Non-Crystallographic Symmetry in Packing Spaces
Directory of Open Access Journals (Sweden)
Valery G. Rau
2013-01-01
Full Text Available In the following, isomorphism of an arbitrary finite group of symmetry, non-crystallographic symmetry (quaternion groups, Pauli matrices groups, and other abstract subgroups, in addition to the permutation group, are considered. Application of finite groups of permutations to the packing space determines space tilings by policubes (polyominoes and forms a structure. Such an approach establishes the computer design of abstract groups of symmetry. Every finite discrete model of the real structure is an element of symmetry groups, including non-crystallographic ones. The set packing spaces of the same order N characterizes discrete deformation transformations of the structure.
Mörschel, Philipp; Schmidt, Martin U
2015-01-01
A crystallographic quantum-mechanical/molecular-mechanical model (c-QM/MM model) with full space-group symmetry has been developed for molecular crystals. The lattice energy was calculated by quantum-mechanical methods for short-range interactions and force-field methods for long-range interactions. The quantum-mechanical calculations covered the interactions within the molecule and the interactions of a reference molecule with each of the surrounding 12-15 molecules. The interactions with all other molecules were treated by force-field methods. In each optimization step the energies in the QM and MM shells were calculated separately as single-point energies; after adding both energy contributions, the crystal structure (including the lattice parameters) was optimized accordingly. The space-group symmetry was maintained throughout. Crystal structures with more than one molecule per asymmetric unit, e.g. structures with Z' = 2, hydrates and solvates, have been optimized as well. Test calculations with different quantum-mechanical methods on nine small organic molecules revealed that the density functional theory methods with dispersion correction using the B97-D functional with 6-31G* basis set in combination with the DREIDING force field reproduced the experimental crystal structures with good accuracy. Subsequently the c-QM/MM method was applied to nine compounds from the CCDC blind tests resulting in good energy rankings and excellent geometric accuracies.
Orbits of crystallographic embedding of non-crystallographic groups and applications to virology.
Twarock, Reidun; Valiunas, Motiejus; Zappa, Emilio
2015-11-01
The architecture of infinite structures with non-crystallographic symmetries can be modelled via aperiodic tilings, but a systematic construction method for finite structures with non-crystallographic symmetry at different radial levels is still lacking. This paper presents a group theoretical method for the construction of finite nested point sets with non-crystallographic symmetry. Akin to the construction of quasicrystals, a non-crystallographic group G is embedded into the point group P of a higher-dimensional lattice and the chains of all G-containing subgroups are constructed. The orbits of lattice points under such subgroups are determined, and it is shown that their projection into a lower-dimensional G-invariant subspace consists of nested point sets with G-symmetry at each radial level. The number of different radial levels is bounded by the index of G in the subgroup of P. In the case of icosahedral symmetry, all subgroup chains are determined explicitly and it is illustrated that these point sets in projection provide blueprints that approximate the organization of simple viral capsids, encoding information on the structural organization of capsid proteins and the genomic material collectively, based on two case studies. Contrary to the affine extensions previously introduced, these orbits endow virus architecture with an underlying finite group structure, which lends itself better to the modelling of dynamic properties than its infinite-dimensional counterpart.
The analysis of crystallographic symmetry types in finite groups
Sani, Atikah Mohd; Sarmin, Nor Haniza; Adam, Nooraishikin; Zamri, Siti Norziahidayu Amzee
2014-06-01
Undeniably, it is human nature to prefer objects which are considered beautiful. Most consider beautiful as perfection, hence they try to create objects which are perfectly balance in shape and patterns. This creates a whole different kind of art, the kind that requires an object to be symmetrical. This leads to the study of symmetrical objects and pattern. Even mathematicians and ethnomathematicians are very interested with the essence of symmetry. One of these studies were conducted on the Malay traditional triaxial weaving culture. The patterns derived from this technique are symmetrical and this allows for further research. In this paper, the 17 symmetry types in a plane, known as the wallpaper groups, are studied and discussed. The wallpaper groups will then be applied to the triaxial patterns of food cover in Malaysia.
Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups
Dechant, Pierre-Philippe; Twarock, Reidun
2011-01-01
Motivated by recent results in mathematical virology, we present novel asymmetric Z[tau]-integer-valued affine extensions of the non-crystallographic Coxeter groups H_2, H_3 and H_4 derived in a Kac-Moody-type formalism. In particular, we show that the affine reflection planes which extend the Coxeter group H_3 generate (twist) translations along 2-, 3- and 5-fold axes of icosahedral symmetry and classify these translations in terms of Fibonacci recursion relations, thus providing a framework to explain results of Keef et al and Wardman at the group level. Finally, we extend this classification to the case of the non-crystallographic Coxeter groups H_2 and H_4. These results should have applications in physics (quasicrystals), biology (viruses) and chemistry (fullerenes).
Montesinos Amilibia, José María
2010-01-01
In the late 19th century Fedorov, Schoenflies, and Barlow classified the seventeen wallpaper groups (two-dimensional crystallographic groups, five of them direct movements and twelve of them inverse movements) and the 320 three-dimensional crystallographic groups. In order to get the lists of groups, they all used the same geometric strategy: to combine all possible movements and study them case by case. Later on, Zassenhaus developed a purely algebraic algorithm which allowed him to u...
Affine extensions of non-crystallographic Coxeter groups induced by projection
Dechant, Pierre-Philippe; BÅ`hm, Céline; Twarock, Reidun
2013-09-01
In this paper, we show that affine extensions of non-crystallographic Coxeter groups can be derived via Coxeter-Dynkin diagram foldings and projections of affine extended versions of the root systems E8, D6, and A4. We show that the induced affine extensions of the non-crystallographic groups H4, H3, and H2 correspond to a distinguished subset of those considered in [P.-P. Dechant, C. Bœhm, and R. Twarock, J. Phys. A: Math. Theor. 45, 285202 (2012)]. This class of extensions was motivated by physical applications in icosahedral systems in biology (viruses), physics (quasicrystals), and chemistry (fullerenes). By connecting these here to extensions of E8, D6, and A4, we place them into the broader context of crystallographic lattices such as E8, suggesting their potential for applications in high energy physics, integrable systems, and modular form theory. By inverting the projection, we make the case for admitting different number fields in the Cartan matrix, which could open up enticing possibilities in hyperbolic geometry and rational conformal field theory.
Crystallographic Information Resources
Glasser, Leslie
2016-01-01
Crystallographic information provides the fundamental basis for understanding the properties and behavior of materials. This data, such as chemical composition, unit cell dimensions, space group, and atomic positions, derives from the primary literature--that is, from published experimental measurement or theoretical calculation. Although the…
Crystallographic topology and its applications
Energy Technology Data Exchange (ETDEWEB)
Johnson, C.K.; Burnett, M.N. [Oak Ridge National Lab., TN (United States); Dunbar, W.D. [Simon`s Rock Coll., Great Barrington, MA (United States). Div. of Natural Sciences and Mathematics
1996-10-01
Geometric topology and structural crystallography concepts are combined to define a new area we call Structural Crystallographic Topology, which may be of interest to both crystallographers and mathematicians. In this paper, we represent crystallographic symmetry groups by orbifolds and crystal structures by Morse - functions. The Morse function uses mildly overlapping Gaussian thermal-motion probability density functions centered on atomic sites to form a critical net with peak, pass, pale, and pit critical points joined into a graph by density gradient-flow separatrices. Critical net crystal structure drawings can be made with the ORTEP-III graphics pro- An orbifold consists of an underlying topological space with an embedded singular set that represents the Wyckoff sites of the crystallographic group. An orbifold for a point group, plane group, or space group is derived by gluing together equivalent edges or faces of a crystallographic asymmetric unit. The critical-net-on-orbifold model incorporates the classical invariant lattice complexes of crystallography and allows concise quotient-space topological illustrations to be drawn without the repetition that is characteristic of normal crystal structure drawings.
On elliptic Calogero-Moser systems for complex crystallographic reflection groups
Etingof, Pavel; Ma, Xiaoguang; Veselov, Alexander
2010-01-01
To every irreducible finite crystallographic reflection group (i.e., an irreducible finite reflection group G acting faithfully on an abelian variety X), we attach a family of classical and quantum integrable systems on X (with meromorphic coefficients). These families are parametrized by G-invariant functions of pairs (T,s), where T is a hypertorus in X (of codimension 1), and s in G is a reflection acting trivially on T. If G is a real reflection group, these families reduce to the known generalizations of elliptic Calogero-Moser systems, but in the non-real case they appear to be new. We give two constructions of the integrals of these systems - an explicit construction as limits of classical Calogero-Moser Hamiltonians of elliptic Dunkl operators as the dynamical parameter goes to 0 (implementing an idea of arXiv:hep-th/9403178), and a geometric construction as global sections of sheaves of elliptic Cherednik algebras for the critical value of the twisting parameter. We also prove algebraic integrability ...
Energy Technology Data Exchange (ETDEWEB)
Krinsky, Jamin L.; Arnold, John; Bergman, Robert G.
2006-10-03
Monomeric thiosalicylaldiminate complexes of rhodium(I) and iridium(I) were prepared by ligand transfer from the homoleptic zinc(II) species. In the presence of strongly donating ligands, the iridium complexes undergo insertion of the metal into the imine carbon-hydrogen bond. Thiophenoxyketimines were prepared by non-templated reaction of o-mercaptoacetophenone with anilines, and were complexed with rhodium(I), iridium(I), nickel(II) and platinum(II). X-ray crystallographic studies showed that while the thiosalicylaldiminate complexes display planar ligand conformations, those of the thiophenoxyketiminates are strongly distorted. Results of a computational study were consistent with a steric-strain interpretation of the difference in preferred ligand geometries.
On Hawaiian Groups of Some Topological Spaces
Babaee, Ameneh; Mirebrahimi, Hanieh
2011-01-01
The paper is devoted to study the structure of Hawaiian groups of some topological spaces. We present some behaviors of Hawaiian groups with respect to product spaces, weak join spaces, cone spaces, covering spaces and locally trivial bundles. In particular, we determine the structure of the $n$-dimensional Hawaiian group of the $m$-dimensional Hawaiian earring space, for all $1\\leq m\\leq n$.
Characterizations of Sobolev spaces in Euclidean spaces and Heisenberg groups
Institute of Scientific and Technical Information of China (English)
CUI Xiao-yue; LAM Nguyen; LU Guo-zhen
2013-01-01
Recently, many new features of Sobolev spaces W k,p ?RN ? were studied in [4-6, 32]. This paper is devoted to giving a brief review of some known characterizations of Sobolev spaces in Euclidean spaces and describing our recent study of new characterizations of Sobolev spaces on both Heisenberg groups and Euclidean spaces obtained in [12] and [13] and outlining their proofs. Our results extend those characterizations of first order Sobolev spaces in [32] to the Heisenberg group setting. Moreover, our theorems also provide diff erent characterizations for the second order Sobolev spaces in Euclidean spaces from those in [4, 5].
Crystallographic interpretation of Galois symmetries for magnetic pentagonal ring
Milewski, J.; Lulek, T.; Łabuz, M.
2017-03-01
Galois symmetry of exact Bethe Ansatz eigenstates for the magnetic pentagonal ring within the XXX model are investigated by a comparison with crystallographic constructions of space groups. It follows that the arithmetic symmetry of Bethe parameters for the interior of the Brillouin zone admits crystallographic interpretation, in terms of the periodic square Z2 ×Z2 , that is the two-dimensional crystal lattice with Born-Karman period two in both directions.
Mapping spaces and automorphism groups of toric noncommutative spaces
Barnes, Gwendolyn E; Szabo, Richard J
2016-01-01
We develop a sheaf theory approach to toric noncommutative geometry which allows us to formalize the concept of mapping spaces between two toric noncommutative spaces. As an application we study the `internalized' automorphism group of a toric noncommutative space and show that its Lie algebra has an elementary description in terms of braided derivations.
The geometry of spherical space form groups
Gilkey, Peter B
1989-01-01
In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pin c and Spin c equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theor
Space groups for solid state scientists
Glazer, Michael; Glazer, Alexander N
2014-01-01
This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te
The fundamental group of the orbit space
Directory of Open Access Journals (Sweden)
Hattab Hawete
2015-12-01
Full Text Available Let G be a subgroup of the group Homeo(X of homeomorphisms of a topological space X. Let G¯$\\bar G$ be the closure of G in Homeo(X. The class of an orbit O of G is the union of all orbits having the same closure as O. We denote by X/G˜$X/\\widetildeG$ the space of classes of orbits called the orbit class space. In this paper, we study the fundamental group of the spaces X/G, X/G¯$X/\\bar G$ and X/G˜$X/\\widetildeG$
Student Facebook groups as a third space
DEFF Research Database (Denmark)
Aaen, Janus Holst; Dalsgaard, Christian
2016-01-01
The paper examines educational potentials of Facebook groups that are created and managed by students without any involvement from teachers. The objective is to study student-managed Facebook groups as a ‘third space' between the institutional space of teacher-managed Facebook groups and the non......-institutional, personal space of the Facebook network. The main study of the article examines six student-managed Facebook groups and provides an analysis of a total of 2247 posts and 12,217 comments. Furthermore, the study draws on group interviews with students from 17 Danish upper secondary schools and a survey...... answered by 932 students from 25 schools. Based on the survey and interviews, the paper concludes that Facebook is an important educational tool for students in Danish upper secondary schools to receive help on homework and assignments. Furthermore, on the basis of the analysis of Facebook groups...
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
NgSeikWng; HUSheng－Zhi
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations).For a chiral molecule,which must crystallize in a chiral space group,the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
Isometry groups of proper metric spaces
Niemiec, Piotr
2012-01-01
Given a locally compact Polish space X, a necessary and sufficient condition for a group G of homeomorphisms of X to be the full isometry group of (X,d) for some proper metric d on X is given. It is shown that every locally compact Polish group G acts freely on GxY as the full isometry group of GxY with respect to a certain proper metric on GxY, where Y is an arbitrary locally compact Polish space with (card(G),card(Y)) different from (1,2). Locally compact Polish groups which act effectively and almost transitively on complete metric spaces as full isometry groups are characterized. Locally compact Polish non-Abelian groups on which every left invariant metric is automatically right invariant are characterized and fully classified. It is demonstrated that for every locally compact Polish space X having more than two points the set of proper metrics d such that Iso(X,d) = {id} is dense in the space of all proper metrics on X.
String cohomology groups of complex projective spaces
DEFF Research Database (Denmark)
Ottosen, Iver; Bökstedt, Marcel
2007-01-01
Let X be a space and write LX for its free loop space equipped with the action of the circle group T given by dilation. The equivariant cohomology H*(LXhT;Z/p) is a module over H*(BT;Z/p). We give a computation of this module when X=CPr for any positive integer r and any prime number p. The compu......Let X be a space and write LX for its free loop space equipped with the action of the circle group T given by dilation. The equivariant cohomology H*(LXhT;Z/p) is a module over H*(BT;Z/p). We give a computation of this module when X=CPr for any positive integer r and any prime number p....... The computation does not use the fact that CPr is formal, nor does it use the Jones isomorphism and negative cyclic homology....
Four-dimensional space groups for pedestrians: composite structures.
Sun, Junliang; Lee, Stephen; Lin, Jianhua
2007-10-01
Higher-dimensional crystals have been studied for the last thirty years. However, most practicing chemists, materials scientists, and crystallographers continue to eschew the use of higher-dimensional crystallography in their work. Yet it has become increasingly clear in recent years that the number of higher-dimensional systems continues to grow from hundreds to as many as a thousand different compounds. Part of the problem has to do with the somewhat opaque language that has developed over the past decades to describe higher-dimensional systems. This language, while well-suited to the specialist, is too sophisticated for the neophyte wishing to enter the field, and as such can be an impediment. This Focus Review hopes to address this issue. The goal of this article is to show the regular chemist or materials scientist that knowledge of regular 3D crystallography is all that is really necessary to understand 4D crystal systems. To this end, we have couched higher-dimensional composite structures in the language of ordinary 3D crystals. In particular, we developed the principle of complementarity, which allows one to identify correctly 4D space groups solely from examination of the two 3D components that make up a typical 4D composite structure.
Space Station concept development group studies
Powell, L. E.
1984-01-01
The NASA study activities in preparation for a Space Station began in the early 1970's. The early studies included many in-house NASA and contracted studies. A group of representatives from all the NASA Centers, titled the Space Station Concept Development Group (CDG) was involved in the studies which led to the initiation of the Space Station Program. The CDG studies were performed over a period of approximately one year and consisted of four phases. The initial phase had the objective to determine the functions required of the station as opposed to a configuration. The activities of the second phase were primarily concerned with a sizing of the facilities required for payloads and the resources necessary to support these mission payloads. The third phase of studies was designed to develop a philosophical approach to a number of areas related to autonomy, maintainability, operations and logistics, and verification. The fourth phase of the study was to be concerned with configuration assessment activities.
Crystallographic Topology 2: Overview and Work in Progress
Energy Technology Data Exchange (ETDEWEB)
Johnson, C.K.
1999-08-01
This overview describes an application of contemporary geometric topology and stochastic process concepts to structural crystallography. In this application, crystallographic groups become orbifolds, crystal structures become Morse functions on orbifolds, and vibrating atoms in a crystal become vector valued Gaussian measures with the Radon-Nikodym property. Intended crystallographic benefits include new methods for visualization of space groups and crystal structures, analysis of the thermal motion patterns seen in ORTEP drawings, and a classification scheme for crystal structures based on their Heegaard splitting properties.
Space groups for solid state scientists
Glazer, Michael
2013-01-01
This comprehensively revised - essentially rewritten - new edition of the 1990 edition (described as ""extremely useful"" by MATHEMATICAL REVIEWS and as ""understandable and comprehensive"" by Scitech) guides readers through the dense array of mathematical information in the International Tables Volume A. Thus, most scientists seeking to understand a crystal structure publication can do this from this book without necessarily having to consult the International Tables themselves. This remains the only book aimed at non-crystallographers devoted to teaching them about crystallogr
The New NRL Crystallographic Database
Mehl, Michael; Curtarolo, Stefano; Hicks, David; Toher, Cormac; Levy, Ohad; Hart, Gus
For many years the Naval Research Laboratory maintained an online graphical database of crystal structures for a wide variety of materials. This database has now been redesigned, updated and integrated with the AFLOW framework for high throughput computational materials discovery (http://materials.duke.edu/aflow.html). For each structure we provide an image showing the atomic positions; the primitive vectors of the lattice and the basis vectors of every atom in the unit cell; the space group and Wyckoff positions; Pearson symbols; common names; and Strukturbericht designations, where available. References for each structure are provided, as well as a Crystallographic Information File (CIF). The database currently includes almost 300 entries and will be continuously updated and expanded. It enables easy search of the various structures based on their underlying symmetries, either by Bravais lattice, Pearson symbol, Strukturbericht designation or commonly used prototypes. The talk will describe the features of the database, and highlight its utility for high throughput computational materials design. Work at NRL is funded by a Contract with the Duke University Department of Mechanical Engineering.
Exceptional groups, symmetric spaces and applications
Energy Technology Data Exchange (ETDEWEB)
Cerchiai, Bianca L.; Cacciatori, Sergio L.
2009-03-31
In this article we provide a detailed description of a technique to obtain a simple parameterization for different exceptional Lie groups, such as G{sub 2}, F{sub 4} and E{sub 6}, based on their fibration structure. For the compact case, we construct a realization which is a generalization of the Euler angles for SU(2), while for the non compact version of G{sub 2(2)}/SO(4) we compute the Iwasawa decomposition. This allows us to obtain not only an explicit expression for the Haar measure on the group manifold, but also for the cosets G{sub 2}/SO(4), G{sub 2}/SU(3), F{sub 4}/Spin(9), E{sub 6}/F{sub 4} and G{sub 2(2)}/SO(4) that we used to find the concrete realization of the general element of the group. Moreover, as a by-product, in the simplest case of G{sub 2}/SO(4), we have been able to compute an Einstein metric and the vielbein. The relevance of these results in physics is discussed.
Crystallographic properties of fertilizer compounds
Energy Technology Data Exchange (ETDEWEB)
Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.
1991-02-01
This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.
New Hardy Spaces Associated with Herz Spaces and Beurling Algebras on Homogeneous Groups
Institute of Scientific and Technical Information of China (English)
Yin Sheng JIANG
2002-01-01
The author introduces the Hardy spaces associated with the Herz spaces and the Beurlingalgebras on homogeneous groups and establishes their atomic decomposition characterizations. As theapplications of this decomposition, the duals of these Hardy spaces and the boundedness of the centralδ-Calderon-Zygmund operators on these Hardy spaces are studied.
Teichmüller spaces for pointed Fuchsian groups
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Let T(G) be the Teichmüller space of a Fuchsian group G and T(G) be the pointed Teichmüller space of a corresponding pointed Fuchsian group G.We will discuss the existence of holomorphic sections of the projection from the space M(G) of Beltrami coefficients for G to T(G) and of that from T(G) to T(G) as well.We will also study the biholomorphic isomorphisms between two pointed Teichmüller spaces.
Alabiso, Carlo
2015-01-01
This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...
Group theoretical construction of planar noncommutative phase spaces
Energy Technology Data Exchange (ETDEWEB)
Ngendakumana, Ancille, E-mail: nancille@yahoo.fr; Todjihoundé, Leonard, E-mail: leonardt@imsp.uac.org [Institut de Mathématiques et des Sciences Physiques (IMSP), Porto-Novo (Benin); Nzotungicimpaye, Joachim, E-mail: kimpaye@kie.ac.rw [Kigali Institute of Education (KIE), Kigali (Rwanda)
2014-01-15
Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.
Non-Supramenable Groups Acting on Locally Compact Spaces
DEFF Research Database (Denmark)
Kellerhals, Julian; Monod, Nicolas; Rørdam, Mikael
2013-01-01
Supramenability of groups is characterised in terms of invariant measures on locally compact spaces. This opens the door to constructing interesting crossed product $C^*$-algebras for non-supramenable groups. In particular, stable Kirchberg algebras in the UCT class are constructed using crossed...
The space shuttle payload planning working groups. Volume 10: Space technology
1973-01-01
The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.
Shift-modulation invariant spaces on LCA groups
Cabrelli, Carlos
2011-01-01
A $(K,\\Lambda)$ shift-modulation invariant space is a subspace of $L^2(G)$, that is invariant by translations along elements in $K$ and modulations by elements in $\\Lambda$. Here $G$ is a locally compact abelian group, and $K$ and $\\Lambda$ are closed subgroups of $G$ and the dual group $\\hat G$, respectively. In this article we provide a characterization of shift-modulation invariant spaces in this general context when $K$ and $\\Lambda$ are uniform lattices. This extends previous results known for $L^2(\\R^d)$. We develop fiberization techniques and suitable range functions adapted to LCA groups needed to provide the desired characterization.
Generalized Heisenberg groups and Damek-Ricci harmonic spaces
Berndt, Jürgen; Vanhecke, Lieven
1995-01-01
Generalized Heisenberg groups, or H-type groups, introduced by A. Kaplan, and Damek-Ricci harmonic spaces are particularly nice Lie groups with a vast spectrum of properties and applications. These harmonic spaces are homogeneous Hadamard manifolds containing the H-type groups as horospheres. These notes contain a thorough study of their Riemannian geometry by means of a detailed treatment of their Jacobi vector fields and Jacobi operators. Some problems are included and will hopefully stimulate further research on these spaces. The book is written for students and researchers, assuming only basic knowledge of Riemannian geometry, and it contains a brief survey of the background material needed to follow the entire treatment.
Group Tracking of Space Objects within Bayesian Framework
Directory of Open Access Journals (Sweden)
Huang Jian
2013-03-01
Full Text Available It is imperative to efficiently track and catalogue the extensive dense group space objects for space surveillance. As the main instrument for Low Earth Orbit (LEO space surveillance, ground-based radar system is usually limited by its resolving power while tracking the small space debris with high dense population. Thus, the obtained information about target detection and observation will be seriously missed, which makes the traditional tracking method inefficient. Therefore, we conceived the concept of group tracking. The overall motional tendency of the group objects is particularly focused, while the individual object is simultaneously tracked in effect. The tracking procedure is based on the Bayesian frame. According to the restriction among the group center and observations of multi-targets, the reconstruction of targets’ number and estimation of individual trajectory can be greatly improved on the accuracy and robustness in the case of high miss alarm. The Markov Chain Monte Carlo Particle (MCMC-Particle algorism is utilized for solving the Bayesian integral problem. Finally, the simulation of the group space objects tracking is carried out to validate the efficiency of the proposed method.
Ruf, Armin; Tetaz, Tim; Schott, Brigitte; Joseph, Catherine; Rudolph, Markus G
2016-11-01
Fructose-1,6-bisphosphatase (FBPase) is a key regulator of gluconeogenesis and a potential drug target for type 2 diabetes. FBPase is a homotetramer of 222 symmetry with a major and a minor dimer interface. The dimers connected via the minor interface can rotate with respect to each other, leading to the inactive T-state and active R-state conformations of FBPase. Here, the first crystal structure of human liver FBPase in the R-state conformation is presented, determined at a resolution of 2.2 Å in a tetragonal setting that exhibits an unusual arrangement of noncrystallographic symmetry (NCS) elements. Self-Patterson function analysis and various intensity statistics revealed the presence of pseudo-translation and the absence of twinning. The space group is P41212, but structure determination was also possible in space groups P43212, P4122 and P4322. All solutions have the same arrangement of three C2-symmetric dimers spaced by 1/3 along an NCS axis parallel to the c axis located at (1/4, 1/4, z), which is therefore invisible in a self-rotation function analysis. The solutions in the four space groups are related to one another and emulate a body-centred lattice. If all NCS elements were crystallographic, the space group would be I4122 with a c axis three times shorter and a single FBPase subunit in the asymmetric unit. I4122 is a minimal, non-isomorphic supergroup of the four primitive tetragonal space groups, explaining the space-group ambiguity for this crystal.
Sobolev Spaces on Locally Compact Abelian Groups: Compact Embeddings and Local Spaces
Directory of Open Access Journals (Sweden)
Przemysław Górka
2014-01-01
Full Text Available We continue our research on Sobolev spaces on locally compact abelian (LCA groups motivated by our work on equations with infinitely many derivatives of interest for string theory and cosmology. In this paper, we focus on compact embedding results and we prove an analog for LCA groups of the classical Rellich lemma and of the Rellich-Kondrachov compactness theorem. Furthermore, we introduce Sobolev spaces on subsets of LCA groups and study its main properties, including the existence of compact embeddings into Lp-spaces.
Picard Groups of the Moduli Spaces of Semistable Sheaves I
Indian Academy of Sciences (India)
Usha N Bhosle
2004-05-01
We compute the Picard group of the moduli space ′ of semistable vector bundles of rank and degree on an irreducible nodal curve and show that ′ is locally factorial. We determine the canonical line bundles of ′ and ′L, the subvariety consisting of vector bundles with a fixed determinant. For rank 2, we compute the Picard group of other strata in the compactification of ′.
Curved momentum spaces from quantum groups with cosmological constant
Ballesteros, Á.; Gubitosi, G.; Gutiérrez-Sagredo, I.; Herranz, F. J.
2017-10-01
We bring the concept that quantum symmetries describe theories with nontrivial momentum space properties one step further, looking at quantum symmetries of spacetime in presence of a nonvanishing cosmological constant Λ. In particular, the momentum space associated to the κ-deformation of the de Sitter algebra in (1 + 1) and (2 + 1) dimensions is explicitly constructed as a dual Poisson-Lie group manifold parametrized by Λ. Such momentum space includes both the momenta associated to spacetime translations and the 'hyperbolic' momenta associated to boost transformations, and has the geometry of (half of) a de Sitter manifold. Known results for the momentum space of the κ-Poincaré algebra are smoothly recovered in the limit Λ → 0, where hyperbolic momenta decouple from translational momenta. The approach here presented is general and can be applied to other quantum deformations of kinematical symmetries, including (3 + 1)-dimensional ones.
Space Group Debris Imaging Based on Sparse Sample
Directory of Open Access Journals (Sweden)
Zhu Jiang
2016-02-01
Full Text Available Space group debris imaging is difficult with sparse data in low Pulse Repetition Frequency (PRF spaceborne radar. To solve this problem in the narrow band system, we propose a method for space group debris imaging based on sparse samples. Due to the diversity of mass, density, and other factors, space group debris typically rotates at a high speed in different ways. We can obtain angular velocity through the autocorrelation function based on the diversity in the angular velocity. The scattering field usually presents strong sparsity, so we can utilize the corresponding measurement matrix to extract the data of different debris and then combine it using the sparse method to reconstruct the image. Furthermore, we can solve the Doppler ambiguity with the measurement matrix in low PRF systems and suppress some energy of other debris. Theoretical analysis confirms the validity of this methodology. Our simulation results demonstrate that the proposed method can achieve high-resolution Inverse Synthetic Aperture Radar (ISAR images of space group debris in low PRF systems.
Solvable line-transitive automorphism groups of finite linear spaces
Institute of Scientific and Technical Information of China (English)
刘伟俊; 李慧陵
2000-01-01
Let S be a finite linear space, and let G be a group of automorphisms of S. If G is soluble and line-transitive, then for a given k but a finite number of pairs of ( S, G), S has v= pn points and G≤AΓ L(1,pn).
Anisotropic bond percolation by position-space renormalization group
de Oliveira, Paulo Murilo
1982-02-01
We present a position-space renormalization-group procedure for the anisotropic bond-percolation problem in a square lattice. We use a kind of cell which preserves the geometrical features of the whole lattice, including duality. In this manner, the whole phase diagram and the dimensionality crossover exponent (both are exactly known) are reproduced for any scaling factor.
Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.
Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R
2016-05-13
The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.
Gaussian distributions, Jacobi group, and Siegel-Jacobi space
Energy Technology Data Exchange (ETDEWEB)
Molitor, Mathieu, E-mail: pergame.mathieu@gmail.com [Instituto de Matemática, Universidade Federal da Bahia, Av. Adhemar de Barros, S/N, Ondina, 40170-110 Salvador, BA (Brazil)
2014-12-15
Let N be the space of Gaussian distribution functions over ℝ, regarded as a 2-dimensional statistical manifold parameterized by the mean μ and the deviation σ. In this paper, we show that the tangent bundle of N, endowed with its natural Kähler structure, is the Siegel-Jacobi space appearing in the context of Number Theory and Jacobi forms. Geometrical aspects of the Siegel-Jacobi space are discussed in detail (completeness, curvature, group of holomorphic isometries, space of Kähler functions, and relationship to the Jacobi group), and are related to the quantum formalism in its geometrical form, i.e., based on the Kähler structure of the complex projective space. This paper is a continuation of our previous work [M. Molitor, “Remarks on the statistical origin of the geometrical formulation of quantum mechanics,” Int. J. Geom. Methods Mod. Phys. 9(3), 1220001, 9 (2012); M. Molitor, “Information geometry and the hydrodynamical formulation of quantum mechanics,” e-print arXiv (2012); M. Molitor, “Exponential families, Kähler geometry and quantum mechanics,” J. Geom. Phys. 70, 54–80 (2013)], where we studied the quantum formalism from a geometric and information-theoretical point of view.
Deformation spaces of Kleinian surface groups are not locally connected
Magid, Aaron D
2010-01-01
For any closed surface $S$ of genus $g \\geq 2$, we show that the deformation space of marked hyperbolic 3-manifolds homotopy equivalent to $S$, $AH(S \\times I)$, is not locally connected. This proves a conjecture of Bromberg who recently proved that the space of Kleinian punctured torus groups is not locally connected. Playing an essential role in our proof is a new version of the filling theorem that is based on the theory of cone-manifold deformations developed by Hodgson, Kerckhoff, and Bromberg.
Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits
Hanany, Amihay
2016-01-01
We approach the topic of Classical group nilpotent orbits from the perspective of their moduli spaces, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKahler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for ...
Space Systems Technology Working Group. Executive Report. Revision
1994-09-01
technologies associated with VI &I LT protecting or hardening these systems * REDUCE VULNERABILfTY BYBEING HARD TO as they perform designated missions...copy O3 of 100 AD-A285 778 IDA DOCUMENT D-1519 (Revised) EXECUTIVE REPORT SPACE SYSTEMS TECHNOLOGY WORKING GROUP TECHNOLOGY WORKING GP.OUP CO...ADVISOR ELECTE - L. Kirk Lewis • OCT1 Institute for Defense Analyses D9 Norman D. Jorstad G Director, Technology Identification and Analyses Center
Systematic prediction of new ferroelectrics in space group P3.
Abrahams, S C
2000-10-01
The current release of the Inorganic Crystal Structure Database contains a total of 57 entries under space group P3 that correspond to 50 different materials. There are 21 structures reported with this space group that satisfy the criteria for ferroelectricity, at a confidence level that depends on the reliability of the underlying structural determination. One ferroelectric discovered earlier is also listed. In addition, the database contains 19 entries that probably should be assigned to a centrosymmetric space group, seven that are polar but probably not ferroelectric and two that are without atomic coordinates. Seven entries are either duplicates or present additional structural studies of the same material. Structures in space group P3 identified as potentially new ferroelectrics include LiAsCu(0.93), Na(2)UF(6), BiTeI, BaGe(4)O(9), alpha-UMo(2)O(8), Cu(2)SiS(3), Co(IO(3))(2), Sr(7)Al(12)O(25), KSn(2)F(5), YbIn(2)S(4), Na(5)CrF(2)(PO(4))(2), Sn(ClO(2))(2)(ClO(4))(6), Eu(3)BWO(9), Li(H(2)O)(4)B(OH)(4).2H(2)O, Mn(3)V(1/2)(SiO(4))O(OH)(2), Ca(6)(Si(2)O(7))(OH)(6), Na(6. 9(2))[Al(5.6(1))Si(6.4(1))O(24)](S(2)O(3))(1.0(1)).2H(2)O, BaCa(2)In(6)O(12), Ni(H(2)O)(6)[Sb(OH)(6)](2), Sr(4)Cr(3)O(9) and Cu(5)O(2)(VO(4))(2).CuCl(2).
The Lorentzian oscillator group as a geodesic orbit space
Energy Technology Data Exchange (ETDEWEB)
Batat, W. [Ecole Normale Superieure d' Enseignement Technologique d' Oran, Departement de Mathematiques et Informatique, B.P. 1523, El M' Naouar, Oran (Algeria); Gadea, P. M. [Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Oubina, J. A. [Departamento de Xeometria e Topoloxia, Facultade de Matematicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain)
2012-10-15
We prove that the four-dimensional oscillator group Os, endowed with any of its usual left-invariant Lorentzian metrics, is a Lorentzian geodesic (so, in particular, null-geodesic) orbit space with some of its homogeneous descriptions corresponding to certain homogeneous Lorentzian structures. Each time that Os is endowed with a suitable metric and an appropriate homogeneous Lorentzian structure, it is a candidate for constructing solutions in d-dimensional supergravity with at least 24 of the 32 possible supersymmetries.
Cohomology of mapping class groups and the abelian moduli space
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Villemoes, Rasmus
2012-01-01
We consider a surface Σ of genus g≥3 , either closed or with exactly one puncture. The mapping class group Γ of Σ acts symplectically on the abelian moduli space M=Hom(π 1 (Σ),U(1))=Hom(H 1 (Σ),U(1)) , and hence both L 2 (M) and C ∞ (M) are modules over Γ . In this paper, we prove that both the c...
A Group Oriented Cryptosystem for the Vector Space Access Structure
Institute of Scientific and Technical Information of China (English)
XU Chun-xiang; MA Hua; ZHOU Jun-hui; XIAO Guo-zheng
2006-01-01
A group oriented cryptosystem for the vector space access structure was proposed. This cryptosystem adopts self-certified public keys. It allows the participants of an authorized subset to cooperatively access an en crypted message. All data delivered in the cryptosystem are public. Therefore it does not need a partial decrypting results combiner and any secure communication channel. The security of the group oriented cryptosystem is based on the intractability of the discrete log problem and difficulty of factoring large integers. The suspected attacks can not break it.
Dynamical real space renormalization group applied to sandpile models.
Ivashkevich, E V; Povolotsky, A M; Vespignani, A; Zapperi, S
1999-08-01
A general framework for the renormalization group analysis of self-organized critical sandpile models is formulated. The usual real space renormalization scheme for lattice models when applied to nonequilibrium dynamical models must be supplemented by feedback relations coming from the stationarity conditions. On the basis of these ideas the dynamically driven renormalization group is applied to describe the boundary and bulk critical behavior of sandpile models. A detailed description of the branching nature of sandpile avalanches is given in terms of the generating functions of the underlying branching process.
Co-quasi-invariant spaces for finite reflexion groups
Aval, Jean-Christophe
2011-01-01
We study, in a global uniform manner, the quotient of the ring of polynomials in l sets of n variables, by the ideal generated by diagonal quasi-invariant polynomials for general permutation groups W=G(r,n). We show that, for each such group W, there is an explicit universal symmetric function that gives the N^l-graded Hilbert series for these spaces. This function is universal in that its dependance on l only involves the number of variables it is calculated with. We also discuss the combinatorial implications of the observed fact that it affords an expansion as a positive coefficient polynomial in the complete homogeneous symmetric functions.
Testing the accuracy of redshift space group finding algorithms
Frederic, J J
1994-01-01
Using simulated redshift surveys generated from a high resolution N-body cosmological structure simulation, we study algorithms used to identify groups of galaxies in redshift space. Two algorithms are investigated; both are friends-of-friends schemes with variable linking lengths in the radial and transverse dimensions. The chief difference between the algorithms is in the redshift linking length. The algorithm proposed by Huchra \\& Geller (1982) uses a generous linking length designed to find ``fingers of god'' while that of Nolthenius \\& White (1987) uses a smaller linking length to minimize contamination by projection. We find that neither of the algorithms studied is intrinsically superior to the other; rather, the ideal algorithm as well as the ideal algorithm parameters depend on the purpose for which groups are to be studied. The Huchra/Geller algorithm misses few real groups, at the cost of including some spurious groups and members, while the Nolthenius/White algorithm misses high velocity d...
Factor-Group-Generated Polar Spaces and (Multi-)Qudits
Havlicek, Hans; Saniga, Metod
2009-01-01
Recently, a number of interesting relations have been discovered between generalised Pauli/Dirac groups and certain finite geometries. Here, we succeeded in finding a general unifying framework for all these relations. We introduce gradually necessary and sufficient conditions to be met in order to carry out the following programme: Given a group $\\vG$, we first construct vector spaces over $\\GF(p)$, $p$ a prime, by factorising $\\vG$ over appropriate normal subgroups. Then, by expressing $\\GF(p)$ in terms of the commutator subgroup of $\\vG$, we construct alternating bilinear forms, which reflect whether or not two elements of $\\vG$ commute. Restricting to $p=2$, we search for "refinements" in terms of quadratic forms, which capture the fact whether or not the order of an element of $\\vG$ is $\\leq 2$. Such factor-group-generated vector spaces admit a natural reinterpretation in the language of symplectic and orthogonal polar spaces, where each point becomes a "condensation" of several distinct elements of $\\vG...
Macromolecular crystallographic estructure refinement
Directory of Open Access Journals (Sweden)
Afonine, Pavel V.
2015-04-01
Full Text Available Model refinement is a key step in crystallographic structure determination that ensures final atomic structure of macromolecule represents measured diffraction data as good as possible. Several decades have been put into developing methods and computational tools to streamline this step. In this manuscript we provide a brief overview of major milestones of crystallographic computing and methods development pertinent to structure refinement.El refinamiento es un paso clave en el proceso de determinación de una estructura cristalográfica al garantizar que la estructura atómica de la macromolécula final represente de la mejor manera posible los datos de difracción. Han hecho falta varias décadas para poder desarrollar nuevos métodos y herramientas computacionales dirigidas a dinamizar esta etapa. En este artículo ofrecemos un breve resumen de los principales hitos en la computación cristalográfica y de los nuevos métodos relevantes para el refinamiento de estructuras.
Groups, matrices, and vector spaces a group theoretic approach to linear algebra
Carrell, James B
2017-01-01
This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory ...
Geroch group for Einstein spaces and holographic integrability
Petkou, Anastasios C; Siampos, Konstantinos
2015-01-01
We review how Geroch's reduction method is extended from Ricci-flat to Einstein spacetimes. The Ehlers-Geroch SL(2,R) group is still present in the three-dimensional sigma-model that captures the dynamics, but only a subgroup of it is solution-generating. Holography provides an alternative three-dimensional perspective to integrability properties of Einstein's equations in asymptotically anti-de Sitter spacetimes. These properties emerge as conditions on the boundary data (metric and energy-momentum tensor) ensuring that the hydrodynamic derivative expansion be resummed into an exact four-dimensional Einstein geometry. The conditions at hand are invariant under a set of transformations dubbed holographic U-duality group. The latter fills the gap left by the Ehlers-Geroch group in Einstein spaces, and allows for solution-generating maps mixing e.g. the mass and the nut charge.
Hyperbolicity of cycle spaces and automorphism groups of flag domains
Huckleberry, Alan
2010-01-01
If G_0 is a real form of a complex semisimple Lie group G and Z is compact G-homogeneous projective algebraic manifold, then G_0 has only finitely many orbits on Z. Complex analytic properties of open G_0-orbits D (flag domains) are studied. Schubert incidence-geometry is used to prove the Kobayashi hyperbolicity of certain cycle space components C_q(D). Using the hyperbolicity of C_q(D) and analyzing the action of Aut(D) on it, an exact description of Aut(D) is given. It is shown that, except in the easily understood case where D is holomorphically convex with a nontrivial Remmert reduction, it is a Lie group acting smoothly as a group of holomorphic transformations on D. With very few exceptions it is just G_0.
