyses the existing DG technologies and identifies possible solutions for their integration in Romania; taking into account the existent state of the art, the attention was paid on small systems, using wind and solar energy, and on possibility to integrate them into suburban and rural LV distribution networks. The presence of DG units at distribution voltage level means the transition from traditional passive to active distribution networks. In general, the relatively low penetration levels of DG does not produce problems; however, the nowadays massive increase of local power generation have led to new integration challenges in order to ensure the reliability and quality of the power supply. Power quality issues are identified and their assessment is the key element in the design of measures aiming to diminish all existing disturbances.

  20. Electricity generation: regulatory mechanisms to incentive renewable alternative energy sources in Brazil

    International Nuclear Information System (INIS)

    Cavaliero, Carla Kazue Nakao; Silva, E.P. da

    2005-01-01

    The dissemination of renewable alternative energy sources for electricity generation has always being done through regulatory mechanisms, created and managed by the government of each country. Since these sources are more costly to generate, they have received incentives in response to worldwide environmental concerns, above all with regard to the reduction of CO 2 emissions. In Brazil, the electricity generation from renewable alternative sources is experiencing a new phase of growth. Until a short time ago, environmental appeal was the strongest incentive to these sources in Brazil but it was insufficient to attain its objective. With the electricity crisis and the rationing imposed in 2001, another important factor gained awareness: the need to diversify energy sources. Within this context, this work has the objective of analyzing the regulatory mechanisms recently developed to stimulate electricity generation from renewable alternative energy sources in Brazil by following the experience of other countries such as the United States, United Kingdom and Germany

  1. Design and Implementation of a Control Strategy for Microgrid Containing Renewable Energy Generations and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mingchao Xia

    2013-01-01

    Full Text Available Large amount of such renewable energy generations as wind/photovoltaic generations directly connected to grid acting as distributed generations will cause control, protection, security, and safety problems. Microgrid, which has advantages in usage and control of distributed generations, is a promising approach to coordinate the conflict between distributed generations and the grid. Regarded as mobile power storages, batteries of electric vehicles can depress the fluctuation of power through the point of common coupling of microgrid. This paper presents a control strategy for microgrid containing renewable energy generations and electric vehicles. The control strategy uses current control for renewable energy generations under parallel-to-grid mode, and uses master-slave control under islanding mode. Simulations and laboratory experiments prove that the control strategy works well for microgrid containing renewable energy generations and electric vehicles and provides maximum power output of renewable energy and a stable and sustainable running under islanding mode.

  2. The state of solar energy resource assessment in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Alberto; Escobar, Rodrigo [Mechanical and Metallurgical Engineering Department, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago (Chile); Colle, Sergio [Laboratorios de Engenharia de Processos de Conversao e Tecnologia de Energia - LEPTEN, Mechanical Engineering Department, Universidade Federal de Santa Catarina, Florianopolis (Brazil); de Abreu, Samuel Luna [IFSC - Instituto Federal de Santa Catarina, Campus Sao Jose, Sao Jose - SC (Brazil)

    2010-11-15

    The Chilean government has determined that a renewable energy quota of up to 10% of the electrical energy generated must be met by 2024. This plan has already sparked interest in wind, geothermal, hydro and biomass power plants in order to introduce renewable energy systems to the country. Solar energy is being considered only for demonstration, small-scale CSP plants and for domestic water heating applications. This apparent lack of interest in solar energy is partly due to the absence of a valid solar energy database, adequate for energy system simulation and planning activities. One of the available solar radiation databases is 20-40 years old, with measurements taken by pyranographs and Campbell-Stokes devices. A second database from the Chilean Meteorological Service is composed by pyranometer readings, sparsely distributed along the country and available from 1988, with a number of these stations operating intermittently. The Chilean government through its National Energy Commission (CNE) has contracted the formulation of a simulation model and also the deployment of network of measurement stations in northern Chile. Recent efforts by the authors have resulted in a preliminary assessment by satellite image processing. Here, we compare the existing databases of solar radiation in Chile. Monthly mean solar energy maps are created from ground measurements and satellite estimations and compared. It is found that significant deviation exists between sources, and that all ground-station measurements display unknown uncertainty levels, thus highlighting the need for a proper, country-wide long-term resource assessment initiative. However, the solar energy levels throughout the country can be considered as high, and it is thought that they are adequate for energy planning activities - although not yet for proper power plant design and dimensioning. (author)

