WorldWideScience

Sample records for crystallography uv spectroscopy

  1. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  2. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    CERN Document Server

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  3. Relative stability of protein structures determined by X-ray crystallography or NMR spectroscopy : A molecular dynamics simulation study

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    2003-01-01

    The relative stability of protein structures determined by either X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy has been investigated by using molecular dynamics simulation techniques. Published structures of 34 proteins containing between 50 and 100 residues have been

  4. UV Spectroscopy of Lucy Mission Targets

    Science.gov (United States)

    Thomas, Cristina

    2017-08-01

    The Trojan asteroids are a significant population of primitive bodies trapped in Jupiter's stable L4 and L5 Lagrange regions. Their physical properties and existence in these particular orbits constrain the chemical and dynamical processes in our early Solar System. NASA's recently selected Lucy mission will perform the first reconnaissance of these asteroids and will answer many fundamental questions about the population. The compositions of the Trojans are not well understood. Spectroscopy and spectrophotometry in visible and near-infrared wavelengths show red slopes (spectra with reflectivity increasing towards the long wavelength end of the spectrum) and no diagnostic spectral absorption features. However, past spectral and photometric observations suggest there are unobserved features in ultraviolet wavelengths. We propose to obtain ultraviolet spectroscopy with WFC3 of four Trojan asteroids that are targets of the Lucy mission. Lucy will not have the capability to obtain ultraviolet spectra. The proposed observations can only be made using Hubble. We will determine if there are UV spectral features, as suggested by visible wavelength observations, and connect these features to candidate compositional components. These observations will enable connections between the compositions of Trojans and dynamical models of the early Solar System.

  5. REFLECTANCE UV-VIS AND UV RESONANCE RAMAN SPECTROSCOPY IN CHARACTERIZATION OF KRAFT PULPS

    OpenAIRE

    Anni Lähdetie; Tiina Liitiä; Tarja Tamminen; Anna-Stiina Jääskeläinen

    2009-01-01

    Reflectance UV-Vis spectroscopy and UV resonance Raman (UVRR) spectroscopy are both nondestructive techniques that are applicable to study trace concentrations of lignin in-situ. In this study, unbleached and bleached softwood kraft pulps were analyzed by reflectance UV-Vis (k/s) and UVRR spectroscopy to follow lignin and hexenuronic acid (HexA) contents and structural changes in residual lignin. The height of the lignin band in the UV-Vis spectra (280 nm) correlated well with the lignin band...

  6. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    Science.gov (United States)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  7. UV laser long-path absorption spectroscopy

    Science.gov (United States)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  8. UV-VIS absorption spectroscopy: Lambert-Beer reloaded.

    Science.gov (United States)

    Mäntele, Werner; Deniz, Erhan

    2017-02-15

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts.

    Science.gov (United States)

    Schoonheydt, Robert A

    2010-12-01

    This critical review article discusses the characterization of heterogeneous catalysts by UV-VIS-NIR spectroscopy and microscopy with special emphasis on transition metal ion containing catalysts. A review is given of the transitions, that can be observed in the UV-VIS-NIR region and the peculiarities of catalytic solids that have to be taken into account. This is followed by a short discussion of the techniques that have been developed over the years: diffuse reflectance spectroscopy, UV-VIS microscopy, in situ or operando spectroscopy, the combination of UV-VIS spectroscopy with other spectroscopic techniques, with chemometrics and with quantum chemistry. In the third part of this paper four successes of UV-VIS-NIR spectroscopy and microscopy are discussed; (1) coordination of transition metal ions to surface oxygens; (2) quantitative determination of the oxidation states of transition metal ions; (3) characterization of active sites and (4) study of the distribution of transition metal ions and carbocations in catalytic bodies, particles and crystals (104 references).

  10. NATURAL CYCLOPENTANOID CYANOHYDRIN GLYCOSIDES .13. STRUCTURE DETERMINATION OF NATURAL EPOXYCYCLOPENTANES BY X-RAY CRYSTALLOGRAPHY AND NMR-SPECTROSCOPY

    DEFF Research Database (Denmark)

    Olafsdottir, E. S.; Sorensen, A. M.; Cornett, Claus

    1991-01-01

    nonannellated cyclopentane derivatives. The new glucosides were shown, by NMR spectroscopy (including NOE measurements), X-ray crystallography, and enzymatic hydrolysis to the corresponding cyanohydrins, to be (1R,2R,3R,4R)- and (1S,2S,3S,4S)-1-(beta-D-glucopyranosyloxy)-2,3-epoxy-4-hydroxycyclopenta ne-1...... side as the three oxygen substituents. In addition to the glucosides, two amides, (1S,2S,3R,4R)-2,3-epoxy-1,4-dihydroxycyclopentane-1-carboxamide and (1S,4R)-1,4-dihydroxy-2-cyclopentene-1-carboxamide, were isolated from P. suberosa and characterized; the amides are probably artefacts...

  11. UV photostability of insect repellents evaluated through Raman spectroscopy

    Science.gov (United States)

    Bório, Viviane G.; Fernandes, Adjaci U.; Silveira, Landulfo

    2016-02-01

    The use of insect repellents either indoors or at places with incidence of solar radiation has been common due to dengue epidemics in Brazil. The lack of studies on the photostability of these substances has motivated this study, where the main goal was to verify the photostability and photodegradation of some of the commercially insect repellents available under the simulated ultraviolet (UV) radiation, by evaluating the molecular changes using dispersive Raman spectroscopy (830 nm excitation). A laboratory-made chamber was used for irradiating the repellents, where UV-A + UV-B radiations (UV-A: 5.5 mW/cm2 and UV-B 1.5 mW/cm2) can be obtained. The chamber internal temperature did not exceed 31 °C during experiments. The compounds n,n-diethyl-m-toluamide (DEET), IR-3535, andiroba and citronella oils, used as active ingredients in insect repellents, and commercial formula containing DEET (14.5% in ethanol and isopropyl myristate) and IR-3535 (16% in carbopol) were continuously irradiated for 8 h. The Raman spectrum of each sample was obtained before and after UV exposure. The compounds and the commercial formula containing IR-3535 showed photo-stability when irradiated, since no changes in the peaks were found. The commercial formula containing DEET showed spectral decrease at 524, 690, 1003 and 1606 cm-1, assigned to the DEET, and increase at 884 cm-1, assigned to the ethanol. These results indicate that the excipient could influence the photostability of the active ingredient. The Raman spectroscopy can be suitable to monitor the photodegradation under UV irradiation rapidly and reliably.

  12. UV-VIS and photoluminescence spectroscopy for nanomaterials characterization

    CERN Document Server

    2013-01-01

    Second volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about UV-visible and photoluminescence spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry in the related fields.

  13. Nickel(II) complexes containing thiosemicarbazone and triphenylphosphine: Synthesis, spectroscopy, crystallography and catalytic activity

    Science.gov (United States)

    Priyarega, S.; Kalaivani, P.; Prabhakaran, R.; Hashimoto, T.; Endo, A.; Natarajan, K.

    2011-09-01

    Four new Ni(II) complexes of the general formula [Ni(PPh 3)(L)] (L = dibasic tridentate ligand derived from 4-diethylamino-salicylaldehyde and thiosemicarbazide or 4-N-substituted thiosemicarbazide) have been reported. The new complexes have been synthesized and characterized by analytical and spectroscopic (IR, electronic, 1H NMR and 31P NMR) techniques. Molecular structure of one of the complexes has been determined by X-ray crystallography. The complex, [Ni(PPh 3)(L4)] (H 2L4 = thiosemicarbazone prepared from 4-diethylamino-salicylaldehyde and 4-phenylthiosemicarbazide) crystallized in monoclinic space group with two molecules per unit cell and has the dimensions of a = 13.232(6) Å, b = 10.181(5) Å, c = 13.574(7) Å, α = 90°, β = 98.483(2)° and γ = 90°. Catalytic activity of the complexes has been explored for aryl-aryl coupling reaction.

  14. Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission

    Directory of Open Access Journals (Sweden)

    H. Olof Jönsson

    2017-11-01

    Full Text Available Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000 pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen. Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.

  15. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    Science.gov (United States)

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags(1). Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  16. Ultrastable and Compact Deep UV Laser Source for Raman Spectroscopy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deep-ultraviolet (UV) Raman spectroscopy is a powerful method to collect chemically specific information about complex samples because deep-UV (?? < 250 nm)...

  17. Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    Simon Meyer

    2009-10-01

    Full Text Available MnmE, which is involved in the modification of the wobble position of certain tRNAs, belongs to the expanding class of G proteins activated by nucleotide-dependent dimerization (GADs. Previous models suggested the protein to be a multidomain protein whose G domains contact each other in a nucleotide dependent manner. Here we employ a combined approach of X-ray crystallography and pulse electron paramagnetic resonance (EPR spectroscopy to show that large domain movements are coupled to the G protein cycle of MnmE. The X-ray structures show MnmE to be a constitutive homodimer where the highly mobile G domains face each other in various orientations but are not in close contact as suggested by the GDP-AlF(x structure of the isolated domains. Distance measurements by pulse double electron-electron resonance (DEER spectroscopy show that the G domains adopt an open conformation in the nucleotide free/GDP-bound and an open/closed two-state equilibrium in the GTP-bound state, with maximal distance variations of 18 A. With GDP and AlF(x, which mimic the transition state of the phosphoryl transfer reaction, only the closed conformation is observed. Dimerization of the active sites with GDP-AlF(x requires the presence of specific monovalent cations, thus reflecting the requirements for the GTPase reaction of MnmE. Our results directly demonstrate the nature of the conformational changes MnmE was previously suggested to undergo during its GTPase cycle. They show the nucleotide-dependent dynamic movements of the G domains around two swivel positions relative to the rest of the protein, and they are of crucial importance for understanding the mechanistic principles of this GAD.

  18. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  19. Multigrain crystallography

    DEFF Research Database (Denmark)

    Sørensen, Henning Osholm; Schmidt, Søren; Wright, Jonathan P.

    2012-01-01

    We summarize exploratory work on multigrain crystallography. The experimental arrangement comprises a monochromatic beam, a fully illuminated sample with up to several hundred grains in transmission geometry on a rotary table and a 2D detector. Novel algorithms are presented for indexing, integra......We summarize exploratory work on multigrain crystallography. The experimental arrangement comprises a monochromatic beam, a fully illuminated sample with up to several hundred grains in transmission geometry on a rotary table and a 2D detector. Novel algorithms are presented for indexing...

  20. Characterising exoplanets and their environment with UV transmission spectroscopy

    OpenAIRE

    Fossati, L.; Bourrier, V.; Ehrenreich, D.; Haswell, C. A.; Kislyakova, K. G.; Lammer, H; Lecavelier des Etangs, A.; Alibert, Y.; Ayres, T. R.; Ballester, G. E.; Barnes, J.; Bisikalo, D. V.; Cameron, A. Collier; Czesla, S.; Desert, J. -M.

    2015-01-01

    Exoplanet science is now in its full expansion, particularly after the CoRoT and Kepler space missions that led us to the discovery of thousands of extra-solar planets. The last decade has taught us that UV observations play a major role in advancing our understanding of planets and of their host stars, but the necessary UV observations can be carried out only by HST, and this is going to be the case for many years to come. It is therefore crucial to build a treasury data archive of UV exopla...

  1. Virus Crystallography

    Science.gov (United States)

    Fry, Elizabeth; Logan, Derek; Stuart, David

    Crystallography provides a means of visualizing intact virus particles as well as their isolated constituent proteins and enzymes (1-3) at near-atomic resolution, and is thus an extraordinarily powerful tool in the pursuit of a fuller understanding of the functioning of these simple biological systems. We have already expanded our knowledge of virus evolution, assembly, antigenic variation, and host-cell interactions; further studies will no doubt reveal much more. Although the rewards are enormous, an intact virus structure determination is not a trivial undertaking and entails a significant scaling up in terms of time and resources through all stages of data collection and processing compared to a traditional protein crystallographic structure determination. It is the methodology required for such studies that will be the focus of this chapter. The computational requirements were satisfied in the late 1970s, and when combined with the introduction of phase improvement techniques utilizing the virus symmetry (4,5), the application of crystallography to these massive macromolecular assemblies became feasible. This led to the determination of the first virus structure (the small RNA plant virus, tomato bushy stunt virus), by Harrison and coworkers in 1978 (6). The structures of two other plant viruses followed rapidly (7,8). In the 1980s, a major focus of attention was a family of animal RNA viruses; the Picornaviridae.

  2. Enzyme Characterization in Microreactors by UV-Vis Spectroscopy

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Krühne, Ulrich; Woodley, John

    for selection can at this point be improved by characterization of the enzyme performance where also inhibition and toxicity effects are taken into account. Enzyme characterization is here defined as the effect on initial rate of reaction with respect to pH, enzyme, substrate, co-substrate, product and co......, as the enzyme resource is scarce at this point of development. In the case where the reaction operates with UV active components, UV can be used to detect compounds with high sensitivity supplemented by multivariate data analysis. The spectra are here decorrelated and regressed to yield concentrations......-product concentration [2]. From this investigation, it will be possible to determine whether the enzyme meets the criteria for process requirements or not. The development of the process will determine the requirements and this can also reach a state of maturity that resolves obstacles, lowers criteria and paves...

  3. Degradation study of different brands of paracetamol by UV spectroscopy

    Directory of Open Access Journals (Sweden)

    Safila Naveed

    2016-05-01

    Full Text Available Objective: To investgate the forced degradation study for the determination of degradation of the drug substance. Methods: Paracetamol was exposed to different conditions according to International Conference on Harmonization guideline. The amount of degradation product can be calculated with the help of UV spectrophotometer. The official test limits according to British Pharmacopoeia/United States Pharmacopoeia should not less than and should not more than lapelled amount. Forced degradation of drug substance was exposed to acidic and basic medium of panadol. Forced degradation of drug substance of panadol, disprol and calpol were also observed negligible difference in availability on exposure to UV and heat. This method can be used successfully for studying the stress degradation factors. Because this method is less time consuming and simple and cost effective also. Results: The brands i.e. calpol, panadol and disprol, when they come in contact with different degradation parameters (before, acid, base, heat and UV treatments according to statistical analysis, the result showed significant values (P < 0.05 which indicated that there was no degradation in any of the brand. Conclusions: The result indicated there is no degradation found in these brands.

  4. Vacuum UV Polarization Spectroscopy of p-Terphenyl

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Jones, Nykola C.; Hoffmann, Søren Vrønning

    2018-01-01

    p-Terphenyl is used as a component in a variety of optical devices. In this investigation, the electronic transitions of p-terphenyl are investigated by synchrotron radiation linear dichroism (SRLD) spectroscopy in the range 30000 – 58000 cm–1 (330 – 170 nm) on molecular samples aligned in stretc...

  5. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  6. UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines

    DEFF Research Database (Denmark)

    Klærke, Benedikte; Holm, Anne; Andersen, Lars Henrik

    2011-01-01

    Aims. We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods. The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3−C9H7NH+) have been recorded in the 215–338 nm spectral range...... the estimated IR relaxation time. Photophysical properties of both nitrogen containing and methyl-substituted PAHs are interesting in an astrophysical context in connection with identifying the aromatic component of the interstellar medium....

  7. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    Science.gov (United States)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  8. Spectroscopy based on target luminescence caused by interaction with ultrashort UV laser pulses

    CERN Document Server

    Ionin, A A; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Fokina, N A

    2015-01-01

    We proposed remote spectroscopy approach consisted in luminescence light utilization. During interaction with different targets ultrashort UV laser pulse generates broadband spectrum light, which can be applied for remote spectroscopy purposes. We selected appropriate target materials to cover required spectral range from 300 to 600 nm and provided an example of spectrum reconstruction of known material. Obtained spectra are in a good correlation with calculated ones.

  9. Microchannel plate life testing for UV spectroscopy instruments

    Science.gov (United States)

    Darling, N. T.; Siegmund, O. H. W.; Curtis, T.; McPhate, J.; Tedesco, J.; Courtade, S.; Holsclaw, G.; Hoskins, A.; Al Dhafri, S.

    2017-08-01

    The Emirates Mars Mission (EMM) UV Spectrograph (EMUS) is a far ultraviolet (102 nm to 170 nm) imaging spectrograph for characterization of the Martian exosphere and thermosphere. Imaging is accomplished by a photon counting open-face microchannel plate (MCP) detector using a cross delay line (XDL) readout. An MCP gain stabilization ("scrub") followed by lifetime spectral line burn-in simulation has been completed on a bare MCP detector at SSL. Gain and sensitivity stability of better than 7% has been demonstrated for total dose of 2.5 × 1012 photons cm-2 (2 C · cm-2 ) at 5.5 kHz mm-2 counting rates, validating the efficacy of an initial low gain full-field scrub.

  10. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    Science.gov (United States)

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  11. Insights into the early dissolution events of amlodipine using UV imaging and Raman spectroscopy

    DEFF Research Database (Denmark)

    Boetker, Johan P; Savolainen, Marja; Koradia, Vishal

    2011-01-01

    imaging instrumentation offers recording of absorbance maps with a high spatial and temporal resolution which facilitates the abundant collection of information regarding the evolving solution concentrations. In this study, UV imaging was used to visualize the dissolution behavior of amlodipine besylate...... (amorphous and dihydrate forms) and amlodipine free base. The dissolution of amlodipine besylate was faster from the amorphous form than from the crystalline forms. The UV imaging investigations suggested that a solvent mediated phase transformation occurred for the amorphous amlodipine besylate...... and the amlodipine free base samples. Raman spectroscopy was used to confirm and probe the changes at the solid surface occurring upon contact with the dissolution media and verified the recrystallization of the amorphous form to the monohydrate. The combination of UV imaging and Raman spectroscopy is an efficient...

  12. Exploring TAR–RNA aptamer loop–loop interaction by X-ray crystallography, UV spectroscopy and surface plasmon resonance

    Science.gov (United States)

    Lebars, Isabelle; Legrand, Pierre; Aimé, Ahissan; Pinaud, Noël; Fribourg, Sébastien; Di Primo, Carmelo

    2008-01-01

    In HIV-1, trans-activation of transcription of the viral genome is regulated by an imperfect hairpin, the trans-activating responsive (TAR) RNA element, located at the 5′ untranslated end of all viral transcripts. TAR acts as a binding site for viral and cellular proteins. In an attempt to identify RNA ligands that would interfere with the virus life-cycle by interacting with TAR, an in vitro selection was previously carried out. RNA hairpins that formed kissing-loop dimers with TAR were selected [Ducongé F. and Toulmé JJ (1999) RNA, 5:1605–1614]. We describe here the crystal structure of TAR bound to a high-affinity RNA aptamer. The two hairpins form a kissing complex and interact through six Watson–Crick base pairs. The complex adopts an overall conformation with an inter-helix angle of 28.1°, thus contrasting with previously reported solution and modelling studies. Structural analysis reveals that inter-backbone hydrogen bonds between ribose 2′ hydroxyl and phosphate oxygens at the stem-loop junctions can be formed. Thermal denaturation and surface plasmon resonance experiments with chemically modified 2′-O-methyl incorporated into both hairpins at key positions, clearly demonstrate the involvement of this intermolecular network of hydrogen bonds in complex stability. PMID:18996893

  13. Tunable cw UV laser with spectroscopy of Sr Rydberg states.

    Science.gov (United States)

    Bridge, Elizabeth M; Keegan, Niamh C; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2016-02-08

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm - 317.7 nm and 318.0 nm - 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz.

  14. SO2 Spectroscopy with A Tunable UV Laser

    Science.gov (United States)

    Morey, W. W.; Penney, C. M.; Lapp, M.

    1973-01-01

    A portion of the fluorescence spectrum of SO2 has been studied using a narrow wavelength doubled dye laser as the exciting source. One purpose of this study is to evaluate the use of SO2 resonance re-emission as a probe of SO2 in the atmosphere. When the SO2 is excited by light at 300.2 nm, for example, a strong reemission peak is observed which is Stokes-shifted from the incident light wavelength by the usual Raman shift (the VI symmetric vibration frequency 1150.5/cm ). The intensity of this peak is sensitive to small changes (.01 nm) in the incident wavelength. Measurements of the N2 quenching and self quenching of this re-emission have been obtained. Preliminary analysis of this data indicates that the quenching is weak but not negligible. The dye laser in our system is pumped by a pulsed N2 laser. Tuning 'and spectral narrowing are accomplished using a telescope-echelle grating combination. In a high power configuration the resulting pulses have a spectral width of about 5 x 10(exp -3) nm and a time duration of about 6 nsec. The echelle grating is rotated by a digital stepping motor, such that each step shifts the wavelength by 6 x 10(exp -4) nm. In addition to the tunable, narrow wavelength uv source and spectral analysis of the consequent re-emission, the system also provides time resolution of the re-emitted light to 6 nsec resolution. This capability is being used to study the lifetime of low pressure S02 fluorescence at different wavelengths and pressures.

  15. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C.

    Science.gov (United States)

    Orville, Allen M; Buono, Richard; Cowan, Matt; Héroux, Annie; Shea-McCarthy, Grace; Schneider, Dieter K; Skinner, John M; Skinner, Michael J; Stoner-Ma, Deborah; Sweet, Robert M

    2011-05-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  16. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    Science.gov (United States)

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  17. Plant Sunscreens in Nature: UV and IR Spectroscopy of Sinapate Derivatives

    Science.gov (United States)

    Dean, Jacob C.; Walsh, Patrick S.; Zwier, Timothy S.; Allais, Florent

    2013-06-01

    Plants are exposed to prolonged amounts of UV radiation, with elevated levels of UV-B (280-320 nm) as the ozone layer is depleted. When UV-B radiation penetrates the leaf epidermis, substantial oxidative damage can occur to plant tissues and plant growth can be inhibited. Sinapate esters, particularly sinapoyl malate, have been shown to efficiently prevent such damaging effects. By studying a series of molecules in this unique class under the isolated, cold conditions of a supersonic expansion, the fundamental UV-spectroscopic properties and photophysical aspects following UV absorption can be interrogated in detail. Sinapic acid and neutral sinapoyl malate were brought into the gas phase by laser desorption and detected via resonant two-photon ionization (R2PI). IR-UV double resonance methods were employed to obtain single-conformation UV and IR spectra. As the UV chromophore of interest is the sinapoyl moiety, sinapic acid served as the simplest model to compare directly to the more functionalized sinapoyl malate. It has a spectrum much like most aromatics, with a strong {ππ}^* origin, and well-resolved vibronic structure. By contrast, the spectrum for sinapoyl malate displays a large, broad absorption with little resolved vibronic structure, reflecting its role in nature as a pivotal and efficient UV protectant for plants, serving as the plant's sunscreen. Using conformer-specific IR spectroscopy, the individual conformations of both species were assigned and used as the basis for further ab initio calculations of the excited states that give rise to the observed behavior. Landry, L.G.; Chapple, C.S.; Last, R.L. Plant Physiol. {1995}, 109, 1159-1166.

  18. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  19. Assessment of Trihalomethane Formation in Chlorinated Raw Waters with Differential UV Spectroscopy Approach

    Directory of Open Access Journals (Sweden)

    Kadir Özdemir

    2013-01-01

    Full Text Available In this study, the changes in UV absorbance of water samples were characterized using defined differential UV spectroscopy (DUV, a novel spectroscopic technique. Chlorination experiments were conducted with water samples from Terkos Lake (TL and Büyükçekmece Lake (BL (Istanbul, Turkey. The maximum loss of UV absorbance for chlorinated TL and BL raw water samples was observed at a wavelength of 272 nm. Interestingly, differential absorbance at 272 nm (ΔUV272 was shown to be a good indicator of UV absorbing chromophores and the formation of trihalomethanes (THMs resulting from chlorination. Furthermore, differential spectra of chlorinated TL waters were similar for given chlorination conditions, peaking at 272 nm. The correlations between THMs and ΔUV272 were quantified by linear equations with R2 values >0.96. The concentration of THMs formed when natural organic matter is chlorinated increases with increasing time and pH levels. Among all THMs, CHCl3 was the dominant species forming as a result of the chlorination of TL and BL raw water samples. The highest chloroform (CHCl3, dichlorobromomethane (CHCl2Br, and dibromochloromethane (CHBr2Cl concentration were released per unit loss of absorbance at 272 nm at pH 9 with a maximum reaction time of 168 hours and Cl2/dissolved organic carbon ratio of 3.2.

  20. Assessment of Trihalomethane Formation in Chlorinated Raw Waters with Differential UV Spectroscopy Approach

    Science.gov (United States)

    Özdemir, Kadir; Toröz, İsmail; Uyak, Vedat

    2013-01-01

    In this study, the changes in UV absorbance of water samples were characterized using defined differential UV spectroscopy (DUV), a novel spectroscopic technique. Chlorination experiments were conducted with water samples from Terkos Lake (TL) and Büyükçekmece Lake (BL) (Istanbul, Turkey). The maximum loss of UV absorbance for chlorinated TL and BL raw water samples was observed at a wavelength of 272 nm. Interestingly, differential absorbance at 272 nm (ΔUV272) was shown to be a good indicator of UV absorbing chromophores and the formation of trihalomethanes (THMs) resulting from chlorination. Furthermore, differential spectra of chlorinated TL waters were similar for given chlorination conditions, peaking at 272 nm. The correlations between THMs and ΔUV272 were quantified by linear equations with R 2 values >0.96. The concentration of THMs formed when natural organic matter is chlorinated increases with increasing time and pH levels. Among all THMs, CHCl3 was the dominant species forming as a result of the chlorination of TL and BL raw water samples. The highest chloroform (CHCl3), dichlorobromomethane (CHCl2Br), and dibromochloromethane (CHBr2Cl) concentration were released per unit loss of absorbance at 272 nm at pH 9 with a maximum reaction time of 168 hours and Cl2/dissolved organic carbon ratio of 3.2. PMID:24363624

  1. Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy.

    Science.gov (United States)

    Baias, Maria; Widdifield, Cory M; Dumez, Jean-Nicolas; Thompson, Hugh P G; Cooper, Timothy G; Salager, Elodie; Bassil, Sirena; Stein, Robin S; Lesage, Anne; Day, Graeme M; Emsley, Lyndon

    2013-06-07

    A protocol for the ab initio crystal structure determination of powdered solids at natural isotopic abundance by combining solid-state NMR spectroscopy, crystal structure prediction, and DFT chemical shift calculations was evaluated to determine the crystal structures of four small drug molecules: cocaine, flutamide, flufenamic acid, and theophylline. For cocaine, flutamide and flufenamic acid, we find that the assigned (1)H isotropic chemical shifts provide sufficient discrimination to determine the correct structures from a set of predicted structures using the root-mean-square deviation (rmsd) between experimentally determined and calculated chemical shifts. In most cases unassigned shifts could not be used to determine the structures. This method requires no prior knowledge of the crystal structure, and was used to determine the correct crystal structure to within an atomic rmsd of less than 0.12 Å with respect to the known reference structure. For theophylline, the NMR spectra are too simple to allow for unambiguous structure selection.

  2. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig Richmond [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  3. Simultaneous Determination of Caffeine and Chlorogenic Acids in Green Coffee by UV/Vis Spectroscopy

    OpenAIRE

    Navarra, G.; Moschetti, M,; Guarrasi, V.; Mangione, M.R.; Militello, V; Leone, M.

    2017-01-01

    A simple method for the simultaneous determination of caffeine and chlorogenic acids content in green coffee was reported. The method was based on the use of UV/Vis absorption. It is relevant that the quantification of both caffeine and chlorogenic acids was performed without their preliminary chemical separation despite their spectral overlap in the range 250–350 nm. Green coffee was extracted with 70% ethanol aqueous solution; then the solution was analyzed by spectroscopy. Quantitative det...

  4. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    Science.gov (United States)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  5. Ir-Uv Double Resonance Spectroscopy of a Cold Protonated Fibril-Forming Peptide: NNQQNY\\cdotH+

    Science.gov (United States)

    DeBlase, Andrew F.; Harrilal, Christopher P.; Walsh, Patrick S.; McLuckey, Scott A.; Zwier, Timothy S.

    2016-06-01

    Protein aggregation to form amyloid-like fibrils is a purported molecular manifestation that leads to Alzheimer's, Huntington's, and other neurodegenerative diseases. The propensity for a protein to aggregate is often driven by the presence of glutamine (Q) and asparagine (N) rich tracts within the primary sequence. For example, Eisenberg and coworkers [Nature 2006, 435, 773] have shown by X-ray crystallography that the peptides NNQQNY and GNNQQNY aggregate into a parallel β-sheet configuration with side chains that intercalate into a "steric zipper". These sequences are commonly found at the N-terminus of the prion-determining domain in the yeast protein Sup35, a typical fibril-forming protein. Herein, we invoke recent advances in cold ion spectroscopy to explore the nascent conformational preferences of the protonated peptides that are generated by electrospray ionization. Towards this aim, we have used UV and IR spectroscopy to record conformation-specific photofragment action spectra of the NNQQNY monomer cryogenically cooled in an octopole ion trap. This short peptide contains 20 hydride stretch oscillators, leading to a rich infrared spectrum with at least 18 resolved transitions in the 2800-3800 cm-1 region. The infrared spectrum suggests the presence of both a free acid OH moiety and an H-bonded tyrosine OH group. We compare our results with resonant ion dip infrared spectra (RIDIRS) of the acyl/NH-benzyl capped neutral glutamine amino acid and its corresponding dipeptide: Ac-Q-NHBn and Ac-QQ-NHBn, respectively. These comparisons bring empirical insight to the NH stretching region of the spectrum, which contains contributions from free and singly H-bonded NH2 side-chain groups, and from peptide backbone amide NH groups. We further compare our spectrum to harmonic calculations at the M05-2X/6-31+G* level of theory, which were performed on low energy structures obtained from Monte Carlo conformational searches using the Amber* and OPLS force fields to assess

  6. The Use of UV-Visible Reflectance Spectroscopy as an Objective Tool to Evaluate Pearl Quality

    Science.gov (United States)

    Agatonovic-Kustrin, Snezana; Morton, David W.

    2012-01-01

    Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl’s quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry. PMID:22851919

  7. Homeopathic Preparations of Quartz, Sulfur and Copper Sulfate Assessed by UV-Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ursula Wolf

    2011-01-01

    Full Text Available Homeopathic preparations are used in homeopathy and anthroposophic medicine. Although there is evidence of effectiveness in several clinical studies, including double-blinded randomized controlled trials, their nature and mode of action could not be explained with current scientific approaches yet. Several physical methods have already been applied to investigate homeopathic preparations but it is yet unclear which methods are best suited to identify characteristic physicochemical properties of homeopathic preparations. The aim of this study was to investigate homeopathic preparations with UV-spectroscopy. In a blinded, randomized, controlled experiment homeopathic preparations of copper sulfate (CuSO4; 11c–30c, quartz (SiO2; 10c–30c, i.e., centesimal dilution steps and sulfur (S; 11×–30×, i.e., decimal dilution steps and controls (one-time succussed diluent were investigated using UV-spectroscopy and tested for contamination by inductively coupled plasma mass spectrometry (ICP-MS. The UV transmission for homeopathic preparations of CuSO4 preparations was significantly lower than in controls. The transmission seemed to be also lower for both SiO2 and S, but not significant. The mean effect size (95% confidence interval was similar for the homeopathic preparations: CuSO4 (pooled data 0.0544% (0.0260–0.0827%, SiO2 0.0323% (–0.0064% to 0.0710% and S 0.0281% (–0.0520% to 0.1082%. UV transmission values of homeopathic preparations had a significantly higher variability compared to controls. In none of the samples the concentration of any element analyzed by ICP-MS exceeded 100 ppb. Lower transmission of UV light may indicate that homeopathic preparations are less structured or more dynamic than their succussed pure solvent.

  8. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids

    Directory of Open Access Journals (Sweden)

    Emilia Tomaszewska

    2013-01-01

    Full Text Available Dynamic light scattering is a method that depends on the interaction of light with particles. This method can be used for measurements of narrow particle size distributions especially in the range of 2–500 nm. Sample polydispersity can distort the results, and we could not see the real populations of particles because big particles presented in the sample can screen smaller ones. Although the theory and mathematical basics of DLS technique are already well known, little has been done to determine its limits experimentally. The size and size distribution of artificially prepared polydisperse silver nanoparticles (NPs colloids were studied using dynamic light scattering (DLS and ultraviolet-visible (UV-Vis spectroscopy. Polydisperse colloids were prepared based on the mixture of chemically synthesized monodisperse colloids well characterized by atomic force microscopy (AFM, transmission electron microscopy (TEM, DLS, and UV-Vis spectroscopy. Analysis of the DLS results obtained for polydisperse colloids reveals that several percent of the volume content of bigger NPs could screen completely the presence of smaller ones. The presented results could be extremely important from nanoparticles metrology point of view and should help to understand experimental data especially for the one who works with DLS and/or UV-Vis only.

  9. Simple and Precise Quantification of Iron Catalyst Content in Carbon Nanotubes Using UV/Visible Spectroscopy.

    Science.gov (United States)

    Agustina, Elsye; Goak, Jeungchoon; Lee, Suntae; Seo, Youngho; Park, Jun-Young; Lee, Naesung

    2015-10-01

    Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red-orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.

  10. UV-Vis Action Spectroscopy Reveals a Conformational Collapse in Hydrogen-Rich Dinucleotide Cation Radicals.

    Science.gov (United States)

    Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František

    2017-09-07

    We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.

  11. Effect of hydrophobic ionic liquids on petroleum asphaltene dispersion and determination using UV-visible spectroscopy

    Science.gov (United States)

    Rashid, Zeeshan; Wilfredand, Cecilia Devi; Murugesan, Thanabalan

    2017-10-01

    Asphaltene aggregation and flocculation is one of the main problems faced by upstream industry. The aim of this research activity is to explore the effect of synthesized imidazolium and pyridinium based ionic liquids on the prevention of asphaltene aggregation problem in crude oil. In this research, number of hydrophobic and hydrophilic ionic liquids were tested. The investigations were performed for evaluating; the dispersion yield, effect of temperature, effect of stirring time and effect of solvent to flocculant ratio. Analysis were done using UV-visible Spectroscopy. The results depicted that the investigated hydrophobic ionic liquids have the tendency to abate asphaltene aggregation and can be considered as deflocculants.

  12. UV-vis spectroscopy for on-line monitoring of Au nanoparticles size during growth

    Energy Technology Data Exchange (ETDEWEB)

    Salvati, R. [Istituto per i Materiali Compositi e Biomedici-Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80125 Naples (Italy); Longo, A. [Istituto per i Materiali Compositi e Biomedici-Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80125 Naples (Italy); Carotenuto, G. [Istituto per i Materiali Compositi e Biomedici-Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80125 Naples (Italy); De Nicola, S. [Istituto di Cibernetica-Consiglio Nazionale delle Ricerche ' E Caianiello' , Via Campi Flegrei 34, 80078 Pozzuoli (Italy); Pepe, G.P. [Coherentia INFM, Universita di Napoli ' Federico II' -Dipartimento Scienze Fisiche, Fac. Ingegneria, P.le Tecchio n. 80, I-80125 Naples (Italy); Nicolais, L. [Istituto per i Materiali Compositi e Biomedici-Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80125 Naples (Italy); Barone, A. [Coherentia INFM, Universita di Napoli ' Federico II' -Dipartimento Scienze Fisiche, Fac. Ingegneria, P.le Tecchio n. 80, I-80125 Naples (Italy)

    2005-07-30

    Gold nanoparticles have been prepared by alcoholic reduction of Au(III) ions in presence of a polymeric stabilizer (poly(N-vinyl pyrrolidone), PVP). On-line UV-vis spectroscopic characterization and transmission electron microscopy (TEM) analysis are presented. Optical spectroscopy data show that the temporal evolution of absorption spectra and the absorbance peak properties are correlated to the off-line size measurements obtained at chemical reaction end by TEM micrographs. The Au cluster size behaves linearly with time above a threshold temperature (70 deg. C), according to a deposition-controlled growth mechanism.

  13. A quality control technique based on UV-VIS absorption spectroscopy for tequila distillery factories

    Science.gov (United States)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Maldonado, J. L.; Pichardo Molina, J.; Meneses Nava, M. A.; Landgrave, Enrique; Cervantes, M. J.

    2006-02-01

    A low cost technique based on the UV-VIS absorption spectroscopy is presented for the quality control of the spirit drink known as tequila. It is shown that such spectra offer enough information to discriminate a given spirit drink from a group of bottled commercial tequilas. The technique was applied to white tequilas. Contrary to the reference analytic methods, such as chromatography, for this technique neither special personal training nor sophisticated instrumentations is required. By using hand-held instrumentation this technique can be applied in situ during the production process.

  14. [Study of aspirin and its interaction with DNA by Raman and UV spectroscopies].

    Science.gov (United States)

    Kang, Qian-qian; Zhou, Guang-ming

    2012-03-01

    Normal Raman spectroscopy and surface-enhanced Raman spectroscopy of aspirin and aspirin tablet were reported, and the vibrational and enhanced peaks were assigned; the interaction of aspirin with DNA was investigated by SERS and UV. The results showed that NRS and SERS of aspirin and aspirin tablet were consistent basically, which indicated that excipient hardly affected the detection of aspirin; in SERS, aspirin was absorbed perpendicularly on silver colloid through the carboxyl group and the benzene ring; The interaction was mainly caused by the inserting-action mode between aspirin and DNA, and the benzene ring and C=O of aspirin were inserted between the base pair of the double helix structure of DNA, which provided important information and useful reference for understanding deeply the mechanism of action of this kind of drug.

  15. Multidimensional resonance raman spectroscopy by six-wave mixing in the deep UV

    Energy Technology Data Exchange (ETDEWEB)

    Molesky, Brian P.; Giokas, Paul G.; Guo, Zhenkun; Moran, Andrew M., E-mail: ammoran@email.unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2014-09-21

    Two-dimensional (2D) resonance Raman spectroscopies hold great potential for uncovering photoinduced relaxation processes in molecules but are not yet widely applied because of technical challenges. Here, we describe a newly developed 2D resonance Raman experiment operational at the third-harmonic of a Titanium-Sapphire laser. High-sensitivity and rapid data acquisition are achieved by combining spectral interferometry with a background-free (six-pulse) laser beam geometry. The third-harmonic laser pulses are generated in a filament produced by the fundamental and second-harmonic pulses in neon gas at pressures up to 35 atm. The capabilities of the setup are demonstrated by probing ground-state wavepacket motions in triiodide. The information provided by the experiment is explored with two different representations of the signal. In one representation, Fourier transforms are carried out with respect to the two experimentally controlled delay times to obtain a 2D Raman spectrum. Further insights are derived in a second representation by dispersing the signal pulse in a spectrometer. It is shown that, as in traditional pump-probe experiments, the six-wave mixing signal spectrum encodes the wavepacket's position by way of the (time-evolving) emission frequency. Anharmonicity additionally induces dynamics in the vibrational resonance frequency. In all cases, the experimental signals are compared to model calculations based on a cumulant expansion approach. This study suggests that multi-dimensional resonance Raman spectroscopies conducted on systems with Franck-Condon active modes are fairly immune to many of the technical issues that challenge off-resonant 2D Raman spectroscopies (e.g., third-order cascades) and photon-echo experiments in the deep UV (e.g., coherence spikes). The development of higher-order nonlinear spectroscopies operational in the deep UV is motivated by studies of biological systems and elementary organic photochemistries.

  16. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.

    Science.gov (United States)

    Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso

    2015-06-01

    Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

  17. Quantifying tropical peatland dissolved organic carbon (DOC) using UV-visible spectroscopy.

    Science.gov (United States)

    Cook, Sarah; Peacock, Mike; Evans, Chris D; Page, Susan E; Whelan, Mick J; Gauci, Vincent; Kho, Lip Khoon

    2017-05-15

    UV-visible spectroscopy has been shown to be a useful technique for determining dissolved organic carbon (DOC) concentrations. However, at present we are unaware of any studies in the literature that have investigated the suitability of this approach for tropical DOC water samples from any tropical peatlands, although some work has been performed in other tropical environments. We used water samples from two oil palm estates in Sarawak, Malaysia to: i) investigate the suitability of both single and two-wavelength proxies for tropical DOC determination; ii) develop a calibration dataset and set of parameters to calculate DOC concentrations indirectly; iii) provide tropical researchers with guidance on the best spectrophotometric approaches to use in future analyses of DOC. Both single and two-wavelength model approaches performed well with no one model significantly outperforming the other. The predictive ability of the models suggests that UV-visible spectroscopy is both a viable and low cost method for rapidly analyzing DOC in water samples immediately post-collection, which can be important when working at remote field sites with access to only basic laboratory facilities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools.

    Science.gov (United States)

    Martelo-Vidal, M J; Vázquez, M

    2014-09-01

    Spectral analysis is a quick and non-destructive method to analyse wine. In this work, trans-resveratrol, oenin, malvin, catechin, epicatechin, quercetin and syringic acid were determined in commercial red wines from DO Rías Baixas and DO Ribeira Sacra (Spain) by UV-VIS-NIR spectroscopy. Calibration models were developed using principal component regression (PCR) or partial least squares (PLS) regression. HPLC was used as reference method. The results showed that reliable PLS models were obtained to quantify all polyphenols for Rías Baixas wines. For Ribeira Sacra, feasible models were obtained to determine quercetin, epicatechin, oenin and syringic acid. PCR calibration models showed worst reliable of prediction than PLS models. For red wines from mencía grapes, feasible models were obtained for catechin and oenin, regardless the geographical origin. The results obtained demonstrate that UV-VIS-NIR spectroscopy can be used to determine individual polyphenolic compounds in red wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Application of Principal Component Analysis to Classify Textile Fibers Based on UV-Vis Diffuse Reflectance Spectroscopy

    Science.gov (United States)

    Wang, C.; Chen, Q.; Hussain, M.; Wu, S.; Chen, J.; Tang, Z.

    2017-07-01

    This study provides a new approach to the classification of textile fibers by using principal component analysis (PCA), based on UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). Different natural and synthetic fibers such as cotton, wool, silk, linen, viscose, and polyester were used. The spectrum of each kind of fiber was scanned by a spectrometer equipped with an integrating sphere. The characteristics of their UV-Vis diffuse reflectance spectra were analyzed. PCA revealed that the first three components represented 99.17% of the total variability in the ultraviolet region. Principal component score scatter plot (PC1 × PC2) of each fiber indicated the accuracy of this classification for these six varieties of fibers. Therefore, it was demonstrated that UV diffuse reflectance spectroscopy can be used as a novel approach to rapid, real-time, fiber identification.

  20. Supramolecular organization of perfluorinated 1H-indazoles in the solid state using X-ray crystallography, SSNMR and sensitive (VCD) and non sensitive (MIR, FIR and Raman) to chirality vibrational spectroscopies.

    Science.gov (United States)

    Quesada-Moreno, María M; Avilés-Moreno, Juan Ramón; López-González, Juan Jesús; Jacob, Kane; Vendier, Laure; Etienne, Michel; Alkorta, Ibon; Elguero, José; Claramunt, Rosa M

    2017-01-04

    1H-Indazole derivatives exhibit a remarkable property since some of them form chiral supramolecular structures starting from achiral monomers. The present work deals with the study of three perfluorinated 1H-indazoles that resolve spontaneously as conglomerates. These conglomerates can contain either a pure enantiomer (one helix) or a mixture of both enantiomers (both helices) with an enantiomeric excess (e.e.) of one of them. The difficulty of the structural analysis of these types of compounds is thus clear. We outline a complete strategy to determine the structures and configurations (M or P helices) of the enantiomers (helices) forming the conglomerates of these perfluorinated 1H-indazoles based on X-ray crystallography, solid state NMR spectroscopy and different solid state vibrational spectroscopies that are either sensitive (VCD) or not (FarIR, IR and Raman) to chirality, together with quantum chemical calculations (DFT).

  1. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    Science.gov (United States)

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  2. High-cooling-efficiency cryogenic quadrupole ion trap and UV-UV hole burning spectroscopy of protonated tyrosine

    Science.gov (United States)

    Ishiuchi, Shun-ichi; Wako, Hiromichi; Kato, Daichi; Fujii, Masaaki

    2017-02-01

    The cooling efficiency of a cryogenic three-dimensional quadrupole ion trap (QIT) is drastically improved by using copper electrodes instead of conventional stainless-steel ones. The temperature of trapped ions (protonated tyrosine TyrH+) was estimated based on the ultraviolet (UV) photo-dissociation spectra. The UV spectrum of TryH+ shows almost no hot bands, and thus the high cooling efficiency of the copper ion trap was proven. The temperature was also estimated by simulating the observed band contour in the UV spectra, which is determined by the population in the rotationally excited levels. From the simulations, the temperature of TryH+ was estimated to be ∼13 K, while that in the stainless-steel QIT was 45-50 K. In addition, to demonstrate the advantage of the copper QIT, UV-UV hole burning (HB) spectra, i.e. conformation-selected UV spectra, were measured. It was confirmed that four different conformers, A∼D, coexist in the ultra-cold protonated tyrosine. By comparing with the calculated Franck-Condon spectra, their structural assignments were discussed, including the orientation of the OH group.

  3. Discrimination of whisky brands and counterfeit identification by UV-Vis spectroscopy and multivariate data analysis.

    Science.gov (United States)

    Martins, Angélica Rocha; Talhavini, Márcio; Vieira, Maurício Leite; Zacca, Jorge Jardim; Braga, Jez Willian Batista

    2017-08-15

    The discrimination of whisky brands and counterfeit identification were performed by UV-Vis spectroscopy combined with partial least squares for discriminant analysis (PLS-DA). In the proposed method all spectra were obtained with no sample preparation. The discrimination models were built with the employment of seven whisky brands: Red Label, Black Label, White Horse, Chivas Regal (12years), Ballantine's Finest, Old Parr and Natu Nobilis. The method was validated with an independent test set of authentic samples belonging to the seven selected brands and another eleven brands not included in the training samples. Furthermore, seventy-three counterfeit samples were also used to validate the method. Results showed correct classification rates for genuine and false samples over 98.6% and 93.1%, respectively, indicating that the method can be helpful for the forensic analysis of whisky samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Application of UV-Raman spectroscopy to the detection of chemical and biological threats

    Science.gov (United States)

    Sedlacek, Arthur J., III; Christesen, Steven D.; Chyba, Tom; Ponsardin, Pat

    2004-03-01

    Brookhaven National Laboratory (BNL), Edgewood Chemical and Biological Center (ECBC) and ITT Industries Advanced Engineering and Sciences Division (AES) have been collaborating on the transitioning and subsequent development of a short-range, non-contact Raman lidar system specifically designed to detect and identify chemical agents on the battlefield. [The instrument, referred to as LISA (Laser Interrogation of Surface Agents), will the subject of an accompanying paper.] As part of this collaboration, BNL has the responsibility for developing a spectral database (library) of surrogates and precursors for use with LISA"s pattern recognition algorithms. In this paper, the authors discuss the phenomenon of UV Raman and resonance-enhanced Raman spectroscopy, the development of an instrument-independent Raman spectral library, and highlight the exploitable characteristics present in the acquired spectral signatures that suggest potential utility in our country"s efforts on Homeland Security.

  5. Deep UV Raman spectroscopy for planetary exploration: The search for in situ organics

    Science.gov (United States)

    Abbey, William J.; Bhartia, Rohit; Beegle, Luther W.; DeFlores, Lauren; Paez, Veronica; Sijapati, Kripa; Sijapati, Shakher; Williford, Kenneth; Tuite, Michael; Hug, William; Reid, Ray

    2017-07-01

    Raman spectroscopy has emerged as a powerful, non-contact, non-destructive technique for detection and characterization of in situ organic compounds. Excitation using deep UV wavelengths (enhancing resonance Raman effects for key classes of organic compounds, such as the aromatics. In order to demonstrate the utility of this technique for planetary exploration and astrobiological applications, we interrogated three sets of samples using a custom built Raman instrument equipped with a deep UV (248.6 nm) excitation source. The sample sets included: (1) the Mojave Mars Simulant, a well characterized basaltic sample used as an analog for Martian regolith, in which we detected ∼0.04 wt% of condensed carbon; (2) a suite of organic (aromatic hydrocarbons, carboxylic acids, and amino acids) and astrobiologically relevant inorganic (sulfates, carbonates, phosphates, nitrates and perchlorate) standards, many of which have not had deep UV Raman spectra in the solid phase previously reported in the literature; and (3) Mojave Mars Simulant spiked with a representative selection of these standards, at a concentration of 1 wt%, in order to investigate natural 'real world' matrix effects. We were able to resolve all of the standards tested at this concentration. Some compounds, such as the aromatic hydrocarbons, have especially strong signals due to resonance effects even when present in trace amounts. Phenanthrene, one of the aromatic hydrocarbons, was also examined at a concentration of 0.1 wt% and even at this level was found to have a strong signal-to-noise ratio. It should be noted that the instrument utilized in this study was designed to approximate the operation of a 'fieldable' spectrometer in order to test astrobiological applications both here on Earth as well as for current and future planetary missions. It is the foundation of SHERLOC, an arm mounted instrument recently selected by NASA to fly on the next rover mission to Mars in 2020.

  6. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy.

    Science.gov (United States)

    Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz

    2016-10-09

    The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin-Ciocalteu method (R² of 0.97 in calibration and R² of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R² of 0.93 in calibration and R² of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R² of 0.99 in calibration and R² of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R² of 0.96 in calibration and R² of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content-the most important parameters to be measured in this type of liqueurs.

  7. Discrimination of Apple Liqueurs (Nalewka Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Magdalena Śliwińska

    2016-10-01

    Full Text Available The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin–Ciocalteu method (R2 of 0.97 in calibration and R2 of 0.93 in validation and also with the density, a marker of the alcoholic content method (R2 of 0.93 in calibration and R2 of 0.88 in validation. UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R2 of 0.99 in calibration and R2 of 0.99 in validation but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R2 of 0.96 in calibration and R2 of 0.85 in validation. In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content—the most important parameters to be measured in this type of liqueurs.

  8. Minimal invasive gender determination of birds by means of UV-resonance Raman spectroscopy.

    Science.gov (United States)

    Harz, M; Krause, M; Bartels, T; Cramer, K; Rösch, P; Popp, J

    2008-02-15

    The identification of avian gender is important for prosperous breeding of birds. Since birds do not possess external genital organs, endoscopic investigations, blood analysis, and molecular biological methods are applied to determine the gender in monomorphic species. However, anesthesia and blood sampling impose stress on the examined bird and should be avoided in terms of animal protection. Here we report on the application of UV-resonance Raman spectroscopy as a minimal invasive method for gender determination of birds via an evaluation of feather pulp samples. Sample preparation for this investigation method is simple and facilitates a quick and easy analysis. The UV-resonance Raman spectra of the feather pulp sample extracts are dominated by DNA and protein signals. The different DNA content in male and female chicken allows for gender differentiation via its characteristic Raman fingerprint. The classification either to male or female chicken is ideally accomplished by support vector machines due to the fact that no unknown classes are involved. Recognition rates of about 95% were compared to less effective results of the unsupervised hierarchical cluster analysis. Within the scope of our investigations, principal component analysis was also applied to determine the important spectral regions for the classification of chicken's feather pulp samples.