On Spaces of Commuting Elements in Lie Groups
2014-02-25
these spaces inform on representation varieties associated to fundamental groups of Riemann surfaces, but it seems likely that these methods will...on J(X) and J( ∨ n≥1 X̂ n), respectively. Note that, by hypothesis , the action satisfies g ·∗ = ∗ for all g ∈ G. The map H : J(X)→ J( ∨ n≥1 X̂ n...Σ ( (Y ×G X̂q+1)/(Y ×G ∗) ) , g1 g2 g3 where g1 is a homotopy equivalence by hypothesis . Using the Serre spectral sequence for homol- ogy, it follows
The birth of NASA the work of the Space Task Group, America's first true space pioneers
von Ehrenfried, Dutch
2016-01-01
This is the story of the work of the original NASA space pioneers; men and women who were suddenly organized in 1958 from the then National Advisory Committee on Aeronautics (NACA) into the Space Task Group. A relatively small group, they developed the initial mission concept plans and procedures for the U. S. space program. Then they boldly built hardware and facilities to accomplish those missions. The group existed only three years before they were transferred to the Manned Spacecraft Center in Houston, Texas, in 1962, but their organization left a large mark on what would follow. Von Ehrenfried's personal experience with the STG at Langley uniquely positions him to describe the way the group was structured and how it reacted to the new demands of a post-Sputnik era. He artfully analyzes how the growing space program was managed and what techniques enabled it to develop so quickly from an operations perspective. The result is a fascinating window into history, amply backed up by first person documentation ...
Real space renormalization group theory of disordered models of glasses.
Angelini, Maria Chiara; Biroli, Giulio
2017-03-28
We develop a real space renormalization group analysis of disordered models of glasses, in particular of the spin models at the origin of the random first-order transition theory. We find three fixed points, respectively, associated with the liquid state, with the critical behavior, and with the glass state. The latter two are zero-temperature ones; this provides a natural explanation of the growth of effective activation energy scale and the concomitant huge increase of relaxation time approaching the glass transition. The lower critical dimension depends on the nature of the interacting degrees of freedom and is higher than three for all models. This does not prevent 3D systems from being glassy. Indeed, we find that their renormalization group flow is affected by the fixed points existing in higher dimension and in consequence is nontrivial. Within our theoretical framework, the glass transition results in an avoided phase transition.
Quiver theories for moduli spaces of classical group nilpotent orbits
Hanany, Amihay; Kalveks, Rudolph
2016-06-01
We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3 d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.
Quiver theories for moduli spaces of classical group nilpotent orbits
Energy Technology Data Exchange (ETDEWEB)
Hanany, Amihay; Kalveks, Rudolph [Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)
2016-06-21
We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.
Phaser crystallographic software.
McCoy, Airlie J; Grosse-Kunstleve, Ralf W; Adams, Paul D; Winn, Martyn D; Storoni, Laurent C; Read, Randy J
2007-08-01
Phaser is a program for phasing macromolecular crystal structures by both molecular replacement and experimental phasing methods. The novel phasing algorithms implemented in Phaser have been developed using maximum likelihood and multivariate statistics. For molecular replacement, the new algorithms have proved to be significantly better than traditional methods in discriminating correct solutions from noise, and for single-wavelength anomalous dispersion experimental phasing, the new algorithms, which account for correlations between F(+) and F(-), give better phases (lower mean phase error with respect to the phases given by the refined structure) than those that use mean F and anomalous differences DeltaF. One of the design concepts of Phaser was that it be capable of a high degree of automation. To this end, Phaser (written in C++) can be called directly from Python, although it can also be called using traditional CCP4 keyword-style input. Phaser is a platform for future development of improved phasing methods and their release, including source code, to the crystallographic community.
Space group constraints on weak indices in topological insulators
Varjas, Dániel; de Juan, Fernando; Lu, Yuan-Ming
2017-07-01
Lattice translation symmetry gives rise to a large class of "weak" topological insulators (TIs), characterized by translation-protected gapless surface states and dislocation bound states. In this work we show that space group symmetries lead to constraints on the weak topological indices that define these phases. In particular, we show that screw rotation symmetry enforces the Hall conductivity in planes perpendicular to the screw axis to be quantized in multiples of the screw rank, which generally applies to interacting systems. We further show that certain 3D weak indices associated with quantum spin Hall effects (class AII) are forbidden by the Bravais lattice and by glide or even-fold screw symmetries. These results put strong constraints on weak TI candidates in the experimental and numerical search for topological materials, based on the crystal structure alone.
Diffusion-equation method for crystallographic figure of merits.
Markvardsen, Anders J; David, William I F
2010-09-01
Global optimization methods play a significant role in crystallography, particularly in structure solution from powder diffraction data. This paper presents the mathematical foundations for a diffusion-equation-based optimization method. The diffusion equation is best known for describing how heat propagates in matter. However, it has also attracted considerable attention as the basis for global optimization of a multimodal function [Piela et al. (1989). J. Phys. Chem. 93, 3339-3346]. The method relies heavily on available analytical solutions for the diffusion equation. Here it is shown that such solutions can be obtained for two important crystallographic figure-of-merit (FOM) functions that fully account for space-group symmetry and allow the diffusion-equation solution to vary depending on whether atomic coordinates are fixed or not. The resulting expression is computationally efficient, taking the same order of floating-point operations to evaluate as the starting FOM function measured in terms of the number of atoms in the asymmetric unit. This opens the possibility of implementing diffusion-equation methods for crystallographic global optimization algorithms such as structure determination from powder diffraction data.
Electron diffraction study of {alpha}-AlMnSi crystals including non-crystallographic axes
Energy Technology Data Exchange (ETDEWEB)
Song, G.L.; Bursill, L.A.
1997-06-01
The structure of crystalline {alpha}-AlMnSi is examined by electron diffraction. Six distinct zone axes are examined, including both normal crystallographic and non-crystallographic zones axes, allowing the space group symmetry to be studied. Electron diffraction patterns characteristic of Pm3-bar were obtained for thicker specimens. However, for very thin specimens, as used for HRTEM imaging, the electron diffraction patterns were characteristic of Im3-bar space group symmetry. The structural basis of the Pm3-bar to Im3-bar transformation may be understood in terms of an analysis of the icosahedral structural elements located at the corners and body-centers of the cubic unit cell. A method for indexing the non-crystallographic zone axis diffraction patterns is described. An electron diffraction pattern of the 5-fold axis of the quasicrystalline phase i-AlMnSi is also included; this is compared with the experimental results and calculations for the [0{tau}1] axis of Pm3-bar and Im3-bar crystalline phases. 26 refs., 4 tabs., 7 figs.
Distributed interactive communication in simulated space-dwelling groups.
Brady, Joseph V; Hienz, Robert D; Hursh, Steven R; Ragusa, Leonard C; Rouse, Charles O; Gasior, Eric D
2004-03-01
This report describes the development and preliminary application of an experimental test bed for modeling human behavior in the context of a computer generated environment to analyze the effects of variations in communication modalities, incentives and stressful conditions. In addition to detailing the methodological development of a simulated task environment that provides for electronic monitoring and recording of individual and group behavior, the initial substantive findings from an experimental analysis of distributed interactive communication in simulated space dwelling groups are described. Crews of three members each (male and female) participated in simulated "planetary missions" based upon a synthetic scenario task that required identification, collection, and analysis of geologic specimens with a range of grade values. The results of these preliminary studies showed clearly that cooperative and productive interactions were maintained between individually isolated and distributed individuals communicating and problem-solving effectively in a computer-generated "planetary" environment over extended time intervals without benefit of one another's physical presence. Studies on communication channel constraints confirmed the functional interchangeability between available modalities with the highest degree of interchangeability occurring between Audio and Text modes of communication. The effects of task-related incentives were determined by the conditions under which they were available with Positive Incentives effectively attenuating decrements in performance under stressful time pressure.
Jeudy, Sandra; Coutard, Bruno; Lebrun, Régine; Abergel, Chantal
2005-06-01
The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004), Science, 306, 1344-1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005), Acta Cryst. F61, 212-215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2(1)3, with unit-cell parameter 99.425 A. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.
Mir-Kasimov, R. M.
1997-03-01
The Quantum Field Theory (QFT) is considered in which momenta belong to the space of constant nonzero curvature. The conjugated configurational space is quantized space. It is connected with the momentum space by the Fourier expansion in matrix elements of the group of motions of this space. The generators of the translations in the configurational space are differential - difference operators and can be considered as the generators of the q- deformations of the Poincaré group. The deformed character of the translations leads to radical modification of the singularities of the field - theoretical functions. As a result, the S - matrix elements do not contain the non-integrable expressions.
The Lie group of automorphisms of a Courant algebroid and the moduli space of generalized metrics
Rubio, Roberto; Tipler, Carl
2016-01-01
We endow the group of automorphisms of an exact Courant algebroid over a compact manifold with an infinite dimensional Lie group structure modelled on the inverse limit of Hilbert spaces (ILH). We prove a slice theorem for the action of this Lie group on the space of generalized metrics. As an application, we show that the moduli space of generalized metrics is stratified by ILH submanifolds. Finally, we relate the moduli space of generalized metrics to the moduli space of usual metrics.
On position-space renormalization group approach to percolation
Sahimi, Muhammad; Rassamdana, Hossein
1995-02-01
In a position-space renormalization group (PSRG) approach to percolation one calculates the probability R(p,b) that a finite lattice of linear size b percolates, where p is the occupation probability of a site or bond. A sequence of percolation thresholds p c (b) is then estimated from R(p c , b)=p c (b) and extrapolated to the limit b→∞ to obtain p c = p c (∞). Recently, it was shown that for a certain spanning rule and boundary condition, R(p c , ∞)=R c is universal, and since p c is not universal, the validity of PSRG approaches was questioned. We suggest that the equation R(p c , b)=α, where α is any number in (0,1), provides a sequence of p c (b)'s that always converges to p c as b→∞. Thus, there is an envelope from any point inside of which one can converge to p c . However, the convergence is optimal if α= R c . By calculating the fractal dimension of the sample-spanning cluster at p c , we show that the same is true about any critical exponent of percolation that is calculated by a PSRG method. Thus PSRG methods are still a useful tool for investigating percolation properties of disordered systems.
CIF (Crystallographic Information File): A Standard for Crystallographic Data Interchange
Brown, I. D.
1996-01-01
The Crystallographic Information File (CIF) uses the self-defining STAR file structure. This requires the creation of a dictionary of data names and definitions. A basic dictionary of terms needed to describe the crystal structures of small molecules was approved in 1991 and is currently used for the submission of papers to Acta Crystallographica C. A number of extensions to this dictionary are in preparation. By storing the dictionary itself as a STAR file, the definitions and relationships in the CIF dictionary become computer interpretable. This offers many possibilities for the automatic handling of crystallographic information. PMID:27805170
Authier, A.
2010-01-01
This article describes the circumstances of the establishment of the European Crystallographic Committee, now the European Crystallographic Association, a regional associate of the IUCr, and of the European Crystallographic Meetings.
Classifying spaces with virtually cyclic stabilizers for linear groups
DEFF Research Database (Denmark)
Degrijse, Dieter Dries; Köhl, Ralf; Petrosyan, Nansen
2015-01-01
We show that every discrete subgroup of GL(n, ℝ) admits a finite-dimensional classifying space with virtually cyclic stabilizers. Applying our methods to SL(3, ℤ), we obtain a four-dimensional classifying space with virtually cyclic stabilizers and a decomposition of the algebraic K-theory of its...
Classifying spaces with virtually cyclic stabilizers for linear groups
DEFF Research Database (Denmark)
Degrijse, Dieter Dries; Köhl, Ralf; Petrosyan, Nansen
2015-01-01
We show that every discrete subgroup of GL(n, ℝ) admits a finite-dimensional classifying space with virtually cyclic stabilizers. Applying our methods to SL(3, ℤ), we obtain a four-dimensional classifying space with virtually cyclic stabilizers and a decomposition of the algebraic K-theory of its...
The Crystallographic Information File (CIF
Directory of Open Access Journals (Sweden)
I D Brown
2006-11-01
Full Text Available The Crystallographic Information File (CIF, owned by the International Union of Crystallography, is a file structure based on tag-value ASCII pairs with tags defined in machine-readable dictionaries. The crystallographic community publishes and archives large quantities of numeric information generated by crystal structure determinations, and CIF's acceptance was assured by its adoption as the submission format for Acta Crystallographica and by the obvious needs of the community. CIF's strength lies in its dictionaries, which define most of the concepts of crystallography; its weakness is the difficulty of writing software that exploits its full potential.
Phase space picture of quantum mechanics group theoretical approach
Kim, Y S
1991-01-01
This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schrödinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.
The curious moduli spaces of unmarked Kleinian surface groups
Canary, Richard
2009-01-01
Fixing a closed hyperbolic surface S, we define a moduli space AI(S) of unmarked hyperbolic 3-manifolds homotopy equivalent to S. This 3-dimensional analogue of the moduli space M(S) of unmarked hyperbolic surfaces homeomorphic to S has bizarre local topology, possessing many points that are not closed. There is, however, a natural embedding of M(S) into AI(S) and a compactification of AI(S) such that this embedding extends to an embedding of the Deligne-Mumford compactification of M(S) into the compactification of AI(S).
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
Group calls for space policies to transcend politics
Showstack, Randy
2012-06-01
At a 22 May briefing, the American Institute of Aeronautics and Astronautics (AIAA) called on Congress to “establish space exploration policy goals which transcend partisan political differences.” AIAA president and former NASA administrator Michael Griffin said the “goal of establishing human capability to b e a space-faring species is not a short-term goal,” nor is it a goal that belongs to only one political party. “We will not reach long-term goals without a stable, coherent, sensible plan that transcends elections and leaders,” said Griffin, who has provided advice to Republican U.S. presidential candidate Mitt Romney. Griffin pointed to NASA's 2008 authorization as providing the kind of vision needed for NASA. The act called for human return to the Moon and preparation for the capability for permanent bases on the Moon, among other things, he said. “That's the kind of thing that we need. All of the goals espoused by the 2008 act were long-term, generational, strategic in scope,” Griffin said, adding that the act, which had bipartisan support, demonstrated “the kind of societal support, rather than political support, that I believe our space program deserves.”
FRAME MULTIRESOLUTION ANALYSIS AND INFINITE TREES IN BANACH SPACES ON LOCALLY COMPACT ABELIAN GROUPS
Institute of Scientific and Technical Information of China (English)
S. S. Panday
2004-01-01
We extend the concept of frame multiresolution analysis to a locally compact abelian group and use it to define certain weighted Banach spaces and the spaces of their antifunctionals. We define analysis and synthesis operators on these spaces and establish the continuity of their composition. Also, we prove a general result to characterize infinite trees in the above Banach spaces of antifunctionals. This paper paves the way for the study of corresponding problems associated with some other types of Banach spaces on locally compact abelian groups including modulation spaces.
Student "Facebook" Groups as a Third Space: Between Social Life and Schoolwork
Aaen, Janus; Dalsgaard, Christian
2016-01-01
The paper examines educational potentials of "Facebook" groups that are created and managed by students without any involvement from teachers. The objective is to study student-managed "Facebook" groups as a "third space" between the institutional space of teacher-managed "Facebook" groups and the…
Multivariate Diagonal Coinvariant Spaces for Complex Reflection Groups
Bergeron, Francois
2011-01-01
For finite complex reflexion groups, we consider the graded $W$-modules of diagonally harmonic polynomials in $r$ sets of variables, and show that associated Hilbert series may be described in a global manner, independent of the value of $r$.
Automorphism groups of causal symmetric spaces of Cayley type and bounded symmetric domains
Institute of Scientific and Technical Information of China (English)
Soji; Kaneyuki
2005-01-01
Symmetric spaces of Cayley type are a higher dimensional analogue of a onesheeted hyperboloid in R3. They form an important class of causal symmetric spaces. To a symmetric space of Cayley type M, one can associate a bounded symmetric domain of tube type D. We determine the full causal automorphism group of M. This clarifies the relation between the causal automorphism group and the holomorphic automorphism group of D.
Triboluminescence dominated by crystallographic orientation
Wang, Kuifang; Ma, Liran; Xu, Xuefeng; Wen, Shizhu; Luo, Jianbin
2016-05-01
Triboluminescence (TL) is an optical phenomenon that has a long and varied history with broad applications, such as damage detection, X-ray source, and mass health monitoring sensor. So far, the properties and mechanisms of TL remain not completely understood. The TL properties emitted during the sliding contact between Al2O3 and SiO2 surfaces were studied along different crystallographic orientations. In this study, the TL intensity of Al2O3 was significantly enhanced as Al2O3 surface was along a particular crystallographic orientation, which is an unconventional phenomenon. TL enhancement of Al2O3 was not affected by air atmosphere and atomic stocking mode of Al2O3. The enhancement mechanism of Al2O3 may be influenced by the surface state of Al2O3. This work provides a new method to control the intensity of TL and novel ideas to elucidate the TL mechanism.
Flowing in group field theory space: a review
Carrozza, Sylvain
2016-01-01
We provide a non--technical overview of recent extensions of renormalization methods and techniques to Group Field Theories (GFTs), a class of combinatorially non--local quantum field theories which generalize matrix models to dimension $d \\geq 3$. More precisely, we focus on GFTs with so--called closure constraint, which are closely related to lattice gauge theories and quantum gravity spin foam models. With the help of modern tensor model tools, a rich landscape of renormalizable theories has been unravelled. We review our current understanding of their renormalization group flows, at both perturbative and non--perturbative levels.
Renormalization group equation for f (R ) gravity on hyperbolic spaces
Falls, Kevin; Ohta, Nobuyoshi
2016-10-01
We derive the flow equation for the gravitational effective average action in an f (R ) truncation on hyperbolic spacetimes using the exponential parametrization of the metric. In contrast to previous works on compact spaces, we are able to evaluate traces exactly using the optimized cutoff. This reveals in particular that all modes can be integrated out for a finite value of the cutoff due to a gap in the spectrum of the Laplacian, leading to the effective action. Studying polynomial solutions, we find poorer convergence than has been found on compact spacetimes even though at small curvature the equations only differ in the treatment of certain modes. In the vicinity of an asymptotically free fixed point, we find the universal beta function for the R2 coupling and compute the corresponding effective action which involves an R2log (R2) quantum correction.
On the finite-dimensional PUA representations of the Shubnikov space groups
Broek, van den P.M.
1977-01-01
The finite-dimensional PUA epresentations of the Shubnikov space groups are discussed using the method of generalised induction given by Shaw and Lever. In particular we derive expressions for the calculation of the little groups.
A remark on Besov spaces interpolation over the 2-adic group
Chamorro, Diego
2011-01-01
Motivated by a recent result which identifies in the special setting of the 2-adic group the Besov space $\\dot{B}^{1,\\infty}_{1}(\\mathbb{Z}_2)$ with $BV(\\mathbb{Z}_2)$, the space of function of bounded variation, we study in this article some functional relationships between Besov spaces.
Effect of increasing temparature on space requirements of group housed finishing pigs
Spoolder, H.A.M.; Aarnink, A.J.A.; Vermeer, H.M.; Riel, van J.W.
2012-01-01
For groups of pigs to cope adequately with their housing conditions they need sufficient static space (occupied by the body of the pig), activity space (for movement between different functional areas and behaviours relating to these) and interaction space (for appropriate social behaviour). Estimat
The free abelian topological group and the free locally convex space on the unit interval
Leiderman, A G; Pestov, V G
1992-01-01
We give a complete description of the topological spaces $X$ such that the free abelian topological group $A(X)$ embeds into the free abelian topological group $A(I)$ of the closed unit interval. In particular, the free abelian topological group $A(X)$ of any finite-dimensional compact metrizable space $X$ embeds into $A(I)$. The situation turns out to be somewhat different for free locally convex spaces. Some results for the spaces of continuous functions with the pointwise topology are also obtained. Proofs are based on the classical Kolmogorov's Superposition Theorem.
The free abelian topological group and the free locally convex space on the unit interval
Leiderman, A. G.; Morris, S. A.; Pestov, V. G.
1992-01-01
We give a complete description of the topological spaces $X$ such that the free abelian topological group $A(X)$ embeds into the free abelian topological group $A(I)$ of the closed unit interval. In particular, the free abelian topological group $A(X)$ of any finite-dimensional compact metrizable space $X$ embeds into $A(I)$. The situation turns out to be somewhat different for free locally convex spaces. Some results for the spaces of continuous functions with the pointwise topology are also...
Kurtycz, Laura M; Shender, Marisa A; Ross, Stephen R
2014-01-01
Changes in group composition can alter the behavior of social animals such as gorillas. Although gorilla births are presumed to affect group spacing patterns, there is relatively little data about how these events affect gorilla group cohesion. We investigated how members of a western lowland gorilla group (n = 6) at Lincoln Park Zoo (Chicago, IL, USA) spaced themselves prior to and after the birth of an infant, to investigate changes in group cohesion. Gorillas were housed in an indoor-outdoor enclosure in which access to the outdoors was permitted when temperatures exceeded 5°C. We recorded spatial locations of each group member using 30-min group scans on tablet computers with an electronic map interface, as well as noting their access to outdoor areas. Data from the 4 months following the birth was compared to a control period corresponding to early pregnancy. We measured distances between all possible group dyads for each scan and subsequently calculated a mean distance between all group members. An ANOVA revealed that access to the outdoors had no effect on group spacing (F(1,56) = 0.066, P = 0.799). However, the presence of an infant resulted in a significant reduction in inter-individual distance (F(1,56) = 23.988, P = 0.000), decreasing inter-individual spacing by 12.5%. This information helps characterize the behavioral impact of a new birth on captive gorilla social structure and could potentially inform future management of breeding gorilla groups.
On K-groups of Operator Algebra on the 1-shift Space
Institute of Scientific and Technical Information of China (English)
Qiao Fen JIANG; Huai Jie ZHONG
2008-01-01
In this paper we discuss the K-groups of Wiener algebra W.For the 1-shift space XGM2,We obtain a characterization of Fredholm operators on XnGM2 for all n ∈ N.We also calculate the K-groups of operator algebra on the 1-shift space XGM2.
Real-space renormalization group approach to the Anderson model
Campbell, Eamonn
Many of the most interesting electronic behaviours currently being studied are associated with strong correlations. In addition, many of these materials are disordered either intrinsically or due to doping. Solving interacting systems exactly is extremely computationally expensive, and approximate techniques developed for strongly correlated systems are not easily adapted to include disorder. As a non-interacting disordered model, it makes sense to consider the Anderson model as a first step in developing an approximate method of solution to the interacting and disordered Anderson-Hubbard model. Our renormalization group (RG) approach is modeled on that proposed by Johri and Bhatt [23]. We found an error in their work which we have corrected in our procedure. After testing the execution of the RG, we benchmarked the density of states and inverse participation ratio results against exact diagonalization. Our approach is significantly faster than exact diagonalization and is most accurate in the limit of strong disorder.
Brauer groups and obstruction problems moduli spaces and arithmetic
Hassett, Brendan; Várilly-Alvarado, Anthony; Viray, Bianca
2017-01-01
The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman...
Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces
Dahmani, F; Osin, D
2017-01-01
The authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, Out(F_n), and the Cremona group. Other examples can be found among groups acting geometrically on CAT(0) spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are n...
An Improved Group Space-Time Block Code Through Constellation Rotation
Institute of Scientific and Technical Information of China (English)
ZHANG Hong-wei; ZHANG Hai-bin; SONG Wen-tao; LUO Han-wen; LIU Xing-zhao
2005-01-01
A new improved group space-time block code (G-STBC) based on constellation rotation for four transmit antennas was proposed. In comparison with the traditional G-STBC coding scheme, the proposed space-time code has longer code length and adopts proper rotation-based symbols, which can increase the minimum distance of space-time codes and thereby improve code gain and achieve full diversity performance. The simulation results verify that the proposed group space-time code can achieve better bit error performance than both the traditional group space-time code and other quasi-orthogonal space-time codes. Compared with Ma's full diversity full rate (FDFR) codes, the proposed space-time code also can achieve the same excellent error performance. Furthermore, the design of the new space-time code gives another new and simple method to construct space-time codes with full diversity and high rate in case that it is not easy to design the traditional FDFR space-time codes.
Energy Technology Data Exchange (ETDEWEB)
Avdeev, Roman S [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)
2010-12-22
The extended weight semigroup of a homogeneous space G/H of a connected semisimple algebraic group G characterizes the spectra of the representations of G on spaces of regular sections of homogeneous line bundles over G/H, including the space of regular functions on G/H. We compute the extended weight semigroups for all strictly irreducible affine spherical homogeneous spaces G/H, where G is a simply connected non-simple semisimple complex algebraic group and H is a connected closed subgroup of G. In all cases we also find the highest-weight functions corresponding to the indecomposable elements of this semigroup. Among other things, our results complete the computation of the weight semigroups for all strictly irreducible simply connected affine spherical homogeneous spaces of semisimple complex algebraic groups.
Cassia grandis Linn. f. seed galactomannan: structural and crystallographical studies.
Joshi, Harsha; Kapoor, Virendra P
2003-09-01
Cassia grandis is a small or medium sized tree, found in abundance throughout India. The seeds contain about 50% endosperm gum and possess the characteristics of becoming a potential source of seed gum. The purified polysaccharide has been characterized as a pure galactomannan having a mannose-galactose ratio of 3.15; molecular weight (Mw) 80,200; polydispersity (Mw/Mn), 1.35 and intrinsic viscosity [eta], 848 mL/g. Methylation, periodate oxidation, Smith degradation and 13C NMR studies confirm that the polysaccharide has the basic structure of legume galactomannans consisting of a beta-(1-->4)-linked main mannan backbone to which galactose units are attached at O-6. The orthorhombic lattice constants of the hydrated gum are as follows: a=9.00, b=24.81, c=10.30 A. The crystallographic data establish that the probable space group symmetry of the unit cell is P2(1)2(1)2. The results are in contradiction to earlier reports (Indian J. Chem. 16B (1978) 966; J. Indian Chem. Soc. 55 (1978) 1216) in which a non-galactomannan polysaccharide structure has been assigned having a main chain of (1-->4)-linked galactose and mannose units in the molar ratio 6:3, where 50% of the galactose units branched with two galactose and one mannose through 1-->3 linkage.
Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study.
Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta
2015-08-01
The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly.
Infinite loop space structure(s) on the stable mapping class group
DEFF Research Database (Denmark)
Wahl, Nathalie
2004-01-01
Tillmann introduced two infinite loop space structures on the plus construction of the classifying space of the stable mapping class group, each with different computational advantages. The first one uses disjoint union on a suitable cobordism category, whereas the second uses an operad which...
The Real-Space Renormalization Group Applied to Diffusion in Inhomogeneous Media
Kawasaki, Mitsuhiro
2002-01-01
The real-space renormalization group technique is introduced to evaluate the effective diffusion constant for diffusion in inhomogeneous media, which has been obtained by singular perturbation methods. Our method is formulated on a discretized real space and hence it can be easily combined with numerical studies for partial differential equations.
Novel Position-Space Renormalization Group for Bond Directed Percolation in Two Dimensions
KAYA, H.; Erzan, A.
1998-01-01
A new position-space renormalization group approach is investigated for bond directed percolation in two dimensions. The threshold value for the bond occupation probabilities is found to be $p_c=0.6443$. Correlation length exponents on time (parallel) and space (transverse) directions are found to be $\
Symmetries in a very special relativity and isometric group of Finsler space
Institute of Scientific and Technical Information of China (English)
LI Xin; CHANG Zhe; MO Xiao-Huan
2011-01-01
We present an explicit connection between the symmetries in a Very Special Relativity (VSR) and isometric group of a specific Finsler space. It is shown that the line element that is invariant under the VSR symmetric group is a Finslerian one. The Killing vectors in Finsler space are constructed in a systematic way. The Lie algebras corresponding to the symmetries of VSR are obtained from a geometric famework. The dispersion relation and the Lorentz invariance violation effect in the VSR are discussed.
Hemsworth, P H; Morrison, R S; Tilbrook, A J; Butler, K L; Rice, M; Moeller, S J
2016-11-01
Floor space is an important determinant of aggression and stress in group-housed sows, and the aim of the present experiment was to comprehensively examine the effects of floor space in the range of 1.45 to 2.90 m/sow from mixing until 27 d after insemination on aggression, stress, and reproduction of group-housed sows. A previous experiment on the effects of floor space indicated spatial variability across and along the research facility in both sow aggression and stress. To minimize this spatial variability within the research facility, similar-sized pens but with varying groups sizes (10-20) in 4 separate blocks of 3 contiguous pens within each of 9 time replicates (180 sows/replicate) were used to examine 6 space allowances (1.45-2.9 m/sow). Space treatments were appropriately randomized to pens. Although it may be argued that space allowance is confounded with group size in this design, there was no evidence in our previous experiment of group size effects, for pens of 10 to 80 sows, or appreciable interactions between space and group size on aggression, stress, and reproduction. In the present experiment, sows were introduced to treatments within 4 d of insemination and were floor fed 4 times per day (2.5 kg/sow per d). On both Days 2 and 26 after mixing, aggressive behavior (bites and knocks) at feeding and plasma cortisol concentrations were measured. Restricted maximum likelihood mixed model analyses were used to examine the treatment effect after accounting for replicate and random spatial location effects within replicate. There was a consistent linear effect of floor space allowance on aggression at feeding at Day 2 ( space. However, there were no effects of space allowance on aggression and stress at Day 26 ( = 0.14 and = 0.79, respectively). These results show that increased floor space in the immediate post-mixing period reduces aggression and stress and that sows may adapt to reduced floor space over time. A strategy of staged-gestation penning
Torelli groups, extended Johnson homomorphisms, and new cycles on the moduli space of curves
DEFF Research Database (Denmark)
Morita, Shigeyuki; Penner, Robert
is the known mapping class group invariant ideal cell decomposition of the Teichmueller space. This new 1-cocycle is mapping class group equivariant, so various contractions of its powers yield various combinatorial (co)cycles of the moduli space of curves, which are also new. Our combinatorial construction...... can be related to former works of Kawazumi and the first-named author with the consequence that the algebra generated by the cohomology classes represented by the new cocycles is precisely the tautological algebra of the moduli space. There is finally a discussion of prospects for similarly finding...... modulo N are derived for all N. Furthermore, the first Johnson homomorphism, which is defined from the classical Torelli group to the third exterior power of the homology of the surface, is shown to lift to an explicit canonical 1-cocycle of the Teichmueller space. The main tool for these results...
Liu, Sanling; Dong, Jianmei; Mei, Guoqiang; Liu, Guiyun; Xu, Wei; Su, Zhong; Liu, Jinsong
2011-02-01
The cysteine protease inhibitor from Ascaris lumbricoides, a roundworm that lives in the human intestine, may be involved in the suppression of human immune responses. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of the cysteine protease inhibitor from A. lumbricoides are reported. The rod-shaped crystal belonged to space group C2, with unit-cell parameters a = 99.40, b = 37.52, c = 62.92 Å, β = 118.26°. The crystal diffracted to 2.1 Å resolution and contained two molecules in the asymmetric unit.
Energy Technology Data Exchange (ETDEWEB)
Sugiyama, Shigeru [Maruwa Foods Co. Ltd, Tsutsui-cho 170-1, Yamatokoriyama, Nara 639-1123 (Japan); Tokuoka, Keiji [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Uchiyama, Nahoko [Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874 (Japan); Okamoto, Naoki; Okano, Yousuke; Matsumura, Hiroyoshi [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Inaka, Koji [Maruwa Foods Co. Ltd, Tsutsui-cho 170-1, Yamatokoriyama, Nara 639-1123 (Japan); Urade, Yoshihiro [Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874 (Japan); Inoue, Tsuyoshi, E-mail: inouet@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Maruwa Foods Co. Ltd, Tsutsui-cho 170-1, Yamatokoriyama, Nara 639-1123 (Japan)
2007-10-01
Old yellow enzyme from Trypanosoma cruzi, has been crystallized using the hanging-drop vapour-diffusion method. Old yellow enzyme (OYE) is an NADPH oxidoreductase that contains a flavin mononucleotide as a prosthetic group. The OYE from Trypanosoma cruzi, which produces prostaglandin F{sub 2α}, a potent mediator of various physiological and pathological processes, from prostaglandin H2. The protein was recombinantly expressed and purified from Escherichia coli and was crystallized using the hanging-drop vapour-diffusion method. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 56.3, b = 78.8, c = 78.8 Å, β = 93.4° and two molecules per asymmetric unit. The crystals were suitable for X-ray crystallographic studies and diffracted to 1.70 Å resolution. A Patterson search method is in progress using the structure of OYE from Pseudomonas putida as a starting model.
Energy Technology Data Exchange (ETDEWEB)
Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton; McFeeters, Robert L.
2014-10-15
The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c = 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.
Isometric Coactions of Compact Quantum Groups on Compact Quantum Metric Spaces
Indian Academy of Sciences (India)
Johan Quaegebeur; Marie Sabbe
2012-08-01
We propose a notion of isometric coaction of a compact quantum group on a compact quantum metric space in the framework of Rieffel, where the metric structure is given by a Lipnorm. Within this setting we study the problem of the existence of a quantum isometry group.
Internet Based Open Access Crystallographic Databases
Upreti, Girish; Seipel, Bjoern; Harvey, Morgan; Garrick, Will; Moeck, Peter
2006-05-01
Two freely accessible crystallographic databases are discussed: the Crystallographic Open Database (COD, http://crystallography.net) which contains over 37,000 crystal structures, and the Nano-Crystallography Database (NCD, http://nanocrystallography.research.pdx.edu) which we recently started to support image-based nanocrystallography and (nano) materials science education. Both databases collect crystallographic relevant information in a standardized format; the Crystallographic Information File (CIF). CIF is the standard file format adopted by the International Union of Crystallography (http://iucr.org) for the archiving and distribution of crystallographic information. A subset of the COD, the Predicted Crystallographic Online Database, allows for 3D structural displays of structural polyhedra and wireframes of approximately 2,600 entries. Since electron microscopist are interested in simple, yet technologically important materials, the crystallographic information for those materials will be included in our database. At our NCD site, entries in the COD and the NCD can be visualized in three dimensions (3D) along with (2D) lattice fringe fingerprints plots. The latter supports the identification of unknown nanocrystal phases from high-resolution transmission electron microscopy (HRTEM) images. Morphological crystal information from the database ``Bestimmungstabellen f"ur Kristalle/ ???????????? ??????????,'' (A.K. Boldyrew and W.W. Doliwo-Dobrowolsky, Zentrales Wissenschaftlichers Institute der Geologie und Sch"urfung, Leningrad/ Moscow, 1937/1939) will also be included in the NCD to support image-based nanocrystallography in 3D.
National facilities study. Volume 5: Space research and development facilities task group
1994-01-01
With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R
Group momentum space and Hopf algebra symmetries of point particles coupled to 2+1 gravity
Arzano, Michele; Lotito, Matteo
2014-01-01
We present an in-depth investigation of the $SL(2,\\mathbb{R})$ momentum space describing point particles coupled to Einstein gravity in three space-time dimensions. We introduce different sets of coordinates on the group manifold and discuss their properties under Lorentz transformations. In particular we show how a certain set of coordinates exhibits an upper bound on the energy under deformed Lorentz boosts which saturate at the Planck energy. We discuss how this deformed symmetry framework is generally described by a quantum deformation of the Poincar\\'e group: the quantum double of $SL(2,\\mathbb{R})$. We then illustrate how the space of functions on the group manifold momentum space has a dual representation on a non-commutative space of coordinates via a (quantum) group Fourier transform. In this context we explore the connection between Weyl maps and different notions of (quantum) group Fourier transform appeared in the literature in the past years and establish relations between them. Finally we write ...
An introduction to the tools hosted in the Bilbao Crystallographic Server
Directory of Open Access Journals (Sweden)
Aroyo M.I.
2012-03-01
Full Text Available The programs hosted in the Bilbao Crystallographic Server (http://www.cryst.ehu.es are briefly explained along with worked examples on various cases related to different fields of applications. It is our aim to have this text acting as a primer on the various usage of the crystallographic tools in conjunction with each other due to the modular structure of the server. For this reason, diverse topics such as crystallographic groups and their subgroups, pseudosymmetry, extinction conditions, k-vectors and irreducible representations have been discussed in the context.
The Extended Loop Group An Infinite Dimensional Manifold Associated with the Loop Space
Di Bartolo, C; Griego, J R; Bartolo, Cayetano Di; Gambini, Rodolfo; Griego, Jorge
1993-01-01
A set of coordinates in the non parametric loop-space is introduced. We show that these coordinates transform under infinite dimensional linear representations of the diffeomorphism group. An extension of the group of loops in terms of these objects is proposed. The enlarged group behaves locally as an infinite dimensional Lie group. Ordinary loops form a subgroup of this group. The algebraic properties of this new mathematical structure are analized in detail. Applications of the formalism to field theory, quantum gravity and knot theory are considered.
Novel position-space renormalization group for bond directed percolation in two dimensions
Kaya, Hüseyin; Erzan, Ayşe
A new position-space renormalization group approach is investigated for bond directed percolation in two dimensions. The threshold value for the bond occupation probabilities is found to be pc=0.6443. Correlation length exponents on time (parallel) and space (transverse) directions are found to be ν∥=1.719 and ν⊥=1.076, respectively, which are in very good agreement with the best-known series expansion results.
Nakayama, Kei; Mizutani, Akito; Koyama, Yasumasa
2016-11-01
In the Al-Co-Cu alloy system, both the decagonal quasicrystal with the space group of Poverline{10}m2 and its approximant Al13Co4 phase with monoclinic Cm symmetry are present around 20 at. % Co-10 at. % Cu. In this study, we examined the crystallographic features of prepared Al-(30 - x) at. % Co-x at. % Cu samples mainly by transmission electron microscopy in order to make clear the crystallographic relation between the decagonal quasicrystal and the monoclinic Al13Co4 structure. The results revealed a coexistence state consisting of decagonal quasicrystal and approximant Al13Co4 regions in Al-20 at. % Co-10 at. % Cu alloy samples. With the help of the coexistence state, the orientation relationship was established between the monoclinic Al13Co4 structure and the decagonal quasicrystal. In the determined relationship, the crystallographic axis in the quasicrystal was found to be parallel to the normal direction of the (010)m plane in the Al13Co4 structure, where the subscript m denotes the monoclinic system. Based on data obtained experimentally, the state stability of the decagonal quasicrystal was also examined in terms of the Hume-Rothery (HR) mechanism on the basis of the nearly-free-electron approximation. It was found that a model based on the HR mechanism could explain the crystallographic features such as electron diffraction patterns and atomic arrangements found in the decagonal quasicrystal. In other words, the HR mechanism is most likely appropriate for the stability of the decagonal quasicrystal in the Al-Co-Cu alloy system.
Generation of symmetry coordinates for crystals using multiplier representations of the space groups
DEFF Research Database (Denmark)
Hansen, Flemming Yssing
1978-01-01
Symmetry coordinates play an important role in the normal-mode calculations of crystals. It is therefore of great importance to have a general method, which may be applied for any crystal at any wave vector, to generate these. The multiplier representations of the space groups as given by Kovalev...... and the projection-operator technique provide a basis for such a method. The method is illustrated for the nonsymmorphic D36 space group, and the theoretical background for the representations of space groups in general is reviewed and illustrated on the example above. It is desirable to perform the projection...... of symmetry coordinates in such a way that they may be used for as many wave vectors as possible. We discuss how to achieve this goal. The detailed illustrations should make it simple to apply the theory in any other case....
A Simple Approach for Synthesis of TAPO-11 Molecular Sieve with Controllable Space Group
Institute of Scientific and Technical Information of China (English)
Yue Ming LIU; Huan Yan ZHANG; Hai Jiao ZHANG; Hai Hong WU; Peng WU; Ming Yuan HE
2006-01-01
A TAPO-11 molecular sieve with the space group Icm2 was synthesized successfully.The samples with different space group were controlled simply only by adjusting the crystallization temperature (CT) in the hydrothermal system. In the system of gel with a molar composition of 0.7R: xTiO2: P2O5: Al2O3: 30H2O, where x is 0.01-0.10 and the R is a mixture of di-n-propylamine and diisopropylamine as templates. When CT was between 150-160℃, the calcined sample showed the space group of Icm2, while it showed Pna21 at CTlarger than 190℃.The characterizations of UV-Vis and FT-IR confirmed that Ti was incorporated into the AEL framework successfully.
Energy Technology Data Exchange (ETDEWEB)
Jeudy, Sandra [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Coutard, Bruno [Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Lebrun, Régine [IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Abergel, Chantal, E-mail: chantal.abergel@igs.cnrs-mrs.fr [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France)
2005-06-01
A. polyphaga mimivirus, the largest known double-stranded DNA virus, is the first virus to exhibit a nucleoside diphosphate kinase gene. The expression and crystallization of the viral NDK are reported. The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004 ▶), Science, 306, 1344–1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005 ▶), Acta Cryst. F61, 212–215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2{sub 1}3, with unit-cell parameter 99.425 Å. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.
Defining the Crystallographic Fingerprint of Extraterrestrial Treasures
Forman, L. V.; Bland, P. A.; Timms, N. E.; Daly, L.; Benedix, G. K.; Trimby, P. W.
2016-08-01
An approach to determine the crystallographic fingerprint of chondritic matrix grains, which is complimentary to the geochemical signature commonly identified to constrain some aspects of the petrogenesis of a sample.
Active space decomposition with multiple sites: Density matrix renormalization group algorithm
Parker, Shane M
2014-01-01
We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few {\\mu}Eh or less) with M = 128 in both cases, which is in contrast to conventional ab initio density matrix renormalization group.
Flack, H D; Wondratschek, H; Hahn, T; Abrahams, S C
2000-01-01
The definition of 'symmetry element' given in the Report of the IUCr Ad-Hoc Committee on the Nomenclature of Symmetry by de Wolff et al. [Acta Cryst. (1989). A45, 494-499] is shown to contain an ambiguity in the case of space groups P6/m, P6/mmm, P6/mcc and point groups 6/m and 6/mmm. The ambiguity is removed by redefining the 'geometric element' as a labelled geometric item in which the label is related to the rotation angle of the rotation or rotoinversion symmetry operation. The complete set of different types of glide plane is shown to contain three more than the 15 that are illustrated in the 1992 Report by de Wolff et al. [Acta Cryst. (1992). A48, 727-732].
Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report
Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick
2009-01-01
The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts
A transference principle for general groups and functional calculus on UMD spaces
Haase, M.