  3. Clean generation of electric energy; Generacion limpia de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M.; Torres, Emmanuel [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Unidad Guadalajara (Mexico)

    2006-10-15

    This article deals on the existing alternatives of renewable energy for generation of electricity free from polluting sequels within the Mexican territory and presents a global overview on the electricity generation in Mexico. Wind power, hydraulic energy, biomass, photovoltaic and fuel cells are sources of renewable energy that could contribute to Mexico's sustainable development, for this reason it is discussed on the main sources of renewable energy in Mexico - solar and wind energy, mini-hydraulic, biomass and geothermal -, on their development and evolution, cost, insertion projects and obstacles for their correct development in this country. [Spanish] Este articulo versa sobre las alternativas de energia renovable existentes para una generacion de electricidad libre de secuelas contaminantes dentro del territorio mexicano y presenta un panorama global sobre la generacion de electricidad en Mexico. La energia eolica, hidraulica, biomasa, fotovoltaica y las celdas de combustible son fuentes de energia renovable que podrian contribuir al desarrollo sustentable de Mexico, por esto se arguye sobre las principales fuentes de energia renovable en Mexico -energia solar, eolica, minihidraulica, biomasa y geotermia-, sobre su desarrollo y evolucion, costo, proyectos de insercion y obstaculos para su correcto desarrollo en ese pais.

  4. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  5. Wave Energy Converters based on Dielectric Elastomer generators: Status and perspectives

    International Nuclear Information System (INIS)

    Fontana, Marco; Vertechy, Rocco

    2015-01-01

    Dielectric Elastomers (DEs) are a very promising technology for the development of energy harvesting devices based on the variable-capacitance electrostatic generator principle. This paper discusses the potentialities of DE technology for advancing the ocean wave energy sector. In particular, three innovative concepts of wave energy converters with DE-based power take-off system are introduced and described.

  6. Tri-generation based hybrid power plant scheduling for renewable resources rich area with energy storage

    International Nuclear Information System (INIS)

    Pazheri, F.R.

    2015-01-01

    Highlights: • Involves scheduling of the tri-generation based hybrid power plant. • Utilization of renewable energy through energy storage is discussed. • Benefits of the proposed model are illustrated. • Energy efficient and environmental friendly dispatch is analyzed. • Modeled scheduling problem is applicable to any fuel enriched area. - Abstract: Solving power system scheduling is crucial to ensure smooth operations of the electric power industry. Effective utilization of available conventional and renewable energy sources (RES) by tri-generation and with the aid of energy storage facilities (ESF) can ensure clean and energy efficient power generation. Such power generation can play an important role in countries, like Saudi Arabia, where abundant fossil fuels (FF) and renewable energy sources (RES) are available. Hence, effective modeling of such hybrid power systems scheduling is essential in such countries based on the available fuel resources. The intent of this paper is to present a simple model for tri-generation based hybrid power system scheduling for energy resources rich area in presence of ESF, to ensure optimum fuel utilization and minimum pollutant emissions while meeting the power demand. This research points an effective operation strategy which ensure a clean and energy efficient power scheduling by exploiting available energy resources effectively. Hence, it has an important role in current and future power generation. In order to illustrate the benefits of the presented approach a clean and energy efficient hybrid power supply scheme for King Saud University (KSU), Saudi Arabia, is proposed and analyzed here. Results show that the proposed approach is very suitable for KSU since adequate solar power is available during its peak demand periods