  9. Combined characterization of bovine polyhemoglobin microcapsules by UV-Vis absorption spectroscopy and cyclic voltammetry.

    Science.gov (United States)

    Knirsch, Marcos Camargo; Dell'Anno, Filippo; Salerno, Marco; Larosa, Claudio; Polakiewicz, Bronislaw; Eggenhöffner, Roberto; Converti, Attilio

    2017-03-01

    Polyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.6 mV to evaluate the ability to break the bond with carbon monoxide and to study the carrier's affinity for oxygen, respectively. SEM used to observe the shape of cross-linked gelatin-polyhemoglobin microparticles showed a regular distribution of globular shapes, with mean size of ~750 nm, which was ascribed to gelatin. Atomic absorption spectroscopy was also performed to detect iron presence in microparticles. Cyclic voltammetry using an Ag-AgCl electrode highlighted characteristic peaks at around -0.6 mV that were attributed to reversible oxygen bonding with iron in oxy-polyhemoglobin structure. These results suggest this technique as a powerful, direct and alternative method to evaluate the extent of hemoglobin oxygenation.

  10. The identification of chromophores in ancient glass by the use of UV-VIS-NIR spectroscopy

    Science.gov (United States)

    Meulebroeck, W.; Baert, K.; Wouters, H.; Cosyns, P.; Ceglia, A.; Cagno, S.; Janssens, K.; Nys, K.; Terryn, H.; Thienpont, H.

    2010-04-01

    In this publication optical spectroscopy is considered to be a supplementary technique to study ancient colored glass. It results from a systematic study of the UV-VIS-NIR transmission spectra of intentionally colored glass fragments from various archaeological and historical sites and dated from the Roman period to the 21th century AD. The main goal consists of defining optical sensing parameters for this type of material. The considered colorants are iron, cobalt, manganese, copper and chromium. It is proved that many cases exist where optical spectroscopy can be seen as a straightforward, non-destructive, low-cost and in-situ applicable technique in identifying authentic material or to obtain information about the origin of the material. Possible sensing parameters are defined as the absence/presence of absorption bands characteristic for a specific coloring metal oxide and the spectral position of these bands. These parameters could reveal information about the applied furnace conditions and/or to the composition of the glass matrix. It is shown that the cobalt absorption band situated around 535 nm for soda rich glasses (Roman and industrial times) is shifted towards 526 nm for potash rich glasses (medieval and post-medieval times).

  11. Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy.

    Science.gov (United States)

    Hsu, Paul S; Kulatilaka, Waruna D; Jiang, Naibo; Gord, James R; Roy, Sukesh

    2012-06-20

    We investigate the feasibility of transmitting high-power, ultraviolet (UV) laser pulses through long optical fibers for laser-induced-fluorescence (LIF) spectroscopy of the hydroxyl radical (OH) and nitric oxide (NO) in reacting and non-reacting flows. The fundamental transmission characteristics of nanosecond (ns)-duration laser pulses are studied at wavelengths of 283 nm (OH excitation) and 226 nm (NO excitation) for state-of-the-art, commercial UV-grade fibers. It is verified experimentally that selected fibers are capable of transmitting sufficient UV pulse energy for single-laser-shot LIF measurements. The homogeneous output-beam profile resulting from propagation through a long multimode fiber is ideal for two-dimensional planar-LIF (PLIF) imaging. A fiber-coupled UV-LIF system employing a 6 m long launch fiber is developed for probing OH and NO. Single-laser-shot OH- and NO-PLIF images are obtained in a premixed flame and in a room-temperature NO-seeded N(2) jet, respectively. Effects on LIF excitation lineshapes resulting from delivering intense UV laser pulses through long fibers are also investigated. Proof-of-concept measurements demonstrated in the current work show significant promise for fiber-coupled UV-LIF spectroscopy in harsh diagnostic environments such as gas-turbine test beds.

  12. Simultaneous UV Imaging and Raman Spectroscopy for the Measurement of Solvent-Mediated Phase Transformations During Dissolution Testing

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Wu, Jian; Naelapää, Kaisa

    2014-01-01

    The current work reports the simultaneous use of UV imaging and Raman spectroscopy for detailed characterization of drug dissolution behavior including solid-state phase transformations during dissolution. The dissolution of drug substances from compacts of sodium naproxen in 0.1 HCl as well...

  13. Combined operando Raman/UV-Vis-NIR spectroscopy as a tool to study supported metal oxide catalysts at work

    NARCIS (Netherlands)

    Tinnemans, Stanislaus Josephus

    2006-01-01

    A novel set-up has been developed in which two complementary spectroscopic techniques, namely operando Raman and UV-Vis-NIR spectroscopy, are combined. With this set-up it is possible to characterize catalytic materials under reaction conditions (high temperature, normal pressure) and in this way on

  14. Inline UV-Vis spectroscopy to monitor and optimize cleaning-in-place (CIP) of whey filtration plants

    DEFF Research Database (Denmark)

    Berg, Thilo Heinz Alexander; Ottosen, Niels; van der Berg, Franciscus Winfried J.

    2017-01-01

    transferred to a pilot plant equipped with inline UV-Vis spectroscopy on both the retentate and permeate side. Then the dynamics of multiple fouling and cleaning of these membranes were investigated. The results indicate that the first CIP step, caustic cleaning could be shortened and possibly reduced...

  15. A conformational study of protonated noradrenaline by UV-UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method.

    Science.gov (United States)

    Wako, Hiromichi; Ishiuchi, Shun-Ichi; Kato, Daichi; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Fujii, Masaaki

    2017-05-03

    The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S1 state, with the aid of relative stabilization energies of each conformer in the S0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm(-1) from the others. The significant red-shift was explained by a large contribution of the πσ* state to S1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.

  16. Design and research of analysis instrument based on Q-switch micro-crystal UV laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Yu, Suping; Han, Hanguang; Yu, Jinming; Fu, Yinping; Sha, Pingsheng

    2010-10-01

    The physical principle of micro- crystal UV Laser-Induced Fluorescence Spectroscopy (MUV-LIF) is expatiated in the paper, and the application of MUV-LIF to organic matter is studied. Then a portable intelligent analysis instrument based on MUV-LIF is designed. The instrument is composed of following units-----excitation source module based on micro-crystal UV laser, laser driving and controlling module, sample cell, spectroscopy-detecting module, processing and displaying module. Especially, because of high peak power and high repetition frequency rate, Qswitch micro-crystal UV laser is selected as excitation source. MUV-laser module of the instrument is singlepolarization solid-state coherent sources. The module is quasi monolithic integrated. The MUV-laser emits at wavelengths of 355nm, 266nm and 213nm, and it has many advantages, such as high peak power (greater than 30kw), high repeat frequency rate (greater than 10kHz), subnanosecond pulse (less than 500ps pulse width). So the excitation source module is an efficient compact high-order harmonic laser system. Laser driving and controlling module supplies power regulator and temperature controller for MUV-laser. Fluorescence spectroscopy image is produced by spectroscopy-detecting module and pre-processed in processing module. Qualitative and semi-quantitative analysis of sample can be conducted by referring to fluorescence spectroscopy feature library. The experimental results express that lots of organic matter, e.g. melamine, can be detected. The portal instrument has high SNR and sensitivity.

  17. [Measurement of Water COD Based on UV-Vis Spectroscopy Technology].

    Science.gov (United States)

    Wang, Xiao-ming; Zhang, Hai-liang; Luo, Wei; Liu, Xue-mei

    2016-01-01

    Ultraviolet/visible (UV/Vis) spectroscopy technology was used to measure water COD. A total of 135 water samples were collected from Zhejiang province. Raw spectra with 3 different pretreatment methods (Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) and 1st Derivatives were compared to determine the optimal pretreatment method for analysis. Spectral variable selection is an important strategy in spectrum modeling analysis, because it tends to parsimonious data representation and can lead to multivariate models with better performance. In order to simply calibration models, the preprocessed spectra were then used to select sensitive wavelengths by competitive adaptive reweighted sampling (CARS), Random frog and Successive Genetic Algorithm (GA) methods. Different numbers of sensitive wavelengths were selected by different variable selection methods with SNV preprocessing method. Partial least squares (PLS) was used to build models with the full spectra, and Extreme Learning Machine (ELM) was applied to build models with the selected wavelength variables. The overall results showed that ELM model performed better than PLS model, and the ELM model with the selected wavelengths based on CARS obtained the best results with the determination coefficient (R2), RMSEP and RPD were 0.82, 14.48 and 2.34 for prediction set. The results indicated that it was feasible to use UV/Vis with characteristic wavelengths which were obtained by CARS variable selection method, combined with ELM calibration could apply for the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  18. Investigations of suspension stability of iron oxide nanoparticles using time-resolved UV-visible spectroscopy

    Science.gov (United States)

    Vikram, S.; Vasanthakumari, R.; Tsuzuki, Takuya; Rangarajan, Murali

    2016-09-01

    This study examines the suspension stability of iron oxide nanoparticles of different sizes, magnetic susceptibility, and saturation magnetization over long time scales in dilute systems using time-resolved UV-visible spectroscopy. The effects of citric acid as a chelating agent and applied external magnetic field are also studied. UV-visible spectra are obtained at different times for citric-acid-stabilized nanoparticles dispersed in water, and the peak absorbance is tracked with time, in the presence and absence of external magnetic fields. It is seen that the nanoparticles sediment slowly even in the absence of chain formation, with the phenomenon occurring in two-to-three regimes for the systems studied. Sedimentation exhibits either exponential or power-law behavior of maximum absorbance with time. In the dilute dispersions studied, thermal dispersion is about two orders of magnitude stronger than van der Waals interactions, and chain formation is not easy. Yet, it is likely that local anisotropic structures of the nanoparticles form, through which the attractive interactions result in sedimentation. Citric acid gradually stabilizes the aggregating particles; after an initial faster sedimentation, electrostatic repulsion causes the particles to segregate, as observed by a linear increase in the concentration of the nanoparticles at long times. In the presence of magnetic field, stabilization effects are significantly reduced. It is seen that though the attractive force between the nanoparticles and the external field is smaller than Brownian forces, together with van der Waals interactions, these attractive forces likely act as directing agents facilitating sedimentation. This study demonstrates that aggregation-induced sedimentation of magnetic nanoparticles is likely to play a significant role in magnetic drug targeting even when the particles are stabilized with chelating agents.

  19. The Lowest Triplet of Tetracyanoquinodimethane via UV-vis Absorption Spectroscopy with Br-Containing Solvents.

    Science.gov (United States)

    Khvostenko, Olga G; Kinzyabulatov, Renat R; Khatymova, Laysan Z; Tseplin, Evgeniy E

    2017-10-05

    This study was undertaken to find the previously unknown lowest triplet of the isolated molecule of tetracyanoquinodimethane (TCNQ), which is a widely used organic semiconductor. The problem is topical because the triplet excitation of this compound is involved in some processes which occur in electronic devices incorporating TCNQ and its derivatives, and information on the TCNQ triplet is needed for better understanding of these processes. The lowest triplet of TCNQ was obtained at 1.96 eV using UV-vis absorption spectroscopy with Br-containing solvents. Production of the triplet band with sufficient intensity in the spectra was provided by the capacity of the Br atom to augment the triplet excitation and through using a 100 mm cuvette. The assignment of the corresponding spectral band to the triplet transition was made by observation that this band appeared only in the spectra recorded in Br-containing solvents but not in spectra recorded in other solvents. Additional support for the triplet assignment came from the overall UV-vis absorption spectra of TCNQ recorded in various solvents, using a 10 mm cuvette, in the 1.38-6.5 eV energy range. Singlet transitions of the neutral TCNQ(o) molecule and doublet transitions of the TCNQ(¯) negative ion were identified in these overall spectra and were assigned with TD B3LYP/6-31G calculations. Determination of the lowest triplet of TCNQ attained in this work may be useful for theoretical studies and practical applications of this important compound.

  20. Photoacoustic spectroscopy to evaluate the potentiality of bee-propolis as UV protector: In vivo test in humans

    Science.gov (United States)

    Sehn, E.; Silva, K. C.; Bento, A. C.; Baesso, M. L.; Franco, S. L.

    2005-06-01

    In this work, the Photoacoustic Spectroscopy was employed to evaluate the potentiality of bee-propolis as UV protector. The experiments were performed to obtain the creams optical absorption spectra in the UV spectral region and also to evaluate in vivo the penetration rate of the obtained product in humans. The results showed the spectral response of the developed bee-propolis creams, and also revealed that two hours after the application about 40 % of the cream signal was still detected on the skin surface.

  1. Determination of carcinogenic fluorine in cigarettes using pulsed UV laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Gondal, Mohammed A; Habibullah, Yusuf B; Oloore, Luqman E; Iqbal, Mohammed A

    2015-06-10

    A spectrometer based on pulsed UV laser-induced breakdown spectroscopy (LIBS) and a highly sensitive intensified charged coupled device camera was developed to determine the carcinogenic substances like fluorine in various brands of cigarettes available commercially. In order to achieve the high sensitivity required for the determination of trace amounts of fluoride in cigarettes and eventually the best limit of detection, the experimental parameters (influence of incident laser energy on LIBS signal intensity and time response of plasma emission) were optimized. In addition, the plasma parameters like electron temperature and electron density were evaluated using Boltzman's plot for cigarette tobacco for the first time. To the best of our knowledge, LIBS has never been applied to determine the fluorine concentration in cigarettes. Along with the detection of fluorine, other trace metals like Ba, Ca, Ni, Cu, and Na were also detected in cigarettes. For determination of the concentration of fluorine, calibration curve was drawn by preparing standard samples in various fluoride concentrations in tobacco matrix. The concentration of fluorine in different cigarette tobacco samples was 234, 317, 341, and 360 ppm respectively, which is considered to be much higher than the safe permissible limits. The limit of detection of our LIBS spectrometer was 14 ppm for fluorine.

  2. Ex-vivo UV autofluorescence imaging and fluorescence spectroscopy of atherosclerotic pathology in human aorta

    Science.gov (United States)

    Lewis, William; Williams, Maura; Franco, Walfre

    2017-02-01

    The aim of our study was to identify fluorescence excitation-emission pairs correlated with atherosclerotic pathology in ex-vivo human aorta. Wide-field images of atherosclerotic human aorta were captured using UV and visible excitation and emission wavelength pairs of several known fluorophores to investigate correspondence with gross pathologic features. Fluorescence spectroscopy and histology were performed on 21 aortic samples. A matrix of Pearson correlation coefficients were determined for the relationship between relevant histologic features and the intensity of emission for 427 wavelength pairs. A multiple linear regression analysis indicated that elastin (370/460 nm) and tryptophan (290/340 nm) fluorescence predicted 58% of the variance in intima thickness (R-squared = 0.588, F(2,18) = 12.8, p=.0003), and 48% of the variance in media thickness (R-squared = 0.483, F(2,18) = 8.42, p=.002), suggesting that endogenous fluorescence intensity at these wavelengths can be utilized for improved pathologic characterization of atherosclerotic plaques.

  3. UV-VIS Spectroscopy Applied to Stratospheric Chemistry, Methods and Results

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, K.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Numerous observations and modeling have shown with a very high degree of certainty that the man-made emissions of chlorofluorocarbons (CFC) and halons are responsible for the Antarctica ozone hole. It is also evident that the ozone layer of the Northern Hemisphere has suffered a certain decline over the last 10-15 years, possibly because of CFC and halons. 20-30% of the observed reduction is ascribed to coupled chlorine and bromine chemistry via a catalytic cycle resulting in the net conversion of 2O{sub 3} to 3O{sub 2}. But the details are not fully understood. The author plans to assemble a UV-VIS spectrometer for measuring the species OClO and BrO and to compare and discuss measured diurnal variations of OClO and BrO with model calculations. The use of Differential Optical Absorption Spectroscopy (DOAS) is discussed and some results from late 1995 presented. 6 refs., 2 figs.

  4. Determination of solar optical properties of transparent polymer films using UV/vis spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oreski, G.; Tscharnuter, D. [Polymer Competence Center Leoben GmbH, Parkstrasse 11, A-8700 Leoben (Austria); Wallner, G.M. [Institute of Materials Science and Testing of Plastics, University of Leoben (Austria)

    2010-05-15

    In this paper, 4- and 5-flux models were implemented and used for the determination of absorption and scattering coefficients of transparent polymer films by UV/vis/NIR spectroscopy. The models were applied for a systematic characterization of polar ethylene copolymer films in the solar radiation range. The investigated ethylene copolymer films were highly transparent in the solar range of radiation, with hemispheric transmittance values above 91% and hemispheric reflectance values of about 8%. Both models revealed a significant forward scattering behavior of the films. The 4-flux model fitted hemispheric and diffuse transmittance far better than the 5-flux model. Hemispheric reflectance values were overestimated by both models. Similar absorption coefficient values ranging from 0.4 to 0.6 cm{sup -1} were obtained for all investigated films. While ethylene(acrylic acid/butylacrylate) terpolymer showed the lowest scattering coefficient (10.9 (5-flux) and 6.8 cm{sup -1} (4-flux)), the highest scattering coefficient (26.2 (5-flux) and 35.2 cm{sup -1} (4-flux)) was found for ethylene(butylacrylate) copolymer. (author)

  5. Course of poly(4-aminodiphenylamine)/Ag nanocomposite formation through UV-vis spectroscopy

    Science.gov (United States)

    Thanjam, Starlet; Philips, M. Francklin; Komathi, S.; Manisankar, P.; Sivakumar, C.; Gopalan, A.; Lee, Kwang-Pill

    2011-09-01

    Kinetics of chemical oxidative polymerization of 4-aminodiphenylamine (4ADPA) was followed in aqueous 1 M p-toluene sulfonic acid (p-TSA) using silver nitrate (AgNO 3) as an oxidant by UV-vis spectroscopy. The medium was found to be clear and homogeneous during the course of polymerization. The absorbances corresponding to the intermediate and the polymer were followed for different concentrations of 4ADPA and AgNO 3 and at different reaction time. The appearance of a band around 450 nm during the initial stages of polymerization corresponds to the plasmon resonance formed by the reduction of Ag + ions. Rate of poly(4-aminodiphenylamine)/Ag nanocomposite ( RP4ADPA/AgNC) was determined for various reaction conditions. RP4ADP/AgNC showed second order power dependence on 4ADPA and first order dependence on AgNO 3. The observed order dependences of 4ADPA and AgNO 3 on the formation of P4ADPA/AgNC were used to deduce a rate equation for the reaction. Rate constant for the reaction was determined through different approaches. The good agreement between the rate constants obtained through different approaches justifies the selection of rate equation.

  6. Quantitative characterization of the colloidal stability of metallic nanoparticles using UV-vis absorbance spectroscopy.

    Science.gov (United States)

    Ray, Tyler R; Lettiere, Bethany; de Rutte, Joseph; Pennathur, Sumita

    2015-03-31

    Plasmonic nanoparticles are used in a wide variety of applications over a broad array of fields including medicine, energy, and environmental chemistry. The continued successful development of this material class requires the accurate characterization of nanoparticle stability for a variety of solution-based conditions. Although many characterization methods exists, there is an absence of a unified, quantitative means for assessing the colloidal stability of plasmonic nanoparticles. We present the particle instability parameter (PIP) as a robust, quantitative, and generalizable characterization technique based on UV-vis absorbance spectroscopy to characterize colloidal instability. We validate PIP performance with both traditional and alternative characterization methods by measuring gold nanorod instability in response to different salt (NaCl) concentrations. We further measure gold nanorod stability as a function of solution pH, salt, and buffer (type and concentration), nanoparticle concentration, and concentration of free surfactant. Finally, these results are contextualized within the literature on gold nanorod stability to establish a standardized methodology for colloidal instability assessment.

  7. Simultaneous Determination of Caffeine and Chlorogenic Acids in Green Coffee by UV/Vis Spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Navarra

    2017-01-01

    Full Text Available A simple method for the simultaneous determination of caffeine and chlorogenic acids content in green coffee was reported. The method was based on the use of UV/Vis absorption. It is relevant that the quantification of both caffeine and chlorogenic acids was performed without their preliminary chemical separation despite their spectral overlap in the range 250–350 nm. Green coffee was extracted with 70% ethanol aqueous solution; then the solution was analyzed by spectroscopy. Quantitative determination was obtained analytically through deconvolution of the absorption spectrum and by applying the Lambert-Beer law. The bands used for the deconvolution were the absorption bands of both caffeine and chlorogenic acids standards. The molar extinction coefficients for caffeine and chlorogenic acid in ethanol solution at 70% were calculated by using the chemical standards; the estimated values were ε(272 nm=12159±97 M−1 cm−1 for caffeine and ε(330 nm=27025±190 M−1 cm−1 for chlorogenic acids molecules, respectively. The estimate of concentration values was in agreement with the one obtained by High Performance Liquid Chromatography quantification. The method is fast and simple and allows us to realize routine controls during the coffee production. In addition, it could be applied on roasted coffee and espresso coffee.

  8. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    Science.gov (United States)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  9. Thermal edible oil evaluation by UV-Vis spectroscopy and chemometrics.

    Science.gov (United States)

    Gonçalves, Rhayanna P; Março, Paulo H; Valderrama, Patrícia

    2014-11-15

    Edible oils such as colza, corn, sunflower, soybean and olive were analysed by UV-Vis spectroscopy and Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS). When vegetable oils were heated at high temperatures (frying), oxidation products were formed which were harmful to human health in addition to degrading the antioxidants present, and this study aimed to evaluate tocopherol (one antioxidant present in oils) and the behaviour of oxidation products in edible oils. The MCR-ALS results showed that the degradation started at 110°C and 85°C, respectively, for sunflower and colza oils, while tocopherol concentration decreased and oxidation products increased starting at 70°C in olive oil. In soybean and corn oils, tocopherol concentration started to decrease and oxidation products increased at 50°C. The results suggested that sunflower, colza and olive oils offered more resistance to increasing temperatures, while soybean and corn oils were less resistant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Measurement of Heme Ruffling Changes in MhuD Using UV-vis Spectroscopy.

    Science.gov (United States)

    Graves, Amanda B; Graves, Max T; Liptak, Matthew D

    2016-04-28

    For decades it has been known that an out-of-plane ruffling distortion of heme perturbs its UV-vis absorption (Abs) spectrum, but whether increased ruffling induces a red or blue shift of the Soret band has remained a topic of debate. This debate has been resolved by the spectroscopic and computational characterization of Mycobacterium tuberculosis MhuD presented here, an enzyme that converts heme, oxygen, and reducing equivalents to nonheme iron and mycobilin. W66F and W66A MhuD have been characterized using (1)H nuclear magnetic resonance, Abs, and magnetic circular dichroism spectroscopies, and the data have been used to develop an experimentally validated theoretical model of ruffled, ferric heme. The PBE density functional theory (DFT) model that has been developed accurately reproduces the observed spectral changes from wild type enzyme, and the underlying quantum mechanical origins of these ruffling-induced changes were revealed by analyzing the PBE DFT description of the electronic structure. Small amounts of heme ruffling have no influence on the energy of the Q-band and blue-shift the Soret band due to symmetry-allowed mixing of the Fe 3dxy and porphyrin a2u orbitals. Larger amounts of ruffling red-shift both the Q and Soret bands due to disruption of π-bonding within the porphyrin ring.

  11. Investigation of the hydrated 7-hydroxy-4-methylcoumarin dimer by combined IR/UV spectroscopy

    Science.gov (United States)

    Stamm, A.; Schwing, K.; Gerhards, M.

    2014-11-01

    The first molecular beam investigations on a coumarin dimer and clusters of a coumarin dimer with water both in the neutral (S0) and cationic (D0) electronic ground state are performed. The structure and structural changes due to ionization of the isolated 7-hydroxy-4-methylcoumarin dimer (7H4MC)2 as well as its mono- and dihydrate (7H4MC)2(H2O)1-2 are analyzed by applying combined IR/UV spectroscopy compared with density functional theory calculations. In case of the neutral dimer of 7H4MC a doubly hydrogen-bonded structure is formed. This doubly hydrogen-bonded arrangement opens to a singly hydrogen-bonded structure in the ion presenting a rearrangement reaction within an isolated dimer. By attaching one or two water molecules to the neutral 7H4MC dimer water is inserted into the hydrogen bonds. In contrast to the non-hydrated species this general binding motif with water in a bridging function does not change via ionization but especially for the dihydrate the spatial arrangement of the two 7H4MC units changes strengthening the interaction between the aromatic chromophores. The presented analyses illustrate the strong dependence of binding motifs as a function of successive hydration and charge including a rearrangement reaction.

  12. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2010-05-01

    Full Text Available Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS. While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations.

    For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength.

    However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs, but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling.

    We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as

  13. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Science.gov (United States)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2010-05-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis

  14. Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs

    Science.gov (United States)

    Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric

    2016-06-01

    Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution

  15. Early Developments in Crystallography

    Indian Academy of Sciences (India)

    IAS Admin

    molecules to treat different diseases, make materials of desired properties and attempt to understand unknown territories far away from the Earth such as the exploration of the surface of. Mars. In this article, we will try to trace the early historical events in the development of X-ray crystallography, and the Indian contributions ...

  16. Crystallography and Drug Design

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Crystallography and Drug Design. K Suguna. General Article Volume 19 Issue 12 December 2014 pp 1093-1103. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/019/12/1093-1103. Keywords.

  17. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    Science.gov (United States)

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  18. A study of the optical band gap of zinc phthalocyanine nanoparticles using UV-Vis spectroscopy and DFT function

    Science.gov (United States)

    Hamam, Khalil J.; Alomari, Mohammed I.

    2017-06-01

    In the present work, we used the ultraviolet-Visible (UV-Vis) spectroscopy technique to find the optical band gap of zinc phthalocyanine nanoparticles (ZnPc-NP) experimentally. Moreover, we used a time-dependent density functional theory (TDDFT) to simulate the UV-Vis absorption spectrum of ZnPc molecule in gas and solution phases. The ZnPc-NP absorption spectrum shows a shift toward higher energies compared to the bulk ZnPc. The simulated UV-Vis and the experimental nanoparticle's spectrum were found to have a good agreement. The ZnPc energy band gap from the DFT calculations shows how it's possible to get wider range of energy band gap for the ZnPc. The ZnPc-NP's size and shape were examined using the transmission electron microscope (TEM).

  19. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy.

    Science.gov (United States)

    Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta

    2017-10-12

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH4CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH4CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy

    Science.gov (United States)

    Marín-Yaseli, Margarita R.; Moreno, Miguel; de la Fuente, José L.; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-01

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH4CN and NaCN, at middle temperatures between 4 and 38 °C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH4CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study.

  1. Caught in the Act: UV spectroscopy of the ejecta-companion collision from a type Ia supernova

    Science.gov (United States)

    Kulkarni, Shrinivas

    2017-08-01

    There is now significant observational evidence for both of the leading models proposed to explain the origin of type Ia supernovae (SNe). While the majority of SNe Ia likely come from the merger of two white dwarf (WD) stars (known as the double degenerate model), a significant fraction are the result of a WD accreting mass from the hydrogen envelope of a binary companion (known as the single degenerate model). Eventually, as the accreting WD approaches the Chandrasekhar limit, the onset of unstable burning occurs ultimately leading to a thermonuclear explosion. With observational evidence for both channels firmly in place, future efforts to better understand the progenitors of SNe Ia will require detailed studies of individual systems.A fundamental expectation of the single degenerate model is that the collision of the blast wave with the donor star will produce a unique signature - a bright and rapidly declining UV pulse. This UV signal has only been previously observed in a single SN. Here, we propose to undertake STIS UV spectroscopy of one infant type Ia SN with similarly strong UV emission. The spectra will provide unique and detailed insight into the ejecta-companion interaction while also probing the chemical abundance of the outermost layers of the SN ejecta. The ejecta-companion signature is only visible UV, and HST/STIS is the only instrument capable of obtaining the spectra that are needed as a detailed probe of the interaction physics.

  2. A comparison of antioxidative capacities of fruit juices, drinks and nectars, as determined by EPR and UV-vis spectroscopies

    Science.gov (United States)

    Bartoszek, Mariola; Polak, Justyna

    2016-01-01

    The differences in the Trolox Equivalent Antioxidant Capacity (TEAC) values at the same incubation time obtained by two different techniques: electron paramagnetic resonance (EPR) spectroscopy and ultraviolet visible (UV-vis) spectroscopy, which use the same antioxidant-free radical reaction mechanism, were determined for fruit juices, nectars and drinks. For this study, the stable free radical 1,1-Diphenyl-2-picryl-hydrazyl (DPPH•) was used. The antioxidant capacity was presented in Trolox Equivalents, e.g., μM trolox per 100 ml of sample. All of the studied fruit juices, drinks and nectars showed antioxidative properties. Dependencies between TEAC values and the percent fruit content and sample color were observed for the studied beverages. It was found that EPR spectroscopy is the more adequate method for determining TEAC values for these kinds of samples.

  3. A comparison of antioxidative capacities of fruit juices, drinks and nectars, as determined by EPR and UV-vis spectroscopies.

    Science.gov (United States)

    Bartoszek, Mariola; Polak, Justyna

    2016-01-15

    The differences in the Trolox Equivalent Antioxidant Capacity (TEAC) values at the same incubation time obtained by two different techniques: electron paramagnetic resonance (EPR) spectroscopy and ultraviolet visible (UV-vis) spectroscopy, which use the same antioxidant-free radical reaction mechanism, were determined for fruit juices, nectars and drinks. For this study, the stable free radical 1,1-Diphenyl-2-picryl-hydrazyl (DPPH(•)) was used. The antioxidant capacity was presented in Trolox Equivalents, e.g., μM trolox per 100 ml of sample. All of the studied fruit juices, drinks and nectars showed antioxidative properties. Dependencies between TEAC values and the percent fruit content and sample color were observed for the studied beverages. It was found that EPR spectroscopy is the more adequate method for determining TEAC values for these kinds of samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Quantum crystallography: A perspective.

    Science.gov (United States)

    Massa, Lou; Matta, Chérif F

    2017-11-14

    Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.; Weckhuysen, B.M.

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  6. UV-visible spectroscopy of PAHs and PAHNs in supersonic jet. Astrophysical Implications

    Science.gov (United States)

    Salma, Bejaoui; Salama, Farid

    2017-06-01

    Polycyclic Aromatic Hydrocarbon (PAHs) molecules are attracting much attention of the astrophysical and astrochemical communities since they are ubiquitous presence in space and could survive in the harsh interstellar medium (ISM). They are proposed as plausible carriers of the still unassigned diffuse interstellar bands (DIBs) for more than two decades now. The so-called PAH - DIB proposal has been based on the abundance of PAHs in the ISM and their stability against the photo and thermo dissociation. Nitrogen is one of the most abundant elements after hydrogen, helium, and carbon [1]. PANHs exhibit spectral features similar to PAHs and may also contribute to unidentified spectral bands.To prove PAHs-DIBs hypothesis, laboratory absorption spectra of aromatic under astrophysical relevant conditions are of crucial importance to compare with the observed DIBs spectra. The most challenging task is to reproduce as closely as technically possible, the physical and chemical conditions that are present in space. Interstellar PAHs are expected to be present as free, cold, neutral molecules and/or charged species [2]. In our laboratory, comparable conditions are achieved using an excellent platform developed in NASA Ames. Our cosmic simulation chamber (COSmIC) allow the measurements of gas phase spectra of neutral and ionized interstellar PAHs analogs by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion (˜ 100 K) [3]. Our approach to assign PAH as carriers of some DIBs is record the electronic spectra of cold PAHs in gas phase and systematic search for a possible correspondence in astronomical DIBs spectra. We report in this work UV-visible absorption spectra of neutral PAHs and PAHNs using the cavity ring down spectroscopy (CRDS) technique. We discuss the effect of the substitution of C-H bond(s) by a nitrogen atom(s) in spectroscopic features of PAHs and their astrophysical application.[1] L. Spitzer, 1978, Physical processes in

  7. Non-contact assessment of COD and turbidity concentrations in water using diffuse reflectance UV-Vis spectroscopy.

    Science.gov (United States)

    Agustsson, Jon; Akermann, Oliver; Barry, D Andrew; Rossi, Luca

    2014-08-01

    Water contamination is an important environmental concern underlining the need for reliable real-time information on contaminant concentrations in natural waters. Here, a new non-contact UV-Vis spectroscopic approach for monitoring contaminants in water, and especially wastewater, is proposed. Diffuse reflectance UV-Vis spectroscopy was applied to measure simultaneously the chemical oxygen demand (COD) and turbidity (TUR) concentrations in water. The measurements were carried out in the wavelength range from 200-1100 nm. The measured spectra were analysed using partial-least-squares (PLS) regression. The correlation coefficient between the measured and the reference concentrations of COD and TUR in the water samples were R(2) = 0.85 and 0.96, respectively. These results highlight the potential of non-contact UV-Vis spectroscopy for the assessment of water contamination. A system built on the concept would be able to monitor wastewater pollution continuously, without the need for laborious sample collection and subsequent laboratory analysis. Furthermore, since no parts of the system are in contact with the wastewater stream the need for maintenance is minimised.

  8. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy.

    Science.gov (United States)

    Jager, Marieke F; Ott, Christian; Kraus, Peter M; Kaplan, Christopher J; Pouse, Winston; Marvel, Robert E; Haglund, Richard F; Neumark, Daniel M; Leone, Stephen R

    2017-09-05

    Coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M2,3 edge is used to track the insulator-to-metal phase transition in VO2 This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase, and measures the phase-transition dynamics in the insulating phase. An understanding of the VO2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V3+/d2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott-Hubbard-type mechanism is favored, as the observed timescales and d2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. The findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.

  9. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy

    Science.gov (United States)

    Jager, Marieke F.; Ott, Christian; Kraus, Peter M.; Kaplan, Christopher J.; Pouse, Winston; Marvel, Robert E.; Haglund, Richard F.; Neumark, Daniel M.; Leone, Stephen R.

    2017-09-01

    Coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M2,3 edge is used to track the insulator-to-metal phase transition in VO2. This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase, and measures the phase-transition dynamics in the insulating phase. An understanding of the VO2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V3+/d2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott-Hubbard-type mechanism is favored, as the observed timescales and d2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. The findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.

  10. UV-Visible Spectroscopy Detection of Iron(III) Ion on Modified Gold Nanoparticles With a Hydroxamic Acid

    Science.gov (United States)

    Karami, C.; Alizadeh, A.; Taher, M. A.; Hamidi, Z.; Bahrami, B.

    2016-09-01

    The present work describes the preparation of gold nanoparticles (AuNPs) functionalized with hydroxamic acid and the use of them in UV-visible spectroscopy detection of iron(III) ions. The prepared AuNPs were thoroughly characterized by using UV-visible spectroscopy, TEM, and 1H NMR techniques. The newly synthesized hydroxamic acid-AuNPs are brown in color due to the intense surface plasmon absorption band centered at 527 nm. In the presence of Fe(III), the surface plasmon absorption band is centered at 540 nm. However, the sensitivity of hydroxamic acid-AuNPs towards other metal ions such as Mg(II), Ca(II), Ag(I), Cu(II), Mn(II), Cr(II), Ni(II), Co(II),Fe(II), Hg(II), and Pb(II) can be negligible. This highly selective sensor allows a direct quantitative assay of Fe(III) with a UVvisible spectroscopy detection limited to 45.8 nM.

  11. Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy.

    Science.gov (United States)

    Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi

    2013-10-01

    The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV-Vis spectroscopy.

    Science.gov (United States)

    Zhang, Ying; Wang, Xuejing; Wang, Lei; Yu, Miao; Han, Xiaojun

    2014-02-01

    The baicalin and baicalein are the major flavonoids found in Radix Scutellariae, an essential herb in traditional Chinese medicine for thousands of years. The interactions of the baicalin and baicalein with lipid bilayer membranes were studied using cyclic voltammetry and UV-Vis spectroscopy. The thickness d of supported bilayer lipid membranes was calculated as d=4.59(±0.36) nm using AC impedance spectroscopy. The baicalein interacted with egg PC bilayer membranes in a dose-dependent manner. The responses of K3Fe(CN)6 on lipid bilayer membrane modified Pt electrode linearly increased in a concentration range of baicalein from 6.25μM to 25μM with a detection limit of 0.1μM and current-concentration sensitivity of 0.11(±0.01) μA/μM, and then reached a plateau from 25μM to 50μM. However the baicalin showed much weaker interactions with egg PC bilayer membranes. UV-Vis spectroscopy also confirmed that the baicalein could interact with egg PC membranes noticeably, but the interaction of baicalin with membranes was hard to be detected. The results provide useful information on understanding the mechanism of action of Radix Scutellariae in vivo. © 2013.

  13. Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV.

    Science.gov (United States)

    Tseng, Chien-hung; Sándor, Péter; Kotur, Marija; Weinacht, Thomas C; Matsika, Spiridoula

    2012-03-22

    We compare two-dimensional (2D) ultrafast Fourier transform spectroscopy measurements in the deep UV (262 nm) for adenine and uracil in solution. Both molecules show excited-state absorption on short time scales and ground-state bleaching extending for over 1 ps. While the 2D spectrum for uracil shows changes in the center of gravity during the first few hundred femtoseconds, the center of gravity of the 2D spectrum for adenine does not show similar changes. We discuss our results in light of ab initio electronic structure calculations. © 2011 American Chemical Society

  14. A new approach for heparin standardization: combination of scanning UV spectroscopy, nuclear magnetic resonance and principal component analysis.

    Directory of Open Access Journals (Sweden)

    Marcelo A Lima

    Full Text Available The year 2007 was marked by widespread adverse clinical responses to heparin use, leading to a global recall of potentially affected heparin batches in 2008. Several analytical methods have since been developed to detect impurities in heparin preparations; however, many are costly and dependent on instrumentation with only limited accessibility. A method based on a simple UV-scanning assay, combined with principal component analysis (PCA, was developed to detect impurities, such as glycosaminoglycans, other complex polysaccharides and aromatic compounds, in heparin preparations. Results were confirmed by NMR spectroscopy. This approach provides an additional, sensitive tool to determine heparin purity and safety, even when NMR spectroscopy failed, requiring only standard laboratory equipment and computing facilities.

  15. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals.

    Science.gov (United States)

    Consentius, Philipp; Gohlke, Ulrich; Loll, Bernhard; Alings, Claudia; Heinemann, Udo; Wahl, Markus C; Risse, Thomas

    2017-08-09

    Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.

  16. Teaching UV-Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer

    Science.gov (United States)

    Grasse, Elise K.; Torcasio, Morgan H.; Smith, Adam W.

    2016-01-01

    Visible absorbance spectroscopy is a widely used tool in chemical, biochemical, and medical laboratories. The theory and methods of absorbance spectroscopy are typically introduced in upper division undergraduate chemistry courses, but could be introduced earlier with the right curriculum and instrumentation. A major challenge in teaching…

  17. D3, the new diffractometer for the macromolecular crystallography beamlines of the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Martin R., E-mail: mfuchs@bnl.gov [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Brookhaven National Laboratory, Mail Stop 745, Upton, NY 11973 (United States); Pradervand, Claude; Thominet, Vincent; Schneider, Roman; Panepucci, Ezequiel; Grunder, Marcel; Gabadinho, Jose; Dworkowski, Florian S. N.; Tomizaki, Takashi; Schneider, Jörg; Mayer, Aline; Curtin, Adrian; Olieric, Vincent; Frommherz, Uli; Kotrle, Goran; Welte, Jörg; Wang, Xinyu; Maag, Stephan [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Schulze-Briese, Clemens [DECTRIS Ltd, Neuenhoferstrasse 107, 5400 Baden (Switzerland); Wang, Meitian [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2014-02-04

    A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. Building upon and critically extending previous developments realised for the high-resolution endstations of the two undulator beamlines X06SA and X10SA, as well as the super-bend dipole beamline X06DA, the new diffractometer was designed to the following core design goals. (i) Redesign of the goniometer to a sub-micrometer peak-to-peak cylinder of confusion for the horizontal single axis. Crystal sizes down to at least 5 µm and advanced sample-rastering and scanning modes are supported. In addition, it can accommodate the new multi-axis goniometer PRIGo (Parallel Robotics Inspired Goniometer). (ii) A rapid-change beam-shaping element system with aperture sizes down to a minimum of 10 µm for microcrystallography measurements. (iii) Integration of the on-axis microspectrophotometer MS3 for microscopic sample imaging with 1 µm image resolution. Its multi-mode optical spectroscopy module is always online and supports in situ UV/Vis absorption, fluorescence and Raman spectroscopy. (iv) High stability of the sample environment by a mineral cast support construction and by close containment of the cryo-stream. Further features are the support for in situ crystallization plate screening and a minimal achievable detector distance of 120 mm for the Pilatus 6M, 2M and the macromolecular crystallography group’s planned future area detector Eiger 16M.

  18. Convergent beam neutron crystallography

    Science.gov (United States)

    Gibson, Walter M.; Schultz, Arthur J.; Richardson, James W.; Carpenter, John M.; Mildner, David F. R.; Chen-Mayer, Heather H.; Miller, M. E.; Maxey, E.; Prask, Henry J.; Gnaeupel-Herold, Thomas H.; Youngman, Russell

    2004-01-01

    Applications of neutron diffraction for small samples (small fiducial areas are limited by the available neutron flux density. Recent demonstrations of convergent beam electron and x-ray diffraction and focusing of cold (λ>1 Å) neutrons suggest the possibility to use convergent beam neutron diffraction for small sample crystallography. We have carried out a systematic study of diffraction of both monoenergetic and broad bandwidth neutrons at the NIST Research Reactor and at the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory. Combining convergent beams with time-of-flight Laue diffraction is particularly attractive for high efficiency small sample diffraction studies. We have studied single crystal and powder diffraction of neutrons with convergence angles as large as 15° and have observed diffracted peak intensity gains greater than 20. The convergent beam method (CBM) shows promise for crystallography on small samples of small to medium size molecules (potentially even for proteins), ultra-high pressure samples, and for mapping of strain and texture distributions in larger samples.

  19. Introduction to electron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Hovmoeller, S.; Zou, Xiaodong [Department of Materials and Environmental Chemistry, Stockholm University and Berzeeli Center Exselent 10691 Stockholm (Sweden)

    2011-06-15

    Everything in Nature, macroscopic or microscopic, inorganic, organic or biological, has its specific properties. Most properties of matter depend on the atomic structures, and many techniques have been developed over the centuries for structure analysis. The greatest of them all, structure analysis of single crystals by X-ray diffraction, X-ray crystallography, was founded in 1912, and remains the most important technique for studying structures of periodically ordered objects at atomic resolution. Electron diffraction of single crystals was discovered fifteen years later by Thomson, Davisson and Germer. The wave property of electrons was exploited in the invention of the electron microscope by Knoll and Ruska in 1932. Since then, electron microscopes have been used in many fields as a tool for exploring and visualising the microscopic world in all its beauty. Between the first blurred images and today's sharp atomic resolution lies seventy years of untiring engineering. More recently, the unprecedented power of computers has made it possible to analyse quantitatively, and even further improve, these images. The amalgamation of electron diffraction and atomic resolution electron microscopy with crystallographic image processing has created a new powerful tool for structure analysis - electron crystallography. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    Science.gov (United States)

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  1. Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy.

    Science.gov (United States)

    Rudack, Till; Jenrich, Sarah; Brucker, Sven; Vetter, Ingrid R; Gerwert, Klaus; Kötting, Carsten

    2015-10-02

    Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg(2+) coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg(2+) in GTPases. The Mg(2+) coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Polyaromatic disordered carbon grains as carriers of the UV bump: Far-UV to mid-IR spectroscopy of laboratory analogs

    Science.gov (United States)

    Gavilan, L.; Le, K. C.; Pino, T.; Alata, I.; Giuliani, A.; Dartois, E.

    2017-11-01

    Context. A multiwavelength study of laboratory carbons with varying degrees of hydrogenation and sp2 hybridization is required to characterize the structure of the carbonaceous carriers of interstellar and circumstellar extinction. Aims: We study the spectral properties of carbonaceous dust analogs from the far-ultraviolet to the mid-infrared and correlate features in both spectral ranges to the aromatic/aliphatic degree. Methods: Analogs to carbonaceous interstellar dust encountered in various phases of the interstellar medium have been prepared in the laboratory. These are amorphous hydrogenated carbons (a-C:H), analogs to the diffuse interstellar medium component, and soot particles, analogs to the polyaromatic component. Thin films (d beam line at the SOLEIL synchrotron radiation facility. Spectra of these films were further measured through the UV-Vis (210 nm-1 μm) and in the mid-infrared (3-15 μm). Results: Tauc optical gaps, Eg, are derived from the visible spectra. The major spectral features are fitted through the VUV to the mid-infrared to obtain positions, full-widths at half maximum (FWHM), and integrated intensities. These are plotted against the position of the π-π∗ electronic transitions peak. Unidentified or overlapping features in the UV are identified by correlations with complementary infrared data. A correlation between the optical gap and position of the π-π∗ electronic transitions peak is found. The latter is also correlated to the position of the sp3 carbon defect band at 8 μm, the aromatic C=C stretching mode position at 6 μm, and the H/C ratio. Conclusions: Ultraviolet and infrared spectroscopy of structurally diverse carbon samples are used to constrain the nanostructural properties of carbon carriers of both circumstellar and interstellar extinction, such as the associated coherent lengths and the size of polyaromatic units. Our study suggests that carriers of the interstellar UV bump should exhibit infrared bands akin to the

  3. Simultaneous Determination of Caffeine and Chlorogenic Acids in Green Coffee by UV/Vis Spectroscopy

    National Research Council Canada - National Science Library

    G. Navarra; M. Moschetti; V. Guarrasi; M. R. Mangione; V. Militello; M. Leone

    2017-01-01

    .... The method was based on the use of UV/Vis absorption. It is relevant that the quantification of both caffeine and chlorogenic acids was performed without their preliminary chemical separation despite their spectral overlap in the range 250–350 nm...

  4. Investigation of L(+)-Ascorbic Acid with Raman Spectroscopy in Visible and UV Light

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2015-01-01

    calculations with 6-311++G(d,p) basis sets for several conformations of ascorbic acid and the anions. Raman spectra were measured during titration with NaOH base in an oxygen-poor environment to avoid fluorescence when solutions were alkaline. The ultraviolet (UV) absorption band for ascorbic acid in aqueous...

  5. Instrumental Analysis in the High School Classroom: UV-Vis Spectroscopy

    Science.gov (United States)

    Erhardt, Walt

    2007-01-01

    Note is presented on the standard lab from a second year chemistry course. The lab "Determining which of the Seven FD&C Food-Approved Dyes are Used in Making Green Skittles", familiarizes students with the operation of the CHEM2000 UV-Vis spectrophorometer.

  6. Interference-Blind Microfluidic Sensor for Ascorbic Acid Determination by UV/vis Spectroscopy

    DEFF Research Database (Denmark)

    Bi, Hongyan; Oliveira Fernandes, Ana Carolina; Cardoso, Susana

    2016-01-01

    the microfluidic channel, enzyme-catalyzed reaction occurs and only converts the target molecules to its products. The whole process is monitored by an end-channel UV/vis spectroscopic detection. Ascorbate oxidase and L-ascorbic acid (AA) are taken as enzyme-substrate model in this study to investigate...

  7. On-line concentration measurement for anti-solvent crystallization of β-artemether using UV-vis fiber spectroscopy

    Science.gov (United States)

    Zhang, Yang; Jiang, Yanbin; Zhang, Duanke; Li, Kaixia; Qian, Yu

    2011-01-01

    Concentration monitoring is essential for quality control of crystallizations. This work establishes the technical feasibility of Ultraviolet (UV) fiber spectroscopy for on-line concentration measurement of anti-solvent crystallization of β-artemether, where ethanol was selected as solvent and water was used as anti-solvent. The orthogonal signal correction (OSC) algorithm was selected to preprocess the UV spectra, and the results showed that the wavelength shift of UV maximum absorbance of β-artemether in ethanol+water solvent mixtures can be effectively eliminated by OSC algorithm. Then models for prediction of β-artemether concentration based on Lambert-Beer law were developed, and the models were verified by comparison between the training set and the validation set, as well as its directly application to the anti-solvent crystallization process of β-artemether. The results show that the model is suitable for on-line concentration measurement of anti-solvent crystallization of β-artemether, with reasonable accuracy and precision.

  8. In situ characterization of organo-modified and unmodified montmorillonite aqueous suspensions by UV-visible spectroscopy.

    Science.gov (United States)

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-10-15

    UV-visible (UV-Vis) spectroscopy (Tyndall spectra) was applied and tested for its ability to measure organo-modified and unmodified montmorillonite (MMT) clays in aqueous suspensions. A full factorial design of experiments was used to study the influence of pH, NaCl and clay concentrations on the average particle size of the clay agglomerates. The methodology was evaluated by observing results that were consistent with previous research about the unmodified clay's behavior in aqueous suspensions. The results from this evaluation corresponded to accepted theories about the unmodified clay's behavior, indicating that the methodology is precise enough to distinguish the effects of the studied factors on these clay suspensions. The effect of clay concentration was related to the amount of ions per clay particle for the unmodified clay, but was not significant for the organo-modified MMT. The average particle size of the organo-modified MMT in suspension was significantly larger than that of the unmodified clay. Size of the organo-modified MMT agglomerates in suspension decreased in the presence of NaCl and at both high and low pH; this behavior was opposite to that of the unmodified clay. These results demonstrate that the UV-Vis methodology is well-suited for characterizing clay particle size in aqueous suspensions. The technique also is simple, rapid, and low-cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A modern approach to the authentication and quality assessment of thyme using UV spectroscopy and chemometric analysis.

    Science.gov (United States)

    Gad, Haidy A; El-Ahmady, Sherweit H; Abou-Shoer, Mohamed I; Al-Azizi, Mohamed M

    2013-01-01

    Recently, the fields of chemometrics and multivariate analysis have been widely implemented in the quality control of herbal drugs to produce precise results, which is crucial in the field of medicine. Thyme represents an essential medicinal herb that is constantly adulterated due to its resemblance to many other plants with similar organoleptic properties. To establish a simple model for the quality assessment of Thymus species using UV spectroscopy together with known chemometric techniques. The success of this model may also serve as a technique for the quality control of other herbal drugs. The model was constructed using 30 samples of authenticated Thymus vulgaris and challenged with 20 samples of different botanical origins. The methanolic extracts of all samples were assessed using UV spectroscopy together with chemometric techniques: principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and hierarchical cluster analysis (HCA). The model was able to discriminate T. vulgaris from other Thymus, Satureja, Origanum, Plectranthus and Eriocephalus species, all traded in the Egyptian market as different types of thyme. The model was also able to classify closely related species in clusters using PCA and HCA. The model was finally used to classify 12 commercial thyme varieties into clusters of species incorporated in the model as thyme or non-thyme. The model constructed is highly recommended as a simple and efficient method for distinguishing T. vulgaris from other related species as well as the classification of marketed herbs as thyme or non-thyme. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Monitoring Light-induced Structural Changes of Channelrhodopsin-2 by UV-visible and Fourier Transform Infrared Spectroscopy*

    Science.gov (United States)

    Ritter, Eglof; Stehfest, Katja; Berndt, Andre; Hegemann, Peter; Bartl, Franz J.