2009-01-01
Let-iA be the generator of a C-0-group (U(s))(s is an element of R) on a Banach space X and omega > theta(U), the group type of U. We prove a transference principle that allows to estimate parallel to f(A)parallel to in terms of the L-p(R; X)-Fourier multiplier norm of f(. +/- i omega). If X is a
Lindelöf Σ-Spaces and R-Factorizable Paratopological Groups
Directory of Open Access Journals (Sweden)
Mikhail Tkachenko
2015-07-01
Full Text Available We prove that if a paratopological group G is a continuous image of an arbitrary product of regular Lindelöf Σ -spaces, then it is R-factorizable and has countable cellularity. If in addition, G is regular, then it is totally w-narrow and satisfies celw(G ≤ w, and the Hewitt–Nachbin completion of G is again an R-factorizable paratopological group.
Energy Technology Data Exchange (ETDEWEB)
Gaur, Vineet; Sethi, Dhruv K.; Salunke, Dinakar M., E-mail: dinakar@nii.res.in [National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067 (India)
2008-01-01
The purification, identification, crystallization and preliminary crystallographic studies of an allergy-related protein, Pru du amandin, from P. dulcis nuts are reported. Food allergies appear to be one of the foremost causes of hypersensitivity reactions. Nut allergies account for most food allergies and are often permanent. The 360 kDa hexameric protein Pru du amandin, a known allergen, was purified from almonds (Prunus dulcis) by ammonium sulfate fractionation and ion-exchange chromatography. The protein was identified by a BLAST homology search against the nonredundant sequence database. Pru du amandin belongs to the 11S legumin family of seed storage proteins characterized by the presence of a cupin motif. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 150.7, c = 164.9 Å.
Dyda, F; Furey, W; Swaminathan, S; Sax, M; Farrenkopf, B; Jordan, F
1990-10-15
Single crystals of the thiamin diphosphate (the vitamin B1 coenzyme)-dependent enzyme pyruvate decarboxylase (EC 4.1.1.1) from brewers' yeast have been grown using polyethylene glycol as a precipitating agent. Crystals of the homotetrameric version alpha 4 of the holoenzyme are triclinic, space group P1, with cell constants a = 81.0, b = 82.4, c = 116.6 A, alpha = 69.5 beta = 72.6, gamma = 62.4 degrees. The crystals are reasonably stable in a rotating anode x-ray beam and diffract to at least 2.5 A resolution. The Vm value of 2.55 A/dalton is consistent with a unit cell containing four subunits with mass of approximately 60 kDa each. Rotation function results with native data indicate strong non-crystallographic 222 symmetry relating the four identical subunits, thus density averaging methods are likely to play a role in the structure determination.
Nocera, A.; Alvarez, G.
2016-11-01
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.
Future In-Space Operations (FISO): A Working Group and Community Engagement
Thronson, Harley; Lester, Dan
2013-01-01
Long-duration human capabilities beyond low Earth orbit (LEO), either in support of or as an alternative to lunar surface operations, have been assessed at least since the late 1960s. Over the next few months, we will present short histories of concepts for long-duration, free-space human habitation beyond LEO from the end of the Apollo program to the Decadal Planning Team (DPT)/NASA Exploration Team (NExT), which was active in 1999 2000 (see Forging a vision: NASA s Decadal Planning Team and the origins of the Vision for Space Exploration , The Space Review, December 19, 2005). Here we summarize the brief existence of the Future In-Space Operations (FISO) working group in 2005 2006 and its successor, a telecon-based colloquium series, which we co-moderate.
Nocera, A; Alvarez, G
2016-11-01
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.
Strong convergence theorems for nonexpansive semi-groups in Banach spaces
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Some strong convergence theorems of explicit composite iteration scheme for nonexpansive semi-groups in the framework of Banach spaces are established. Results presented in the paper not only extend and improve the corresponding results of ShiojiTakahashi, Suzuki, Xu and Aleyner-Reich, but also give a partially affirmative answer to the open questions raised by Suzuki and Xu.
Some G-M-type Banach spaces and K-groups of operator algebras on them
Institute of Scientific and Technical Information of China (English)
ZHONG Huaijie; CHEN Dongxiao; CHEN Jianlan
2004-01-01
By providing several new varieties of G-M-type Banachspaces according to decomposable and compoundable properties, this paper discusses the operator structures of thesespaces and the K-theory of the algebra of the operators on these G-M-type Banach spaces throughcalculation of the K-groups of the operator ideals contained in the class of Riesz operators.
Real-space renormalization-group approach to field evolution equations.
Degenhard, Andreas; Rodríguez-Laguna, Javier
2002-03-01
An operator formalism for the reduction of degrees of freedom in the evolution of discrete partial differential equations (PDE) via real-space renormalization group is introduced, in which cell overlapping is the key concept. Applications to (1+1)-dimensional PDEs are presented for linear and quadratic equations that are first order in time.
Torelli groups, extended Johnson homomorphisms, and new cycles on the moduli space of curves
DEFF Research Database (Denmark)
Morita, Shigeyuki; Penner, Robert
modulo N are derived for all N. Furthermore, the first Johnson homomorphism, which is defined from the classical Torelli group to the third exterior power of the homology of the surface, is shown to lift to an explicit canonical 1-cocycle of the Teichmueller space. The main tool for these results...... cocycle lifts of the higher Johnson homomorphisms....
Riesz spaces valued submeasures and application to group-valued finitely additive measures
Directory of Open Access Journals (Sweden)
Anna Martellotti
1987-11-01
Full Text Available As a consequence of a general Domination Theorem given for a subadditive measure with values in a Riesz space, we prove the arcwise connectedness of the range of a L.C.V.T.S.-valued and of a group-valued finitely additive measure.
Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora
Energy Technology Data Exchange (ETDEWEB)
Wikman, Linnea E. K. [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland); Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N. [Institute for Biomedical Chemistry, Russian Academy of Medical Sciences, 559-B, 10 Pogodinskay St, Moscow 119121 (Russian Federation); Papageorgiou, Anastassios C., E-mail: tassos.papageorgiou@btk.fi [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland)
2005-04-01
Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2{sub 1}, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml{sup −1} purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2{sub 1} space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment.
Greenwood, E C; Plush, K J; van Wettere, W H E J; Hughes, P E
2016-01-01
Aggression between domestic sows is greatest when sows are first introduced to each other and hierarchies form. The aim of this study was to determine the effect of a spacious "mixing pen" on sow aggression and stress. Sows were mixed into groups of 6 and allowed 2 (LOW; 8 groups and 48 sows), 4 (MED; 7 groups and 42 sows), or 6 m/sow (HIGH; 7 groups and 42 sows) for 4 d after mixing, at which point all pens were equalized to 2 m/sow. Salivary cortisol concentration and injury counts were measured on d -1, 0, 1, 3, and 4 relative to mixing, and behavior was also recorded on each of these days following mixing. Reproductive performance was assessed at farrowing. A linear mixed model was applied to the data. Data are presented as least squares means and standard error of the mean. Where transformations occurred, nontransformed adjusted means are presented in parentheses following the presentation of transformed data. In the primary analyses where measures were considered at the pen level, there were no effect of space allowance on fight number per sow, duration of fights, percentage of total time spent fighting, displacements, bites, knocks, and lunges ( > 0.05). These measures were higher on d 0 (i.e., fight number 1.0 ± 0.1 [13.8]) compared with d 1 (0.4 ± 0.1 [4.2]), 3 (0.7 ± 0.1 [5.3]), and 4 (0.7 ± 0.1 [5.5]; 0.05). There was increased percentage of time spent active (1.5 ± 0.02 [33.7] for LOW, 1.5 ± 0.02 [36.5] for MED, and 1.6 ± 0.02 [43.4] for HIGH) and time spent exploring (1.8 ± 0.1 [3.5] for LOW, 2.0 ± 0.1 [4.0] for MED, and 2.3 ± 0.1 [5.7] for HIGH) and number of nonaggressive sow-sow contacts (0.3 ± 0.09 [2.2] for LOW, 0.4 ± 0.07 [3.2] for MED, and 0.5 ± 0.07 [4.5] for HIGH) in HIGH compared with LOW ( 0.05). A secondary analysis was conducted that examined individual sow behavior within each pen, and this identified increased injury number in the lowest ranked sows (involved in no fights on d 0 and no displacements on d0 to d4) in LOW (9
Freudenthal Duality in Gravity: from Groups of Type E7 to Pre-Homogeneous Spaces
Marrani, Alessio
2015-01-01
Freudenthal duality can be defined as an anti-involutive, non-linear map acting on symplectic spaces. It was introduced in four-dimensional Maxwell-Einstein theories coupled to a non-linear sigma model of scalar fields. In this short review, I will consider its relation to the U-duality Lie groups of type E7 in extended supergravity theories, and comment on the relation between the Hessian of the black hole entropy and the pseudo-Euclidean, rigid special (pseudo)Kaehler metric of the pre-homogeneous spaces associated to the U-orbits.
Energy Technology Data Exchange (ETDEWEB)
Parker, Shane M.; Shiozaki, Toru [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States)
2014-12-07
We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.
Parker, Shane M; Shiozaki, Toru
2014-12-07
We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE(h) or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.
Weakly Ordered A-Commutative Partial Groups of Linear Operators Densely Defined on Hilbert Space
Directory of Open Access Journals (Sweden)
Jirí Janda
2013-01-01
Full Text Available The notion of a generalized effect algebra is presented as a generalization of effect algebra for an algebraic description of the structure of the set of all positive linear operators densely defined on a Hilbert space with the usual sum of operators. The structure of the set of not only positive linear operators can be described with the notion of a weakly ordered partial commutative group (wop-group.Due to the non-constructive algebraic nature of the wop-group we introduce its stronger version called a weakly ordered partial a-commutative group (woa-group. We show that it also describes the structure of not only positive linear operators.
Planning and managing future space facility projects. [management by objectives and group dynamics
Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.
1979-01-01
To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.
Roberts, Barry C.
2004-01-01
Supported Return-to-Flight activities by providing surface climate data from Kennedy Space Center used primarily for ice and dew formation studies, and upper air wind analysis primarily used for ascent loads analyses. The MSFC Environments Group's Terrestrial and Planetary Environments Team documented Space Shuttle day-of-launch support activities by publishing a document in support of SSP Return-to-Flight activities entitled "Space Shuttle Program Flight Operations Support". The team also formalized the Shuttle Natural Environments Technical Panel and chaired the first special session of the SSP Natural Environments Panel meeting at KSC, November 4-7,2003.58 participants from NASA, DOD and other government agencies from across the country attended the meeting.
Nexus, crystallographic computing all around the world.
Cranswick, Lachlan Michael David; Bisson, William; Cockcroft, Jeremy Karl
2008-01-01
Crystallographic Nexus CD-ROMs, containing a range of free crystallographic software for single-crystal and powder diffraction available on the Internet, have been distributed on request since 1996. The free CD is made in the form of a ;virtual Internet' with the main intent of benefiting crystallographers with inadequate Internet access. The IUCr funds an annual/biennial update which is distributed to known previous recipients. Feedback from current recipients indicates the CD is still useful. The most current IUCr-funded CD is being produced by the CCP14 project at University College London and The Royal Institution UK for distribution to the ECM 2007 and AsCA 2007 conferences.
Bayesian probability theory applied to the space group problem in powder diffraction
Markvardsen, A. J.
2004-11-01
Crystal structure determination from powder diffraction data has become a viable option for molecules with less than 50 non-hydrogen atoms in the asymmetric unit and this includes the majority of compounds of pharmaceutical interest. The solution of crystal structures, including space group determination, is more challenging from powder diffraction data than from single crystal diffraction data. Here, it will be demonstrated how a Bayesian probability analysis of this problem has helped to provide a new algorithm for the determination of the space group symmetry of a crystal from powder diffraction data. Specifically, the relative probabilities of different extinction symbols are accessed within a particular crystal system. Examples will be presented to illustrate this approach.
Hybrid-space density matrix renormalization group study of the doped two-dimensional Hubbard model
Ehlers, G.; White, S. R.; Noack, R. M.
2017-03-01
The performance of the density matrix renormalization group (DMRG) is strongly influenced by the choice of the local basis of the underlying physical lattice. We demonstrate that, for the two-dimensional Hubbard model, the hybrid-real-momentum-space formulation of the DMRG is computationally more efficient than the standard real-space formulation. In particular, we show that the computational cost for fixed bond dimension of the hybrid-space DMRG is approximately independent of the width of the lattice, in contrast to the real-space DMRG, for which it is proportional to the width squared. We apply the hybrid-space algorithm to calculate the ground state of the doped two-dimensional Hubbard model on cylinders of width four and six sites; at n =0.875 filling, the ground state exhibits a striped charge-density distribution with a wavelength of eight sites for both U /t =4.0 and 8.0 . We find that the strength of the charge ordering depends on U /t and on the boundary conditions. Furthermore, we investigate the magnetic ordering as well as the decay of the static spin, charge, and pair-field correlation functions.
METHOD OF GROUP OBJECTS FORMING FOR SPACE-BASED REMOTE SENSING OF THE EARTH
Directory of Open Access Journals (Sweden)
A. N. Grigoriev
2015-07-01
Full Text Available Subject of Research. Research findings of the specific application of space-based optical-electronic and radar means for the Earth remote sensing are considered. The subject matter of the study is the current planning of objects survey on the underlying surface in order to increase the effectiveness of sensing system due to the rational use of its resources. Method. New concept of a group object, stochastic swath and stochastic length of the route is introduced. The overview of models for single, group objects and their parameters is given. The criterion for the existence of the group object based on two single objects is formulated. The method for group objects formation while current survey planning has been developed and its description is presented. The method comprises several processing stages for data about objects with the calculation of new parameters, the stochastic characteristics of space means and validates the spatial size of the object value of the stochastic swath and stochastic length of the route. The strict mathematical description of techniques for model creation of a group object based on data about a single object and onboard special complex facilities in difficult conditions of registration of spatial data is given. Main Results. The developed method is implemented on the basis of modern geographic information system in the form of a software tool layout with advanced tools of processing and analysis of spatial data in vector format. Experimental studies of the forming method for the group of objects were carried out on a different real object environment using the parameters of modern national systems of the Earth remote sensing detailed observation Canopus-B and Resurs-P. Practical Relevance. The proposed models and method are focused on practical implementation using vector spatial data models and modern geoinformation technologies. Practical value lies in the reduction in the amount of consumable resources by means of
Real-space renormalization group study of the Hubbard model on a non-bipartite lattice
Directory of Open Access Journals (Sweden)
R. D. Levine
2002-01-01
Full Text Available Abstract: We present the real-space block renormalization group equations for fermion systems described by a Hubbard Hamiltonian on a triangular lattice with hexagonal blocks. The conditions that keep the equations from proliferation of the couplings are derived. Computational results are presented including the occurrence of a first-order metal-insulator transition at the critical value of U/t Ã¢Â‰Âˆ 12.5.
Quantum algebras for maximal motion groups of n-dimensional flat spaces
Ballesteros, A; Del Olmo, M A; Santander, M
1994-01-01
An embedding method to get q-deformations for the non-semisimple algebras generating the motion groups of N-dimensional flat spaces is presented. This method gives a global and simultaneous scheme of q-deformation for all iso(p,q) algebras and for those ones obtained from them by some Inönü-Wigner contractions, such as the N--dimensional Euclidean, Poincaré and Galilei algebras.
Bicovariant calculus on twisted ISO(n), quantum Poincaré group and quantum Minkowski space
Aschieri, Paolo; Aschieri, Paolo; Castellani, Leonardo
1996-01-01
A bicovariant calculus on the twisted inhomogeneous multiparametric q-groups of the B_n,C_n,D_n type, and on the corresponding quantum planes, is found by means of a projection from the bicovariant calculus on B_{n+1}, C_{n+1}, D_{n+1}. In particular we obtain the bicovariant calculus on a dilatation-free q-Poincar\\'e group ISO_q (3, 1), and on the corresponding quantum Minkowski space. The classical limit of the B_n,C_n,D_n bicovariant calculus is discussed in detail.
Real space renormalization group for twisted lattice N=4 super Yang-Mills
Catterall, Simon
2014-01-01
A necessary ingredient for our previous results on the form of the long distance effective action of the twisted lattice N=4 super Yang-Mills theory is the existence of a real space renormalization group which preserves the lattice structure, both the symmetries and the geometric interpretation of the fields. In this brief article we provide an explicit example of such a blocking scheme and illustrate its practicality in the context of a small scale Monte Carlo renormalization group calculation. We also discuss the implications of this result, and the possible ways in which to use it in order to obtain further information about the long distance theory.
A Banach space-valued ergodic theorem for amenable groups and applications
Pogorzelski, Felix
2012-01-01
In this paper we study unimodular amenable groups. The first part is devoted to results on the existence of uniform families of quasi tilings for these groups. In light of that, constructions of Ornstein and Weiss are extended by quantitative estimates for the covering properties of the corresponding decompositions. Afterwards, we apply the developed methods to obtain an abstract ergodic theorem for a class of functions mapping subsets of the group into some Banach space. Moreover, applications of this convergence result are studied: the uniform existence of the integrated density of states (IDS) for operators on amenable Cayley graphs; the uniform existence of the IDS for operators on discrete structures being quasi-isometric to some amenable group; the approximation of L2-Betti numbers on cellular CW-complexes; the existence of certain densities of clusters in a percolated Cayley graph.
An Iterative Power Allocation Algorithm for Group-wise Space-Time Block Coding Systems
Institute of Scientific and Technical Information of China (English)
ZHANG Hong-wei; ZHANG Hai-bin; SONG Wen-tao; LUO Han-wen; LIU Xing-zhao
2007-01-01
An iterative transmit power allocation (PA) algorithm was proposed for group-wise space-time block coding (G-STBC) systems with group-wise successive interference cancellation (GSIC) receivers.Group-wise interference suppression (GIS) filters are employed to separate each group's transmit signals from other interfer ences and noise.While the total power on all transmit symbols is constrained, all transmit PA coefficients are updated jointly according to the channel information at each iteration.Through PA, each detection symbol has the same post-detection signal to interference-and-noise ratio (SINR).The simulation results verify that the proposed PA algorithm converges at the equilibrium quickly after few iterations, and it achieves much lower bit error rates than the previous single symbol SIC PA and the fixed ratio PA algorithms for G-STBC systems with GSIC receivers.
Group theoretical interpretation of the modified gravity in de Sitter space
Dehghani, Mohsen
2016-01-01
A frame work has been presented for theoretical interpretation of various modified gravitational models which is based on the group theoretical approach and unitary irreducible representations (UIR's) of de Sitter (dS) group. In order to illustrate the application of the proposed method, a model of modified gravity has been investigated. The background field method has been utilized and the linearized modified gravitational field equation has been obtained in the 4-dimensional dS space-time as the background. The field equation has been written as the eigne-value equation of the Casimir operators of dS space using the flat 5-dimensional ambient space notations. The Minkowskian correspondence of the theory has been obtained by taking the zero curvature limit. It has been shown that under some simple conditions, the linearized modified field equation transforms according to two of the UIR's of dS group labeled by $\\Pi^\\pm_{2,1}$ and $\\Pi^\\pm_{2,2}$ in the discrete series. It means that the proposed modified gra...
Topological entropy and renormalization group flow in 3-dimensional spherical spaces
Energy Technology Data Exchange (ETDEWEB)
Asorey, M. [Departamento de Física Teórica, Universidad de Zaragoza,E-50009 Zaragoza (Spain); Beneventano, C.G. [Departamento de Física, Universidad Nacional de La Plata,Instituto de Física de La Plata, CONICET-Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina); Cavero-Peláez, I. [Departamento de Física Teórica, Universidad de Zaragoza,E-50009 Zaragoza (Spain); CUD,E-50090, Zaragoza (Spain); D’Ascanio, D.; Santangelo, E.M. [Departamento de Física, Universidad Nacional de La Plata,Instituto de Física de La Plata, CONICET-Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina)
2015-01-15
We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a≪1 of a massive field theory in 3-dimensional spherical spaces, M{sub 3}, with constant curvature 6/a{sup 2}. For masses lower than ((2π)/β), this term can be identified with the free energy of the same theory on M{sub 3} considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S{sub hol}, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S{sub hol} decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S{sub top}{sup UV}>S{sub top}{sup IR}. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.
Topological entropy and renormalization group flow in 3-dimensional spherical spaces
Asorey, M.; Beneventano, C. G.; Cavero-Peláez, I.; D'Ascanio, D.; Santangelo, E. M.
2015-01-01
We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3, with constant curvature 6 /a 2. For masses lower than , this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S {top/ UV } > S {top/ IR }. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F -theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.
Indian Academy of Sciences (India)
Debashish Goswami
2015-02-01
Let be one of the classical compact, simple, centre-less, connected Lie groups of rank with a maximal torus , the Lie algebra $\\mathcal{G}$ and let $\\{E_{i},F_{i},H_{i},i=1,\\ldots,n\\}$ be tha standard set of generators corresponding to a basis of the root system. Consider the adjoint-orbit space $M=\\{\\text{Ad}_{g}(H_{1}), g\\in G\\}$, identified with the homogeneous space / where $L=\\{g\\in G : \\text{Ad}_{g}(H_{1})=H_{1}\\}$. We prove that the coordinate functions $f_{i}(g):=_{i}(\\text{Ad}_{g}(H_{1}))$, $i=1,\\ldots,n$, where $\\{_{1},\\ldots,_{n}\\}$ is basis of $\\mathcal{G}'$ are `quadratically independent' in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithfully on $C(M)$ such that the action leaves invariant the linear span of the above coordinate functions. As a corollary, it is also shown that any compact quantum group having a faithful action on the noncommutative manifold obtained by Rieffel deformation of satisfying a similar `linearity' condition must be a Rieffel-Wang type deformation of some compact group.
Subluminal group velocity and dispersion of Laguerre Gauss beams in free space.
Bareza, Nestor D; Hermosa, Nathaniel
2016-05-27
That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein's postulate in special relativity. This has been a basic assumption in light's various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light's group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam's divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space.
Shirkhodaie, Amir; Poshtyar, Azin; Chan, Alex; Hu, Shuowen
2016-05-01
In many military and homeland security persistent surveillance applications, accurate detection of different skin colors in varying observability and illumination conditions is a valuable capability for video analytics. One of those applications is In-Vehicle Group Activity (IVGA) recognition, in which significant changes in observability and illumination may occur during the course of a specific human group activity of interest. Most of the existing skin color detection algorithms, however, are unable to perform satisfactorily in confined operational spaces with partial observability and occultation, as well as under diverse and changing levels of illumination intensity, reflection, and diffraction. In this paper, we investigate the salient features of ten popular color spaces for skin subspace color modeling. More specifically, we examine the advantages and disadvantages of each of these color spaces, as well as the stability and suitability of their features in differentiating skin colors under various illumination conditions. The salient features of different color subspaces are methodically discussed and graphically presented. Furthermore, we present robust and adaptive algorithms for skin color detection based on this analysis. Through examples, we demonstrate the efficiency and effectiveness of these new color skin detection algorithms and discuss their applicability for skin detection in IVGA recognition applications.
Encoding Curved Tetrahedra in Face Holonomies: Phase Space of Shapes from Group-Valued Moment Maps
Haggard, Hal M.; Han, Muxin; Riello, Aldo
2016-08-01
We present a generalization of Minkowski's classic theorem on the reconstruction of tetrahedra from algebraic data to homogeneously curved spaces. Euclidean notions such as the normal vector to a face are replaced by Levi-Civita holonomies around each of the tetrahedron's faces. This allows the reconstruction of both spherical and hyperbolic tetrahedra within a unified framework. A new type of hyperbolic simplex is introduced in order for all the sectors encoded in the algebraic data to be covered. Generalizing the phase space of shapes associated to flat tetrahedra leads to group valued moment maps and quasi-Poisson spaces. These discrete geometries provide a natural arena for considering the quantization of gravity including a cosmological constant. A concrete realization of this is provided by the relation with the spin-network states of loop quantum gravity. This work therefore provides a bottom-up justification for the emergence of deformed gauge symmetries and quantum groups in 3+1 dimensional covariant loop quantum gravity in the presence of a cosmological constant.
Extensive deep neck space abscess due to B-Haemolytic group G Streptococci-A case report
Directory of Open Access Journals (Sweden)
Malini A
2004-01-01
Full Text Available Beta haemolytic phenotype of group G streptococci was isolated from the pus obtained from a patient with extensive deep neck space abscess. Patient was immunocompetent and made complete recovery after surgical drainage and administration of amoxycillin with clavulanic acid, amikacin and metronidazole. To our knowledge, this is the first report of deep neck space abscess due to group G streptococci.
Decentralized control algorithms of a group of vehicles in 2D space
Pshikhopov, V. K.; Medvedev, M. Y.; Fedorenko, R. V.; Gurenko, B. V.
2017-02-01
The problem of decentralized control of group of robots, described by kinematic and dynamic equations of motion in the plane, is considered. Group performs predetermined rectangular area passing at a fixed speed, keeping the line and a uniform distribution. The environment may contain a priori unknown moving or stationary obstacles. Decentralized control algorithms, based on the formation of repellers in the state space of robots, are proposed. These repellers form repulsive forces generated by dynamic subsystems that extend the state space of robots. These repulsive forces are dynamic functions of distances and velocities of robots in the area of operation of the group. The process of formation of repellers allows to take into account the dynamic properties of robots, such as the maximum speed and acceleration. The robots local control law formulas are derived based on positionally-trajectory control method, which allows to operate with non-linear models. Lyapunov function in the form of a quadratic function of the state variables is constructed to obtain a nonlinear closed-loop control system. Due to the fact that a closed system is decomposed into two independent subsystems Lyapunov function is also constructed as two independent functions. Numerical simulation of the motion of a group of five robots is presented. In this simulation obstacles are presented by the boundaries of working area and a movable object of a given radius, moving rectilinear and uniform. Obstacle speed is comparable to the speeds of the robots in a group. The advantage of the proposed method is ensuring the stability of the trajectories and consideration of the limitations on the speed and acceleration at the trajectory planning stage. Proposed approach can be used for more general robots' models, including robots in the three-dimensional environment.
Regularity properties and pathologies of position-space renormalization-group transformations
van Enter, Aernout C. D.; Fernández, Roberto; Sokal, Alan D.
1991-05-01
We consider the conceptual foundations of the renormalization-group (RG) formalism. We show that the RG map, defined on a suitable space of interactions, is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the other hand, we prove in several cases that near a first-order phase transition the renormalized measure is not a Gibbs measure for any reasonable interaction. It follows that the conventional RG description of first-order transitions is not universally valid.
Making Space to Sensemake: Epistemic Distancing in Small Group Physics Discussions
Conlin, Luke D
2015-01-01
Students in inquiry science classrooms face an essential tension between sharing new ideas and critically evaluating those ideas. Both sides of this tension pose affective risks that can discourage further discussion, such as the embarrassment of having an idea rejected. This paper presents a close discourse analysis of three groups of undergraduate physics students in their first discussions of the semester, detailing how they navigate these tensions to create a safe space to make sense of physics together. A central finding is that students and instructors alike rely on a common discursive resource, epistemic distancing, to protect affect while beginning to engage with ideas in productive ways. The groups differ in how soon, how often, and how deeply they engage in figuring out mechanisms together, and these differences can be explained, in part, by differences in how they epistemically distance themselves from their claims. Implications for research include the importance of considering the coupled dynamic...
Renormalization Group and Decoupling in Curved Space II. The Standard Model and Beyond
Gorbar, E V; Gorbar, Eduard V.; Shapiro, Ilya L.
2003-01-01
We continue the study of the renormalization group and decoupling of massive fields in curved space, started in the previous article and analyse the higher derivative sector of the vacuum metric-dependent action of the Standard Model. The QCD sector at low-energies is described in terms of the composite effective fields. For fermions and scalars the massless limit shows perfect correspondence with the conformal anomaly, but similar limit in a massive vector case requires an extra compensating scalar. In all three cases the decoupling goes smoothly and monotonic. A particularly interesting case is the renormalization group flow in the theory with broken supersymmetry, where the sign of one of the beta-functions changes on the way from the UV to IR.
Reduction theory for mapping class groups and applications to moduli spaces
Leuziger, Enrico
2008-01-01
Let $S=S_{g,p}$ be a compact, orientable surface of genus $g$ with $p$ punctures and such that $d(S):=3g-3+p>0$. The mapping class group $\\textup{Mod}_S$ acts properly discontinuously on the Teichm\\"uller space $\\mathcal T(S)$ of marked hyperbolic structures on $S$. The resulting quotient $\\mathcal M(S)$ is the moduli space of isometry classes of hyperbolic surfaces. We provide a version of precise reduction theory for finite index subgroups of $\\textup{Mod}_S$, i.e., a description of exact fundamental domains. As an application we show that the asymptotic cone of the moduli space $\\mathcal M(S)$ endowed with the Teichm\\"uller metric is bi-Lipschitz equivalent to the Euclidean cone over the finite simplicial (orbi-) complex $ \\textup{Mod}_S\\backslash\\mathcal C(S)$, where $\\mathcal C(S)$ of $S$ is the complex of curves of $S$. We also show that if $d(S)\\geq 2$, then $\\mathcal M(S)$ does \\emph{not} admit a finite volume Riemannian metric of (uniformly bounded) positive scalar curvature in the bi-Lipschitz class...
Dual generators of the fundamental group and the moduli space of flat connections
Meusburger, C
2006-01-01
We define the dual of a set of generators of the fundamental group of an oriented two-surface $S_{g,n}$ of genus $g$ with $n$ punctures and the associated surface $S_{g,n}\\setminus D$ with a disc $D$ removed. This dual is another set of generators related to the original generators via an involution and has the properties of a dual graph. In particular, it provides an algebraic prescription for determining the intersection points of a curve representing a general element of the fundamental group $\\pi_1(S_{g,n}\\setminus D)$ with the representatives of the generators and the order in which these intersection points occur on the generators.We apply this dual to the moduli space of flat connections on $S_{g,n}$ and show that when expressed in terms both, the holonomies along a set of generators and their duals, the Poisson structure on the moduli space takes a particularly simple form. Using this description of the Poisson structure, we derive explicit expressions for the Poisson brackets of general Wilson loop o...
The algebra and subalgebras of the group SO(1,14) and Grassmann space
Fajfer, S; Fajfer, Svjetlana; Manko, Norma
1995-01-01
In a space of d=15 Grassmann coordinates, two types of generators of the Lorentz transformations, one of spinorial and the other of vectorial character, both forming the group SO(1,14) which contains as subgroups SO(1,4) and SO(10) {\\supset SU(3)} { \\times SU(2)} { \\times U(1)} , define the fundamental and adjoint representations of the group, respectively. The eigenvalues of the commuting operators can be identified with the spins of fermionic and bosonic fields (SO(1,4)) , as well as with their Yang-Mills charges (SU(3), SU(2), U(1)) . The theory offers unification of all the internal degrees of freedom of particles and fields - spins and all Yang-Mills charges - and accordingly of all interactions - Yang-Mills and gravity. The algebras of the two kinds of generators of Lorentz transformations in Grassmann space were studied and the representations are commented on. The theory suggests that elementary particles are either in the fundamental representations with respect to spins and all charges, or they are ...
Red'kov, V
2011-01-01
Non-linear electrodynamics arising in the frames of field theories in non-commutative space-time is examined on the base of the Riemann-Silberstein-Majorana-Oppenheimer formalism. The problem of form-invariance of the non-linear constitutive relations governed by six non-commutative parameters \\theta_{kl} \\sim {\\bf K} = {\\bf n} + i {\\bf m} is explored in detail on the base of the complex orthogonal group theory SO(3.C). Two Abelian 2-parametric small groups, isomorphic to each other in abstract sense, and leaving unchangeable the extended constitutive relations at arbitrary six parameters \\theta_{kl} of effective media have been found, their realization depends explicitly on invariant length {\\bf K}^{2}. In the case of non-vanishing length a special reference frame in which the small group has the structure SO(2) \\otimes SO(1,1) has been found. In isotropic case no such reference frame exists. The way to interpret both Abelian small groups in physical terms consists in factorizing corresponding Lorentz transf...
Quantum crystallographic charge density of urea
Directory of Open Access Journals (Sweden)
Michael E. Wall
2016-07-01
Full Text Available Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.
Crystallographic theory of the martensitic transformation
Directory of Open Access Journals (Sweden)
Edwar A. Torres-López
2014-08-01
Full Text Available The martensitic transformation is one of the most researched topics in the materials science during the 20th century. The second half of this century was mainly remembered by the development of several theories related with the kinetics of phase transformation, the mechanisms involved in the nucleation phenomenon, and the way as the crystallographic change is produced. In this paper are described the fundamental concepts that are defined in the crystallographic framework of the martensitic transformation. The study is focused on the application of the most outstanding crystallographic models: the Bain; the Wechsler, Lieberman & Read; and the Bowles & Mackenzie. The topic is presented based upon the particular features of the martensitic transformation, such as its non-diffusional character, type of interface between parent (austenite and product (martensite phases, the formation of substructural defects, and the shape change; all of these features are mathematically described by equations aimed to predict how the transformation will take place rather than to explain the actual movement of the atoms within the structure. This mathematical development is known as the Phenomenological Theory of Martensite Crystallography (PTMC.
A preliminary neutron crystallographic study of thaumatin
Energy Technology Data Exchange (ETDEWEB)
Teixeira, Susana C. M. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); Blakeley, Matthew P. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Leal, Ricardo M. F. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Mitchell, Edward P. [EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Forsyth, V. Trevor, E-mail: tforsyth@ill.fr [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom)
2008-05-01
Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.
Quantum crystallographic charge density of urea.
Wall, Michael E
2016-07-01
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-01-01
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement. PMID:27437111
A non-perturbative real-space renormalization group scheme for the spin-1/2 XXX Heisenberg model
Degenhard, Andreas
1999-01-01
In this article we apply a recently invented analytical real-space renormalization group formulation which is based on numerical concepts of the density matrix renormalization group. Within a rigorous mathematical framework we construct non-perturbative renormalization group transformations for the spin-1/2 XXX Heisenberg model in the finite temperature regime. The developed renormalization group scheme allows for calculating the renormalization group flow behaviour in the temperature depende...
Real-space renormalization group method for quantum 1/2 spins on the pyrochlore lattice.
Garcia-Adeva, Angel J
2014-04-02
A simple phenomenological real-space renormalization group method for quantum Heisenberg spins with nearest and next nearest neighbour interactions on a pyrochlore lattice is presented. Assuming a scaling law for the order parameter of two clusters of different sizes, a set of coupled equations that gives the fixed points of the renormalization group transformation and, thus, the critical temperatures and ordered phases of the system is found. The particular case of spins 1/2 is studied in detail. Furthermore, to simplify the mathematical details, from all the possible phases arising from the renormalization group transformation, only those phases in which the magnetic lattice is commensurate with a subdivision of the crystal lattice into four interlocked face-centred cubic sublattices are considered. These correspond to a quantum spin liquid, ferromagnetic order, or non-collinear order in which the total magnetic moment of a tetrahedral unit is zero. The corresponding phase diagram is constructed and the differences with respect to the classical model are analysed. It is found that this method reproduces fairly well the phase diagram of the pyrochlore lattice under the aforementioned constraints.
International Space Station Air Quality Assessed According to Toxicologically-Grouped Compounds
James, John T.; Limero, Thomas F.; Beck, Steve; Cheng, Patti F.; deVera, Vanessa J.; Hand, Jennifer; Macatangay, Ariel
2010-01-01
Scores of compounds are found in the International Space Station (ISS) atmospheric samples that are returned to the Johnson Space Center Toxicology Laboratory for analysis. Spacecraft Maximum Allowable Concentrations (SMACs) are set with the view that each compound is present as if there were no other compounds present. In order to apply SMACs to the interpretation of the analytical data, the toxicologist must employ some method of combining the potential effects of the aggregate of compounds found in the atmospheric samples. The simplest approach is to assume that each quantifiable compound has the potential for some effect in proportion to the applicable SMAC, and then add all the proportions. This simple paradigm disregards the fact that most compounds have potential to adversely affect only a few physiological systems, and their effects would be independent rather than additive. An improved approach to dealing with exposure to mixtures is to add the proportions only for compounds that adversely affect the same physiological system. For example, toxicants that cause respiratory irritation are separated from those that cause neurotoxicity or cardio-toxicity. Herein we analyze ISS air quality data according to toxicological groups with a view that this could be used for understanding any crew symptoms occurring at the time of the sample acquisition. In addition, this approach could be useful in post-flight longitudinal surveys where the flight surgeon may need to identify post-flight, follow-up medical studies because of on-orbit exposures that target specific physiological systems.
Directory of Open Access Journals (Sweden)
Bashir Ahmad
2015-09-01
Full Text Available This article presents necessary conditions for the existence of weak solutions of the following space-nonlocal evolution equations on $\\mathbb{H}\\times(0, +\\infty$, where $\\mathbb{H}$ is the Heisenberg group: $$\\displaylines{ \\frac{\\partial^2 u }{\\partial t^2} + (- \\Delta_{\\mathbb{H}}^{\\alpha/2}|u|^m = |u|^{p},\\cr \\frac{\\partial u}{\\partial t} + (- \\Delta_{\\mathbb{H}}^{\\alpha/2} |u|^m = |u|^{p},\\cr \\frac{\\partial^2 u }{\\partial t^2} + (- \\Delta_{\\mathbb{H}}^{\\alpha/2} |u|^m + \\frac{\\partial u }{\\partial t} = |u|^p, }$$ $p \\in \\mathbb{R}, p>1, m \\in \\mathbb{N}$. Moreover, the life span for each equation is estimated under some suitable conditions. Our method of proof is based on the test function method.
Facilitated spin models in one dimension: a real-space renormalization group study.
Whitelam, Stephen; Garrahan, Juan P
2004-10-01
We use a real-space renormalization group (RSRG) to study the low-temperature dynamics of kinetically constrained Ising chains (KCICs). We consider the cases of the Fredrickson-Andersen (FA) model, the East model, and the partially asymmetric KCIC. We show that the RSRG allows one to obtain in a unified manner the dynamical properties of these models near their zero-temperature critical points. These properties include the dynamic exponent, the growth of dynamical length scales, and the behavior of the excitation density near criticality. For the partially asymmetric chain, the RG predicts a crossover, on sufficiently large length and time scales, from East-like to FA-like behavior. Our results agree with the known results for KCICs obtained by other methods.
Fisher's zeros as boundary of renormalization group flows in complex coupling spaces
Denbleyker, A; Liu, Yuzhi; Meurice, Y; Zou, Haiyuan
2010-01-01
We propose new methods to extend the renormalization group transformation to complex coupling spaces. We argue that the Fisher's zeros are located at the boundary of the complex basin of attraction of infra-red fixed points. We support this picture with numerical calculations at finite volume for two-dimensional O(N) models in the large-N limit and the hierarchical Ising model. We present numerical evidence that, as the volume increases, the Fisher's zeros of 4-dimensional pure gauge SU(2) lattice gauge theory with a Wilson action, stabilize at a distance larger than 0.15 from the real axis in the complex beta=4/g^2 plane. We discuss the implications for proofs of confinement and searches for nontrivial infra-red fixed points in models beyond the standard model.
Position-space renormalization-group approach to the resistance of random walks
Sahimi, Muhammad; Jerauld, Gary R.; Scriven, L. E.; Davis, H. Ted
1984-06-01
We consider a Pólya random walk, i.e., an unbiased, nearest-neighbor walk, on a d-dimensional hypercubic lattice and study the scaling behavior of the mean end-to-end resistance of the walk as a function of the number of steps in the walk. The resistance of the walk is generated by assigning a constant conductance to each step of the walk. This problem was recently proposed by Banavar, Harris, and Koplik, and may be useful for understanding the physics of disordered systems. We develop a position-space renormalization-group approach, a generalization of the one developed for percolation conductivity, and study the problem and a modification of it proposed here in one, two, and three dimensions. Our results are in good agreement with the numerical estimates of Banavar et al.
Guilleux, Maxime
2016-01-01
Nonperturbative renormalization group techniques have recently proven a powerful tool to tackle the nontrivial infrared dynamics of light scalar fields in de Sitter space. In the present article, we develop the formalism beyond the local potential approximation employed in earlier works. In particular, we consider the derivative expansion, a systematic expansion in powers of field derivatives, appropriate for long wavelength modes, that we generalize to the relevant case of a curved metric with Lorentzian signature. The method is illustrated with a detailed discussion of the so-called local potential approximation prime which, on the top of the full effective potential, includes a running (but field-independent) field renormalization. We explicitly compute the associated anomalous dimension for O(N) theories. We find that it can take large values along the flow, leading to sizable differences as compared to the local potential approximation. However, it does not prevent the phenomenon of gravitationally induc...
New real-space renormalization-group calculation for the critical properties of lattice spin systems
Hecht, Charles E.; Kikuchi, Ryoichi
1982-05-01
In evaluating the critical properties of lattice spin systems in the real-space renormalization-group theory we use the cluster variation method. A configuration in the transformed system is constrained and the probability of occurrence of this configuration is calculated both in the transformed system and in the original system. By equating the two probabilities and forming ratios of two such equalities (for two or more constrained configurations) the fixed point of the renormalization transformation is evaluated. The method can avoid the trouble due to different singularities in the original and transformed systems, and hence can obviate the possible development of spurious singularities in the transformation at low temperatures. The two-dimensional triangular Ising model is treated with numerical results comparable with those obtained by the cluster treatment of Niemeijer and van Leeuwen who used more and larger cluster types than those we introduce.
Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.
1993-01-01
An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.
African Journals Online (AJOL)
Results: The Suri have an old tradition of practicing child spacing. The reasons for .... to closely spaced births as in Bangladesh (11), and the constant threat of violence and ... increasing population and labor migration to urban areas, that often ...
Quantum groups, roots of unity and particles on quantized Anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Steinacker, Harold [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1997-05-23
Quantum groups in general and the quantum Anti-de Sitter group U_{q}(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin ≥ 1, "naive" representations are unitarizable only after factoring out a subspace of "pure gauges", as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of U_{q}(g), which plays the role of a BRST operator in the case of U_{q}(so(2,3)) at roots of unity, for any spin ≥ 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard "truncated" tensor product as well as many-particle representations.