  7. Presence of renewable sources of energy, cogeneration, energy efficiency and distributed generation in the International Nuclear Information System (INIS)

    International Nuclear Information System (INIS)

    Pares Ferrer, Marianela; Oviedo Rivero, Irayda; Gonzalez Garcia, Alejandro

    2011-01-01

    The International Nuclear Information System (INIS) it was created in 1970 by the International Atomic Energy Agency (OIEA) with the objective of propitiating the exchange of scientific information and technique on the peaceful uses of the energy atomic. INIS processes most of scientific literature and technique in engineering matters nuclear, safeguard and non proliferation and applications in agriculture and health that it generates in the world and it contributes to create a repository of nuclear information for present and future generations. Additionally it includes economic aspects and environmental of other energy sources that facilitate comparative studies for the taking of decisions. The database INIS, is its main informative product and it counts with more than 3 million registrations. One of the services that lends the Center of Administration of the Information and Development of the Energy (CUBAENERGIA), like center INIS in Cuba, is the search of information on the peaceful use of the science and nuclear technology in the Countries Members and the registration of information on their applications in Cuba. More recently, it extends this service to the Renewable Sources application of Energy in the country; as part of the works of administration of the information that it carries out for the National Group of Renewable Energy, Cogeneration, Saving and Energy Efficiency, created in the 2007 and coordinated by the MINBAS with the participation of institutions belonging to Organisms of the Administration Central of the State. In this work the results of a preliminary study are presented on the witnesses in the INIS of the Renewable Sources of Energy, the Cogeneration, Energy Efficiency, and the Distributed Generation. As well as of the application of metric tools to the opposing registrations for the case of the Distributed generation, that which allowed to characterize their historical evolution, the participation for countries in their development and

  8. Risk and cost comparison of energy technologies for central electric power generation

    International Nuclear Information System (INIS)

    Sterrett, D.H.

    1980-01-01

    An evaluation of nuclear energy as it relates to alternative sources of electric power generation is presented. Citing Duke Power Company's Oconee Nuclear Station, the nuclear option in the past was the obvious choice. Today it is still the preferred alternative both economically and because of increasing environmental concerns over other energy alternatives. Public acceptance of nuclear generation, following Three Mile Island, remains a significant hurdle in its path

  9. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Science.gov (United States)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  10. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Directory of Open Access Journals (Sweden)

    Bieniek Andrzej

    2017-01-01

    Full Text Available The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 ms-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  11. 风能、光伏发电与储能%Wind energy,photovoltaic generation and energy-storage

    Institute of Scientific and Technical Information of China (English)

    王金良

    2009-01-01

    发展可再生能源对满足能源需求、减少环境污染和促进经济可持续发展具有重大意义.总结了全球风能、太阳能发电产业的发展:详细分析了中国风能和光伏发电的现状、市场分布和发展目标.储能是风能、光伏发电系统的重要组成部分,阐述了储能电源的技术要求,蓄电池储能仍是目前最成熟、最可靠的储能技术;风能、太阳能发电产业的高速发展将为储能电池和储能技术的发展带来新的市场和机会:开发新型储能电源和技术将成为今后电池业界的研究热点.%It's significant that developing the renewable energy to meet the energy demands, reducing environmental pollution and accelerating the sustainable economic development. The global progresses of power generation industry with wind energy and solar energy were summarized in this paper. The status market distribution and development goal of wind energy and solar energy in China were analyzed in detail. Energy-storage is an important part of power generation systems in wind energy and solar energy. The technical demands of energy-storage power sources were represented. At present, energy-storage with secondary batteries was the most mature and credible ways. The rapid development of power generation industry with wind energy and solar energy would bring new markets and opportunities for energy-storage batteries and technique. The development of new type of storage power sources and techniques would be the research hotspots in the field of battery industries in the future.

  12. Potential for wind energy generation and conversion for rural application: a case study for Ada

    International Nuclear Information System (INIS)

    Ayensu, A.; Lawluv, H.