    2008-01-01

    Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of τ = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu90 is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family. PMID:18927082

  11. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV-Vis spectroscopy.

    Science.gov (United States)

    Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K

    2016-01-01

    The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.

  12. Single-photon cesium Rydberg excitation spectroscopy using 3186-nm UV laser and room-temperature vapor cell

    Science.gov (United States)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2017-09-01

    We demonstrate a single-photon Rydberg excitation spectroscopy of cesium (Cs) atoms in a room-temperature vapor cell. Cs atoms are excited directly from 6S1/2 ground state to nP3/2 (n = 70 - 100) Rydberg states with a 318.6 nm ultraviolet (UV) laser,and Rydberg excitation spectra are obtained by transmission enhancement of a probe beam resonant to Cs 6S1/2, F = 4 - 6P3/2, F' = 5 transition as partial population on F = 4 ground state are transferred to Rydberg state .Analysis reveals that the observed spectra are velocity-selective spectroscopy of Rydberg state, from which the amplitude and linewidth influenced by lasers'Rabi frequency have been investigated. Fitting to energies of Cs nP3/2 (n = 70 -100) states, the determined quantum defect is 3.56671(42). The demodulated spectra can also be employed as frequency references to stabilize the UV laser frequency to specific Cs Rydberg transition.

  13. Study of Polymer Material Aging by Laser Mass Spectrometry, UV-Visible Spectroscopy, and Environmental Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Junien Exposito

    2007-01-01

    Full Text Available Dyed natural rubber (NR and styrene butadiene rubber (SBR, designed for outdoor applications, were exposed to an accelerated artificial aging in xenon light. The aging results in the deterioration of the exposed surface material properties. The ability of dyed polymers to withstand prolonged sunlight exposure without fading or undergoing any physical deterioration is largely determined not only by the photochemical characteristics of the absorbing dyestuff itself but also by the polymer structure and fillers. Results obtained by laser mass spectrometry, UV-visible spectroscopy, and environmental scanning electron microscopy indicate that dyed filled NR and SBR samples behave differently during the photo-oxidation. The fading of the dyed polymers was found to be promoted in the NR sample. This can be correlated with LDI-FTICRMS results, which show the absence of [M-H]− orange pigment pseudomolecular ion and also its fragment ions after aging. This is confirmed by both EDX and UV/Vis spectroscopy. EDX analysis indicates a concentration of chlorine atoms, which can be considered as a marker of orange pigment or its degradation products, only at the surface of SBR flooring after aging. Reactivity of radicals formed during flooring aging has been studied and seems to greatly affect the behavior of such organic pigments.

  14. Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis.

    Science.gov (United States)

    Zhu, Yanzhong; Song, Yonghui; Yu, Huibin; Liu, Ruixia; Liu, Lusan; Lv, Chunjian

    2017-08-08

    UV-visible absorption spectroscopy coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to characterize spectroscopic components, detect latent factors, and investigate spatial variations of dissolved organic matter (DOM) in a large-scale lake. Twelve surface water samples were collected from Dongjianghu Lake in China. DOM contained lignin and quinine moieties, carboxylic acid, microbial products, and aromatic and alkyl groups, which in the northern part of the lake was largely different from the southern part. Fifteen spectroscopic indices were deduced from the absorption spectra to indicate molecular weight or humification degree of DOM. The northern part of the lake presented the smaller molecular weight or the lower humification degree of DOM than the southern part. E2/4, E3/4, E2/3, and S2 were latent factors of characterizing the molecular weight of DOM, while E2/5, E3/5, E2/6, E4/5, E3/6, and A2/1 were latent factors of evaluating the humification degree of DOM. The UV-visible absorption spectroscopy combined with PCA and HCA may not only characterize DOM fractions of lakes, but may be transferred to other types of waterscape.

  15. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies.

    Science.gov (United States)

    Dankowska, A; Domagała, A; Kowalewski, W

    2017-09-01

    The potential of fluorescence, UV-Vis spectroscopies as well as the low- and mid-level data fusion of both spectroscopies for the quantification of concentrations of roasted Coffea arabica and Coffea canephora var. robusta in coffee blends was investigated. Principal component analysis was used to reduce data multidimensionality. To calculate the level of undeclared addition, multiple linear regression (PCA-MLR) models were used with lowest root mean square error of calibration (RMSEC) of 3.6% and root mean square error of cross-validation (RMSECV) of 7.9%. LDA analysis was applied to fluorescence intensities and UV spectra of Coffea arabica, canephora samples, and their mixtures in order to examine classification ability. The best performance of PCA-LDA analysis was observed for data fusion of UV and fluorescence intensity measurements at wavelength interval of 60nm. LDA showed that data fusion can achieve over 96% of correct classifications (sensitivity) in the test set and 100% of correct classifications in the training set, with low-level data fusion. The corresponding results for individual spectroscopies ranged from 90% (UV-Vis spectroscopy) to 77% (synchronous fluorescence) in the test set, and from 93% to 97% in the training set. The results demonstrate that fluorescence, UV, and visible spectroscopies complement each other, giving a complementary effect for the quantification of roasted Coffea arabica and Coffea canephora var. robusta concentration in blends. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Rapid Detection of Single Bacterial Cells by Deep UV Micro Raman Spectroscopy.

    Science.gov (United States)

    1992-04-01

    developed for the purpose of rapid bacterial detection. Techniques include mass spectroscopy and its various combinations with chromatography and pyrolysis...Methods: Chromatography and Mass Spectroscopy", Plenum Press, N.Y. 1990. 6. P.J.H. Jackman in "Methods in Microbiology", Vol. 19, eds., R.R., Colwell and R...4847198 issued July 11, 1989. 5. "Ultraviolet Resonance Raman Spectra of Bacteria, Bacterial Spores, Protoplasts and Calcium Dipicolinate", R

  17. Spectroscopically-Confirmed z > 6 Galaxies with Extremely Blue UV Slopes: Possible Pop III dominated targets for JWST spectroscopy

    Science.gov (United States)

    Jiang, Linhua

    2017-08-01

    We propose to use HST/WFC3 to study 7 galaxies at z>6 with much bluer rest-frame UV continua than models of stellar populations and galaxy formation can accommodate. They were selected from a dedicated, large Subaru survey of bright spectroscopically-confirmed galaxies at z>6, and have extremely steep UV-slopes around beta=-3.Such slopes have never been found in low-z galaxies, nor have they been predicted by cosmological simulations. Although recent HST observations found some extreme UV-slopes in photometrically-selected galaxies at z>6, this is controversial, since it could be caused by contamination and bias in photometrically-selected samples.Our galaxies are bright (J=25-26.5 AB-mag) with secure spectroscopic redshifts, so their measurements of beta are NOT subject to these effects. They are the most promising candidates of truly extremely blue galaxies. Their uncertainties in beta are 0.3-0.5, mainly due to the short UV continuum baseline from previous HST data.We propose to add critical WFC3 near-IR images over a larger wavelength baseline to significantly improve the beta measurements by reducing uncertainties to images will conclusively confirm the existence of beta = -3 galaxies at z>6. Such ultra-blue beta-values would suggest the existence of very young stellar populations with extremely low metallicity and dust content, which are possibly Pop III star dominated. Their confirmation will have significant impact on early galaxy formation, their star formation history, associated metallicity, dust, and even initial mass function. They would make very compelling targets for JWST spectroscopy. The HST/WFC3 data therefore must be completed now.

  18. Far-UV HST Spectroscopy of An Unusual Hydrogen Poor Superluminous Supernova: SN2017egm

    Science.gov (United States)

    Yan, Lin; Perley, Daniel; Quimby, Robert; De Cia, Annalisa; Brown, Peter

    2018-01-01

    SN2017egm is the closest (z=0.03) H-poor superluminous supernova (SLSN-I) detected to date, and a rare example of an SLSN in a massive and metal-rich galaxy. Here we present the HST UV & optical spectra covering (1000 - 5500)A taken at +3day relative to the peak. Our data reveal two sets of absorption systems, separated by 235km/s, at redshifts matching NGC3191 and its companion galaxy 73arcsec apart. A weakly damped Lyman-alpha absorption line (sub-DLA) is also detected with a total column density of N(HI) ~(6^{+3}_{-1})e+19}cm^-2. This is an order of magnitude smaller than HI column densities in nearby massive disk galaxies (>10^{10}Msun) and suggests that SN2017egm is on the near side of the galaxy mid-plane and its local environment on a 5 parsec is highly ionized due to photo-ionization by SN2017egm. The low HI column density also implies a low host dust extinction for SN2017egm, E(B-V) of 0.007. We constrain the gas metallicity using unsaturated absorption lines (SII1253 and FeII1629). Taking into account of ionization and dust depletion corrections, we find that the metal abundances for both sets of absorbers are close to be 1Zsun or more, and our data can rule out metallicity below 0.5Zsun. We make a comparative analysis of high-quality, early-time UV spectra of four SLSNe-I, SN2017egm, Gaia16apd, PTF12dam and iPTF13ajg. We find that although they have similar blackbody temperatures, the shape of their UV continuum (1000 - 3000A) varies significantly, with the 1400A to 2800A continuum ratio of 1.5 for Gaia16apd to 0.4 for iPTF13ajg. This variation can not be explained by the magnetar power alone as claimed before, and is likely to do with sizes and compositions of the photosphere. We conclude that a single UV SED is not sufficient when modeling SLSN-I light curves. In addition, there are a common set of seven UV absorption features between 1000A and 2800A, including three new ones in the far-UV spectra of SN2017egm and Gaia16apd. Using syn++ synthetic

  19. Indonesian palm civet coffee discrimination using UV-visible spectroscopy and several chemometrics methods

    Science.gov (United States)

    Yulia, M.; Suhandy, D.

    2017-05-01

    Indonesian palm civet coffee or kopi luwak (Indonesian words for coffee and palm civet) is well known as the world’s priciest and rarest coffee. To protect the authenticity of luwak coffee and protect consumer from luwak coffee adulteration, it is very important to develop a simple and inexpensive method to discriminate between civet and non-civet coffee. The discrimination between civet and non-civet coffee in ground roasted (powder) samples is very challenging since it is very difficult to distinguish between the two by using conventional method. In this research, the use of UV-Visible spectra combined with two chemometric methods, SIMCA and PLS-DA, was evaluated to discriminate civet and non-civet ground coffee samples. The spectral data of civet and non-civet coffee were acquired using UV-Vis spectrometer (Genesys™ 10S UV-Vis, Thermo Scientific, USA). The result shows that using both supervised discrimination methods: SIMCA and PLS-DA, all samples were correctly classified into their corresponding classes with 100% rate for accuracy, sensitivity and specificity, respectively.

  20. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    Science.gov (United States)

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  1. UV/Vis spectroscopy of C60 embedded in water ice

    DEFF Research Database (Denmark)

    Cuylle, Steven; Linnartz, Harold; Thrower, John

    2012-01-01

    Electronic solid state spectra are recorded for C60 embedded in 40 K water ice using broad band direct absorption spectroscopy, and assigned with reference to existing matrix data. The results are interesting in view of the recent gas phase detection of fullerenes in the interstellar medium...... and provide a realistic solid state signature to search for frozen C60 in space....

  2. Ultra-Rapid UV Spectroscopy of an Interacting Supernova Discovered by K2

    Science.gov (United States)

    Foley, Ryan

    2017-08-01

    The supernova (SN) community is preparing for an extraordinary experiment. For 5 months, the Kepler telescope (K2) will perform a SN survey. Monitoring 20,000 galaxies with a 30-minute cadence, K2 will detect 50 SNe within hours - perhaps even minutes - of explosion. Such data have proven to be a unique window to the details of the SN explosion, progenitor, and circumstellar (CS) environment. We are devoting significant ground-based telescopic resources to search for and follow these SNe.We propose to take advantage of these emergent SNe and exquisite K2 light curves to study 1 SN in detail with HST. For the first few days after a SN explosion, one can potentially see signs of the SN interacting with its CS environment (e.g., a wind, accretion disk, companion star) that are not present later in its evolution. For instance, the large UV flux from a SN shock breakout will ionize CS gas. As the gas recombines over the following days, it produces excess broad-band flux and reveals the CSM (and thus progenitor) composition through emission lines. While early optical data can be illuminating, its utility is limited. However, UV spectra can greatly enhance our understanding of SN progenitor systems, including progenitor composition, CS environment, and the existence of a binary companion. Our program will observe a single K2 SN that shows signs of early interaction.Because of the ephemeral nature of the interaction signatures, this program requires an ultra-rapid ToO. The combination of K2 photometry, ground-based data, and HST UV spectra will be a completely unique and defining data set. As Kepler will soon be retired, this is our only opportunity for such a program.

  3. The Study of Polyether Solvation Mechanisms Using UV/Visible Spectroscopy

    Science.gov (United States)

    1992-06-01

    phase viscous liquids of varying hues of blue. It has been shown earlier by us [43] that the spectra of the CoBr 2-PEG and CoBr2 -PTMG systems are...dilute CoBr2-PTMG solutions, all of the cobalt exists in the neutral tetrahedral CoBr 2L, form, where L=ligand atom (in this case L=polyether oxygen...donor). Adding successively greater amounts of LiBr to CoBr 2-PTMG solutions forces the formation of higher bromo complexes, causing the uv-visible

  4. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser

    Science.gov (United States)

    Shirley, John A.

    1990-01-01

    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  5. Determining the sign of a polar surface of lithium niobate crystal by UV reflectance spectroscopy

    Science.gov (United States)

    Paranin, V. D.; Pantelei, E.

    2017-01-01

    We propose to reveal the + Z and- Z surfaces of a polar cut lithium niobate crystal by measuring its UV reflection spectrum. By the example of a congruent lithium niobate, it is shown that the intensities of light reflection from polar crystal surfaces of different signs in the region of 190—260 nm differ by up to several percent. The depth of short-wave radiation penetration into surface layers of the crystal in the spectral range of intrinsic absorption is estimated. It is shown that the proposed method can be used for determining the surface signs of polar crystal layers with thicknesses from several dozen to several hundred microns.

  6. Simultaneous Determination of Metamizole, Thiamin and Pyridoxin Using UV-Spectroscopy in Combination with Multivariate Calibration

    Science.gov (United States)

    Chotimah, Chusnul; Sudjadi; Riyanto, Sugeng; Rohman, Abdul

    2015-01-01

    Purpose: Analysis of drugs in multicomponent system officially is carried out using chromatographic technique, however, this technique is too laborious and involving sophisticated instrument. Therefore, UV-VIS spectrophotometry coupled with multivariate calibration of partial least square (PLS) for quantitative analysis of metamizole, thiamin and pyridoxin is developed in the presence of cyanocobalamine without any separation step. Methods: The calibration and validation samples are prepared. The calibration model is prepared by developing a series of sample mixture consisting these drugs in certain proportion. Cross validation of calibration sample using leave one out technique is used to identify the smaller set of components that provide the greatest predictive ability. The evaluation of calibration model was based on the coefficient of determination (R2) and root mean square error of calibration (RMSEC). Results: The results showed that the coefficient of determination (R2) for the relationship between actual values and predicted values for all studied drugs was higher than 0.99 indicating good accuracy. The RMSEC values obtained were relatively low, indicating good precision. The accuracy and presision results of developed method showed no significant difference compared to those obtained by official method of HPLC. Conclusion: The developed method (UV-VIS spectrophotometry in combination with PLS) was succesfully used for analysis of metamizole, thiamin and pyridoxin in tablet dosage form. PMID:26819934

  7. Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes.

    Science.gov (United States)

    Riedle, Eberhard; Bradler, Maximilian; Wenninger, Matthias; Sailer, Christian F; Pugliesi, Igor

    2013-01-01

    Complex multi-stage relaxation and reaction pathways after the optical excitation of molecules makes the disentanglement of the underlying mechanisms challenging. We present four examples that a new transient spectrometer with excitation fully tunable from the deep UV to the IR and 225 to 1700 nm probing allows for an analysis with greatly reduced ambiguity. The temporal resolution of about 50 fs allows us to resolve all relevant processes. For each example there is a new twist in the sequence of relaxation steps that had previously been overlooked. In malachite green it appears that the importance of the phenyl twisting has been overemphasized and rather a charge transfer state should be considered. In TINUVIN-P the predicted twisting as the driving motion for the ultrafast IC is confirmed and leads to a resolution of the earlier puzzle that the sub-5 ps regime shows kinetics deviating from a pure cooling process despite the sub-ps proton transfer cycle. For the bond cleavage of Ph2CH-Cl and Ph2CH-Br the degree of electron transfer within the radical pair can now be determined quantitatively and leads to a profound understanding of the long-term cation yield. For the first time coherent wavepacket motion in the photoproducts is reported. Last but not least the measurement of the GSB recovery in the deep UV allows for the surprising result, that even after S2 excitation of cyclopentenones the triplet states are reached with near unity probability within a few picoseconds.

  8. Dynamic analysis of reactive oxygen nitrogen species in plasma-activated culture medium by UV absorption spectroscopy

    Science.gov (United States)

    Brubaker, Timothy R.; Ishikawa, Kenji; Takeda, Keigo; Oh, Jun-Seok; Kondo, Hiroki; Hashizume, Hiroshi; Tanaka, Hiromasa; Knecht, Sean D.; Bilén, Sven G.; Hori, Masaru

    2017-12-01

    The liquid-phase chemical kinetics of a cell culture basal medium during treatment by an argon-fed, non-equilibrium atmospheric-pressure plasma source were investigated using real-time ultraviolet absorption spectroscopy and colorimetric assays. Depth- and time-resolved NO2- and NO3- concentrations were strongly inhomogeneous and primarily driven by convection during and after plasma-liquid interactions. H2O2 concentrations determined from deconvolved optical depth spectra were found to compensate for the optical depth spectra of excluded reactive species and changes in dissolved gas content. Plasma-activated media remained weakly basic due to NaHCO3 buffering, preventing the H+-catalyzed decomposition of NO2- seen in acidic plasma-activated water. An initial increase in pH may indicate CO2 sparging. Furthermore, the pH-dependency of UV optical depth spectra illustrated the need for pH compensation in the fitting of optical depth data.

  9. Following a Chemical Reaction on the Millisecond Time Scale by Simultaneous X-ray and UV/Vis Spectroscopy.

    Science.gov (United States)

    Olivo, Giorgio; Barbieri, Alessia; Dantignana, Valeria; Sessa, Francesco; Migliorati, Valentina; Monte, Manuel; Pascarelli, Sakura; Narayanan, Theyencheri; Lanzalunga, Osvaldo; Di Stefano, Stefano; D'Angelo, Paola

    2017-07-06

    An innovative approach aimed at disclosing the mechanism of chemical reactions occurring in solution on the millisecond time scale is presented. Time-resolved energy dispersive X-ray absorption and UV/vis spectroscopies with millisecond resolution are used simultaneously to directly follow the evolution of both the oxidation state and the local structure of the metal center in an iron complex. Two redox reactions are studied, the former involving the transformation of FeII into two subsequent FeIII species and the latter involving the more complex FeII-FeIII-FeIV-FeIII sequence. The structural modifications occurring around the iron center are correlated to the reaction mechanisms. This combined approach has the potential to provide unique insights into reaction mechanisms in the liquid phase and represents a new powerful tool to characterize short-lived intermediates that are silent to common spectroscopic techniques.

  10. UV-vis absorption spectroscopy of carbon nanotubes: Relationship between the π-electron plasmon and nanotube diameter

    Science.gov (United States)

    Rance, Graham A.; Marsh, Dan H.; Nicholas, Robin J.; Khlobystov, Andrei N.

    2010-06-01

    The position and intensity of the π plasmon absorbance of a series of single-walled and multi-walled carbon nanotubes has been systematically investigated for the first time using ultraviolet-visible (UV-vis) absorption spectroscopy. All nanotube samples obey the Lambert-Beer law and exhibit similar extinction coefficients (˜50 mL/mg cm) regardless of their structure or method of preparation. The absolute wavelength (energy) of the π plasmon absorbance has been shown to vary with nanotube diameter as Eπ = 4.80 + 0.70/( dNT) 2. This empirical relationship when correlated with nanotube pyramidalisation angle can be used to estimate the energy range for the π plasmon in a single sheet of graphene to be 4.8-4.9 eV.

  11. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices.

    Science.gov (United States)

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-12-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  12. Reactions of cytotoxic metallodrugs with lysozyme in pure DMSO explored through UV-Vis absorption spectroscopy and ESI MS.

    Science.gov (United States)

    Marzo, Tiziano; Savić, Aleksandar; Massai, Lara; Michelucci, Elena; Sabo, Tibor J; Grguric-Šipka, Sanja; Messori, Luigi

    2015-04-01

    The reactions of four representative metallodrugs with the model protein HEWL were investigated within a non-aqueous environment-i.e. in pure DMSO- through UV-Vis absorption spectroscopy and ESI MS analysis. Notably, formation of a variety of metallodrug-protein adducts was clearly documented. This is the first example for this kind of protein metalation reactions carried out within a pure organic solvent. It is shown that the applied solution conditions greatly affect the nature of the formed adducts, this being well accounted for by the fact that the overall protein conformation is greatly perturbed within pure DMSO; in addition, the activation profiles of the studied metallodrugs are also highly dependent on the nature of the solvent. The implications of these results are discussed.

  13. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices

    Science.gov (United States)

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-01-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  14. UV/Vis Spectroscopy Studies of the Photoisomerization Kinetics in Self-Assembled Azobenzene-Containing Adlayers.

    Science.gov (United States)

    Krekiehn, N R; Müller, M; Jung, U; Ulrich, S; Herges, R; Magnussen, O M

    2015-08-04

    Direct comparative studies of the photoisomerization of azobenzene derivatives in self-assembled adlayers on Au and as free molecules in dichloromethane solution were performed using UV/vis spectroscopy. For all studied systems a highly reversible trans-cis isomerization in the adlayer is observed. Quantitative studies of the absorbance changes and photoisomerization kinetics reveal that in azobenzenes mounted as freestanding vertical groups on the surface via triazatriangulene-based molecular platforms photoswitching is nearly uninhibited by the local environment in the adlayer. The blue-shift of the π-π* transition in adlayers of these molecules is in good agreement with theoretical studies of the effect of excitonic coupling between the molecules. In contrast, in azobenzene-containing thiol self-assembled monolayers the fraction of photoswitching molecules and the photoisomerization kinetics are significantly reduced compared to free molecules in solution.

  15. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy.

    Science.gov (United States)

    Ghosh, S B; Bhattacharya, K; Nayak, S; Mukherjee, P; Salaskar, D; Kale, S P

    2015-09-05

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Probing the behaviors of gold nanorods in metastatic breast cancer cells based on UV-vis-NIR absorption spectroscopy.

    Science.gov (United States)

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy.

  17. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy

    Science.gov (United States)

    Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.

    2015-09-01

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  18. Detection of Explosives on Surfaces Using UV Raman Spectroscopy: Effect of Substrate Color

    Science.gov (United States)

    2017-10-01

    nanoporous multifunctional microcantilever. Anal Chem. 2014;86:5077–5082. 9. Bharadwaj R, Mukherji S. Gold nanoparticle coated U-bend fiber optic probe...Strickland D, Li F, Meng X. Surface-enhanced Raman scattering spectroscopy of explosive 2,4-dinitroanisole using modified silver nanoparticles . Langmuir...electrostatic surface potential and surface enhanced Raman spectroscopic studies on biosynthesized silver nanoparticles : observation of 400 pM sensitivity to

  19. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  20. From crystallography to life

    Science.gov (United States)

    Allen, Roland E.

    2014-06-01

    2014 is the International Year of Crystallography, an extremely broad field which has had enormous impact in biology and materials science. Both experimental facilities and methods for interpreting the data have become increasingly sophisticated during the past century, and many highly complex systems have now been characterized, including large proteins and other biological macromolecules. A very few representative examples are mentioned here, including crystallographic studies of proteins that regulate programmed cell death (apoptosis), and structure determinations of G-protein coupled receptors (GPCRs), respectively the subjects of the 2014 Aminoff Prize and the 2012 Nobel Prize in chemistry. Normal apoptosis is essential for human embryonic development, prevention of cancer, and other processes within multicellular organisms. GPCRs are the targets of about half of all modern medicinal drugs, since they are responsible for the majority of cellular responses to hormones and neurotransmitters, as well as the senses of sight, taste, and smell. In materials, the behavior of electrons (both ordinary and exotic) is largely determined by the arrangement of the atoms. As examples, we mention carbon-based materials (diamond, buckyballs, nanotubes, and graphene) and high-temperature superconductors (cuprate and iron-based).

  1. UV-vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila

    Science.gov (United States)

    Barbosa-García, O.; Ramos-Ortíz, G.; Maldonado, J. L.; Pichardo-Molina, J. L.; Meneses-Nava, M. A.; Landgrave, J. E. A.; Cervantes-Martínez, J.

    2007-01-01

    Based on the UV-vis absorption spectra of commercially bottled tequilas, and with the aid of multivariate analysis, it is proved that different brands of white tequila can be identified from such spectra, and that 100% agave and mixed tequilas can be discriminated as well. Our study was done with 60 tequilas, 58 of them purchased at liquor stores in various Mexican cities, and two directly acquired from a distillery. All the tequilas were of the "white" type, that is, no aged spirits were considered. For the purposes of discrimination and quality control of tequilas, the spectroscopic method that we present here offers an attractive alternative to the traditional methods, like gas chromatography, which is expensive and time-consuming.

  2. Multicomponent remote sensing of vehicle exhaust emissions by dispersive IR and UV spectroscopy

    Science.gov (United States)

    Baum, Marc M.; Kiyomiya, Eileen S.; Kumar, Sasi; Lappas, Anastasios M.; Lord, Harry C., III

    2000-12-01

    Direct remote sensing of vehicle exhaust emissions under real-world driving conditions is desirable for a number of reasons, including: identifying high emitters, investigating the chemical composition of the exhaust, and probing fast reactions in the plume. A remote sensor, incorporating IR and UV spectrometers, was developed. The IR spectrometer consists of a grating system mounted on a synchronous motor, optically interfaced to a room temperature PbSe detector. UV-vis measurements are made with a CCD array spectrometer. Eight optical passes through the exhaust plume allow rapid and sensitive monitoring of the exhaust stream emitted by moving vehicles on a car-by-car basis. The combination of these two techniques resulted in unprecedented, direct measurement capability of over 25 pollutants in the exhaust plume. Emissions from a fleet of vehicles powered by a range of fuels (gasoline, diesel, natural gas, and methanol) were tested. The exhaust from hot gasoline- and methanol-powered cars contained high levels of NH3, up to 1500 ppm. These emissions were up to 14 times higher than the corresponding NOx emissions. Unlike most previous work, NOx was measured as the sum of NO and NO2; N2O was also measured. Field testing at a southern California freeway on-ramp was conducted over a one week period, totaling >4,500 measurements. It was found that 66.4% of the emitted NH3 was produced by 10% of the fleet, following the (gamma) - distribution that has been reported for criteria pollutants. Mean NH3 emission rates were calculated at 138 mg km-1, nearly twice as high was previous estimates.

  3. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    Science.gov (United States)

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of

  4. Electronic states of Myricetin. UV-Vis polarization spectroscopy and quantum chemical calculations.

    Science.gov (United States)

    Vojta, Danijela; Karlsen, Eva Marie; Spanget-Larsen, Jens

    2017-02-15

    Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000cm(-1) were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31+G(d,p). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. New insight into protein-nanomaterial interactions with UV-visible spectroscopy and chemometrics: human serum albumin and silver nanoparticles.

    Science.gov (United States)

    Wang, Yong; Ni, Yongnian

    2014-01-21

    In recent years, great efforts have focused on the exploration and fabrication of protein nanoconjugates due to potential applications in many fields including bioanalytical science, biosensors, biocatalysis, biofuel cells and bio-based nanodevices. An important aspect of our understanding of protein nanoconjugates is to quantitatively understand how proteins interact with nanomaterials. In this report, human serum albumin (HSA) and citrate-coated silver nanoparticles (AgNPs) are selected as a case study of protein-nanomaterial interactions. UV-visible spectroscopy together with multivariate curve resolution by alternating least squares (MCR-ALS) algorithm is first exploited for the detailed study of AgNPs-HSA interactions. Introduction of the chemometrics tool allows extracting the kinetic profiles, spectra and distribution diagrams of two major absorbing pure species (AgNPs and AgNPs-HSA conjugate). These resolved profiles are then analysed to give the thermodynamic, kinetic and structural information of HSA binding to AgNPs. Transmission electron microscopy, circular dichroism spectroscopy and Fourier transform infrared spectroscopy are used to further characterize the complex system. Moreover, a sensitive spectroscopic biosensor for HSA is fabricated with the MCR-ALS resolved concentration of absorbing pure species. It is found that the linear range for the HSA nanosensor was from 1.9 nM to 45.0 nM with a detection limit of 0.9 nM. It is believed that the proposed method will play an important role in the fabrication and optimization of a robust nanobiosensor or cross-reactive sensors array for the detection and identification of biocomponents.

  6. Combined Operando UV/Vis/IR Spectroscopy Reveals the Role of Methoxy and Aromatic Species during the Methanol-to-Olefins Reaction over H-SAPO-34

    NARCIS (Netherlands)

    Qian, Qingyun; Vogt, Charlotte; Mokhtar, Mohamed; Asiri, Abdullah M.; Al-Thabaiti, Shaeel A.; Basahel, Suliman N.; Ruiz-Martinez, Javier; Weckhuysen, Bert M.

    2014-01-01

    The methanol-to-olefins (MTO) process over H-SAPO-34 is investigated by using an operando approach combining UV/Vis and IR spectroscopies with on-line mass spectrometry. Methanol, methoxy, and protonated dimethyl ether are the major species during the induction period, whereas polyalkylated benzenes

  7. In-line ATR-UV and Raman Spectroscopy for Monitoring API Dissolution Process During Liquid-Filled Soft-Gelatin Capsule Manufacturing.

    Science.gov (United States)

    Wan, Boyong; Zordan, Christopher A; Lu, Xujin; McGeorge, Gary

    2016-10-01

    Complete dissolution of the active pharmaceutical ingredient (API) is critical in the manufacturing of liquid-filled soft-gelatin capsules (SGC). Attenuated total reflectance UV spectroscopy (ATR-UV) and Raman spectroscopy have been investigated for in-line monitoring of API dissolution during manufacturing of an SGC product. Calibration models have been developed with both techniques for in-line determination of API potency. Performance of both techniques was evaluated and compared. The ATR-UV methodology was found to be able to monitor the dissolution process and determine the endpoint, but was sensitive to temperature variations. The Raman technique was also capable of effectively monitoring the process and was more robust to the temperature variation and process perturbations by using an excipient peak for internal correction. Different data preprocessing methodologies were explored in an attempt to improve method performance.

  8. Determination of two capsaicinoids in analgesic transdermal patches using RP-HPLC and UV spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Kobarfard

    2017-11-01

    Full Text Available Background and objectives: At the present time, a considerable frontier in the administration of therapeutic medications is transdermal drug delivery. Methods: In this study, a rapid, precise, sensitive and selective reversed-phasehigh performance liquid chromatography (RP-HPLC method has been evaluated, developed and validated to separate and quantitate capsaicin and dihydrocapsaicin (main active agents in analgesic dermal patches produced in Iran. Results: After isolation from laminated adhesive patches, capsaicinoids were analyzed on Lichrospher C18 analytical columns with reversed phase, using a mobile phase composition of methanol and distilled water (70:30 v/v and without any buffer (pH=6.5. The flow rate was 1 mL/min and the UV detector was operating at 281 nm. The assay was found to be linear over the range of 0.1-1.0 mg/mL. All validation parameters were within the acceptable range. Conclusion: It seems that the developed method was fairly sensitive and reliable in measuring capsaicinoids in commercially available analgesic transdermal patches in Iran.

  9. Cleaning characterization of protein drug products using UV-vis spectroscopy.

    Science.gov (United States)

    Rathore, Nitin; Qi, Wei; Ji, Wenchang

    2008-01-01

    This study uses on-line absorbance monitoring to evaluate cleanability of protein drug products. Characterization and validation of equipment cleanliness is a key requirement for a biopharmaceutical facility. A manufacturing-scale cleaning cycle has to be developed and validated for its ability to clean all of the equipment parts for a given soil. Cleaning validation in a multiproduct fill-finish facility could benefit from using a worst-case-based approach that involves validating the cleaning process for the most difficult to clean product. Such an approach minimizes the number of required validation runs. Scaled-down cleaning evaluations can provide helpful information for evaluating multiple products and determine the worst case. This study presents a simple and rapid technique for bench-scale characterization of cleanability of protein drug products. On-line A280 (UV absorbance at 280 nm) measurements are performed using a fiber optic probe, and the data are used to establish the dynamics of protein dissolution in cleaning solution. The model not only helps to estimate cleaning time of different formulated proteins (and peptides) but also provides insights into the kinetics of cleaning under different thermal and chemical conditions. Protein product degradation during cleaning is also evaluated through gel electrophoresis. Such information is useful in designing new cleaning cycles. While the study is performed using drug products, the model as well as the findings are also applicable for characterization of final purified bulk soils relevant to bulk drug manufacturing.

  10. Mission Systems Engineering (MSE) for the Cosmic Evolution Through UV Spectroscopy (CETUS) Space Telescope Concept

    Science.gov (United States)

    Purves, Lloyd R.

    2017-01-01

    The basic objectives of the CETUS mission are to significantly improve our understanding of the evolution of galaxies at a redshift (z) of approximately 1 and to meet the cost constraints (1$B) for a NASA Probe-Class mission. What makes these galaxies so interesting is that their light, which has taken about 7 billion years to reach us, comes from a time when star-formation in the observable universe peaked, and the processes behind this peaking are far from well understood. To accomplish its science goals, CETUS needs to get UV spectra of 105 of these galaxies. To help meet its cost constraints, CETUS will only observe galaxies for which VIS spectra are already available, which means that CETUS has to survey a specific portion of the sky. The combination of the CETUS measurement goals and costs constraints strongly influence the design of virtually every aspect of the mission starting from the telescope and instruments, through to orbit and launch vehicle selection, and including the design of most of the SC Bus sub-systems, such as structure, ACS, power, communications, and thermal control.

  11. Analysis of organophosphate-Zn metalloporphyrin interactions via UV-vis spectroscopy and molecular modeling.

    Science.gov (United States)

    Rompoti, A; Dalal, N; Athanasopoulos, D; Rutan, S; Helburn, R

    2015-01-25

    UV-vis absorption spectra of zinc tetraphenylporphine (ZnTPP) on interaction with six organophosphorus (OP) compounds in cyclohexane were compared using ab initio methods and the molecular and solvation ligand descriptors π(*), Vx, and σ. OPs with polarizable hydrocarbon substituents in the homologous series tri-ethyl, -pentyl, -octyl, and -phenyl phosphates and the toxicologically relevant methyl paraoxon (1a-e) each gave a red shift in the Soret band (λsor) of ZnTPP in the range of 8-10 nm. Sensitivity as ΔAsor-b/Δug OP for the spectral band of the ligand bound ZnTPP (λsor-b) decreased with increasing extent of alkyl and aromatic substitution. Calculated and combined energies for OP and ZnTPP examined as a function of distance (Å) between ligand and porphyrin center suggest increased steric crowding with increasing Vx, and aromatic content of the OP. Spectrally fitted K1:1 and ΔAsor-b/ug OP each vary exponentially with Vx/σ. Lack of a red shift in λsor-b where ZnTPP was titrated with the toxic diethyl chlorophosphate (1g) is consistent with a model in which the magnitude of ΔEsor is proportional to the donor capacity of the phosphoryl-O ligand. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. From pirazoloquinolines to annulated azulene dyes: UV-VIS spectroscopy and quantum chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Gasiorski, P. [Faculty of Electrical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa (Poland); Danel, K.S. [Department of Chemistry, University of Agriculture, Balicka str. 122, 30-149 Krakow (Poland); Matusiewicz, M. [Faculty of Electrical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa (Poland); Uchacz, T. [Faculty of Chemistry, Jagiellonian University, Ingardena str. 3, 30-060 Krakow (Poland); Kityk, A.V., E-mail: kityk@ap.univie.ac.a [Faculty of Electrical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa (Poland)

    2010-12-15

    Paper reports UV-Vis absorption and photoluminescence spectra of 6-R derivatives (R=CH{sub 3}, O-CH{sub 3}, C(C{sub 6}H{sub 5}){sub 3}, C{sub 6}H{sub 5}-N-C{sub 10}H{sub 7}) of 4-(2-chlorophenyl)-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline, belonging to pyrazoloquinoline (PQ) family, likewise its regioisomeric products 10-R derivatives of 6-phenyl-6H-5,6,7-triazadibenzo[f,h]naphtho[3,2,1-cd]azulene representing cyclized seven-membered annulated azulene (AA) dyes. Cyclization of PQs into AAs is accompanied by a significant red shift of the first optical absorption band. This finding agrees with the results of quantum-chemical calculations performed by means of the semiempirical method PM3. As the solvent polarity rises all the dyes exhibit a blue shift of the first absorption band and a red shift of the fluorescence band. Such opposite trends in solvatochromic behavior have been reproduced within the semiempirical calculations in combination with the Lippert-Mataga dielectric polarization model. Depending on solvent polarity AA dyes emit light in the green, green-yellow or orange range of the visible spectrum what may be of interest for potential luminescent or electroluminescent applications.

  13. The reasons for the color green fluorite Mehmandooye cover using UV spectroscopy and XRF results

    Science.gov (United States)

    Pirzadeh, Sara; Zahiri, Reza

    2016-04-01

    Fluorite mineral or fluorine with chemical formula CaF2 is most important mineralfluor in nature. This mineral crystallization to colors yellow, green, pink, blue, purple, colorless and sometimes black andin cubic system crystallized.assemi transparent and glass with polished.fluoritethe purity include 48/9% fluoreand 51/9% calcium. How the creation colors in minerals different greatly indebted to Kurt Nassau research from Bell Labs, Murray Hill, New Jersey.almostall the mechanisms that cause color in minerals, are the result of the interaction of light waves with the electrons The main factors affecting the color generation include the following: 1)the presence of a constructive element inherent (essential ingredient mineral composition) 2)The presence of a minor impurities (such a element as involved in latticesolid solution) 3) appearancedefects in the crystal structure 4) There are some physical boundaries with distances very small and delicate, like blades out of the solution (which may be the play of colors or Chatvyansy) 5) Mixing mechanical impurities dispersed in a host mineral Based on the results of the analysis, XRF and UV spectrum and also based on the results of ICP, because the color green fluorite examined, the focus color (F_center) and also the presence of some elementsintermediate (such as Y (yttrium). [1] Bill, H., Calas, G. Color centres associated rare earth ions and the origin of coloration in natural fluorites// PhysChem Min, (1978), v 3, pp. 117-131.

  14. Examining magnetic activity in low-mass Hyads using UV spectroscopy

    Science.gov (United States)

    Gibson, Rose; Agüeros, Marcel; Douglas, Stephanie; Shkolnik, Evgenya L.

    2018-01-01

    Because of its proximity and well-established membership, the Hyades open cluster is as an ideal laboratory for examining the relationship between magnetic activity and rotation in late-type stars. Our previous work on Halpha and X-ray activity in low-mass Hyads found that these two standard proxies for the stellar magnetic field strength depend differently on rotation, suggesting differences in the heating mechanisms at play in the chromospheres and coronae of these stars. Here, we use 245 archival International Ultraviolet Explorer (IUE) spectra (1850-3300 \\AA) of Hyads to examine how magnetic activity traced by a transition region proxy, namely the Mg II h&k emission features (2803 and 2796 \\AA, respectively), depend on rotation and compare to our other activity proxies for these same stars. Fifty-five IUE spectra are high-resolution (R = 0.1-0.3 \\AA), but are mostly for early type stars; with these data we confirm that Hyads begin showing Mg II emission at spectral type F0. The bulk of the IUE spectra are low-resolution (R = 6-7 \\AA), so that the h&k features are blended, but extend down to M3 cluster members. We use these data to quantify the relationship between UV activity and rotation of both the individual and blended Mg II h&k features. Our recently approved Hubble Space Telescope spectroscopic campaign, and the likely addition of new rotation periods for Hyads from K2's campaign 13, will extend this study further into the low-mass regime, thereby mapping out how magnetic heating depends on rotation and manifests itself in different layers of a low-mass star's atmosphere.

  15. UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478.

    Science.gov (United States)

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A

    2016-07-05

    The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360nm consisted of two partially overlapping bands at approximately 340nm and 330nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327nm to 336nm, while the lower energy absorption band demonstrated a change in peak position from 340nm to 346nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409nm to 495nm with the corresponding Stokes shift in the range of 64nm to 155nm (4536cm(-1) to 9210cm(-1)). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Keck DEIMOS Spectroscopy of a GALEX UV-Selected Sample from the Medium Imaging Survey

    Science.gov (United States)

    Mallery, Ryan P.; Rich, R. Michael; Salim, Samir; Small, Todd; Charlot, Stephane; Seibert, Mark; Wyder, Ted; Barlow, Tom A.; Forster, Karl; Friedman, Peter G.; Martin, D. Christopher; Morrissey, Patrick; Neff, Susan G.; Schiminovich, David; Bianchi, Luciana; Donas, José; Heckman, Timothy M.; Lee, Young-Wook; Madore, Barry F.; Milliard, Bruno; Szalay, Alex S.; Welsh, Barry Y.; Yi, Sukyoung

    2007-12-01

    We report results from a pilot program to obtain spectroscopy for objects detected in the Galaxy Evolution Explorer (GALEX) Medium Imaging Survey (MIS). Our study examines the properties of galaxies detected by GALEX fainter than the Sloan Digital Sky Survey (SDSS) spectroscopic survey. This is the first study to extend the techniques of Salim and coworkers to estimate stellar masses, star formation rates (SFRs), and the b (star formation history) parameter for star-forming galaxies out to z~0.7. We obtain redshifts for 50 GALEX MIS sources reaching NUV=23.9 (AB mag) having counterparts in the SDSS Data Release 4 (DR4). Of our sample, 43 are star-forming galaxies with z1 are QSOs, 3 of which are not previously cataloged. We compare our sample to a much larger sample of ~50,000 matched GALEX/SDSS galaxies with SDSS spectroscopy; while our survey is shallow, the optical counterparts to our sources reach ~3 mag fainter in SDSS r than the SDSS spectroscopic sample. We use emission-line diagnostics for the galaxies to determine that the sample contains mostly star-forming galaxies. The galaxies in the sample populate the blue sequence in the NUV-r versus Mr color-magnitude diagram. The derived stellar masses of the galaxies range from 108 to 1011 Msolar, and derived SFRs are between 10-1 and 102 Msolar yr-1. Our sample has SFRs, luminosities, and velocity dispersions that are similar to the samples of faint compact blue galaxies studied previously in the same redshift range by Koo and collaborators, Guzmán and collaborators, and Phillips and collaborators. However, our sample is ~2 mag fainter in surface brightness than the compact blue galaxies. We find that the star formation histories for a majority of the galaxies are consistent with a recent starburst within the last 100 Myr. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of

  17. UV-Vis Spectroscopy and Dynamic Light Scattering Study of Gold Nanorods Aggregation

    Science.gov (United States)

    Kanjanawarut, Roejarek; Yuan, Bo

    2013-01-01

    Gold nanorods (AuNRs) were used as spectroscopic sensing elements to detect specific DNA sequences with a single-base mismatch sensitivity. The assay was based on the observation that the stabilizing repulsive forces between CTA+-coated AuNRs can be removed by citrate ions, which causes aggregation among AuNRs; whereas nucleic acids of different structures[ i.e., peptide nucleic acid (PNA), single-stranded DNA (ssDNA), PNA-DNA complex, and double-stranded DNA (dsDNA)] can retard the aggregation. Moreover, the dsDNA PNA-DNA duplexes provide larger retardation than that by unhybridized ssDNA and PNA probe. This assay can differentiate single-base mismatched targets with base substitution at different locations (center and end) with AuNRs of a larger aspect ratio. Besides ultraviolet–visable spectroscopy measurement of particle assembly-induced plasmonic coupling that in turn provides a spectroscopic detection of the specific DNA, dynamic light scattering and transmission electron microscope (TEM) were used to measure smaller degree of aggregation that can reveal sodium citrate– and dsDNA–AuNRs interactions in fine detail. PMID:23902360

  18. UV-vis spectroscopy and dynamic light scattering study of gold nanorods aggregation.

    Science.gov (United States)

    Kanjanawarut, Roejarek; Yuan, Bo; XiaoDi, Su

    2013-08-01

    Gold nanorods (AuNRs) were used as spectroscopic sensing elements to detect specific DNA sequences with a single-base mismatch sensitivity. The assay was based on the observation that the stabilizing repulsive forces between CTA(+)-coated AuNRs can be removed by citrate ions, which causes aggregation among AuNRs; whereas nucleic acids of different structures[ i.e., peptide nucleic acid (PNA), single-stranded DNA (ssDNA), PNA-DNA complex, and double-stranded DNA (dsDNA)] can retard the aggregation. Moreover, the dsDNA PNA-DNA duplexes provide larger retardation than that by unhybridized ssDNA and PNA probe. This assay can differentiate single-base mismatched targets with base substitution at different locations (center and end) with AuNRs of a larger aspect ratio. Besides ultraviolet-visable spectroscopy measurement of particle assembly-induced plasmonic coupling that in turn provides a spectroscopic detection of the specific DNA, dynamic light scattering and transmission electron microscope (TEM) were used to measure smaller degree of aggregation that can reveal sodium citrate- and dsDNA-AuNRs interactions in fine detail.

  19. Exploring Relaxation Processes in Components of DNA with UV Nonlinear Spectroscopy

    Science.gov (United States)

    Moran, Andrew; West, Brantley; Womick, Jordan

    2012-02-01

    Underlying photoinduced relaxation in DNA is a complex world of solute-solvent interactions and fluctuations in the geometries of macromolecules. Electronic excitations are rapidly deactivated by nuclear motions through conical intersections, thereby suppressing the formation of lesions (e.g., thymine dimers) known to inhibit cellular function. At the instant following internal conversion, the bases are left in ``hot'' quantum states, wherein a subset of vibrational modes possess a highly non-equilibrium distribution of excitation quanta. The transfer of this energy to the surrounding also involves intriguing fundamental physics. We examine these processes in small components of DNA by conducting femtosecond laser spectroscopies at cryogenic temperatures. Our experiments utilize several recent advances in nonlinear optics. Parametric processes in argon gas are used to generate 25fs pulse durations at 265nm. These short pulses are employed in a variety of measurements (e.g., transient grating, 2D photon echo, fluorescence down-conversion) with the goal of understanding relaxation mechanisms. Our data suggest that excited state deactivation in DNA is quite sensitive to the exchange of vibrational energy between the bases and segments of the backbone.

  20. Enthalpic and entropic stages in alpha-helical peptide unfolding, from laser T-jump/UV Raman spectroscopy.

    Science.gov (United States)

    Balakrishnan, Gurusamy; Hu, Ying; Bender, Gretchen M; Getahun, Zelleka; DeGrado, William F; Spiro, Thomas G

    2007-10-24

    The alpha-helix is a ubiquitous structural element in proteins, and a number of studies have addressed the mechanism of helix formation and melting in simple peptides. However, fundamental issues remain to be resolved, particularly the temperature (T) dependence of the rate. In this work, we report application of a novel kHz repetition rate solid-state tunable NIR (pump) and deep UV Raman (probe) laser system to study the dynamics of helix unfolding in Ac-GSPEA3KA4KA4-CO-D-Arg-CONH2, a peptide designed for helix stabilization in aqueous solution. Its T-dependent UV resonance Raman (UVRR) spectra, excited at 197 nm for optimal enhancement of amide vibrations, were decomposed into variable contributions from helix and coil spectra. The helix fractions derived from the UVRR spectra and from far UV CD spectra were coincident at low T but deviated increasingly at high T, the UVRR curve giving higher helix content. This difference is consistent with the greater sensitivity of UVRR spectra to local conformation than CD. After a laser-induced T-jump, the UVRR-determined helix fractions defined monoexponential decays, with time-constants of approximately 120 ns, independent of the final T (Tf = 18-61 degrees C), provided the initial T (Ti) was held constant (6 degrees C). However, there was also a prompt loss of helicity, whose amplitude increased with increasing Tf, thereby defining an initial enthalpic phase, distinct from the subsequent entropic phase. These phases are attributed to disruption of H-bonds followed by reorientation of peptide links, as the chain is extended. When Ti was raised in parallel with Tf (10 degrees C T-jumps), the prompt phase merged into an accelerating slow phase, an effect attributable to the shifting distribution of initial helix lengths. Even greater acceleration with rising Ti has been reported in T-jump experiments monitored by IR and fluorescence spectroscopies. This difference is attributable to the longer range character of these probes

  1. Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS).

    Science.gov (United States)

    Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K

    2015-06-15

    The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    Science.gov (United States)

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring. PMID:27854280

  3. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    Directory of Open Access Journals (Sweden)

    S. Ok

    2017-03-01

    Full Text Available Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF proton (1H nuclear magnetic resonance (NMR relaxometry and ultra-violet (UV visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2 curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively.

  4. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques.

    Science.gov (United States)

    Casale, M; Oliveri, P; Casolino, C; Sinelli, N; Zunin, P; Armanino, C; Forina, M; Lanteri, S

    2012-01-27

    An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. X-ray photoelectron spectroscopy investigations of band offsets in Ga0.02Zn0.98O/ZnO heterojunction for UV photodetectors

    Science.gov (United States)

    Singh, Karmvir; Rawal, Ishpal; Punia, Rajesh; Dhar, Rakesh

    2017-10-01

    Here, we report the valence and conduction band offset measurements in pure ZnO and the Ga0.02Zn0.98O/ZnO heterojunction by X-Ray photoelectron spectroscopy studies for UV photodetector applications. For detailed investigations on the band offsets and UV photodetection behavior of Ga0.02Zn0.98O/ZnO heterostructures, thin films of pristine ZnO, Ga-doped ZnO (Ga0.02Zn0.98O), and heterostructures of Ga-doped ZnO with ZnO (Ga0.02Zn0.98O/ZnO) were deposited using a pulsed laser deposition technique. The deposited thin films were characterized by X-ray diffraction, atomic force microscopy, and UV-Vis spectroscopy. X-ray photoelectron spectroscopy studies were carried out on all the thin films for the investigation of valence and conduction band offsets. The valence band was found to be shifted by 0.28 eV, while the conduction band has a shifting of -0.272 eV in the Ga0.02Zn0.98O/ZnO heterojunction as compared to pristine ZnO thin films. All the three samples were analyzed for photoconduction behavior under UVA light of the intensity of 3.3 mW/cm2, and it was observed that the photoresponse of pristine ZnO (19.75%) was found to increase with 2 wt. % doping of Ga (22.62%) and heterostructured thin films (29.10%). The mechanism of UV photodetection in the deposited samples has been discussed in detail, and the interaction of chemisorbed oxygen on the ZnO surface with holes generated by UV light exposure has been the observed mechanism for the change in electrical conductivity responsible for UV photoresponse on the present deposited ZnO films.