Tannery, Thomas Allan
1987-07-01
The purpose of this research was to elicit and compare the open-space preferences of citizens and openspace experts in Albuquerque, New Mexico, USA. A randomly selected sample of 492 citizens and 35 open-space experts participated in a telephone survey during May 5 18, 1986. The following hypothesis was tested and used as a guideline for the study: HO1: There is no significant difference between respondents' status and preference for open space in Albuquerque, New Mexico. The hypothesis was rejected. Findings confirmed respondents' status affected preference for open space. Of the eight issues on which the citizen and expert groups were compared, five recorded significant differences in response profiles. The open-space expert group was significantly more supportive of using open space to accommodate offroad vehicle facilities, wildlife preserves, a citywide recreational trail, and a trail system along the arroyos and city ditches. The citizen sample was significantly more supportive of using open space to accommodate overnight camping facilities. Both groups equally supported using open space to accommodate an outdoor amphitheater, outdoor education facilities, and rafting, kayaking, and canoeing facilities. The finding indicated that expert preferences did not represent an aggregate of citizen preferences for managing open-space resources. Understanding both expert and citizen positions will facilitate decision-making processes and help resolve environmental disputes.
DEFF Research Database (Denmark)
Brander, David; Rossman, Wayne; Schmitt, Nicholas
2010-01-01
We give an infinite dimensional generalized Weierstrass representation for spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space $\\R^{2,1}$. The formulation is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group $SU_2$ with...
Crystallographic studies of gas sorption in metal–organic frameworks
Carrington, Elliot J.; Vitórica-Yrezábal, Iñigo J.; Brammer, Lee
2014-01-01
Metal–organic frameworks (MOFs) are a class of porous crystalline materials of modular design. One of the primary applications of these materials is in the adsorption and separation of gases, with potential benefits to the energy, transport and medical sectors. In situ crystallography of MOFs under gas atmospheres has enabled the behaviour of the frameworks under gas loading to be investigated and has established the precise location of adsorbed gas molecules in a significant number of MOFs. This article reviews progress in such crystallographic studies, which has taken place over the past decade, but has its origins in earlier studies of zeolites, clathrates etc. The review considers studies by single-crystal or powder diffraction using either X-rays or neutrons. Features of MOFs that strongly affect gas sorption behaviour are discussed in the context of in situ crystallographic studies, specifically framework flexibility, and the presence of (organic) functional groups and unsaturated (open) metal sites within pores that can form specific interactions with gas molecules. PMID:24892587
Patil, Dipak N; Chaudhry, Anshul; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra
2009-07-01
A Kunitz-type proteinase inhibitor has been purified from tamarind (Tamarindus indica) seeds. SDS-PAGE analysis of a purified sample showed a homogeneous band corresponding to a molecular weight of 21 kDa. The protein was identified as a Kunitz-type proteinase inhibitor based on N-terminal amino-acid sequence analysis. It was crystallized by the vapour-diffusion method using PEG 6000. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 37.2, b = 77.1, c = 129.1 A. Diffraction data were collected to a resolution of 2.7 A. Preliminary crystallographic analysis indicated the presence of one proteinase inhibitor molecule in the asymmetric unit, with a solvent content of 44%.
Su, Tiantian; Chi, Kaikai; Wang, Kang; Guo, Liming; Huang, Yan
2015-01-01
Vibrio cholerae, the causative agent of cholera, has developed a variety of mechanisms to obtain the limited-availability iron from human hosts. One important method for iron acquisition is through haem-uptake systems. Although the transport of haem has been widely studied, the fate of haem once it enters the cytoplasm remains an open question. Here, preliminary X-ray crystallographic analysis was performed on HutX, a member of the conserved haem-utilization operon from V. cholerae strain N16961. The crystals of HutX were found to belong to the orthorhombic space group C2221, with unit-cell parameters a = 50.1, b = 169.0, c = 81.8 Å. There are two protein molecules in the asymmetric unit, with a corresponding Matthews coefficient V M of 2.06 Å3 Da−1 and a solvent content of 40.28%. PMID:25664785
Free-access stalls allow sows to choose the protection of a stall or use of a shared group space. This study investigated the effect of group space width: 0.91 (SS), 2.13 (IS), and 3.05 (LS) m on the health, production, behavior, and welfare of gestating sows. At gestational day (GD) 35.4 ± 2.3, 21 ...
World directory of crystallographers and of other scientists employing crystallographic methods
Filippini, G; Hashizume, H; Torriani, I; Duax, W
1995-01-01
The 9th edition of the World Directory of Crystallographers and of Other Scientists Employing Crystallographic Methods, which contains 7907 entries embracing 72 countries, differs considerably from the 8th edition, published in 1990. The content has been updated, and the methods used to acquire the information presented and to produce this new edition of the Directory have involved the latest advances in technology. The Directory is now also available as a regularly updated electronic database, accessible via e-mail, Telnet, Gopher, World-Wide Web, and Mosaic. Full details are given in an Appendix to the printed edition.
Space Allowance of the Littered Area Affects Lying Behavior in Group-Housed Horses
Burla, Joan-Bryce; Rufener, Christina; Bachmann, Iris; Gygax, Lorenz; Patt, Antonia; Hillmann, Edna
2017-01-01
Horses can sleep while standing; however, recumbency is required for rapid eye movement (REM) sleep and therefore essential. Previous research indicated a minimal duration of recumbency of 30 min per 24 h to perform a minimal duration of REM sleep. For group-housed horses, suitable lying area represents a potentially limited resource. In Switzerland, minimal dimensions for the space allowance of the littered area are therefore legally required. To assess the effect of different space allowances of the littered area on lying behavior, 38 horses in 8 groups were exposed to 4 treatments for 11 days each; T0: no litter provided, T0.5: 0.5× minimal dimensions, T1: minimal dimensions, and T1.5: 1.5× minimal dimensions. Non-littered areas were covered with hard rubber mats. Lying behavior was observed during the last 72 h of each treatment. The total number of lying bouts per 24 h was similar in treatments providing litter, whereas in treatment T0, recumbency occurred only rarely (F1,93 = 14.74, p = 0.0002) with the majority of horses lying down for less than 30 min per 24 h (χ12=11.82, p = 0.0006). Overall, the total duration of recumbency per 24 h increased with increasing dimensions of the littered area, whereby the effect attenuated between treatment T1 and T1.5 in high-ranking horses but continued in low-ranking horses (F1,91 = 3.22, p = 0.076). Furthermore, low-ranking horses showed considerably more forcedly terminated lying bouts in treatments T0.5 and T1, but were similar to high-ranking horses in T1.5 (F1,76 = 8.43, p = 0.005). Nonetheless, a number of individuals showed durations of recumbency of less than 30 min per 24 h even in treatment T1.5. The lying behavior was dependent on the availability of a soft and deformable surface for recumbency. A beneficial effect of enlarged dimensions of the littered area was shown by increased durations of recumbency and decreased proportion of forcedly terminated lying
Tamain, Christelle; Arab Chapelet, Bénédicte; Rivenet, Murielle; Abraham, Francis; Caraballo, Richard; Grandjean, Stéphane
2013-05-06
The mixed-actinide uranium(IV)-plutonium(III) oxalate single crystals (NH4)0.5[Pu(III)0.5U(IV)0.5(C2O4)2·H2O]·nH2O (1) and (NH4)2.7Pu(III)0.7U(IV)1.3(C2O4)5·nH2O (2) have been prepared by the diffusion of different ions through membranes separating compartments of a triple cell. UV-vis, Raman, and thermal ionization mass spectrometry analyses demonstrate the presence of both uranium and plutonium metal cations with conservation of the initial oxidation state, U(IV) and Pu(III), and the formation of mixed-valence, mixed-actinide oxalate compounds. The structure of 1 and an average structure of 2 were determined by single-crystal X-ray diffraction and were solved by direct methods and Fourier difference techniques. Compounds 1 and 2 are the first mixed uranium(IV)-plutonium(III) compounds to be structurally characterized by single-crystal X-ray diffraction. The structure of 1, space group P4/n, a = 8.8558(3) Å, b = 7.8963(2) Å, Z = 2, consists of layers formed by four-membered rings of the two actinide metals occupying the same crystallographic site connected through oxalate ions. The actinide atoms are nine-coordinated by oxygen atoms from four bidentate oxalate ligands and one water molecule, which alternates up and down the layer. The single-charged cations and nonbonded water molecules are disordered in the same crystallographic site. For compound 2, an average structure has been determined in space group P6/mmm with a = 11.158(2) Å and c = 6.400(1) Å. The honeycomb-like framework [Pu(III)0.7U(IV)1.3(C2O4)5](2.7-) results from a three-dimensional arrangement of mixed (U0.65Pu0.35)O10 polyhedra connected by five bis-bidentate μ(2)-oxalate ions in a trigonal-bipyramidal configuration.
Directory of Open Access Journals (Sweden)
Mohamed Amine Marzouki
2014-01-01
Full Text Available The reticular theory of twinning gives the necessary conditions on the lattice level for the formation of twins. The latter are based on the continuation, more or less approximate, of a substructure through the composition surface. The analysis of this structural continuity can be performed in terms of the eigensymmetry of the crystallographic orbits corresponding to occupied Wyckoff positions in the structure. If {\\cal G} is the space group of the individual and {\\cal H} a space group which fixes the twin lattice obtained as an intersection of the space groups of the individuals in their respective orientations, then a structural continuity is obtained if (1 the eigensymmetry of an orbit under {\\cal G} contains the twin operation; (2 the eigensymmetry of a union of orbits under {\\cal G} contains the twin operation; (3 the eigensymmetry of a split orbit under {\\cal H} contains the twin operation; or (4 the eigensymmetry of a union of split orbits under {\\cal H} contains the twin operation. The case of the twins in melilite is analysed: the (approximate restoration of some of the orbits explains the formation of these twins.
Crystallographic Analysis of Tapering of ADP Crystallites
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
On the basis of crystallographic characteristics of ADP (ammonium dihydrogen phosphate) crystals and the selected growth conditions, the growth habit of ADP crystals was studied. In comparison with pyramidal planes, the growth rate of prismatic faces is slower and more sensitive to the additives and impurities for ADP crystals. When the supersaturation is low, the advance of growth steps on prismatic face can be blocked by ethanol or impurities, the crystal morphology is changed from the tetragonal prism to shuttle (i.e., the tapered shape). The tapering formation of ADP crystallites was structurally studied in a novel view.
1983-01-01
The structural criteria for a space station is lack of risk by the technology employed. Orbiter technology can be transferred for use in construction with improvement in three areas: fiber optic data bus, water reclamation, and; improved space suit design.
James, John T.; Zalesak, Selina M.
2011-01-01
The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.
Collaborative annotation of 3D crystallographic models.
Hunter, J; Henderson, M; Khan, I
2007-01-01
This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.
Guilleux, Maxime; Serreau, Julien
2017-02-01
Nonperturbative renormalization group techniques have recently proven a powerful tool to tackle the nontrivial infrared dynamics of light scalar fields in de Sitter space. In the present article, we develop the formalism beyond the local potential approximation employed in earlier works. In particular, we consider the derivative expansion, a systematic expansion in powers of field derivatives, appropriate for long wavelength modes, that we generalize to the relevant case of a curved metric with Lorentzian signature. The method is illustrated with a detailed discussion of the so-called local potential approximation prime which, on top of the full effective potential, includes a running (but field-independent) field renormalization. We explicitly compute the associated anomalous dimension for O (N ) theories. We find that it can take large values along the flow, leading to sizable differences as compared to the local potential approximation. However, it does not prevent the phenomenon of gravitationally induced dimensional reduction pointed out in previous studies. We show that, as a consequence, the effective potential at the end of the flow is unchanged as compared to the local potential approximation, the main effect of the running anomalous dimension being merely to slow down the flow. We discuss some consequences of these findings.
Radius of clusters at the percolation threshold: A position space renormalization group study
Family, Fereydoon; Reynolds, Peter J.
1981-06-01
Using a direct position-space renormalization-group approach we study percolation clusters in the limit s → ∞, where s is the number of occupied elements in a cluster. We do this by assigning a fugacity K per cluster element; as K approaches a critical value K c , the conjugate variable s → ∞. All exponents along the path ( K-K c ) → 0 are then related to a corresponding exponent along the path s → ∞. We calculate the exponent ρ, which describes how the radius of an s-site cluster grows with s at the percolation threshold, in dimensions d=2, 3. In d=2 our numerical estimate of ρ=0.52±0.02, obtained from extrapolation and from cell-to-cell transformation procedures, is in agreement with the best known estimates. We combine this result with previous PSRG calculations for the connectedness-length exponent ν, to make an indirect test of cluster-radius scaling by calculating the scaling function exponent σ using the relation σ=ρ/ν. Our result for σ is in agreement with direct Monte-Carlo calculations of σ, and thus supports the cluster-radius scaling assumption. We also calculate ρ in d=3 for both site and bond percolation, using a cell of linear size b=2 on the simple-cubic lattice. Although the result of such small-cell calculations are at best only approximate, they nevertheless are consistent with the most recent numerical estimates.
Energy Technology Data Exchange (ETDEWEB)
Ibort, A [Departamento de Matematicas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid (Spain); Man' ko, V I [P N Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G; Simoni, A; Ventriglia, F [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' e Sezione INFN di Napoli, Complesso Universitario di Monte S Angelo, via Cintia, 80126 Naples (Italy)], E-mail: albertoi@math.uc3m.es, E-mail: manko@na.infn.it, E-mail: marmo@na.infn.it, E-mail: simoni@na.infn.it, E-mail: ventriglia@na.infn.it
2009-04-17
A natural extension of the Wigner function to the space of irreducible unitary representations of the Weyl-Heisenberg group is discussed. The action of the automorphisms group of the Weyl-Heisenberg group onto Wigner functions and their generalizations and onto symplectic tomograms is elucidated. Some examples of physical systems are considered to illustrate some aspects of the characterization of the Wigner functions as solutions of differential equations.
Indian Academy of Sciences (India)
S S Kannan; Pranab Sardar
2009-02-01
We give a stratification of the $GIT$ quotient of the Grassmannian $G_{2,n}$ modulo the normaliser of a maximal torus of $SL_n(k)$ with respect to the ample generator of the Picard group of $G_{2,n}$. We also prove that the flag variety $GL_n(k)/B_n$ can be obtained as a $GIT$ quotient of $GL_{n+1}(k)/B_{n+1}$ modulo a maximal torus of $SL_{n+1}(k)$ for a suitable choice of an ample line bundle on $GL_{n+1}(k)/B_{n+1}$.
Institute of Scientific and Technical Information of China (English)
伍锡荣; 谢兆雄
2003-01-01
The structure factors of any crystal structure can be simulated from its atomic coordinates (and temperature factors) in a SHELXL-97 run on a dummy hkl in which only the scale factor is refined. The squares of the structure factors are retrieved from the fcf, and such simulated data are used in the revision of the space groups of several incorrectly-refined crystal structures. Two cases, a P1 to P revision and a chemically-incorrect structure that is refined in a correct space group, are discussed.
Quantum group structure for moduli space M{sub 1,1}
Energy Technology Data Exchange (ETDEWEB)
Chekhov, L. [Matematicheskij Inst., Moscow (Russian Federation)
1995-03-01
In this talk we present a possibility to quantize moduli spaces of algebraic curves. We restrict ourselves to the simplest case of a modular space anti M{sub 1,1} - a torus with one puncture. We consider an explicit coordinatization of this space in the Kontsevich picture, where integrals of the first Chern classes may be done over moduli (orbi-)spaces generating intersection indices (correlation functions for the model of topological gravity). The Kontsevich matrix model (KMM) provides a generating function for the intersection indices. (orig.)
Songu, M; Demiray, U; Adibelli, Z H; Adibelli, H
2011-06-01
Deep neck space infections can occur at any age but require more intimate management in the paediatric age group because of their rapidly progressive nature. Concurrent abscess in distinct neck spaces has rarely been reported in healthy children. Herewith, a rare case of bilateral neck abscess is reported in a 16-month-old female and the clinical presentation and management are discussed with a review of the literature.
The Possible Topologic structure Types of Orthopyroxene with Space Group P21ca
Institute of Scientific and Technical Information of China (English)
罗谷风; 林承毅; 等
1990-01-01
The possible topologic structure types of orthopyroxene with space group P21ca comprise four kinds of tetrahedral chains and four kinds of octahedral sites.all of which are non-equivalent in symmetry,In these structure types,the skew of the octahedral layers has a sequence of ++--,There are sixteen possible combination forms for the rotation type of tetradral chain.Twelve of them violate Thompson 's sparity rule and the remainder constitutes two pairs.In each pair,the two polar forms show a relationship of anti-orientation for their polar a-axes.Thus,there are only two possible different topologic structure types for P21ca-orthopyroxene.The ratios of O-rotated and S-rotated tetrahedral chains for these two structure types are 3:1 and 1:3,respectively,In the view S-rotated tetrahedral chains for these two structure types are 3:1 and 1:3,respectively,In the view of crystallochemical principle,the most likely form is the one with a ratio of 3:1,and its constitutions of two stacks of I-beam,which are non-equivalent both in symmetry and in topology,are and the configurations of the two types of M2 sites are P.P and P.N,respectively,A complementary twinning on(100) would be formed between the anti-oriented structure pairs,and their twin boundary is exactly equivalent to the inversion boundary,Moreover,it is possible that the ordered structure would appear when the atom ratio of Mg:Fe is equal to 3:1 as well as to 1：1。
Energy Technology Data Exchange (ETDEWEB)
Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Center, INF 328, D-69120 Heidelberg (Germany)
2007-09-01
Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 and diffracted to a resolution of 1.6 Å.
Zhao, Yanqun; Yan, Baohua; Yang, Ting; Jiang, Jian; Wei, Heng; Zhu, Xiaofeng
2015-08-01
A new FAD (flavin adenine dinucleotide)-dependent halogenase HalY from Streptomyces sp. JCM9888 was reported to be involved in the regioselective halogenation of adenine. HalY is a variant B FAD-dependent halogenase that is most similar to the halogenase PltA involved in pyoluteorin biosynthesis. This study reports the overexpression and purification of HalY with an N-terminal hexahistidine tag, followed by crystallization experiments and X-ray crystallographic analysis. HalY was purified as a monomer in solution and crystallized to give X-ray diffraction to a resolution of 1.7 Å. The crystal belonged to the monoclinic space group P21, with unit-cell parameters a = 41.4, b = 113.4, c = 47.6 Å, α = γ = 90, β = 107.4°, and contained one monomer of HalY in the asymmetric unit, with a calculated Matthews coefficient of 2.3 Å(3) Da(-1) and a solvent content of 46%. The structure of the halogenase CndH was used as a search model in molecular replacement to obtain the initial model of HalY. Manual model building and structure refinement of HalY are in progress.
Gori, Simone; Spillmann, Lothar
2010-06-11
Three experiments were performed to compare thresholds for the detection of non-uniformity in spacing, size and luminance with thresholds for grouping. In the first experiment a row of 12 black equi-spaced dots was used and the spacing after the 3rd, 6th, and 9th dot increased in random steps to determine the threshold at which the observer detected an irregularity in the size of the gaps. Thereafter, spacing in the same locations was increased further to find the threshold at which the observer perceived four groups of three dots each (triplets). In the second experiment, empty circles were used instead of dots and the diameter of the circles in the first and second triplet increased until the difference in size gave rise either to a detection or grouping response. In the third experiment, the dots in the second and fourth triplet were increased in luminance. The aim again was to compare the difference in brightness required for detection or grouping, respectively. Results demonstrate that the threshold for perceiving stimuli as irregularly spaced or dissimilar in size or brightness is much smaller than the threshold for grouping. In order to perceive stimuli as grouped, stimulus differences had to be 5.2 times (for dot spacing), 7.4 times (for size) and 6.6 times (for luminance) larger than for detection. Two control experiments demonstrated that the difference between the two kinds of thresholds persisted even when only two gaps were used instead of three and when gap position was randomized. Copyright 2010 Elsevier Ltd. All rights reserved.
X-ray crystallographic studies of metalloproteins.
Volbeda, Anne
2014-01-01
Many proteins require metals for their physiological function. In combination with spectroscopic characterizations, X-ray crystallography is a very powerful method to correlate the function of protein-bound metal sites with their structure. Due to their special X-ray scattering properties, specific metals may be located in metalloprotein structures and eventually used for phasing the diffracted X-rays by the method of Multi-wavelength Anomalous Dispersion (MAD). How this is done is the principle subject of this chapter. Attention is also given to the crystallographic characterization of different oxidation states of redox active metals and to the complication of structural changes that may be induced by X-ray irradiation of protein crystals.
Crystallization and crystallographic studies of kallistatin
Energy Technology Data Exchange (ETDEWEB)
Lin, Fang; Zhou, Aiwu; Wei, Zhenquan, E-mail: weizhq@gmail.com [Shanghai Jiaotong University School of Medicine (Room 1006, Building 2, No 280, South Chongqing Road), Shanghai 200025, People’s Republic of (China)
2015-08-25
The crystallization of human kallistatin in the relaxed conformation is reported. Kallistatin is a serine protease inhibitor (serpin) which specifically inhibits human tissue kallikrein; however, its inhibitory activity is inhibited by heparin. In order to elucidate the underlying mechanism, recombinant human kallistatin was prepared in Escherichia coli and the protein was crystallized by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.9 Å resolution. The crystals were found to belong to space group P6{sub 1}, with unit-cell parameters a = 113.51, b = 113.51, c = 76.17 Å. Initial analysis indicated that the crystallized kallistatin was in a relaxed conformation, with its reactive-centre loop inserted in the central β-sheet.
Peculiarities of Crystal Structure of the Cubic System Compounds with T 4 and T 5 Space Groups
Zolotarev, M. L.; Poplavnoi, A. S.
2016-09-01
We study symmetry peculiarities of crystalline compounds of a cubic system with the space groups T 4 and T 5 caused by the absence of point Wyckoff-sets in the unit cells of these groups. Due to the high multiplicity of the available Wyckoff positions, such compounds possess unit cells of complex composition. In these compounds, pseudosymmetry is realized with high probability when some group of atoms is located in positions close to the positions of higher-symmetry groups. We provide examples of crystalline compounds showing predicted specific structural features.
Crystallographic study of Glu58Ala RNase T1 x 2'-guanosine monophosphate at 1.9-A resolution.
Pletinckx, J; Steyaert, J; Zegers, I; Choe, H W; Heinemann, U; Wyns, L
1994-02-22
Glu58 is known to participate in phosphodiester transesterification catalyzed by the enzyme RNase T1. For Glu58 RNase T1, an altered mechanism has been proposed in which His40 replaces Glu58 as the base catalyst [Steyaert, J., Hallenga, K., Wyns, L., & Stanssens, P. (1990) Biochemistry 29, 9064-9072]. Glu58Ala Rnase T1 has been cocrystallized with guanosine 2'-monophosphate (2'-GMP). The crystals are of space group P2(1), with one molecule per asymmetric unit (a = 32.44 A, b = 49.64 A, c = 26.09 A, beta = 99.17 degrees). The three-dimensional structure of the enzyme was determined to a nominal resolution of 1.9 A, yielding a crystallographic R factor of 0.178 for all X-ray data. Comparison of this structure with wild-type structures leads to the following conclusions. The minor changes apparent in the tertiary structure can be explained by either the mutation of Glu58 or by the change in the space group. In the active site, the extra space available through the mutation of Glu58 is occupied by the phosphate group (after a reorientation) and by a solvent molecule replacing a carboxylate oxygen of Glu58. This solvent molecule is a candidate for participation in the altered mechanism of this mutant enzyme. Following up on a study of conserved water sites in RNase T1 crystallized in space group P2(1)2(1)2(1) [Malin, R., Zielenkiewicz, P., & Saenger, W. (1991) J. Mol. Biol. 266, 4848-4852], we investigated the hydration structure for four different packing modes of RNase T1.(ABSTRACT TRUNCATED AT 250 WORDS)
Almost simple groups with socle 3D4(q) act on finite linear spaces
Institute of Scientific and Technical Information of China (English)
LIU; Weijun; DAI; Shaojun
2006-01-01
After the classification of flag-transitive linear spaces,attention has now turned to line-transitive linear spaces.Such spaces are first divided into the point-imprimitive and the point-primitive,the first class is usually easy by the theorem of Delandtsheer and Doyen.The primitive ones are now subdivided,according to the O'Nan-Scotte theorem and some further work by Camina,into the socles which are an elementary abelian or non-abelian simple.In this paper,we consider the latter.Namely,T ≤ G ≤ Aut(T) and G acts line-transitively on finite linear spaces,where T is a non-abelian simple.We obtain some useful lemmas.In particular,we prove that when T is isomorphic to 3D4(q),then T is line-transitive,where q is a power of the prime p.
Harmonic analysis of the Euclidean group in three-space. II
Rno, Jung Sik
1985-09-01
We develop the harmonic analysis for spinor functions which are defined by the matrix elements of the unitary irreducible representations of E(3) with the representation space on the translation subgroup.
Hurlbert, Eric A.; Manfletti, Chiara; Sippel, Martin
2016-01-01
As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTD...
Real Space Renormalization Group Study of the S=1/2 XXZ Chains with Fibonacci Exchange Modulation
飛田, 和男
2004-01-01
Ground state properties of the S = 1/2 antiferromagnetic XXZ chain with Fibonacci exchange modulation are studied using the real space renormalization group method for strong modulation. The quantum dynamical critical behavior with a new universality class is predicted in the isotropic case. Combining our results with the weak coupling renormalization group results by Vidal et al., the ground state phase diagram is obtained.
Real Space Renormalization Group Study of the S=1/2 XXZ Chains with Fibonacci Exchange Modulation
Hida, Kazuo
2004-08-01
Ground state properties of the S=1/2 antiferromagnetic XXZ chain with Fibonacci exchange modulation are studied using the real space renormalization group method for strong modulation. The quantum dynamical critical behavior with a new universality class is predicted in the isotropic case. Combining our results with the weak coupling renormalization group results by Vidal et al., the ground state phase diagram is obtained.
Encoding Curved Tetrahedra in Face Holonomies: a Phase Space of Shapes from Group-Valued Moment Maps
Haggard, Hal M; Riello, Aldo
2015-01-01
We present a generalization of Minkowski's classic theorem on the reconstruction of tetrahedra from algebraic data to homogeneously curved spaces. Euclidean notions such as the normal vector to a face are replaced by Levi-Civita holonomies around each of the tetrahedron's faces. This allows the reconstruction of both spherical and hyperbolic tetrahedra within a unified framework. A new type of hyperbolic simplex is introduced in order for all the sectors encoded in the algebraic data to be covered. Generalizing the phase space of shapes associated to flat tetrahedra leads to group valued moment maps and quasi-Poisson spaces. These discrete geometries provide a natural arena for considering the quantization of gravity including a cosmological constant. A concrete realization of this is provided by the relation with the spin-network states of loop quantum gravity. This work therefore provides a bottom-up justification for the emergence of deformed gauge symmetries and quantum groups in 3+1 dimensional covariant...
Thévenin, Annelyse; Ein-Dor, Liat; Ozery-Flato, Michal; Shamir, Ron
2014-09-01
Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in the human genome. We test this question for three types of functional groups: pairs of interacting proteins, complexes and pathways. We find a significant concentration of functional groups both in terms of their distance within the same chromosome and in terms of their dispersal over several chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear close in the 3D space of the nucleus, we show that members of the same functional group that reside on distinct chromosomes tend to co-localize in space. The result holds for all three types of functional groups that we tested. Hence, the human genome shows substantial concentration of functional groups within chromosomes and across chromosomes in space.
VANENTER, ACD; FERNANDEZ, R; SOKAL, AD
We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Our main results apply to local (in position space) RG maps acting on systems of bounded spins (compact
The relation between microstructure and crystallographic orientation in rolled copper and brass
DEFF Research Database (Denmark)
Christoffersen, H.; Leffers, Torben
2002-01-01
The relation between microstructure and crystallographic orientation is investigated in rolled copper and brass. For the two main types of microstructure in copper (the high wall density and the low wall density structure) there is a certain relation: theorientations corresponding to a specific...... type tend to cluster in certain regions of orientation space. However, the clustering is not very pronounced (there is a lot of overlap), and it cannot be related to any model. There is also a certain grain-sizeeffect: the average grain with high wall density structure is larger than the average grain...... with low wall density structure. For a third type of microstructure (to be described) there is a very clear relation to the crystallographic orientation. For brassthe distinction is between grains with and grains without deformation twins. There is a clear trend for the grains with twins to cluster...
Melas, Evangelos
2017-07-01
The original Bondi-Metzner-Sachs (BMS) group B is the common asymptotic symmetry group of all asymptotically flat Lorentzian radiating 4-dim space-times. As such, B is the best candidate for the universal symmetry group of General Relativity (G.R.). In 1973, with this motivation, McCarthy classified all relativistic B-invariant systems in terms of strongly continuous irreducible unitary representations (IRS) of B. Here we introduce the analogue B(2, 1) of the BMS group B in 3 space-time dimensions. B(2, 1) itself admits thirty-four analogues both real in all signatures and in complex space-times. In order to find the IRS of both B(2, 1) and its analogues, we need to extend Wigner-Mackey's theory of induced representations. The necessary extension is described and is reduced to the solution of three problems. These problems are solved in the case where B(2, 1) and its analogues are equipped with the Hilbert topology. The extended theory is necessary in order to construct the IRS of both B and its analogues in any number d of space-time dimensions, d ≥3 , and also in order to construct the IRS of their supersymmetric counterparts. We use the extended theory to obtain the necessary data in order to construct the IRS of B(2, 1). The main results of the representation theory are as follows: The IRS are induced from "little groups" which are compact. The finite "little groups" are cyclic groups of even order. The inducing construction is exhaustive notwithstanding the fact that B(2, 1) is not locally compact in the employed Hilbert topology.
On topological spaces and topological groups with certain local countable networks
Gabriyelyan, S. S.; Kakol, J.
2014-01-01
Being motivated by the study of the space $C_c(X)$ of all continuous real-valued functions on a Tychonoff space $X$ with the compact-open topology, we introduced in [15] the concepts of a $cp$-network and a $cn$-network (at a point $x$) in $X$. In the present paper we describe the topology of $X$ admitting a countable $cp$- or $cn$-network at a point $x\\in X$. This description applies to provide new results about the strong Pytkeev property, already well recognized and applicable concept orig...
Jubilite: A 4-,8-connected Cubic Structural Pattern in Space Group Pm3
Directory of Open Access Journals (Sweden)
Eduardo A. Castro
2005-05-01
Full Text Available Abstract: In the course of investigating structural modifications of the 3-,4-connected net known as the Pt3O4 structure-type (waserite, a novel 4-,8-connected structure-type was discovered. This lattice is generated by replacing the 3-connected trigonal planar vertices of the Pt3O4 structure-type with 4-connected tetrahedral vertices, to achieve a structure which possesses a generic empirical formula of JK6L8. In such a topological modification, the four 3-fold axes of the parent cubic, Pm3n, Pt3O4 structure-type are retained. Thus the 4-connected tetrahedral vertices are oriented so as to preserve cubic symmetry in the resulting Pm3, JK6L8 (jubilite lattice. The unit cell contains a single 8-connected cubecentered vertex, six 4-connected distorted square planar vertices and eight 4-connected distorted tetrahedral vertices. It is a Wellsean structure with a Wells point symbol given by (4166484(42826(43838 and a SchlÃƒÂ¤fli symbol of (53/4, 4.2667. This latter index reveals a decrease in the latticeÃ¢Â€Â™s polygonality and concomitant increase in the connectivity through the transformation from waserite to jubilite. The topology of the parent waserite lattice (Pt3O4 corresponds to that of the Catalan structures with the Wells point symbol (843(834, which has the SchlÃƒÂ¤fli symbol (8, 3.4285. Finally, it can be seen that a sequence of structure-types starting with waserite (Pt3O4 and moving to jubilite (JK6L8 and finally to fluorite (CaF2 represents a continuous crystallographic structural transformation in which the symmetry and topology undergo concomitant changes from one structure-type (waserite to the other structure-types. The topology of the fluorite lattice, represented by the Wells point symbol (424(462, and the SchlÃƒÂ¤fli symbol (4, 51/3, indicates a discontinuous topological transformation from the intermediate jubilite lattice; like the discontinuous topological transformation from Pt3O4 to JK6L8; in which the
Nelson, Mark; Allen, John P.
As space exploration and eventually habitation achieves longer durations, successfully managing group dynamics of small, physically isolated groups will become vital. The paper summarizes important underlying research and conceptual theory and how these manifested in a well-documented example: the closure experiments of Biosphere 2. Key research breakthroughs in discerning the operation of small human groups comes from the pioneering work of W.R. Bion. He discovered two competing modalities of behavior. The first is the “task-oriented” or work group governed by shared acceptance of goals, reality-thinking in relation to time, resources and rational, and intelligent management of challenges presented. The opposing, usually unconscious, modality is what Bion called the “basic-assumption” group and alternates between three “group animal” groups: dependency/kill the leader; fight/flight and pairing. If not dealt with, these dynamics work to undermine and defeat the conscious task group’s goal achievement. The paper discusses crew training and selection, various approaches to structuring the work and hierarchy of the group, the importance of contact with a larger population through electronic communication and dealing with the “us-them” syndrome frequently observed between crew and Mission Control. The experience of the first two year closure of Biosphere 2 is drawn on in new ways to illustrate vicissitudes and management of group dynamics especially as both the inside team of biospherians and key members of Mission Control had training in working with group dynamics. Insights from that experience may help mission planning so that future groups in space cope successfully with inherent group dynamics challenges that arise.
van Saarloos, Wim
1983-05-01
When differential real-space renormalization-grup theory was proposed by Hilhorst, Schick, and van Leeuwen, they suggested that their approach could only be applied to lattice models for which a star-triangle transformation exists. However, differential renormalization-group equations for the square Ising model have recently been proposed whose derivation does not involve the star-triangle transformation. We show that the latter equations are not exact renormalization-group equations by an analysis that reveals some essential limitations of the present formulation of differential real-space renormalization. We investigate the structure of the renormalization-group flow equations obtained in this method and uncover a strong property of these equations that simplifies the calculations in actual applications of the theory. However, the status and implications of this property, which embodies the crux of the theory, are not yet fully understood.
Fisher, D S; Le Doussal, P; Monthus, C
2001-12-01
The nonequilibrium dynamics of classical random Ising spin chains with nonconserved magnetization are studied using an asymptotically exact real space renormalization group (RSRG). We focus on random field Ising model (RFIM) spin chains with and without a uniform applied field, as well as on Ising spin glass chains in an applied field. For the RFIM we consider a universal regime where the random field and the temperature are both much smaller than the exchange coupling. In this regime, the Imry-Ma length that sets the scale of the equilibrium correlations is large and the coarsening of domains from random initial conditions (e.g., a quench from high temperature) occurs over a wide range of length scales. The two types of domain walls that occur diffuse in opposite random potentials, of the form studied by Sinai, and domain walls annihilate when they meet. Using the RSRG we compute many universal asymptotic properties of both the nonequilibrium dynamics and the equilibrium limit. We find that the configurations of the domain walls converge rapidly toward a set of system-specific time-dependent positions that are independent of the initial conditions. Thus the behavior of this nonequilibrium system is pseudodeterministic at long times because of the broad distributions of barriers that occur on the long length scales involved. Specifically, we obtain the time dependence of the energy, the magnetization, and the distribution of domain sizes (found to be statistically independent). The equilibrium limits agree with known exact results. We obtain the exact scaling form of the two-point equal time correlation function and the two-time autocorrelations . We also compute the persistence properties of a single spin, of local magnetization, and of domains. The analogous quantities for the +/-J Ising spin glass in an applied field are obtained from the RFIM via a gauge transformation. In addition to these we compute the two-point two-time correlation function which can in
Directory of Open Access Journals (Sweden)
Luciana Zago
2014-06-01
Full Text Available The use of space by the Callithix genus can be related to different factors. The objective of this study was to evaluate the influences of different factors on the use of space in C. penicillata introduced in an urban patch. Two groups, called GL and GG, were monitored in two six-month phases at Parque Ecológico do Córrego Grande, Florianópolis, SC, Brazil. Both groups consisted of eight individuals at the beginning of the study. Throughout Phase I some GL individuals disappeared and births occurred among GG, changing the groups’ composition to five and 11 individuals, respectively. In Phase II, GL moved to an inaccessible area preventing sufficient observations. Three GG individuals disappeared and two others were born. Intergroup agonistic behaviors were recorded in all Phase I months, while an abrupt reduction occurred in Phase II. Home range overlaps occurred throughout Phase I. Between Phases I and II, GL left the overlapping area and GG occupied the GL spaces. These changes seem to be related to the increase in GG individuals and their need to access food resources. The use of space dynamics seems to result from spatial limitations, intergroup conflicts, group compositions and availability of food resources.
Ibragimov, N H; Wessels, E J H; Ellis, George F. R.; Ibragimov, Nail H.; Wessels, Ewald J. H.
2006-01-01
We carry out a Lie group analysis of the Sachs equations for a time-dependent axisymmetric non-rotating space-time in which the Ricci tensor vanishes. These equations, which are the first two members of the set of Newman-Penrose equations, define the characteristic initial-value problem for the space-time. We find a particular form for the initial data such that these equations admit a Lie symmetry, and so defines a geometrically special class of such spacetimes. These should additionally be of particular physical interest because of this special geometric feature.
Allner, M.; Rygalov, V.
2008-12-01
suggested distinguishable mission phase model, the Lewis and Clark Expedition will be analyzed for similarities to these space findings. Factors of consideration in support of this analysis involve an understanding of the leadership qualities of Lewis and Clark (and relations established and maintained with one another), the selection and diversity of their crew, and the group dynamics that were developed and maintained so carefully during the expedition. With this knowledge and understanding one can gain enormous insights useful in the planning and preparation for future long-duration space exploratory missions with high level of autonomy, mobility, minimal primary life support supply and high dependence on material re-circulation and In-Situ Resource Utilization approach.
Crystallographic orientation dependent etching of graphene layers
Energy Technology Data Exchange (ETDEWEB)
Nemes-Incze, Peter; Biro, Laszlo Peter [Research Institute for Technical Physics and Materials Science, PO. Box 49, 1525 Budapest (Hungary); Magda, Gabor [Budapest University of Technology and Economics (BME), PO Box 91, 1521 Budapest (Hungary); Kamaras, Katalin [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, 1525, Budapest (Hungary)
2010-04-15
Graphene has gripped the scientific community ever since its discovery in 2004, with very promising electronic properties and hopes to integrate graphene into nanoelectronic devices. For graphene to make its way into electronic devices, two major obstacles have to be overcome: reproducible preparation of large area graphene samples and patterning techniques to obtain functional components. In this paper we present a graphene etching technique, which is crystallographic orientation selective and allows for the patterning of graphene layers using a chemical reduction process. The process involves the reduction of the SiO{sub 2} support by the carbon in the graphene itself. This reaction only occurs at the sample edges and does not result in the degradation of the graphene crystal lattice itself. However, we have observed evidence of strong hole doping in our etched samples. This etching technique opens up new possibilities in graphene patterning and modification. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Determination of crystallographic intensities from sparse data
Directory of Open Access Journals (Sweden)
Kartik Ayyer
2015-01-01
Full Text Available X-ray serial microcrystallography involves the collection and merging of frames of diffraction data from randomly oriented protein microcrystals. The number of diffracted X-rays in each frame is limited by radiation damage, and this number decreases with crystal size. The data in the frame are said to be sparse if too few X-rays are collected to determine the orientation of the microcrystal. It is commonly assumed that sparse crystal diffraction frames cannot be merged, thereby setting a lower limit to the size of microcrystals that may be merged with a given source fluence. The EMC algorithm [Loh & Elser (2009, Phys. Rev. E, 80, 026705] has previously been applied to reconstruct structures from sparse noncrystalline data of objects with unknown orientations [Philipp et al. (2012, Opt. Express, 20, 13129–13137; Ayyer et al. (2014, Opt. Express, 22, 2403–2413]. Here, it is shown that sparse data which cannot be oriented on a per-frame basis can be used effectively as crystallographic data. As a proof-of-principle, reconstruction of the three-dimensional diffraction intensity using sparse data frames from a 1.35 kDa molecule crystal is demonstrated. The results suggest that serial microcrystallography is, in principle, not limited by the fluence of the X-ray source, and collection of complete data sets should be feasible at, for instance, storage-ring X-ray sources.
Grouping horses according to gender-Effects on aggression, spacing and injuries
DEFF Research Database (Denmark)
Meisfjord Jørgensen, Grete Helen; Borsheim, Linn; Mejdell, Cecilie Marie
2009-01-01
Many horse owners tend to group horses according to gender, in an attempt to reduce aggressive interactions and the risk of injuries. The aim of our experiment was to test the effects of such gender separation on injuries, social interactions and individual distance in domestic horses. A total...... of 66 horses were recruited from 4 different farms in Norway and Denmark and divided into six batches. Within each batch, horses were allotted into one mare group, one gelding group and one mixed gender group, with most groups consisting of three or four animals. After 4-6 weeks of acclimatisation......, a trained observer recorded all social interactions using direct, continuous observation 1 h in the morning and 1 h in the afternoon for three consecutive days. Recordings of the nearest neighbour of each horse were performed using instantaneous sampling every 10 min. The horses were inspected for injuries...
The Cohomology of Orbit Spaces of Certain Free Circle Group Actions
Indian Academy of Sciences (India)
Hemant Kumar Singh; Tej Bahadur Singh
2012-02-01
Suppose that $G=\\mathbb{S}^1$ acts freely on a finitistic space whose (mod ) cohomology ring is isomorphic to that of a lens space $L^{2m-1}(p;q_1,\\ldots,q_m)$ or $\\mathbb{S}^1×\\mathbb{C}P^{m-1}$. The mod index of the action is defined to be the largest integer such that $^n≠ 0$, where $\\in H^2(X/G;\\mathbb{Z}_p)$ is the nonzero characteristic class of the $\\mathbb{S}^1$-bundle $\\mathbb{S}^1\\hookrightarrow X→ X/G$. We show that the mod index of a free action of on $\\mathbb{S}^1×\\mathbb{C}P^{m-1}$ is -1, when it is defined. Using this, we obtain a Borsuk–Ulam type theorem for a free -action on $\\mathbb{S}^1×\\mathbb{C}P^{m-1}$. It is note worthy that the mod index for free -actions on the cohomology lens space is not defined.