    2001-01-01

    One major indicator of achieving the goals of Vision 2020 is an increased energy use per head, which had a 1993 value of 93 koe (kilograms of oil equivalent) as compared to 299 koe for the least developed middle income nation, and 5,563 koe for Singapore. To satisfy this energy requirement, all potential sources of energy must be harnessed and most importantly, the private sector's involvement in off-grid electric power generation must be encouraged. A cost-benefit analysis, energy payback time and energy ratios have been determined to assess the potential of wind energy generation and conversation at Ada; which has a mean monthly wind speed of 6.23 m/s at a height of 30 m and considered to be adequate to run a small to medium sized wind turbine to generate about 28 kW. The proposal is to install a prototype aero generation system for a small community isolated from the national grid line, and is aimed at demonstrating how a renewable, non-pollutant and independent power source, transformed by means of advanced technology can achieve energy self sufficiency for the community, while avoiding negative impacts on the environment and ensuring cost-effectiveness. The system will consist of an aero-generation unit, storage system and demand electric consumption. The generator will supply the power to batteries through a load rectifier/governor for storage. The demand in electric consumption can be supplied in DC by accumulators or AC by current inverter. The technical features proposed for the aero generation system is a 20 - 30 kW maximum power turbine, a 24 V capacity battery delivery 1625 Ah in 100 h, two charger inverter units connected in parallel with AC synchronized outlet for consumption. The outlet power of each inverter will be 2400 W DC and the estimated time to complete battery load power unit will be 12 h. The projected cost of electricity generated by an optimized scheme is estimated to be 9 cents/kWh, as compared with photovoltaic generation at 5 - 14

  13. Investments in electricity generation in Croatian liberalized market: energy option

    International Nuclear Information System (INIS)

    Androcec, I.; Viskovic, A.; Slipac, G.

    2004-01-01

    The Republic of Croatia should have enough capacities built on its own territory to cover system's peak load at any time for ensuring a long-term reliability of its operation. According to annual increasing of electricity consumption and progressive shutdown of the oldest generating plants, the security of future electricity supply depends on new investments. The market, i.e. a competitive generation, is the driving force in the construction of new power plants. The main stimulus for the construction is the possibility of definite return of invested capital and enabling potential investors to realize the expected revenues (profit). The construction of generating capacities is subject of authorisation procedure or tendering procedure, by approval of the Energy Regulatory Council. The electricity market opening in Croatia is parallel process with establishment of regional energy market in South East Europe where the decision of investment in new power plant will be defined by regional investment priorities, all in the aspect of European Union enlargement. In those liberalisation conditions it is necessary to realize all possible energy options according to the Strategy of Energy Development of Republic of Croatia and to the regional energy market requirements or European Union Directives. New power plant will be realized, because of objective circumstances, through construction of gas power plant or coal power plant and possible nuclear power plant, and in much smaller size through construction of hydro power plants or power plants on renewable energy sources. The possibility of any energy option will be considered in view of: investment cost, operation and maintenance cost, fuel price, external costs, public influence, and through investor's risk. This paper is aiming to analyse the possibility of nuclear power plant construction in Croatia as well as in other small and medium electricity grids. Nuclear option will be comprehensively considered in technical

  14. Passive energy jitter reduction in the cascaded third harmonic generation process

    International Nuclear Information System (INIS)

    Yan, L; Du, Y; You, Y; Sun, X; Wang, D; Hua, J; Shi, J; Lu, W; Huang, W; Chen, H; Tang, C; Huang, Z

    2014-01-01

    In free electron laser (FEL) systems with ultraviolet (UV) laser driven injectors, a highly stable UV source generated through cascaded third harmonic generation (THG) from an infrared (IR) source is a key element in guaranteeing the acceptable current jitter at the undulator. In this letter, the negative slope of the THG efficiency for high intensity ultrashort IR pulses is revealed to be a passive stabilization mechanism for energy jitter reduction in UV. A reduction of 2.5 times the energy jitter in UV is demonstrated in the experiment and simulations show that the energy jitter in UV can be reduced by more than one order of magnitude if the energy jitter in IR is less than 3%, with proper design of the THG efficiency curve, fulfilling the challenging requirement for UV laser stability in a broad scope of applications such as the photoinjector of x-ray FELs. (letter)

  15. The potential of nuclear energy to generate clean electric power in Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S.