  6. Study of bonding characteristics of some new metal complexes of salicylaldoxime (SALO) and its derivatives by far infrared and UV spectroscopy

    Science.gov (United States)

    Ramesh, V.; Umasundari, P.; Das, Kalyan K.

    1998-02-01

    New metal chelates of copper, lead and zinc with salicylaldoxime (SALO) and its derivatives have been prepared. The chelates have been characterized by elemental analysis, atomic absorption, infrared and UV spectroscopy. SALO behaves as a bidentate ligand forming neutral metal chelates through the phenolic oxygen and the oxime nitrogen. The M-O stretching frequencies for the transition metals show good agreement with the Irving-William's stability order Cu>Zn>Pb. Similar trend is seen for the M-N stretching frequencies in IR and the shift in transitions from UV spectral data for the metal chelates.

  7. A kinetic study on the formation of poly(4 aminodiphenylamine)/copper nanocomposite using UV-visible spectroscopy

    Science.gov (United States)

    Starlet Thanjam, I.; Francklin Philips, M.; Manisankar, P.; Lee, Kwang-Pill; Gopalan, A.

    2013-12-01

    The course of the reaction between copper sulfate (CuSO4) and 4-aminodiphenylamine (4ADPA) was monitored by UV-visible spectroscopy in p-toluene sulfonic acid (p-TSA). Formation of poly(4-aminodiphenylamine)/copper nanoparticle composite (P4ADPA/CuNC) was witnessed through the steady increase in absorbance at 410, 580 and >700 nm. The absorbance at 410 nm as well as >700 nm are correlated to the amount of P4ADPA/CuNC formation and was subsequently used to determine the rate of formation of P4ADPA/CuNC (RP4ADPA/CuNC) at any time during the course of the reaction. RP4ADPA/CuNC shows a first-order dependence on [4ADPA] and a half-order dependence on [CuSO4]. A kinetic rate expression was established between RP4ADPA/CuNC and experimental parameters such as [4ADPA] and [CuSO4]. The rate constant for the formation of P4ADPA/CuNC was 8.98 × 10-3 mol-0.5 l0.5 s-1. Field emission scanning electron and transmission electron micrographs revealed that the morphology of the P4ADPA/CuNC was influenced by the reaction conditions.

  8. Artificial nose, NIR and UV-visible spectroscopy for the characterisation of the PDO Chianti Classico olive oil.

    Science.gov (United States)

    Forina, M; Oliveri, P; Bagnasco, L; Simonetti, R; Casolino, M C; Nizzi Grifi, F; Casale, M

    2015-11-01

    An authentication study of the Italian PDO (Protected Designation of Origin) olive oil Chianti Classico, based on artificial nose, near-infrared and UV-visible spectroscopy, with a set of samples representative of the whole Chianti Classico production area and a considerable number of samples from other Italian PDO regions was performed. The signals provided by the three analytical techniques were used both individually and jointly, after fusion of the respective variables, in order to build a model for the Chianti Classico PDO olive oil. Different signal pre-treatments were performed in order to investigate their importance and their effects in enhancing and extracting information from experimental data, correcting backgrounds or removing baseline variations. Stepwise-Linear Discriminant Analysis (STEP-LDA) was used as a feature selection technique and, afterward, Linear Discriminant Analysis (LDA) and the class-modelling technique Quadratic Discriminant Analysis-UNEQual dispersed classes (QDA-UNEQ) were applied to sub-sets of selected variables, in order to obtain efficient models capable of characterising the extra virgin olive oils produced in the Chianti Classico PDO area. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fluorescence Lifetime and UV-Vis Spectroscopy to Evaluate the Interactions Between Quercetin and Its Yeast Microcapsule.

    Science.gov (United States)

    Pham-Hoang, Bao-Ngoc; Winckler, Pascale; Waché, Yves

    2017-09-09

    Quercetin is a fragile bioactive compound. Several works have tried to preserve it by encapsulation but the form of encapsulation (mono- or supra-molecular structure, tautomeric form), though important for stability and bioavailability, remains unknown. The present work aims at developing a fluorescence lifetime technique to evaluate the structure of quercetin during encapsulation in a vector capsule that has already proven efficiency, yeast cells. Molecular stabilization was observed during a 4-month storage period. The time-correlated single-photon counting (TCSPC) technique was used to evaluate the interaction between quercetin molecules and the yeast capsule. The various tautomeric forms, as identified by UV-Vis spectroscopy, result in various lifetimes in TCSPC, although they varied also with the buffer environment. Quercetin in buffer exhibited a three-to-four longer long-time after 24 h (changing from 6-7 to 18-23 ns), suggesting an aggregation of molecules. In yeast microcapsules, the long-time population exhibited a longer lifetime (around 27 ns) from the beginning and concerned about 20% of molecules compared to dispersed quercetin. This shows that lifetime analysis can show the monomolecular instability of quercetin in buffer and the presence of interactions between quercetin molecules and their microcapsules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rapid Method for the Determination of 5-Hydroxymethylfurfural and Levulinic Acid Using a Double-Wavelength UV Spectroscopy

    Directory of Open Access Journals (Sweden)

    Junhua Zhang

    2013-01-01

    Full Text Available This study reports on a rapid method for the determination of levulinic acid (LA and 5-hydroxymethylfurfural (HMF in acid hydrolyze system of glucose based on UV spectroscopy. It was found that HMF and LA have a maximum absorption at the wavelengths of 284 nm and 266 nm, respectively, in a water medium, and the absorptions of HMF and LA at 284 nm and 266 nm follow Beer’s law very well. However, it was found that a major spectral interference species will arise in the quantification of HMF and LA; nonetheless, this interference can be eliminated through the absorption treatment of charcoal. Therefore, both HMF and LA can be quantified with a double-wavelength technique. The repeatability of the method had a relative standard deviation of less than 4.47% for HMF and 2.25% for LA; the limit of quantification (LOQ was 0.017 mmol/L for HMF and 4.68 mmol/L for LA, and the recovery ranged from 88% to 116% for HMF and from 94% to 105% for LA. The present method is simple, rapid, and accurate. It is suitable to use in the research of the preparation of HMF and LA in biorefinery area.

  11. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  12. Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms.

    Science.gov (United States)

    Woltmann, Eva; Meyer, Hans; Weigel, Diana; Pritzke, Heinz; Posch, Tjorben N; Kler, Pablo A; Schürmann, Klaus; Roscher, Jörg; Huhn, Carolin

    2014-10-01

    High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.

  13. Ultraviolet (UV) Raman Spectroscopy Study of the Soret Effect in High-Pressure CO2-Water Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Maupin, Gary D.; McGrail, B. Peter

    2012-07-01

    Spatially resolved deep-UV Raman spectroscopy was applied to solutions of CO2 and H2O or D2O subject to a temperature gradient in a thermally regulated high-pressure concentric-tube Raman cell in an attempt to measure a Soret effect in the vicinity of the critical point of CO2. Although Raman spectra of solutions of CO2 dissolved in D2O, at 10 MPa and temperatures near the critical point of CO2, had adequate signal-to-noise and spatial resolution to observe a Soret effect with a Soret coefficient with magnitude |ST| > 0.03, no evidence for an effect of this size was obtained for applied temperature gradients up to 19 C. In contrast, the concentration of CO2 dissolved in H2O was shown to vary significantly across the temperature gradient when excess CO2 was present, but the results could be explained simply by the variation in CO2 solubility over the temperature range and not to kinetic factors. For mixtures of D2O dissolved in scCO2 at 10 MPa and temperatures close to the critical point of CO2, the Raman peaks for D2O were too weak to measure with confidence even at the limit of D2O solubility.

  14. Plant sunscreens in the UV-B: ultraviolet spectroscopy of jet-cooled sinapoyl malate, sinapic acid, and sinapate ester derivatives.

    Science.gov (United States)

    Dean, Jacob C; Kusaka, Ryoji; Walsh, Patrick S; Allais, Florent; Zwier, Timothy S

    2014-10-22

    Ultraviolet spectroscopy of sinapoyl malate, an essential UV-B screening agent in plants, was carried out in the cold, isolated environment of a supersonic expansion to explore its intrinsic UV spectral properties in detail. Despite these conditions, sinapoyl malate displays anomalous spectral broadening extending well over 1000 cm(-1) in the UV-B region, presenting the tantalizing prospect that nature's selection of UV-B sunscreen is based in part on the inherent quantum mechanical features of its excited states. Jet-cooling provides an ideal setting in which to explore this topic, where complications from intermolecular interactions are eliminated. In order to better understand the structural causes of this behavior, the UV spectroscopy of a series of sinapate esters was undertaken and compared with ab initio calculations, starting with the simplest sinapate chromophore sinapic acid, and building up the ester side chain to sinapoyl malate. This "deconstruction" approach provided insight into the active mechanism intrinsic to sinapoyl malate, which is tentatively attributed to mixing of the bright V ((1)ππ*) state with an adiabatically lower (1)nπ* state which, according to calculations, shows unique charge-transfer characteristics brought on by the electron-rich malate side chain. All members of the series absorb strongly in the UV-B region, but significant differences emerge in the appearance of the spectrum among the series, with derivatives most closely associated with sinapoyl malate showing characteristic broadening even under jet-cooled conditions. The long vibronic progressions, conformational distribution, and large oscillator strength of the V (ππ*) transition in sinapates makes them ideal candidates for their role as UV-B screening agents in plants.

  15. Characterisation of PEGylated PLGA nanoparticles comparing the nanoparticle bulk to the particle surface using UV/vis spectroscopy, SEC, {sup 1}H NMR spectroscopy, and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Spek, S.; Haeuser, M. [Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstrasse 48, 48149 Muenster (Germany); Schaefer, M.M. [nanoAnalytics, Heisenbergstrasse 11, 48149 Muenster (Germany); Langer, K., E-mail: k.langer@wwu.de [Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstrasse 48, 48149 Muenster (Germany)

    2015-08-30

    Graphical abstract: - Highlights: • We compared nanoparticles prepared on the basis of PLGA and PEG–PLGA for their polymeric composition in the particle bulk and on the surface. • We validated three analytical methods (UV/vis, SEC, {sup 1}H NMR) for quantification of the polymeric stabiliser PVA and {sup 1}H NMR for the quantification of PEG. • In the case of PEG–PLGA as starting material we observed significant PEG contents not only on the surface but even in the particle bulk. • We observed an unexpected accumulation of the polymeric stabiliser PVA on PEGylated particle surfaces. - Abstract: Hypothesis: The bulk and the surface structure of nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and PLGA–PEG copolymer is expected to consist of different polymer compositions. An enrichment of hydrophilic PEG on the surface in combination with an accumulation of PLGA in the bulk is anticipated. Hence, the imbalance between bulk and surface composition should be detectable by suitable analytical methods. Experiments: Nanoparticles were assembled using an emulsion-evaporation method with polyvinyl alcohol (PVA) as stabiliser. Mixtures of PLGA and PLGA–PEG copolymer were applied to achieve variably PEGylated nanoparticles. The nanoparticle composition was analysed with respect to PLGA, PVA and PEG, comparing the polymer content of the nanoparticle bulk to the surface. For the bulk, PVA was quantified by a UV/vis spectroscopic method as well as size exclusion chromatography (SEC), and {sup 1}H nuclear magnetic resonance (NMR) spectroscopy. PEG determination of the bulk was carried out using quantitative {sup 1}H NMR spectroscopy. Surface composition was investigated by X-ray photoelectron spectroscopy (XPS). Findings: For the characterisation of the polymer composition {sup 1}H NMR, SEC, and XPS-methods were successfully established and validated. Unexpectedly, a significant PEG content was detected within the particle bulk. The comparison of

  16. Assessing the Extent of Degradation in the UV Radiation and Heat-Catalyzed Oxidised Whole Milk Powder : The UV Photoacoustic and Diffuse Reflectance Spectroscopies Versus the Peroxide Value

    NARCIS (Netherlands)

    Doka, O.; Ajtony, Z.; Bicanic, D.; Koehorst, R.

    2000-01-01

    The extent of quality loss caused by enzymatic and nonenzymatic browning reactions in milk powders is usually assessed by the chemical methods, among which the determination of peroxide value (PV) is a widely used approach. In this paper, peroxide values obtained from deliberately oxidized (UV

  17. Use of UV-vis-NIR spectroscopy to monitor label-free interaction between molecular recognition elements and erythropoietin on a gold-coated polycarbonate platform.

    Science.gov (United States)

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock

    2014-08-01

    Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. UV-visible-DAD and 1H-NMR spectroscopy data fusion for studying the photodegradation process of azo-dyes using MCR-ALS.

    Science.gov (United States)

    Fernández, Cristina; Pilar Callao, M; Larrechi, M Soledad

    2013-12-15

    The photodegradation process of three azo-dyes - Acid Orange 61, Acid Red 97 and Acid Brown 425 - was monitored simultaneously by ultraviolet-visible spectroscopy with diode array detector (UV-vis-DAD) and (1)H-nuclear magnetic resonance ((1)H-NMR). Multivariate curve resolution-alternating least squares (MCR-ALS) was applied to obtain the concentration and spectral profile of the chemical compounds involved in the process. The analysis of the H-NMR data suggests there are more intermediate compounds than those obtained with the UV-vis-DAD data. The fusion of UV-vis-DAD and the (1)H-NMR signal before the multivariate analysis provides better results than when only one of the two detector signals was used. It was concluded that three degradation products were present in the medium when the three azo-dyes had practically degraded. This study is the first application of UV-vis-DAD and (1)H-NMR spectroscopy data fusion in this field and illustrates its potential as a quick method for evaluating the evolution of the azo-dye photodegradation process. © 2013 Elsevier B.V. All rights reserved.

  19. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    Science.gov (United States)

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application

    Science.gov (United States)

    Kumar, Raj; Sharma, Vishal

    2017-03-01

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  1. [Study on photocatalytic decomposition of azo-dyes by ZnO/carbon nanotubes composites by UV-Vis spectroscopy].

    Science.gov (United States)

    Xu, Jing; Song, Xiao-jie; Wei, Xian-wen

    2007-12-01

    ZnO/carbon nanotubes composites were prepared by hydrothermal treatment of the mixture of zinc nitrate and acid-treated multiwalled carbon nanotubes and characterized by transmission electron microscope (TEM) and X-ray powder diffraction (XRD). The TEM image indicated that ZnO nanoparticles with a diameter about 28 nm covered the carbon nanotubes. The XRD pattern shows that ZnO nanoparticles attached to the MWNTs exhibit a hexagonal phase. The diffraction peaks can be assigned to (100), (002), (101), (102), (110), (103), (200), (112) and (201) planes of the crystalline ZnO, respectively. The average size of the crystalline ZnO, calculated from the half-width of the (100) diffraction peak by the Scherrer equation, is 27.8 nm, which accords with the TEM observation. The ZnO/carbon nanotubes composites were used as a photocatalyst under sunlight for the decomposition of azo-dye, which was studied by UV-Vis spectroscopy. The effects of the illumination time, catalyst amount, initial dye concentration and the different structures of the dye on the photocatalytic process were investigated. It was noted that the intensity of the absorption peak corresponding to the azo-dye decreased rapidly at 400 nm during the photolysis process and the decomposition of azo-dye was a quasi-first order reaction. The decomposition rates for azo-dyes such as acid orange, Acid bright red, Acid light yellow are 0.09, 0.28 and 0.22 mg x L(-1) x min(-1), respectively, which maybe resulted from their different functional groups. It can be stated that the complete removal of color, after selection of optimum operation parameters, can be achieved in relatively short time by using ZnO/carbon nanotubes composites. After recycling 5 times, the catalyst still has more than 50% efficiency.

  2. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles.

    Science.gov (United States)

    Wang, Yong; Ni, Yongnian

    2014-02-01

    Study of the interactions between proteins and nanomaterials is of great importance for understanding of protein nanoconjugate. In this work, we choose human serum albumin (HSA) and citrate-capped gold nanoparticles (AuNPs) as a model of protein and nanomaterial, and combine UV-vis spectroscopy with multivariate curve resolution by an alternating least squares (MCR-ALS) algorithm to present a new and efficient method for comparatively comprehensive study of evolution of protein nanoconjugate. UV-vis spectroscopy coupled with MCR-ALS allows qualitative and quantitative extraction of the distribution diagrams, spectra and kinetic profiles of absorbing pure species (AuNPs and AuNPs-HSA conjugate are herein identified) and undetectable species (HSA) from spectral data. The response profiles recovered are converted into the desired thermodynamic, kinetic and structural parameters describing the protein nanoconjugate evolution. Analysis of these parameters for the system gives evidence that HSA molecules are very likely to be attached to AuNPs surface predominantly as a flat monolayer to form a stable AuNPs-HSA conjugate with a core-shell structure, and the binding process takes place mainly through electrostatic and hydrogen-bond interactions between the positively amino acid residues of HSA and the negatively carboxyl group of citrate on AuNPs surface. The results obtained are verified by transmission electron microscopy, zeta potential, circular dichroism spectroscopy and Fourier transform infrared spectroscopy, showing the potential of UV-vis spectroscopy for study of evolution of protein nanoconjugate. In parallel, concentration evolutions of pure species resolved by MCR-ALS are used to construct a sensitive spectroscopic biosensor for HSA with a linear range from 1.8 nM to 28.1 nM and a detection limit of 0.8 nM. © 2013 Published by Elsevier B.V.

  3. The color of complexes and UV-vis spectroscopy as an analytical tool of Alfred Werner's group at the University of Zurich.

    Science.gov (United States)

    Fox, Thomas; Berke, Heinz

    2014-01-01

    Two PhD theses (Alexander Gordienko, 1912; Johannes Angerstein, 1914) and a dissertation in partial fulfillment of a PhD thesis (H. S. French, Zurich, 1914) are reviewed that deal with hitherto unpublished UV-vis spectroscopy work of coordination compounds in the group of Alfred Werner. The method of measurement of UV-vis spectra at Alfred Werner's time is described in detail. Examples of spectra of complexes are given, which were partly interpreted in terms of structure (cis ↔ trans configuration, counting number of bands for structural relationships, and shift of general spectral features by consecutive replacement of ligands). A more complete interpretation of spectra was hampered at Alfred Werner's time by the lack of a light absorption theory and a correct theory of electron excitation, and the lack of a ligand field theory for coordination compounds. The experimentally difficult data acquisitions and the difficult spectral interpretations might have been reasons why this method did not experience a breakthrough in Alfred Werner's group to play a more prominent role as an important analytical method. Nevertheless the application of UV-vis spectroscopy on coordination compounds was unique and novel, and witnesses Alfred Werner's great aptitude and keenness to always try and go beyond conventional practice.

  4. dd excitations in CPO-27-Ni metal-organic framework: comparison between resonant inelastic X-ray scattering and UV-vis spectroscopy.

    Science.gov (United States)

    Gallo, Erik; Lamberti, Carlo; Glatzel, Pieter

    2013-05-20

    We identify the dd excitations in the metal-organic framework CPO-27-Ni by coupling resonant inelastic X-ray scattering (RIXS) and UV-vis spectroscopy, and we show that the element selectivity of RIXS is crucial to observing the full dd multiplet structure, which is not visible in UV-vis. The combination of calculations using crystal-field multiplet theory and density functional theory can reproduce the RIXS spectral features, crucially improving interpretation of the experimental data. We obtain the crystal-field splitting and magnitude of the electron-electron interactions and correct previously reported values. RIXS instruments at synchrotron radiation sources are accessible to all researchers, and the technique can be applied to a broad range of systems.

  5. Graphitic carbon nitride C 6N 9H 3·HCl: Characterisation by UV and near-IR FT Raman spectroscopy

    Science.gov (United States)

    McMillan, Paul F.; Lees, Victoria; Quirico, Eric; Montagnac, Gilles; Sella, Andrea; Reynard, Bruno; Simon, Patrick; Bailey, Edward; Deifallah, Malek; Corà, Furio

    2009-10-01

    The graphitic layered compound C 6N 9H 3·HCl was prepared by reaction between melamine and cyanuric chloride under high pressure-high temperature conditions in a piston cylinder apparatus and characterised using SEM, powder X-ray diffraction, UV Raman and near-IR Fourier transform Raman spectroscopy with near-IR excitation. Theoretical calculations using density functional methods permitted evaluation of the mode of attachment of H atoms to nitrogen sites in the structure and a better understanding of the X-ray diffraction pattern. Broadening in the UV and near-IR FT Raman spectra indicate possible disordering of the void sites within the graphitic layers or it could be due to electron-phonon coupling effects.

  6. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  7. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques.

    Science.gov (United States)

    Fedenko, Volodymyr S; Shemet, Sergiy A; Landi, Marco

    2017-05-01

    Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L(*)a(*)b(*) and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool

  8. Analysis of pure tar substances (polycyclic aromatic hydrocarbons) in the gas stream using ultraviolet visible (UV-Vis) spectroscopy and multivariate curve resolution (MCR).

    Science.gov (United States)

    Weide, Tobias; Guschin, Viktor; Becker, Wolfgang; Koelle, Sabine; Maier, Simon; Seidelt, Stephan

    2015-01-01

    The analysis of tar, mostly characterized as polycyclic aromatic hydrocarbons (PAHs), describes a topic that has been researched for years. An online analysis of tar in the gas stream in particular is needed to characterize the tar conversion or formation in the biomass gasification process. The online analysis in the gas is carried out with ultraviolet-visible (UV-Vis) spectroscopy (190-720 nm). This online analysis is performed with a measuring cell developed by the Fraunhofer Institute for Chemical Technology (ICT). To this day, online tar measurements using UV-Vis spectroscopy have not been carried out in detail. Therefore, PAHs are analyzed as follows. The measurements are split into different steps. The first step to prove the online method is to vaporize single tar substances. These experiments show that a qualitative analysis of PAHs in the gas stream with the used measurement setup is possible. Furthermore, it is shown that the method provides very exact results, so that a differentiation of various PAHs is possible. The next step is to vaporize a PAH mixture. This step consists of vaporizing five pure substances almost simultaneously. The interpretation of the resulting data is made using a chemometric interpretation method, the multivariate curve resolution (MCR). The verification of the calculated results is the main aim of this experiment. It has been shown that the tar mixture can be analyzed qualitatively and quantitatively (in arbitrary units) in detail using the MCR. Finally it is the main goal of this paper to show the first steps in the applicability of the UV-Vis spectroscopy and the measurement setup on online tar analysis in view of characterizing the biomass gasification process. Due to that, the gasification plant (at the laboratory scale), developed and constructed by the Fraunhofer ICT, has been used to vaporize these substances. Using this gasification plant for the experiments enables the usage of the measurement setup also for the

  9. Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV-vis Absorption Spectroscopy.

    Science.gov (United States)

    Ishida, Ryo; Hayashi, Shun; Yamazoe, Seiji; Kato, Kazuo; Tsukuda, Tatsuya

    2017-06-01

    We previously reported that small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibited a localized surface plasmon resonance (LSPR) band at ∼520 nm in the presence of NaBH4. To reveal the mechanism of this phenomenon, the electronic structure of Au:PVP during the reaction with NaBH4 in air was examined by means of in situ X-ray absorption spectroscopy at Au L3-edge and UV-vis spectroscopy. These measurements indicated that the appearance of the LSPR band is not associated with the growth in size but is ascribed to electron doping to the Au sp band by the adsorbed H atoms.

  10. Pink-beam serial crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Meents, A; Wiedorn, M. O.; Srajer, V.; Henning, R.; Sarrou, I.; Bergtholdt, J.; Barthelmess, M.; Reinke, P.Y.A.; Dirksmeyer, D.; Tolstikova, A.; Schaible, S.; Messerschmidt, M.; Ogata, C. M.; Kissick, D. J.; Taft, M.H.; Manstein, D.J.; Lieske, J.; Oberthuer, D.; Fischetti, R. F.; Chapman, H. N.

    2017-11-03

    Serial X-ray crystallography allows macromolecular structure determination at 31 both X-ray Free Electron Lasers (XFELs) and, more recently, synchrotron 32 sources. The time resolution for serial synchrotron crystallography experiments 33 has been limited to millisecond time scales with monochromatic beams. The 34 polychromatic, “pink”, beam provides a more than two orders of magnitude 35 increased photon flux and hence allows accessing much shorter time scales in 36 diffraction experiments at synchrotron sources. Here we report the structure 37 determination of two different protein samples by merging pink beam diffraction 38 patterns from many crystals, each collected with a single 100 ps X-ray pulse 39 exposure per crystal using a setup optimized for very low scattering background. 40 In contrast to experiments with monochromatic radiation, data from only 50 41 crystals were required to obtain complete data sets. The high quality of the 42 diffraction data highlights the potential of this method for studying irreversible 43 reactions at sub-microsecond timescales using high-brightness X-ray facilities. 44

  11. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring.

    Science.gov (United States)

    Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau

    2014-03-01

    To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  13. Recent advances in racemic protein crystallography.

    Science.gov (United States)

    Yan, Bingjia; Ye, Linzhi; Xu, Weiliang; Liu, Lei

    2017-09-15

    Solution of the three-dimensional structures of proteins is a critical step in deciphering the molecular mechanisms of their bioactivities. Among the many approaches for obtaining protein crystals, racemic protein crystallography has been developed as a unique method to solve the structures of an increasing number of proteins. Exploiting unnatural protein enantiomers in crystallization and resolution, racemic protein crystallography manifests two major advantages that are 1) to increase the success rate of protein crystallization, and 2) to obviate the phase problem in X-ray diffraction. The requirement of unnatural protein enantiomers in racemic protein crystallography necessitates chemical protein synthesis, which is hitherto accomplished through solid phase peptide synthesis and chemical ligation reactions. This review highlights the fundamental ideas of racemic protein crystallography and surveys the harvests in the field of racemic protein crystallography over the last five years from early 2012 to late 2016. Copyright © 2017. Published by Elsevier Ltd.

  14. IN-VIVO DIAGNOSIS OF CHEMICALLY INDUCED MELANOMA IN AN ANIMAL MODEL USING UV-VISIBLE AND NIR ELASTIC SCATTERING SPECTROSCOPY: PRELIMINARY TESTING.

    Energy Technology Data Exchange (ETDEWEB)

    C. A' AMAR; R. LEY; ET AL

    2001-01-01

    Elastic light scattering spectroscopy (ESS) has the potential to provide spectra that contain both morphological and chromophore information from tissue. We report on a preliminary study of this technique, with the hope of developing a method for diagnosis of highly-pigmented skin lesions, commonly associated with skin cancer. Four opossums were treated with dimethylbenz(a)anthracene to induce both malignant melanoma and benign pigmented lesions. Skin lesions were examined in vivo using both UV-visible and near infrared (NIR) ESS, with wavelength ranges of 330-900 nm and 900-1700 nm, respectively. Both portable systems used identical fiber-optic probe geometry throughout all of the measurements. The core diameters for illuminating and collecting fibers were 400 and 200 {micro}m, respectively, with center-to-center separation of 350 {micro}m. The probe was placed in optical contact with the tissue under investigation. Biopsies from lesions were analyzed by two standard histopathological procedures. Taking into account only the biopsied lesions, UV-visible ESS showed distinct spectral correlation for 11/13 lesions. The NIR-ESS correlated well with 12/13 lesions correctly. The results of these experiments showed that UV-visible and NIR-ESS have the potential to classify benign and malignant skin lesions, with encouraging agreement to that provided by standard histopathological examination. These initial results show potential for ESS based diagnosis of pigmented skin lesions, but further trials are required in order to substantiate the technique.

  15. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  16. A Characterization of Laponite Nanoclays by Dynamic Light Scattering, Scanning Electron Microscopy, and Cation Exchange Capacity by UV-Visible Spectroscopy

    Science.gov (United States)

    Arnold, Randall

    Four different Laponite clays were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV-Visible spectroscopy to determine the cation exchange capacity (CEC) to provide a methodology of analysis for other clays. DLS and SEM were utilized to observe the sizes, shape, and inter-particle interactions for the different clays. UV-Visible spectroscopy was implemented to characterize the CEC of each clay via a complexometric reaction with calcium. DLS provided limitedly consistent results due to a disparity in the translational diffusion of particles in suspension due to high aspect ratios and electroviscious forces; however, SEM provided high-resolution images of various particles and agglomerates with unique insight into the intra-particle edge-face, edge-edge, and face-face interactions driven by various electrochemical forces. The experimentally determined CECs, while consistently elevated above reported values, provide accurate first-pass estimations by a direct cation exchange methodology. Advancement of this work might include Mie scattering of angular dependence for DLS, as well as a correction for the electric double layer of the platelets; field emission SEM for microanalysis of single platelets and agglomerates; and using zeta potential to develop a methodology of observing stability and CEC of cation-loaded uncharacterized clays. Establishing a methodology for determining the CEC and cation loading provides the most valuable advancement towards characterizing other clays and linking cation loading to the zeta potential and colloidal stability.

  17. [Study of pH measuring based on i-motif DNA conformation switch and UV-Vis absorption spectroscopy of gold nanoparticles].

    Science.gov (United States)

    Zhong, Jian-hai; Guo, Liang-qia; Wu, Jin-mei; Chen, Jin-feng; Chen, Zhang-jie

    2012-04-01

    A fast, sensitive, colorimetric method for the detection of pH based on the differentiate effect of gold nanoparticles to the configuration of DNA was developed in this study. The UV-Vis absorption spectroscopy of the i-motif DNA-Au NPs system has been investigated, and the effect of the concentration of salt and i-motif DNA, reaction time and DNA sequence on the pH response of the system have been also optimized. Under the optimum conditions, the UV-Vis absorption spectroscopy of the Au NPs is changed regularly with pH in the range of 5.3 - 7.0, the absorbance at 520 nm is increased gradually while at 700 nm decreased. Correspondingly, the color of the Au NPs is varied from violet to red. The pH sensor is no need to modification, low cost, fast and can be carried out by naked eyes. It is promising to use in monitoring some life process which associated with pH variation.

  18. Effect of the solvent on the size of clay nanoparticles in solution as determined using an ultraviolet-visible (UV-Vis) spectroscopy methodology.

    Science.gov (United States)

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-06-01

    Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.

  19. Characterization and dating of blue ballpoint pen inks using principal component analysis of UV-Vis absorption spectra, IR spectroscopy, and HPTLC.

    Science.gov (United States)

    Senior, Samir; Hamed, Ezzat; Masoud, Mamdouh; Shehata, Eman

    2012-07-01

    The ink of pens and ink extracted from lines on white photocopier paper of 10 blue ballpoint pens were subjected to ultraviolet-visible (UV-Vis) spectroscopy, infrared (IR), and high-performance thin-layer liquid chromatography (HPTLC). The R(f) values and color tones of the bands separated by thin-layer chromatography (TLC) analysis used to classify the writing inks into three groups. The principal component analysis (PCA) investigates the pen responsible for a piece of writing, and how time affects spectroscopy of written ink. PCA can differentiate between pen ink and ink line indicates the influence of solvent extraction process on the results. The PCA loadings are useful in individualization of a questioned ink from a database. The PCA of ink lines extracted at different times can be used to estimate the time at which a questioned document was written. The results proved that the UV-Vis spectra are effective tool to separate blue ballpoint pen ink in most cases rather than IR and HPTLC. © 2012 American Academy of Forensic Sciences.

  20. Corneocyte quantification by NIR densitometry and UV/Vis spectroscopy for human and porcine skin and the role of skin cleaning procedures.

    Science.gov (United States)

    Schwarz, J C; Klang, V; Hoppel, M; Wolzt, M; Valenta, C

    2012-01-01

    Optical methods of corneocyte quantification during tape stripping experiments on the skin are useful tools for the rapid evaluation of the skin penetration potential of dermally applied substances. However, a comparative investigation of the different methods proposed for this task, namely NIR densitometry and UV/Vis spectroscopy, is still missing. Thus, the aim of the present work was to employ these two techniques in comparative tape stripping experiments both in vivo on human forearm skin and in vitro on porcine ear skin. Standard tape stripping experiments were performed in the absence and presence of a marketed formulation containing flufenamic acid as a model drug. In the context of these methodological investigations, different methods of skin cleaning prior to the tape stripping procedure were evaluated to identify the most appropriate working protocol among the approaches proposed in the respective literature. The results showed that the investigated methods of NIR densitometry and UV/Vis spectroscopy deliver highly comparable results. Both optical methods are suitable to determine the skin penetration profiles of active substances during in vivo and in vitro tape stripping, especially if a simple working protocol without any cleaning procedures is maintained. Copyright © 2012 S. Karger AG, Basel.

  1. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules

    Directory of Open Access Journals (Sweden)

    Esko Oksanen

    2017-04-01

    Full Text Available Abstract: The hydrogen bond (H bond is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.

  2. Effect of crystallinity on UV degradability of poly[methyl(phenyl)silane] by energy-resolved electrochemical impedance spectroscopy

    Science.gov (United States)

    Schauer, F.; Tkáč, L.; Ožvoldová, M.; Nádaždy, V.; Gmucová, K.; Jergel, M.; Šiffalovič, P.

    2017-05-01

    Low stability and degradability of polymers by ambient air, UV irradiation or charge transport are major problems of molecular electronics devices. Recent research tentatively suggests that the presence of a crystalline phase may increase polymer stability due to an intensive energy trapping in the ordered phase. Using the UV degradability, we demonstrate this effect on an archetypal model σ bonded polymer - poly[methyl(phenyl)silane] (PMPSi) - with partially crystalline and amorphous-like layers. UV degradation with 345 nm, derived from the branching state generation rate, was inversely proportional to the crystalline phase content, changing from 4.8x1011 s-1 (partially crystalline phase) to 1.8x1013 s-1 (amorphous-like phase). A model is proposed where crystallites formed by molecular packing act as effective excitation energy traps with a suppressed nonradiative recombination improving thus PMPSi film stability. The molecular packing and higher crystalline phase proportion may be a general approach for stability and degradability improvement of polymers in molecular electronics.

  3. Characterization of the alpha and beta subunits of casein kinase 2 by far-UV CD spectroscopy

    DEFF Research Database (Denmark)

    Issinger, O G; Brockel, C; Boldyreff, B

    1992-01-01

    Although Chou-Fasman calculations of the secondary structure of recombinant casein kinase 2 subunits alpha and beta suggest they have a similar overall conformation, circular dichroism (CD) studies show that substantial differences in the conformation of the two subunits exist. In addition......, no changes in the far-UV CD spectrum of the alpha subunit are observed in the presence of casein or the synthetic decapeptide substrate RRRDDDSDDD. Furthermore, the alpha-helical structure of the alpha subunit (but not the beta subunit) can be increased in the presence of stoichiometric amounts of heparin...

  4. Determination of force constant and refractive index of a semiconducting polymer composite using UV/visible spectroscopy: a new approach

    Science.gov (United States)

    Urs, Thejas G.; Gowtham, G. K.; Nandaprakash, M. B.; Mahadevaiah, D.; Sangappa, Y.; Somashekar, R.

    2017-01-01

    A model to determine refractive index and the intermolecular force constant in a polymeric chain is presented in this study. We have used the UV/visible absorption spectrum of a sample to determine afore mentioned parameters. The exponential absorption wavelength points of the spectrum are used to determine these parameters, on which the optical band gap of the material is defined. This study is carried out for various dopant concentration of a composite, so as to get a comparative insight. This study reveals the dependence of these parameters on dopant concentration and the wavelength.

  5. NATO Advanced Study Institute on Electron Crystallography

    CERN Document Server

    Weirich, Thomas E; Zou, Xiaodong

    2006-01-01

    During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to r...

  6. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography

    Directory of Open Access Journals (Sweden)

    Julian C.-H. Chen

    2017-01-01

    Full Text Available The Protein Crystallography Station (PCS, located at the Los Alamos Neutron Scattering Center (LANSCE, was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER for 13 years (2002–2014. The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  7. HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule

    Science.gov (United States)

    Hadad, Ghada M.; El-Gindy, Alaa; Mahmoud, Waleed M. M.

    2008-08-01

    High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C 18 analytical column with a mobile phase consisting of a mixture of 20 mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ( 1DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.

  8. Classification of wines produced in specific regions by UV-visible spectroscopy combined with support vector machines.

    Science.gov (United States)

    Acevedo, F Javier; Jiménez, Javier; Maldonado, Saturnino; Domínguez, Elena; Narváez, Arántzazu

    2007-08-22

    Discriminating wines according to their denomination of origin using cost-effective techniques is something that attracts the attention of different industrial sectors. In search of simplicity, direct UV-visible spectrophotometric techniques and different multivariate statistical techniques are used with admissible results to characterize wine produced in specific regions. However, most of the reported classification methods do not exploit all of the statistical relations in the investigated dataset and are inherently affected by the presence of outliers. The aim of this paper is to test novel classification methods such as support vector machines as a means of improving the classification rate when UV-visible spectrophotometric methods are used to discriminate wines. The advantages of such a discrimination tool are demonstrated when classification rates are compared for a large number of Spanish red and white wines and classification rates above 96% are achieved. The proposed methodology also enables the selection of the most relevant wavelengths for sample discrimination. The proposed methodology also enables the selection of the most relevant wavelengths for sample discrimination.

  9. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    Science.gov (United States)

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  11. An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV-visible and NMR spectroscopies

    Science.gov (United States)

    Chain, Fernando; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César Atilio Nazareno; Fortuna, Mario Antonio; Brandán, Silvia Antonia

    2014-05-01

    An experimental and theoretical investigation of cnicin is presented, combining the use of infrared, Raman, NMR and UV-visible spectroscopies with density functional theory (DFT) that employs hybrid B3LYP exchange correlation functional and a 6-31G∗ basis set. The molecular electrostatic potentials, atomic charges, bond orders, stabilization energies, topological properties and energy gap are presented by performing NBO, AIM and HOMO-LUMO calculations at the same level of theory as cnicin. A complete vibrational compound assignment was performed by employing internal coordinate analysis and a scaled quantum mechanical force field (SQMFF) methodology. Comparisons between the theoretical and experimental vibrational and ultraviolet-visible spectra show a strong concordance. The geometrical parameters and NBO studies suggest a probable negative Cotton effect for cnicin, which can be attributed to the π → π∗ transition for an α,β-unsaturated γ-lactone, as reported in the literature.

  12. Feasibility of UV-VIS-Fluorescence spectroscopy combined with pattern recognition techniques to authenticate a new category of plant food supplements.

    Science.gov (United States)

    Boggia, Raffaella; Turrini, Federica; Anselmo, Marco; Zunin, Paola; Donno, Dario; Beccaro, Gabriele L

    2017-07-01

    Bud extracts, named also "gemmoderivatives", are a new category of natural products, obtained macerating meristematic fresh tissues of trees and plants. In the European Community these botanical remedies are classified as plant food supplements. Nowadays these products are still poorly studied, even if they are widely used and commercialized. Several analytical tools for the quality control of these very expensive supplements are urgently needed in order to avoid mislabelling and frauds. In fact, besides the usual quality controls common to the other botanical dietary supplements, these extracts should be checked in order to quickly detect if the cheaper adult parts of the plants are deceptively used in place of the corresponding buds whose harvest-period and production are extremely limited. This study aims to provide a screening analytical method based on UV-VIS-Fluorescence spectroscopy coupled to multivariate analysis for a rapid, inexpensive and non-destructive quality control of these products.

  13. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry.

    Science.gov (United States)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-01-01

    Presented in this paper is an assessment of the applicability of Raman spectroscopy and microspectrophotometry (MSP) in visible and ultraviolet light (UV-Vis) in the examination of textile fibers dyed with mixtures of synthetic dyes. Fragments of single polyester fibers, stained with ternary mixtures of disperse dyes in small mass concentrations, and fragments of single cotton fibers, dyed with binary or ternary mixtures of reactive dyes, were subjected to the study. Three types of excitation sources, 514, 633, and 785 nm, were used during Raman examinations, while the MSP study was conducted in the 200 to 800 nm range. The results indicate that the capabilities for discernment of dye mixtures are similar in the spectroscopic methods that were employed. Both methods have a limited capacity to distinguish slightly dyed polyester fiber; additionally, it was found that Raman spectroscopy enables identification of primarily the major components in dye mixtures. The best results, in terms of the quality of Raman spectra, were obtained using an excitation source from the near infrared. MSP studies led to the conclusion that polyester testing should be carried out in the range above 310 nm, while for cotton fibers there is no limitation or restriction of the applied range. Also, MSP UV-Vis showed limited possibilities for discriminatory analysis of cotton fibers dyed with a mixture of reactive dyes, where the ratio of the concentration of the main dye used in the dyeing process to minor dye was higher than four. The results presented have practical applications in forensic studies, inter alia.

  14. Structure validation in chemical crystallography

    Science.gov (United States)

    Spek, Anthony L.

    2009-01-01

    Automated structure validation was introduced in chemical crystallography about 12 years ago as a tool to assist practitioners with the exponential growth in crystal structure analyses. Validation has since evolved into an easy-to-use checkCIF/PLATON web-based IUCr service. The result of a crystal structure determination has to be supplied as a CIF-formatted computer-readable file. The checking software tests the data in the CIF for completeness, quality and consistency. In addition, the reported structure is checked for incomplete analysis, errors in the analysis and relevant issues to be verified. A validation report is generated in the form of a list of ALERTS on the issues to be corrected, checked or commented on. Structure validation has largely eliminated obvious problems with structure reports published in IUCr journals, such as refinement in a space group of too low symmetry. This paper reports on the current status of structure validation and possible future extensions. PMID:19171970

  15. Study of the β-Cyclodextrin Imipramine Hydrochloride Inclusion Complex and Determination of its Stability Constant (K by UV-Visible Spectroscopy

    Directory of Open Access Journals (Sweden)

    Alamdar Ashnagar

    2007-01-01

    Full Text Available In this research, the interactions of imipramine hydrochloride drug with β- cyclodextrin and the stability constant (K of the inclusion complex formed between them were investigated by using UV-visible spectroscopy. Solutions consisting of a known and constant amount of imipramine hydrochloride and varying amounts of β- cyclodextrin were prepared in 0.1 M phosphate buffer (pH 7.4. The final solutions had cyclodextrin concentrations between 0.0011 and 0.0153 M. UV-visible spectra of each solution was taken at λmax= 250 nm. The absorbances at this wavelength were recorded and plotted against cyclodextrin concentrations. From the graph, the concentrations of free and bound imipramine hydrochloride and free β-cyclodextrin were calculated using the Beer-Lambert law. From these data, the stability constant was calculated and a value of K=52.26±11.41 mol-1L was obtained. The magnitude of the stability constant is discussed in terms of the relative sizes and the chemical natures of β-cyclodextrin and imipramine hydrochloride.

  16. Structure determination by X-ray crystallography

    CERN Document Server

    Ladd, M F C

    1977-01-01

    Crystallography may be described as the science of the structure of materi­ als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal­ lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post­ graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain ...

  17. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  18. Airborne re-entry observation experiment SLIT: UV spectroscopy during STARDUST and ATV1 re-entry

    Science.gov (United States)

    Löhle, Stefan; Wernitz, Ricarda; Herdrich, Georg; Fertig, Markus; Röser, Hans-Peter; Ritter, Heiko

    2011-09-01

    Emission spectra during re-entry have been measured in 2006 for the STARDUST capsule and in 2008 for the ATV1 "Jules Verne" re-entry. This paper summarizes the approach to design the airborne UV spectroscopic setup and its modifications with respect to the missions. For the STARDUST mission, results of data analysis of data presented in 2008 are given while for the ATV1 observation first spectra of the main disruption are exemplary presented. The surface radiation during the STARDUST re-entry is used to estimate convective and radiative heat flux using different analytical models. A first look at the spectroscopic footprint of ATV1 shows that during the first explosive event, a severe break-up of the main ATV1 structure occurs. However, a correlation with an explosion of fuel could not be observed.

  19. Probing Supernovae Chemical Yields in Low Metallicity Environments with UV Spectroscopy of Magellanic Cloud B-type Stars

    Science.gov (United States)

    Lanz, Thierry

    2015-10-01

    Spectrum synthesis studies of the UV spectra of sharp-lined main sequence B stars provide astronomers withsome of the best determinations of the abundances of the light, Fe group, and neutron capture elements. B stars are therefore best-suited to study the chemical evolution of the Magellanic Clouds. But the HST archive is virtually devoid of high resolution spectra of such objects. We propose FUV and NUV observations with the COS G130M, G160M, G185M, and G225M gratings. The four program stars have been observed with the FUSE spacecraft, hence this project will produce continuous high-resolution spectral coverage from 950 to 2400 A and provide a permanent archive of fundamental spectra from which ground-breaking studies of the Magellanic Clouds can be performed in the decades to come. This limited program aims at producing an extragalactic, low-metallicity counterpart to the bright star library of early B stars that is currently being obtained as part of the HST Cycle 21 Treasury program Advanced Spectral Library II: Hot Stars (GO 13346, PI T. Ayres).Spectral lines from most Fe group and s-process elements are found only in the UV region in B stars and information on their abundances is important for studying the chemical evolution of a galaxy, computing opacities for stellar evolution calculations, and assessing the validity of theoretical calculations of explosive nucleosynthesis. Comparing the derived abundances of iron-peak and heavier elements in galactic and Magellanic Cloud B main sequence stars will provide an empirical probe of chemical yields ejected by evolved stars and supernovae in different environments.

  20. Simultaneous determination of gatifloxacin and prednisolone acetate in ophthalmic formulation using first-order UV derivative spectroscopy

    Directory of Open Access Journals (Sweden)

    Rúbia A. Sversut

    2017-07-01

    Full Text Available A simple method for simultaneous determination of gatifloxacin and prednisolone acetate in ophthalmic formulation was developed and validated using UV spectrophotometry. Gatifloxacin and prednisolone acetate were quantified using the first-order derivative of the UV spectra. The proposed method was validated according to the guidelines of the International Conference on Harmonization and the Association of Official Analytical Chemists International. The measurements were made in acetonitrile/water (70:30 v/v at 348 nm for gatifloxacin and at 263 nm for prednisolone acetate. The calibration curves were linear in the concentration range of 3–21 μg mL−1 for gatifloxacin and 6–42 μg mL−1 for prednisolone acetate with Sandell’s sensitivities of 0.349 μg cm−2 and 0.402 μg cm−2, respectively. The mean recovery and the limit of quantification for gatifloxacin were 99.76 ± 0.41% and 1.11 μg mL−1 and for prednisolone acetate were 99.52 ± 0.87% and 0.55 μg mL−1, respectively. The method was precise, with a relative standard deviation of less than 2.50% for both drugs. For robustness, the factors analyzed did not significantly affect the quantification of gatifloxacin and prednisolone acetate. The results of the validated method did not differ significantly from high-performance liquid chromatography (HPLC, which was previously developed and validated for the same drugs. In this form, the method was suitable for routine analysis of gatifloxacin and prednisolone acetate in their combined dosage form in ophthalmic formulations.

  1. The structure and origin of dissolved organic matter studied by UV-vis spectroscopy and fluorescence spectroscopy in lake in arid and semi-arid region.

    Science.gov (United States)

    Guo, Xu-jing; Xi, Bei-dou; Yu, Hui-bin; Ma, Wen-chao; He, Xiao-song

    2011-01-01

    To develop a proper indicator which could predict water quality and trace pollution sources is critically important for the management of sustainable aquatic ecosystem. In our study, seven water samples collected from Wuliangsuhai Lake in Inner Mongolia were used. UV-visible spectra and synchronous fluorescence spectra were applied to investigate the humification degree and aromatic structure of dissolved organic matter (DOM) extracted from water samples. The results showed that both samples from W1 site and W3 site display lower humification degree and less aromatic structure, where industrial wastewater and domestic sewage, and reclaimed water of farmland irrigation, were accepted respectively. After computing the values of SUVA(254), A(280), A(250/365), A(253/203) and A(226-400), we reached the conclusion that they have a consistent trend (W4> W6> W5> W2> W7> W1> W3). Fluorescence index (f(450/500)) was always utilised to interpret the origin of organic matter in a complex aquatic environment system. Values of f(450/500) are closer to 1.60, indicating that humic substances derived from terrestrial sources and biological sources. Our study demonstrated that reclaimed water of farmland irrigation, industrial wastewater and domestic sewage will definitely influence the humification degree and amount of the aromatic structure of DOM.

  2. Discrimination of Aurantii Fructus Immaturus and Fructus Poniciri Trifoliatae Immaturus by Flow Injection UV Spectroscopy (FIUV) and 1H NMR using Partial Least-squares Discriminant Analysis (PLS-DA)

    Science.gov (United States)

    Two simple fingerprinting methods, flow-injection UV spectroscopy (FIUV) and 1H nuclear magnetic resonance (NMR), for discrimination of Aurantii FructusImmaturus and Fructus Poniciri TrifoliataeImmaturususing were described. Both methods were combined with partial least-squares discriminant analysis...

  3. Assessing Pearl Quality Using Reflectance UV-Vis Spectroscopy: Does the Same Donor Produce Consistent Pearl Quality?

    Science.gov (United States)

    Mamangkey, Noldy Gustaf F.; Agatonovic, Snezana; Southgate, Paul C.

    2010-01-01

    Two groups of commercial quality (“acceptable”) pearls produced using two donors, and a group of “acceptable” pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV

  4. Assessing pearl quality using reflectance UV-Vis spectroscopy: does the same donor produce consistent pearl quality?

    Science.gov (United States)

    Mamangkey, Noldy Gustaf F; Agatonovic, Snezana; Southgate, Paul C

    2010-09-20

    Two groups of commercial quality ("acceptable") pearls produced using two donors, and a group of "acceptable" pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV

  5. Assessing Pearl Quality Using Reflectance UV-Vis Spectroscopy: Does the Same Donor Produce Consistent Pearl Quality?

    Directory of Open Access Journals (Sweden)

    Paul C. Southgate

    2010-09-01

    Full Text Available Two groups of commercial quality (“acceptable” pearls produced using two donors, and a group of “acceptable” pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected

  6. Transformations of methyl orange dimers in aqueous-acid solutions, according to UV-Vis spectroscopy data

    Science.gov (United States)

    Mikheev, Yu. A.; Guseva, L. N.; Ershov, Yu. A.

    2017-10-01

    The effect acidity has on the UV-Vis absorption spectra of azo dye methyl orange (MOD) in aqueous solutions of hydrochloric acid in the pH range of 1.7 to 7 and sulfuric acid in the 0.24 to 18 mol/L range of concentrations is investigated. The spectral transformations of MOD solutions are compared to the corresponding spectral transformations of solutions of dimethylaminoazobenzene (DAB), which is an azo dye akin to MOD. A close resemblance between the spectral transformations of MOD and dimers DAB2 is revealed. It is concluded that the ground state of MOD, like the ground state of DAB, consists of not individual molecules but of supramolecular dimers MOD2. It is found that dimers MOD2 in aqueous low-acidic solutions are reversibly protonated with the formation of di- and triprotonated forms, which reversibly dissociate into diprotonated monomers upon an increase in acidity. The structural formulas of the chromogenic groups responsible for the spectral transformations, and the mechanisms of their reversible transformations, are given.