Directory of Open Access Journals (Sweden)
Tang Xiaofeng
2014-01-01
Full Text Available The paper presents the three time warning distances for solving the large scale system of multiple groups of vehicles safety driving characteristics towards highway tunnel environment based on distributed model prediction control approach. Generally speaking, the system includes two parts. First, multiple vehicles are divided into multiple groups. Meanwhile, the distributed model predictive control approach is proposed to calculate the information framework of each group. Each group of optimization performance considers the local optimization and the neighboring subgroup of optimization characteristics, which could ensure the global optimization performance. Second, the three time warning distances are studied based on the basic principles used for highway intelligent space (HIS and the information framework concept is proposed according to the multiple groups of vehicles. The math model is built to avoid the chain avoidance of vehicles. The results demonstrate that the proposed highway intelligent space method could effectively ensure driving safety of multiple groups of vehicles under the environment of fog, rain, or snow.
Clemens, Oliver; Gröting, Melanie; Witte, Ralf; Perez-Mato, J Manuel; Loho, Christoph; Berry, Frank J; Kruk, Robert; Knight, Kevin S; Wright, Adrian J; Hahn, Horst; Slater, Peter R
2014-06-16
We report here on the characterization of the vacancy-ordered perovskite-type structure of BaFeO2.5 by means of combined Rietveld analysis of powder X-ray and neutron diffraction data. The compound crystallizes in the monoclinic space group P2(1)/c [a = 6.9753(1) Å, b = 11.7281(2) Å, c = 23.4507(4) Å, β = 98.813(1)°, and Z = 28] containing seven crystallographically different iron atoms. The coordination scheme is determined to be Ba7(FeO4/2)1(FeO3/2O1/1)3(FeO5/2)2(FeO6/2)1 = Ba7Fe([6])1Fe([5])2Fe([4])4O17.5 and is in agreement with the (57)Fe Mössbauer spectra and density functional theory based calculations. To our knowledge, the structure of BaFeO2.5 is the most complicated perovskite-type superstructure reported so far (largest primitive cell, number of ABX2.5 units per unit cell, and number of different crystallographic sites). The magnetic structure was determined from the powder neutron diffraction data and can be understood in terms of "G-type" antiferromagnetic ordering between connected iron-containing polyhedra, in agreement with field-sweep and zero-field-cooled/field-cooled measurements.
Linear algebra and group theory for physicists
Rao, K N Srinivasa
2006-01-01
Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Villemoes, Rasmus
2009-01-01
Consider a compact surface of genus at least two. We prove that the first cohomology group of the mapping class group with coefficients in the space of algebraic functions on the SL2(C) moduli space vanishes. In the genus one case, this cohomology group is infinite dimensional....
Ai, Zhi Yong; Li, Zhi Xiong; Wang, Li Hua
2016-12-01
The time-harmonic response of a laterally loaded fixed-head pile group embedded in a transversely isotropic multilayered half-space is investigated using a finite element and indirect boundary element coupling method. The piles are solved by the finite element method (FEM), while the soil can be modeled by the indirect boundary element method (BEM) with the aid of the fundamental solution for a transversely isotropic multilayered half-space in a cylindrical coordinate system. The governing equation of the pile-soil-pile dynamic interaction is established by applying the FEM-BEM coupling method. Numerical examples are carried out to validate the presented theory and to investigate influences of the soil's anisotropy and layering on the dynamic response of pile groups.
Working group report on advanced high-voltage high-power and energy-storage space systems
Cohen, H. A.; Cooke, D. L.; Evans, R. W.; Hastings, D.; Jongeward, G.; Laframboise, J. G.; Mahaffey, D.; Mcintyre, B.; Pfizer, K. A.; Purvis, C.
1986-01-01
Space systems in the future will probably include high-voltage, high-power energy-storage and -production systems. Two such technologies are high-voltage ac and dc systems and high-power electrodynamic tethers. The working group identified several plasma interaction phenomena that will occur in the operation of these power systems. The working group felt that building an understanding of these critical interaction issues meant that several gaps in our knowledge had to be filled, and that certain aspects of dc power systems have become fairly well understood. Examples of these current collection are in quiescent plasmas and snap over effects. However, high-voltage dc and almost all ac phenomena are, at best, inadequately understood. In addition, there is major uncertainty in the knowledge of coupling between plasmas and large scale current flows in space plasmas. These gaps in the knowledge are addressed.
Real-space renormalization group for the transverse-field Ising model in two and three dimensions.
Miyazaki, Ryoji; Nishimori, Hidetoshi; Ortiz, Gerardo
2011-05-01
The two- and three-dimensional transverse-field Ising models with ferromagnetic exchange interactions are analyzed by means of the real-space renormalization-group method. The basic strategy is a generalization of a method developed for the one-dimensional case, which exploits the exact invariance of the model under renormalization and is known to give the exact values of the critical point and critical exponent ν. The resulting values of the critical exponent ν in two and three dimensions are in good agreement with those for the classical Ising model in three and four dimensions. To the best of our knowledge, this is the first example in which a real-space renormalization group on (2+1)- and (3+1)-dimensional Bravais lattices yields accurate estimates of the critical exponents.
Georgiev, Ivan T; McKay, Susan R
2003-05-01
This paper introduces a position-space renormalization-group approach for nonequilibrium systems and applies the method to a driven stochastic one-dimensional gas with open boundaries. The dynamics are characterized by three parameters: the probability alpha that a particle will flow into the chain to the leftmost site, the probability beta that a particle will flow out from the rightmost site, and the probability p that a particle will jump to the right if the site to the right is empty. The renormalization-group procedure is conducted within the space of these transition probabilities, which are relevant to the system's dynamics. The method yields a critical point at alpha(c)=beta(c)=1/2, in agreement with the exact values, and the critical exponent nu=2.71, as compared with the exact value nu=2.00.
Georgiev, Ivan T.; McKay, Susan R.
2003-05-01
This paper introduces a position-space renormalization-group approach for nonequilibrium systems and applies the method to a driven stochastic one-dimensional gas with open boundaries. The dynamics are characterized by three parameters: the probability α that a particle will flow into the chain to the leftmost site, the probability β that a particle will flow out from the rightmost site, and the probability p that a particle will jump to the right if the site to the right is empty. The renormalization-group procedure is conducted within the space of these transition probabilities, which are relevant to the system’s dynamics. The method yields a critical point at αc=βc=1/2, in agreement with the exact values, and the critical exponent ν=2.71, as compared with the exact value ν=2.00.
Invariant q-Schrödinger equation from homogeneous spaces of the 2-dim Euclidean quantum group
Bonechi, F; Giachetti, R; Sorace, E; Tarlini, M; Bonechi, F; Ciccoli, N; Giachetti, R; Sorace, E; Tarlini, M
1994-01-01
After a preliminary review of the definition and the general properties of the homogeneous spaces of quantum groups, the quantum hyperboloid (qH) and the quantum plane (qP) are determined as homogeneous spaces of F_q(E(2)). The canonical action of E_q(2) is used to define a natural q-analog of the free Schrodinger equation, that is studied in the momentum and angular momentum bases. In the first case the eigenfunctions are factorized in terms of products of two q-exponentials. In the second case we determine the eigenstates of the unitary representation, which, in the (qP) case, are given in terms Hahn-Exton functions. Introducing the universal T-matrix for E_q(2) we prove that the Hahn-Exton q-Bessel functions are also obtained as matrix elements of T, giving thus the correct extension to quantum groups of well known methods in harmonic analysis.
Creating a Space for Acknowledgment and Generativity in Reflective Group Supervision.
Paré, David
2016-06-01
Small group supervision is a powerful venue for generative conversations because of the multiplicity of perspectives available and the potential for an appreciative audience to a practitioner's work. At the same time, the well-intentioned reflections by a few practitioners in a room can inadvertently duplicate normative discourses that circulate in the wider culture and the profession. This article explores the use of narrative practices for benefiting from the advantages of group supervision while mindful of the vulnerability that comes with sharing one's work among colleagues. The reflective group supervision processes described were modified from the work of Tom Andersen and Michael White to provide a venue that encourages the creative multiplicity of group conversation while discouraging unhelpful discourses which constrain generative conversation. © 2016 Family Process Institute.
Rapid Creation of Three-Dimensional, Tactile Models from Crystallographic Data
Directory of Open Access Journals (Sweden)
Nathan B. Fisher
2016-01-01
Full Text Available A method for the conversion of crystallographic information framework (CIF files to stereo lithographic data files suitable for printing on three-dimensional printers is presented. Crystallographic information framework or CIF files are capable of being manipulated in virtual space by a variety of computer programs, but their visual representations are limited to the two-dimensional surface of the computer screen. Tactile molecular models that demonstrate critical ideas, such as symmetry elements, play a critical role in enabling new students to fully visualize crystallographic concepts. In the past five years, major developments in three-dimensional printing has lowered the cost and complexity of these systems to a level where three-dimensional molecular models may be easily created provided that the data exists in a suitable format. Herein a method is described for the conversion of CIF file data using existing free software that allows for the rapid creation of inexpensive molecular models. This approach has numerous potential applications in basic research, education, visualization, and crystallography.
Hua, Minh-Duc; Hamel, Tarek; Mahony, Robert; Trumpf, Jochen
2015-01-01
A nonlinear observer on the Special Euclidean group $\\mathrm{SE(3)}$ for full pose estimation, that takes the system outputs on the real projective space directly as inputs, is proposed. The observer derivation is based on a recent advanced theory on nonlinear observer design. A key advantage with respect to existing pose observers on $\\mathrm{SE(3)}$ is that we can now incorporate in a unique observer different types of measurements such as vectorial measurements of known inertial vectors an...
Institute of Scientific and Technical Information of China (English)
Shisheng ZHANG; Lin WANG; Yunhe ZHAO
2013-01-01
The purpose of this article is first to introduce the concept of multi-valued totally Quasi-φ-asymptotically nonexpansive semi-groups,which contains many kinds of semigroups as its special cases,and then to modify the Halpern-Mann-type iteration algorithm for multi-valued totally Quasi-φ-asymptotically nonexpansive semi-groups to have the strong convergence under a limit condition only in the framework of Banach spaces.The results presented in this article improve and extend the corresponding results announced by many authors recently.
Directory of Open Access Journals (Sweden)
Wang Dong
2016-01-01
Full Text Available Currently, user group has become an effective platform for information sharing and communicating among users in social network sites. In present work, we propose a single topic user group discovering scheme, which includes three phases: topic impact evaluation, interest degree measurement, and trust chain based discovering, to enable selecting influential topic and discovering users into a topic oriented group. Our main works include (1 an overview of proposed scheme and its related definitions; (2 topic space construction method based on topic relatedness clustering and its impact (influence degree and popularity degree evaluation; (3 a trust chain model to take user relation network topological information into account with a strength classification perspective; (4 an interest degree (user explicit and implicit interest degree evaluation method based on trust chain among users; and (5 a topic space oriented user group discovering method to group core users according to their explicit interest degrees and to predict ordinary users under implicit interest and user trust chain. Finally, experimental results are given to explain effectiveness and feasibility of our scheme.
Topological Entropy and Renormalization group flow in 3-dimensional spherical spaces
Asorey, M; Cavero-Peláez, I; D'Ascanio, D; Santangelo, E M
2015-01-01
We analyze the renormalization group flow of the temperature independent term of the entropy in the high temperature limit \\beta/a S^IR_top between the topological entropies of the conformal field theories connected by such flow. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotone behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem.
Histogram Monte Carlo position-space renormalization group: Applications to the site percolation
Hu, Chin-Kun; Chen, Chi-Ning; Wu, F. Y.
1996-02-01
We study site percolation on the square lattice and show that, when augmented with histogram Monte Carlo simulations for large lattices, the cell-to-cell renormalization group approach can be used to determine the critical probability accurately. Unlike the cell-to-site method and an alternate renormalization group approach proposed recently by Sahimi and Rassamdana, both of which rely on ab initio numerical inputs, the cell-to-cell scheme is free of prior knowledge and thus can be applied more widely.
Brooke, Robert; Coyle, Deborah; Walden, Anne; Healey, Conniem; Larson, Kim; Laughridge, Virginia; Ridder, Kim; Williams, Molly; Williams, Shawn
2005-01-01
This article describes a teacher study group focusing on After School Writing Circles for elementary students as a site of Thirdspace professional development. Borrowing the concept of Thirdspace from postmodern geographer Edward Soja, the authors argue that professional development works best when teachers engage in the dual work of imagining and…
Edwards-Groves, Christine J.
2013-01-01
Focussed dialogue (as lived and living practices) can have a powerful role in renewing professional practice, advancing its sustainability and development as administrative and political systems colonise the practices of teachers and teacher educators. However, participating in discussion groups for many teachers, including those in academia, is…
Directory of Open Access Journals (Sweden)
Dietmar Kuck
2011-03-01
Full Text Available The syntheses of tribenzotriquinacenes (TBTQ bearing three phenylurea groupings at either the arene periphery or at the benzhydrylic bridgeheads of the rigid, convex–concave, C3v-symmetrical molecular framework are reported. 1H NMR data point to supramolecular aggregation of these TBTQ derivatives in low-polarity solvents.
Deep neck space abscesses of dental origin: the impact of Streptococcus group Milleri.
Terzic, Andrej; Scolozzi, Paolo
2014-10-01
In recent years, there has been rising interest in Streptococcus group Milleri (SM) because high mortality rates have been related to it. In case of deep neck infections (DNI), whatever the origin, mortality rates as high as 26% were reported. But there are no data available for DNI with SM of purely dental origin. The aim of our article was to describe and analyse DNI of purely dental origin involving on one hand SM and on the other hand infections without presence of SM. We compared these two groups and statistically investigated if there were differences in clinical presentation (age, mouth opening, length of hospital stay, laboratory parameters) or clinical behaviour (re-operation, re-hospitalisation, secondary osteomyelitis, stay at intensive care, length of antibiotic treatment, presence of resistances against antibiotics, incapacity to work). For this, we retrospectively searched medical records of our institution for all purulent DNI treated from 2004 till 2012. We found 81 patients meeting all inclusion criteria. Thirty-four patients had involvement of SM, 47 did not. The only statistically significant difference between the SM group and the non-SM group was the length of incapacity to work. All other parameters were non-significant. Furthermore, there were no fatalities. In conclusion, the clinical importance of this article is that patients with deep neck abscesses of purely dental origin involving SM do not need more or different care when compared to all other DNI of dental origin.
Renormalization Group Equation for $f(R)$ gravity on hyperbolic spaces
Falls, Kevin
2016-01-01
We derive the flow equation for the gravitational effective average action in an $f(R)$ truncation on hyperbolic spacetimes using the exponential parametrization of the metric. In contrast to previous works on compact spaces, we are able to evaluate traces exactly using the optimised cutoff. This reveals in particular that all modes can be integrated out for a finite value of the cutoff due to a gap in the spectrum of the Laplacian, leading to the effective action. Studying polynomial solutions, we find poorer convergence than has been found on compact spacetimes even though at small curvature the equations only differ in the treatment of certain modes. In the vicinity of an asymptotically free fixed point, we find the universal beta function for the $R^2$ coupling and compute the corresponding effective action which involves an $R^2 \\log R$ quantum correction.
A Remark on the Unitary Group of a Tensor Product of Finite-Dimensional Hilbert Spaces
Indian Academy of Sciences (India)
K R Parthasarathy
2003-02-01
Let $H_i, 1 ≤ i ≤ n$ be complex finite-dimensional Hilbert spaces of dimension $d_i, 1 ≤ i ≤ n$ respectively with $d_i ≥ 2$ for every . By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product $H = H_1 \\otimes H_2 \\otimes\\ldots \\otimes H_n$ can be expressed as a composition of a finite number of unitary operators living on pair products $H_i \\otimes H_j, 1 ≤ i, j ≤ n$. An estimate of the number of operators appearing in such a composition is obtained.
Maximal Abelian subgroups of the isometry and conformal groups of Euclidean and Minkowski spaces
Thomova, Z.; Winternitz, P.
1998-02-01
The maximal Abelian subalgebras (MASAs) of the Euclidean 0305-4470/31/7/016/img1 and pseudo-euclidean 0305-4470/31/7/016/img2 Lie algebras are classified into conjugacy classes under the action of the corresponding Lie groups 0305-4470/31/7/016/img3 and 0305-4470/31/7/016/img4, and also under the conformal groups 0305-4470/31/7/016/img5 and 0305-4470/31/7/016/img6, respectively. The results are presented in terms of decomposition theorems. For 0305-4470/31/7/016/img1 orthogonally indecomposable MASAs exist only for p = 1 and p = 2. For 0305-4470/31/7/016/img2, on the other hand, orthogonally indecomposable MASAs exist for all values of p. The results are used to construct new coordinate systems in which wave equations and Hamilton-Jacobi equations allow the separation of variables.
Otoshi, T. Y.; Beatty, R. W.
1976-01-01
A set of cable assemblies serving as group delay standards having nominal delays of 15, 30, and 60 nsec are described. Various types of measurements were performed on the cable standards, including impedance, microwave phase shift, RF pulse burst delay, modulation pulsed delay, and envelope phase shift measurements. The results of these tests are given, and various sources of error are discussed, in particular, dispersion and internal reflections.
Nakatani, Naoki; Guo, Sheng
2017-03-01
This paper describes an interface between the density matrix renormalization group (DMRG) method and the complete active-space self-consistent field (CASSCF) method and its analytical gradient, as well as an extension to the second-order perturbation theory (CASPT2) method. This interfacing allows large active-space multi-reference computations to be easily performed. The interface and its extension are both implemented in terms of reduced density matrices (RDMs) which can be efficiently computed via the DMRG sweep algorithm. We also present benchmark results showing that, in practice, the DMRG-CASSCF calculations scale with active-space size in a polynomial manner in the case of quasi-1D systems. Geometry optimization of a binuclear iron-sulfur cluster using the DMRG-CASSCF analytical gradient is demonstrated, indicating that the inclusion of the valence p-orbitals of sulfur and double-shell d-orbitals of iron lead to non-negligible changes in the geometry compared to the results of small active-space calculations. With the exception of the selection of M values, many computational settings in these practical DMRG calculations have been tuned and black-boxed in our interface, and so the resulting DMRG-CASSCF and DMRG-CASPT2 calculations are now available to novice users as a common tool to compute strongly correlated electronic wavefunctions.
Energy Technology Data Exchange (ETDEWEB)
Johnson, Steven [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Roversi, Pietro [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Espina, Marianela [Department of Molecular Biosciences, University of Kansas (United States); Deane, Janet E. [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Birket, Susan; Picking, William D. [Department of Molecular Biosciences, University of Kansas (United States); Blocker, Ariel [Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Picking, Wendy L. [Department of Molecular Biosciences, University of Kansas (United States); Lea, Susan M., E-mail: susan.lea@path.ox.ac.uk [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom)
2006-09-01
IpaD, the putative needle-tip protein of the S. flexneri type III secretion system, has been crystallized in a variety of crystal forms using in-drop proteolysis. Native and selenomethionine-labelled data collection and preliminary analyses are reported. IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit.
Institute of Scientific and Technical Information of China (English)
Yanfeng Zhang; Xiaoli Gao; Yi Zheng; R. Michae; Garavito
2011-01-01
Succinic semialdehyde reductase (SSAR) is an important enzyme involved in γ-aminobutyrate (GABA) metabolism.By converting succinic semialdehyde (SSA) to γ-hydroxybutyrate (GHB),the SSAR facilitates an alternative pathway for GABA degradation.In this study,we identified SSARs from Geobacter sulfurreducens and Geobacter metallireducens (GsSSAR and GmSSAR,respectively).The enzymes were over-expressed in Escherichia coil and purified to near homogeneity.Both GsSSAR and GmSSAR showed the activity of reducing SSA using nicotinamide adenine dinucleotide phosphate as a co-factor.The oligomeric sizes of GsSSAR and GmSSAR,as determined by analytical size exclusion chromatography,suggest that the enzymes presumably exist as tetramers in solution.The recombinant GsSSAR and GmSSAR crystallized in the presence of NADP+,and the resulting crystals diffracted to 1.89 (A) (GsSSAR) and 2.25 (A)(GmSSAR) resolution.The GsSSAR and GmSSAR crystals belong to the space groups P21221 (a =99.61 (A),b =147.49 (A),c =182.47 A) and P1 (a =75.97 (A) b =79.14 (A) c =95.47 (A),α =82.15°,β =88.80°,γ=87.66°),respectively.Preliminary crystallographic data analysis suggests the presence of eight protein monomers in the asymmetric units for both GsSSAR and GmSSAR.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yanfeng; Gao, Xiaoli; Zheng, Yi; Garavito, R. Michael (MSU)
2012-04-30
Succinic semialdehyde reductase (SSAR) is an important enzyme involved in {gamma}-aminobutyrate (GABA) metabolism. By converting succinic semialdehyde (SSA) to {gamma}-hydroxybutyrate (GHB), the SSAR facilitates an alternative pathway for GABA degradation. In this study, we identified SSARs from Geobacter sulfurreducens and Geobacter metallireducens (GsSSAR and GmSSAR, respectively). The enzymes were over-expressed in Escherichia coli and purified to near homogeneity. Both GsSSAR and GmSSAR showed the activity of reducing SSA using nicotinamide adenine dinucleotide phosphate as a co-factor. The oligomeric sizes of GsSSAR and GmSSAR, as determined by analytical size exclusion chromatography, suggest that the enzymes presumably exist as tetramers in solution. The recombinant GsSSAR and GmSSAR crystallized in the presence of NADP{sup +}, and the resulting crystals diffracted to 1.89 {angstrom} (GsSSAR) and 2.25 {angstrom} (GmSSAR) resolution. The GsSSAR and GmSSAR crystals belong to the space groups P2{sub 1}22{sub 1} (a = 99.61 {angstrom}, b = 147.49 {angstrom}, c = 182.47 {angstrom}) and P1 (a = 75.97 {angstrom}, b = 79.14 {angstrom}, c = 95.47 {angstrom}, {alpha} = 82.15{sup o}, {beta} = 88.80{sup o}, {gamma} = 87.66{sup o}), respectively. Preliminary crystallographic data analysis suggests the presence of eight protein monomers in the asymmetric units for both GsSSAR and GmSSAR.
Determination of phytoplankton groups from space: application to senegalo-mauritanean upwelling
Khalil, Yala; Brajard, Julien; Crépon, Michel; Machu, Eric; Niang, Ndeye
2016-04-01
Phytoplankton groups can be estimated from ocean color spectral satellite observations using a clustering algorithm combined with in-situ measurements of pigment concentration such as PHYSAT. This algorithm (http://log.univ-littoral.fr/Physat) gives global maps of dominant groups for the last ocean color satellite sensor observing periods (MODIS, SeaWiFS). For specific regional studies, especially in very productive regions such as the Senegalo-Mauritanian upwelling, it has been shown that the standard algorithm can present some limitations. First, PHYSAT in its published version uses thresholds on the chlorophyll-a concentration and aerosol optical thickness values to guaranty a "high-quality" estimation of the water-leaving reflectance and of the related chlorophyll-a. Second, since PHYSAT is based on mean water-leaving reflectance spectra (Ra) normalized by classes of chlorophyll-a concentration (Ra*spectra), the algorithm must be insensitive to some small regional variation of this parameter. A regional PHYSAT-like algorithm was applied to the Senegal coast to overcome these difficulties. First, a specific atmospheric correction algorithm was applied to the satellite measurements to produce accurate water-leaving reflectances under Saharan dusts. Artificial neural network (Multilayer perceptrons) was used to estimate the chlorophyll-a concentration from the water-leaving reflectance. Then a clustering algorithm based on Self-organizing map was used to classify the spectral information (Ra,Ra*) spectra measured by the satellite. It has been shown that this new regional PHYSAT algorithm gives coherent spatial patches of Ra*. Based on expertise acquired in others ocean area, these patches could be associated with phytoplankton groups such as diatoms. In situ measurements of secondary pigments were conducted in the framework of the UPSEN campaigns (2012 and 2013) and were used to validate this approach. We show that these in-situ measurement are coherent with the
Okumura, Teppei; More, Surhud; Masaki, Shogo
2016-01-01
The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive halos with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to nonlinear RSD effects. We develop a novel method to recover the redshift-space power spectrum of halos from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of halos...
Chen, Annie T
2012-05-01
This study sought to characterize and compare online discussion forums for three conditions: breast cancer, type 1 diabetes and fibromyalgia. Though there has been considerable work examining online support groups, few studies have considered differences in discussion content between health conditions. In addition, in contrast to the extant literature, this study sought to employ a semi-automated approach to examine health-related online communities. Online discussion content for the three conditions was compiled, pre-processed, and clustered at the thread level using the bisecting k-means algorithm. Though the clusters for each condition differed, the clusters fell into a set of common categories: Generic, Support, Patient-Centered, Experiential Knowledge, Treatments/Procedures, Medications, and Condition Management. The cluster analyses facilitate an increased understanding of various aspects of patient experience, including significant emotional and temporal aspects of the illness experience. The clusters highlighted the changing nature of patients' information needs. Information provided to patients should be tailored to address their needs at various points during their illness. In addition, cluster analysis may be integrated into online support groups or other types of online interventions to assist patients in finding information. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Roma, Peter G.; Hursh, Steven R.; Hienz, Robert D.; Emurian, Henry H.; Gasior, Eric D.; Brinson, Zabecca S.; Brady, Joseph V.
2011-05-01
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3-4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.
Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide
Energy Technology Data Exchange (ETDEWEB)
Mullins, David R [ORNL; Albrecht, Peter M [ORNL; Calaza, Florencia C [ORNL
2013-01-01
Cerium oxide is a principal component in many heterogeneous catalytic processes. One of its key characteristics is the ability to provide or remove oxygen in chemical reactions. The different crystallographic faces of ceria present significantly different surface structures and compositions that may alter the catalytic reactivity. The structure and composition determine the number of coordination vacancies surrounding surface atoms, the availability of adsorption sites, the spacing between adsorption sites and the ability to remove O from the surface. To investigate the role of surface orientation on reactivity, CeO2 films were grown with two different orientations. CeO2(100) films were grown ex situ by pulsed laser deposition on Nb-doped SrTiO3(100). CeO2(111) films were grown in situ by thermal deposition of Ce metal onto Ru(0001) in an oxygen atmosphere. The chemical reactivity was characterized by the adsorption and decomposition of various molecules such as alcohols, aldehydes and organic acids. In general the CeO2(100) surface was found to be more active, i.e. molecules adsorbed more readily and reacted to form new products, especially on a fully oxidized substrate. However the CeO2(100) surface was less selective with a greater propensity to produce CO, CO2 and water as products. The differences in chemical reactivity are discussed in light of possible structural terminations of the two surfaces. Recently nanocubes and nano-octahedra have been synthesized that display CeO2(100) and CeO2(111) faces, respectively. These nanoparticles enable us to correlate reactions on high surface area model catalysts at atmospheric pressure with model single crystal films in a UHV environment.
Sharatchandra, H S
2016-01-01
Real-Space renormalization group techniques are developed for tackling large curvature fluctuations in quantum gravity. Within cells of invariant volume $a^4$, only certain types of fluctuations are allowed. Normal coordinates are used to avoid redundancy of the degrees of freedom. The relevant integration measure is read off from the metric on metrics. All fluctuations in a group of cells are averaged over to get an effective action for the larger cell. In this paper the simplest type of fluctuations are kept. The measure is simply an integration over independent components of the curvature tensor at the center of each cell. Terms of higher order in $a$ are required for convergence in case of Einstein-Hilbert action. With only next order (in $a$) contribution to the action, there is no renormalization of Newton's or cosmological constants. The `massless Gaussian surface' in the renormalization group space is given by actions that have linear and quadratic terms in curvature and determines the evolution of co...
The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials
Barghouty, A. F.; Thibeault, S. A.
2006-01-01
This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.
Localization properties of random-mass Dirac fermions from real-space renormalization group.
Mkhitaryan, V V; Raikh, M E
2011-06-24
Localization properties of random-mass Dirac fermions for a realization of mass disorder, commonly referred to as the Cho-Fisher model, are studied on the D-class chiral network. We show that a simple renormalization group (RG) description captures accurately a rich phase diagram: thermal metal and two insulators with quantized σ(xy), as well as transitions (including critical exponents) between them. Our main finding is that, even with small transmission of nodes, the RG block exhibits a sizable portion of perfect resonances. Delocalization occurs by proliferation of these resonances to larger scales. Evolution of the thermal conductance distribution towards a metallic fixed point is synchronized with evolution of signs of transmission coefficients, so that delocalization is accompanied with sign percolation.
Crystallographic effects during micromachining — A finite-element model
Song, Shin-Hyung; Choi, Woo Chun
2015-07-01
Mechanical micromachining is a powerful and effective way for manufacturing small sized machine parts. Even though the micromachining process is similar to the traditional machining, the material behavior during the process is much different. In particular, many researchers report that the basic mechanics of the work material is affected by microstructures and their crystallographic orientations. For example, crystallographic orientations of the work material have significant influence on force response, chip formation and surface finish. In order to thoroughly understand the effect of crystallographic orientations on the micromachining process, finite-element model (FEM) simulating orthogonal cutting process of single crystallographic material was presented. For modeling the work material, rate sensitive single crystal plasticity of face-centered cubic (FCC) crystal was implemented. For the chip formation during the simulation, element deletion technique was used. The simulation model is developed using ABAQUS/explicit with user material subroutine via user material subroutine (VUMAT). Simulations showed that variation of the specific cutting energy at different crystallographic orientations of work material shows significant anisotropy. The developed FEM model can be a useful prediction tool of micromachining of crystalline materials.
Crystallographic orientation and concentric layers in spicules of calcareous sponges.
Rossi, André Linhares; Ribeiro, Bárbara; Lemos, Moara; Werckmann, Jacques; Borojevic, Radovan; Fromont, Jane; Klautau, Michelle; Farina, Marcos
2016-11-01
In this work, the crystallography of calcareous sponges (Porifera) spicules and the organization pattern of the concentric layers present in their inner structure were investigated in 10 species of the subclass Calcaronea and three species of the subclass Calcinea. Polished spicules had specific concentric patterns that varied depending on the plane in which the spicules were sectioned. A 3D model of the concentric layers was created to interpret these patterns and the biomineralization process of the triactine spicules. The morphology of the spicules was compared with the crystallographic orientation of the calcite crystals by analyzing the Kikuchi diffraction patterns using a scanning electron microscope. Triactine spicules from the subclass Calcinea had actines (rays) elongated in the 〈210〉 direction, which is perpendicular to the c-axis. The scale spicules of the hypercalcified species Murrayona phanolepis presented the c-axis perpendicular to the plane of the scale, which is in accordance with the crystallography of all other Calcinea. The triactine spicules of the calcaronean species had approximately the same crystallographic orientation with the unpaired actine elongated in the ∼[211] direction. Only one Calcaronea species, whose triactine was regular, had a different orientation. Three different crystallographic orientations were found in diactines. Spicules with different morphologies, dimensions and positions in the sponge body had similar crystallographic directions suggesting that the crystallographic orientation of spicules in calcareous sponges is conserved through evolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Braithwaite Jeffrey
2010-12-01
Full Text Available Abstract Background Gaps are typically regarded as a problem to be solved. People are stimulated to close or plug them. Researchers are moved to fill deficits in the literature in order to realise a more complete knowledge base, health authorities want to bridge policy-practice disconnections, managers to secure resources to remedy shortfalls between poor and idealised care, and clinicians to provide services to patients across the divides of organisational silos. Despite practical and policy work in many health systems to bridge gaps, it is valuable to study research examining them for the insights provided. Structural holes, spaces between social clusters and weak or absent ties represent fissures in networks, located in less densely populated parts of otherwise closely connected social structures. Such gaps are useful as they illustrate how communication potentially breaks down or interactivity fails. This paper discusses empirical and theoretical work on this phenomenon with the aim of analysing a specific exemplar, the structures of silos within health care organisations. Methods The research literature on social spaces, holes, gaps, boundaries and edges was searched systematically, and separated into health [n = 13] and non-health [n = 55] samples. The health literature was reviewed and synthesised in order to understand the circumstances between stakeholders and stakeholder groups that both provide threats to networked interactions and opportunities to strengthen the fabric of organisational and institutional inter-relationships. Results The research examples illuminate various network structure characteristics and group interactions. They explicate a range of opportunities for improved social and professional relations that understanding structural holes, social spaces and absent ties affords. A principal finding is that these kinds of gaps illustrate the conditions under which connections are strained or have been severed, where the
Braithwaite, Jeffrey
2010-12-07
Gaps are typically regarded as a problem to be solved. People are stimulated to close or plug them. Researchers are moved to fill deficits in the literature in order to realise a more complete knowledge base, health authorities want to bridge policy-practice disconnections, managers to secure resources to remedy shortfalls between poor and idealised care, and clinicians to provide services to patients across the divides of organisational silos.Despite practical and policy work in many health systems to bridge gaps, it is valuable to study research examining them for the insights provided. Structural holes, spaces between social clusters and weak or absent ties represent fissures in networks, located in less densely populated parts of otherwise closely connected social structures. Such gaps are useful as they illustrate how communication potentially breaks down or interactivity fails. This paper discusses empirical and theoretical work on this phenomenon with the aim of analysing a specific exemplar, the structures of silos within health care organisations. The research literature on social spaces, holes, gaps, boundaries and edges was searched systematically, and separated into health [n = 13] and non-health [n = 55] samples. The health literature was reviewed and synthesised in order to understand the circumstances between stakeholders and stakeholder groups that both provide threats to networked interactions and opportunities to strengthen the fabric of organisational and institutional inter-relationships. The research examples illuminate various network structure characteristics and group interactions. They explicate a range of opportunities for improved social and professional relations that understanding structural holes, social spaces and absent ties affords. A principal finding is that these kinds of gaps illustrate the conditions under which connections are strained or have been severed, where the limits of integration between groups occurs, the
Institute of Scientific and Technical Information of China (English)
ZOU Yongzhi; XU Zhengbing; HE Juan; ZENG Jianmin
2010-01-01
The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys.
On the size of the third homotopy group of the suspension of an Eilenberg--MacLane space
2014-01-01
The nonabelian tensor square G \\otimes G of a group G of |G| = pn and |G'| = pm (p prime and n,m \\ge 1) satisfies a classic bound of the form |G \\otimes G|\\le pn(n-m). This allows us to give an upper bound for the order of the third homotopy group p3(SK(G,1)) of the suspension of an Eilenberg--MacLane space K(G,1), because p3(K(G,1)) is isomorphic to the kernel of k : x \\otimes y \\in G \\otimes G \\mapsto [x,y] \\in G'. We prove that |G \\otimes G| \\le p(n-1)(n-m)+2, sharpening not only...
Mitchell, Andrew K.; Becker, Michael; Bulla, Ralf
2011-09-01
The existence of a length scale ξK˜1/TK (with TK the Kondo temperature) has long been predicted in quantum impurity systems. At low temperatures T≪TK, the standard interpretation is that a spin-(1)/(2) impurity is screened by a surrounding “Kondo cloud” of spatial extent ξK. We argue that renormalization group (RG) flow between any two fixed points (FPs) results in a characteristic length scale, observed in real space as a crossover between physical behavior typical of each FP. In the simplest example of the Anderson impurity model, three FPs arise, and we show that “free orbital,” “local moment,” and “strong coupling” regions of space can be identified at zero temperature. These regions are separated by two crossover length scales ξLM and ξK, with the latter diverging as the Kondo effect is destroyed on increasing temperature through TK. One implication is that moment formation occurs inside the “Kondo cloud”, while the screening process itself occurs on flowing to the strong coupling FP at distances ˜ξK. Generic aspects of the real-space physics are exemplified by the two-channel Kondo model, where ξK now separates local moment and overscreening clouds.
Wiersma, Elaine C; O'Connor, Deborah L; Loiselle, Lisa; Hickman, Kathy; Heibein, Bill; Hounam, Brenda; Mann, Jim
2016-05-01
Recently, there has been increasing attention given to finding ways to help people diagnosed with dementia 'live well' with their condition. Frequently however, the attention has been placed on the family care partner as the foundation for creating a context that supports the person with dementia to live well. A recent participatory action research (PAR) study highlighted the importance of beginning to challenge some of the assumptions around how best to include family, especially within a context of supporting citizenship. Three advisory groups consisting of 20 people with dementia, 13 care partners, and three service providers, were set up in three locations across Canada to help develop a self-management program for people with dementia. The hubs met monthly for up to two years. One of the topics that emerged as extremely important to consider in the structuring of the program revolved around whether or not these groups should be segregated to include only people with dementia. A thematic analysis of these ongoing discussions coalesced around four inter-related themes: creating safe spaces; maintaining voice and being heard; managing the balancing act; and the importance of solidarity Underpinning these discussions was the fifth theme, recognition that 'one size doesn't fit all'. Overall an important finding was that the presence of family care-partners could have unintended consequences in relation to creating the space for active citizenship to occur in small groups of people with dementia although it could also offer some opportunities. The involvement of care partners in groups with people with dementia is clearly one that is complex without an obvious answer and dependent on a variety of factors to inform a solution, which can and should be questioned and revisited.
Semenov, Yuri S; Novozhilov, Artem S
2016-05-01
A two-valued fitness landscape is introduced for the classical Eigen's quasispecies model. This fitness landscape can be considered as a direct generalization of the so-called single- or sharply peaked landscape. A general, non-permutation invariant quasispecies model is studied, and therefore the dimension of the problem is [Formula: see text], where N is the sequence length. It is shown that if the fitness function is equal to [Formula: see text] on a G-orbit A and is equal to w elsewhere, then the mean population fitness can be found as the largest root of an algebraic equation of degree at most [Formula: see text]. Here G is an arbitrary isometry group acting on the metric space of sequences of zeroes and ones of the length N with the Hamming distance. An explicit form of this exact algebraic equation is given in terms of the spherical growth function of the G-orbit A. Motivated by the analysis of the two-valued fitness landscapes, an abstract generalization of Eigen's model is introduced such that the sequences are identified with the points of a finite metric space X together with a group of isometries acting transitively on X. In particular, a simplicial analog of the original quasispecies model is discussed, which can be considered as a mathematical model of the switching of the antigenic variants for some bacteria.
Free q-Schrödinger equation from homogeneous spaces of the 2-dim Euclidean quantum group
Bonechi, F.; Ciccoli, N.; Giachetti, R.; Sorace, E.; Tarlini, M.
1996-01-01
After a preliminary review of the definition and the general properties of the homogeneous spaces of quantum groups, the quantum hyperboloid qH and the quantum plane qP are determined as homogeneous spaces of F q ( E(2)). The canonical action of E q (2) is used to define a natural q-analog of the free Schrödinger equation, that is studied in the momentum and angular momentum bases. In the first case the eigenfunctions are factorized in terms of products of two q-exponentials. In the second case we determine the eigenstates of the unitary representation, which, in the qP case, are given in terms of Hahn-Exton functions. Introducing the universal T-matrix for E q (2) we prove that the Hahn-Exton as well as Jackson q-Bessel functions are also obtained as matrix elements of T, thus giving the correct extension to quantum groups of well known methods in harmonic analysis.
My Time, My Space (an arts-based group for women with postnatal depression): a project report.
Morton, Alison; Forsey, Philippa
2013-05-01
This paper will describe an innovative method of treatment for women with postnatal depression that has been used in the south west of England since 2004 and has now been successfully piloted in other areas of the UK. My Time My Space is an arts-based group for women with postnatal depression that aims to improve mood by reducing social isolation and using creativity to improve self-esteem. Results of the programme will be shared, in addition to the ways in which the project has been implemented using collaborative working with children's centres and building community capacity by engaging local charities. The qualitative results have been collected from participants (n = 30) over the last two years using post-course evaluation forms with open questions to elicit participants' views. The quantitative results of a small pilot study (n = 8) based on pre- and post-group Edinburgh Postnatal Depression Scale scores (EPDS) are also reported. The findings suggest My Time My Space has a positive effect on women's mood and perceived social support, and provides an effective alternative or additional method of treatment for postnatal depression.
Directory of Open Access Journals (Sweden)
Maziar Nekovee
2010-01-01
Full Text Available Cognitive radio is being intensively researched as the enabling technology for license-exempt access to the so-called TV White Spaces (TVWS, large portions of spectrum in the UHF/VHF bands which become available on a geographical basis after digital switchover. Both in the US, and more recently, in the UK the regulators have given conditional endorsement to this new mode of access. This paper reviews the state-of-the-art in technology, regulation, and standardisation of cognitive access to TVWS. It examines the spectrum opportunity and commercial use cases associated with this form of secondary access.
Energy Technology Data Exchange (ETDEWEB)
Mori, Tomoyuki; Kitano, Ken; Terawaki, Shin-ichi; Maesaki, Ryoko; Hakoshima, Toshio, E-mail: hakosima@bs.naist.jp [Structural Biology Laboratory, Nara Institute of Science and Technology, Keihanna Science City, Nara 630-0192 (Japan)
2007-10-01
The radixin FERM domain complexed with the CD44 cytoplasmic tail peptide has been crystallized. A diffraction data set from the complex was collected to 2.1 Å. CD44 is an important adhesion molecule that specifically binds hyaluronic acid and regulates cell–cell and cell–matrix interactions. Increasing evidence has indicated that CD44 is assembled in a regulated manner into the membrane–cytoskeletal junction, a process that is mediated by ERM (ezrin/radixin/moesin) proteins. Crystals of a complex between the radixin FERM domain and the C-terminal cytoplasmic region of CD44 have been obtained. The crystal of the radixin FERM domain bound to the CD44 cytoplasmic tail peptide belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.70, b = 66.18, c = 86.22 Å, and contain one complex in the crystallographic asymmetric unit. An intensity data set was collected to a resolution of 2.1 Å.
Lu, Zuokun; Wang, Han; Yu, TingTing
2016-06-01
Protein export is important in all bacteria, and bacteria have evolved specialized export machineries to fulfil this task. In Mycobacterium tuberculosis, the causative agent of tuberculosis, the general secretion pathway (Sec pathway) is conserved and is essential in performing the export of proteins. The bacterial Sec pathway post-translationally exports unfolded proteins out of the cytoplasm, and the core of the Sec pathway is composed of a heterotrimeric membrane-embedded channel, SecYEG, and two cytosolic components, SecA and SecB. SecB functions by stabilizing unfolded proteins, maintaining them in an export-competent state. Although SecB is mainly found in Proteobacteria, a SecB-like protein, Rv1957, that controls a stress-response toxin-antitoxin system, is found in M. tuberculosis. Rv1957 can also functionally replace the Escherichia coli SecB chaperone both in vivo and in vitro. In this work, the production, crystallization and X-ray crystallographic analysis of Rv1957 are reported. Notably, diffraction-quality crystals were obtained only at high concentrations of dimethyl sulfoxide, i.e. about 12%(v/v). The crystals of Rv1957 belonged to space group P212121, with unit-cell parameters a = 64.5, b = 92.0, c = 115.4 Å.