    2013-01-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  16. Online Energy Management System for Distributed Generators in a Grid-Connected Microgrid

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2015-01-01

    A microgrid is an energy subsystem composed of generation units, energy storage, and loads that requires power management in order to supply the load properly according to defined objectives. This paper proposes an online energy management system for a storage based grid-connected microgrid...

  17. Provincial panel: addressing emerging energy constraints and new strategies to meet future generation demand

    International Nuclear Information System (INIS)

    Clarkson, J.

    2006-01-01

    This paper addresses emerging energy constraints and new strategies to meet future generation demand in the Province of Manitoba. The focus is to reduce reliance on energy sources that emit greenhouse gases such as petroleum, natural gas and coal, and increase clean and green electricity. The current plan is to double hydro generation, achieve 1000 MW wind power and utilize bio energy

  18. Modeling of damage generation mechanisms in silicon at energies below the displacement threshold

    International Nuclear Information System (INIS)

    Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes

    2006-01-01

    We have used molecular dynamics simulation techniques to study the generation of damage in Si within the low-energy deposition regime. We have demonstrated that energy transfers below the displacement threshold can produce a significant amount of damage, usually neglected in traditional radiation damage calculations. The formation of amorphous pockets agrees with the thermal spike concept of local melting. However, we have found that the order-disorder transition is not instantaneous, but it requires some time to reach the appropriate kinetic-potential energy redistribution for melting. The competition between the rate of this energy redistribution and the energy diffusion to the surrounding atoms determines the amount of damage generated by a given deposited energy. Our findings explain the diverse damage morphology produced by ions of different masses

  19. Wing/kite-based wind energy generation: An overview

    Science.gov (United States)

    Milanese, M.

    2013-06-01

    Several technologies, aimed at converting high-altitude wind into electricity, are actually being investigated by companies, research centers and universities worldwide, and the community of people working in this field has coined the term airborne wind energy (AWE) as a common umbrella for these concepts. Indeed, many basic ideas that are now being developed in the context of AWE were already present in patents and publications since the '70s. Then, these ideas remained somehow silent, until more recent years, when several research groups and companies started to carry out theoretical, numerical and experimental analyses, made possible by important advances in diverse fields like materials, aerodynamics, sensors, computation and control. In this lecture, the basic AWE concepts and results that have been up to date accomplished are overviewed, with a focus on a particular class of AWE generators, namely with flexible wings and ground level generators, and emphasis on optimization and control aspects. Finally, we delineate what challenges are still to be faced, in order to fully demonstrate the viability of airborne wind energy.

  20. Offshore Hydrokinetic Energy Conversion for Onshore Power Generation

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi

    2009-01-01

    Design comparisons have been performed for a number of different tidal energy systems, including a fully submerged, horizontal-axis electro-turbine system, similar to Verdant Tidal Turbines in New York's East River, a platform-based Marine Current Turbine, now operating in Northern Ireland's Strangford Narrows, and the Rotech Lunar Energy system, to be installed off the South Korean Coast. A fourth type of tidal energy system studied is a novel JPL/Caltech hydraulic energy transfer system that uses submerged turbine blades which are mechanically attached to adjacent high-pressure pumps, instead of to adjacent electrical turbines. The generated highpressure water streams are combined and transferred to an onshore hydroelectric plant by means of a closed-cycle pipeline. The hydraulic energy transfer system was found to be cost competitive, and it allows all electronics to be placed onshore, thus greatly reducing maintenance costs and corrosion problems. It also eliminates the expenses of conditioning and transferring multiple offshore power lines and of building offshore platforms embedded in the sea floor.