  7. A tunable CW UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states

    CERN Document Server

    Bridge, Elizabeth M; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2015-01-01

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable between 316.3 nm and 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of <35 kHz. As an application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz.

  8. Reliable TLDA-microvolume UV spectroscopy with applications in chemistry and biosciences for microlitre analysis and rapid pipette calibration

    Science.gov (United States)

    McMillan, Norman; O'Neill, Martina; Smith, Stephen; Hammond, John; Riedel, Sven; Arthure, Kevin; Smith, S.

    2009-05-01

    A TLDA-microvolume (transmitted light drop analyser) accessory for use with a standard UV-visible fibre spectrophotometer is described. The physics of the elegantly simple optical design is described along with the experimental testing of this accessory. The modelling of the arrangement is fully explored to investigate the performance of the drop spectrophotometer. The design optimizes the focusing to deliver the highest quality spectra, rapid and simple sample handling and, importantly, no detectable carryover on the single quartz drophead. Results of spectral measurements in a laboratory providing NIST standards show the closest correlation between modelled pathlength and experimental measurement for different drop volumes in the range 0.7-3 µl. This instrument accessory delivers remarkably accurate and reproducible results that are good enough to allow the accessory to be used for rapid pipette calibration to avoid the laborious weighing methods currently employed. Measurements on DNA standards and proteins are given to illustrate the main application area of biochemistry for this accessory. The accessory has a measurement range of at least 0-60 A units without sample dilution and, since there exists an accurate volume-pathlength relationship, the drop volume used in any specific measurement or assay should be optimized to minimize the photometric error. Studies demonstrate that the cleaning of the drophead with lab wipes results in no measurable carryover. This important practical result is confirmed from direct reading of the accessory and an analytical balance which was used to perform carryover studies. For further information on the TLDA please contact: Drop Technology, Unit 2, Tallaght Business Park, Whitestown, Dublin 24, Republic of Ireland. email: info@droptechnology.com.

  9. The UV-visible absorption and fluorescence spectroscopy indicators for monitoring the evolution of green waste composts.

    Science.gov (United States)

    Mounier, Stéphane; Abaker, Madi; Domeizel, Mariane; Rapetti, Nicola

    2014-05-01

    The maturity process of compost goes through several phases that have to be monitored in order to optimize the production process which in turn assure a good quality product and less time consumption. In order to estimate rapidly the phase where the compost is present and to measure the cellulose, the ratio C:N and the Stability Index Organic Matter (ISMO) a crucial parameter that needs to be monitored and controlled is the temperature. However, the temperature is not really a good indicator for the maturity of the compost because it is not constant and it depends on the mixing and environmental processes. The final measurements are performed at the end of the production process after certain time period that is subjectively determined by the producer. The work presented here is based on the optical properties of the organic matter that are observed each month for a period of six months. The organic matter of 5 composts was extracted by water and analyzed by UV-VIS spectroscopic technique [1] and 3D fluorescence emission technique [2]. The usual indexes were calculated (E2/E3, E4/E6, EBZ/EET, SUVA254), but also the PARAFAC decomposition of the 3D fluorescence response by Milori [3] and the Hx indexes [4]. The comparison of these results and the cellulose composition with the corresponding ISMO index indicates that the maturity process occurs more rapidly then the expectation of the producers. Further, the combination of the indicators gives useful information about different processes that take place during the maturity of the compost such as aromatization, the condensation and the stabilization of the parameters.

  10. Application of multi-way analysis to UV-visible spectroscopy, gas chromatography and electronic nose data for wine ageing evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, N. [Department of Condensed Matter Physics, Faculty of Sciences, University of Valladolid, 47011 Valladolid (Spain); Department of Inorganic Chemistry, Escuela de Ingenierias Industriales, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid (Spain); Rodriguez-Mendez, M.L. [Department of Inorganic Chemistry, Escuela de Ingenierias Industriales, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid (Spain); Leardi, R. [Department of Pharmaceutical and Food Chemistry and Technology, University of Genoa, Via Brigata Salerno 13, I-16147 8 Genoa (Italy); Oliveri, P., E-mail: oliveri@dictfa.unige.it [Department of Pharmaceutical and Food Chemistry and Technology, University of Genoa, Via Brigata Salerno 13, I-16147 8 Genoa (Italy); Hernando-Esquisabel, D.; Iniguez-Crespo, M. [Gobierno de la Rioja, Consejeria de Agricultura y Alimentacion, Estacion Enologica, Breton de los Herreros 4, 26200 Haro, La Rioja (Spain); Saja, J.A. de [Department of Condensed Matter Physics, Faculty of Sciences, University of Valladolid, 47011 Valladolid (Spain)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Wine samples were analytically characterised according to their ageing process. Black-Right-Pointing-Pointer Signals from a sensor-based electronic nose were fused with GC-MS and UV-visible data. Black-Right-Pointing-Pointer The study involved 6 periodical determinations of 20 variables on 6 different wines. Black-Right-Pointing-Pointer Multi-way analysis allowed to efficiently extract the maximum information from data. Black-Right-Pointing-Pointer Multi-way methods represent the most suitable tool for processing three-mode data. - Abstract: In this study, a multi-way method (Tucker3) was applied to evaluate the performance of an electronic nose for following the ageing of red wines. The odour evaluation carried out with the electronic nose was combined with the quantitative analysis of volatile composition performed by GC-MS, and colour characterisation by UV-visible spectroscopy. Thanks to Tucker3, it was possible to understand connections among data obtained from these three different systems and to estimate the effect of different sources of variability on wine evaluation. In particular, the application of Tucker3 supplied a global visualisation of data structure, which was very informative to understand relationships between sensors responses and chemical composition of wines. The results obtained indicate that the analytical methods employed are useful tools to follow the wine ageing process, to differentiate wine samples according to ageing type (either in barrel or in stainless steel tanks with the addition of small oak wood pieces) and to the origin (French or American) of the oak wood. Finally, it was possible to designate the volatile compounds which play a major role in such a characterisation.

  11. Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV-vis Spectroscopy.

    Science.gov (United States)

    Goetze, Joris; Meirer, Florian; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Ruiz-Martínez, Javier; Weckhuysen, Bert M

    2017-06-02

    The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV-vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV-vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature.

  12. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams. © 2012 International Union of Crystallography

  13. Direct spectral analysis and determination of high content of carcinogenic bromine in bread using UV pulsed laser induced breakdown spectroscopy.

    Science.gov (United States)

    Mehder, A O; Gondal, Mohammed A; Dastageer, Mohamed A; Habibullah, Yusuf B; Iqbal, Mohammed A; Oloore, Luqman E; Gondal, Bilal

    2016-01-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the detection of carcinogenic elements like bromine in four representative brands of loaf bread samples and the measured bromine concentrations were 352, 157, 451, and 311 ppm, using Br I (827.2 nm) atomic transition line as the finger print atomic transition. Our LIBS system is equipped with a pulsed laser of wavelength 266 nm with energy 25 mJ pulse(-1), 8 ns pulse duration, 20 Hz repetition rate, and a gated ICCD camera. The LIBS system was calibrated with the standards of known concentrations in the sample (bread) matrix and such plot is linear in 20-500 ppm range. The capability of our system in terms of limit of detection and relative accuracy with respect to the standard inductively coupled plasma mass spectrometry (ICPMS) technique was evaluated and these values were 5.09 ppm and 0.01-0.05, respectively, which ensures the applicability of our system for Br trace level detection, and LIBS results are in excellent agreement with that of ICPMS results.

  14. UV fluorescence excitation spectroscopy as a non-invasive predictor of epidermal proliferation and clinical performance of cosmetic formulations

    Science.gov (United States)

    Maidhof, Robert; Liebel, Frank; Hwang, Cheng; Ruvolo, Eduardo; Lyga, John

    2017-02-01

    The epidermis is the outermost layer of skin and is composed of cells primarily containing keratin. It consists of about ten layers of living cells (keratinocytes) and ten layers of dead cells (corneocytes). These cells are continually shed from the outside and replaced from the inside in a process called desquamation which is controlled by two biological events - proliferation and differentiation. One method to non-invasively study biological changes in the skin is using fluorescence excitation spectroscopy. Several characteristic excitation-emission peaks occur in skin that have been related to the epidermal and dermal composition. The magnitude of the peak that occurs at 295nm excitation (F295) has been linked to changes in skin proliferation, cell turnover, epidermal thickening, and skin aging. We hypothesize that changes in this fluorescent signal could be used to assess the potential activity of cosmetic anti-aging compounds to deliver a benefit to skin. Previous work with retinol and glycolic acid, two commonly used actives that effect epidermal proliferation and exfoliation, has demonstrated an increase in F295 (attributed to tryptophan excitation fluorescence). In this study we present the results of a placebo controlled study that aims to correlate changes in F295 with biological performance (epidermal thickening and Ki67 expression).

  15. Beta-heterosubstituted acrylonitriles--electronic structure study by UV-photoelectron spectroscopy and quantum chemical calculations.

    Science.gov (United States)

    Chrostowska, Anna; Nguyen, Thi Xuan Mai; Dargelos, Alain; Khayar, Saïd; Graciaa, Alain; Guillemin, Jean-Claude

    2009-03-19

    Beta-heterosubstituted acrylonitriles correspond to the formal addition of nucleophiles on cyanoacetylene. Acrylonitriles substituted with an amino, methoxy, mercapto group, or halogeno atom have been synthesized. Rearrangements between Z and E stereoisomers or tautomerizations have been studied by NMR spectroscopy and by quantum calculations. The photoelectron spectra were recorded and analyzed with the aid of a time-dependent density functional theory, ab initio OVGF, and so-called "corrected" ionization energy calculations. The electronic structure of the studied species was determined, and strong differences between beta-heterosubstituted acrylonitriles and the corresponding nitrile-free heteroalkenes were clearly documented. A "push-pull" effect was noticed, due to the combined donor effect of the substituent on one side of the carbon-carbon double bond and the electron-withdrawing effect of the nitrile group on the other side. Thus, the presence of a nitrile group strongly stabilizes the electronic structure. The efficient pi-donor contribution of the NH(2) and SH groups was evidenced.

  16. In situ IR, NMR, EPR, and UV/Vis Spectroscopy: Tools for New Insight into the Mechanisms of Heterogeneous Catalysis.

    Science.gov (United States)

    Hunger, M; Weitkamp, J

    2001-01-01

    The development of new solid catalysts for use in industrial chemistry has hitherto been based to a large extent upon the empirical testing of a wide range of different materials. In only a few exceptional cases has success been achieved in understanding the overall, usually very complex mechanism of the chemical reaction through the elucidation of individual intermediate aspects of a heterogeneously catalyzed reaction. With the modern approach of combinatorial catalysis it is now possible to prepare and test much more rapidly a wide range of different materials within a short time and thus find suitable catalysts or optimize their chemical composition. Our understanding of the mechanisms of reactions catalyzed by these materials must be developed, however, by spectroscopic investigations on working catalysts under conditions that are as close as possible to practice (temperature, partial pressures of the reactants, space velocity). This demands the development and the application of new techniques of in situ spectroscopy. This review will show how this objective is being achieved. By the term in situ (Lat.: in the original position) is meant the investigation of the chemical reactions which are taking place as well as the changes in the working catalysts directly in the spectrometer. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  17. Temperature dependence of commercial 4H-SiC UV Schottky photodiodes for X-ray detection and spectroscopy

    Science.gov (United States)

    Zhao, S.; Lioliou, G.; Barnett, A. M.

    2017-07-01

    Two commercial-off-the-shelf (COTS) 4H-SiC UV photodiodes have been investigated for their suitability as low-cost high temperature tolerant X-ray detectors. Electrical characterisation of the photodiodes which had different active areas (0.06 mm2 and 0.5 mm2) is reported over the temperature range 0 °C to 140 °C together with measurements of the X-ray photocurrents generated when the detectors were illuminated with an 55Fe radioisotope X-ray source. The 0.06 mm2 photodiode was also investigated as a photon counting spectroscopic X-ray detector across the temperature range 0 °C to 100 °C. The depletion widths (at 120 V reverse bias) of the two diodes were found to be 2.3 μm and 4.5 μm, for the 0.06 mm2 and 0.5 mm2 detectors respectively, at 140 °C. Both devices had low leakage currents (electric field strengths (500 kV/cm for 0.06 mm2 diode; 267 kV/cm for 0.5 mm2 diode). At 140 °C and similar field strengths (514 kV/cm for 0.06 mm2 diode; 269 kV/cm for 0.5 mm2 diode), the leakage currents of both diodes were noise charge sensitive preamplifier, the smaller diode functioned as a photon counting spectroscopic X-ray detector at temperatures ≤100 °C with modest energy resolution (1.6 keV FWHM at 5.9 keV at 0 °C; 2.6 keV FWHM at 5.9 keV at 100 °C). Due to their temperature tolerance, wide commercial availability, and the radiation hardness of SiC, such detectors are expected to find utility in future low-cost nanosatellite (cubesat) missions and cost-sensitive industrial applications.

  18. Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration

    Science.gov (United States)

    Almaviva, S.; Angelini, F.; Chirico, R.; Palucci, A.; Nuvoli, M.; Schnuerer, F.; Schweikert, W.; Romolo, F. S.

    2014-10-01

    We report the results of Raman investigation performed at stand-off distance between 6-10 m with a new apparatus, capable to detect traces of explosives with surface concentrations similar to those of a single fingerprint. The device was developed as part of the RADEX prototype (RAman Detection of EXplosives) and is capable of detecting the Raman signal with a single laser shot of few ns (10-9 s) in the UV range (wavelength 266 nm), in conditions of safety for the human eye. This is because the maximum permissible exposure (MPE) for the human eye is established to be 3 mJ/cm2 in this wavelength region and pulse duration. Samples of explosives (PETN, TNT, Urea Nitrate, Ammonium Nitrate) were prepared starting from solutions deposited on samples of common fabrics or clothing materials such as blue jeans, leather, polyester or polyamide. The deposition process takes place via a piezoelectric-controlled plotter device, capable of producing drops of welldefined volume, down to nanoliters, on a surface of several cm2, in order to carefully control the amount of explosive released to the tissue and thus simulate a slight stain on a garment of a potential terrorist. Depending on the type of explosive sampled, the detected density ranges from 0.1 to 1 mg/cm2 and is comparable to the density measured in a spot on a dress or a bag due to the contact with hands contaminated with explosives, as it could happen in the preparation of an improvised explosive device (IED) by a terrorist. To our knowledge the developed device is at the highest detection limits nowadays achievable in the field of eyesafe, stand-off Raman instruments. The signals obtained show some vibrational bands of the Raman spectra of our samples with high signal-to-noise ratio (SNR), allowing us to identify with high sensitivity (high number of True Positives) and selectivity (low number of False Positives) the explosives, so that the instrument could represent the basis for an automated and remote monitoring

  19. Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents.

    Science.gov (United States)

    Kumar, Raj; Kumar, Vinay; Sharma, Vishal

    2015-06-01

    Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between

  20. Crystal structure, Hirshfeld surface analysis, vibrational, thermal behavior and UV spectroscopy of (2,6-diaminopyridinium) dihydrogen arsenate

    Science.gov (United States)

    Bouaziz, Emna; Ben Hassen, Chawki; Chniba-Boudjada, Nassira; Daoud, Abdelaziz; Mhiri, Tahar; Boujelbene, Mohamed

    2017-10-01

    A new organic dihydrogenomonoarsenate (C5H8N3)H2AsO4 was synthesized by slow evaporation method at room temperature and characterized by X-ray single crystal diffraction. This compound crystallizes in the monoclinic system with the centro-symmetric space group P21/n. Unit cell parameters are a = 10.124 (5)Ǻ, b = 6.648 (5)Ǻ, c = 13.900 (5)Ǻ, β = 105.532° with Z = 4. The crystal structure was solved and refined to R = 0.038 with 2001 independent reflections. Hirshfeld surfaces analysis were used to visualize the fidelity of the crystal structure which has been determined by X-ray data collection on single crystals (C5H8N3)H2AsO4. Due the strong hydrogen Osbnd H⋯O bond network connecting the H2AsO4 groups, the anionic arrangement must be described as infinite (H2AsO4)nn-of dimers chains spreading, in a zig zag fashion, parallel to the b direction. The organic groups (C5H8N3)+ are anchored between adjacent polyanions through multiple hydrogen bonds Nsbnd H⋯O. The thermal decomposition of precursors studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), indicate the existence of two mass loss regions correspond to degradation of the title compound. The existence of vibrational modes correspond to the organic and inorganic groups are identified by the infrared and Raman spectroscopy in the frequency ranges 500-4000 and 25-4000 cm-1, respectively.

  1. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    Science.gov (United States)

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. © 2015 Wiley Periodicals, Inc.

  2. Single-Conformation IR and UV Spectroscopy of a Prototypical Heterogeneous α/β-PEPTIDE: is it a Mixed-Helix Former?

    Science.gov (United States)

    Blodgett, Karl N.; Walsh, Patrick S.; Zwier, Timothy S.

    2016-06-01

    Synthetic foldamers are non-natural polymers designed to fold into unique secondary structures that either mimic nature's preferred secondary structures, or expand their possibilities. Among the most studied synthetic foldamers are β-peptides, which lengthen the distance between amide groups from the single substituted carbon spacer in α-peptides by one additional carbon. We present data on a mixed α/β tri-peptide in which a single β-residue with a conformationally constrained cis-2-aminocyclohexanecarboxylic acid (cis-ACHC) substitution is inserted in an α-peptide backbone to form Ac-Ala-β-ACHC-Ala-NHBn. This αβα structure is known in longer sequences to prefer formation of a 9/11 mixed helix. Under isolated, jet cooled conditions, four unique conformers were observed in the expansion. The dominant conformer is configured in a tetramer cycle with every amide carbonyl and amine group involved in hydrogen bonding, giving rise to a tightly folded C12/C7/C8/C7 structure reminiscent of a β-turn. This talk will describe the conformation specific IR and UV spectroscopy methods used to study this mixed peptide, as well as its experimentally observed conformational preferences.

  3. Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera

    Science.gov (United States)

    Forbes, Ruaridh; Makhija, Varun; Veyrinas, Kévin; Stolow, Albert; Lee, Jason W. L.; Burt, Michael; Brouard, Mark; Vallance, Claire; Wilkinson, Iain; Lausten, Rune; Hockett, Paul

    2017-07-01

    The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x, y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C2F3I photolysis are presented. The experiments utilized femtosecond VUV and UV (160.8 nm and 267 nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicate the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.

  4. Using UV-Vis spectroscopy for simultaneous geographical and varietal classification of tea infusions simulating a home-made tea cup.

    Science.gov (United States)

    Diniz, Paulo Henrique Gonçalves Dias; Barbosa, Mayara Ferreira; de Melo Milanez, Karla Danielle Tavares; Pistonesi, Marcelo Fabián; de Araújo, Mário César Ugulino

    2016-02-01

    In this work we proposed a method to verify the differentiating characteristics of simple tea infusions prepared in boiling water alone (simulating a home-made tea cup), which represents the final product as ingested by the consumers. For this purpose we used UV-Vis spectroscopy and variable selection through the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA) for simultaneous classification of the teas according to their variety and geographic origin. For comparison, KNN, CART, SIMCA, PLS-DA and PCA-LDA were also used. SPA-LDA and PCA-LDA provided significantly better results for tea classification of the five studied classes (Argentinean green tea; Brazilian green tea; Argentinean black tea; Brazilian black tea; and Sri Lankan black tea). The proposed methodology provides a simpler, faster and more affordable classification of simple tea infusions, and can be used as an alternative approach to traditional tea quality evaluation as made by skilful tasters, which is evidently partial and cannot assess geographic origins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Soret Effect Study on High-Pressure CO2-Water Solutions Using UV-Raman Spectroscopy and a Concentric-Tube Optical Cell

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; McGrail, B. Peter; Maupin, Gary D.

    2012-01-01

    Spatially resolved deep-UV Raman spectroscopy was applied to solutions of CO2 and H2O (or D2O), which were subject to a temperature gradient in a thermally regulated high-pressure concentric-tube Raman cell in an attempt to measure a Soret effect in the vicinity of the critical point of CO2. Although Raman spectra of solutions of CO2 dissolved in D2O at 10 MPa and temperatures near the critical point of CO2 had adequate signal-to-noise and spatial resolution to observe a Soret effect with a Soret coefficient with magnitude of |ST| > 0.03, no evidence for an effect of this size was obtained for applied temperature gradients up to 19oC. The presence of 1 M NaCl did not make a difference. In contrast, the concentration of CO2 dissolved in H2O was shown to vary significantly across the temperature gradient when excess CO2 was present, but the results could be explained simply by the variation in CO2 solubility over the temperature range and not to kinetic factors. For mixtures of D2O dissolved in scCO2 at 10 MPa and temperatures close to the critical point of CO2, the Raman peaks for H2O were too weak to measure with confidence even at the limit of D2O solubility.

  6. Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR spectroscopies.

    Science.gov (United States)

    Pérez León, C; Kador, L; Peng, B; Thelakkat, M

    2006-05-04

    In the present work the adsorption of a new dye, [Ru(dcbpyH(2))(2)(bpy-TPA(2))](PF(6))(2), and the well-known (Bu(4)N)(2)[Ru(dcbpyH)(2)(NCS)(2)] complex on mesoporous anatase films were investigated to clarify the role of the carboxylate groups in the anchoring process of the dyes on the semiconductor surface. For this purpose UV-vis, Raman, resonance Raman, and ATR-FTIR spectroscopies have been used. The results of the Raman experiments at different excitation wavelengths demonstrate that photoinduced charge-transfer processes take place efficiently between the adsorbate and the substrate. Moreover, this is the first time that the Raman spectrum of a Ru-bpy dye (in this case, the dye N719) adsorbed on TiO(2) has been obtained without the resonance condition, only by means of SERS enhancement. The coordination of both complexes on the TiO(2) paste films is proposed to occur via bidentate or bridging linkage.

  7. Study on the binding interaction of chromium(VI) with humic acid using UV-vis, fluorescence spectroscopy and molecular modeling.

    Science.gov (United States)

    Gu, Yun-Lan; Yin, Ming-Xing; Zhang, Hong-Mei; Wang, Yan-Qing; Shi, Jing-Hua

    2015-02-05

    In this report, the binding interaction of chromium(VI), as Cr2O7(2-), with humic acid was studied by using UV-visible absorption, fluorescence spectroscopy, and molecular modeling method. The fluorescence spectral data indicated that the binding interaction existed between Cr2O7(2-) and humic acid and the order of magnitude of binding constants were 10(3). The rise in temperature caused a decrease in the values of the binding constant of humic acid with Cr2O7(2-). Thermodynamic analysis presented that multi-intermolecular forces including hydrogen bonding, hydrophobic, and electrostatic forces were involved in the binding process at pH 6.5. The spectral data also indicated that Cr2O7(2-) affected the aromatic ring structures in humic acid. Furthermore, the molecular modeling analysis indicated that a lot of reactive groups and binding cavities in HA played a key role in its binding with Cr2O7(2-). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  9. Characterization of single airborne particle extinction using the tunable optical trap-cavity ringdown spectroscopy (OT-CRDS) in the UV.

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Wang, Chuji

    2017-03-20

    We integrated a rigid optical trap into a tunable pulsed cavity ringdown spectroscopy (OT-CRDS) system to characterize the extinction of single airborne particles in the UV spectral region (306-315 nm). Single solid particles from a multi-walled carbon nanotube (MWCNT), Bermuda grass smut spore, carbon microsphere, and blackened polyethylene microsphere were trapped in air based on the photophoretic force. The improved OT-CRDS system was highly sensitive and able to resolve extinctions of single particles from different materials and sizes at a given wavelength. Further, we successfully manipulated the number of particles, e.g., 1, 2 or more particles, in the trap and measured their distinguishable extinctions using the OT-CRDS. We also show that the particle size and extinction have a good linear correlation from the measurements of 24 single MWCNT particles. Material- and wavelength-dependent extinctions of the four types of airborne particles were also characterized. Results reveal that single airborne particles regardless of their differences in material and size, due to their heterogeneous morphology, have individual-particle dependent extinctions and that dependence can be resolved and characterized using the OT-CRDS technique.

  10. Characteristic Fingerprint Based on Low Polar Constituents for Discrimination of Wolfiporia extensa according to Geographical Origin Using UV Spectroscopy and Chemometrics Methods

    Science.gov (United States)

    Li, Yan; Zhao, Yanli; Li, Zhimin; Li, Tao

    2014-01-01

    The fungus species Wolfiporia extensa has a long history of medicinal usage and has also been commercially used to formulate nutraceuticals and functional foods in certain Asian countries. In the present study, a practical and promising method has been developed to discriminate the dried sclerotium of W. extensa collected from different geographical sites based on UV spectroscopy together with chemometrics methods. Characteristic fingerprint of low polar constituents of sample extracts that originated from chloroform has been obtained in the interval 250–400 nm. Chemometric pattern recognition methods such as partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were applied to enhance the authenticity of discrimination of the specimens. The results showed that W. extensa samples were well classified according to their geographical origins. The proposed method can fully utilize diversified fingerprint characteristics of sclerotium of W. extensa and requires low-cost equipment and short-time analysis in comparison with other techniques. Meanwhile, this simple and efficient method may serve as a basis for the authentication of other medicinal fungi. PMID:25544933

  11. Characterisation of an Aromatic Plant-based Formula using UV-Vis Spectroscopy, LC–ESI(+QTOF-MS and HPLC-DAD Analysis

    Directory of Open Access Journals (Sweden)

    Florina Bunghez

    2013-11-01

    Full Text Available Abstract. It is known for a long time that seasoning/condimentary herbs have antioxidant activity and antibacterial properties, being good natural alternatives for disease prevention. The different efficiency of these plants is assigned to their bioactive molecules, stability and bioavailability. In the present study seven aromatic herbs (basil, thyme, oregano, rosemary, clove, cinnamon and sage were investigated individually. A new product was developed using basil, thyme, oregano, rosemary, clove, cinnamon and sage, according to a default recipe. The characterization of each plant aimed to identify the specific “fingerprint” by its main bioactive molecules and the “traceability” of these molecules in the new product, made by mixing the selected plants according to a default recipe. In order to determine the main bioactive compounds of the individual plants composition, in comparison with the new plant-based (EPC formula, high throughput techniques like UV-Vis spectroscopy and LC-QTOF-MS  spectrometry were used. The most important bioactive compounds determined in the studied herbs, which may exert antioxidant activity and antibacterial properties, were phenolic compounds (phenolic acids, flavonoids, quinones, clorophylls as well some polar terpenoids. The fingerprints are providing comprehensive and accurate information about the compounds that may exert antimicrobial properties. In order to assure the biological effects and the bioavailability of the polyphenols and the secondary metabolites we have to consider the antagonistic and synergistic effect that the metabolites can exert on each other.

  12. Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube.

    Science.gov (United States)

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2016-01-11

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) with a ps-pulsed UV laser for sensitive and rapid gaseous species time-history measurements in a transient environment (in this study, a shock tube). The broadband nature of the ps pulses enabled instantaneous coupling of the laser beam into roughly a thousand cavity modes, which grants excellent immunity to laser-cavity coupling noise in environments with heavy vibrations, even with an on-axis alignment. In this proof-of-concept experiment, we demonstrated an absorption gain of 49, which improved the minimum detectable absorbance by ~20 compared to the conventional single-pass strategy at similar experimental conditions. For absorption measurements behind reflected shock waves, an effective time-resolution of ~2 μs was achieved, which enabled time-resolved observations of transient phenomena, such as the vibrational relaxation of O(2) demonstrated here. The substantial improvement in detection sensitivity, together with microsecond measurement resolution implies excellent potential for studies of transient physical and chemical processes in nonequilibrium situations, particularly via measurements of weak absorptions of trace species in dilute reactive systems.

  13. Pharmaceutical crystallography: is there a devil in the details?

    DEFF Research Database (Denmark)

    Bond, A. D.

    2012-01-01

    Modern instruments for small-molecule crystallography continue to become more sophisticated and more automated. This technical progress provides a basis for frontier research in chemical and pharmaceutical crystallography, but it also encourages analytical crystallographers to become more...... are presented for pharmaceutical compounds, and the potential importance of the "details" in pharmaceutical crystallography is discussed....

  14. Status and prospects of macromolecular crystallography

    Indian Academy of Sciences (India)

    tures of biological macromolecules by X-ray dif- fraction. However, no method was available for the estimation of phases of reflections from protein. Keywords. X-rays; crystallography; biological macromolecules; three-dimensional structure; structural biology; perspec- tives; trends ... This has still eluded systematic.

  15. Peanut lectin crystallography and macromolecular structural studies ...

    Indian Academy of Sciences (India)

    2007-08-06

    Aug 6, 2007 ... Home; Journals; Journal of Biosciences; Volume 32; Issue 6. Peanut lectin crystallography and macromolecular structural studies in India. M Vijayan. Perspectives Volume 32 Issue 6 September 2007 pp 1059-1066. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Special issue on Chemical Crystallography Editorial

    Indian Academy of Sciences (India)

    such as penicillin, vitamin B12 and insulin. One of the major objectives of the UNESCO in the current year has been to popularize–with the help of IUCr–the subject and create awareness of how crystallography is pivotal to the advancement of science. It is indeed appreciable that the Indian Academy of Sciences, Bangalore ...

  17. High-throughput crystallography for structural genomics.

    Science.gov (United States)

    Joachimiak, Andrzej

    2009-10-01

    Protein X-ray crystallography recently celebrated its 50th anniversary. The structures of myoglobin and hemoglobin determined by Kendrew and Perutz provided the first glimpses into the complex protein architecture and chemistry. Since then, the field of structural molecular biology has experienced extraordinary progress and now more than 55000 protein structures have been deposited into the Protein Data Bank. In the past decade many advances in macromolecular crystallography have been driven by world-wide structural genomics efforts. This was made possible because of third-generation synchrotron sources, structure phasing approaches using anomalous signal, and cryo-crystallography. Complementary progress in molecular biology, proteomics, hardware and software for crystallographic data collection, structure determination and refinement, computer science, databases, robotics and automation improved and accelerated many processes. These advancements provide the robust foundation for structural molecular biology and assure strong contribution to science in the future. In this report we focus mainly on reviewing structural genomics high-throughput X-ray crystallography technologies and their impact.

  18. Chemical Crystallography: From Inception to Maturity

    Indian Academy of Sciences (India)

    The use of single crystal X-ray diffraction to determine the structure of a chemical compound has been historically clas- sified as 'Chemical Crystallography'. The methodologies, the accuracy in experiments coupled with the modern computer gadgets and advances in technology makes this branch of science an unequivocal ...

  19. Optimizing the Recognition of Surface Crystallography

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mika, Filip; Müllerová, Ilona

    2015-01-01

    Roč. 21, S4 (2015), s. 124-129 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : surface crystallography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  20. Automated data collection for macromolecular crystallography.

    Science.gov (United States)

    Winter, Graeme; McAuley, Katherine E

    2011-09-01

    An overview, together with some practical advice, is presented of the current status of the automation of macromolecular crystallography (MX) data collection, with a focus on MX beamlines at Diamond Light Source, UK. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. High-throughput Crystallography for Structural Genomics

    Science.gov (United States)

    Joachimiak, Andrzej

    2009-01-01

    Protein X-ray crystallography recently celebrated its 50th anniversary. The structures of myoglobin and hemoglobin determined by Kendrew and Perutz provided the first glimpses into the complex protein architecture and chemistry. Since then, the field of structural molecular biology has experienced extraordinary progress and now over 53,000 proteins structures have been deposited into the Protein Data Bank. In the past decade many advances in macromolecular crystallography have been driven by world-wide structural genomics efforts. This was made possible because of third-generation synchrotron sources, structure phasing approaches using anomalous signal and cryo-crystallography. Complementary progress in molecular biology, proteomics, hardware and software for crystallographic data collection, structure determination and refinement, computer science, databases, robotics and automation improved and accelerated many processes. These advancements provide the robust foundation for structural molecular biology and assure strong contribution to science in the future. In this report we focus mainly on reviewing structural genomics high-throughput X-ray crystallography technologies and their impact. PMID:19765976

  2. Rate-limiting steps in bromide-free TEMPO-mediated oxidation of cellulose-Quantification of the N-Oxoammonium cation by iodometric titration and UV-vis spectroscopy

    OpenAIRE

    Pääkkönen, Timo; Bertinetto, Carlo; Pönni, Raili; Tummala, Gopi Krishna; Nuopponen, Markus; Vuorinen, Tapani

    2015-01-01

    A iodometric titration method was introduced to study the conversion of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) to the corresponding N-oxoammonium cation (TEMPO+) by hypochlorite in the absence and presence of bromide ion. The validity of the titration was verified with UV-vis spectroscopy combined with a multivariate curve resolution (MCR) algorithm to calculate the concentrations and spectral signatures of the pure components (i.e., TEMPO, Cl(+1) and TEMPO+). The formation of the oxoam...

  3. Present and future of membrane protein structure determination by electron crystallography

    Science.gov (United States)

    Ubarretxena-Belandia, Iban; Stokes, David L.

    2011-01-01

    Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This review describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins. PMID:21115172

  4. [Raman spectroscopy applied to analytical quality control of injectable drugs: analytical evaluation and comparative economic versus HPLC and UV / visible-FTIR].

    Science.gov (United States)

    Bourget, P; Amin, A; Vidal, F; Merlette, C; Troude, P; Corriol, O

    2013-09-01

    In France, central IV admixture of chemotherapy (CT) treatments at the hospital is now required by law. We have previously shown that the shaping of Therapeutic Objects (TOs) could profit from an Analytical Quality Assurance (AQA), closely linked to the batch release, for the three key parameters: identity, purity, and initial concentration of the compound of interest. In the course of recent and diversified works, we showed the technical superiority of non-intrusive Raman Spectroscopy (RS) vs. any other analytical option and, especially for both HPLC and vibrational method using a UV/visible-FTIR coupling. An interconnected qualitative and economic assessment strongly helps to enrich these relevant works. The study compares in operational situation, the performance of three analytical methods used for the AQC of TOs. We used: a) a set of evaluation criteria, b) the depreciation tables of the machinery, c) the cost of disposables, d) the weight of equipment and technical installations, e) the basic accounting unit (unit of work) and its composite costs (Euros), which vary according to the technical options, the weight of both human resources and disposables; finally, different combinations are described. So, the unit of work can take 12 different values between 1 and 5.5 Euros, and we provide various recommendations. A qualitative evaluation grid constantly places the SR technology as superior or equal to the 2 other techniques currently available. Our results demonstrated: a) the major interest of the non-intrusive AQC performed by RS, especially when it is not possible to analyze a TO with existing methods e.g. elastomeric portable pumps, and b) the high potential for this technique to be a strong contributor to the security of the medication circuit, and to fight the iatrogenic effects of drugs especially in the hospital. It also contributes to the protection of all actors in healthcare and of their working environment.

  5. Resolution of structural heterogeneity in dynamic crystallography.

    Science.gov (United States)

    Ren, Zhong; Chan, Peter W Y; Moffat, Keith; Pai, Emil F; Royer, William E; Šrajer, Vukica; Yang, Xiaojing

    2013-06-01

    Dynamic behavior of proteins is critical to their function. X-ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamic `structural changes' are often indirectly inferred from `structural differences' by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods.

  6. Lipidic phase membrane protein serial femtosecond crystallography.

    Science.gov (United States)

    Johansson, Linda C; Arnlund, David; White, Thomas A; Katona, Gergely; Deponte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Shoeman, Robert L; Lomb, Lukas; Malmerberg, Erik; Davidsson, Jan; Nass, Karol; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Saša; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A; Maia, Filipe R N C; Marchesini, Stefano; Martin, Andrew V; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond G; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wahlgren, Weixiao Y; Wang, Xiaoyu; Weidenspointner, Georg; Wunderer, Cornelia; Fromme, Petra; Chapman, Henry N; Spence, John C H; Neutze, Richard

    2012-01-29

    X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.

  7. On R factors for dynamic structure crystallography

    DEFF Research Database (Denmark)

    Coppens, Philip; Kaminski, Radoslaw; Schmøkel, Mette Stokkebro

    2010-01-01

    In studies of dynamic changes in crystals in which induced metastable species may have lifetimes of microseconds or less, refinements are most sensitive if based on the changes induced in the measured intensities. Agreement factors appropriate for such refinements, based on the ratios of the inte...... of the intensities before and after the external perturbation is applied, are discussed and compared with R factors commonly applied in static structure crystallography....

  8. Electron crystallography and non-linear optics.

    Science.gov (United States)

    Voigt-Martin, I G

    1999-08-01

    Electron crystallography can be used to obtain specific information about molecular parameters such as the polarisability, dipole moment, and hyperpolarisability. In this, work we show how a combination of quantum mechanics and simulation methods can be used to solve several unknown organic structures and how the calculated molecular parameters can be used to predict the corresponding physical properties of the crystals. Copyright 1999 Wiley-Liss, Inc.

  9. Graphical tools for macromolecular crystallography in PHENIX.

    Science.gov (United States)

    Echols, Nathaniel; Grosse-Kunstleve, Ralf W; Afonine, Pavel V; Bunkóczi, Gábor; Chen, Vincent B; Headd, Jeffrey J; McCoy, Airlie J; Moriarty, Nigel W; Read, Randy J; Richardson, David C; Richardson, Jane S; Terwilliger, Thomas C; Adams, Paul D

    2012-06-01

    A new Python-based graphical user interface for the PHENIX suite of crystallography software is described. This interface unifies the command-line programs and their graphical displays, simplifying the development of new interfaces and avoiding duplication of function. With careful design, graphical interfaces can be displayed automatically, instead of being manually constructed. The resulting package is easily maintained and extended as new programs are added or modified.

  10. The legacy of women to crystallography

    Directory of Open Access Journals (Sweden)

    Sanz-Aparicio, Julia

    2015-04-01

    Full Text Available It is common to hear that X-ray crystallography is particularly welcoming to women. This assertion is perhaps based in the crucial contribution that a few brilliant women made to crystallography in the very early days. Therefore, this chapter will be mainly dedicated to honour the exceptional legacy of Kathleen Lonsdale, Dorothy Hodgkin, Rosalind Franklin and Isabella Karle, who were pioneers in a time when there was a strong discrimination against women in all aspects of life. Other prominent women, like Caroline MacGillavry, Olga Kennard, Eleanor Dodson, Louise Johnson, Jenny Glusker, Jane Richardson, among others, contributed to disseminate crystallography worldwide, providing the fundamental tools that resulted in the modern crystallography. The outstanding results that crystallography have provided to life sciences in the last years is well represented by the Nobel Prize awarded to Ada Yonath in 2009 for its contribution to the understanding of ribosome, the largest structure solved up-to-now.Existe la impresión de que la cristalografía ha sido una ciencia donde las mujeres han estado más representadas que en otras disciplinas. Esto se debe a la contribución esencial de unas cuantas científicas excepcionales en los inicios de la nueva ciencia. Por tanto, este capítulo pretende reconocer especialmente el legado de Kathleen Lonsdale, Dorothy Hodgkin, Rosalind Franklin e Isabella Karle, que fueron verdaderas pioneras en tiempos en que las mujeres tenían que enfrentarse a una fuerte discriminación social. Otras científicas destacadas, como Caroline MacGillavry, Olga Kennard, Eleanor Dodson, Louise Johnson, Jenny Glusker o Jane Richardson, contribuyeron al desarrollo de los procedimientos fundamentales que configuraron la cristalografía moderna. Los espectaculares resultados que la cristalografía ha aportado a las ciencias de la vida están bien representados en el Premio Nobel concedido a Ada Yonath en 2009 por su contribución al

  11. Effect of Molecular Guest Binding on the d-d Transitions of Ni(2+) of CPO-27-Ni: A Combined UV-Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study.

    Science.gov (United States)

    Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo

    2017-10-04

    We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H2O, CO, H2S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni(2+), which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni(2+) sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

  12. Towards an integrative structural biology approach: combining Cryo-TEM, X-ray crystallography, and NMR.

    Science.gov (United States)

    Lengyel, Jeffrey; Hnath, Eric; Storms, Marc; Wohlfarth, Thomas

    2014-09-01

    Cryo-transmission electron microscopy (Cryo-TEM) and particularly single particle analysis is rapidly becoming the premier method for determining the three-dimensional structure of protein complexes, and viruses. In the last several years there have been dramatic technological improvements in Cryo-TEM, such as advancements in automation and use of improved detectors, as well as improved image processing techniques. While Cryo-TEM was once thought of as a low resolution structural technique, the method is currently capable of generating nearly atomic resolution structures on a routine basis. Moreover, the combination of Cryo-TEM and other methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and molecular dynamics modeling are allowing researchers to address scientific questions previously thought intractable. Future technological developments are widely believed to further enhance the method and it is not inconceivable that Cryo-TEM could become as routine as X-ray crystallography for protein structure determination.

  13. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  14. AquaScan: A miniaturized UV/VIS/IR hyperspectral imager for autonomous airborne and underwater imaging spectroscopy of coastal & oceanic environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AquaScan, a miniaturized UV/VIS/NIR hyperspectral imager will be built for deployment on a UAV or small manned aircraft for ocean coastal remote sensing...

  15. H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy

    OpenAIRE

    Philipp Ehrenreich; Susanne T. Birkhold; Eugen Zimmermann; Hao Hu; Kwang-Dae Kim; Jonas Weickert; Thomas Pfadler; Lukas Schmidt-Mende

    2016-01-01

    Polymer morphology and aggregation play an essential role for efficient charge carrier transport and charge separation in polymer-based electronic devices. It is a common method to apply the H-aggregate model to UV/Vis or photoluminescence spectra in order to analyze polymer aggregation. In this work we present strategies to obtain reliable and conclusive information on polymer aggregation and morphology based on the application of an H-aggregate analysis on UV/Vis and photoluminescence spect...

  16. Synthesis and characterization of Ni0.4Co2.6O4 spinel mixed oxides powder: study of its surface properties by voltammetry, x-ray, ftir, UV-VIS-NIR spectroscopy and scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Makhtar Guene

    2005-12-01

    Full Text Available Electrochemical studies were carried out on Ni0.4Co2.6O4 powders prepared by sol-gel via propionic acid method using cyclic and steady state voltammetries. The oxide surface was characterized by scanning electron microscopy (SEM, X-ray diffraction, UV-vis-NIR and FTIR spectroscopies. The results showed that the formation of homogeneous oxide with a single spinel phase occurred at 350°C. The surface redox couple NiOOH/Ni(OH2 is confined on the surface material l.

  17. X-Ray Crystallography: One Century of Nobel Prizes

    Science.gov (United States)

    Galli, Simona

    2014-01-01

    In 2012, the United Nations General Assembly declared 2014 the International Year of Crystallography. Throughout the year 2014 and beyond, all the crystallographic associations and societies active all over the world are organizing events to attract the wider public toward crystallography and the numerous topics to which it is deeply interlinked.…

  18. Identification of Intermediates in Zeolite-Catalyzed Reactions Using In-situ UV/Vis Micro- Spectroscopy and a Complementary Set of Molecular Simulations

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Qian, Q.; De Meyer, T.; De Wispelaere, K.; De Sterck, B.; Weckhuysen, B.M.; Waroquier, M.; Van Speybroeck, V.

    2013-01-01

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-toolefins (MTO) process. In situ UV/Vis microscopy

  19. Operando UV-Vis spectroscopy of a catalytic solid in a pilos-scale reactor: deactivation of a CrOx/Al2O3 propane dehydrogenation catalyst

    NARCIS (Netherlands)

    Sattler, J.J.H.B.; Gonzalez-Jimenez, I.D.; Mens, A.J.M.; Arias, M.J.; Visser, T.; Weckhuysen, B.M.

    2013-01-01

    A novel operando UV-Vis spectroscopic set-up has been constructed and tested for the investigation of catalyst bodies loaded in a pilot-scale reactor under relevant reaction conditions. Spatiotemporal insight into the formation and burning of coke deposits on an industrial CrOx/Al2O3 catalyst during

  20. Synthesis of a novel camphorquinone derivative having acylphosphine oxide group, characterization by UV-VIS spectroscopy and evaluation of photopolymerization performance

    National Research Council Canada - National Science Library

    IKEMURA, Kunio; ICHIZAWA, Kensuke; JOGETSU, Yoshiyuki; ENDO, Takeshi

    2010-01-01

    .... Newly synthesized CQ-APO showed as a pale yellow crystal (mp 365K). UV-VIS spectrum of CQ-APO showed two maximum absorption wavelengths (λmax) [372 nm (from APO group) and 475 nm (from CQ moiety)] within 350-500 nm...

  1. UV-Vis spectroscopy and density functional study of solvent effect on the charge transfer band of the n → σ* complexes of 2-Methylpyridine and 2-Chloropyridine with molecular iodine

    Science.gov (United States)

    Gogoi, Pallavi; Mohan, Uttam; Borpuzari, Manash Protim; Boruah, Abhijit; Baruah, Surjya Kumar

    2017-03-01

    UV-Vis spectroscopy has established that Pyridine substitutes form n→σ* charge transfer (CT) complexes with molecular Iodine. This study is a combined approach of purely experimental UV-Vis spectroscopy, Multiple linear regression theory and Computational chemistry to analyze the effect of solvent upon the charge transfer band of 2-Methylpyridine-I2 and 2-Chloropyridine-I2 complexes. Regression analysis verifies the dependence of the CT band upon different solvent parameters. Dielectric constant and refractive index are considered among the bulk solvent parameters and Hansen, Kamlet and Catalan parameters are taken into consideration at the molecular level. Density Functional Theory results explain well the blue shift of the CT bands in polar medium as an outcome of stronger donor acceptor interaction. A logarithmic relation between the bond length of the bridging atoms of the donor and the acceptor with the dielectric constant of the medium is established. Tauc plot and TDDFT study indicates a non-vertical electronic transition in the complexes. Buckingham and Lippert Mataga equations are applied to check the Polarizability effect on the CT band.

  2. Structure determination by X-ray crystallography

    CERN Document Server

    Ladd, M F C

    1995-01-01

    X-ray crystallography provides us with the most accurate picture we can get of atomic and molecular structures in crystals. It provides a hard bedrock of structural results in chemistry and in mineralogy. In biology, where the structures are not fully crystalline, it can still provide valuable results and, indeed, the impact here has been revolutionary. It is still an immense field for young workers, and no doubt will provide yet more striking develop­ ments of a major character. It does, however, require a wide range of intellectual application, and a considerable ability in many fields. This book will provide much help. It is a very straightforward and thorough guide to every aspect of the subject. The authors are experienced both as research workers themselves and as teachers of standing, and this is shown in their clarity of exposition. There are plenty of iliustrations and worked examples to aid the student to obtain a real grasp of the subject.

  3. Busting out of crystallography's Sisyphean prison

    Science.gov (United States)

    Cranswick, L. M. D.

    2008-01-01

    The history of crystallographic computing and use of crystallographic software is one which traces the escape from the drudgery of manual human calculations to a world where the user delegates most of the travail to electronic computers. This review traces the development of small-molecule single-crystal and powder diffraction hardware, starting with the use of Hollerith tabulators of the late 1930's through to today's use of high-performance personal computers. It also emphasizes that the main challenge for current and future crystallography computing is not that of hardware development, or even specific scientific challenges, but rather in maintaining a critical mass of human expertise with which these computational challenges can be undertaken.

  4. CIF: the computer language of crystallography.

    Science.gov (United States)

    Brown, I David; McMahon, Brian

    2002-06-01

    The Crystallographic Information File (CIF) was adopted in 1990 by the International Union of Crystallography as a file structure for the archiving and distribution of crystallographic information. The CIF standard is now well established and is in regular use for reporting crystal structure determinations to Acta Crystallographica and other journals. The structure of CIF is flexible and extensible and is compatible with other evolving standards. It is well suited to relational and object-oriented models, and is being adopted by the crystallographic databases. This paper reviews the development of CIF and describes its salient features. Future extension of the standard to include implementation of methods will allow CIF to exploit the potential of advanced information-handling software.

  5. Viscous hydrophilic injection matrices for serial crystallography.

    Science.gov (United States)

    Kovácsová, Gabriela; Grünbein, Marie Luise; Kloos, Marco; Barends, Thomas R M; Schlesinger, Ramona; Heberle, Joachim; Kabsch, Wolfgang; Shoeman, Robert L; Doak, R Bruce; Schlichting, Ilme

    2017-07-01

    Serial (femtosecond) crystallography at synchrotron and X-ray free-electron laser (XFEL) sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates - gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP) as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydro-gels as viscous injection matrices is described, namely sodium carb-oxy-methyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new matrices afford

  6. Viscous hydrophilic injection matrices for serial crystallography

    Directory of Open Access Journals (Sweden)

    Gabriela Kovácsová

    2017-07-01

    Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new

  7. Use of High-Frequency, In-Stream, Ultraviolet-Visual (UV-vis) Spectroscopy to Characterize Organic Carbon and Nitrogen Species in Watershed Runoff

    Science.gov (United States)

    Winters, C. G.; Rowland, R. D.; Inamdar, S. P.

    2014-12-01

    Natural or anthropogenic episodic events such as snowmelt, floods, fire, insect-defoliation, pollutant spills, etc. can result in sudden and unexpected changes in runoff water quality from watersheds. Depending on the magnitude and intensity of the change, such events which are also occasionally referred to as "hot moments", can have significant ecological and environmental consequences. Measuring and recording such rapid and unexpected changes in runoff quality has always been a logistical challenge. However, the advent of in-situ, UV- and fluorescence-based spectrometers that can continuously measure water quality changes at high-frequency (minutes to hours) show considerable promise. We implemented a UV-vis spectrometer (Spectrolyser, S::CAN Inc.) to characterize the stream water quality at every 30 minutes from a small (12 ha) forested watershed located in the Piedmont region of Maryland. The spectrometer recorded the UV-Vis spectrum (200-750 nm), turbidity (NTU), nitrate-N (mgN/L), and total and dissolved organic carbon (TOC and DOC, respectively; mgC/L). To evaluate the accuracy of the sensor values, water sampling was also performed simultaneously using automated ISCO samplers for multiple storms since November 2013. Water samples have been analyzed for suspended solids, particulate and dissolved forms of organic carbon (OC), and nitrate-N. In addition, water samples were also analyzed on laboratory spectrometers to develop a variety of UV and fluorescence metrics that characterize the lability and recalcitrance of DOC. Key questions that we address here are: How reliable and accurate are the spectrometer values for dissolved and particulate species of OC and nitrate-N? How does the magnitude of the storms and the amount of suspended sediment influence the accuracy of sensor readings? Can the sensor UV-vis data provide insights into DOC character/composition similar to those derived from lab-based UV and fluorescence metrics? Addressing these questions is

  8. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential

    Directory of Open Access Journals (Sweden)

    Matthew P. Blakeley

    2015-07-01

    Full Text Available The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden and Sirius (Brazil under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å, for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59% were released since 2010. Sub-mm3 crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H+ remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place

  9. Beamline AR-NW12A: high-throughput beamline for macromolecular crystallography at the Photon Factory.

    Science.gov (United States)

    Chavas, L M G; Matsugaki, N; Yamada, Y; Hiraki, M; Igarashi, N; Suzuki, M; Wakatsuki, S

    2012-05-01

    AR-NW12A is an in-vacuum undulator beamline optimized for high-throughput macromolecular crystallography experiments as one of the five macromolecular crystallography (MX) beamlines at the Photon Factory. This report provides details of the beamline design, covering its optical specifications, hardware set-up, control software, and the latest developments for MX experiments. The experimental environment presents state-of-the-art instrumentation for high-throughput projects with a high-precision goniometer with an adaptable goniometer head, and a UV-light sample visualization system. Combined with an efficient automounting robot modified from the SSRL SAM system, a remote control system enables fully automated and remote-access X-ray diffraction experiments.