Wang, Xiaodan; Zhang, Bo; Xu, Duo; Gao, Jinlan; Wang, Linfang; Wang, Zhi; Shan, Yaming; Yu, Xianghui
2012-12-01
Fsp27, a member of the CIDE protein family which is selectively expressed in adipocytes, has emerged as a novel regulator for unilocular lipid droplet (LD) formation, lipid metabolism, differentiation of adipocytes and insulin sensitivity. An LD is a subcellular compartment that is used by adipocytes for the efficient storage of fats. The CIDE-N domain of Fsp27 functions as a recruitment platform that induces the correct configuration of the Fsp27 CIDE-C domain to facilitate LD fusion. This study reports the high-yield expression of the mouse Fsp27 CIDE-N domain in Escherichia coli; a two-step purification protocol with high efficiency was established and crystallographic analysis was performed. The purity of the recombinant Fsp27 was >95% as assessed by SDS-PAGE. Crystals were obtained at 291 K using 28% polyethylene glycol 4000 as a precipitant. Diffraction data were collected to 1.92 Å resolution and the crystal belonged to space group P6(5), with unit-cell parameters a=b=63.3, c=37.4 Å, α=β=90, γ=120°. The components of the crystal were identified by ion-trap LC/MS/MS spectrometric analysis. The structure has been solved by molecular replacement and refinement is in progress.
Energy Technology Data Exchange (ETDEWEB)
Zekiri, Florime; Bijelic, Aleksandar; Molitor, Christian; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)
2014-05-28
The crystallization and preliminary X-ray crystallographic analysis of a plant PPO exhibiting monophenolase activity from J. regia (jrPPO1) in its active form (Asp{sup 101}–Arg{sup 445}) are reported. Tyrosinase is a type 3 copper enzyme that catalyzes the ortho-hydroxylation of monophenols to diphenols as well as their subsequent oxidation to quinones, which are precursors for the biosynthesis of melanins. The first plant tyrosinase from walnut leaves (Juglans regia) was purified to homogeneity and crystallized. During the purification, two forms of the enzyme differing only in their C-termini [jrPPO1(Asp{sup 101}–Pro{sup 444}) and jrPPO1(Asp{sup 101}–Arg{sup 445})] were obtained. The most abundant form jrPPO1(Asp{sup 101}–Arg{sup 445}), as described in Zekiri et al. [Phytochemistry (2014 ▶), 101, 5–15], was crystallized, resulting in crystals that belonged to space group C121, with unit-cell parameters a = 115.56, b = 91.90, c = 86.87 Å, α = 90, β = 130.186, γ = 90°, and diffracted to 2.39 Å resolution. Crystals were only obtained from solutions containing at least 30% polyethylene glycol 5000 monomethyl ether in a close-to-neutral pH range.
Energy Technology Data Exchange (ETDEWEB)
Aparna, Gudlur; Chatterjee, Avradip; Jha, Gopaljee; Sonti, Ramesh V.; Sankaranarayanan, Rajan, E-mail: sankar@ccmb.res.in [Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007 (India)
2007-08-01
The crystallization and preliminary crystallographic studies of LipA, a lipase/esterase secreted by X. oryzae pv. oryzae during its infection of rice plants, are reported. Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. Several enzymes that are secreted through the type II secretion system of this bacterium play an important role in the plant–microbe interaction, being important for virulence and also being able to induce potent host defence responses. One of these enzymes is a secretory lipase/esterase, LipA, which shows a very weak homology to other bacterial lipases and gives a positive tributyrin plate assay. In this study, LipA was purified from the culture supernatant of an overexpressing clone of X. oryzae pv. oryzae and two types of crystals belonging to space group C2 but with two different unit-cell parameters were obtained using the hanging-drop vapour-diffusion method. Type I crystals diffract to a maximum resolution of 1.89 Å and have unit-cell parameters a = 93.1, b = 62.3, c = 66.1 Å, β = 90.8°. Type II crystals have unit-cell parameters a = 103.6, b = 54.6, c = 66.3 Å, β = 92.6° and diffract to 1.86 Å. Solvent-content analysis shows one monomer in the asymmetric unit in both the crystal forms.
Bihani, Subhash Chandra; Chakravarty, Dhiman; Ballal, Anand
2013-11-01
Catalases are enzymes that play an important role in the detoxification of hydrogen peroxide (H2O2) in aerobic organisms. Among catalases, haem-containing catalases are ubiquitously distributed and their enzymatic mechanism is very well understood. On the other hand, manganese catalases that contain a bimanganese core in the active site have been less well characterized and their mode of action is not fully understood. The genome of Anabaena PCC 7120 does not show the presence of a haem catalase-like gene; instead, two ORFs encoding manganese catalases (Mn-catalases) are present. Here, the crystallization and preliminary X-ray crystallographic analysis of KatB, one of the two Mn-catalases from Anabaena, are reported. KatB was crystallized using the hanging-drop vapour-diffusion method with PEG 400 as a precipitant and calcium acetate as an additive. Diffraction data were collected in-house on an Agilent SuperNova system using a microfocus sealed-tube X-ray source. The crystal diffracted to 2.2 Å resolution at 100 K. The tetragonal crystal belonged to space group P4(1)2(1)2 (or enantiomer), with unit-cell parameters a = b = 101.87, c = 138.86 Å. Preliminary X-ray diffraction analysis using the Matthews coefficient and self-rotation function suggests the presence of a trimer in the asymmetric unit.
Institute of Scientific and Technical Information of China (English)
Vagif GULIYEV; Ali AKBULUT; Yagub MAMMADOV
2013-01-01
In the article we consider the fractional maximal operator Mα, 0≤α
group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,ϕ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (ϕ1,ϕ2) which ensures the boundedness of the operator Mα from one generalized Morrey space Mp,ϕ1 (G) to another Mq,ϕ2 (G), 1 < p ≤ q < ∞, 1/p−1/q = α/Q, and from the space M1,ϕ1 (G) to the weak space W Mq,ϕ2 (G), 1 ≤ q < ∞, 1−1/q = α/Q. Also find conditions on theϕwhich ensure the Adams type boundedness of the Mαfrom Mp,ϕ1p (G) to Mq,ϕ1q (G) for 1
Callahan, S R; Cross, A J; DeDecker, A E; Lindemann, M D; Estienne, M J
2017-01-01
The objective was to determine effects of nursery group-size-floor space allowance on growth, physiology, and hematology of replacement gilts. A 3 × 3 factorial arrangement of treatments was used wherein gilts classified as large, medium, or small ( = 2537; BW = 5.6 ± 0.6 kg) from 13 groups of weaned pigs were placed in pens of 14, 11, or 8 pigs resulting in floor space allowances of 0.15, 0.19, or 0.27 m/pig, respectively. Pigs were weighed on d 0 (weaning) and d 46 (exit from nursery). The ADG was affected by group-size-floor space allowance × pig size ( = 0.04). Large- and medium-size gilts allowed the most floor space had greater ( floor space but for small size gilts there was no effect ( > 0.05) of group size-floor space allowance. Mortality in the nursery was not affected ( > 0.05) by treatment, size, or treatment × size and overall was approximately 2.1%. Complete blood counts and blood chemistry analyses were performed on samples collected at d 6 and 43 from a subsample of gilts ( = 18/group-size-floor space allowance) within a single group. The concentration ( blood cell distribution width the greatest ( floor space (effects of treatment). Blood calcium was affected by treatment ( = 0.02) and concentrations for gilts allowed the greatest and intermediate amounts of floor space were greater ( floor space. Serum concentrations of cortisol were not affected by treatment × day ( = 0.27). Cortisol concentrations increased from d 6 to d 43 in all groups and were affected by day ( blood parameters and resulted in large- and medium-size replacement gilts displaying increased ADG. Further study will determine if these effects influence lifetime reproductive capacity and sow longevity.
Crystal structure refinement a crystallographers guide to SHELXL
2006-01-01
A crystallographers guide to SHELXL, covering various aspects of practical crystal structure refinement, from the treatment of hydrogen atoms to the assignment of atom types, and more. After an introduction to SHELXL, a brief survey of crystal structure refinement is provided.
Maji, Jaya; Bhattacharjee, Somendra M
2012-10-01
We study the melting of three-stranded DNA by using the real-space renormalization group and exact recursion relations. The prediction of an unusual Efimov-analog three-chain bound state, that appears at the critical melting of two-chain DNA, is corroborated by the zeros of the partition function. The distribution of the zeros has been studied in detail for various situations. We show that the Efimov DNA can occur even if the three-chain (i.e., three-monomer) interaction is repulsive in nature. In higher dimensions, a striking result that emerged in this repulsive zone is a continuous transition from the critical state to the Efimov DNA.
Recovery of crystallographic texture in remineralized dental enamel.
Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon
2014-01-01
Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain
Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.
Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto
2017-02-08
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.
Recovery of crystallographic texture in remineralized dental enamel.
Directory of Open Access Journals (Sweden)
Samera Siddiqui
Full Text Available Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture and position of the (002 Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected
Space Group of Aquaimidazolemaleatozinc, [(H2O)(C3H4N2)(O2CCH=CHCO2Zn)]n
Institute of Scientific and Technical Information of China (English)
NG Seik Weng
2005-01-01
The space group of [(H2O)(C3H4N2)(O2CCH=CHCO2Zn)]n, which was originally described in the acentric Pc space group (Liu et al., Chin. J. Struct. Chem. 2004, 23, 160～163), is re-described in the centric P21/c space group.The crystal structure of (H2O)(C3H4N2)O2C-CH=CHCO2Zn was refined in the acentric Pc space group on 266 variables to R = 0.037 for the 1926 of the 2067 obeying the I > 2σ criterion[1]. The structure is better described in the centric P21/c space group (Table 1) as the two indepen-dent formula units are related by a center of symmetry. The 21 screw axis is must be pre-sent, as noted from the systematically absent 0k0 (k = 2n + 1) reflections in the 3302 reflections that were simulated[2, 3] from the published cell dimensions and atomic coordinates. Crystallo-graphica[4] estimates the hemisphere of reflections to be 3302, so that only a little more than the minimum monoclinic data must have been collec-ted in the study. A revision from Pc to P21/c is not particularly common[5] as the P21/c space group is uniquely determined from systematic absences. The polymeric chain propagates linearly along the c-axis of the unit cell (Fig. 1).
Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi;
2016-01-01
As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.
Heisenberg Group and Energy-Momentum Conservative Law in de-Sitter Spaces In Memory of the 100th Anniversary of Einstein's Special Relativity and the 70th Anniversary of Dirac's de-Sitter Spaces and Their Boundaries
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In 1935 Dirac established the physical wave equations in the de-Sitter spaces but neither energy-momentum operators nor their conservative laws were given. In this article it is proved that in the de-Sitter group there is a subgroup group isomorphic to the Heisenberg group and the generators of this groups are the energy-momentum operators which obey a conservative law.
Crystallographic Studies of Cephalosporin Acylase from Pseudomonas sp. Strain 130
Institute of Scientific and Technical Information of China (English)
DING Yi(丁怡); JIANG Weihong(姜卫红); ZHANG Shuping(张淑平); MAO Xiang(茅翔); Mark Bartlam; ZHAO Guoping(赵国平); RAO Zihe(饶子和)
2003-01-01
The cephalosporin acylases are a group of enzymes that hydrolyze cephalosporin C and/or glutaryl 7-aminocephalosporanic acid to produce 7-aminocephalosporanic acid.The cephalosporin acylase from Pseudomonas sp.strain 130 was crystallized in two different forms suitable for structural studies.A tetragonal crystal form diffracted to 0.24 nm belonged to the space group P41212.There was one αβ heterodimer per asymmetric unit.A second crystal form diffracted to 0.21 nm belonged to the space group P21.There was four αβ heterodimers per asymmetric unit.The tetragonal crystal structure of CA-130 was determined using the multiwavelength anomalous diffraction method and the P21 crystal structure was then determined using the molecular replacement method.
Ruijsbroek, Annemarie; Droomers, Mariël; Kruize, Hanneke; van Kempen, Elise; Gidlow, Christopher J; Hurst, Gemma; Andrusaityte, Sandra; Nieuwenhuijsen, Mark J; Maas, Jolanda; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P
2017-06-08
It has been suggested that certain residents, such as those with a low socioeconomic status, the elderly, and women, may benefit more from the presence of neighbourhood green space than others. We tested this hypothesis for age, gender, educational level, and employment status in four European cities. Data were collected in Barcelona (Spain; n = 1002), Kaunas (Lithuania; n = 989), Doetinchem (The Netherlands; n = 847), and Stoke-on-Trent (UK; n = 933) as part of the EU-funded PHENOTYPE project. Surveys were used to measure mental and general health, individual characteristics, and perceived neighbourhood green space. Additionally, we used audit data about neighbourhood green space. In Barcelona, there were positive associations between neighbourhood green space and general health among low-educated residents. In the other cities and for the other population groups, there was little evidence that the association between health and neighbourhood green space differed between population groups. Overall, our study does not support the assumption that the elderly, women, and residents who are not employed full-time benefit more from neighbourhood green space than others. Only in the highly urbanised city of Barcelona did the low-educated group benefit from neighbourhood green spaces. Perhaps neighbourhood green spaces are more important for the health of low-educated residents in particularly highly urbanised areas.
Directory of Open Access Journals (Sweden)
Annemarie Ruijsbroek
2017-06-01
Full Text Available It has been suggested that certain residents, such as those with a low socioeconomic status, the elderly, and women, may benefit more from the presence of neighbourhood green space than others. We tested this hypothesis for age, gender, educational level, and employment status in four European cities. Data were collected in Barcelona (Spain; n = 1002, Kaunas (Lithuania; n = 989, Doetinchem (The Netherlands; n = 847, and Stoke-on-Trent (UK; n = 933 as part of the EU-funded PHENOTYPE project. Surveys were used to measure mental and general health, individual characteristics, and perceived neighbourhood green space. Additionally, we used audit data about neighbourhood green space. In Barcelona, there were positive associations between neighbourhood green space and general health among low-educated residents. In the other cities and for the other population groups, there was little evidence that the association between health and neighbourhood green space differed between population groups. Overall, our study does not support the assumption that the elderly, women, and residents who are not employed full-time benefit more from neighbourhood green space than others. Only in the highly urbanised city of Barcelona did the low-educated group benefit from neighbourhood green spaces. Perhaps neighbourhood green spaces are more important for the health of low-educated residents in particularly highly urbanised areas.
van Enter, Aernout C. D.; Fernández, Roberto; Sokal, Alan D.
1993-09-01
We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Our main results apply to local (in position space) RG maps acting on systems of bounded spins (compact single-spin space). Regarding regularity, we show that the RG map, defined on a suitable space of interactions (=formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce, and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d⩾3, these pathologies occur in a full neighborhood { β> β 0, ¦h¦< ɛ( β)} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d⩾2, the pathologies occur at low temperatures for arbitrary magnetic field strength. Pathologies may also occur in the critical region for Ising models in dimension d⩾4. We discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems. In addition, we discuss critically the concept of Gibbs measure, which is at the heart of present-day classical statistical mechanics. We provide a careful, and, we hope, pedagogical, overview of the theory of Gibbsian measures as well as (the less familiar) non-Gibbsian measures, emphasizing the distinction between these two objects and the possible occurrence of the latter in different physical situations. We give a rather complete catalogue of
Energy Technology Data Exchange (ETDEWEB)
Zakaria, A.K.M., E-mail: zakaria6403@yahoo.com [Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Nesa, Faizun [Department of Natural Science, Daffodil International University, Dhaka (Bangladesh); Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Saeed Khan, M.A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Datta, T.K.; Aktar, Sanjida; Liba, Samia Islam; Hossain, Shahzad; Das, A.K.; Kamal, I.; Yunus, S.M. [Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Eriksson, S.-G. [Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)
2015-06-05
Highlights: • MgCr{sub x}Fe{sub 2−x}O{sub 4} ferrites crystallize at 1300 °C and possess cubic symmetry. • Cation distribution and crystallographic parameters have been determined precisely. • Cell parameter decreases with increasing Cr content in the system. • Ferrimagnetic ordering was found at room temperature for all the samples. - Abstract: The spinel system MgCr{sub x}Fe{sub 2−x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) has been prepared by solid state sintering method in air at 1573 K. X-ray and neutron powder diffraction experiments have been performed on the samples at room temperature for structural characterization. Rietveld refinement of the neutron diffraction data reveals that all the samples of the series possess cubic symmetry corresponding to the space group F d-3m. The distribution of the three cations Mg, Fe and Cr over the two sublattices and other crystallographic parameters has been determined precisely. The results reveal that Cr has been substituted for Fe selectively. Cr ions invariably occupy the octahedral (B) site for all values of x. Mg and Fe ions are distributed over both A and B sites for all x values. With increasing x the occupation of Mg increases in the A site and decreases in the B site for all the samples, while the Fe ions gradually decreases in both the sites for all values of x. The lattice constant decreases with increasing Cr content in the system. The magnetic structure at room temperature was ferrimagnetic for all the samples.
Mode decomposition based on crystallographic symmetry in the band-unfolding method
Ikeda, Yuji; Carreras, Abel; Seko, Atsuto; Togo, Atsushi; Tanaka, Isao
2017-01-01
The band-unfolding method is widely used to calculate the effective band structures of a disordered system from its supercell model. The unfolded band structures show the crystallographic symmetry of the underlying structure, where the difference of chemical components and the local atomic relaxation are ignored. However, it has still been difficult to decompose the unfolded band structures into the modes based on the crystallographic symmetry of the underlying structure, and therefore detailed analyses of the unfolded band structures have been restricted. In this study, a procedure to decompose the unfolded band structures according to the small representations (SRs) of the little groups is developed. The decomposition is performed using the projection operators for SRs derived from the group representation theory. The current method is employed to investigate the phonon band structure of disordered face-centered-cubic Cu0.75Au0.25 , which has large variations of atomic masses and force constants among the atomic sites due to the chemical disorder. In the unfolded phonon band structure, several peculiar behaviors such as discontinuous and split branches are found in the decomposed modes corresponding to specific SRs. They are found to occur because different combinations of the chemical elements contribute to different regions of frequency.
Crystallographic data processing for free-electron laser sources
Energy Technology Data Exchange (ETDEWEB)
White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Holton, James M. [University of California, San Francisco, CA 94158 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kirian, Richard A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287 (United States); Zatsepin, Nadia A. [Arizona State University, Tempe, AZ 85287 (United States); Chapman, Henry N. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)
2013-07-01
A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.
Crystallographic changes in lead zirconate titanate due to neutron irradiation
Directory of Open Access Journals (Sweden)
Alexandra Henriques
2014-11-01
Full Text Available Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.
A crystallographic perspective on sharing data and knowledge.
Bruno, Ian J; Groom, Colin R
2014-10-01
The crystallographic community is in many ways an exemplar of the benefits and practices of sharing data. Since the inception of the technique, virtually every published crystal structure has been made available to others. This has been achieved through the establishment of several specialist data centres, including the Cambridge Crystallographic Data Centre, which produces the Cambridge Structural Database. Containing curated structures of small organic molecules, some containing a metal, the database has been produced for almost 50 years. This has required the development of complex informatics tools and an environment allowing expert human curation. As importantly, a financial model has evolved which has, to date, ensured the sustainability of the resource. However, the opportunities afforded by technological changes and changing attitudes to sharing data make it an opportune moment to review current practices.
Recent developments in crystallographic investigation of martensitic transformation
Institute of Scientific and Technical Information of China (English)
GU Nanju; DONG Guixia; LIN Xiaoping; WANG Baoqi; MA Xiaoli
2004-01-01
The results and new knowledge obtained in recent years by using an atom force microscope (AFM) to investigate the surface relieves and to reveal the lattice deformation characteristics in martensitic transformation (MT) are summarized. All-round analysis and research about crystallography and morphology of MT have been done based on our "displacement vector" theory. New viewpoints that the "invariant-plane-strain" criterion have no universality and that the large rotation of habit-planes takes place in {557} lath and {225} plate martensites are put forward. Thereby, the formation mode of {557} martensite is established, which is in good agreement with the experimental results. Finally, according to the self-accommodation principle between variants crystallographic calculations of twin and multi-variant martensites in shape memory alloys have been carried out. The calculation method greatly simplifies the crystallographic calculation process of phenomenological theory. And the calculated results are in good agreement with experimental ones.
Convergence of a Group Topology in Topological Space%拓扑空间上的一个群拓扑收敛性问题
Institute of Scientific and Technical Information of China (English)
邢志勇
2011-01-01
The continuous mapping method of topological group in topological space was ap-plied to study the convergence of a group topology.The results showed that there was a group top-ology in groups of topological space,which could enable nets in the space to converge topologically to one point.%应用拓扑空间中拓扑群的连续映射方法,讨论了一个群拓扑收敛性问题.证明了在拓扑空间的一族群拓扑中能找到一个群拓扑,使空间中的网依此群拓扑收敛到一点.
Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F
2014-01-01
We present uniformly measured star formation histories (SFHs) of 40 Local Group dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with $\\tau$ $\\sim$ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs (dTrans), and dwarf ellipticals (dEs) can be approximated by the combination of an exponentially declining SFH ($\\tau$ $\\sim$ 3-4 Gyr) for lookback ages $>$ 10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z=2 ranges considerably (80\\%...
Giuricin, G; Girardi, M; Mezzetti, M; Marinoni, C; Giuricin, Giuliano; Samurovic, Srdjan; Girardi, Marisa; Mezzetti, Marino; Marinoni, Christian
2001-01-01
We use the two-point correlation function in redshift space, $\\xi(s)$, to study the clustering of the galaxies and groups of the Nearby Optical Galaxy (NOG) sample, which is a nearly all-sky, complete, magnitude-limited sample of $\\sim$7000 bright and nearby optical galaxies. The correlation function of galaxies is well described by a power law, $\\xi(s)=(s/s_0)^{-\\gamma}$, with slope $\\gamma\\sim1.5$ and $s_0\\sim6.4 h^{-1}$Mpc (on scales $2.7 - 12 h^{-1}$Mpc), in agreement with previous results of several redshift surveys of optical galaxies. We confirm the existence of morphological segregation between early- and late-type galaxies and, in particular, we find a gradual decreasing of the strength of clustering from the S0 galaxies to the late-type spirals, on intermediate scales. Furthermore, luminous galaxies turn out to be more clustered than dim galaxies. The luminosity segregation, which is significant for both early- and late-type objects, starts to become appreciable only for galaxies brighter than $M_B\\...
"I am a waste of breath, of space, of time": metaphors of self in a pro-anorexia group.
Bates, Carolina Figueras
2015-02-01
According to recent research on eating disorders, heavy users of pro-anorexia (pro-ana) sites show higher levels of disordered eating and more severe impairment of quality of life than non-heavy users. A better understanding of how pro-ana members self-present in the virtual world could shed some light on these offline behaviors. Through discourse analysis, I examined the metaphors the members of a pro-ana group invoked in their personal profiles on a popular social networking site, to talk about the self. I applied the Metaphor Identification Procedure to 757 text profiles. I identified four key metaphorical constructions in pro-ana members' self-descriptions: self as space, self as weight, perfecting the self, and the social self. These four main metaphors represented discourse strategies, both to create a collective pro-ana identity and to enact an individual identity as pro-ana. In this article, I discuss the implications of these findings for the treatment of eating disorders.
Yanai, Takeshi; Saitow, Masaaki; Xiong, Xiao-Gen; Chalupský, Jakub; Kurashige, Yuki; Guo, Sheng; Sharma, Sandeep
2017-09-07
We present the development of the multistate multireference second-order perturbation theory (CASPT2) with multi-root references, which are described using the density matrix renormalization group (DMRG) method to handle a large active space. The multistate first-order wave functions are expanded into the internally contracted (IC) basis of the single-state single-reference (SS-SR) scheme, which is shown to be the most feasible variant to use DMRG references. The feasibility of the SS-SR scheme comes from two factors: first, it formally does not require the fourth-order transition reduced density matrix (TRDM); and second, the computational complexity scales linearly with the number of the reference states. The extended multistate (XMS) treatment is further incorporated, giving suited treatment of the zeroth-order Hamiltonian despite the fact that the SS-SR based IC basis is not invariant with respect the XMS rotation. In addition, the state-specific fourth-order reduced density matrix (RDM) is eliminated in an approximate fashion using the cumulant reconstruction formula, as also done in the previous state-specific DMRG-cu(4)-CASPT2 approach. The resultant method, referred to as DMRG-cu(4)-XMS-CASPT2, uses the RDMs and TRDMs of up to third-order provided by the DMRG calculation. The multistate potential energy curves of the photoisomerization of diarylethene derivatives with CAS(26e,24o) are presented to illustrate the applicability of our theoretical approach.
Crystallographically uniform arrays of ordered (In)GaN nanocolumns
Energy Technology Data Exchange (ETDEWEB)
Gačević, Ž., E-mail: gacevic@isom.upm.es; Bengoechea-Encabo, A.; Albert, S.; Calleja, E. [ETSIT-ISOM, Universidad Politécnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Torres-Pardo, A.; González-Calbet, J. M. [Dept. Química Inorgánica, Universidad Complutense, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, Madrid (Spain)
2015-01-21
In this work, through a comparative study of self-assembled (SA) and selective area grown (SAG) (In)GaN nanocolumn (NC) ensembles, we first give a detailed insight into improved crystallographic uniformity (homogeneity of crystallographic tilts and twists) of the latter ones. The study, performed making use of: reflective high energy electron diffraction, X-ray diffraction and scanning electron microscopy, reveals that unlike their SA counterparts, the ensembles of SAG NCs show single epitaxial relationship to both sapphire(0001) and Si(111) underlying substrates. In the second part of the article, making use of X-ray diffraction, we directly show that the selective area growth leads to improved compositional uniformity of InGaN NC ensembles. This further leads to improved spectral purity of their luminescence, as confirmed by comparative macro-photoluminescence measurements performed on SA and SAG InGaN NC ensembles. An improved crystallographic uniformity of NC ensembles facilitates their integration into optoelectronic devices, whereas their improved compositional uniformity allows for their employment in single-color optoelectronic applications.
Crystallographically uniform arrays of ordered (In)GaN nanocolumns
Gačević, Ž.; Bengoechea-Encabo, A.; Albert, S.; Torres-Pardo, A.; González-Calbet, J. M.; Calleja, E.
2015-01-01
In this work, through a comparative study of self-assembled (SA) and selective area grown (SAG) (In)GaN nanocolumn (NC) ensembles, we first give a detailed insight into improved crystallographic uniformity (homogeneity of crystallographic tilts and twists) of the latter ones. The study, performed making use of: reflective high energy electron diffraction, X-ray diffraction and scanning electron microscopy, reveals that unlike their SA counterparts, the ensembles of SAG NCs show single epitaxial relationship to both sapphire(0001) and Si(111) underlying substrates. In the second part of the article, making use of X-ray diffraction, we directly show that the selective area growth leads to improved compositional uniformity of InGaN NC ensembles. This further leads to improved spectral purity of their luminescence, as confirmed by comparative macro-photoluminescence measurements performed on SA and SAG InGaN NC ensembles. An improved crystallographic uniformity of NC ensembles facilitates their integration into optoelectronic devices, whereas their improved compositional uniformity allows for their employment in single-color optoelectronic applications.
Paul, S K; Paul, Samir K.; Sen, Siddhartha
2002-01-01
A classical phase space with a suitable symplectic structure is constructed together with functions which have Poisson brackets algebraically identical to the Lie algebra structure of the Lie group SU(n). In this phase space we show that the orbit of the generators corresponding to the simple roots of the Lie algebra give rise to fibres that are complex lines containing spheres. There are n-1 spheres on a fibre and they intersect in exactly the same way as the Cartan matrix of the Lie algebra. This classical phase space bundle,being compact,has a description as a variety.Our construction shows that the variety containing the intersecting spheres is exactly the one obtained by resolving the singularities of the variety {x_0}{x_1}-{{x_2}^n}=0 in {C^3}. A direct connection between this singular variety and the classical phase space corresponding to the Lie group SU(n) is thus established.
Energy Technology Data Exchange (ETDEWEB)
Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)
2014-07-10
We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.
Tavana, Madjid
2005-01-01
"To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.
Reaction temperature variations on the crystallographic state of spinel cobalt aluminate.
Taguchi, Minori; Nakane, Takayuki; Hashi, Kenjiro; Ohki, Shinobu; Shimizu, Tadashi; Sakka, Yoshio; Matsushita, Akiyuki; Abe, Hiroya; Funazukuri, Toshitaka; Naka, Takashi
2013-05-21
In this study, we report a rapid and simple technique for obtaining cobalt aluminate having a spinel structure. The products were prepared from a hydroxide precursor synthesized by coprecipitation of cobalt (Co(2+)) and aluminum (Al(3+)) nitrates with an alkaline solution. The chosen precursor enabled low temperature fabrication of cobalt aluminate with a spinel structure by sintering it for 2 hours at low temperatures (>400 °C). Crystallographic and thermal analyses suggest that the low-temperature-sintered products contain Co(3+) ions stabilized by chemisorbed water and/or hydroxide groups, which was not observed for products sintered at temperatures higher than 1000 °C. The color of the products turned from clear blue (Thenard's blue) to dark green when sintering temperatures were below 1000 °C. Magnetic quantities, Curie constants, and Weiss temperatures show a strong dependence on the sintering temperature. These findings suggest that there are mixed valent states, i.e. Co(2+) and Co(3+), and unique cation distributions at the different crystallographic sites in the spinel structure, especially in the products sintered at lower temperatures.
CRYSNET manual. Informal report. [Hardware and software of crystallographic computing network
Energy Technology Data Exchange (ETDEWEB)
None,
1976-07-01
This manual describes the hardware and software which together make up the crystallographic computing network (CRYSNET). The manual is intended as a users' guide and also provides general information for persons without any experience with the system. CRYSNET is a network of intelligent remote graphics terminals that are used to communicate with the CDC Cyber 70/76 computing system at the Brookhaven National Laboratory (BNL) Central Scientific Computing Facility. Terminals are in active use by four research groups in the field of crystallography. A protein data bank has been established at BNL to store in machine-readable form atomic coordinates and other crystallographic data for macromolecules. The bank currently includes data for more than 20 proteins. This structural information can be accessed at BNL directly by the CRYSNET graphics terminals. More than two years of experience has been accumulated with CRYSNET. During this period, it has been demonstrated that the terminals, which provide access to a large, fast third-generation computer, plus stand-alone interactive graphics capability, are useful for computations in crystallography, and in a variety of other applications as well. The terminal hardware, the actual operations of the terminals, and the operations of the BNL Central Facility are described in some detail, and documentation of the terminal and central-site software is given. (RWR)
Introduction to Louis Michel's lattice geometry through group action
Zhilinskii, Boris
2015-01-01
Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Different basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems. Starting from general Delone sets the authors turn to different symmetry and topological classifications including explicit construction of orbifolds for two- and three-dimensional point and space groups. Voronoï and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach. Along with crystallographic applications, qualitative ...
Colaneri, Michael J; Teat, Simon J; Vitali, Jacqueline
2015-11-12
Electron paramagnetic resonance and crystallographic studies of copper-doped cadmium dl-histidine, abbreviated as CdDLHis, were undertaken to gain further understanding on the relationship between site structure and dynamic behavior in biological model complexes. X-ray diffraction measurements determined the crystal structure of CdDLHis at 100 and 298 K. CdDLHis crystallizes in the monoclinic space group P21/c with two cadmium complexes per asymmetric unit. In each complex, the Cd is hexacoordinated to two histidine molecules. Both histidines are l in one complex and d in the other. Additionally, each complex contains multiple waters of varying disorder. Single crystal EPR spectroscopic splitting (g) and copper hyperfine (A(Cu)) tensors at room temperature (principal values: g = 2.249, 2.089, 2.050; A(Cu) = -453, -30.5, -0.08 MHz) were determined from rotational experiments. Alignments of the tensor directions with the host structure were used to position the copper unpaired dx(2)-y(2) orbital in an approximate plane made by four proposed ligand atoms: the N-imidazole and N-amino of one histidine, and the N-amino and O-carboxyl of the other. Each complex has two such planes related by noncrystallographic symmetry, which make an angle of 65° and have a 1.56 Å distance between their midpoints. These findings are consistent with three interpretations that can adequately explain previous temperature-dependent EPR powder spectra of this system: (1) a local structural distortion (static strain) at the copper site has a temperature dependence significant enough to affect the EPR pattern, (2) the copper can hop between the two sites in each complex at high temperature, and (3) there exists a dynamic Jahn-Teller effect involving the copper ligands.
Parry, Christian S; Gorski, Jack; Stern, Lawrence J
2007-08-10
We describe structural studies of the human leukocyte antigen DR52a, HLA-DRA/DRB3*0101, in complex with an N-terminal human platelet integrin alphaII(B)betaIII glycoprotein peptide which contains a Leu/Pro dimorphism. The 33:Leu dimorphism is the epitope for the T cell directed response in neonatal alloimmune thrombocytopenia and post-transfusion purpura in individuals with the alphaII(B)betaIII 33:Pro allele, and defines the unidirectional alloimmune response. This condition is always associated with DR52a. The crystallographic structure has been refined to 2.25 A. There are two alphabeta heterodimers to the asymmetric unit in space group P4(1)2(1)2. The molecule is characterized by two prominent hydrophobic pockets at either end of the peptide binding cleft and a deep, narrower and highly charged P4 opening underneath the beta 1 chain. Further, the peptide in the second molecule displays a sharp upward turn after pocket P9. The structure reveals the role of pockets and the distinctive basic P4 pocket, shared by DR52a and DR3, in selecting their respective binding peptide repertoire. We observe an interesting switch in a residue from the canonically assigned pocket 6 seen in prior class II structures to pocket 4. This occludes the P6 pocket helping to explain the distinctive "1-4-9" peptide binding motif. A beta57 Asp-->Val substitution abrogates the salt-bridge to alpha76 Arg and along with a hydrophobic beta37 is important in shaping the P9 pocket. DRB3*0101 and DRB1*0301 belong to an ancestral haplotype and are associated with many autoimmune diseases linked to antigen presentation, but whereas DR3 is susceptible to type 1 diabetes DR52a is not. This dichotomy is explored for clues to the disease.
Energy Technology Data Exchange (ETDEWEB)
Parry,C.; Gorski, J.; Stern, L.
2007-01-01
We describe structural studies of the human leukocyte antigen DR52a, HLA-DRA/DRB3*0101, in complex with an N-terminal human platelet integrin {alpha}II{sub B}{beta}III glycoprotein peptide which contains a Leu/Pro dimorphism. The 33:Leu dimorphism is the epitope for the T cell directed response in neonatal alloimmune thrombocytopenia and post-transfusion purpura in individuals with the {alpha}II{sub B}{beta}III 33:Pro allele, and defines the unidirectional alloimmune response. This condition is always associated with DR52a. The crystallographic structure has been refined to 2.25 {angstrom}. There are two {alpha}{beta} heterodimers to the asymmetric unit in space group P4{sub 1}2{sub 1}2. The molecule is characterized by two prominent hydrophobic pockets at either end of the peptide binding cleft and a deep, narrower and highly charged P4 opening underneath the beta 1 chain. Further, the peptide in the second molecule displays a sharp upward turn after pocket P9. The structure reveals the role of pockets and the distinctive basic P4 pocket, shared by DR52a and DR3, in selecting their respective binding peptide repertoire. We observe an interesting switch in a residue from the canonically assigned pocket 6 seen in prior class II structures to pocket 4. This occludes the P6 pocket helping to explain the distinctive '1-4-9' peptide binding motif. A {beta}57 Asp {yields} Val substitution abrogates the salt-bridge to {alpha}76 Arg and along with a hydrophobic {beta}37 is important in shaping the P9 pocket. DRB3*0101 and DRB1*0301 belong to an ancestral haplotype and are associated with many autoimmune diseases linked to antigen presentation, but whereas DR3 is susceptible to type 1 diabetes DR52a is not. This dichotomy is explored for clues to the disease.
Solomon, Hodaya V; Tabachnikov, Orly; Feinberg, Hadar; Govada, Lata; Chayen, Naomi E; Shoham, Yuval; Shoham, Gil
2013-10-01
Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a multi-enzyme system for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. The bacterium uses a number of endo-acting extracellular enzymes that break down the high-molecular-weight polysaccharides into decorated oligosaccharides. These oligosaccharides enter the cell and are further hydrolyzed into sugar monomers by a set of intracellular glycoside hydrolases. One of these intracellular degrading enzymes is GanB, a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides to galactose. GanB and related enzymes therefore play an important part in the hemicellulolytic utilization system of many microorganisms which use plant biomass for growth. The interest in the biochemical characterization and structural analysis of these enzymes stems from their potential biotechnological applications. GanB from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory as part of its complete structure-function study. The best crystals obtained for this enzyme belong to the primitive orthorhombic space group P2₁2₁2₁, with average crystallographic unit-cell parameters of a=71.84, b=181.35, c=196.57 Å. Full diffraction data sets to 2.45 and 2.50 Å resolution have been collected for both the wild-type enzyme and its E323A nucleophile catalytic mutant, respectively, as measured from flash-cooled crystals at 100 K using synchrotron radiation. These data are currently being used for the full three-dimensional crystal structure determination of GanB.
Knight, Kevin S.; Bull, Craig L.
2016-12-01
The thermoelastic and structural properties of SrZrO3 perovskite in the Pnma (Pbnm) phase have been studied using neutron powder diffraction at 82 temperatures between 11 K and 406 K at ambient pressure, and at sixteen pressures between 0.07 and 6.7 GPa at ambient temperature. The bulk modulus, derived by fitting the equation of state to a second order Birch-Murnaghan equation-of-state, 157(5) GPa, is in excellent agreement with that deduced in a recent resonant ultrasound investigation. Experimental axial compressional moduli are in agreement with those calculated from the elastic stiffness coefficients derived by ab-initio calculation, although the experimental bulk modulus is significantly softer than that calculated. Following low temperature saturation for temperatures less than 40 K, the unit cell monotonically increases with a predicted high temperature limit in the volume expansivity of ∼2.65 × 10-5 K-1. Axial linear thermal expansion coefficients are found to be in the order αb cell volume. Atomic displacement parameters have been fitted to a modified Debye model in which the zero-point term is an additional refinable variable and shows the cations and anions have well separated Debye temperatures, mirroring the need for two Debye-like distributions in the vibrational density of states. The temperature dependence of the crystal structure is presented in terms of the amplitudes of the seven symmetry-adapted basis vectors of the aristotype phase that are consistent with space group Pbnm, thus permitting a direct measure of the order parameter evolution in SrZrO3. The temperature variation of the in-phase tilt, which is lost at the phase transition at 973 K, is consistent with tricritical behaviour, in agreement with published results based on high temperature crystallographic data.
Crystallographic B factor of critical residues at enzyme active site
Institute of Scientific and Technical Information of China (English)
张海龙; 宋时英; 林政炯
1999-01-01
Thirty-seven sets of crystallographic enzyme data were selected from Protein Data Bank (PDB, 1995). The average temperature factors (B) of the critical residues at the active site and the whole molecule of those enzymes were calculated respectively. The statistical results showed that the critical residues at the active site of most of the enzymes had lower B factors than did the whole molecules, indicating that in the crystalline state the critical residues at the active site of the natural enzymes possess more stable conformation than do the whole molecules. The flexibility of the active site during the unfolding by denaturing was also discussed.
DEFF Research Database (Denmark)
Carstensen, P. H.; Snis, U.
1999-01-01
In order to design useful knowledge media spaces for knowledge workers it is essential that we understand the nature of the work conducted and the knowledge applied in real settings. The paper reports from a study of how a group of quality assurance specialists in the pharmaceutical industry gath...
Hurtig, Janise
2016-01-01
This article explores the spatial practices through which a group of Mexican immigrant women, participants in a school-based writing workshop I facilitated for four years, molded and gave meaning to our weekly writing routine to foster inclusivity as the basis for collective teaching and learning--creating what I refer to as a space of praxis and…
Hurtig, Janise
2016-01-01
This article explores the spatial practices through which a group of Mexican immigrant women, participants in a school-based writing workshop I facilitated for four years, molded and gave meaning to our weekly writing routine to foster inclusivity as the basis for collective teaching and learning--creating what I refer to as a space of praxis and…
A new systematic framework for crystallographic analysis of atom probe data
Energy Technology Data Exchange (ETDEWEB)
Araullo-Peters, Vicente J., E-mail: vicente.araullopeters@gmail.com [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Breen, Andrew; Ceguerra, Anna V. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Gault, Baptiste [Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Ringer, Simon P.; Cairney, Julie M. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia)
2015-07-15
In this article, after a brief introduction to the principles behind atom probe crystallography, we introduce methods for unambiguously determining the presence of crystal planes within atom probe datasets, as well as their characteristics: location; orientation and interplanar spacing. These methods, which we refer to as plane orientation extraction (POE) and local crystallography mapping (LCM) make use of real-space data and allow for systematic analyses. We present here application of POE and LCM to datasets of pure Al, industrial aluminium alloys and doped-silicon. Data was collected both in DC voltage mode and laser-assisted mode (in the latter of which extracting crystallographic information is known to be more difficult due to distortions). The nature of the atomic planes in both datasets was extracted and analysed. - Highlights: • A new analysis method was designed that determines if reconstructed planes are present in atom probe data. • The location, orientation, and planar spacing of these planes are obtained. • This method was applied to simulated, aluminium alloy and silicon data where the extent of planes was shown to vary considerably. • This method can be used to examine atom probe reconstruction quality.
Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump
Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.
2017-09-01
This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.
Crystallographic properties of magnetron sputtered barium ferrite films
Energy Technology Data Exchange (ETDEWEB)
Capraro, S. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France)]. E-mail: stephane.capraro@univ-st-etienne.fr; Berre, M. Le [LPM, UMR 5511, INSA Lyon, 7 av. Jean Capelle, 69621 Villeurbanne Cedex (France); Chatelon, J.P. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France); Bayard, B. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France); Joisten, H. [CEA-LETI, 17 rue des martyrs, 38041 Grenoble Cedex (France); Canut, C. [LPMCN, University Lyon I, 43 Bvd. du 11 novembre 1918, 69622 Villerbanne, Cedex (France); Barbier, D. [LPM, UMR 5511, INSA Lyon, 7 av. Jean Capelle, 69621 Villeurbanne Cedex (France); Rousseau, J.J. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France)
2004-09-15
The development of devices combining a ferrite with a semiconductor chip is a major focus of current research. Barium hexaferrite (BaFe{sub 12}O{sub 19} or BaM) thick films are deposited here using a RF magnetron sputtering system. Films are amorphous and non magnetic after deposition. Post-deposition thermal annealing is employed to make the films crystallize. The effects of the substrate, thermal annealing process, thickness, substrate temperature on crystallographic properties and stoichiometry are studied using a X-ray diffractometry (XRD) and Rutherford back-scattering (RBS). The in-depth homogeneity of Ba, Fe and O is evaluated by secondary ion mass spectroscopy (SIMS). The study shows a good crystallization of BaM films and there is a preferential orientation among the crystallographic planes (1 0 1), (2 0 0), (2 0 3), (1 0 2), (1 1 0) and (2 0 5) when BaM films are prepared at low RF power and when the substrate is heated. For several elaboration parameters, grains size is in the range of 25 and 40 nm and BaM films are stoichiometric with regard to the target stoichiometry.
Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump
Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.
2017-07-01
This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.
Crystallographic alignment of high-density gallium nitride nanowire arrays.
Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong
2004-08-01
Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.
Pinheiro, Tatyana; Ferrari, Stephen F; Lopes, Maria Aparecida
2013-07-01
Squirrel monkeys (Saimiri spp.) are widely distributed in the Amazon basin. This study describes the ecological and behavioral patterns of two social groups of S. sciureus in forests adjacent to the Tucuruí hydroelectric reservoir in eastern Amazonia, including range size, activity budgets, and composition of the diet. The groups were monitored at Base 4 (group B4) and Germoplasma Island (group GI). Quantitative behavioral data were collected using instantaneous scan sampling to record behavior, substrate use, and height. Home ranges were delimited using a GPS to determine group position after each 50 m of movement. Home ranges were 75.0 ha for group B4 (39 members) and 77.5 ha for group GI (32 members). The use of vertical strata was well defined, with a marked preference for the middle and lower levels of the canopy. The activity budgets of both groups were typical of those of other squirrel monkeys and were dominated by foraging (B4 = 48.7 %; GI = 49.6 %), moving (both groups 28.9 %), and feeding (B4 = 14.6 %; GI = 12.4 %). Resting was rare (B4 = 3.5 %; GI = 2.6 %) and less common than social behavior (B4 = 4.3 %; GI = 6.4 %). The diet of both groups was dominated by plant material (B4 = 70.7 % of feeding records; GI = 71.4 %), which is in contrast with the more insectivorous diets recorded for Saimiri at other sites. Group GI spent more time foraging during the dry season, whereas group B4 spent more time in the rainy season when the consumption of fruit increased (significantly, in the case of group GI). The less insectivorous diet of these groups may be due to a number of factors, including the unique habitat configuration at the site and reduced hydrological stress due to the proximity of the reservoir.
Using Innovative Outliers to Detect Discrete Shifts in Dynamics in Group-Based State-Space Models
Chow, Sy-Miin; Hamaker, Ellen L.; Allaire, Jason C.
2009-01-01
Outliers are typically regarded as data anomalies that should be discarded. However, dynamic or "innovative" outliers can be appropriately utilized to capture unusual but substantively meaningful shifts in a system's dynamics. We extend De Jong and Penzer's 1998 approach for representing outliers in single-subject state-space models to a…
Roberts, Barry C.
2016-01-01
The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Mission Systems Office (ZP).
1983-01-01
The economic factors involved in the design and utilization of the space station are investigated. Topics include the economic benefits associated with research and production, the orbit transfer vehicle, and satellite servicing. Program costs and design options are examined. The possibilities of financing from the private sector are discussed.
Roberts, Barry C.
2017-01-01
The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Technology Office (ST).
Garvin, Tabitha Ann
2011-01-01
This study is an exploration of alternative teacher professional development. While using symbolic interactionism for a research lens, it characterizes the discursive practices commonly found in formal, informal, and blended-space speech communities based on the talk within a leadership-development program comprised of five female, church-based…
Group-theoretical approach to the construction of bases in 2{sup n}-dimensional Hilbert space
Energy Technology Data Exchange (ETDEWEB)
Garcia, A.; Romero, J. L.; Klimov, A. B., E-mail: klimov@cencar.udg.mx [Universidad de Guadalajara, Departamento de Fisica (Mexico)
2011-06-15
We propose a systematic procedure to construct all the possible bases with definite factorization structure in 2{sup n}-dimensional Hilbert space and discuss an algorithm for the determination of basis separability. The results are applied for classification of bases for an n-qubit system.
Cerba Diaconescu, Oxana; Schlomiuk, Dana; Vulpe, Nicolae
In this article, we consider the class QSL4{u +vc+w^c, ∞ } of all real quadratic differential systems (dx)/(dt) = p(x, y), (dy)/(dt) = q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity four and two complex and one real infinite singularities. We first construct compactified canonical forms for the class QSL4{u +vc+w^c, ∞ } so as to include limit points in the 12-dimensional parameter space of this class. We next construct the bifurcation diagrams for these compactified canonical forms. These diagrams contain many repetitions of phase portraits and we show that these are due to many symmetries under the group action. To retain the essence of the dynamics we finally construct the quotient spaces under the action of the group G = Aff(2, ℝ) × ℝ* of affine transformations and time homotheties and we place the phase portraits in these quotient spaces. The final diagrams retain only the necessary information to capture the dynamics under the motion in the parameter space as well as under this group action. We also present here necessary and sufficient conditions for an affine line to be invariant of multiplicity k for a quadratic system.
1989-01-01
Important and fundamental scientific progress can be attained through space observations in the wavelengths longward of 1 micron. The formation of galaxies, stars, and planets, the origin of quasars and the nature of active galactic nuclei, the large scale structure of the Universe, and the problem of the missing mass, are among the major scientific issues that can be addressed by these observations. Significant advances in many areas of astrophysics can be made over the next 20 years by implementing the outlined program. This program combines large observatories with smaller projects to create an overall scheme that emphasized complementarity and synergy, advanced technology, community support and development, and the training of the next generation of scientists. Key aspects of the program include: the Space Infrared Telescope Facility; the Stratospheric Observatory for Infrared Astronomy; a robust program of small missions; and the creation of the technology base for future major observatories.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yanfeng; Gao, Xiaoli; Qin, Lin; Buchko, Garry W.; Robinson, Howard; Varnum, Susan M.
2010-12-01
Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and can cause neuroparalytic disease botulism. Due to the limitations of production and manipulation of holoenzymes, expressing non-toxic heavy chain receptor binding domains (HCR) has become a common strategy for vaccine and antibody development. Meanwhile, large quantities and highly purified soluble proteins are required for research areas such as antibody maturation and structural biology. We present high level expression and purification of the BoNT serotype D HCR in E. coli using a codon-optimized cDNA. By varying expression conditions, especially at low temperature, the protein was expressed at a high level with high solubility. About 150-200 mg protein was purified to >90% purity from 1 L cell culture. The recombinant D_HCR was crystallized and the crystals diffracted to 1.65 Å resolution. The crystals belong to space group P212121 with unit cell dimensions a = 60.8 Å, b = 89.7 Å, c = 93.9 Å. Preliminary crystallographic data analysis revealed one molecule in asymmetric unit.
Energy Technology Data Exchange (ETDEWEB)
Feng, Youjun [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Qi, Jianxun [Graduate School, Chinese Academy of Sciences, Beijing (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Zhang, Huimin; Wang, Jinzi [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Liu, Jinhua [College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Jiang, Fan [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Gao, Feng, E-mail: gaofeng@im.ac.cn [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)
2006-01-01
X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β{sub 2}m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffracts X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides.
Li, I-hui
2008-01-01
We present a structure finding algorithm designed to identify galaxy groups in photometric redshift data sets: the probability friends-of-friends (pFoF) algorithm. This algorithm is derived by combining the friends-of-friends algorithm in the transverse direction and the photometric redshift probability densities in the radial dimension. The innovative characteristic of our group-finding algorithm is the improvement of redshift estimation via the constraints given by the transversely connected galaxies in a group, based on the assumption that all galaxies in a group have the same redshift. Tests using the Virgo Consortium Millennium Simulation mock catalogs allow us to show that the recovery rate of the pFoF algorithm is larger than 80% for mock groups of at least $2\\times10^{13}M_{\\sun}$, while the false detection rate is about 10% for pFoF groups containing at least $\\sim8$ net members. Applying the algorithm to the CNOC2 group catalogs gives results which are consistent with the mock catalog tests. From al...
Crystallographic shear mechanisms in Rh one-dimensional oxides
Hernando, María; Boulahya, Khalid; Parras, Marina; González-Calbet, José M.
2005-02-01
Electron diffraction and high resolution electron microscopy have been used to characterize two new one-dimensional superstructures in the A sbnd Rh sbnd O system (A = Ca, Sr) related to the 2H-ABO 3-type. They are formed by the intergrowth of n A 3A'BO 6 blocks, showing the Sr 4RhO 6-type, with A 12A' 2B 8O 30 blocks, constituted by two A 3O 9 and two A 3A'O 6 layers alternating in the stacking sequence 1:1, leading to the A 27A' 7B 13O 60 ( n=5) and A 30A' 8B 14O 66 ( n=6) compositions. A crystallographic shear mechanism is proposed to describe the structural relationship between Sr 4RhO 6 (A 3A'BO 6-type) and the new superstructures.
3D characterization of crystallographic orientation in polycrystals via EBSD
Institute of Scientific and Technical Information of China (English)
Stefan ZAEFFERER; Stuart I. WRIGHT
2007-01-01
Electron Backscatter Diffraction (EBSD) has been used in conjunction with a Scanning Electron Microscope (SEM) combined with a focused ion beam (FIB) instrument to obtain three dimensional (3D) high resolution characterizations of crystalline microstructures. This work reports on continued development that has proceeded on this technique. The technique is based on automated in-situ serial sectioning using the FIB and characterization of the sections using automated EBSD or orientation imaging microscopy (OIM). The technique extends the powerful features of two dimensional OIM into the third spatial dimension. This allows additional descriptive microstructural parameters to be obtained, for example the morphology and the crystallographic indices of interface planes. This paper provides an overview of the technique and shows results from two different samples: pearlite colonies in a high carbon steel and twin related grain triplets in a NiCo thin film.
Crystallographic texturing in Nb3Sn multifilamentary superconducting composites
Cogan, Stuart F.; Rose, Robert M.
1980-03-01
Crystallographic texturing in Nb3Sn composites, fabricated by both the external diffusion and the commercial bronze processes, has been investigated. In the external-diffusion-processed composite the as-drawn texture of the copper matrix contained ca. 55% and 45% ; after recrystallization at 650 °C for 16 h this changed to 70% and 30% . Tin plating and reaction heat treatment for 40 h at 650 °C eliminated most of the texturing. In a commercial bronze-processed composite a or texture was obtained in the as-drawn bronze matrix, and after a reaction heat treatment at 700 °C for 30 h a diffuse texture was developed. In both composites the Nb3Sn reaction layer exhibited no preferred orientation.
Energy Technology Data Exchange (ETDEWEB)
Ngo, Phuong-Thuy Ho; Kim, Jin-Kwang [Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Hyesoon [Major in Life Science, College of Natural Sciences, Sangmyung University, 7 Hongji-dong, Jongno-gu, Seoul 110-743 (Korea, Republic of); Jung, Junho [Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Ahn, Yeh-Jin [Major in Life Science, College of Natural Sciences, Sangmyung University, 7 Hongji-dong, Jongno-gu, Seoul 110-743 (Korea, Republic of); Kim, Jeong-Gu; Lee, Byoung-Moo [Microbial Genetics Division, National Institute of Agricultural Biotechnology (NIAB), Rural Development Administration (RDA), Suwon 441-707 (Korea, Republic of); Kang, Hee-Wan, E-mail: kanghw2@hknu.ac.kr [Graduate School of Biotechnology and Information, Hankyong National University, Ansung 456-749 (Korea, Republic of); Kang, Lin-Woo, E-mail: kanghw2@hknu.ac.kr [Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)
2008-08-01
XometC, a cystathionine γ-lyase-like protein from X. oryzae pv. oryzae and an antibacterial drug-target protein against bacterial blight, was cloned, purified and crystallized. Preliminary X-ray crystallographic analysis of XometC crystals was carried out. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight of rice (Oryza sativa L.), one of the most devastating diseases of rice in most rice-growing countries. XometC, a cystathionine γ-lyase (CGL) like protein that is an antibacterial drug-target protein against Xoo, was cloned, expressed, purified and crystallized. CGL catalyzes the second step in the reverse-transsulfuration pathway, which is essential for the metabolic interconversion of the sulfur-containing amino acids cysteine and methionine. Crystals of two different shapes, plate-shaped and pyramid-shaped, diffracted to 2.9 and 3.2 Å resolution and belonged to the primitive orthogonal space group P2{sub 1}2{sub 1}2{sub 1} and the tetragonal space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = 73.0, b = 144.9, c = 152.3 Å and a = b = 78.2, c = 300.7 Å, respectively. For the P2{sub 1}2{sub 1}2{sub 1} crystals, three or four monomers exist in the asymmetric unit with a corresponding V{sub M} of 3.02 or 2.26 Å{sup 3} Da{sup −1} and a solvent content of 59.3 or 45.7%. For the P4{sub 1} (or P4{sub 3}) crystals, four or five monomers exist in the asymmetric unit with a corresponding V{sub M} of 2.59 or 2.09 Å{sup 3} Da{sup −1} and a solvent content of 52.5 or 40.6%.
Ocean acidification reduces the crystallographic control in juvenile mussel shells.
Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A
2014-10-01
Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.
Transuranic Hybrid Materials: Crystallographic and Computational Metrics of Supramolecular Assembly
Energy Technology Data Exchange (ETDEWEB)
Surbella, Robert G. [Department; Ducati, Lucas C. [Department; Pellegrini, Kristi L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; McNamara, Bruce K. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Autschbach, Jochen [Department; Schwantes, Jon M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Cahill, Christopher L. [Department
2017-07-26
A family of twelve supramolecular [AnO2Cl4]2- (An = U, Np, Pu) containing compounds assembled via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I) is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons are the norm. We present a hierarchy of assembly criteria based on crystallographic observations, and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials (ESPs) of the actinyl tetrahalide dianions and reconcile crystallographically observed structural motifs and non-covalent interaction (NCI) acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ~2 kJ mol-1 across the AnO22+ series, indicating the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen N-H+. Subsequent analyses using the Quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches support this conclusion and highlight the structure directing role of the cations. Whereas one can infer that the 2 Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.
Evans, H.T.; Tourne, C.M.; Tourne, G.F.; Weakley, T.J.R.
1986-01-01
The crystal structures of K10[Co4(H2O)2(PW9O 34)2]??22H2O (1) and isomorphous K10[Zn4(H2O)2(AsW9O 34)2]??23H2O (2) have been determined {Mo-K?? radiation, space group P21/n, Z = 2; (1) a = 15.794(2), b = 21.360(2), c = 12.312(1) A??, ?? = 91.96??, R = 0.084 for 3 242 observed reflections [I ??? 3??(I)]; (2) a = 15.842(4), b = 21.327(5), c = 12.308(4) A??, ?? = 92.42(4)??, R = 0.066 for 4 675 observed reflections [F ??? 3??(F)]}. The anions have crystallographic symmetry 1 and non-crystallographic symmetry very close to 2/m (C2h). Each consists of two [XW9O34]9- moieties [??-B isomers; X = P (1) or As (2)] linked via four CoIIO6 or ZnO6 groups. Two Co or Zn atoms each carry a water ligand. The 183W n.m.r. spectra of the anions [Zn4(H2O)2(XW9O34) 2]10- (X = P or As) confirm that the anions retain 2/m symmetry in aqueous solution. Homonuclear coupling constants between 183W atoms are 5.8-9.0 Hz for adjacent WO6 octahedra sharing edges, and 19.6-25.0 Hz for octahedra sharing corners.
Kostov, Konstantin S.; Moffat, Keith
2011-01-01
The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which these intermediates interconvert; and thereby to elucidate a chemical kinetic mechanism. One strategy toward achieving this goal is to use cluster analysis, a statistical method that groups objects based on their similarity. If the difference electron density at a particular voxel in the time-dependent difference electron density (TDED) maps is sensitive to the presence of one and only one intermediate, then its temporal evolution will exactly parallel the concentration profile of that intermediate with time. The rationale is therefore to cluster voxels with respect to the shapes of their TDEDs, so that each group or cluster of voxels corresponds to one structural intermediate. Clusters of voxels whose TDEDs reflect the presence of two or more specific intermediates can also be identified. From such groupings one can then infer the number of intermediates, obtain their time-independent difference density characteristics, and refine the structure of each intermediate. We review the principles of cluster analysis and clustering algorithms in a crystallographic context, and describe the application of the method to simulated and experimental time-resolved crystallographic data for the photocycle of photoactive yellow protein. PMID:21244840
1976-01-01
All themes require some form of advanced propulsion capabilities to achieve their stated objectives. Requirements cover a broad spectrum ranging from a new generation of heavy lift launch vehicles to low thrust, long lift system for on-orbit operations. The commonality extant between propulsive technologies was established and group technologies were grouped into vehicle classes by functional capability. The five classes of launch vehicles identified by the space transportation theme were augmented with a sixth class, encompassing planetary and on-orbit operations. Propulsion technologies in each class were then ranked, and assigned priority numbers. Prioritized technologies were matched to theme requirements.
Trembach, Vera
2014-01-01
Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.
Crystallization and preliminary crystallographic analysis of manganese lipoxygenase.
Wennman, Anneli; Oliw, Ernst H; Karkehabadi, Saeid
2014-04-01
Lipoxygenases constitute a family of nonhaem metal enzymes with catalytic iron or, occasionally, catalytic manganese. Lipoxygenases oxidize polyunsaturated fatty acids with position specificity and stereospecificity to hydroperoxides, which contribute to inflammation and the development of cancer. Little is known about the structural differences between lipoxygenases with Fe or Mn and the metal-selection mechanism. A Pichia pastoris expression system was used for the production of the manganese lipoxygenase of the take-all fungus of wheat, Gaeumannomyces graminis. The active enzyme was treated with α-mannosidase, purified to apparent homogeneity and subjected to crystal screening and X-ray diffraction. The crystals diffracted to 2.6 Å resolution and belonged to space group C2, with unit-cell parameters a = 226.6, b = 50.6, c = 177.92 Å, β = 91.70°.
Crystallographic and Computational Study of Purine: Caffeine Derivative
Directory of Open Access Journals (Sweden)
Ahmed F. Mabied
2014-01-01
Full Text Available The crystal structure of substituted purine derivative, 8-(3-butyl-4-phenyl-2,3-dihydrothiazol-2-ylidenehydrazino-3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-diones, caffeine derivative, has been determined. It crystallized in monoclinic system and space group P21/c with unit cell parameters a = 15.2634 (9, b = 13.4692 (9, c = 11.9761 (7 Å, and β = 108.825 (3°. Although each constituting moiety of the structure individually is planar, nonplanar configuration for the whole molecule was noticed. Molecular mechanics computations indicated the same nonplanar feature of the whole molecule. A network of intermolecular hydrogen bonds contacts and π interactions stabilized the structure.
Crystallographic analysis of FAD-dependent glucose dehydrogenase.
Komori, Hirofumi; Inaka, Koji; Furubayashi, Naoki; Honda, Michinari; Higuchi, Yoshiki
2015-08-01
An FAD-dependent glucose dehydrogenase (GDH) from Aspergillus terreus was purified and crystallized at 293 K using the sitting-drop vapour-diffusion method. A data set was collected to a resolution of 1.6 Å from a single crystal at 100 K using a rotating-anode X-ray source. The crystal belonged to space group P21, with unit-cell parameters a = 56.56, b = 135.74, c = 74.13 Å, β = 90.37°. The asymmetric unit contained two molecules of GDH. The Matthews coefficient was calculated to be 2.2 Å(3) Da(-1) and the solvent content was estimated to be 44%.
Zwaan, MA; Briggs, FH
2000-01-01
The Arecibo H I Strip Survey probed the halos of similar to 300 cataloged galaxies and the environments of similar to 14 groups with sensitivity to neutral hydrogen masses greater than or equal to 10(7) M-circle dot. The survey detected no objects with properties resembling the high-velocity clouds
Phillips, Samuel C.
1986-01-01
The NASA Management Study Group (NMSG) was established under the auspices of the National Acedamy of Public Administration at the request of the Administrator of NASA to assess NASA's management practices and to evaluate the effectiveness of the NASA organization. This report summarizes the conclusions and recommendations of the NMSG on the overall management and organization of NASA.
Semi-Group Theory for the Stokes Operator with Navier-Type Boundary Conditions on L p -Spaces
Al Baba, Hind; Amrouche, Chérif; Escobedo, Miguel
2017-02-01
In this article we consider the Stokes problem with Navier-type boundary conditions on a domain {Ω}, not necessarily simply connected. Since, under these conditions, the Stokes problem has a non trivial kernel, we also study the solutions lying in the orthogonal of that kernel. We prove the analyticity of several semigroups generated by the Stokes operator considered in different functional spaces. We obtain strong, weak and very weak solutions for the time dependent Stokes problem with the Navier-type boundary condition under different hypotheses on the initial data u 0 and external force f. Then, we study the fractional and pure imaginary powers of several operators related with our Stokes operators. Using the fractional powers, we prove maximal regularity results for the homogeneous Stokes problem. On the other hand, using the boundedness of the pure imaginary powers, we deduce maximal {Lp-Lq} regularity for the inhomogeneous Stokes problem.
2015-12-01
general reduction of poverty levels; and 80 strengthening government institutions ranging from security, health, and education among others. Of...Indebted Poor Countries HSM Holy Spirit Movement ICC International Criminal Court ICGLR International Conference on the Great Lakes Region ICTR...from its bases in Somalia and struck in the region when the group bombed Kampala, killing more than 74 people who were watching the World Cup finals
Directory of Open Access Journals (Sweden)
Davide Barbieri
2016-12-01
Full Text Available This is a joint work with E. Hernández, J. Parcet and V. Paternostro. We will discuss the structure of bases and frames of unitary orbits of discrete groups in invariant subspaces of separable Hilbert spaces. These invariant spaces can be characterized, by means of Fourier intertwining operators, as modules whose rings of coefficients are given by the group von Neumann algebra, endowed with an unbounded operator valued pairing which defines a noncommutative Hilbert structure. Frames and bases obtained by countable families of orbits have noncommutative counterparts in these Hilbert modules, given by countable families of operators satisfying generalized reproducing conditions. These results extend key notions of Fourier and wavelet analysis to general unitary actions of discrete groups, such as crystallographic transformations on the Euclidean plane or discrete Heisenberg groups.
Romanov, Evgenii Dmitrievich
2016-08-01
A family of quasi-invariant measures on the special functional space of curves in a finite-dimensional Euclidean space with respect to the action of diffeomorphisms is constructed. The main result is an explicit expression for the Radon-Nikodym derivative of the transformed measure relative to the original one. The stochastic Ito integral allows to express the result in an invariant form for a wider class of diffeomorphisms. These measures can be used to obtain irreducible unitary representations of the diffeomorphisms group which will be studied in future research. A geometric interpretation of the action considered together with a generalization to the multidimensional case makes such representations applicable to problems of quantum mechanics.
Nomoto, Takuya; Ikeda, Hiroaki
2017-02-01
We present the group-theoretical classification of gap functions in superconductors coexisting with some magnetic order in non-symmorphic magnetic space groups. On the basis of the weak-coupling BCS theory, we show that UCoGe-type ferromagnetic superconductors must have horizontal line nodes on either the kz = 0 or ±π/c plane. Moreover, it is likely that additional Weyl point nodes exist at the axial point. On the other hand, in UPd2Al3-type antiferromagnetic superconductors, gap functions with Ag symmetry possess horizontal line nodes in the antiferromagnetic Brillouin zone boundary perpendicular to the c-axis. In other words, the conventional fully gapped s-wave superconductivity is forbidden in this type of antiferromagnetic superconductor, regardless of the pairing mechanism, as long as the Fermi surface crosses a zone boundary. UCoGe and UPd2Al3 are candidate unconventional superconductors possessing hidden symmetry-protected line nodes, peculiar to non-symmorphic magnetic space groups.
Mihara, H; Maeda, M; Fujii, T; Kurihara, T; Hata, Y; Esaki, N
1999-05-21
Selenocysteine lyase is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the exclusive decomposition of L-selenocysteine to L-alanine and elemental selenium. An open reading frame, named csdB, from Escherichia coli encodes a putative protein that is similar to selenocysteine lyase of pig liver and cysteine desulfurase (NifS) of Azotobacter vinelandii. In this study, the csdB gene was cloned and expressed in E. coli cells. The gene product was a homodimer with the subunit Mr of 44,439, contained 1 mol of PLP as a cofactor per mol of subunit, and catalyzed the release of Se, SO2, and S from L-selenocysteine, L-cysteine sulfinic acid, and L-cysteine, respectively, to yield L-alanine; the reactivity of the substrates decreased in this order. Although the enzyme was not specific for L-selenocysteine, the high specific activity for L-selenocysteine (5.5 units/mg compared with 0.019 units/mg for L-cysteine) supports the view that the enzyme can be regarded as an E. coli counterpart of mammalian selenocysteine lyase. We crystallized CsdB, the csdB gene product, by the hanging drop vapor diffusion method. The crystals were of suitable quality for x-ray crystallography and belonged to the tetragonal space group P43212 with unit cell dimensions of a = b = 128.1 A and c = 137.0 A. Consideration of the Matthews parameter Vm (3.19 A3/Da) accounts for the presence of a single dimer in the crystallographic asymmetric unit. A native diffraction dataset up to 2.8 A resolution was collected. This is the first crystallographic analysis of a protein of NifS/selenocysteine lyase family.
Energy Technology Data Exchange (ETDEWEB)
Chen, C. [MIT-Plasma Science and Fusion Center, Cambridge, MA (United States); Ferrario, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy)
2000-07-01
This report summarizes the presentations and discussions over a wide range of topics in Working Group I at the Second ICFA Advanced Accelerator Workshop on Physics of High-Brightness Beams held at the University of California at Los Angeles (UCLA), November 9-12, 1999. Latest developments towards to a better understanding of high-brightness photoinjiectors were reported. The design and commissioning of the Los Alamos National Laboratory (LANL) Low-Energy Demonstration Accelerator (LEDA) Radio-Frequency Quadrupole (RFQ) were reported. The problem of beam halo formation was discussed in both beam transport systems and the SLAC 50 MW 11.4 GHz periodic permanent magnet (PPM) focusing klystron amplifier. A new class of corkscrewing elliptic beam equilibria was reported, and applications of such novel beam equilibria in controlling of charge-density and velocity fluctuations, beam halo formation and emittance growth were discussed. Pattern formation in proton rings was also discussed.
Ruf, Joseph H.; Holt, James B.; Canabal, Francisco
2001-01-01
This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
Nanocrystalline materials: recent advances in crystallographic characterization techniques
Directory of Open Access Journals (Sweden)
Emilie Ringe
2014-11-01
Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.
Pulsed neutron spectroscopic imaging for crystallographic texture and microstructure
Energy Technology Data Exchange (ETDEWEB)
Sato, Hirotaka, E-mail: hakuryu@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Kamiyama, Takashi [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Iwase, Kenji; Ishigaki, Toru [Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Ibaraki 319-1106 (Japan); Kiyanagi, Yoshiaki [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)
2011-09-21
A time-of-flight (TOF) spectroscopic neutron imaging at a pulsed neutron source is expected to be a new material analysis tool because this method can non-destructively investigate the spatial dependence of the crystallographic and metallographic information in a bulk material. For quantitative evaluation of such information, a spectral analysis code for the transmission data is necessary. Therefore, we have developed a Rietveld-like analysis code, RITS. Furthermore, we have applied the RITS code to evaluation of the position dependence of the crystal orientation anisotropy, the preferred orientation and the crystallite size of a welded {alpha}-iron plate, and we successfully obtained the information on the texture and the microstructure. However, the reliability of the values given by the RITS code has not been evaluated yet in detail. For this reason, we compared the parameters provided by the RITS code with the parameters obtained by the neutron TOF powder diffractometry and its Rietveld analysis. Both the RITS code and the Rietveld analysis software indicated values close to each other, but there were systematic differences on the preferred orientation and the crystallite size.
Crystallographic structure of ubiquitin in complex with cadmium ions
Directory of Open Access Journals (Sweden)
Cheung Peter
2009-12-01
Full Text Available Abstract Background Ubiquitination plays a critical role in regulating many cellular processes, from DNA repair and gene transcription to cell cycle and apoptosis. It is catalyzed by a specific enzymatic cascade ultimately leading to the conjugation of ubiquitin to lysine residues of the target protein that can be the ubiquitin molecule itself and to the formation of poly-ubiquitin chains. Findings We present the crystal structure at 3.0 Å resolution of bovine ubiquitin crystallized in presence of cadmium ions. Two molecules of ubiquitin are present in the asymmetric unit. Interestingly this non-covalent dimeric arrangement brings Lys-6 and Lys-63 of each crystallographically-independent monomer in close contact with the C-terminal ends of the other monomer. Residues Leu-8, Ile-44 and Val-70 that form a hydrophobic patch at the surface of the Ub monomer are trapped at the dimer interface. Conclusions The structural basis for signalling by poly-Ub chains relies on a visualization of conformations of alternatively linked poly-Ub chains. This arrangement of ubiquitin could illustrate how linkages involving Lys-6 or Lys-63 of ubiquitin are produced in the cell. It also details how ubiquitin molecules can specifically chelate cadmium ions.
Crystallographic analysis of amorphization caused by ion irradiation
Nakagawa, S T; Ono, T; Hada, Y; Betz, G
2003-01-01
Ion irradiation often causes amorphization in a crystal. We have presented a new crystallographic analysis that defines a new type of order parameter, which we call pixel mapping (PM). PM can describe algebraically to what extent and how the crystallinity has changed under ion bombardment. In other words, PM describes the long-range-order (LRO) interactions, based on the crystallography. PM can be effectively used, when it is incorporated in a classical molecular dynamics (MD) calculation. In the case of B ions implanted into a Si crystal, we observed crystal to amorphous (CA) transitions under energetic ion bombardment at low temperature. The PM profiling was more effective to reveal the CA transition than other atomistic methods of analyses as radial distribution function g(r) or vacancy mapping N sub v. PM could distinguish between perfect crystalline states, transition states, and random states. Moreover, PM revealed that the lattice reaction was cooperative even in a mesoscopic volume, e.g. in a cube of ...
Crystallographic Orientation of Cuttlebone Shield Determined by Electron Backscatter Diffraction
Cusack, Maggie; Chung, Peter
2014-01-01
In common with many cephalopod mollusks, cuttlefish produce an internal biomineral buoyancy device. This cuttlebone is analogous to a surf board in shape and structure, providing rigidity and a means of controlling buoyancy. The cuttlebone is composed of calcium carbonate in the form of aragonite and comprises an upper dorsal shield and a lower lamellar matrix. The lamellar matrix comprises layers of chambers with highly corrugated walls. The dorsal shield comprises bundles of aragonite needles stacked on top of each other. Electron backscatter diffraction analyses of the dorsal shield reveal that the c-axis of aragonite is parallel with the long axis of the needles in the bundles such that any spread in crystallographic orientation is consistent with the spread in orientation of the fibers as they radiate to form the overall structure of the dorsal shield. This arrangement of c-axis coincident with the long axis of the biomineral structure is similar to the arrangement in corals and in contrast to the situation in the molluskan aragonite nacre of brachiopod calcite where the c-axis is perpendicular to the aragonite tablet or calcite fiber, respectively.
Nanocrystalline materials: recent advances in crystallographic characterization techniques.
Ringe, Emilie
2014-11-01
Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.
Crystallization and preliminary crystallographic analysis of recombinant human galectin-1
Energy Technology Data Exchange (ETDEWEB)
Scott, Stacy A. [Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222 (Australia); Scott, Ken [School of Biological Sciences, University of Auckland, Auckland (New Zealand); Blanchard, Helen, E-mail: h.blanchard@griffith.edu.au [Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)
2007-11-01
Human galectin-1 has been cloned, expressed in E. coli, purified and crystallized in the presence of both lactose (ligand) and β-mercaptoethanol under six different conditions. The X-ray diffraction data obtained have enabled the assignment of unit-cell parameters for two novel crystal forms of human galectin-1. Galectin-1 is considered to be a regulator protein as it is ubiquitously expressed throughout the adult body and is responsible for a broad range of cellular regulatory functions. Interest in galectin-1 from a drug-design perspective is founded on evidence of its overexpression by many cancers and its immunomodulatory properties. The development of galectin-1-specific inhibitors is a rational approach to the fight against cancer because although galectin-1 induces a plethora of effects, null mice appear normal. X-ray crystallographic structure determination will aid the structure-based design of galectin-1 inhibitors. Here, the crystallization and preliminary diffraction analysis of human galectin-1 crystals generated under six different conditions is reported. X-ray diffraction data enabled the assignment of unit-cell parameters for crystals grown under two conditions, one belongs to a tetragonal crystal system and the other was determined as monoclinic P2{sub 1}, representing two new crystal forms of human galectin-1.
Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.
Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P
2017-03-14
Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.
Nanocrystalline materials: recent advances in crystallographic characterization techniques
Ringe, Emilie
2014-01-01
Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133
Zhu, D.-W.; Han, Q.; Qiu, W.; Campbell, R. L.; Xie, B.-X.; Azzi, A.; Lin, S.-X.
1999-01-01
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) is responsible for the synthesis of active estrogens that stimulate the proliferation of breast cancer cells. The enzyme has been crystallized using a Mg 2+/PEG (3500)/β-octyl glucoside system [Zhu et al., J. Mol. Biol. 234 (1993) 242]. The space group of these crystals is C2. Here we report that cations can affect 17β-HSD1 crystallization significantly. In the presence of Mn 2+ instead of Mg 2+, crystals have been obtained in the same space group with similar unit cell dimensions. In the presence of Li + and Na + instead of Mg 2+, the space group has been changed to P2 12 12 1. A whole data set for a crystal of 17ß-HSD1 complex with progesterone grown in the presence of Li + has been collected to 1.95 Å resolution with a synchrotron source. The cell dimensions are a=41.91 Å, b=108.21 Å, c=117.00 Å. The structure has been preliminarily determined by molecular replacement, yielding important information on crystal packing in the presence of different cations. In order to further understand the structure-function relationship of 17β-HSD1, enzyme complexes with several ligands have been crystallized. As the steroids have very low aqueous solubility, we used a combined method of seeding and co-crystallization to obtain crystals of 17β-HSD1 complexed with various ligands. This method provides ideal conditions for growing complex crystals, with ligands such as 20α-hydroxysteroid progesterone, testosterone and 17β-methyl-estradiol-NADP +. Several complex structures have been determined with reliable electronic density of the bound ligands.
Vu, Le Anh
2010-01-01
The paper is a continuation of the authors' work in which we considered foliations formed by the maximal dimensional K-orbits ($MD_5$-foliations) of connected $MD_5$-groups such that their Lie algebras have 4-dimensional commutative derived ideals and give the topological classification of considered foliations. In this paper, we study K-theory for the leaf space of some from these $MD_5$-foliations and analytically describes and characterized Connes' C*-algebras of considered foliations by the method of K-functors.
Crystallization and preliminary crystallographic analysis of human glycosylated haemoglobin
Energy Technology Data Exchange (ETDEWEB)
Syakhovich, Vitaly E. [Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus); Saraswathi, N. T.; Ruff, Marc, E-mail: ruff@igbmc.u-strasbg.fr [Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Bokut, Sergey B. [Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus); Moras, Dino [Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus)
2006-02-01
Non enzymatic modification of haemoglobin by glucose plays an important role in diabetes pathogenesis. Here the purification, characterization and crystallization of human glycosylated haemoglobin are reported. Human glycosylated haemoglobin A{sub 1C} is a stable minor variant formed in vivo by post-translational modification of the main form of haemoglobin by glucose. Crystals of oxyHbA{sub 1C} were obtained using the hanging-drop vapour-diffusion method and PEG as precipitant. The diffraction pattern of the crystal extends to a resolution of 2.3 Å at 120 K. The crystals belong to space group C2, with unit-cell parameters a = 237.98, b = 59.27, c = 137.02 Å, α = 90.00, β = 125.40, γ = 90.00°. The presence of two and a half molecules per asymmetric unit gives a crystal volume per protein weight (V{sub M}) of 9.70 Å{sup 3} Da{sup −1} and a solvent content of 49%.
Expression, purification and preliminary crystallographic studies of human ketohexokinase.
Kozak, M; Hayward, B; Borek, D; Bonthron, D T; Jaskólski, M
2001-04-01
Ketohexokinase (KHK; E.C. 2.7.1.3) catalyses the (reversible) phosphorylation of fructose to fructose-1-phosphate. KHK is the first enzyme in a specialized catabolic pathway metabolizing dietary fructose to the glycolytic intermediate glyceraldehyde-3-phosphate. Mutations inactivating KHK underlie the metabolic disorder essential fructosuria. The primary structure of KHK shows no significant homology to other mammalian hexokinases. It is most similar to prokaryotic ribokinases, but catalyses a distinct phosphorylation reaction. Recombinant human KHK has been crystallized in the orthorhombic form (space group P2(1)2(1)2 or P2(1)2(1)2(1)). Single crystals of this polymorph suitable for X-ray diffraction have been obtained by vapour diffusion using 2-propanol and MPD as precipitants (pH 7.5). The crystals have unit-cell parameters a = 93.4, b = 121.5, c = 108.4 A. Diffraction data were collected to 4.3 A resolution. The asymmetric unit contains four protein molecules.
Bae, Suyeal; Mah, Heduck; Chaturvedi, Surendrakumar; Jeknic, Tamara Musafia; Baird, William M; Katz, Amy K; Carrell, H L; Glusker, Jenny P; Okazaki, Takao; Laali, Kenneth K; Zajc, Barbara; Lakshman, Mahesh K
2007-09-28
1,4-Difluorobenzo[c]phenanthrene (1,4-DFBcPh) and its putative metabolites, the dihydrodiol and diol epoxides, have been synthesized and structurally characterized, and the extent of DNA binding by the metabolites has been assessed. 1,4-DFBcPh and 1,4-difluoro-10-methoxybenzo[c]phenanthrene were prepared by photochemical cyclization of appropriate naphthylphenylethylenes. The dihydrodiol was synthesized from 1,4-difluoro-10-methoxybenzo[c]phenanthrene, and the diol epoxides were diastereoselectively synthesized from the dihydrodiol. Interesting differences were noted in 1H NMR spectra of the series 1 (syn) diol epoxides of benzo[c]phenanthrene (BcPh) and 1,4-DFBcPh; the BcPh diol epoxide displays a quasi-diequatorial orientation of the hydroxyl groups, but in the 1,4-DFBcPh case these are diaxially disposed. This difference probably stems from the presence of the fjord-region fluorine atom in 1,4-DFBcPh. A through-space, fjord-region H-F coupling has also been observed for 1,4-DFBcPh and its derivatives. Comparative X-ray crystallographic analyses of BcPh and 1,4-DFBcPh and their dihydrodiols show that introduction of fluorine increases the molecular distortion by about 6-7 degrees . As a guide to estimating the molecular distortion and its effects, and for comparison with the X-ray structures in known cases, optimized structures of BcPh, 1,4-DFBcPh, and 1,4-DMBcPh (the dimethyl analogue) as well as their dihydrodiols and diol epoxides were computed. Relative aromaticities of these compounds were assessed by nucleus-independent chemical shift calculations, and 13C NMR chemical shifts were computed by gauge-inducing atomic orbital calculations. 1,4-DFBcPh and its dihydrodiol were subjected to metabolism, and the amount of DNA binding in human breast cancer MCF-7 cells was assessed. The extent of DNA binding was then compared with that for BcPh and its dihydrodiol and the potent carcinogen benzo[a]pyrene. The 1,4-DFBcPh series 2 (anti) diol epoxide-derived DNA
Sevvana, Madhumati; Hasselt, Kristin; Grau, Florian C; Burkovski, Andreas; Muller, Yves A
2017-03-01
AmtR belongs to the TetR family of transcription regulators and is a global nitrogen regulator that is induced under nitrogen-starvation conditions in Corynebacterium glutamicum. AmtR regulates the expression of transporters and enzymes for the assimilation of ammonium and alternative nitrogen sources, for example urea, amino acids etc. The recognition of operator DNA by homodimeric AmtR is not regulated by small-molecule effectors as in other TetR-family members but by a trimeric adenylylated PII-type signal transduction protein named GlnK. The crystal structure of ligand-free AmtR (AmtRorth) has been solved at a resolution of 2.1 Å in space group P21212. Comparison of its quaternary assembly with the previously solved native AmtR structure (PDB entry 5dy1) in a trigonal crystal system (AmtRtri) not only shows how a solvent-content reduction triggers a space-group switch but also suggests a model for how dimeric AmtR might stoichiometrically interact with trimeric adenylylated GlnK.