  10. Celebrating macromolecular crystallography: A personal perspective

    Directory of Open Access Journals (Sweden)

    Abad-Zapatero, Celerino

    2015-04-01

    Full Text Available The twentieth century has seen an enormous advance in the knowledge of the atomic structures that surround us. The discovery of the first crystal structures of simple inorganic salts by the Braggs in 1914, using the diffraction of X-rays by crystals, provided the critical elements to unveil the atomic structure of matter. Subsequent developments in the field leading to macromolecular crystallography are presented with a personal perspective, related to the cultural milieu of Spain in the late 1950’s. The journey of discovery of the author, as he developed professionally, is interwoven with the expansion of macromolecular crystallography from the first proteins (myoglobin, hemoglobin to the ‘coming of age’ of the field in 1971 and the discoveries that followed, culminating in the determination of the structure of the ribosomes at the turn of the century. A perspective is presented exploring the future of the field and also a reflection about the future generations of Spanish scientists.El siglo XX ha sido testigo del increíble avance que ha experimentado el conocimiento de la estructura atómica de la materia que nos rodea. El descubrimiento de las primeras estructuras atómicas de sales inorgánicas por los Bragg en 1914, empleando difracción de rayos X con cristales, proporcionó los elementos clave para alcanzar tal conocimiento. Posteriores desarrollos en este campo, que condujeron a la cristalografía macromolecular, se presentan aquí desde una perspectiva personal, relacionada con el contexto cultural de la España de la década de los 50. La experiencia del descubrimiento científico, durante mi desarrollo profesional, se integra en el desarrollo de la cristalografía macromolecular, desde las primeras proteínas (míoglobina y hemoglobina, hasta su madurez en 1971 que, con los posteriores descubrimientos, culmina con la determinación del la estructura del ribosoma. Asimismo, se explora el futuro de esta disciplina y se

  11. Charging of Self-Doped Poly(Anilineboronic Acid) Films Studied by in Situ ESR/UV/Vis/NIR Spectroelectrochemistry and ex Situ FTIR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Moraes, I. R.; Kalbáč, Martin; Dmitrieva, E.; Dunsch, L.

    2011-01-01

    Roč. 12, č. 16 (2011), s. 2920-2924 ISSN 1439-4235 R&D Projects: GA ČR GC203/07/J067 Institutional research plan: CEZ:AV0Z40400503 Keywords : conducting polymers * films * FTIR spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 3.412, year: 2011

  12. Protein Crystallography from the Perspective of Technology Developments

    Science.gov (United States)

    Su, Xiao-Dong; Zhang, Heng; Terwilliger, Thomas C.; Liljas, Anders; Xiao, Junyu; Dong, Yuhui

    2015-01-01

    Early on, crystallography was a domain of mineralogy and mathematics and dealt mostly with symmetry properties and imaginary crystal lattices. This changed when Wilhelm Conrad Röntgen discovered X-rays in 1895, and in 1912 Max von Laue and his associates discovered X-ray irradiated salt crystals would produce diffraction patterns that could reveal the internal atomic periodicity of the crystals. In the same year the father-and-son team, Henry and Lawrence Bragg successfully solved the first crystal structure of sodium chloride and the era of modern crystallography began. Protein crystallography (PX) started some 20 years later with the pioneering work of British crystallographers. In the past 50-60 years, the achievements of modern crystallography and particularly those in protein crystallography have been due to breakthroughs in theoretical and technical advancements such as phasing and direct methods; to more powerful X-ray sources such as synchrotron radiation (SR); to more sensitive and efficient X-ray detectors; to ever faster computers and to improvements in software. The exponential development of protein crystallography has been accelerated by the invention and applications of recombinant DNA technology that can yield nearly any protein of interest in large amounts and with relative ease. Novel methods, informatics platforms, and technologies for automation and high-throughput have allowed the development of large-scale, high efficiency macromolecular crystallography efforts in the field of structural genomics (SG). Very recently, the X-ray free-electron laser (XFEL) sources and its applications in protein crystallography have shown great potential for revolutionizing the whole field again in the near future. PMID:25983389

  13. Crystallography, evolution, and the structure of viruses.

    Science.gov (United States)

    Rossmann, Michael G

    2012-03-16

    My undergraduate education in mathematics and physics was a good grounding for graduate studies in crystallographic studies of small organic molecules. As a postdoctoral fellow in Minnesota, I learned how to program an early electronic computer for crystallographic calculations. I then joined Max Perutz, excited to use my skills in the determination of the first protein structures. The results were even more fascinating than the development of techniques and provided inspiration for starting my own laboratory at Purdue University. My first studies on dehydrogenases established the conservation of nucleotide-binding structures. Having thus established myself as an independent scientist, I could start on my most cherished ambition of studying the structure of viruses. About a decade later, my laboratory had produced the structure of a small RNA plant virus and then, in another six years, the first structure of a human common cold virus. Many more virus structures followed, but soon it became essential to supplement crystallography with electron microscopy to investigate viral assembly, viral infection of cells, and neutralization of viruses by antibodies. A major guide in all these studies was the discovery of evolution at the molecular level. The conservation of three-dimensional structure has been a recurring theme, from my experiences with Max Perutz in the study of hemoglobin to the recognition of the conserved nucleotide-binding fold and to the recognition of the jelly roll fold in the capsid protein of a large variety of viruses.

  14. The isolation, analytical characterization by HPLC-UV and NMR spectroscopy, cytotoxic and antioxidant activities of baeomycesic acid from Thamnolia vermicularis var. subuliformis

    Directory of Open Access Journals (Sweden)

    Manojlović Nedeljko T.

    2011-01-01

    Full Text Available The aim of this work was the analytical characterization of the β-orcinol depside, baeomycesic acid in lichens extracts. The extract of Thamnolia vermicularis var. subuliformis was analyzed by the two different methods, namely HPLC-UV and 1H NMR analysis. The results showed that baeomycesic acid was the most abundant depside in the lichens. These results could be of use for rapid identification of this metabolite in other lichen species. Besides baeomycesic acid, three depsides and one monocyclic phenolic compound were isolated from the lichen extract on the chromatographic column. The structure of baeomycesic acid was confirmed by HPLC-UV and spectroscopic methods. In addition, antioxidant and cytotoxic activities of baeomycesic acid were determined. The result of the testing showed that baeomycesic acid exhibited a moderate radical scavenging activity (IC50 = 602.10 ± 0.54 μg/mL and good cytotoxic activity. This is the first report of detailed analytical characterization, isolation, as well as antioxidant and cytotoxic activities of baeomycesic acid from Thamnolia vermicularis. These results may be helpful in future industrial production of herbal medicines that include this important natural product.

  15. The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy.

    Science.gov (United States)

    Yang, Bing; Ren, Lingling; Li, Luming; Tao, Xingfu; Shi, Yunhua; Zheng, Yudong

    2013-11-07

    Current and future applications of single-wall carbon nanotubes (SWCNTs) depend on the dispersion of the SWCNTs in aqueous solution and their quantitation. The concentration of SWCNTs is an important indicator to evaluate the dispersibility of the surfactant-dispersed SWCNTs suspension. Due to the complexity of the SWCNTs suspension, it is necessary to determine both the total concentration of the dispersed SWCNTs and the concentration of individually dispersed SWCNTs in aqueous suspensions, and these were evaluated through the absorbance and the resonance ratios of UV-Vis-NIR absorption spectra, respectively. However, there is no specific and reliable position assigned for either calculation of the absorbance or the resonance ratio of the UV-Vis-NIR absorption spectrum. In this paper, different ranges of wavelengths for these two parameters were studied. From this, we concluded that the wavelength range between 300 nm and 600 nm should be the most suitable for evaluation of the total concentration of dispersed SWCNTs in the suspension; also, wavelengths below 800 nm should be most suitable for evaluation of the concentration of individually dispersed SWCNTs in the suspension. Moreover, these wavelength ranges are verified by accurate dilution experiments.

  16. Use of diffusion-ordered NMR spectroscopy and HPLC-UV-SPE-NMR to identify undeclared synthetic drugs in medicines illegally sold as phytotherapies.

    Science.gov (United States)

    Silva, Lorena M A; Filho, Elenilson G A; Thomasi, Sérgio S; Silva, Bianca F; Ferreira, Antonio G; Venâncio, Tiago

    2013-09-01

    The informal (and/or illegal) e-commerce of pharmaceutical formulations causes problems that governmental health agencies find hard to control, one of which concerns formulas sold as natural products. The purpose of this work was to explore the advantages and limitations of DOSY and HPLC-UV-SPE-NMR. These techniques were used to identify the components of a formula illegally marketed in Brazil as an herbal medicine possessing anti-inflammatory and analgesic properties. DOSY was able to detect the major components present at higher concentrations. Complete characterization was achieved using HPLC-UV-SPE-NMR, and 1D and 2D NMR analyses enabled the identification of known synthetic drugs. These were ranitidine and a mixture of orphenadrine citrate, piroxicam, and dexamethasone, which are co-formulated in a remedy called Rheumazim that is used to relieve severe pain, but it is prohibited in Brazil because of a lack of sufficient pharmacokinetic and pharmacodynamic information. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Analytical strategy for rapid identification and quantification of lubricant additives in mineral oil by high-performance thin-layer chromatography with UV absorption and fluorescence detection combined with mass spectrometry and infrared spectroscopy.

    Science.gov (United States)

    Dytkiewitz, Elisabeth; Morlock, Gertrud E

    2008-01-01

    A simple strategy for identification and quantification of lubricant additives in mineral oil was demonstrated by high-performance thin-layer chromatography with UV absorption and fluorescence detection using various coupling options, e.g., with attenuated total reflectance infrared (ATR-IR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and direct analysis in real-time mass spectrometry (DART-MS). For the additives zinc bis(O,O'-diisobutyl dithiophosphate), zinc bis(O,O'-didodecyl dithiophosphate), and Anglamol 99, 2 chromatographic systems were developed, i.e., a reversed-phase (RP) system on RP2 plates using an acetonitrile-based mobile phase and a normal-phase system on silica gel 60 plates using a toluene-based gradient. Densitometry was performed by absorption measurement at 220 nm. Repeatabilities (relative standard deviation, n = 6) between 2.2 and 5.5% and correlation coefficients >0.9973 were highly satisfactory for the analysis of these additives in the mineral oil. Primuline reagent was used to improve the detection limit of the lipophilic additives by a factor of 2, followed by fluorescence measurement at UV 366/>400 nm. For rapid identification by ATR-IR and FTIR, the respective additive zones on the plate were online extracted by an interface called ChromeXtract, concentrated, and directly applied for measurements in the wave number range of 4000-400 cm(-1). Identification was confirmed by online ESI-MS within a minute using ChromeXtract and by DART-MS within seconds.

  18. Electronic structure and spectroscopic properties of mononuclear manganese(III) Schiff base complexes: a systematic study on [Mn(acen)X] complexes by EPR, UV/vis, and MCD spectroscopy (X = Hal, NCS).

    Science.gov (United States)

    Westphal, Anne; Klinkebiel, Arne; Berends, Hans-Martin; Broda, Henning; Kurz, Philipp; Tuczek, Felix

    2013-03-04

    The manganese(III) Schiff base complexes [Mn(acen)X] (H2acen: N,N'-ethylenebis(acetylacetone)imine, X: I(-), Br(-), Cl(-), NCS(-)) are considered as model systems for a combined study of the electronic structure using vibrational, UV/vis absorption, parallel-mode electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy. By variation of the co-ligand X, the influence of the axial ligand field within a given square-pyramidal coordination geometry on the UV/vis, EPR, and MCD spectra of the title compounds is investigated. Between 25000 and 35000 cm(-1), the low-temperature MCD spectra are dominated by two very intense, oppositely signed pseudo-A terms, referred to as "double pseudo-A terms", which change their signs within the [Mn(acen)X] series dependent on the axial ligand X. Based on molecular orbital (MO) and symmetry considerations, these features are assigned to π(n.b.)(s, a) → yz, z(2) ligand-to-metal charge transfer transitions. The individual MCD signs are directly determined from the calculated MOs of the [Mn(acen)X] complexes. The observed sign change is explained by an inversion of symmetry among the π(n.b.)(s, a) donor orbitals which leads to an interchange of the positive and negative pseudo-A terms constituting the "double pseudo-A term".

  19. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    Science.gov (United States)

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dopant occupancy and UV-VIS-NIR spectroscopy of Mg (0, 4, 5 and 6 mol.%):Dy:LiNbO3 crystal

    Science.gov (United States)

    Dai, Li; Liu, Chunrui; Han, Xianbo; Wang, Luping; Tan, Chao; Yan, Zhehua; Xu, Yuheng

    2017-09-01

    A series of Dy:LiNbO3 crystals with x mol.% Mg2+ ions (x =0, 4, 5 and 6 mol.%) were grown by the Czochralski method. The effective segregation coefficient of Mg2+ and Dy3+ ions was studied by the inductively coupled plasma-atomic emission spectrometry (ICP-AES). UV-VIS-NIR absorption spectra and Judd-Ofelt theory were used to investigate their spectroscopic properties. J-O intensity parameters (Ω2 = 7.53 × 10-20cm2, Ω4 = 6.98 × 10-20cm2, and Ω6 = 3.09 × 10-20cm2) and larger spectroscopic quality factor (X = 2.26) for Mg:(6 mol.%)Dy:LiNbO3 crystals were obtained.

  1. Submersible UV-Vis spectroscopy for quantifying streamwater organic carbon dynamics: implementation and challenges before and after forest harvest in a headwater stream.

    Science.gov (United States)

    Jollymore, Ashlee; Johnson, Mark S; Hawthorne, Iain

    2012-01-01

    Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.

  2. Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream

    Directory of Open Access Journals (Sweden)

    Iain Hawthorne

    2012-03-01

    Full Text Available Organic material, including total and dissolved organic carbon (DOC, is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada. Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps. DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.

  3. Assessment of organic pollution of an industrial river by synchronous fluorescence and UV-vis spectroscopy: the Fensch River (NE France).

    Science.gov (United States)

    Assaad, Aziz; Pontvianne, Steve; Pons, Marie-Noëlle

    2017-05-01

    To rapidly monitor the surface water quality in terms of organic pollution of an industrial river undergoing restoration, optical methods (UV-visible spectrometry and fluorescence) were applied in parallel to classical physical-chemical analyses. UV-visible spectra were analyzed using the maximum of the second derivative at 225 nm (related to nitrates), specific absorbance at 254 nm (SUVA254), and the spectral slope between 275 and 295 nm (S 275-295) (related to the aromaticity and molecular weight of dissolved organic carbon). The synchronous fluorescence spectra (wavelength difference = 50 nm) exhibited a high variability in the composition of dissolved organic material between the upstream and downstream sections and also versus time. The principal components analysis of the entire set of synchronous fluorescence spectra helped to define three river sections with different pollution characteristics. Spectral decomposition was applied to the two most upstream sections: five fluorophores, classical in rivers impacted by domestic sewage and related to protein-like (λ ex = 280 nm) and humic-like fluorescence (M-type with λ ex ≈ 305-310 nm and C-type with λ ex ≥ 335 nm), were identified. The irregular shape of the synchronous fluorescence spectra in the most downstream section is likely due to organic pollutants of industrial origin; however, their variability and the complexity of the spectra did not allow the further elucidation of their nature.

  4. E-Science and Protein Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Laniece E. [Los Alamos National Laboratory; Powell, James E. Jr. [Los Alamos National Laboratory

    2012-08-09

    Dr. Zoe Fisher is the instrument scientist for the Protein Crystallography Station (PCS) at the Los Alamos Neutron Science Center's (LANSC) Lujan Neutron Scattering Center. She helps schedule researchers who intend to use the instrument to collect data, and provides in depth support for their activities. Users submit proposals for beam/instrument time via LANSCE proposal review system. In 2012, there were about 20 proposals submitted for this instrument. The instrument scientists review the proposals online. Accepted proposals are scheduled via an aggregate calendar which takes into account staff and resource availability, and the scientist is notified via email when their proposal is accepted and their requested time is scheduled. The entire PCS data acquisition and processing workflow is streamlined through various locally developed and commercial software packages. One 24 hour period produces one 200 Mb file, giving a total of maybe 2-5 Gb of data for the entire run. This data is then transferred to a hard disk in Dr. Fisher's office where she views the data with the customer and compresses the data to a text format which she sends them. This compression translates the data from an electron density to structural coordinates, which are the products submitted to a protein structure database. As noted above, the raw experimental data is stored onsite at LANSCE on workstations maintained by the instrument scientist. It is extraordinarily rare for anyone to request this data, although the remote possibility of an audit by a funding organization motivates its limited preservation. The raw data is not rigorously backed up, but only stored on a single hard drive. Interestingly, only about 50% of the experimental data actually ends up deposited and described in peer reviewed publications; the data that is not published tends to either not be viable structures or is calibration data. Dr. Fisher does protein crystallography research using both neutron and x

  5. Measurements of the Weak UV Absorptions of Isoprene and Acetone at 261–275 nm Using Cavity Ringdown Spectroscopy for Evaluation of a Potential Portable Ringdown Breath Analyzer

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2013-01-01

    The weak absorption spectra of isoprene and acetone have been measured in the wavelength range of 261–275 nm using cavity ringdown spectroscopy. The measured absorption cross-sections of isoprene in the wavelength region of 261–266 nm range from 3.65 × 10−21 cm2·molecule−1 at 261 nm to 1.42 × 10−21 cm2·molecule−1 at 266 nm; these numbers are in good agreement with the values reported in the literature. In the longer wavelength range of 270–275 nm, however, where attractive applications using a single wavelength compact diode laser operating at 274 nm is located, isoprene has been reported in the literature to have no absorption (too weak to be detected). Small absorption cross-sections of isoprene in this longer wavelength region are measured using cavity ringdown spectroscopy for the first time in this work, i.e., 6.20 × 10−23 cm2·molecule−1 at 275 nm. With the same experimental system, wavelength-dependent absorption cross-sections of acetone have also been measured. Theoretical detection limits of isoprene and comparisons of absorbance of isoprene, acetone, and healthy breath gas in this wavelength region are also discussed. PMID:23803787

  6. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    Science.gov (United States)

    Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.

    2014-01-01

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm−1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides. PMID:24929378

  7. Determination of Organic Partitioning Coefficients in Water-Supercritical CO2 Systems by Simultaneous in Situ UV and Near-Infrared Spectroscopies.

    Science.gov (United States)

    Bryce, David A; Shao, Hongbo; Cantrell, Kirk J; Thompson, Christopher J

    2016-06-07

    CO2 injected into depleted oil or gas reservoirs for long-term storage has the potential to mobilize organic compounds and distribute them between sediments and reservoir brines. Understanding this process is important when considering health and environmental risks, but little quantitative data currently exists on the partitioning of organics between supercritical CO2 and water. In this work, a high-pressure, in situ measurement capability was developed to assess the distribution of organics between CO2 and water at conditions relevant to deep underground storage of CO2. The apparatus consists of a titanium reactor with quartz windows, near-infrared and UV spectroscopic detectors, and switching valves that facilitate quantitative injection of organic reagents into the pressurized reactor. To demonstrate the utility of the system, partitioning coefficients were determined for benzene in water/supercritical CO2 over the range 35-65 °C and approximately 25-150 bar. Density changes in the CO2 phase with increasing pressure were shown to have dramatic impacts on benzene's partitioning behavior. Our partitioning coefficients were approximately 5-15 times lower than values previously determined by ex situ techniques that are prone to sampling losses. The in situ methodology reported here could be applied to quantify the distribution behavior of a wide range of organic compounds that may be present in geologic CO2 storage scenarios.

  8. New design of experiment combined with UV-Vis spectroscopy for extraction and estimation of polyphenols from Basil seeds, Red seeds, Sesame seeds and Ajwan seeds.

    Science.gov (United States)

    Mabood, Fazal; Gilani, Syed Abdullah; Hussain, Javid; Alshidani, Sulaiman; Alghawi, Said; Albroumi, Mohammed; Alameri, Saif; Jabeen, Farah; Hussain, Zahid; Al-Harrasi, Ahmed; Al Abri, Zahra K M; Farooq, Saima; Naureen, Zakira; Hamaed, Ahmad; Rasul Jan, M; Shah, Jasmin

    2017-05-05

    New experimental designs for the extraction of polyphenols from different seeds including Basil seed, Red seed, Sesame seeds and Ajwan seeds were investigated. Four variables the concentration and volume of methanol and NaOH solutions as well as the temperature and time of extraction were varied to see their effect on total phenol extraction. The temperature was varied in the range from 25°C to 200°C while the time in the range from 30 to 200minutes. Response surface methodology was used to optimize the extraction parameters. The estimation of polyphenols was measured through phenols reduction UV-Vis spectroscopic method of phosphotungstic-phosphomolybdic acids (Folin-Ciocalteu's reagent). Calibration curve was made by using tannic acid as a polyphenols standard in the concentration range from 0.1 to 10ppm. The regression line obtained shows the value of correlation coefficient i.e. R=0.930 and Root mean square error of cross validation (RMSEC) value of 0.0654. The Basil seeds were found containing the highest amount of total phenols i.e. 785.76mg/100g. While the Sesame seeds having the least amount i.e. 33.08mg/100g. The Ajwan seeds and the Red seeds are containing the medium amounts i.e. 379mg/100g and 220.54mg/100g respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthesis of a novel camphorquinone derivative having acylphosphine oxide group, characterization by UV-VIS spectroscopy and evaluation of photopolymerization performance.

    Science.gov (United States)

    Ikemura, Kunio; Ichizawa, Kensuke; Jogetsu, Yoshiyuki; Endo, Takeshi

    2010-03-01

    Camphorquinone (CQ) derivatives having acylphosphine oxide (APO) group are unknown. This study synthesized such a novel 7,7dimethyl-2,3-dioxobicyclo[2.2.1]heptane-1-carbonyldiphenyl phosphine oxide (DOHC-DPPO = CQ-APO). Ultraviolet and visible (UVVIS) spectra of CQ-APO, CQ, and APO were measured. Photopolymerization performances of experimental light-cured resins comprising these photoinitiators were investigated. Newly synthesized CQ-APO showed as a pale yellow crystal (mp 365K). UV-VIS spectrum of CQ-APO showed two maximum absorption wavelengths (lambda(max)) [372 nm (from APO group) and 475 nm (from CQ moiety)] within 350-500 nm. Unfilled resin containing CQ-APO exhibited good photopolymerization time (9.6 sec) and relaxed operation time (50 sec), as well as a pronouncedly lower b value (4.0) in the CIELab color specification system than that containing CQ (84.0). Resin composites containing CQ-APO, exhibited high flexural strength (114.3-133.8 MPa). It was concluded that CQ-APO possessed two lambda(max )peaks within 350-500 nm, and that CQ-APO-containing resins exhibited excellent color tone, good photopolymerization reactivity, relaxed operation time, and high mechanical strength.

  10. Characterizing natural dissolved organic matter in a freshly submerged catchment (Three Gorges Dam, China) using UV absorption, fluorescence spectroscopy and PARAFAC.

    Science.gov (United States)

    Chen, Hao; Zheng, Binghui

    2012-01-01

    This study applied parallel factor analysis (PARAFAC) to fluorescence excitation-emission matrices (EEMs) of natural water samples in a freshly submerged catchment in the upper reach of Three Gorges Dam (China). Two fluorescent natural dissolved organic matter (NDOM) components (humic/fulvic-like) were uncovered and were positively correlated with selected water quality parameters, i.e. dissolved oxygen concentration, dissolved organic carbon concentration, dissolved Kjeldahl nitrogen concentration and total (dissolved plus particulate) phosphorus concentration, respectively. To other water quality parameters (i.e. total nitrogen, particulate nitrogen, particulate phosphorus, dissolved phosphorus, dissolved nitrate, pH, and chemical oxygen demand), either the two components did not show any correlation or only one component showed correlation. In particular, particulate N correlated significantly to the fulvic acid, but not to the humic acid. Meanwhile, two conventional spectroscopic indices i.e. specific UV absorbance at 254 nm (SUVA254) and fluorescence index (FI) indicated that the whole NDOM in the waters were low in aromaticity and predominantly derived from aquatic microbial processes. Given together, it concludes that N and P did not function equally in the NDOM production, and the two components were not derived from the same microbial processes. The EEMs-PARAFAC has proven to be of potential as an effective tool in investigation of the interlink between NDOM and nutrients which may be utilized as an indicator of water environment.

  11. New design of experiment combined with UV-Vis spectroscopy for extraction and estimation of polyphenols from Basil seeds, Red seeds, Sesame seeds and Ajwan seeds

    Science.gov (United States)

    Mabood, Fazal; Gilani, Syed Abdullah; Hussain, Javid; Alshidani, Sulaiman; Alghawi, Said; Albroumi, Mohammed; Alameri, Saif; Jabeen, Farah; Hussain, Zahid; Al-Harrasi, Ahmed; Al Abri, Zahra K. M.; Farooq, Saima; Naureen, Zakira; Hamaed, Ahmad; Rasul Jan, M.; Shah, Jasmin

    2017-05-01

    New experimental designs for the extraction of polyphenols from different seeds including Basil seed, Red seed, Sesame seeds and Ajwan seeds were investigated. Four variables the concentration and volume of methanol and NaOH solutions as well as the temperature and time of extraction were varied to see their effect on total phenol extraction. The temperature was varied in the range from 25 °C to 200 °C while the time in the range from 30 to 200 minutes. Response surface methodology was used to optimize the extraction parameters. The estimation of polyphenols was measured through phenols reduction UV-Vis spectroscopic method of phosphotungstic-phosphomolybdic acids (Folin-Ciocalteu's reagent). Calibration curve was made by using tannic acid as a polyphenols standard in the concentration range from 0.1 to 10 ppm. The regression line obtained shows the value of correlation coefficient i.e. R = 0.930 and Root mean square error of cross validation (RMSEC) value of 0.0654. The Basil seeds were found containing the highest amount of total phenols i.e. 785.76 mg/100 g. While the Sesame seeds having the least amount i.e. 33.08 mg/100 g. The Ajwan seeds and the Red seeds are containing the medium amounts i.e. 379 mg/100 g and 220.54 mg/100 g respectively.

  12. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering.

    Directory of Open Access Journals (Sweden)

    María Gomariz

    Full Text Available We theoretically and experimentally analyze the formation of thick Purple Membrane (PM polyacrylamide (PA films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.

  13. Development of a multivariate calibration model for the determination of dry extract content in Brazilian commercial bee propolis extracts through UV-Vis spectroscopy

    Science.gov (United States)

    Barbeira, Paulo J. S.; Paganotti, Rosilene S. N.; Ássimos, Ariane A.

    2013-10-01

    This study had the objective of determining the content of dry extract of commercial alcoholic extracts of bee propolis through Partial Least Squares (PLS) multivariate calibration and electronic spectroscopy. The PLS model provided a good prediction of dry extract content in commercial alcoholic extracts of bee propolis in the range of 2.7 a 16.8% (m/v), presenting the advantage of being less laborious and faster than the traditional gravimetric methodology. The PLS model was optimized with outlier detection tests according to the ASTM E 1655-05. In this study it was possible to verify that a centrifugation stage is extremely important in order to avoid the presence of waxes, resulting in a more accurate model. Around 50% of the analyzed samples presented content of dry extract lower than the value established by Brazilian legislation, in most cases, the values found were different from the values claimed in the product's label.

  14. Direct spectral analysis of tea samples using 266 nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS.

    Science.gov (United States)

    Gondal, M A; Habibullah, Y B; Baig, Umair; Oloore, L E

    2016-05-15

    Tea is one of the most common and popular beverages spanning vast array of cultures all over the world. The main nutritional benefits of drinking tea are its anti-oxidant properties, presumed protection against certain cancers, inhibition of inflammation and possible protective effects against diabetes. Laser induced breakdown spectrometer (LIBS) was assembled as a powerful tool for qualitative and quantitative analysis of various brands of tea samples using 266 nm pulsed UV laser. LIBS spectra for six brands of tea samples in the wavelength range of 200-900 nm was recorded and all elements present in our tea samples were identified. The major toxic elements detected in several brands of tea samples were bromine, chromium and minerals like iron, calcium, potassium and silicon. The spectral assignment was conducted prior to the determination of concentration of each element. For quantitative analysis, calibration curves were drawn for each element using standard samples prepared in known concentration in the tea matrix. The plasma parameters (electron temperature and electron density) were also determined prior to the tea samples spectroscopic analysis. The concentration of iron, chromium, potassium, bromine, copper, silicon and calcium detected in all tea samples was between 378-656, 96-124, 1421-6785, 99-1476, 17-36, 2-11 and 92-130 mg L(-1) respectively. The limits of detection estimated for Fe, Cr, K, Br, Cu, Si, Ca in tea samples were 22, 12, 14, 11, 6, 1 and 12 mg L(-1) respectively. To further confirm the accuracy of our LIBS results, we determined the concentration of each element present in tea samples by using standard analytical technique like ICP-MS. The concentrations detected with our LIBS system are in excellent agreement with ICP-MS results. The system assembled for spectral analysis in this work could be highly applicable for testing the quality and purity of food and also pharmaceuticals products. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Temperature-dependent macromolecular X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Weik, Martin, E-mail: martin.weik@ibs.fr; Colletier, Jacques-Philippe [CEA, IBS, Laboratoire de Biophysique Moléculaire, F-38054 Grenoble (France); CNRS, UMR5075, F-38027 Grenoble (France); Université Joseph Fourier, F-38000 Grenoble (France)

    2010-04-01

    The dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography.

  16. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy.

    Science.gov (United States)

    Koeppe, Benjamin; Guo, Jing; Tolstoy, Peter M; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-05-22

    Heteroconjugated hydrogen-bonded anions A···H···X(-) of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-vis and (1)H/(13)C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the (13)C chemical shifts of the phenolic residues of A···H···X(-), referenced to the corresponding values of A···H···A(-), constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the (13)C chemical shifts. A combined analysis of UV-vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts toward the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarity and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this difference is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.

  17. ISPyB: an information management system for synchrotron macromolecular crystallography.

    Science.gov (United States)

    Delagenière, Solange; Brenchereau, Patrice; Launer, Ludovic; Ashton, Alun W; Leal, Ricardo; Veyrier, Stéphanie; Gabadinho, José; Gordon, Elspeth J; Jones, Samuel D; Levik, Karl Erik; McSweeney, Seán M; Monaco, Stéphanie; Nanao, Max; Spruce, Darren; Svensson, Olof; Walsh, Martin A; Leonard, Gordon A

    2011-11-15

    Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.

  18. Macromolecular crystallography beamline X25 at the NSLS.

    Science.gov (United States)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L; Dvorak, Joseph; Flaks, Leon; Lamarra, Steven; Myers, Stuart F; Orville, Allen M; Robinson, Howard H; Roessler, Christian G; Schneider, Dieter K; Shea-McCarthy, Grace; Skinner, John M; Skinner, Michael; Soares, Alexei S; Sweet, Robert M; Berman, Lonny E

    2014-05-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.

  19. Macromolecular crystallography beamline X25 at the NSLS

    Science.gov (United States)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community. PMID:24763654

  20. Microfluidics: From crystallization to serial time-resolved crystallography

    Directory of Open Access Journals (Sweden)

    Shuo Sui

    2017-05-01

    Full Text Available Capturing protein structural dynamics in real-time has tremendous potential in elucidating biological functions and providing information for structure-based drug design. While time-resolved structure determination has long been considered inaccessible for a vast majority of protein targets, serial methods for crystallography have remarkable potential in facilitating such analyses. Here, we review the impact of microfluidic technologies on protein crystal growth and X-ray diffraction analysis. In particular, we focus on applications of microfluidics for use in serial crystallography experiments for the time-resolved determination of protein structural dynamics.

  1. Development of a multivariate calibration model for the determination of dry extract content in Brazilian commercial bee propolis extracts through UV-Vis spectroscopy.

    Science.gov (United States)

    Barbeira, Paulo J S; Paganotti, Rosilene S N; Assimos, Ariane A

    2013-10-01

    This study had the objective of determining the content of dry extract of commercial alcoholic extracts of bee propolis through Partial Least Squares (PLS) multivariate calibration and electronic spectroscopy. The PLS model provided a good prediction of dry extract content in commercial alcoholic extracts of bee propolis in the range of 2.7 a 16.8% (m/v), presenting the advantage of being less laborious and faster than the traditional gravimetric methodology. The PLS model was optimized with outlier detection tests according to the ASTM E 1655-05. In this study it was possible to verify that a centrifugation stage is extremely important in order to avoid the presence of waxes, resulting in a more accurate model. Around 50% of the analyzed samples presented content of dry extract lower than the value established by Brazilian legislation, in most cases, the values found were different from the values claimed in the product's label. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Absolute ozone densities in a radio-frequency driven atmospheric pressure plasma using two-beam UV-LED absorption spectroscopy and numerical simulations

    Science.gov (United States)

    Wijaikhum, A.; Schröder, D.; Schröter, S.; Gibson, A. R.; Niemi, K.; Friderich, J.; Greb, A.; Schulz-von der Gathen, V.; O’Connell, D.; Gans, T.

    2017-11-01

    The efficient generation of reactive oxygen species (ROS) in cold atmospheric pressure plasma jets (APPJs) is an increasingly important topic, e.g. for the treatment of temperature sensitive biological samples in the field of plasma medicine. A 13.56 MHz radio-frequency (rf) driven APPJ device operated with helium feed gas and small admixtures of oxygen (up to 1%), generating a homogeneous glow-mode plasma at low gas temperatures, was investigated. Absolute densities of ozone, one of the most prominent ROS, were measured across the 11 mm wide discharge channel by means of broadband absorption spectroscopy using the Hartley band centred at λ = 255 nm. A two-beam setup with a reference beam in Mach–Zehnder configuration is employed for improved signal-to-noise ratio allowing high-sensitivity measurements in the investigated single-pass weak-absorbance regime. The results are correlated to gas temperature measurements, deduced from the rotational temperature of the N2 (C 3 {{{\\Pi }}}u+ \\to B 3 {{{\\Pi }}}g+, υ = 0 \\to 2) optical emission from introduced air impurities. The observed opposing trends of both quantities as a function of rf power input and oxygen admixture are analysed and explained in terms of a zero-dimensional plasma-chemical kinetics simulation. It is found that the gas temperature as well as the densities of O and O2(b{}1{{{Σ }}}g+) influence the absolute O3 densities when the rf power is varied.

  3. Free radical formation in chloramphenicol heated at different temperatures and the best thermal sterilization conditions - application of EPR spectroscopy and UV spectrophotometry.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    2016-12-12

    Free radicals in thermally treated chloramphenicol were examined by electron paramagnetic resonance (EPR) spectroscopy. The parameters and shape of EPR spectra were analysed and free radical concentrations were obtained in the tested drug samples. Chloramphenicol was thermally sterilized at pharmacopeia conditions: 100 °C (120 min). Sterilization was also carried out at different conditions, 110 °C (60 min) and 120 °C (30 min), for comparison with pharmacopeia settings. Microbiological analysis was performed on the samples to confirm sterility. The aim of this work was to determine the concentration of free radicals in chloramphenicol following thermal sterilization at pharmacopeia conditions and compare this with other sets of conditions [110 °C (60 min) and 120 °C (30 min)]. The best conditions of thermal sterilization are determined as those that kill microorganisms and produce the lowest amounts of free radicals in this drug. It was concluded that the optimal temperatures and times for the thermal sterilization of chloramphenicol are 100 °C and 120 min and 110 °C and 60 min. A temperature of 120 °C coupled with a heating time of 30 min was rejected for thermal sterilization because of the high amount of free radicals produced by the drug samples.

  4. Method for screening sunscreen cream formulations by determination of in vitro SPF and PA values using UV transmission spectroscopy and texture profile analysis.

    Science.gov (United States)

    Khunkitti, Watcharee; Satthanakul, Panitta; Waranuch, Neti; Pitaksuteepong, Tasana; Kitikhun, Pichet

    2014-01-01

    Formulation of sunscreen products to obtain high values of sun protection factor (SPF) and protection from ultraviolet A (PA) is challenging work for cosmetic chemists. This study aimed to study factors affecting SPF and PA values using ultraviolet transmission spectroscopy as well as texture profiles of sunscreen formulations using 23 factorial designs. Results demonstrate that the correlation coefficient between the labeled SPF values of counter-brand sunscreen products and the in vitro SPF values was 0.901. In vitro SPF determination showed that the combination effect of phase volume ratio (PVR) and xanthan gum caused a significant increase to the SPF values of the formulations, whereas the interaction effect between PVR and stearic acid significantly decreased the SPF value. In addition, there was the interaction effect between xanthan gum and stearic acid leading to significant reduction of hardness, compressibility, and pH, but significantly increasing the adhesiveness. All tested factors did not significantly affect the cohesiveness of tested formulations. In conclusion, apart from sunscreen agents, the other ingredients also affected the SPF and PA values. The calculated SPF values range from 21 to 60. However, a selected formulation needs to be confirmed by the standard method of testing. In addition, the physical, chemical, and biological stability; shelf life; and sensory evaluation of all formulations need to be evaluated.

  5. On the near UV photophysics of a phenylalanine residue: conformation-dependent ππ* state deactivation revealed by laser spectroscopy of isolated neutral dipeptides.

    Science.gov (United States)

    Loquais, Yohan; Gloaguen, Eric; Alauddin, Mohammad; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel

    2014-10-28

    The primary step of the near UV photophysics of a phenylalanine residue is investigated in one- and two-color pump-probe R2PI nanosecond experiments carried out on specific conformers of the Ac-Gly-Phe-NH2 molecule and related neutral compounds isolated in a supersonic expansion. Compared to toluene, whose ππ* state photophysics is dominated by intersystem crossing with a lifetime of ∼80 ns at the origin, the first ππ* state of Phe in the peptide environment is systematically found to be shorter-lived. The lifetime at the origin of transition is found to be significantly shortened in the presence of a primary amide (-CONH2) group (20-60 ns, depending on the conformer considered), demonstrating the existence of an additional non-radiative relaxation channel related to this chemical group. The quenching effect induced by the peptide environment is still more remarkable beyond the origin of the ππ* state, since vibronic bands of one of the 4 conformers observed (the 27-ribbon conformation) become barely detectable in the ns R2PI experiment, suggesting a significant conformer-selective lifetime shortening (below 100 ps). These results on dipeptides, which extend previous investigations on shorter Phe-containing molecules (N-Ac-Phe-NH2 and N-Ac-Phe-NH-Me), confirm the existence of conformer-dependent non-radiative deactivation processes, whose characteristic timescales range from tens of ns down to hundreds of ps or below. This dynamics is assigned to two distinct mechanisms: a first one, consistent with an excitation energy transfer from the optically active ππ* state to low-lying amide nπ* excited states accessed through conical intersections, especially in the presence of a C-terminal primary amide group (-CONH2); a second one, responsible for the short lifetimes in 2(7) ribbon structures, would be more specifically triggered by phenyl ring vibrational excitations. Implications in terms of spectroscopic probing of Phe in a peptide environment, especially

  6. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron.

    Science.gov (United States)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J; Gee, Christine; Harrop, Stephen J; Mudie, Nathan; Panjikar, Santosh; Price, Jason R; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom

    2015-01-01

    MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.

  7. Modelling constraints on the emission inventory and on vertical dispersion for CO and SO2 in the Mexico City Metropolitan Area using Solar FTIR and zenith sky UV spectroscopy

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2007-01-01

    Full Text Available Emissions of air pollutants in and around urban areas lead to negative health impacts on the population. To estimate these impacts, it is important to know the sources and transport mechanisms of the pollutants accurately. Mexico City has a large urban fleet in a topographically constrained basin leading to high levels of carbon monoxide (CO. Large point sources of sulfur dioxide (SO2 surrounding the basin lead to episodes with high concentrations. An Eulerian grid model (CAMx and a particle trajectory model (FLEXPART are used to evaluate the estimates of CO and SO2 in the current emission inventory using mesoscale meteorological simulations from MM5. Vertical column measurements of CO are used to constrain the total amount of emitted CO in the model and to identify the most appropriate vertical dispersion scheme. Zenith sky UV spectroscopy is used to estimate the emissions of SO2 from a large power plant and the Popocatépetl volcano. Results suggest that the models are able to identify correctly large point sources and that both the power plant and the volcano impact the MCMA. Modelled concentrations of CO based on the current emission inventory match observations suggesting that the current total emissions estimate is correct. Possible adjustments to the spatial and temporal distribution can be inferred from model results. Accurate source and dispersion modelling provides feedback for development of the emission inventory, verification of transport processes in air quality models and guidance for policy decisions.

  8. Study on the chiral recognition of the enantiomers of ephedrine derivatives with neutral and sulfated heptakis(2,3-O-diacetyl)-beta-cyclodextrins using capillary electrophoresis, UV, nuclear magnetic resonance spectroscopy and mass spectrometry.

    Science.gov (United States)

    Hellriegel, C; Händel, H; Wedig, M; Steinhauer, S; Sörgel, F; Albert, K; Holzgrabe, U

    2001-04-20

    The enantiomers of methylephedrine, pseudoephedrine and ephedrine showed a different migration behavior in capillary electrophoresis in the presence of beta-cyclodextrin (beta-CD), heptakis(2,3-O-diacetyl)-beta-cyclodextrin and heptakis(2,3-O-diacetyl-6-sulfato)-beta-cyclodextrin (HDAS). Utilizing UV, MS and NMR spectroscopy, in particular rotating frame Overhauser experiments, an attempt was made to elucidate the chiral recognition mechanism. In the case of the neutral CDs 1:1 complexes were formed with ephedrine and methylephedrine characterized by the inclusion of the phenyl ring in the cavity and the side chain pointing out of the wider rim. In contrast, manifold complexes were formed with HDAS, which on average are characterized by an upside down inclusion of the phenyl ring in the cavity and the side chain pointing out of the narrow rim. This complex geometry is likely be stabilized by an ion-ion interaction between the positively charged nitrogens of the ephedrine derivatives and the negative charges of HDAS. In addition, an attachment of the ligand to the outside of HDAS and other complex stoichiometries are also possible.

  9. Professor GN Ramachandran's Contributions to X-ray Crystallography

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 10. Professor G. N. Ramachandran's Contributions to X-ray Crystallography. K Venkatesan. General Article Volume 6 Issue 10 October 2001 pp 8-15. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Why do We Trust X-ray Crystallography?

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/reso/019/12/1087-1092. Keywords. Chemical crystallography; X-ray diffraction; single crystals; structure determination. Author Affiliations. Andrew D Bond1. University of Copenhagen Department of Pharmacy Universitetsparken 2 2100 Copenhagen Denmark. Resonance ...

  11. Two-Dimensional Crystallography Introduced by the Sprinkler Watering Problem

    Science.gov (United States)

    De Toro, Jose A.; Calvo, Gabriel F.; Muniz, Pablo

    2012-01-01

    The problem of optimizing the number of circular sprinklers watering large fields is used to introduce, from a purely elementary geometrical perspective, some basic concepts in crystallography and comment on a few size effects in condensed matter physics. We examine square and hexagonal lattices to build a function describing the, so-called, dry…

  12. Chemical Crystallography· From Inception to Maturity

    Indian Academy of Sciences (India)

    a challenge. More recently, structure determination by powder diffraction has become increasingly important to chemical ~rys tallographers as growing single crystals of good quality in many situations become difficult and sometimes impossible. The Growth of Chemical Crystallography. Historically, the first crystal structures ...

  13. Structural preablation dynamics of graphite observed by ultrafast electron crystallography

    NARCIS (Netherlands)

    Carbone, Fabrizio; Baum, Peter; Rudolf, Petra; Zewail, Ahmed H.

    2008-01-01

    By means of time-resolved electron crystallography, we report direct observation of the structural dynamics of graphite, providing new insights into the processes involving coherent lattice motions and ultrafast graphene ablation. When graphite is excited by an ultrashort laser pulse, the excited

  14. The role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman, FTIR and UV-vis spectroscopy.

    Science.gov (United States)

    Depciuch, J; Sowa-Kućma, M; Nowak, G; Szewczyk, B; Doboszewska, U; Parlinska-Wojtan, M

    2017-05-01

    Depression is a serious mental illness. To study the mechanisms of diseases and search for new, more effective therapies, animal models are used. Unfortunately, none of the available models does reflect all symptoms of depression. Zinc deficiency is proposed as a new animal model of depression. However, it has not been yet validated in a detailed manner. Recently, spectroscopic techniques are increasingly being used both in clinical and preclinical studies. Here we examined the effect of zinc deficiency and amitryptyline treatment on the phospholipid - protein balance in the blood serum of rats using Raman, Fourier Transform Infra Red (FTIR) and UV-vis technique. Male Sprague Dawley rats were fed with a zinc ample diet (ZnA, 50mg Zn/kg) or a zinc deficient diet (ZnD, 3mg Zn/kg) for 4 weeks. Then amitriptyline administration (AMI, 10mg/kg, i.p.) was started. After injecting the drug for 2-weeks, blood samples were collected and analyzed. It was found that zinc deficiency decreases both the level of phospholipids and proteins and also causes structural changes in their structures. In the ZnD group amitriptyline treatment influenced the protein level and structure. UV-vis spectroscopy combined with the second derivative calculated from the FTIR spectra provided information that the proteins in blood serum of rat fed with a low Zn diet regain their intact structure after amitriptyline medication. Simultaneously, the antidepressant therapy did not have any effect on the level of phospholipids in this group of rats. Additionally, our results show, that amitriptyline administration can change the structure of phospholipids in rats subjected to zinc ample diet. This altered structure of phospholipids was identified as shortening of carbon chains. Our findings indicate that the decreased level of zinc may be the cause of depressive disorders, as it leads to changes in the phospholipid-protein balance necessary for the proper functioning of the body. This study also shows

  15. Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV-Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods.

    Science.gov (United States)

    Manouchehri, Firouzeh; Izadmanesh, Yahya; Aghaee, Elham; Ghasemi, Jahan B

    2016-10-01

    The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV-Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster's non-radiative energy transfer theory and were equal to 41.1% and 2.11nm. The collected UV-Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand

  16. Determination of brilliant green from fish pond water using carbon nanotube assisted pseudo-stir bar solid/liquid microextraction combined with UV-vis spectroscopy-diode array detection

    Science.gov (United States)

    Es'haghi, Zarrin; Khooni, Maliheh Ahmadi-Kalateh; Heidari, Tahereh

    2011-08-01

    This paper describes the development of a new design of hollow fiber solid/liquid phase microextraction (HF-SLPME) for determination of brilliant green (BG) residues in water fish ponds. This method consists of an aqueous donor phase and carbon nanotube reinforced organic solvent (acceptor phase) operated in direct immersion sampling mode. The multi-walled carbon nanotube dispersed in the organic solvent is held in the pores and lumen of a porous polypropylene hollow fiber. It is in contact directly with the aqueous donor phase. In this method the solid/liquid extractor phase is supported using a polypropylene hollow fiber membrane. Both ends of the hollow fiber segment are sealed with magnetic stoppers. This device is placed inside the donor solution and plays the rule of a pseudo-stir bar. It is disposable, so single use of the fiber reduces the risk of carry-over problems. Brilliant green (BG) after extraction from the aqueous samples with mentioned HF-SLPME device was determined by ultraviolet-visible spectroscopy with diode array detection (UV-vis/DAD). The absorption wavelength was set to 625 nm ( λmax). The effect of different variables on the extraction was evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. The calibration curve was linear in the range of 1.00-10,000 μg L -1 of BG in the initial solution with R2 = 0.979. Detection limit, based on three times the standard deviation of the blank, was 0.55 μg L -1. All experiments were carried out at room temperature (25 ± 0.5 °C).

  17. [The Raman Spectroscopy (RS): A new tool for the analytical quality control of injectable in health settings. Comparison of RS technique versus HPLC and UV/Vis-FTIR, applied to anthracyclines as anticancer drugs].

    Science.gov (United States)

    Bourget, P; Amin, A; Moriceau, A; Cassard, B; Vidal, F; Clement, R

    2012-12-01

    The study compares the performances of three analytical methods devoted to Analytical Quality Control (AQC) of therapeutic solutions formed into care environment, we are talking about Therapeutics Objects(TN) (TOs(TN)). We explored the pharmacological model of two widely used anthracyclines i.e. adriamycin and epirubicin. We compared the performance of the HPLC versus two vibrational spectroscopic techniques: a tandem UV/Vis-FTIR on one hand and Raman Spectroscopy (RS) on the other. The three methods give good results for the key criteria of repeatability, of reproducibility and, of accuracy. A Spearman and a Kendall correlation test confirms the noninferiority of the vibrational techniques as an alternative to the reference method (HPLC). The selection of bands for characterization and quantification by RS is the results of a gradual process adjustment, at the intercept of matrix effects. From the perspective of a AQC associated to release of TOs, RS displays various advantages: (a) to decide quickly (~2min), simultaneously and without intrusion or withdrawal on both the nature of a packaging than on a solvant and this, regardless of the compound of interest; it is the founder asset of the method, (b) to explore qualitatively and quantitatively any kinds of TOs, (c) operator safety is guaranteed during production and in the laboratory, (d) the suppression of analytical releases or waste contribute to protects the environment, (e) the suppression.of consumables, (f) a negligible costs of maintenance, (g) a small budget of technicians training. These results already show that the SR technology is potentially a strong contributor to the safety of the medication cycle and fight against the iatrogenic effects of drugs. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Protein crystallization: Eluding the bottleneck of X-ray crystallography

    Science.gov (United States)

    Holcomb, Joshua; Spellmon, Nicholas; Zhang, Yingxue; Doughan, Maysaa; Li, Chunying; Yang, Zhe

    2017-01-01

    To date, X-ray crystallography remains the gold standard for the determination of macromolecular structure and protein substrate interactions. However, the unpredictability of obtaining a protein crystal remains the limiting factor and continues to be the bottleneck in determining protein structures. A vast amount of research has been conducted in order to circumvent this issue with limited success. No single method has proven to guarantee the crystallization of all proteins. However, techniques using antibody fragments, lipids, carrier proteins, and even mutagenesis of crystal contacts have been implemented to increase the odds of obtaining a crystal with adequate diffraction. In addition, we review a new technique using the scaffolding ability of PDZ domains to facilitate nucleation and crystal lattice formation. Although in its infancy, such technology may be a valuable asset and another method in the crystallography toolbox to further the chances of crystallizing problematic proteins. PMID:29051919

  19. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  20. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  1. A high-pressure MWPC detector for crystallography

    DEFF Research Database (Denmark)

    Ortuno-Prados, F.; Bazzano, A.; Berry, A.

    1999-01-01

    The application of the Multi-Wire Proportional Counter (MWPC) as a potential detector for protein crystallography and other wide-angle diffraction experiments is presented. Electrostatic problems found with our large area MWPC when operated at high pressure are discussed. We suggest that a soluti...... to these problems is to use a glass micro-strip detector in place of the wire frames. The characteristics of a high-pressure Micro-Strip Gas Chamber (MSGC) tested in the laboratory are presented....

  2. X-ray diffraction crystallography. Introduction, examples and solved problems

    Energy Technology Data Exchange (ETDEWEB)

    Waseda, Yoshio; Shinoda, Kozo [Tohoku Univ., Sendai (Japan). Inst. of Multidisciplinary Research for Advanced Materials; Matsubara, Eiichiro [Kyoto Univ. (Japan). Dept. of Materials Science and Engineering

    2011-07-01

    X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements. (orig.)

  3. PRIGo: a new multi-axis goniometer for macromolecular crystallography.

    Science.gov (United States)

    Waltersperger, Sandro; Olieric, Vincent; Pradervand, Claude; Glettig, Wayne; Salathe, Marco; Fuchs, Martin R; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias; Schulze-Briese, Clemens; Wang, Meitian

    2015-07-01

    The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0-90°), followed by a ϕ stage (0-360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  4. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)

    2015-05-09

    The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  5. Advances in DUV spectroscopy

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Mogensen, Claus Tilsted

    The would-be advantages of deep UV (DUV) spectroscopy are well known, but the potential applications have so far not been fully realized due to technological limitations and, perhaps, lack of bright ideas. However, new components and new knowledge about DUV spectra and spectroscopic methods...... combined with increasing needs for solutions to practical problems in environmental protection, medicine and pollution monitoring promise a new era in DUV spectroscopy. Here we shall review the basis for DUV spectroscopy, both DUV fluorescence and DUV Raman spectroscopy, and describe recent advances...

  6. High-Sensitivity Semiconductor Photocathodes for Space-Born UV Photon-Counting and Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many UV photon-counting and imaging applications, including space-borne astronomy, missile tracking and guidance, UV spectroscopy for chemical/biological...

  7. High performance UV and thermal cure hybrid epoxy adhesive

    Science.gov (United States)

    Chen, C. F.; Iwasaki, S.; Kanari, M.; Li, B.; Wang, C.; Lu, D. Q.

    2017-06-01

    New type one component UV and thermal curable hybrid epoxy adhesive was successfully developed. The hybrid epoxy adhesive is complete initiator free composition. Neither photo-initiator nor thermal initiator is contained. The hybrid adhesive is mainly composed of special designed liquid bismaleimide, partially acrylated epoxy resin, acrylic monomer, epoxy resin and latent curing agent. Its UV light and thermal cure behavior was studied by FT-IR spectroscopy and FT-Raman spectroscopy. Adhesive samples cured at UV only, thermal only and UV + thermal cure conditions were investigated. By calculated conversion rate of double bond in both acrylic component and maleimide compound, satisfactory light curability of the hybrid epoxy adhesive was confirmed quantitatively. The investigation results also showed that its UV cure components, acrylic and bismalimide, possess good thermal curability too. The initiator free hybrid epoxy adhesive showed satisfactory UV curability, good thermal curability and high adhesion performance.

  8. Smarter Drugs: How Protein Crystallography Revolutionizes Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Clyde

    2005-04-26

    According to Smith, protein crystallography allows scientists to design drugs in a much more efficient way than the standard methods traditionally used by large drug companies, which can cost close to a billion dollars and take 10 to 15 years. 'A lot of the work can be compressed down,' Smith said. Protein crystallography enables researchers to learn the structure of molecules involved in disease and health. Seeing the loops, folds and placement of atoms in anything from a virus to a healthy cell membrane gives important information about how these things work - and how to encourage, sidestep or stop their functions. Drug design can be much faster when the relationship between structure and function tells you what area of a molecule to target. Smith will use a timeline to illustrate the traditional methods of drug development and the new ways it can be done now. 'It is very exciting work. There have been some failures, but many successes too.' A new drug to combat the flu was developed in a year or so. Smith will tell us how. He will also highlight drugs developed to combat HIV, Tuberculosis, hypertension and Anthrax.

  9. Synchrotron radiation macromolecular crystallography: science and spin-offs

    Directory of Open Access Journals (Sweden)

    John R. Helliwell

    2015-03-01

    Full Text Available A current overview of synchrotron radiation (SR in macromolecular crystallography (MX instrumentation, methods and applications is presented. Automation has been and remains a central development in the last decade, as have the rise of remote access and of industrial service provision. Results include a high number of Protein Data Bank depositions, with an increasing emphasis on the successful use of microcrystals. One future emphasis involves pushing the frontiers of using higher and lower photon energies. With the advent of X-ray free-electron lasers, closely linked to SR developments, the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules is anticipated, as well as the opening up of femtosecond time-resolved diffraction structural studies. At SR sources, a very high-throughput assessment for the best crystal samples and the ability to tackle just a few micron and sub-micron crystals will become widespread. With higher speeds and larger detectors, diffraction data volumes are becoming long-term storage and archiving issues; the implications for today and the future are discussed. Together with the rise of the storage ring to its current pre-eminence in MX data provision, the growing tendency of central facility sites to offer other centralized facilities complementary to crystallography, such as cryo-electron microscopy and NMR, is a welcome development.

  10. Synchrotron radiation macromolecular crystallography: science and spin-offs.

    Science.gov (United States)

    Helliwell, John R; Mitchell, Edward P

    2015-03-01

    A current overview of synchrotron radiation (SR) in macromolecular crystallography (MX) instrumentation, methods and applications is presented. Automation has been and remains a central development in the last decade, as have the rise of remote access and of industrial service provision. Results include a high number of Protein Data Bank depositions, with an increasing emphasis on the successful use of microcrystals. One future emphasis involves pushing the frontiers of using higher and lower photon energies. With the advent of X-ray free-electron lasers, closely linked to SR developments, the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules is anticipated, as well as the opening up of femtosecond time-resolved diffraction structural studies. At SR sources, a very high-throughput assessment for the best crystal samples and the ability to tackle just a few micron and sub-micron crystals will become widespread. With higher speeds and larger detectors, diffraction data volumes are becoming long-term storage and archiving issues; the implications for today and the future are discussed. Together with the rise of the storage ring to its current pre-eminence in MX data provision, the growing tendency of central facility sites to offer other centralized facilities complementary to crystallography, such as cryo-electron microscopy and NMR, is a welcome development.

  11. A novel inert crystal delivery medium for serial femtosecond crystallography

    Directory of Open Access Journals (Sweden)

    Chelsie E. Conrad

    2015-07-01

    Full Text Available Serial femtosecond crystallography (SFX has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.

  12. Serial crystallography on in vivo grown microcrystals using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Cornelius Gati

    2014-03-01

    Full Text Available Crystal structure determinations of biological macromolecules are limited by the availability of sufficiently sized crystals and by the fact that crystal quality deteriorates during data collection owing to radiation damage. Exploiting a micrometre-sized X-ray beam, high-precision diffractometry and shutterless data acquisition with a pixel-array detector, a strategy for collecting data from many micrometre-sized crystals presented to an X-ray beam in a vitrified suspension is demonstrated. By combining diffraction data from 80 Trypanosoma brucei procathepsin B crystals with an average volume of 9 µm3, a complete data set to 3.0 Å resolution has been assembled. The data allowed the refinement of a structural model that is consistent with that previously obtained using free-electron laser radiation, providing mutual validation. Further improvements of the serial synchrotron crystallography technique and its combination with serial femtosecond crystallography are discussed that may allow the determination of high-resolution structures of micrometre-sized crystals.

  13. A novel inert crystal delivery medium for serial femtosecond crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel; Wang, Dingjie; Schaffer, Alexander; Roy-Chowdhury, Shatabdi; Zatsepin, Nadia A.; Aquila, Andrew; Coe, Jesse; Gati, Cornelius; Hunter, Mark S.; Koglin, Jason E.; Kupitz, Christopher; Nelson, Garrett; Subramanian, Ganesh; White, Thomas A.; Zhao, Yun; Zook, James; Boutet, Sébastien; Cherezov, Vadim; Spence, John C. H.; Fromme, Raimund; Weierstall, Uwe; Fromme, Petra

    2015-06-30

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5Å resolution using 300µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.

  14. Proline: Mother Nature;s cryoprotectant applied to protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.; Singh, Harkewal; Srivastava, Dhiraj; Tanner, John J. (UMC)

    2012-09-05

    L-Proline is one of Mother Nature's cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that L-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6-8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0-3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that L-proline is an effective cryoprotectant for protein crystallography.

  15. High-pressure crystallography of periodic and aperiodic crystals

    Directory of Open Access Journals (Sweden)

    Clivia Hejny

    2015-03-01

    Full Text Available More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal–organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium `High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

  16. UV water disinfector

    Science.gov (United States)

    Gadgil, A.; Garud, V.

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system and an air-suspended bare UV lamp are disclosed. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir. 7 figs.

  17. Force spectroscopy in studying infection

    CERN Document Server

    Zhou, Zhaokun

    2016-01-01

    Biophysical force spectroscopy tools - for example optical tweezers, magnetic tweezers, atomic force microscopy, - have been used to study elastic, mechanical, conformational and dynamic properties of single biological specimens from single proteins to whole cells to reveal information not accessible by ensemble average methods such as X-ray crystallography, mass spectroscopy, gel electrophoresis and so on. Here we review the application of these tools on a range of infection-related questions from antibody-inhibited protein processivity to virus-cell adhesion. In each case we focus on how the instrumental design tailored to the biological system in question translates into the functionality suitable for that particular study. The unique insights that force spectroscopy has gained to complement knowledge learned through population averaging techniques in interrogating biomolecular details prove to be instrumental in therapeutic innovations such as those in structure-based drug design.

  18. The 100th Anniversary of X-Ray Crystallography

    Directory of Open Access Journals (Sweden)

    Kojić-Prodić, B.

    2013-07-01

    Full Text Available The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them.W. L. BraggThe 100th anniversary of X-ray crystallography dates back to the first X-ray diffraction experiment on a crystal of copper sulphate pentahydrate. Max von Laue designed the theoretical background of the experiment, which was performed by German physicists W. Friedrich and P. Knipping in 1912. At that time, the mathematical formulation of the phenomenon and the fundamental concepts of crystallography were subjects of mineralogy. Altogether, they facilitated the development of methods for determination of the structure of matter at the atomic level. In 1913, father and son Bragg started to develop X-ray structure analysis for determination of crystal structures of simple molecules. Historic examples of structure determination starting from rock salt to complex, biologically important (macromolecules, such as globular proteins haemoglobin and myoglobin, DNA, vitamin B12 and the recent discovery of ribozyme, illustrate the development of X-ray structural analysis. The determination of 3D structures of these molecules by X-ray diffraction had opened new areas of scientific research, such as molecular biophysics, molecular genetics, structural molecular biology, bioinorganic chemistry, organometallic chemistry, and many others. The discovery and development of X-ray crystallography revolutionised our understanding of natural sciences – physics, chemistry, biology, and also science of materials. The scientific community recognised these fundamental achievements (including the discovery of X-rays by awarding twenty-eight Nobel prizes to thirty-nine men and two women. The explosive growth of science and technology in the 20th and 21st centuries had been founded on the detailed knowledge of the three-dimensional structure of molecules, which was the basis for explaining and predicting the physical, chemical, biological and

  19. Designing a synchrotron micro-focusing beamline for macromolecular crystallography.

    Science.gov (United States)

    Grochulski, Paweł; Cygler, Mirosław; Yates, Brian

    After a successful 10 years of operation, the Canadian Macromolecular Crystallography Facility 08ID-1 beamline will undergo an upgrade to establish micro-beam capability. This paper is mostly focussed on optics and computer simulations for ray tracing of the beamline. After completion, the focussed beam at the sample will have a much smaller size of 50 × 5 µm2 (H x V), allowing measurement of X-ray diffraction patterns from much smaller crystals than possible presently. The beamline will be equipped with a fast sample changer and an ultra-low noise photon counting detector, allowing shutter-less operation of the beamline. Additionally, it will be possible to perform in-situ room-temperature experiments.

  20. In-vacuum long-wavelength macromolecular crystallography.

    Science.gov (United States)

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-03-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.

  1. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Uwe, E-mail: umue@helmholtz-berlin.de; Darowski, Nora [Institute for Soft Matter and Functional Materials, Macromolecular Crystallography, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Fuchs, Martin R. [Swiss Light Source at Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Förster, Ronald [Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie, AG Strukturbiochemie, Takustrasse 6, D-14195 Berlin (Germany); Hellmig, Michael; Paithankar, Karthik S. [Institute for Soft Matter and Functional Materials, Macromolecular Crystallography, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Pühringer, Sandra [Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie, AG Strukturbiochemie, Takustrasse 6, D-14195 Berlin (Germany); Steffien, Michael [Institute for Soft Matter and Functional Materials, Macromolecular Crystallography, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Zocher, Georg [Universität Tübingen, Interfakultäres Institut für Biochemie, Hoppe-Seyler-Strasse 4, D-72076 Tübingen (Germany); Weiss, Manfred S. [Institute for Soft Matter and Functional Materials, Macromolecular Crystallography, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)

    2012-05-01

    The three macromolecular crystallography beamlines BL14.1, BL14.2 and BL14.3 at the BESSY II storage ring at the Helmholtz-Zentrum Berlin are described. Three macromolecular crystallography (MX) beamlines at the Helmholtz-Zentrum Berlin (HZB) are available for the regional, national and international structural biology user community. The state-of-the-art synchrotron beamlines for MX BL14.1, BL14.2 and BL14.3 are located within the low-β section of the BESSY II electron storage ring. All beamlines are fed from a superconducting 7 T wavelength-shifter insertion device. BL14.1 and BL14.2 are energy tunable in the range 5–16 keV, while BL14.3 is a fixed-energy side station operated at 13.8 keV. All three beamlines are equipped with CCD detectors. BL14.1 and BL14.2 are in regular user operation providing about 200 beam days per year and about 600 user shifts to approximately 50 research groups across Europe. BL14.3 has initially been used as a test facility and was brought into regular user mode operation during the year 2010. BL14.1 has recently been upgraded with a microdiffractometer including a mini-κ goniometer and an automated sample changer. Additional user facilities include office space adjacent to the beamlines, a sample preparation laboratory, a biology laboratory (safety level 1) and high-end computing resources. In this article the instrumentation of the beamlines is described, and a summary of the experimental possibilities of the beamlines and the provided ancillary equipment for the user community is given.

  2. Proline: Mother Nature’s cryoprotectant applied to protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.; Singh, Harkewal; Srivastava, Dhiraj [University of Missouri-Columbia, Columbia, MO 65211 (United States); Tanner, John J., E-mail: tannerjj@missouri.edu [University of Missouri-Columbia, Columbia, MO 65211 (United States); University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2012-08-01

    The amino acid l-proline is shown to be a good cryoprotectant for protein crystals. Four examples are provided; the range of proline used for cryoprotection is 2.0–3.0 M. l-Proline is one of Mother Nature’s cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that l-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6–8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0–3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that l-proline is an effective cryoprotectant for protein crystallography.

  3. CUVE — Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    Science.gov (United States)

    Cottini, V.; Aslam, S.; Gorius, N.; Hewagama, T.; Glaze, L.; Ignatiev, N.; Piccioni, G.; D'Aversa, E.

    2017-11-01

    The Cubesat UV Experiment (CUVE) will investigate Venus’ atmosphere at its absorbers at the cloud tops in the UV, with two on-board science payloads (i) a high spectral resolution UV spectrometer and (ii) a multispectral UV imager.

  4. Conformational Heterogeneity of Methyl 4-Hydroxycinnamate: A Gas-Phase UV-IR Spectroscopic Study

    NARCIS (Netherlands)

    Tan, E.M.M.; Amirjalayer, S.; Smolarek, S.; Vdovin, A.; Rijs, A.M.; Buma, W.J.

    2013-01-01

    UV excitation and IR absorption spectroscopy on Jet cooled molecules is used to study the conformational heterogeneity of methyl 4-hydroxycinnamate, a model chromophore of the Photoactive Yellow Protein (PYP), and to determine the spectroscopic properties of the various conformers UV-UV depletion

  5. Purification of transmembrane proteins from Saccharomyces cerevisiae for X-ray crystallography.

    Science.gov (United States)

    Clark, Kathleen M; Fedoriw, Nadia; Robinson, Katrina; Connelly, Sara M; Randles, Joan; Malkowski, Michael G; DeTitta, George T; Dumont, Mark E

    2010-06-01

    To enhance the quantity and quality of eukaryotic transmembrane proteins (TMPs) available for structure determination by X-ray crystallography, we have optimized protocols for purification of TMPs expressed in the yeast Saccharomyces cerevisiae. We focused on a set of the highest-expressing endogenous yeast TMPs for which there are established biochemical assays. Genes encoding the target TMPs are transferred via ligation-independent cloning to a series of vectors that allow expression of reading frames fused to C-terminal His10 and ZZ (IgG-binding) domains that are separated from the reading frame by a cleavage site for rhinovirus 3C protease. Several TMP targets expressed from these vectors have been purified via affinity chromatography and gel filtration chromatography at levels and purities sufficient for ongoing crystallization trials. Initial purifications were based on expression of the genes under control of a galactose-inducible promoter, but higher cell densities and improved expression have been obtained through use of the yeast ADH2 promoter. Wide variations have been observed in the behavior of different TMP targets during purification; some can be readily purified, while others do not bind efficiently to affinity matrices, are not efficiently cleaved from the matrices, or remain tightly associated with the matrices even after cleavage of the affinity tags. The size, oligomeric state, and composition of purified protein-detergent complexes purified under different conditions were analyzed using a colorimetric assay of detergent concentrations and by analytical size-exclusion chromatography using static light scattering, refractive index, and UV absorption detection to monitor the elution profiles. Effective procedures were developed for obtaining high concentrations of purified TMPs without excessively concentrating detergents.

  6. Interaction partners of PSD-93 studied by X-ray crystallography and fluorescence polarization spectroscopy

    DEFF Research Database (Denmark)

    Fiorentini, Monica; Bach, Anders; Strømgaard, Kristian

    2013-01-01

    the extreme C-terminus of GluD2 with PSD-93 PDZ1 have been investigated in the crystalline phase. Two different binding modes of these residues were observed, suggesting that the peptide is not tightly bound to PSD-93 PDZ1. In accordance, the two N-terminal PSD-93 PDZ domains show no appreciable binding...... affinity for a GluD2-derived C-terminal octapeptide, whereas micromolar affinity was observed for a GluN2B-derived C-terminal octapeptide. This indicates that if present, the interactions between GluD2 and PSD-93 involve more than the extreme terminus of the receptor. In contrast, the tumour...

  7. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  8. Gold detector: modular CCD area detector for macromolecular crystallography

    Science.gov (United States)

    Naday, Istvan; Ross, Stephan W.; Kanyo, Miklos; Westbrook, Mary L.; Westbrook, Edwin M.; Phillips, Walter C.; Stanton, Martin J.; O'Mara, Daniel M.

    1995-04-01

    We have designed, fabricated, and tested a modular CCD area detector system for macromolecular crystallography at synchrotron x-ray sources, code-named the `gold' detector system. The sensitive area of the detector is 150 mm X 150 mm, with 3,072 X 3,072 pixel sampling, resulting in roughly a 50 micrometers pixel raster. The x-ray image formed on the face of the detector is converted to visible light by a thin phosphor layer. This image is transferred optically to nine CCD sensors by nine square fiberoptic tapers (one for each CCD), arranged in a 3 X 3 array. Each taper demagnifies the image by a factor of approximately 2. Each CCD has a 1,024 X 1,024 pixel raster and is read out through two independent data channels. After each x-ray exposure period the x-ray shutter is closed and the electronic image is digitized (16-bit) and read out in 1.8s. Alteratively, the image may be binned 2 X 2 during readout, resulting in a 1,536 X 1,536 raster of 100 micrometers pixels; this image can be read out in 0.4s. The CCD sensors are operated at -40 degree(s)C to reduce electronic noise. The detector is operated under full computer control: all operational parameters (readout rates, CCD temperature, etc.) can be adjusted from the console. The image data (18 MByte/image) are transferred via a fast VME system to a control processor and ultimately to disk storage. During April 1994 we carried out a complete set of measurements at the Stanford Synchrotron Radiation Laboratory (SSRL) for a full characterization of the gold detector. Characterization includes quantitative evaluation of the instrument's conversion gain (signal level/x-ray photon); detective quantum efficiency (DQE); point-spread function; sensitivity as a function of x-ray energy; geometrical distortion of images; spatial uniformity; read noise; and dark image and dark image noise. Characterization parameters derived from these measurements show that this detector will be extraordinarily valuable for macromolecular

  9. UV-induced effects

    NARCIS (Netherlands)

    Liebsch, M.; Spielmann, H.; Pape, W.; Krul, C.; Deguercy, A.; Eskes, C.A.M.

    2005-01-01

    Regulatory requirements: According to the current Notes for Guidance of the Scientific Committee on Cosmetic Products and Non-Food Products (SCCNFP), cosmetic ingredients and mixtures of ingredients absorbing UV light (in particular UV filter chemicals used, for example, to ensure the light

  10. Structure determination of zeolites and ordered mesoporous materials by electron crystallography.

    Science.gov (United States)

    Sun, Junliang; Zou, Xiaodong

    2010-09-28

    Structure determination of porous materials is important for understanding the materials properties and exploiting their applications. Compared to X-ray diffraction, electron crystallography has two unique advantages. Crystals that are too small to be studied by X-ray diffraction can be studied by electron crystallography. The structure factor phase information, which is lost in diffraction, can be obtained from high resolution transmission electron microscopy (HRTEM) images. Here we will present different techniques and applications of electron crystallography for structure determination of zeolites and ordered mesoporous materials, based on electron diffraction data and/or HRTEM images. Electron crystallography and X-ray diffraction are complementary in many aspects. Their combinations show great potentials for structure determination of complex porous materials.

  11. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    Directory of Open Access Journals (Sweden)

    C. Mueller

    2015-09-01

    Full Text Available We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA. The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  12. X-Ray Crystallography and its Role in Understanding the Physicochemical Properties of Pharmaceutical Cocrystals

    National Research Council Canada - National Science Library

    Aitipamula, Srinivasulu; Vangala, Venu R

    2017-01-01

    ...–property correlations and design of functional materials. Over the past century, X-ray crystallography has evolved as a method of choice for accurate determination of molecular structure at atomic resolution...

  13. An effective introduction to structural crystallography using 1D Gaussian atoms

    Science.gov (United States)

    Smith, Emily; Evans, Gwyndaf; Foadi, James

    2017-11-01

    The most important quantitative aspects of computational structural crystallography can be introduced in a satisfactory way using 1D truncated and periodic Gaussian functions to represent the atoms in a crystal lattice. This paper describes in detail and demonstrates 1D structural crystallography starting with the definition of such truncated Gaussians. The availability of the computer programme CRONE makes possible the repetition of the examples provided in the paper as well as the creation of new ones.

  14. Macromolecular crystallography with a large format CMOS detector

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Jay C., E-mail: jcnix@lbl.gov [Molecular Biology Consortium 12003 S. Pulaski Rd. #166 Alsip, IL 60803 U.S.A (United States)

    2016-07-27

    Recent advances in CMOS technology have allowed the production of large surface area detectors suitable for macromolecular crystallography experiments [1]. The Molecular Biology Consortium (MBC) Beamline 4.2.2 at the Advanced Light Source in Berkeley, CA, has installed a 2952 x 2820 mm RDI CMOS-8M detector with funds from NIH grant S10OD012073. The detector has a 20nsec dead pixel time and performs well with shutterless data collection strategies. The sensor obtains sharp point response and minimal optical distortion by use of a thin fiber-optic plate between the phosphor and sensor module. Shutterless data collections produce high-quality redundant datasets that can be obtained in minutes. The fine-sliced data are suitable for processing in standard crystallographic software packages (XDS, HKL2000, D*TREK, MOSFLM). Faster collection times relative to the previous CCD detector have resulted in a record number of datasets collected in a calendar year and de novo phasing experiments have resulted in publications in both Science and Nature [2,3]. The faster collections are due to a combination of the decreased overhead requirements of shutterless collections combined with exposure times that have decreased by over a factor of 2 for images with comparable signal to noise of the NOIR-1 detector. The overall increased productivity has allowed the development of new beamline capabilities and data collection strategies.

  15. Serial femtosecond crystallography of soluble proteins in lipidic cubic phase

    Energy Technology Data Exchange (ETDEWEB)

    Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; Chowdhury, Shatabdi Roy; Basu, Shibom; Boutet, Sébastien; Fromme, Petra; White, Thomas A.; Barty, Anton; Spence, John C. H.; Weierstall, Uwe; Liu, Wei; Cherezov, Vadim

    2015-08-04

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.

  16. Growth of anisotropic gold nanoparticles in photoresponsive fluid for UV sensing and erythema prediction.

    Science.gov (United States)

    Pallares, Roger M; Wang, Yusong; Lim, Suo H; K Thanh, Nguy N T; Su, Xiaodi

    2016-10-14

    To develop a novel plasmonic nanosensing technique to monitor the exposure levels of UV light for sunlight disease prevention. Anisotropic gold nanoparticles were grown inside a UV photoresponsive fluid, which was previously exposed to UV radiation from different sources. The morphology and optical properties of the obtained nanoparticles were monitored by spectroscopy and microscopy. The morphological and optical properties of the nanoparticles were dependent on the UV dose. The UV exposure levels were accurately correlated to the UV minimal doses to produce erythema to different skin types. This plasmonic nanosensing technique can be employed as novel sunlight-indexing tool for monitoring the dangerous level of skin exposure.

  17. Detection of H2S, SO2 and NO2 in CO2 at pressures ranging from 1-40 bar by using broadband absorption spectroscopy in the UV/VIS range

    NARCIS (Netherlands)

    Gersen, Sander; van Essen, Vincent; Visser, Pieter; Ahmad, Mohammad; Mokhov, Anatoli; Sepman, Alexey; Alberts, Ramon; Douma, Arno; Levinsky, Howard

    2014-01-01

    This paper presents a methodology to quantitatively measure H2S, SO2 and NO2 fractions in gaseous CO2 by using broadband absorption spectroscopy at 1 and 40 bar. The mole fractions of binary- and 3-component mixtures of H2S, SO2 and NO2 in CO2 with known fractions ranging from 35-250 ppm are

  18. Developpement d'instruments pour la détection de constituants troposphériques minoritaires par spectroscopie différentielle dans le domaine UV-visible

    OpenAIRE

    Vandaele, Ann Carine

    1997-01-01

    L'étude des phénomènes physico-chimiques de l'atmosphère nécessite la connaissance préalable des caractéristiques de chacun de ses constituants, ainsi que de leurs distributions spatiales et temporelles. Les méthodes spectroscopiques permettent la détection simultanée de nombreux constituants atmosphériques par la mesure quantitative de leurs absorptions. Dans le domaine UV-visible, ces techniques se basent sur la loi de Beer-Lambert, dont l'application nécessite la connaissance d'un spectre ...

  19. Synthesis of charge transfer complex of chloranilic acid as acceptor with p-nitroaniline as donor: Crystallographic, UV-visible spectrophotometric and antimicrobial studies

    Science.gov (United States)

    Zulkarnain; Khan, Ishaat M.; Ahmad, Afaq; Miyan, Lal; Ahmad, Musheer; Azizc, Nafe

    2017-08-01

    The charge transfer interaction between p-nitroaniline (PNA) and chloranilic (CAA) acid was studied spectrophotometrically in methanol at different temperatures within the range 298-328 K. This experimental work explores the nature of charge-transfer interactions that play a significant role in chemistry and biology. Structure of synthesized charge transfer (CT) complex was investigated by different technique such as X-ray crystallography, FTIR, 1HNMR, UV-visible spectroscopy, XRD and TGA-DTA, which indicates the presence of N+sbnd Hrbd2bd O- bond between donor and acceptor moieties. Spectrophotometric studies of CT complexes were carried out in methanol at different temperatures to estimate thermodynamic parameters such as formation constant (KCT), molar absorptivity (εCT), free energy change (ΔG), enthalpy change (ΔH), resonance energy (RN), oscillator strength (f), transition dipole moment (μEN) and interaction energy (ECT) were also calculated. The effect of temperatures on all the parameters was studied in methanol. 1:1 stoichiometric of CT-complex was ascertained by Benesi-Hildebrand plots giving straight line, which are good agreement with other analysis. Synthesized CT complex was screened for its antimicrobial activity such as antibacterial activity against two gram-positive bacteria, Staphylococcus aureus and bacillus subtilis and two gram negative bacteria Escherichia coli and pseudomonas aeruginosa, and antifungal activity against fungi Fusarium oxysporum, and Aspergillus flavus.

  20. Room-temperature macromolecular serial crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Francesco Stellato

    2014-07-01

    Full Text Available A new approach for collecting data from many hundreds of thousands of microcrystals using X-ray pulses from a free-electron laser has recently been developed. Referred to as serial crystallography, diffraction patterns are recorded at a constant rate as a suspension of protein crystals flows across the path of an X-ray beam. Events that by chance contain single-crystal diffraction patterns are retained, then indexed and merged to form a three-dimensional set of reflection intensities for structure determination. This approach relies upon several innovations: an intense X-ray beam; a fast detector system; a means to rapidly flow a suspension of crystals across the X-ray beam; and the computational infrastructure to process the large volume of data. Originally conceived for radiation-damage-free measurements with ultrafast X-ray pulses, the same methods can be employed with synchrotron radiation. As in powder diffraction, the averaging of thousands of observations per Bragg peak may improve the ratio of signal to noise of low-dose exposures. Here, it is shown that this paradigm can be implemented for room-temperature data collection using synchrotron radiation and exposure times of less than 3 ms. Using lysozyme microcrystals as a model system, over 40 000 single-crystal diffraction patterns were obtained and merged to produce a structural model that could be refined to 2.1 Å resolution. The resulting electron density is in excellent agreement with that obtained using standard X-ray data collection techniques. With further improvements the method is well suited for even shorter exposures at future and upgraded synchrotron radiation facilities that may deliver beams with 1000 times higher brightness than they currently produce.

  1. The role of enamel crystallography on tooth shade.

    Science.gov (United States)

    Eimar, Hazem; Marelli, Benedetto; Nazhat, Showan N; Abi Nader, Samer; Amin, Wala M; Torres, Jesus; de Albuquerque, Rubens F; Tamimi, Faleh

    2011-12-01

    Tooth shade is influenced by a combination of extrinsic-stains that are adsorbed to the enamel surface and by its intrinsic-shade resulting from the interaction of light with tooth structures. This study was designed to investigate how the variations in enamel ultrastructure may affect tooth optical properties. One-hundred extracted teeth were collected from adult patients attending McGill-Undergraduate Dental Clinics. Shade-spectrophotometry, FTIR and XRD were used to assess tooth shade, enamel chemical composition and crystallography. The data obtained was analysed for Pearson correlation analysis and multiple linear regression analysis. The statistical significance was set at P enamel hydroxyapatite (HA) crystal size (R = -0.358; B = -0.866; P = 0.007), tooth chroma was associated with enamel HA carbonization (R = -0.419; B = -99.06; P = 0.005), and tooth lightness was associated with both enamel HA crystal size (R = -0.313; B = -1.052; P = 0.019) and the degree of HA carbonization (R = -0.265; B=-57.95; P = 0.033). Multiple linear regression analysis demonstrated that the size of enamel HA crystals and the relative content of mineral carbonate were the most important predictors for tooth shade lightness (P = 0.018) and chroma (P=0.008), respectively. In contrast, enamel organic content had no correlation with tooth shade. In the present study we have revealed that the tooth shade is regulated by the size of their HA enamel crystals. On the other hand, variation in the degree of enamel HA carbonization can also affect the tooth shade. These findings are of great relevance in dentistry since it provides better understanding of tooth aesthetics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Automatic crystal centring procedure at the SSRF macromolecular crystallography beamline.

    Science.gov (United States)

    Wang, Zhijun; Pan, Qiangyan; Yang, Lifeng; Zhou, Huan; Xu, Chunyan; Yu, Feng; Wang, Qisheng; Huang, Sheng; He, Jianhua

    2016-11-01

    X-ray diffraction is a common technique for determining crystal structures. The average time needed for the solution of a protein structure has been drastically reduced by a number of recent experimental and theoretical developments. Since high-throughput protein crystallography benefits from full automation of all steps that are carried out on a synchrotron beamline, an automatic crystal centring procedure is important for crystallographic beamlines. Fully automatic crystal alignment involves the application of optical methods to identify the crystal and move it onto the rotation axis and into the X-ray beam. Crystal recognition has complex dependencies on the illumination, crystal size and viewing angles due to effects such as local shading, inter-reflections and the presence of antifreezing elements. Here, a rapid procedure for crystal centring with multiple cameras using region segment thresholding is reported. Firstly, a simple illumination-invariant loop recognition and classification model is used by slicing a low-magnification loop image into small region segments, then classifying the loop into different types and aligning it to the beam position using feature vectors of the region segments. Secondly, an edge detection algorithm is used to find the crystal sample in a high-magnification image using region segment thresholding. Results show that this crystal centring method is extremely successful under fluctuating light states as well as for poorly frozen and opaque samples. Moreover, this crystal centring procedure is successfully integrated into the enhanced Blu-Ice data collection system at beamline BL17U1 at the Shanghai Synchrotron Radiation Facility as a routine method for an automatic crystal screening procedure.

  3. UV Signature Mutations †

    Science.gov (United States)

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  4. Effective UV radiation dose in polyethylene exposed to weather

    Science.gov (United States)

    González-Mota, R.; Soto-Bernal, J. J.; Rosales-Candelas, I.; Calero Marín, S. P.; Vega-Durán, J. T.; Moreno-Virgen, R.

    2009-09-01

    In this work we quantified the effective UV radiation dose in orange and colorless polyethylene samples exposed to weather in the city of Aguascalientes, Ags. Mexico. The spectral distribution of solar radiation was calculated using SMART 2.9.5.; the samples absorption properties were measured using UV-Vis spectroscopy and the quantum yield was calculated using samples reflectance properties. The determining factor in the effective UV dose is the spectral distribution of solar radiation, although the chemical structure of materials is also important.

  5. Recent progress in robot-based systems for crystallography and their contribution to drug discovery.

    Science.gov (United States)

    Ferrer, Jean-Luc; Larive, Nathalie A; Bowler, Matthew W; Nurizzo, Didier

    2013-07-01

    X-ray crystallography is the main tool for macromolecular structure solution at atomic resolution. It provides key information for the understanding of protein function, opening opportunities for the modulation of enzymatic mechanisms, and protein-ligand interactions. As a consequence, macromolecular crystallography plays an essential role in drug design, as well as in the a posteriori validation of drug mechanisms. The demand for method developments and also tools for macromolecular crystallography has significantly increased over the past 10 years. As a consequence, access to the facilities required for these investigations, such as synchrotron beamlines, became more difficult and significant efforts were dedicated to the automation of the experimental setup in laboratories. In this article, the authors describe how this was accomplished and how robot-based systems contribute to the enhancement of the macromolecular structure solution pipeline. The evolution in robot technology, together with progress in X-ray beam performance and software developments, contributes to a new era in macromolecular X-ray crystallography. Highly integrated experimental environments open new possibilities for crystallography experiments. It is likely that it will also change the way this technique will be used in the future, opening the field to a larger community.

  6. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons.

    Science.gov (United States)

    Weinert, Tobias; Olieric, Natacha; Cheng, Robert; Brünle, Steffen; James, Daniel; Ozerov, Dmitry; Gashi, Dardan; Vera, Laura; Marsh, May; Jaeger, Kathrin; Dworkowski, Florian; Panepucci, Ezequiel; Basu, Shibom; Skopintsev, Petr; Doré, Andrew S; Geng, Tian; Cooke, Robert M; Liang, Mengning; Prota, Andrea E; Panneels, Valerie; Nogly, Przemyslaw; Ermler, Ulrich; Schertler, Gebhard; Hennig, Michael; Steinmetz, Michel O; Wang, Meitian; Standfuss, Jörg

    2017-09-14

    Historically, room-temperature structure determination was succeeded by cryo-crystallography to mitigate radiation damage. Here, we demonstrate that serial millisecond crystallography at a synchrotron beamline equipped with high-viscosity injector and high frame-rate detector allows typical crystallographic experiments to be performed at room-temperature. Using a crystal scanning approach, we determine the high-resolution structure of the radiation sensitive molybdenum storage protein, demonstrate soaking of the drug colchicine into tubulin and native sulfur phasing of the human G protein-coupled adenosine receptor. Serial crystallographic data for molecular replacement already converges in 1,000-10,000 diffraction patterns, which we collected in 3 to maximally 82 minutes. Compared with serial data we collected at a free-electron laser, the synchrotron data are of slightly lower resolution, however fewer diffraction patterns are needed for de novo phasing. Overall, the data we collected by room-temperature serial crystallography are of comparable quality to cryo-crystallographic data and can be routinely collected at synchrotrons.Serial crystallography was developed for protein crystal data collection with X-ray free-electron lasers. Here the authors present several examples which show that serial crystallography using high-viscosity injectors can also be routinely employed for room-temperature data collection at synchrotrons.

  7. From crystallography to structural biology, a century of discoveries

    Directory of Open Access Journals (Sweden)

    Montoya, Guillermo

    2015-04-01

    Full Text Available From crystallography, the technique mostly used to study the structure of matter, the field mutated into structural biology, has mutated in life sciences into structural biology, which has been developed as an essential and rather successful area of research to fully understand the workings of cellular pathways. The application of physical approaches to biological systems has been crucial to comprehend the structure and function of the biological components of living organisms. In this assay the author walks the reader through the last century, which has witnessed how this life sciences research area was born and moved towards larger assemblies in the core of crucial biological problems. The influence of research in physics, biochemistry and molecular biology has been key in the successes and large body of seminal results obtained by structural biologists. The author proposes that the future of this area implies the integration of its results at the cellular level apart of using more quantitative approaches to describe biological processes.La cristalografía, la técnica más ampliamente usada para estudiar la estructura de la materia, ha evolucionado en las ciencias de la vida hacia la biología estructural, una exitosa área de investigación encaminada a comprender el funcionamiento de los procesos celulares. La aplicación de aproximaciones físicas a sistemas biológicos es clave para entender la estructura y funcionamiento de los componentes de los organismos. En este artículo el autor ofrece al lector un paseo por la evolución de esta área de conocimiento durante el siglo XX, desde su nacimiento hasta el análisis de grandes complejos macromoleculares, protagonistas importantes en diversos procesos biológicos. La influencia de investigaciones en física, bioquímica y biología molecular ha sido clave para los numerosos éxitos alcanzados por biólogos estructurales. El autor sostiene que el futuro de esta disciplina pasa por la

  8. Super-resolution biomolecular crystallography with low-resolution data.

    Science.gov (United States)

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    -ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.

  9. Towards a compact and precise sample holder for macromolecular crystallography

    Science.gov (United States)

    Rossi, Christopher; Janocha, Robert; Sorez, Clement; Astruc, Anthony; McCarthy, Andrew; Belrhali, Hassan; Cipriani, Florent

    2017-01-01

    Most of the sample holders currently used in macromolecular crystallography offer limited storage density and poor initial crystal-positioning precision upon mounting on a goniometer. This has now become a limiting factor at high-throughput beamlines, where data collection can be performed in a matter of seconds. Furthermore, this lack of precision limits the potential benefits emerging from automated harvesting systems that could provide crystal-position information which would further enhance alignment at beamlines. This situation provided the motivation for the development of a compact and precise sample holder with corresponding pucks, handling tools and robotic transfer protocols. The development process included four main phases: design, prototype manufacture, testing with a robotic sample changer and validation under real conditions on a beamline. Two sample-holder designs are proposed: NewPin and miniSPINE. They share the same robot gripper and allow the storage of 36 sample holders in uni-puck footprint-style pucks, which represents 252 samples in a dry-shipping dewar commonly used in the field. The pucks are identified with human- and machine-readable codes, as well as with radio-frequency identification (RFID) tags. NewPin offers a crystal-repositioning precision of up to 10 µm but requires a specific goniometer socket. The storage density could reach 64 samples using a special puck designed for fully robotic handling. miniSPINE is less precise but uses a goniometer mount compatible with the current SPINE standard. miniSPINE is proposed for the first implementation of the new standard, since it is easier to integrate at beamlines. An upgraded version of the SPINE sample holder with a corresponding puck named SPINEplus is also proposed in order to offer a homogenous and interoperable system. The project involved several European synchrotrons and industrial companies in the fields of consumables and sample-changer robotics. Manual handling of mini

  10. Non-contact luminescence lifetime cryothermometry for macromolecular crystallography.

    Science.gov (United States)

    Mykhaylyk, V B; Wagner, A; Kraus, H

    2017-05-01

    Temperature is a very important parameter when aiming to minimize radiation damage to biological samples during experiments that utilize intense ionizing radiation. A novel technique for remote, non-contact, in situ monitoring of the protein crystal temperature has been developed for the new I23 beamline at the Diamond Light Source, a facility dedicated to macromolecular crystallography (MX) with long-wavelength X-rays. The temperature is derived from the temperature-dependent decay time constant of luminescence from a minuscule scintillation sensor (<0.05 mm 3 ) located in very close proximity to the sample under test. In this work the underlying principle of cryogenic luminescence lifetime thermometry is presented, the features of the detection method and the choice of temperature sensor are discussed, and it is demonstrated how the temperature monitoring system was integrated within the viewing system of the endstation used for the visualization of protein crystals. The thermometry system was characterized using a Bi 4 Ge 3 O 12 crystal scintillator that exhibits good responsivity of the decay time constant as a function of temperature over a wide range (8-270 K). The scintillation sensor was calibrated and the uncertainty of the temperature measurements over the primary operation temperature range of the beamline (30-150 K) was assessed to be ±1.6 K. It has been shown that the temperature of the sample holder, measured using the luminescence sensor, agrees well with the expected value. The technique was applied to characterize the thermal performance of different sample mounts that have been used in MX experiments at the I23 beamline. The thickness of the mount is shown to have the greatest impact upon the temperature distribution across the sample mount. Altogether, these tests and findings demonstrate the usefulness of the thermometry system in highlighting the challenges that remain to be addressed for the in-vacuum MX experiment to become a

  11. Direct evidence of redox mediation between a poly(aniline-co-N-propanesulfonic acid aniline and 2,5-dimercapto-1,3,4-thiadiazole by UV-visible reflectance spectroscopy

    Directory of Open Access Journals (Sweden)

    Buttry Daniel A.

    2002-01-01

    Full Text Available A UV-visible reflectance and transmission spectroelectrochemical study of the redox behavior of thin films of a sulfonated polyaniline derivative, poly(aniline-co-N-propanesulfonic acid aniline (PAPSAH and of a mixture of this same derivative and 2,5-dimercapto-1,3,4-thiadiazole (DMcT is reported. The study shows the differential spectral changes that accompany the oxidation of PAPSAH, which comprise increases in the polaron band at 400 nm and a band at 600 nm. The reduction process of PAPSAH, comprises decreases in these same spectral bands. These changes are shown to be reversible with potential. For the case of the PAPSAH/DMcT mixed film, the data also reveal spectral changes that are characteristic of oxidation of DMcT to produce a disulfide polymer during PAPSAH oxidation. These changes are also reversible with potential. These data represent the first direct, spectroscopic observation of the redox mediation between a polyaniline derivative and DMcT.

  12. Probing cis-trans isomerization in the S1 state of C2H2 via H-atom action and hot band-pumped IR-UV double resonance spectroscopies

    Science.gov (United States)

    Changala, P. Bryan; Baraban, Joshua H.; Merer, Anthony J.; Field, Robert W.

    2015-08-01

    We report novel experimental strategies that should prove instrumental in extending the vibrational and rotational assignments of the S1 state of acetylene, C2H2, in the region of the cis-trans isomerization barrier. At present, the assignments are essentially complete up to ˜500 cm-1 below the barrier. Two difficulties arise when the assignments are continued to higher energies. One is that predissociation into C2H + H sets in roughly 1100 cm-1 below the barrier; the resulting quenching of laser-induced fluorescence (LIF) reduces its value for recording spectra in this region. The other difficulty is that tunneling through the barrier causes a staggering in the K-rotational structure of isomerizing vibrational levels. The assignment of these levels requires data for K values up to at least 3. Given the rotational selection rule K' - ℓ'' = ± 1, such data must be obtained via excited vibrational levels of the ground state with ℓ'' > 0. In this paper, high resolution H-atom resonance-enhanced multiphoton ionization spectra are demonstrated to contain predissociated bands which are almost invisible in LIF spectra, while preliminary data using a hyperthermal pulsed nozzle show that ℓ'' = 2 states can be selectively populated in a jet, giving access to K' = 3 states in IR-UV double resonance.

  13. Beamline 08ID-1, the prime beamline of the Canadian Macromolecular Crystallography Facility.

    Science.gov (United States)

    Grochulski, Pawel; Fodje, Michel N; Gorin, James; Labiuk, Shaunivan L; Berg, Russ

    2011-07-01

    Beamline 08ID-1 is the prime macromolecular crystallography beamline at the Canadian Light Source. Based on a small-gap in-vacuum undulator, it is designed for challenging projects like small crystals and crystals with large cell dimensions. Beamline 08ID-1, together with a second bending-magnet beamline, constitute the Canadian Macromolecular Crystallography Facility (CMCF). This paper presents an overall description of the 08ID-1 beamline, including its specifications, beamline software and recent scientific highlights. The end-station of the beamline is equipped with a CCD X-ray detector, on-axis crystal visualization system, a single-axis goniometer and a sample automounter allowing remote access to the beamline. The general user program is guaranteed up to 55% of the useful beam time and is run under a peer-review proposal system. The CMCF staff provide `Mail-in' crystallography service to the users with the highest-scored proposals.

  14. Chiroptical Spectroscopy

    Science.gov (United States)

    Gurst, Jerome E.

    1995-09-01

    A brief review of the literature, and Chemical and Engineering News in particular, reveals that the determination and use of optical activity is of increasing importance in today's commercial and research laboratories. The classical technique is to measure [alpha]D using a manual or recording polarimeter to provide a single value, the specific rotation at 589 nm. A spectropolarimeter can be used to determine optical activity through the UV-Visible spectrum (Optical Rotatory Dispersion [ORD]). At wavelengths far removed from electronic absorption bands, optical activity arises from circular birefringence, or the difference in the refractive index for left- and right-circularly polarized light; i.e., nL - nR does not equal zero for chiral materials. If the optical activity is measured through an absorption band, complex behavior is observed (a Cotton Effect curve). At an absorption band, chiral materials exhibit circular dichroism (CD), or a difference in the absorption of left- and right-circularly polarized light; epsilon L minus epsilon R does not equal zero. If the spectropolarimeter is set for the measurement of CD spectra, one observes what appears to be a UV-Vis spectrum except that some absorption bands are positive while others may be negative. Just as enantiomers have specific rotations that are equal and opposite at 589 nm (sodium D line), rotations are equal and opposite at all wavelengths, and CD measurements are equal and opposite at all wavelengths. Figure 1 shows the ORD curves for the enantiomeric carvones while Figure 2 contains the CD curves. The enantiomer of carvone that has the positive [alpha]D is obtained from caraway seeds and is known to have the S-configuration while the R-enantiomer is found in spearmint oil. Figure 1. ORD of S-(+)- and R-(-)-carvones Figure 2. CD of S-(+)- and R-(-)-carvones While little can be done to correlate stereochemistry with [alpha]D values, chiroptical spectroscopy (ORD and/or CD) often can be used to assign

  15. EarthFinder: A Precise Radial Velocity Survey Probe Mission of our Nearest Stellar Neighbors for Earth-Mass Habitable Zone Analogs Using High-Resolution UV-Vis-NIR Echelle Spectroscopy on a Space Platform

    Science.gov (United States)

    Plavchan, Peter; EarthFinder Team

    2018-01-01

    We are investigating the science case for a 1.0-1.4 meter space telescope to survey the closest, brightest FGKM main sequence stars to search for Habitable Zone (HZ) Earth analogs using the precise radial velocity (PRV) technique at a precision of 1-10 cm/s. Our baseline instrument concept uses two diffraction-limited spectrographs operating in the 0.4-1.0 microns and 1.0-2.4 microns spectral regions each with a spectral resolution of R=150,000~200,000, with the possibility of a third UV arm. Because the instrument utilizes a diffraction-limited input beam, the spectrograph would be extremely compact, less than 50 cm on a side, and illumination can be stabilized with the coupling of starlight into single mode fibers. With two octaves of wavelength coverage and a cadence unimpeded by any diurnal, seasonal, and atmospheric effects, EarthFinder will offer a unique platform for recovering stellar activity signals from starspots, plages, granulation, etc. to detect exoplanets at velocity semi-amplitudes currently not obtainable from the ground. Variable telluric absorption and emission lines may potentially preclude achieving PRV measurements at or below 10 cm/s in the visible and Earth-trailing (e.g. Spitzer, Kepler) or Lagrange orbit, the space-based cadence of observations of a star can be year-round at the ecliptic poles, with two ~100-day "seasons" every 6 months in the ecliptic plane. This will provide a distinct advantage compared to an annual ~3-6 month observing season from the ground for mitigating stellar activity and detecting the orbital periods of HZ Earth-mass analogs (e.g. ~6-months to ~2 years). Finally, we are compiling a list of ancillary science cases for the observatory, ranging from asteroseismology to the direct measurement of the expansion of the Universe.

  16. A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1.

    Directory of Open Access Journals (Sweden)

    Matthew C Clifton

    Full Text Available Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.

  17. Are You UV Safe?

    Science.gov (United States)

    Capobianco, Brenda; Thiel, Elizabeth Andrew

    2006-01-01

    Students may be slathered with SPF 30 sunscreen all summer at the beach or pool, but what do they know about ultraviolet (UV) light radiation and absorption? The authors of this article found the perfect opportunity to help students find out the science behind this important health precaution, when they developed a series of practical strategies…

  18. Effect of sorption conditions on the state of copper(II) ions in the phase of AN-31 ion exchange resin, according to data from ESR and UV-vis diffuse reflectance spectroscopy

    Science.gov (United States)

    Stroganova, E. A.; Anufrienko, V. F.; Larina, T. V.; Vasenin, N. T.; Lebedev, Yu. A.; Parmon, V. N.

    2017-08-01

    It is found that the sorption recovery of copper ions from water solutions in the phase of AN-31 low basicity anion exchanger has a mixed character. It is established via diffuse reflectance spectroscopy that ions are stabilized through complexation with the participation of the functional groups of the sorbent with the formation of structures [Cu(NR3)2(OH)2(H2O)2], [Cu(NR3)3(OH)(H2O)2], and as a result of the physical adsorption of oxide dimers and planar-squared copper clusters. It is shown that increasing the ionic strength of a solution by introducing sodium chloride into the system greatly improves the capacity of the sorbent and leads to the uniform distribution of copper ions in the resin matrix. The similarity between the ESR spectrum parameters of copper-containing samples of the ion exchanger, obtained in a wider range of pH, is determined via ESR and testifies to the homogeneity of the stabilization positions of Cu2+ ions. The crystalline field of tetragonal-elongated octahedron is typical of all Cu2+ ions. All of the complexes have Cu(NO3)2 coordination nodes with the covalent bonding of Cu2+ ions and the amine groups of the sorbent.

  19. Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation

    National Research Council Canada - National Science Library

    Dietmar Appelhans; Ulrich Oertel; Roberto Mazzeo; Hartmut Komber; Jan Hoffmann; Steffen Weidner; Bernhard Brutschy; Brigitte Voit; Maria Francesca Ottaviani

    2010-01-01

    ...(propyleneimine) glycodendrimers ranging up to the fifth generation that have either a dense maltose or maltotriose shell was investigated by UV/Vis spectroscopy and electron paramagnetic resonance (EPR...

  20. Biobased Nanoparticles for Broadband UV Protection with Photostabilized UV Filters

    NARCIS (Netherlands)

    Hayden, D.R.; Imhof, A.; Velikov, K. P.

    2016-01-01

    Sunscreens rely on multiple compounds to provide effective and safe protection against UV radiation. UV filters in sunscreens, in particular, provide broadband UV protection but are heavily linked to adverse health effects due to the generation of carcinogenic skin-damaging reactive oxygen species

  1. Automation of specimen selection and data acquisition for protein electron crystallography

    NARCIS (Netherlands)

    Oostergetel, G.T.; Keegstra, W.; Brisson, A.D R

    A system is presented for semi-automatic specimen selection and data acquisition for protein electron crystallography, based on a slow-scan CCD camera connected to a transmission electron microscope and control from an external computer. Areas of interest on the specimen are localised at low

  2. Frontiers of Crystallography: A Project-Based Research-Led Learning Exercise

    Science.gov (United States)

    Wilson, Chick C.; Parkin, Andrew; Thomas, Lynne H.

    2012-01-01

    A highly interactive research-led learning session for chemistry undergraduates is described, which aims to lead students to an awareness of the applications of crystallography technique through a mentored hands-on crystal structure solution and refinement session. The research-based environment is inherent throughout the 4.5 h program and is…

  3. 100 Years later: Celebrating the contributions of x-ray crystallography to allergy and clinical immunology.

    Science.gov (United States)

    Pomés, Anna; Chruszcz, Maksymilian; Gustchina, Alla; Minor, Wladek; Mueller, Geoffrey A; Pedersen, Lars C; Wlodawer, Alexander; Chapman, Martin D

    2015-07-01

    Current knowledge of molecules involved in immunology and allergic disease results from the significant contributions of x-ray crystallography, a discipline that just celebrated its 100th anniversary. The histories of allergens and x-ray crystallography are intimately intertwined. The first enzyme structure to be determined was lysozyme, also known as the chicken food allergen Gal d 4. Crystallography determines the exact 3-dimensional positions of atoms in molecules. Structures of molecular complexes in the disciplines of immunology and allergy have revealed the atoms involved in molecular interactions and mechanisms of disease. These complexes include peptides presented by MHC class II molecules, cytokines bound to their receptors, allergen-antibody complexes, and innate immune receptors with their ligands. The information derived from crystallographic studies provides insights into the function of molecules. Allergen function is one of the determinants of environmental exposure, which is essential for IgE sensitization. Proteolytic activity of allergens or their capacity to bind LPSs can also contribute to allergenicity. The atomic positions define the molecular surface that is accessible to antibodies. In turn, this surface determines antibody specificity and cross-reactivity, which are important factors for the selection of allergen panels used for molecular diagnosis and the interpretation of clinical symptoms. This review celebrates the contributions of x-ray crystallography to clinical immunology and allergy, focusing on new molecular perspectives that influence the diagnosis and treatment of allergic diseases. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  4. Neutron protein crystallography hydrogen protons and hydration in bio-macromolecules

    CERN Document Server

    Niimura, Nobuo

    2011-01-01

    This text is dedicated to the emerging field of neutron protein crystallography (NPC). It covers all of the practical aspects of NPC and demonstrates how NPC can explore protein features such as hydrogen bonds, protonation and deprotonation of amino acid residues, and hydration structures.

  5. Crystallographic and dynamic aspects of solid-state NMR calibration compounds: towards ab initio NMR crystallography

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Tapmeyer, Lukas; Bolte, Michael

    2016-01-01

    The excellent results of dispersion-corrected density functional theory (DFT-D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT-D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss-NMR...

  6. The World Space Observatory - Ultraviolet (WSO-UV Space Telescope; Status Update in 2013

    Directory of Open Access Journals (Sweden)

    Ana I. Gómez de Castro

    2014-12-01

    Full Text Available This is a short primer and a brief update on the status of the World Space Observatory-Ultraviolet (WSO-UV project dated in May 2013. WSO-UV is a 170m primary space telescope equipped for ultraviolet imaging and spectroscopy that will be operational in 2017 hosting an open science program for the world-wide scientic community.

  7. UV irradiance radiometers calibration procedure

    OpenAIRE

    Doctorovich I. V.; Butenko V. K.; Hodovaniouk V. N.; Fodchuk I. M.; Yuriev V. G.

    2008-01-01

    The paper deals with the problems arising at calibration of narrow-band spectral-sensitive radiometers. The procedure of irradiance unit transfer to UV radiometers — UV radiometers calibration procedure — is presented.

  8. uv preilluminated gas switches

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, L.P.; Orham, E.L.; Stowers, I.F.; Braucht, J.R.

    1980-06-03

    We have designed, built, and characterized uv preilluminated gas switches for a trigger circuit and a low inductance discharge circuit. These switches have been incorporated into a 54 x 76 x 150 cm pulser module to produce a 1 Ma output current rising at 5 x 10/sup 12/ amps/sec with 1 ns jitter. Twenty such modules will be used on the Nova Inertial Confinement Fusion Laser System for plasma retropulse shutters.

  9. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal

    Directory of Open Access Journals (Sweden)

    Sam Horrell

    2016-07-01

    Full Text Available Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07–1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a `catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.

  10. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new activit...

  11. UV Radiation and the Skin

    Directory of Open Access Journals (Sweden)

    Timothy Scott

    2013-06-01

    Full Text Available UV radiation (UV is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  12. The TROPOMI surface UV algorithm

    Directory of Open Access Journals (Sweden)

    A. V. Lindfors

    2018-02-01

    Full Text Available The TROPOspheric Monitoring Instrument (TROPOMI is the only payload of the Sentinel-5 Precursor (S5P, which is a polar-orbiting satellite mission of the European Space Agency (ESA. TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i daily dose or daily accumulated irradiance, (ii overpass dose rate or irradiance, and (iii local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2 satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.

  13. UV-light driven photocatalytic performance of hydrothermally-synthesized hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, Zhongqi; Zhang, Ke; Zhao, Heyun; Zhu, Jing

    2017-10-01

    Hexagonal CePO4 nanorods were synthesized via a simple hydrothermal method without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. UV-light driven photocatalytic activities of hexagonal CePO4 nanorods were detailedly demonstrated via degrading different organic dyes such as congo red (CR), organic rhodamine B (RB), methyl orange (MO) and methylene blue (MB) since these nanorods exhibit strong UV absorption with the cutoff edge of about 420 nm.

  14. UV activity indicators

    Science.gov (United States)

    Buccino, A. P.; Mauas, P. J. D.

    In Order to continue the work displayed in Buccino & Mauas(2003) and Buccino (2003), we have calculated the index Mg II (Xhk) on 1640 high resolution IUE spectra of 269 main sequence stars of spectral classes F, G and K. From this set of observations, we found an exponential relation between the continuum UV flux and the color (B-V). Contrary to Schrijver et al (1989), who assumed that the continuum UV flux depended on the color following the relation found by Rutten (1984) for the visible one, i.e. the logarithm of the flux is proportional to a polynomial of third order with the color. Nevertheless, the exponential relation flux in the continuous UV and the color (B-V) fits far better to our data that the given one by Rutten (1984). Obtained this dependency for the ultraviolet continuum flux, the index Xhk can be obtained from the single flux in the lines core, allowing to calculate the index of Mg II for those spectra where the continuum is very dark and so the relation signal noise is very low. As it were already reported in previous works (Rutten (1991), Schrijver (1992)), we found a minimum basal flux in the Mg II h and k lines core due to the cromospheric heating by disipation of acustics waves. From this minimum flux, we calculated minimum index of activity that satisfactorily fits to the minimum values of the indexes calculated on the 1640 spectra like quotient between the flux in the line core and the continuous one.

  15. Application of Independent Component Analysis to Legacy UV Quasar Spectra

    Science.gov (United States)

    Richards, Gordon

    2017-08-01

    We propose to apply a novel analysis technique to UV spectroscopy ofquasars in the HST archive. We endeavor to analyze all of thearchival quasar spectra, but will first focus on those quasars thatalso have optical spectroscopy from SDSS. An archival investigationby Sulentic et al. (2007) revealed 130 known quasars with UV coverageof CIV complementing optical emission line coverage. Today, thesample has grown considerably and now includes COS spectroscopy. Ourproposal includes a proof-of-concept demonstration of the power of atechnique called Independent Component Analysis (ICA). ICA allows usto reduce complexity of of quasar spectra to just a handful ofnumbers. In addition to providing a uniform set of traditional linemeasurements (and carefully calibrated redshifts), we will provide ICAweights to the community with examples of how they can be used to doscience that previously would have been quite difficult. The time isripe for such an investigation because 1) it has been a decade sincethe last significant archival investigation of UV emission lines fromHST quasars, 2) the future is uncertain for obtaining new UV quasarspectroscopy, and 3) the rise of machine learning has provided us withpowerful new tools. Thus our proposed work will provide a true UVlegacy database for quasar-based investigations.

  16. UV radiometry issues for UV stabilization of photoresist

    Science.gov (United States)

    Shi, Jianou; Grindle, Steven P.; Chen, Sharine; Owen, Greg; Insalaco, Linda J.; Cromer, Christopher L.; Goldner, Laurie S.

    1995-05-01

    The use of intense, broadband, ultraviolet (UV) radiation in the stabilization of photoresist requires stable UV sources and sensors, as well as suitable calibration procedures. We have constructed and measured the stability of a new UV transfer source standard with a spectrum that is identical to that of a commercially available photostabilizer. This device is particularly useful in calibrating the broadband UV detectors that monitor photostabilizer irradiance. The irradiance of this new source in a narrow band around 310 nm is monitored and found to be stable to better than 1.5% over 12 days. Spectral measurements of the source are also presented. The stability of two other commercially available UV sources is investigated and the behavior of the broadband UV sensors is discussed.

  17. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy

    Science.gov (United States)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  18. Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Patachia, Silvia, E-mail: st.patachia@unitbv.ro [' Transilvania' University of Brasov, Chemistry Department, Eroilor 29 Str., 500036, Brasov (Romania); Croitoru, Catalin, E-mail: c.croitoru@unitbv.ro [' Transilvania' University of Brasov, Chemistry Department, Eroilor 29 Str., 500036, Brasov (Romania); Friedrich, Christian [Albert-Ludwigs-Universitaet Freiburg, Stefan-Meier-Str. 28, Freiburg (Germany)

    2012-07-01

    In this paper, the influence of four types of imidazolium-based ionic liquids (ILs) on the chemical alteration of the surface of wood veneers exposed to 254 nm UV irradiation have been studied by using image analysis, Fourier transform infrared spectroscopy and surface energy calculation. The wood treated with ionic liquids showed better stability to UV light, as demonstrated by the low lignin, carbonyl index and cellulose crystallinity index variation, as well as very small color modification of the surface with the increase of the UV exposure period, by comparing to non-treated wood. The results show that the tested ionic liquids could be effective as UV stabilizers.

  19. Symmetrically substituted phenothiazine as prospective candidate for UV responsive dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fingerle, Mathias [University of Kaiserslautern, Department of Physics and Research Center OPTIMAS, Erwin-Schrödinger-Str. 56, D-67653 Kaiserslautern (Germany); Hemgesberg, Maximilian [University of Kaiserslautern, Department of Chemistry, Erwin-Schrödinger-Str. 52-54, D-67653 Kaiserslautern (Germany); Lach, Stefan [University of Kaiserslautern, Department of Physics and Research Center OPTIMAS, Erwin-Schrödinger-Str. 56, D-67653 Kaiserslautern (Germany); Thiel, Werner R. [University of Kaiserslautern, Department of Chemistry, Erwin-Schrödinger-Str. 52-54, D-67653 Kaiserslautern (Germany); Ziegler, Christiane, E-mail: cz@physik.uni-kl.de [University of Kaiserslautern, Department of Physics and Research Center OPTIMAS, Erwin-Schrödinger-Str. 56, D-67653 Kaiserslautern (Germany)

    2015-09-30

    A hybrid layer system consisting of anatase, an N-substituted dithienylated phenothiazine (DTPT) with a carboxylic anchor group as molecular donor–π–acceptor-system and poly(3-hexylthiophene) as hole transporting material is studied by means of X-ray and UV-photoelectron spectroscopy and UV/vis spectroscopy. The optoelectronic properties of the DTPT and the energy level alignment at the interface DTPT/TiO{sub 2} enable the design of an UV-responsive hybrid solar cell, which is conceptually presented. - Highlights: • New symmetrically substituted phenothiazine with carboxylic anchor group to anatase • Good sensitizing properties on anatase nanoparticles in the UV region • Concept presentation of a UV-responsive hybrid solar cell.

  20. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    Science.gov (United States)

    Nikafshar, Saeid; Zabihi, Omid; Ahmadi, Mojtaba; Mirmohseni, Abdolreza; Taseidifar, Mojtaba; Naebe, Minoo

    2017-01-01

    Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV) damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR) analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM) imaging. Additionally, the glass transition temperatures (Tg) before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light. PMID:28772538

  1. The bio-crystallography beamline (BL41XU) at SPring-8

    CERN Document Server

    Kawamoto, M; Kamiya, N

    2001-01-01

    The bio-crystallography beamline (BL41XU), one of two pilot beamlines at SPring-8, was constructed using a standard in-vacuum-type undulator and opened for general users from domestic and overseas countries. Many tests and improvements were carried out on beamline elements and equipment for macromolecular crystallography, especially on the so-called 'pin-post' water cooling crystal of rotated-inclined double crystal monochromator. The maximum brilliance at sample position reached to 4x10 sup 1 sup 5 photons/s/mm sup 2 /mrad sup 2 at an X-ray energy of 11 keV. Commercially available X-ray detectors of CCD and imaging plate were installed in the experimental station. A beamline control software system for beam tracking and an on-line reader for large-format imaging plate were newly developed.

  2. How cryo-electron microscopy and X-ray crystallography complement each other.

    Science.gov (United States)

    Wang, Hong-Wei; Wang, Jia-Wei

    2017-01-01

    With the ability to resolve structures of macromolecules at atomic resolution, X-ray crystallography has been the most powerful tool in modern structural biology. At the same time, recent technical improvements have triggered a resolution revolution in the single particle cryo-EM method. While the two methods are different in many respects, from sample preparation to structure determination, they both have the power to solve macromolecular structures at atomic resolution. It is important to understand the unique advantages and caveats of the two methods in solving structures and to appreciate the complementary nature of the two methods in structural biology. In this review we provide some examples, and discuss how X-ray crystallography and cryo-EM can be combined in deciphering structures of macromolecules for our full understanding of their biological mechanisms. © 2016 The Protein Society.

  3. Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography.

    Science.gov (United States)

    Yefanov, Oleksandr; Gati, Cornelius; Bourenkov, Gleb; Kirian, Richard A; White, Thomas A; Spence, John C H; Chapman, Henry N; Barty, Anton

    2014-07-17

    Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure 'three-dimensional merging'. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies.

  4. The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments.

    Science.gov (United States)

    Brockhauser, Sandor; Ravelli, Raimond B G; McCarthy, Andrew A

    2013-07-01

    Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitate the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.

  5. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Aller, Pierre [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz; Cameron, Alex [Imperial College, London SW7 2AZ (United Kingdom); Axford, Danny; Owen, Robin L. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Armour, Wes [Oxford e-Research Centre (OeRC), Keble Road, Oxford OX1 3QG (United Kingdom); Waterman, David G. [Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2013-08-01

    A systematic approach to the scaling and merging of data from multiple crystals in macromolecular crystallography is introduced and explained. The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.

  6. Structure study of the tri-continuous mesoporous silica IBN-9 by electron crystallography

    KAUST Repository

    Zhang, Daliang

    2011-12-01

    High resolution electron microscopy (HRTEM) has unique advantages for structural determination of nano-sized porous materials compared to X-ray diffraction, because it provides the important structure factor phase information which is lost in diffraction. Here we demonstrate the structure determination of the first tri-continuous mesoporous silica IBN-9 by electron crystallography. IBN-9 has a hexagonal unit cell with the space group P6 3/mcm and a = 88.4 , c = 84.3 . HRTEM images taken along three main directions, [0 0 1], [11̄0] and [1 0 0] were combined to reconstruct the 3D electrostatic potential map, from which the tri-continuous pore structure of IBN-9 was discovered. The different steps of structure determination of unknown mesoporous structures by electron crystallography are described in details. Similar procedures can also be applied for structure determination of other porous and nonporous crystalline materials. © 2011 Elsevier Inc. All rights reserved.

  7. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; Dao, E. Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S.; Young, Iris D.; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S.; Koglin, Jason E.; Boutet, Sébastien; Junco, Elia A.; Hayes, Brandon; Bogan, Michael J.; Hampton, Christina Y.; Puglisi, Elisabetta V.; Sauter, Nicholas K.; Stan, Claudiu A.; Zouni, Athina; Yano, Junko; Yachandra, Vittal K.; Soltis, S. Michael; Puglisi, Joseph D.; DeMirci, Hasan

    2015-11-30

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  8. Distributed control of protein crystallography beamline 5.0 using CORBA

    OpenAIRE

    Timossi, Chris

    1999-01-01

    The Protein Crystallography Beamline at Berkeley Lab's Advanced Light Source is a facility that is being used to solve the structure of proteins. The software that is being used to control this beamline uses Java for user interface applications which communicate via CORBA with workstations that control the beamline hardware. We describe the software architecture for the beamline and our experiences after two years of operation.

  9. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    Science.gov (United States)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  10. UV imaging in pharmaceutical analysis

    DEFF Research Database (Denmark)

    Østergaard, Jesper

    2018-01-01

    UV imaging provides spatially and temporally resolved absorbance measurements, which are highly useful in pharmaceutical analysis. Commercial UV imaging instrumentation was originally developed as a detector for separation sciences, but the main use is in the area of in vitro dissolution...... administration. UV imaging has potential for providing new insights to drug dissolution and release processes in formulation development by real-time monitoring of swelling, precipitation, diffusion and partitioning phenomena. Limitations of current instrumentation are discussed and a perspective to new...

  11. UV Clothing and Skin Cancer

    OpenAIRE

    Tarbuk, Anita; Grancarić, Ana Marija; Šitum, Mirna; Martinis, Mladen

    2010-01-01

    Skin cancer incidence in Croatia is steadily incresing in spite of public and govermental permanently measurements. It is clear that will soon become a major public health problem. The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet (UV) radiation. The future designers of UV protective materials should be able to block totally the ultraviolet radiation. The aim of this paper is to present results of measurements concerning UV protecting ability of garments ...

  12. The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

    Science.gov (United States)

    Edlund, Petra; Takala, Heikki; Claesson, Elin; Henry, Léocadie; Dods, Robert; Lehtivuori, Heli; Panman, Matthijs; Pande, Kanupriya; White, Thomas; Nakane, Takanori; Berntsson, Oskar; Gustavsson, Emil; Båth, Petra; Modi, Vaibhav; Roy-Chowdhury, Shatabdi; Zook, James; Berntsen, Peter; Pandey, Suraj; Poudyal, Ishwor; Tenboer, Jason; Kupitz, Christopher; Barty, Anton; Fromme, Petra; Koralek, Jake D.; Tanaka, Tomoyuki; Spence, John; Liang, Mengning; Hunter, Mark S.; Boutet, Sebastien; Nango, Eriko; Moffat, Keith; Groenhof, Gerrit; Ihalainen, Janne; Stojković, Emina A.; Schmidt, Marius; Westenhoff, Sebastian

    2016-10-01

    Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.

  13. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination

    Science.gov (United States)

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2014-01-01

    The number of macromolecular structures deposited in the Protein Data Bank now approaches 100 000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation. PMID:24034303

  14. Integrated Controlling System and Unified Database for High Throughput Protein Crystallography Experiments

    Science.gov (United States)

    Gaponov, Yu. A.; Igarashi, N.; Hiraki, M.; Sasajima, K.; Matsugaki, N.; Suzuki, M.; Kosuge, T.; Wakatsuki, S.

    2004-05-01

    An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view, create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments.

  15. UV and IR laser spectroscopy of isolated molecular structural dynamics

    NARCIS (Netherlands)

    Smolarek, S.

    2011-01-01

    Tijdens de afgelopen decennia is hoge-resolutielaserspectroscopie één van de meest effectieve instrumenten geworden om de fysische en chemische eigenschappen van moleculen te bestuderen. Szymon Smolarek gebruikte deze methodes om energievervalskanalen te bestuderen in DNA-basen, te onderzoeken wat

  16. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path...

  17. Skin Cancer and UV Protection

    Directory of Open Access Journals (Sweden)

    Tarbuk Anita

    2016-03-01

    Full Text Available The incidence of skin cancer is increasing by epidemic proportions. Basal cell cancer remains the most common skin neoplasm, and simple excision is generally curative. On the other hand, aggressive local growth and metastasis are common features of malignant melanoma, which accounts for 75% of all deaths associated with skin cancer. The primary cause of skin cancer is long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation and family genetics. It is believed that in childhood and adolescence, 80% of UV-R gets absorbed while in the remaining, 20 % gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Reducing the exposure time to sunlight, using sunscreens and protective textiles are the three ways of UV protection. Most people think that all the clothing will protect them, but it does not provide full sun screening properties. Literature sources claim that only 1/3 of the spring and summer collections tested give off proper UV protection. This is very important during the summer months, when UV index is the highest. Fabric UV protection ability highly depends on large number of factors such as type of fiber, fabric surface, construction, porosity, density, moisture content, type and concentration of dyestuff, fluorescent whitening agents, UV-B protective agents (UV absorbers, as well as nanoparticles, if applied. For all of these reasons, in the present paper, the results of UV protecting ability according to AS/NZS 4399:1996 will be discussed to show that standard clothing materials are not always adequate to prevent effect of UV-R to the human skin; and to suggest the possibilities for its improvement for this purpose enhancing light conversion and scattering. Additionally, the discrepancy in UV protection was investigated in distilled water as well as Adriatic Sea water.

  18. Tryptophan-to-Tryptophan Energy Transfer in UV-B photoreceptor UVR8

    Science.gov (United States)

    Li, Xiankun; Zhong, Dongping

    UVR8 (UV RESISTANCE LOCUS 8) protein is a UV-B photoreceptor in high plants. UVR8 is a homodimer that dissociates into monomers upon UV-B irradiation (280 nm to 315 nm), which triggers various protective mechanisms against UV damages. Uniquely, UVR8 does not contain any external chromophores and utilizes the UV-absorbing natural amino acid tryptophan (Trp) to perceive UV-B. Each UVR8 monomer has 14 tryptophan residues. However, only 2 epicenter Trp (W285 W233) are critical to the light induced dimer-to-monomer transformation. Here, we revealed, using site-directed mutagenesis and spectroscopy, a striking energy flow network, in which other tryptophan chromophores serve as antenna to transfer excitation energy to epicenter Trp, greatly enhancing UVR8 light-harvesting efficiency. Furthermore, Trp-to-Trp energy transfer rates were measured and agree well with theoretical values.

  19. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  20. Electronic spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is

  1. Optical design of WUVS instrument: WSO-UV spectrographs

    Science.gov (United States)

    Sachkov, Mikhail; Panchuk, Vladimir; Yushkin, Maxim; Fatkhullin, Timur

    2016-07-01

    World Space Observatory - Ultraviolet project is an international space observatory for spectroscopy and imaging in 115-310 nm spectral range. The WSO-UV telescope feeds in its focal plane two main instruments for spectroscopy (unit of spectrographs - WUVS) and imaging (field camera unit - FCU) as well as Fine Guidance System (FGS). Significant progress in the CCD development allows to use the back illuminated CCD detectors with anti-reflection coating for spectroscopic observations in this ultraviolet domain instead of wide used MCP detectors. In this paper we present the final optical design of the WUVS instrument.

  2. Conformational heterogeneity of methyl 4-hydroxycinnamate: a gas-phase UV-IR spectroscopic study.

    Science.gov (United States)

    Tan, Eric M M; Amirjalayer, Saeed; Smolarek, Szymon; Vdovin, Alexander; Rijs, Anouk M; Buma, Wybren J

    2013-05-02

    UV excitation and IR absorption spectroscopy on jet-cooled molecules is used to study the conformational heterogeneity of methyl 4-hydroxycinnamate, a model chromophore of the Photoactive Yellow Protein (PYP), and to determine the spectroscopic properties of the various conformers. UV-UV depletion spectroscopy identifies four different species with distinct electronic excitation spectra. Quantum chemical calculations argue that these species are associated with different conformers involving the s-cis/s-trans configuration of the ester with respect to the propenyl C-C single bond and the syn/anti orientation of the phenolic OH group. IR-UV hole-burning spectroscopy is used to record their IR absorption spectra in the fingerprint region. Comparison with IR absorption spectra predicted by quantum chemical calculations provides vibrational markers for each of the conformers, on the basis of which each of the species observed with UV-UV depletion spectroscopy is assigned. Although both DFT and wave function methods reproduce experimental frequencies, we find that calculations at the MP2 level are necessary to obtain agreement with experimentally observed intensities. To elucidate the role of the environment, we compare the IR spectra of the isolated conformers with IR spectra of methyl 4-hydroxycinnamate-water clusters, and with IR spectra of methyl 4-hydroxycinnamate in solution.

  3. Microscale X-ray Absorption Spectroscopy on the GSECARS Sector 13 at the APS

    CERN Document Server

    Stephen-Sutto

    2000-01-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for frontier research in the earth sciences using synchrotrons radiation at the Advanced Photon Source, Argonne National Laboratory. GSECARS provides earth scientists with access to the high-brilliance hard x-rays from this third-generation synchrotrons light source. The research conducted at this facility will advance our knowledge of the composition, structure and properties of earth materials, the processes they control and the processes that produce them. All principal synchrotron-based analytical techniques in demand by earth scientists are being brought to bear on earth science problems: (1) high-pressure/high-temperature crystallography and spectroscopy using the diamond anvil cell; (2) high-pressure/high-temperature crystallography using the large-volume press; (3) powder, single crystal and interface diffraction; (4) x-ray absorption fine structure (XAFS) spectroscopy; (5) x-ray fluorescence microprobe analysis and microspectroscopy; and (6) mic...

  4. NSLS-II biomedical beamlines for micro-crystallography, FMX, and for highly automated crystallography, AMX: New opportunities for advanced data collection

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Martin R., E-mail: mfuchs@bnl.gov; Bhogadi, Dileep K.; Jakoncic, Jean; Myers, Stuart; Sweet, Robert M.; Berman, Lonny E.; Skinner, John; Idir, Mourad; Chubar, Oleg; McSweeney, Sean; Schneider, Dieter K. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-07-27

    We present the final design of the x-ray optics and experimental stations of two macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source-II. The microfocusing FMX beamline will deliver a flux of ∼5×10{sup 12} ph/s at 1 Å into a 1 – 20 µm spot, its flux density surpassing current MX beamlines by up to two orders of magnitude. It covers an energy range from 5 – 30 keV. The highly automated AMX beamline is optimized for high throughput, with beam sizes from 4 – 100 µm, an energy range of 5 – 18 keV and a flux at 1 Å of ∼10{sup 13} ph/s. A focus in designing the beamlines lay on achieving high beam stability, for example by implementing a horizontal bounce double crystal monochromator at FMX. A combination of compound refractive lenses and bimorph mirror optics at FMX supports rapid beam size changes. Central components of the in-house developed experimental stations are horizontal axis goniometers with a target sphere of confusion of 100 nm, piezo-slits for dynamic beam size changes during diffraction experiments, dedicated secondary goniometers for data collection from specimen in crystallization plates, and next generation pixel array detectors. FMX and AMX will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells, to rapid sample screening and room temperature data collection of crystals in trays.

  5. XRD and UV-Vis diffuse reflectance analysis of CeO 2-ZrO 2 solid ...

    Indian Academy of Sciences (India)

    The products were characterized by XRD and UV-Vis-NIR diffuse reflectance spectroscopy. The materials are crystalline in nature and the lattice parameters of the solid solution series follow Vegard's law. Diffuse reflectance spectra of the solid solutions in the UV region show two intense bands at 250 and 297 nm which are ...

  6. World space observatory-ultraviolet among UV missions of the coming years

    Science.gov (United States)

    Shustov, Boris; Sachkov, Mikhail; Gómez de Castro, Ana I.; Werner, Klaus; Kappelmann, Norbert; Moisheev, Alexander

    2011-09-01

    Continuous access to the UV domain has been considered of importance to astrophysicists and planetary scientists since the mid-sixties. However, the future of UV missions for the post-HST era is believed by a significant part of astronomical community to be less encouraging. We argue that key science problems of the coming years will require further development of UV observational technologies. Among these hot astrophysical issues are: the search for missing baryons, revealing the nature of astronomical engines, properties of atmospheres of exoplanets as well as of the planets of the Solar System etc. We give a brief review of UV-missions both in the past and in the future. We conclude that UV astronomy has a great future but the epoch of very large and efficient space UV facilities seems to be a prospect for the next decades. As to the current state of the UV instrumentation we think that this decade will be dominated by the HST and coming World Space Observatory-Ultraviolet (WSO-UV) with a 1.7 m UV-telescope onboard. The international WSO-UV mission is briefly described. It will allow high resolution/high sensitivity imaging and high/low resolution spectroscopy from the middle of the decade.

  7. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  8. UV-sensitive scientific CCD image sensors

    Science.gov (United States)

    Vishnevsky, Grigory I.; Kossov, Vladimir G.; Iblyaminova, A. F.; Lazovsky, Leonid Y.; Vydrevitch, Michail G.

    1997-06-01

    An investigation of probe laser irradiation interaction with substances containing in an environment has long since become a recognized technique for contamination detection and identification. For this purpose, a near and midrange-IR laser irradiation is traditionally used. However, as many works presented on last ecology monitoring conferences show, in addition to traditional systems, rapidly growing are systems with laser irradiation from near-UV range (250 - 500 nm). Use of CCD imagers is one of the prerequisites for this allowing the development of a multi-channel computer-based spectral research system. To identify and analyze contaminating impurities on an environment, such methods as laser fluorescence analysis, UV absorption and differential spectroscopy, Raman scattering are commonly used. These methods are used to identify a large number of impurities (petrol, toluene, Xylene isomers, SO2, acetone, methanol), to detect and identify food pathogens in real time, to measure a concentration of NH3, SO2 and NO in combustion outbursts, to detect oil products in a water, to analyze contaminations in ground waters, to define ozone distribution in the atmosphere profile, to monitor various chemical processes including radioactive materials manufacturing, heterogeneous catalytic reactions, polymers production etc. Multi-element image sensor with enhanced UV sensitivity, low optical non-uniformity, low intrinsic noise and high dynamic range is a key element of all above systems. Thus, so called Virtual Phase (VP) CCDs possessing all these features, seems promising for ecology monitoring spectral measuring systems. Presently, a family of VP CCDs with different architecture and number of pixels is developed and being manufactured. All CCDs from this family are supported with a precise slow-scan digital image acquisition system that can be used in various image processing systems in astronomy, biology, medicine, ecology etc. An image is displayed directly on a PC

  9. UV Photography Shows Hidden Sun Damage

    Science.gov (United States)

    ... mcat1=de12", ]; for (var c = 0; c UV photography shows hidden sun damage A UV photograph gives ... developing skin cancer and prematurely aged skin. Normal photography UV photography 18 months of age: This boy's ...

  10. Sun, UV Radiation and Your Eyes

    Science.gov (United States)

    ... Eye Health / Tips & Prevention Your Eyes and the Sun Sections The Sun, UV Radiation and Your Eyes ... Best Sunglasses Sun Smart UV Safety Infographic The Sun, UV Radiation and Your Eyes Leer en Español: ...

  11. Secure UNIX socket-based controlling system for high-throughput protein crystallography experiments.

    Science.gov (United States)

    Gaponov, Yurii; Igarashi, Noriyuki; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Suzuki, Mamoru; Kosuge, Takashi; Wakatsuki, Soichi

    2004-01-01

    A control system for high-throughput protein crystallography experiments has been developed based on a multilevel secure (SSL v2/v3) UNIX socket under the Linux operating system. Main features of protein crystallography experiments (purification, crystallization, loop preparation, data collecting, data processing) are dealt with by the software. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data, that are stored in Network File Server) in a relational database (MySQL). The system consists of several servers and clients. TCP/IP secure UNIX sockets with four predefined behaviors [(a) listening to a request followed by a reply, (b) sending a request and waiting for a reply, (c) listening to a broadcast message, and (d) sending a broadcast message] support communications between all servers and clients allowing one to control experiments, view data, edit experimental conditions and perform data processing remotely. The usage of the interface software is well suited for developing well organized control software with a hierarchical structure of different software units (Gaponov et al., 1998), which will pass and receive different types of information. All communication is divided into two parts: low and top levels. Large and complicated control tasks are split into several smaller ones, which can be processed by control clients independently. For communicating with experimental equipment (beamline optical elements, robots, and specialized experimental equipment etc.), the STARS server, developed at the Photon Factory, is used (Kosuge et al., 2002). The STARS server allows any application with an open socket to be connected with any other clients that control experimental equipment. Majority of the source code is written in C/C++. GUI modules of the system were built mainly using Glade user interface builder for GTK+ and Gnome under Red Hat Linux 7.1 operating system.

  12. The structure of the cytochrome P450cam-putidaredoxin complex determined by paramagnetic NMR spectroscopy and crystallography

    NARCIS (Netherlands)

    Hiruma, Yoshitaka

    2014-01-01

    By utilizing paramagnetic NMR techniques, the structure and dynamics of the P450cam system were investigated. The analysis of PCS and RDC illuminated the stereo-specific final complex of Pdx and P450cam, while the results of PRE demonstrated the presence of a transient encounter complex.

  13. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    Directory of Open Access Journals (Sweden)

    Arjen J. Jakobi

    2016-03-01

    Full Text Available The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  14. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Jose M. Martin-Garcia

    2017-07-01

    Full Text Available Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX is severely limited by the scarcity of X-ray free-electron laser (XFEL sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX. As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS, are reported. Microcrystals (5–20 µm of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR, the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP or a high-molecular-weight poly(ethylene oxide (PEO; molecular weight 8 000 000 were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the

  15. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    Science.gov (United States)

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-11-10

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  16. Integrated software for macromolecular crystallography synchrotron beamlines II: revision, robots and a database.

    Science.gov (United States)

    Skinner, John M; Cowan, Matt; Buono, Rick; Nolan, William; Bosshard, Heinz; Robinson, Howard H; Héroux, Annie; Soares, Alexei S; Schneider, Dieter K; Sweet, Robert M

    2006-11-01

    This manuscript chronicles the evolution of software used originally to control a diffractometer at a macromolecular crystallography beamline. The system has been augmented and rewritten. A modular and carefully organized suite of programs now handles the whole experimental environment from a single vantage point. It provides automatic logging of the experiment and communication with the user, all the way from an initial proposal to perform the work to the end of data collection. This has included construction of a relational database to organize all details of the experiment and incorporation of a robotic specimen changer to provide automation for high-throughput applications.

  17. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  18. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, P.A. [ILL, Grenoble (France); Pebay-Peyroula, E. [IBS-UJF Grenoble (France)

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  19. Watching proteins function with time-resolved x-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Šrajer, Vukica; Schmidt, Marius

    2017-08-22

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We

  20. BL2D-SMC, the supramolecular crystallography beamline at the Pohang Light Source II, Korea.

    Science.gov (United States)

    Shin, Jong Won; Eom, Kisu; Moon, Dohyun

    2016-01-01

    BL2D-SMC at the Pohang Light Source II is a supramolecular crystallography beamline based on a bending magnet. The beamline delivers high-flux tunable X-rays with energies from 8.3 to 20.7 keV and a 100 µm (horizontal) × 85 µm (vertical) full width at half-maximum focal spot. Experiments involving variable temperature, photo-excitation and gas sorption are supported by ancillary equipment and software in the beamline. The design of the beamline, its role and the main components are described.

  1. UV clothing and skin cancer.

    Science.gov (United States)

    Tarbuk, Anita; Grancarić, Ana Marija; Situm, Mirna; Martinis, Mladen

    2010-04-01

    Skin cancer incidence in Croatia is steadily increasing in spite of public and governmental permanently measurements. It is clear that will soon become a major public health problem. The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet (UV) radiation. The future designers of UV protective materials should be able to block totally the ultraviolet radiation. The aim of this paper is to present results of measurements concerning UV protecting ability of garments and sun-screening textiles using transmission spectrophotometer Cary 50 Solarscreen (Varian) according to AS/NZS 4399:1996; to show that standard clothing materials are not always adequate to prevent effect of UV radiation to the human skin; and to suggest the possibilities for its improvement for this purpose.

  2. Beyond crystallography

    OpenAIRE

    Siwick, Bradley

    2004-01-01

    T. Egami and S. J. L. Billinge provide a practical guide to the structural analysis of complex materials using the atomic pair distribution function, which is clear, insightful, and offers a few surprises, says Bradley Siwick.

  3. Some Aspects of Crystal Centering During X-ray High-throughput Protein Crystallography Experiment

    Science.gov (United States)

    Gaponov, Yu. A.; Matsugaki, N.; Sasajima, K.; Igarashi, N.; Wakatsuki, S.

    A set of algorithms and procedures of a crystal loop centering during X-ray high-throughput protein crystallography experiment has been designed and developed. A simple algorithm of the crystal loop detection and preliminary recognition has been designed and developed. The crystal loop detection algorithm is based on finding out the crystal loop ending point (opposite to the crystal loop pin) using image cross section (digital image column) profile analysis. The crystal loop preliminary recognition procedure is based on finding out the crystal loop sizes and position using image cross section profile analysis. The crystal loop fine recognition procedure based on Hooke-Jeeves pattern search method with an ellipse as a fitting pattern has been designed and developed. The procedure of restoring missing coordinate of the crystal loop is described. Based on developed algorithms and procedures the optimal auto-centering procedure has been designed and developed. A procedure of optimal manual crystal centering (Two Clicks Procedure) has been designed and developed. Developed procedures have been integrated into control software system PCCS installed at crystallography beamlines Photon Factory BL5A and PF-AR NW12, KEK.

  4. Protein crystallography beamline BL2S1 at the Aichi synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao (Nagoya); (Photon)

    2017-01-01

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. Lastly, high-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.

  5. The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brockhauser, Sandor [European Molecular Biology Laboratory (EMBL), 6 Rue Jules Horowitz, 38042 Grenoble (France); UJF–EMBL–CNRS UMI 3265, 6 Rue Jules Horowitz, 38043 Grenoble (France); Ravelli, Raimond B. G. [Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden (Netherlands); McCarthy, Andrew A., E-mail: andrewmc@embl.fr [European Molecular Biology Laboratory (EMBL), 6 Rue Jules Horowitz, 38042 Grenoble (France); UJF–EMBL–CNRS UMI 3265, 6 Rue Jules Horowitz, 38043 Grenoble (France)

    2013-07-01

    Hardware and software solutions for MX data-collection strategies using the EMBL/ESRF miniaturized multi-axis goniometer head are presented. Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitate the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.

  6. Application of electron crystallography to structure characterization of ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    Jin-Gyu Kim

    2011-07-01

    Full Text Available We chracterized the structure properties of two types of ZnS nanocrystals by electron crystallography. X-ray diffraction analysis for these ZnS nanocrystals was performed to determine their initial structures. Their crystallite sizes were about 5.9 nm and 8.1 nm and their crystal systems were hexagonal and cubic, respectively. Their atomic structures, however, could not be determined because of the weak diffraction intensities as well as the unexpected intensities from impurty. To overcome these problems, the structures of ZnS nanocrystals were resolved by electron crystallography using EF-EPD (energy-filtered electron powder diffraction and HRTEM (high resolution transmission electron microscopy methods. The structrues determined by Rietveld analysis are P63mc (a = 3.8452 Å, c = 18.5453 Å and F-43m (a = 5.4356 Å, respectively. Their crystallite shapes were nanorods and quasi-nanoparticles and the nanorod crystal were grown along the [001] direction. It was revealed that the phase transformation between the cubic sphalerite to the hexagonal wurtzite structure of ZnS nanocrytals was related to their shapes and growth mechanism. Electron cryststallogrpahy, employing EF-EPD and HRTEM methods together, has advantages for structure analysis and property chracterization of nano-sized materials.

  7. SPring-8 BL41XU, a high-flux macromolecular crystallography beamline

    Science.gov (United States)

    Hasegawa, Kazuya; Shimizu, Nobutaka; Okumura, Hideo; Mizuno, Nobuhiro; Baba, Seiki; Hirata, Kunio; Takeuchi, Tomoyuki; Yamazaki, Hiroshi; Senba, Yasunori; Ohashi, Haruhiko; Yamamoto, Masaki; Kumasaka, Takashi

    2013-01-01

    SPring-8 BL41XU is a high-flux macromolecular crystallography beamline using an in-vacuum undulator as a light source. The X-rays are monochromated by a liquid-nitrogen-cooling Si double-crystal monochromator, and focused by Kirkpatrick–Baez mirror optics. The focused beam size at the sample is 80 µm (H) × 22 µm (V) with a photon flux of 1.1 × 1013 photons s−1. A pinhole aperture is used to collimate the beam in the range 10–50 µm. This high-flux beam with variable size provides opportunities not only for micro-crystallography but also for data collection effectively making use of crystal volume. The beamline also provides high-energy X-rays covering 20.6–35.4 keV which allows ultra-high-resolution data to be obtained and anomalous diffraction using the K-edge of Xe and I. Upgrade of BL41XU for more rapid and accurate data collection is proceeding. Here, details of BL41XU are given and an outline of the upgrade project is documented. PMID:24121338

  8. Protein crystallography beamline BL2S1 at the Aichi synchrotron.

    Science.gov (United States)

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao

    2017-01-01

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7-17 keV (1.8-0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. High-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.

  9. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments.

    Science.gov (United States)

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J; Hall, David R; Lavault, Bernard; McCarthy, Andrew A; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B G; Thibault, Xavier; Walsh, Martin A; Leonard, Gordon A; McSweeney, Sean M

    2010-09-01

    The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1.

  10. A new paradigm for macromolecular crystallography beamlines derived from high-pressure methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Fourme, Roger, E-mail: roger.fourme@synchrotron-soleil.fr [Synchrotron SOLEIL, BP 48, Saint Aubin, 91192 Gif-sur-Yvette (France); Girard, Eric [IBS (UMR 5075 CEA-CNRS-UJF-PSB), 41 rue Jules Horowitz, 38027 Grenoble Cedex (France); Dhaussy, Anne-Claire [CRISMAT, ENSICAEN, 6 Boulevard du Maréchal Juin, 14000 Caen (France); Medjoubi, Kadda [Synchrotron SOLEIL, BP 48, Saint Aubin, 91192 Gif-sur-Yvette (France); Prangé, Thierry [LCRB (UMR 8015 CNRS), Université Paris Descartes, Faculté de Pharmacie, 4 avenue de l’Observatoire, 75270 Paris (France); Ascone, Isabella [ENSCP (UMR CNRS 7223), 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mezouar, Mohamed [ESRF, BP 220, 38043 Grenoble (France); Kahn, Richard [IBS (UMR 5075 CEA-CNRS-UJF-PSB), 41 rue Jules Horowitz, 38027 Grenoble Cedex (France)

    2011-01-01

    Macromolecular crystallography at high pressure (HPMX) is a mature technique. Shorter X-ray wavelengths increase data collection efficiency on cryocooled crystals. Extending applications and exploiting spin-off of HPMX will require dedicated synchrotron radiation beamlines based on a new paradigm. Biological structures can now be investigated at high resolution by high-pressure X-ray macromolecular crystallography (HPMX). The number of HPMX studies is growing, with applications to polynucleotides, monomeric and multimeric proteins, complex assemblies and even a virus capsid. Investigations of the effects of pressure perturbation have encompassed elastic compression of the native state, study of proteins from extremophiles and trapping of higher-energy conformers that are often of biological interest; measurements of the compressibility of crystals and macromolecules were also performed. HPMX results were an incentive to investigate short and ultra-short wavelengths for standard biocrystallography. On cryocooled lysozyme crystals it was found that the data collection efficiency using 33 keV photons is increased with respect to 18 keV photons. This conclusion was extended from 33 keV down to 6.5 keV by exploiting previously published data. To be fully exploited, the potential of higher-energy photons requires detectors with a good efficiency. Accordingly, a new paradigm for MX beamlines was suggested, using conventional short and ultra-short wavelengths, aiming at the collection of very high accuracy data on crystals under standard conditions or under high pressure. The main elements of such beamlines are outlined.

  11. A Study of UV Resistance of a Water-based Polyurethane Lacquer Containing Nano Ceria

    Directory of Open Access Journals (Sweden)

    Arash Saadat-Monfared

    2013-01-01

    Full Text Available Cerium oxide (Ceria nano particle, as photodegradation prevention agent was studied in water-based polyurethane clear coat  systems. Polyurethane coatings show superior weathering resistance compared with acrylic melamine systems. However, any chemical change has detrimental effects on the property profile of PU coatings. Coatings containing various amounts of cerium oxide nanoparticles were prepared and their weathering resistance was evaluated using simulated UV cabinet. To this end the extent and mechanism of degradation was studied utilizing UV-Vis and FTIR-ATR spectroscopy as well as DMTA analysis. The results revealed that Ceria nano particles with concentration of 1.44 % (wt absorb beyond 92.5% of UV light of UV-B region and showed an efficiency of 2000 times as of organic UV absorbers.

  12. A comparison of the emission characteristics of UV-LEDs and fluorescent lamps for polymerisation applications

    Science.gov (United States)

    McDermott, S. L.; Walsh, J. E.; Howard, R. G.

    2008-04-01

    Ultraviolet (UV) fluorescent lamps are widely used in the manufacturing process of biomaterials. The possibility of replacing these lamps with ultraviolet light emitting diodes (UV-LEDs) was investigated and the results are presented here. A number of emission characteristics, including the spectral output and intensity of both light sources were measured and compared. The warm up time of the UV-LED was found to be faster than that of the fluorescent lamp while their stabilities were found to be comparable. The ability of each source to initiate photopolymerisation in a biomaterial sample was monitored using Fourier Transform Infrared spectroscopy and the percentage polymerisation calculated. The results presented here show that UV-LEDs are a viable alternative to UV fluorescent lamps in the manufacturing process of biomaterials.

  13. UV stability of HMS-PP (high melt strength polypropylene) obtained by radiation process

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, W.L., E-mail: washoliani@usp.b [Nuclear Energy Research Institute-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, 05508-900 Sao Paulo (Brazil); Parra, D.F.; Lugao, A.B. [Nuclear Energy Research Institute-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, 05508-900 Sao Paulo (Brazil)

    2010-03-15

    HMS-PP in grains was synthesized by the gamma irradiation of PP under a crosslinking atmosphere of acetylene, followed by thermal treatment for radical recombination and thermal treatment for annihilation of the remaining radicals. The UV stability of the material was evaluated in pellet form. The accelerated weathering test of HMS-PP samples were performed under artificial ultra-violet light and in a condensation chamber Comexim (C-UV type) apparatus with UV exposure for 120 and 240 h. The results were compared to those from ageing caused by sunlight and dew under natural exposition. This work investigated changes in mechanical proprieties (elongation and rupture strength), Fourier transform infrared spectroscopy (FTIR), optical microscopy (MO), scanning electron microscopy (SEM) and rheological properties of HMS-PP after the UV ageing. We find that the HMS-PP has more degradation than regular PP and undergoes predominate chain scission in aggressive UV ageing conditions.

  14. Nuclear spectroscopy

    CERN Document Server

    Ajzenberg-Selove, Fay

    1960-01-01

    Nuclear Spectroscopy, Part A deals with the experimental and theoretical techniques involved in nuclear spectroscopy.This book discusses the interactions of charged particles with matter, gaseous ionization detectors, and particular mass attenuation coefficients. The magnetic gamma-ray spectrometers for photo or internal-conversion electrons, general characteristics of cross-section variation with energy, and measurement of fast neutron spectra are also elaborated. This text likewise covers the elastic scattering of photons by nuclei and measurement of widths of gamma-radiating levels.This pub

  15. Ultraviolet, Visible, and Fluorescence Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  16. UV Photography Shows Hidden Sun Damage

    Science.gov (United States)

    ... var c = 0; c UV photography shows hidden sun damage A UV photograph gives us a safe way to see how the sun damages our skin. In the UV photos that ... on the right, you can see what hidden sun damage looks like. Compare these UV photos with ...

  17. PLASMA SPECTROSCOPY

    NARCIS (Netherlands)

    Jaspers, R. J. E.

    2010-01-01

    A brief introduction into the spectroscopy of fusion plasmas is presented. Basic principles of the emission of ionic, atomic and molecular radiation is explained and a survey of the effects, which lead to the population of the respective excited levels, is given. Line radiation, continuum radiation,

  18. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...... the foundations of the fluorescence phenomenon, introduces some general methodologies and provides selected examples on applications focused to disentangle structural and dynamical aspects of biological processes....

  19. UV/Vis, MCD and EPR Spectra of Mononuclear Manganese and Molybdenum Complexes

    OpenAIRE

    Westphal, Anne

    2012-01-01

    This PhD thesis deals with the spectroscopic characterization of the electronic structures of mononuclear manganese and molybdenum complexes. At this, in addition to UV/Vis absorption spectroscopy, electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopy were applied in this work. Additionally, new procedures for the general analysis of MCD C-term intensities were developed within the scope of this thesis. It is divided into four parts. Following a general p...

  20. Structural Elucidation of Dendritic Host-Guest Complexes by X-ray Crystallography and Molecular Dynamics Simulations

    NARCIS (Netherlands)

    Chang, T.; Pieterse, K.; Broeren, M.A.C.; Kooijman, H.|info:eu-repo/dai/nl/091208610; Spek, A.L.|info:eu-repo/dai/nl/156517566; Hilbers, M.F.; Meijer, E.W.

    2007-01-01

    The multiple monovalent binding of adamantyl-urea poly(propyleneimine) dendrimers with carboxylic acid-urea guests was investigated using molecular dynamics simulations and Xray crystallography to better understand the structure and behavior of the dynamic multivalent complex in solution. The