Zakaria, Choudhury M; Ferguson, George; Lough, Alan J; Glidewell, Christopher
2003-07-01
Hexamethylenetetramine, C(6)H(12)N(4), and ferrocenecarboxylic acid, C(11)H(10)FeO(2), form a 1:2 adduct, (I), which is a salt, viz. hexamethylenetetraminium(2+) bis(ferrocenecarboxylate), (C(6)H(14)N(4))[Fe(C(5)H(5))(C(6)H(4)O(2))](2). The dication in (I) is disordered with two orientations at a site of mm2 symmetry in space group Fmm2, while the anion lies across a mirror plane with its unsubstituted cyclopentadienyl ring disordered over two sets of sites. With ferrocene-1,1'-dicarboxylic acid, C(12)H(10)FeO(4), hexamethylenetetramine forms a 1:1 adduct, (II), in which both components are neutral, viz. hexamethylenetetramine-ferrocene-1,1'-dicarboxylic acid (1/1), [Fe(C(6)H(5)O(2))(2)].C(6)H(12)N(4). The amine component in (II) is disordered with two orientations at a site of mm2 symmetry in space group Cmcm, while the acid component is disordered with two orientations at a site of 2/m symmetry. The components in (I) are linked into a finite three-ion aggregate by a single N-H.O hydrogen bond, while the components of (II) are linked into continuous chains by a single O-H.N hydrogen bond.
Shape and crystallographic orientation of nanodiamonds for quantum sensing.
Ong, S Y; Chipaux, M; Nagl, A; Schirhagl, R
2017-01-23
Nanodiamonds with dimensions down to a few tens of nanometers containing nitrogen-vacancy (NV) color centers have revealed their potential as powerful and versatile quantum sensors with a unique combination of spatial resolution and sensitivity. The NV centers allow transducing physical properties, such as strain, temperature, and electric or magnetic field, to an optical transition that can be detected in the single photon range. For example, this makes it possible to sense a single electron spin or a few nuclear spins by detecting their magnetic resonance. The location and orientation of these defects with respect to the diamond surface play a crucial role in interpreting the data and predicting their sensitivities. Despite its relevance, the geometry of these nanodiamonds has never been thoroughly investigated. Without accurate data, spherical models have been applied to interpret or predict results in the past. With the use of High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), we investigated nanodiamonds with an average hydrodynamic diameter of 25 nm (the most common type for quantum sensing) and found a flake-like geometry, with 23.2 nm and 4.5 nm being the average lateral and vertical dimensions. We have also found evidence for a preferred crystallographic orientation of the main facet in the (110) direction. Furthermore, we discuss the consequences of this difference in geometry on diamond-based applications. Shape not only influences the creation efficiency of nitrogen-vacancy centers and their quantum coherence properties (and thus sensing performance), but also the optical properties of the nanodiamonds, their interaction with living cells, and their surface chemistry.
Calculation of Crystallographic Texture of BCC Steels During Cold Rolling
Das, Arpan
2017-05-01
BCC alloys commonly tend to develop strong fibre textures and often represent as isointensity diagrams in φ 1 sections or by fibre diagrams. Alpha fibre in bcc steels is generally characterised by crystallographic axis parallel to the rolling direction. The objective of present research is to correlate carbon content, carbide dispersion, rolling reduction, Euler angles (ϕ) (when φ 1 = 0° and φ 2 = 45° along alpha fibre) and the resulting alpha fibre texture orientation intensity. In the present research, Bayesian neural computation has been employed to correlate these and compare with the existing feed-forward neural network model comprehensively. Excellent match to the measured texture data within the bounding box of texture training data set has been already predicted through the feed-forward neural network model by other researchers. Feed-forward neural network prediction outside the bounds of training texture data showed deviations from the expected values. Currently, Bayesian computation has been similarly applied to confirm that the predictions are reasonable in the context of basic metallurgical principles, and matched better outside the bounds of training texture data set than the reported feed-forward neural network. Bayesian computation puts error bars on predicted values and allows significance of each individual parameters to be estimated. Additionally, it is also possible by Bayesian computation to estimate the isolated influence of particular variable such as carbon concentration, which exactly cannot in practice be varied independently. This shows the ability of the Bayesian neural network to examine the new phenomenon in situations where the data cannot be accessed through experiments.
Crystallographic control on the substructure of nacre tablets.
Checa, Antonio G; Mutvei, Harry; Osuna-Mascaró, Antonio J; Bonarski, Jan T; Faryna, Marek; Berent, Katarzyna; Pina, Carlos M; Rousseau, Marthe; Macías-Sánchez, Elena
2013-09-01
Nacre tablets of mollusks develop two kinds of features when either the calcium carbonate or the organic portions are removed: (1) parallel lineations (vermiculations) formed by elongated carbonate rods, and (2) hourglass patterns, which appear in high relief when etched or in low relief if bleached. In untreated tablets, SEM and AFM data show that vermiculations correspond to aligned and fused aragonite nanogloblules, which are partly surrounded by thin organic pellicles. EBSD mapping of the surfaces of tablets indicates that the vermiculations are invariably parallel to the crystallographic a-axis of aragonite and that the triangles are aligned with the b-axis and correspond to the advance of the {010} faces during the growth of the tablet. According to our interpretation, the vermiculations appear because organic molecules during growth are expelled from the a-axis, where the Ca-CO3 bonds are the shortest. In this way, the subunits forming nacre merge uninterruptedly, forming chains parallel to the a-axis, whereas the organic molecules are expelled to the sides of these chains. Hourglass patterns would be produced by preferential adsorption of organic molecules along the {010}, as compared to the {100} faces. A model is presented for the nanostructure of nacre tablets. SEM and EBSD data also show the existence within the tablets of nanocrystalline units, which are twinned on {110} with the rest of the tablet. Our study shows that the growth dynamics of nacre tablets (and bioaragonite in general) results from the interaction at two different and mutually related levels: tablets and nanogranules.
2009-01-01
β-l-Arabinopyranosidase from S. avermitilis NBRC14893 was crystallized by the sitting-drop vapour-diffusion method. The crystals diffracted to 1.6 Å resolution and belonged to space group P212121.
Energetic, crystallographic and diffusion characteristics of hydrogen isotopes in iron
Energy Technology Data Exchange (ETDEWEB)
Sivak, A.B., E-mail: sivak_ab@nrcki.ru [National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); National Research Tomsk State University, 36, Lenina pr., Tomsk 634050 (Russian Federation); Sivak, P.A., E-mail: sivak_pa@nrcki.ru [National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Romanov, V.A., E-mail: romanov-ippe@mail.ru [National Research Tomsk State University, 36, Lenina pr., Tomsk 634050 (Russian Federation); A.I. Leypunski Institute of Physics and Power Engineering (IPPE), 1, Bondarenko pl., Obninsk, Kaluga reg. 249033 (Russian Federation); Chernov, V.M., E-mail: vmchernov@bochvar.ru [National Research Tomsk State University, 36, Lenina pr., Tomsk 634050 (Russian Federation); A.A. Bochvar High-technology Research Institute of Inorganic Materials (JSC “VNIINM”), 5-a, Rogova ul., PoB 369, Moscow 123098 (Russian Federation); National Research Nuclear University “MEPhI”, 31, Kashirskoye sh., Moscow 115409 (Russian Federation)
2015-06-15
Highlights: • H isotopes properties in Fe were calculated by molecular statics and dynamics methods. • The binding energies of complexes “H atoms – self-defects” were calculated. • Temperature dependencies of H isotopes diffusivities have parabolic form at T > 250 K. • There is a good agreement between MD and experimental data for protium diffusivity. • H isotopes diffusivities are within 10% at 293 K. Isotope effect increases with temperature. - Abstract: Energetic, crystallographic and diffusion characteristics of various interstitial configurations of H atoms and their complexes with self-point defects (SIA – self-interstitial atom, V – vacancy) in bcc iron have been calculated by molecular statics and molecular dynamics using Fe–H interatomic interaction potential developed by Ramasubramaniam et al. (2009) and modified by the authors of the present work and Fe–Fe matrix potential M07 developed by Malerba et al. (2010). The most energetically favorable configuration of an interstitial H atom is tetrahedral configuration. The energy barrier for H atom migration is 0.04 eV. The highest binding energy of all the considered complexes “vacancy – H atom” and “SIA – H atom” is 0.54 and 0.15 eV, respectively. The binding energy of H atom with edge dislocations in slip systems 〈1 1 1〉{1 1 0}, 〈1 1 1〉{1 1 2}, 〈1 0 0〉{1 0 0}, 〈1 0 0〉{1 1 0} is 0.32, 0.30, 0.45, 0.54 eV, respectively. The binding energy of H atom in VH{sub n} complexes (n = 1 … 15) decreases from 0.54 to 0.35 eV with increasing of n from 1 to 6. At n > 6, it decreases to ∼0.1 eV. The temperature dependences of hydrogen isotopes (P, D, T) diffusivities have been calculated for the temperature range 70–1800 K. Arrhenius-type dependencies describe the calculated data at temperatures T < 100 K. At T > 250 K, the temperature dependencies of the diffusivities D{sup P}, D{sup D}, D{sup T} have a parabolic form. The diffusivities of H isotopes are within 10
Crystallographic transformation of limestone during calcination under CO2.
Valverde, Jose Manuel; Medina, Santiago
2015-09-14
The calcination reaction of limestone (CaCO3) to yield lime (CaO) is at the heart of many industrial applications as well as natural processes. In the recently emerged calcium-looping technology, CO2 capture is accomplished by the carbonation of CaO in a gas-solid reactor (carbonator). CaO is derived by the calcination of limestone in a calciner reactor under necessarily high CO2 partial pressure and high temperature. In situ X-ray diffraction (XRD) has been employed in this work to gain further insight into the crystallographic transformation that takes place during the calcination of limestone under CO2, at partial pressures (P) close to the equilibrium pressure (Peq) and at high temperature. Calcination under these conditions becomes extremely slow. The in situ XRD analysis presented here suggests the presence of an intermediate metastable CaO* phase stemming from the parent CaCO3 structure. According to the reaction mechanism proposed elsewhere, the exothermicity of the CaO* → CaO transformation and high values of P/Peq inhibit the nucleation of CaO at high temperatures. The wt% of CaO* remains at a relatively high level during slow calcination. Two diverse stages have been identified in the evolution of CaO crystallite size, L. Initially, L increases with CaCO3 conversion, following a logarithmic law. Slow calcination allows the crystallite size to grow up from a few nanometers at nucleation up to around 100 nm near the end of conversion. Otherwise, quick calcination at relatively lower CO2 concentrations limits CaO crystallite growth. Once calcination reaches an advanced state, the presence of CaO* drops to zero and the rate of increase of the CaO crystallite size is significantly hindered. Arguably, the first stage in CaO crystallite growth is driven by aggregation of the metastable CaO* nanocrystals, due to surface attractive forces, whereas the second one is consistent with sintering of the aggregated CaO crystals, and persists with time after full
Georgiev, Ivan T.; McKay, Susan R.
2001-03-01
We present a position-space renormalization-group method for nonequilibrium systems, and illustrate its application using the one-dimensional driven asymmetric chain. The dynamics in this case are characterized by three parameters: the probability α that a particle will enter the chain from the left boundary, the probability β that a particle will exit the chain at the right boundary, and the probability p that a particle will jump to its right neighboring site if that site is empty. Rescaling trajectories flow in the space of these probabilities and the dynamics are implemented sequentially. The phase diagram for the steady states consists of three distinct regions, one with high current and two others distinguished by their average densities. This method yields a multicritical point at α_c=β_c=0.5, in agreement with the exact solution.(B. Derrida, et al., J. Phys. A: Math. Gen. 26), 1493 (1993); G. Schutz and E. Domany, J. Stat. Phys. 72, 277 (1993). We find the exponent ν = 2.71 associated with this fixed point, as compared with the exact value of 2.00.
Shmueli, U; Rabinovich, S; Weiss, G H
1989-06-01
An exact expression is derived for the conditional probability density function of a three-phase invariant and the general result is applied to the space group P1. The expression for the conditional density is given in terms of a sixfold Fourier series. A straightforward numerical evaluation of this series, without further analysis, is extremely time consuming. Much of the present paper is therefore devoted to an exposition of symmetries hidden in the various summations. The computational effort required for the evaluation of the above expression is thereby reduced to manageable proportions in a number of interesting cases. Results of numerical computations of the exact conditional density are given in the second paper in this series. It is also shown that the exact expression for the conditional probability reduces to that given by Cochran [Acta Cryst. (1955), 8, 473-478].
Energy Technology Data Exchange (ETDEWEB)
Zhang, Changsheng, E-mail: johmzhangc@caep.cn; Xie, Lei; Fan, Zhijian; Wang, Hong; Chen, Xiping; Li, Jian; Sun, Guangai, E-mail: guangaisun_80@163.com
2015-11-05
Crystallographic simulation is carried out in the present work to understand the respective structure of metastable α″ and possible ordered phases, which could be the prerequisite for revealing the low-temperature aging mechanism underlying the α″ phase in U–Nb alloys. The space group of No. 11 with C-type lattice is found to describe the structure of α″ phase in a straightforward way, avoiding the mistaken or indirect indexation and analysis of structural data. The obtained theoretical diffraction pattern of α″ phase shows clearly the phenomenon of peak splitting, in which the Bragg positions also agree well with the experimental observation. Additional peaks are observed at the low diffraction angles for the possible ordered phases in U–Nb alloys through simulation on the proposed two types of structures, which need to be carefully detected by the uniting of multiprobe diffraction. The correlation between ordered structures and stress-strain response is also deduced and discussed. The present work would provide some enlighten to the integrity of the phase diagram and the understanding of low-temperature aging mechanism in U–Nb alloys. - Graphical abstract: Multiprobe diffraction simulation is performed to understand the respective structure of metastable α″ and the possible ordered phases in U–Nb alloys, which presents the straightforward description of α″ phase structure and the discussion on the correlation between ordered structures and stress–strain response. - Highlights: • Explicit understanding of metastable α″ phase structure is achieved. • The mistaken or indirect indexation of experimental data is avoided. • Theoretical diffraction pattern agrees well with the experimental results. • Two types of the possible ordered phase structures are proposed. • Correlation between ordered structures and stress–strain response is deduced.
Moeck, Peter; Čertik, Ondřej; Seipel, Bjoern; Groebner, Rebecca; Noice, Lori; Upreti, Girish; Fraundorf, Philip; Erni, Rolf; Browning, Nigel D.; Kiesow, Andreas; Jolivet, Jean-Pierre
2005-11-01
New needs to determine the crystallography of nanocrystals arise with the advent of science and engineering on the nanometer scale. Direct space high-resolution phase-contrast transmission electron microscopy (HRTEM) and atomic resolution Z-contrast scanning TEM (Z-STEM), when combined with tools for image-based nanocrystallography possess the capacity to meet these needs. This paper introduces such a tool, i.e. fringe fingerprinting in two dimensions (2D), for the identification of unknown nanocrystal phases and compares this method briefly to qualitative standard powder X-ray diffractometry (i.e. spatial frequency fingerprinting). Free-access crystallographic databases are also discussed because the whole fingerprinting concept is only viable if there are comprehensive databases to support the identification of an unknown nanocrystal phase. This discussion provides the rationale for our ongoing development of a dedicated free-access Nano-Crystallography Database (NCD) that contains comprehensive information on both nanocrystal structures and morphologies. The current status of the NCD project and plans for its future developments are briefly outlined. Although feasible in contemporary HRTEMs and Z-STEMs, fringe fingerprinting in 2D (and image-based nanocrystallography in general) will become much more viable with the increased availability of aberration-corrected transmission electron microscopes. When the image acquisition and interpretation are, in addition, automated in such microscopes, fringe fingerprinting in 2D will be able to compete with powder X-ray diffraction for the identification of unknown nanocrystal phases on a routine basis. Since it possesses a range of advantages over powder X-ray diffractometry, e.g., fringe fingerprint plots contain much more information for the identification of an unknown crystal phase, fringe fingerprinting in 2D may then capture a significant part of the nanocrystal metrology market.
From mapping class groups to automorphism groups of free groups
DEFF Research Database (Denmark)
Wahl, Nathalie
2005-01-01
We show that the natural map from the mapping class groups of surfaces to the automorphism groups of free groups, induces an infinite loop map on the classifying spaces of the stable groups after plus construction. The proof uses automorphisms of free groups with boundaries which play the role...... of mapping class groups of surfaces with several boundary components....
Read, Randy J; McCoy, Airlie J
2016-03-01
The crystallographic diffraction experiment measures Bragg intensities; crystallographic electron-density maps and other crystallographic calculations in phasing require structure-factor amplitudes. If data were measured with no errors, the structure-factor amplitudes would be trivially proportional to the square roots of the intensities. When the experimental errors are large, and especially when random errors yield negative net intensities, the conversion of intensities and their error estimates into amplitudes and associated error estimates becomes nontrivial. Although this problem has been addressed intermittently in the history of crystallographic phasing, current approaches to accounting for experimental errors in macromolecular crystallography have numerous significant defects. These have been addressed with the formulation of LLGI, a log-likelihood-gain function in terms of the Bragg intensities and their associated experimental error estimates. LLGI has the correct asymptotic behaviour for data with large experimental error, appropriately downweighting these reflections without introducing bias. LLGI abrogates the need for the conversion of intensity data to amplitudes, which is usually performed with the French and Wilson method [French & Wilson (1978), Acta Cryst. A35, 517-525], wherever likelihood target functions are required. It has general applicability for a wide variety of algorithms in macromolecular crystallography, including scaling, characterizing anisotropy and translational noncrystallographic symmetry, detecting outliers, experimental phasing, molecular replacement and refinement. Because it is impossible to reliably recover the original intensity data from amplitudes, it is suggested that crystallographers should always deposit the intensity data in the Protein Data Bank.
Lou, Chang-Sheng; Liu, Tie; Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang
2017-02-01
The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials.
Geng, Yanquan; Zhang, Junjie; Yan, Yongda; Yu, Bowen; Geng, Lin; Sun, Tao
2015-01-01
In the present work, we perform experiments and molecular dynamics simulations to elucidate the underlying deformation mechanisms of single crystalline copper under the load-controlled multi-passes nanoscratching using a triangular pyramidal probe. The correlation of microscopic deformation behavior of the material with macroscopically-observed machining results is revealed. Moreover, the influence of crystallographic orientation on the nanoscratching of single crystalline copper is examined. Our simulation results indicate that the plastic deformation of single crystalline Cu under the nanoscratching is exclusively governed by dislocation mechanisms. However, there is no glissile dislocation structure formed due to the probe oscillation under the load-controlled mode. Both experiments and MD simulations demonstrate that the machined surface morphologies in terms of groove depth and surface pile-up exhibit strong crystallographic orientation dependence, because of different geometries of activated slip planes cutting with free surfaces and strain hardening abilities associated with different crystallographic orientations. PMID:26147506
Directory of Open Access Journals (Sweden)
Yanquan Geng
Full Text Available In the present work, we perform experiments and molecular dynamics simulations to elucidate the underlying deformation mechanisms of single crystalline copper under the load-controlled multi-passes nanoscratching using a triangular pyramidal probe. The correlation of microscopic deformation behavior of the material with macroscopically-observed machining results is revealed. Moreover, the influence of crystallographic orientation on the nanoscratching of single crystalline copper is examined. Our simulation results indicate that the plastic deformation of single crystalline Cu under the nanoscratching is exclusively governed by dislocation mechanisms. However, there is no glissile dislocation structure formed due to the probe oscillation under the load-controlled mode. Both experiments and MD simulations demonstrate that the machined surface morphologies in terms of groove depth and surface pile-up exhibit strong crystallographic orientation dependence, because of different geometries of activated slip planes cutting with free surfaces and strain hardening abilities associated with different crystallographic orientations.
DEFF Research Database (Denmark)
Alimadadi, Hossein; da Silva Fanta, Alice Bastos; Somers, Marcel A. J.;
Numerous industrial applications of nickel electrodeposits, like for example as microcomponents, essentially depend on their preferred crystallographic orientation. As a function of the electrodeposition conditions, the microstructure can be tailored with respect to the size, shape...... for such advanced investigations. The present work reports on the evolution of the preferred crystallographic orientation on the example of various fiber textured nickel electrodeposits. Tailored electrodeposition provided nickel deposits with different fibre textures being , , and ... and crystallographic orientation of grains. Thorough microstructure characterization, however, is not straightforward, because the microstructure of electrodeposits often changes across the thickness of the deposits and numerous twin orientations even with nano-size dimensions can evolve during growth of the deposits...
Kang, Byungjun; Park, Nochang; Tark, Sung Ju; Oh, Won Wook; Park, Sungeun; Kim, Young Do; Lee, Hae-Seok; Kim, Donghwan
2014-03-01
This paper reports a study on reducing the yield strength of Cu ribbon wire used for Si solar cell interconnections in solar panels. Low yield strength Cu core should be used as the interconnector ribbon to minimize the fracture of Si solar cells during the tabbing process. We lowered the yield strength of Cu ribbon by controlling the crystallographic texture without increasing the annealing time and temperature. The crystallographic texture was controlled by lubrication in a cold rolling process. The crystallographic texture was observed by scanning electron microscopy with electron back scattered diffraction. A tensile test was performed for the comparison of the mechanical properties of Cu with and without lubrication. The average yield strength was 91.2 MPa with lubrication whereas the yield strength was 99.6 MPa without lubrication. The lower value of the lubricated samples seemed to be caused by the higher cube texture intensity than that of the samples without lubrication.
Crystallographic control on early stages of cataclasis in carbonate fault gouges
Demurtas, Matteo; Smith, Steven A. F.; Fondriest, Michele; Spagnuolo, Elena; Di Toro, Giulio
2017-04-01
Carbonates are a recurring lithology in most of active seismic areas worldwide, such as the Apennines (Italy). Here, typical fault products are gouges and cataclasites made of mixtures of carbonate minerals (i.e., calcite and dolomite) that occasionally exhibit a foliation. Natural fault gouges often contain minerals with strong anisotropies, such as cleavage surfaces in phyllosilicates and carbonates. Therefore, the understanding of the role of such anisotropies during shearing is important to develop realistic microphysical models of brittle fragmentation and grain size reduction. Here we present results of microstructural and coupled EDS-EBSD (Energy Dispersive Spectroscopy - Electron Backscattered Diffraction) analysis on mixtures (50/50wt%) of calcite-dolomite gouges deformed experimentally in a rotary shear apparatus (SHIVA, INGV-Rome) at room temperature under constant normal stress of 17.5 MPa and slip rates of 30 µm/s to 1 m/s. The EDS-EBSD analysis was focused on the gouge layer underlying the slip zone, which has been previously demonstrated to accommodate low finite shear strain during deformation. At all investigated slip rates, calcite develops a crystallographic preferred orientation (CPO) on the (0001) plane, with the c-axis inclined subparallel to the principal stress and the [-1-120] direction forming a girdle perpendicular to it. Texture strength typically increases with slip rate and appears not to be influenced by the presence of water or foliation development in the gouge during deformation. Misorientation analysis suggests twinning as the principal crystallographic active deformation mechanism. Instead, dolomite grains do not develop a CPO. Microfractures are closely spaced, mainly oriented subparallel to the principal stress and rarely exploit calcite twin planes. The latter typically occur at high angle with respect to fractures, are oriented consistently with the sense of shear and almost orthogonal to the principal stress. Calcite grains
Lane, C. J. L.; Dunhill, A. K.; Drinkwater, B. W.; Wilcox, P. D.
2011-06-01
Single crystal components are used widely in the gas-turbine industry. However, these components are elastically anisotropic which causes difficulties when performing NDE inspections with ultrasound. Recently an ultrasonic algorithm for a 2D array has been corrected to perform the reliable volumetric inspection of single crystals. For the algorithm to be implemented the crystallographic orientation of the components must be known. This paper, therefore, develops and reviews crystallographic orientation methods using 2D ultrasonic arrays. The methods under examination are based on the anisotropic propagation of surface and bulk waves and an image-based orientation method is also considered.
Energy Technology Data Exchange (ETDEWEB)
G.R. Myneni; S.R. Agnew
2002-11-01
Conventional assessments of the mechanical properties of polycrystalline high RRR niobium via tensile testing have revealed unusually low apparent Young's moduli and yield strength in annealed samples. These observations motivated the current investigation of a variety of possible contributors: crystallographic texture, grain size, and impurity concentration. It is shown that the crystallographic textures of a single lot of niobium are essentially unchanged by post-recrystallization anneals at temperatures up to 800 C. Ultrasonic measurements reveal that the elastic response is not degraded by annealing. Rather, the material's extremely low yield point gives the impression of a low elastic modulus during tensile testing.
Crystallographic preferred orientation and deformation of deep Earth minerals
Kaercher, Pamela Michelle
This thesis aims to provide further insight into crystallographic preferred orientation (CPO) and deformation mechanisms active at high pressure. Preferred orientation of iron-rich magnesiowustite (Mg,Fe)O, a major mantle mineral phase, stishovite (SiO2), the high pressure polymorph of quartz that is likely present in the lower crust and mantle, and in NaMgF3 + NaCl, an analog system to lower mantle minerals MgSiO3 + MgO, have been examined with synchrotron X-ray diffraction while at high pressure in either a diamond anvil cell or a multianvil press. Magnesiowustite, (Mg0.08Fe0.88)O, and wustite, Fe0.94O, were compressed up to 37 GPa at ambient temperature in diamond anvil cells (DAC) at the Advanced Light Source (ALS). X-ray diffraction patterns were taken in situ in radial geometry in order to study the evolution of CPO through the cubic-to-rhombohedral phase transition. Under uniaxial stress in the DAC, cubic texture developed (i.e. {100} c planes aligned perpendicular to the compression direction). Variant selection of preferred orientation was observed immediately following the transition to the rhombohedral phase. Upon decompression in the DAC, FeO reverted back to cubic symmetry and the cubic texture reappeared, demonstrating that the transition is reversible and has texture memory. The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, but little is known about texture development during deformation, which provides information for understanding subduction of quartz-bearing crustal rocks into the mantle. Radial DAC experiments were done at the ALS and the Advanced Photon Source (APS) while collecting X-ray diffraction patterns in radial geometry to examine in situ development of CPO. Starting pressure in the sample chamber was still in the quartz stability field, and compression of quartz produced a weak texture, likely due to Dauphine twinning. Following compression of quartz into the stishovite stability field
Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu
2011-11-02
The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.
Georgiev, Ivan T.; McKay, Susan R.
2004-03-01
We have introduced a general position-space renormalization-group approach for non-equilibrium systems developed from the microscopic master equation. The method is based upon a closed form representation of the parameters of the system in terms of the steady state probability distribution of small clusters. From the master equation in terms of these small clusters, we build recursion relations linking parameters affecting transition rates on various length scales and determine the flow topology. Results for the three-state driven lattice gas show many of the expected features associated with the phase diagrams previously reported for this system, (G. Korniss, B. Schmittmann, and R.K.P. Zia, Non-Equilibrium Phase Transitions in a Simple Three-State Lattice Gas, J. Stat. Phys. 86, 721 (1997).)in excellent agreement with simulations. The flow diagrams also exhibit added complexities, suggesting multiple regions within the ordered phase for some values of parameters and the presence of an extra "source" fixed point. (I.T. Georgiev, U. of Maine Ph.D. Thesis (2003); I.T. Georgiev and S.R. McKay, in preparation.)
Roussel, P; Pérez, O; Labbé, P
2001-10-01
Phosphate tungsten bronzes have been shown to be conductors of low dimensionality. A review of the crystallographic and structural properties of this huge series of compounds is given here, corresponding to the present knowledge of the different X-ray studies and electron microscopy investigations. Three main families are described, monophosphate tungsten bronzes, Ax(PO2)4(WO3)2m, either with pentagonal tunnels (MPTBp) or with hexagonal tunnels (MPTBh), and diphosphate tungsten bronzes, Ax(P2O4)2(WO3)2m, mainly with hexagonal tunnels (DPTBh). The general aspect of these crystal structures may be described as a building of polyhedra sharing oxygen corners made of regular stacking of WO3-type slabs with a thickness function of m, joined by slices of tetrahedral PO4 phosphate or P2O7 diphosphate groups. The relations of the different slabs with respect to the basic perovskite structure are mentioned. The structural description is focused on the tilt phenomenon of the WO6 octahedra inside a slab of WO3-type. In this respect, a comparison with the different phases of the WO3 crystal structures is established. The various modes of tilting and the different possible connections between two adjacent WO3-type slabs involve a great variety of structures with different symmetries, as well as the existence of numerous twins in MPTBp's. Several phase transitions, with the appearance of diffuse scattering and modulation phenomena, were analysed by X-ray scattering measurements and through the temperature dependence of various physical properties for the MPTBp's. The role of the W displacements within the WO3-type slabs, in two modulated structures (m = 4 and m = 10), already solved, is discussed. Finally, the complexity of the structural aspects of DPTBh's is explained on the basis of the average structures which are the only ones solved.
1976-01-01
Power requirements for the multipurpose space power platform, for space industrialization, SETI, the solar system exploration facility, and for global services are assessed for various launch dates. Priorities and initiatives for the development of elements of space power systems are described for systems using light power input (solar energy source) or thermal power input, (solar, chemical, nuclear, radioisotopes, reactors). Systems for power conversion, power processing, distribution and control are likewise examined.
Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum
DEFF Research Database (Denmark)
Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang
2016-01-01
Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations...
DEFF Research Database (Denmark)
Pantleon, Karen; Jensen, Jens Arne Dahl; Somers, Marcel A. J.
2004-01-01
Crystallographic texture and morphology in Cu electrodeposits was studied in relation to the current density and the content of the organic levelling additive 3-mercapto-1-propanesulfonate. The substrate onto which Cu was electrodeposited consisted of amorphous Ni-P in order to allow substrate...
Crystallographic structural organization of human rhinovirus serotype 16, 14, 3, 2 and 1A
Janner, A.
2006-07-01
The capsid of the icosahedral virion is encapsulated between two polyhedra scaled according to the golden mean, each being composed of an icosahedron and a dodecahedron. Structural units of the coat proteins are enclosed into forms whose projections along the icosahedral symmetry axes obey the crystallographic law of rational indices.
Quistgaard, Esben M.; Martinez Molledo, Maria
2017-01-01
Major facilitator superfamily (MFS) peptide transporters (typically referred to as PepT, POT or PTR transporters) mediate the uptake of di- and tripeptides, and so play an important dietary role in many organisms. In recent years, a better understanding of the molecular basis for this process has emerged, which is in large part due to a steep increase in structural information. Yet, the conformational transitions underlying the transport mechanism are still not fully understood, and additional data is therefore needed. Here we report in detail the detergent screening, crystallization, experimental MIRAS phasing, and refinement of the peptide transporter PepTSt from Streptococcus thermophilus. The space group is P3121, and the protein is crystallized in a monomeric inward facing form. The binding site is likely to be somewhat occluded, as the lobe encompassing transmembrane helices 10 and 11 is markedly bent towards the central pore of the protein, but the extent of this potential occlusion could not be determined due to disorder at the apex of the lobe. Based on structural comparisons with the seven previously determined P212121 and C2221 structures of inward facing PepTSt, the structural flexibility as well as the conformational changes mediating transition between the inward open and inward facing occluded states are discussed. In conclusion, this report improves our understanding of the structure and conformational cycle of PepTSt, and can furthermore serve as a case study, which may aid in supporting future structure determinations of additional MFS transporters or other integral membrane proteins. PMID:28264013
Preliminary X-ray crystallographic analysis of glutathione transferase zeta 1 (GSTZ1a-1a)
Energy Technology Data Exchange (ETDEWEB)
Boone, Christopher D.; Zhong, Guo; Smeltz, Marci; James, Margaret O., E-mail: mojames@ufl.edu; McKenna, Robert, E-mail: mojames@ufl.edu
2014-01-21
Crystals of glutathione transferase zeta 1 were grown and shown to diffract X-rays to 3.1 Å resolution. They belonged to space group P1, with unit-cell parameters a = 42.0, b = 49.6, c = 54.6 Å, α = 82.9, β = 69.9, γ = 73.4°.
Schröter, K.-H.; Arkema, A.; Kester, H.C.M.; Visser, J.; Dijkstra, B.W.
1994-01-01
The endo-polygalacturonase II from Aspergillus niger has been crystallized from an ammonium sulfate solution by the hanging drop method. The crystals belong to the monoclinic space group P2(1), with cell dimensions a = 60.6 Angstrom, b = 152.6 Angstrom, c = 74.0 Angstrom and beta = 91.2 degrees with
Local dynamics of proteins and DNA evaluated from crystallographic B factors
Energy Technology Data Exchange (ETDEWEB)
Schneider, Bohdan, E-mail: bohdan.schneider@gmail.com [Institute of Biotechnology AS CR, Videnska 1083, 142 20 Prague (Czech Republic); Gelly, Jean-Christophe; Brevern, Alexandre G. de [INSERM, U1134, DSIMB, 75739 Paris (France); Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, 75739 Paris (France); Institut National de la Transfusion Sanguine (INTS), 75739 Paris (France); Laboratoire d’Excellence GR-Ex, 75739 Paris (France); Černý, Jiří [Institute of Biotechnology AS CR, Videnska 1083, 142 20 Prague (Czech Republic)
2014-09-01
Distributions of scaled B factors from 704 protein–DNA complexes reflect primarily the neighbourhood of amino-acid and nucleotide residues: their flexibility grows from the protein core to protein–protein and protein–DNA interfaces, to solvent-exposed residues. Some of the findings clearly observed at higher resolution structures can no longer be observed for structures at low resolution indicating problems in refinement protocols. The dynamics of protein and nucleic acid structures is as important as their average static picture. The local molecular dynamics concealed in diffraction images is expressed as so-called B factors. To find out how the crystal-derived B factors represent the dynamic behaviour of atoms and residues of proteins and DNA in their complexes, the distributions of scaled B factors from a carefully curated data set of over 700 protein–DNA crystal structures were analyzed [Schneider et al. (2014 ▶), Nucleic Acids Res.42, 3381–3394]. Amino acids and nucleotides were categorized based on their molecular neighbourhood as solvent-accessible, solvent-inaccessible (i.e. forming the protein core) or lying at protein–protein or protein–DNA interfaces; the backbone and side-chain atoms were analyzed separately. The B factors of two types of crystal-ordered water molecules were also analyzed. The analysis confirmed several expected features of protein and DNA dynamics, but also revealed surprising facts. Solvent-accessible amino acids have B factors that are larger than those of residues at the biomolecular interfaces, and core-forming amino acids are the most restricted in their movement. A unique feature of the latter group is that their side-chain and backbone atoms are restricted in their movement to the same extent; in all other amino-acid groups the side chains are more floppy than the backbone. The low values of the B factors of water molecules bridging proteins with DNA and the very large fluctuations of DNA phosphates are
Veysseyre, R; Weigel, D; Phan, Th
2008-11-01
The aim of this paper and of the following one [Weigel, Phan & Veysseyre (2008). Acta Cryst. A64, 687-697] is to complete the list of the Weigel-Phan-Veysseyre (WPV) symbols of the point groups of space E5 that was started in previous papers and in two reports of an IUCr Subcommittee on the Nomenclature of n-Dimensional Crystallography. In this paper, some crystal families of space E5 are studied. The cells of these are right hyperprisms with as a basis either two squares, or two hexagons, or a square and a hexagon. If the basis is made up of two squares, the two families are the (monoclinic di squares)-al family (No. XVI) and the (di squares)-al family (No. XIX). If the basis is made up of two hexagons, the two families are the (monoclinic di hexagons)-al family (No. XVII) and the (di hexagons)-al family (No. XXI). If the basis is made up of one square and one hexagon, the family is the (square hexagon)-al family (No. XX). In order to link space E5 to spaces E2, E3 and E4, some results published in previous papers are recalled. In fact, most of the symbols of the point groups of space E5 can be deduced from the symbols of the four, six and 23 crystal families of spaces E2, E3 and E4, respectively.
An evaluation of adhesive sample holders for advanced crystallographic experiments
Energy Technology Data Exchange (ETDEWEB)
Mazzorana, Marco; Sanchez-Weatherby, Juan, E-mail: juan.sanchez-weatherby@diamond.ac.uk; Sandy, James; Lobley, Carina M. C.; Sorensen, Thomas [Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom)
2014-09-01
Commercially available adhesives have been evaluated for crystal mounting when undertaking complex macromolecular crystallography experiments. Here, their use as tools for advanced sample mounting and cryoprotection is assessed and their suitability for room-temperature data-collection and humidity-controlled studies is investigated. The hydration state of macromolecular crystals often affects their overall order and, ultimately, the quality of the X-ray diffraction pattern that they produce. Post-crystallization techniques that alter the solvent content of a crystal may induce rearrangement within the three-dimensional array making up the crystal, possibly resulting in more ordered packing. The hydration state of a crystal can be manipulated by exposing it to a stream of air at controlled relative humidity in which the crystal can equilibrate. This approach provides a way of exploring crystal hydration space to assess the diffraction capabilities of existing crystals. A key requirement of these experiments is to expose the crystal directly to the dehydrating environment by having the minimum amount of residual mother liquor around it. This is usually achieved by placing the crystal on a flat porous support (Kapton mesh) and removing excess liquid by wicking. Here, an alternative approach is considered whereby crystals are harvested using adhesives that capture naked crystals directly from their crystallization drop, reducing the process to a one-step procedure. The impact of using adhesives to ease the harvesting of different types of crystals is presented together with their contribution to background scattering and their usefulness in dehydration experiments. It is concluded that adhesive supports represent a valuable tool for mounting macromolecular crystals to be used in humidity-controlled experiments and to improve signal-to-noise ratios in diffraction experiments, and how they can protect crystals from modifications in the sample environment is discussed.
Sporulation Phosporelay Proteins And Their Complexes: Crystallographic Characterization
Energy Technology Data Exchange (ETDEWEB)
Varughese, K.I.; Zhao, H.; Veldore, V.H.; Zapf, J.
2009-06-04
Bacteria use two-component systems to adapt to changes in environmental conditions. In response to deteriorating conditions of growth, certain types of bacteria form spores instead of proceeding with cell division. The formation of spores is controlled by an expanded version of two-component systems called the phosphorelay. The phosphorelay comprises a primary kinase that receives the signal/stimulus and undergoes autophosphorylation, followed by two intermediate messengers that regulate the flow of the phosphoryl group to the ultimate response regulator/transcription factor. Sporulation is initiated when the level of phosphorylation of the transcription factor reaches a critical point. This chapter describes efforts to understand the mechanism of initiation of sporulation at the molecular level using X-ray crystallography as a tool. Structural analyses of individual members, as well as their complexes, provide insight into the mechanism of phosphoryl transfer and the origin of specificity in signal transduction.
Crystal fingerprint space--a novel paradigm for studying crystal-structure sets.
Valle, Mario; Oganov, Artem R
2010-09-01
The initial aim of the crystal fingerprint project was to solve a very specific problem: to classify and remove duplicate crystal structures from the results generated by the evolutionary crystal-structure predictor USPEX. These duplications decrease the genetic diversity of the population used by the evolutionary algorithm, potentially leading to stagnation and, after a certain time, reducing the likelihood of predicting essentially new structures. After solving the initial problem, the approach led to unexpected discoveries: unforeseen correlations, useful derived quantities and insight into the structure of the overall set of results. All of these were facilitated by the project's underlying idea: to transform the structure sets from the physical configuration space to an abstract, high-dimensional space called the fingerprint space. Here every structure is represented as a point whose coordinates (fingerprint) are computed from the crystal structure. Then the space's distance measure, interpreted as structure 'closeness', enables grouping of structures into similarity classes. This model provides much flexibility and facilitates access to knowledge and algorithms from fields outside crystallography, e.g. pattern recognition and data mining. The current usage of the fingerprint-space model is revealing interesting properties that relate to chemical and crystallographic attributes of a structure set. For this reason, the mapping of structure sets to fingerprint space could become a new paradigm for studying crystal-structure ensembles and global chemical features of the energy landscape.
Pignatelli, Isabella; Marrocchi, Yves; Mugnaioli, Enrico; Bourdelle, Franck; Gounelle, Matthieu
2017-07-01
The CM chondrites represent the largest group of hydrated meteorites and span a wide range of conditions, from less altered (i.e., CM2) down to heavily altered (i.e., CM1). The Paris chondrite is considered the least altered CM and thus enables the earliest stages of aqueous alteration processes to be deciphered. Here, we report results from a nanoscale study of tochilinite/cronstedtite intergrowths (TCIs) in Paris-TCIs being the emblematic secondary mineral assemblages of CM chondrites, formed from the alteration of Fe-Ni metal beads (type-I TCIs) and anhydrous silicates (type-II TCIs). We combined high-resolution transmission electron microscopy, scanning transmission X-ray microscopy and electron diffraction tomography to characterize the crystal structure, crystal chemistry and redox state of TCIs. The data obtained are useful to reconstruct the alteration conditions of Paris and to compare them with those of other meteorites. Our results show that tochilinite in Paris is characterized by a high hydroxide layer content (n = 2.1-2.2) regardless of the silicate precursors. When examined alongside other CMs, it appears that the hydroxide layer and iron contents of tochilinites correlate with the degree of alteration experienced by the chondrites. The Fe3+/ΣFe ratios of TCIs are high: 8-15% in tochilinite, 33-60% in cronstedtite and 70-80% in hydroxides. These observations suggest that alteration of CM chondrites took place under oxidizing conditions that could have been induced by significant H2 release during serpentinization. Similar results were recently reported in CR chondrites (Le Guillou et al., 2015), suggesting that the process(es) controlling the redox state of the secondary mineral assemblages were quite similar in the CM and CR parent bodies despite the different alteration conditions. According to our mineralogical and crystallographic survey, the formation of TCIs in Paris occurred at temperatures lower than 100 °C, under neutral, slightly alkaline
Tufekci, Eser
Recently, plasma-spayed titanium implants have become very popular in the dentistry because of their biocompatibility and ability of providing osseointegration with the surrounding bone. Although there are numerous published studies on these materials, information and standards are still lacking. This study investigated the miscrostructural, crystallographic and adherence properties of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrates. The microstructures of the coatings and the elemental interdiffusion near the coating/substrate interface were investigated using a scanning electron microscope (SEM) equipped with x-ray energy-dispersive spectroscopy (EDS). X-ray diffraction analyses performed on Ti-6Al-4V coupons prepared with different percent crystallinities have provided structural information such as degree of crystallinity, phases present, average crystallite size, as well as the residual stresses within the coating. For evaluation of the adherence of the coatings to the substrates, experimental rods were subjected to torsion. The fracture surfaces were analyzed using SEM/EDS to develop a new methodology to determine the percent adherence of the coatings. SEM studies indicated that the surface microstructures of commercial dental implants were consistent with the plasma-spraying. In cross-section, coatings exhibited minimal porosity and limited interdiffusion of titanium and calcium at the coating/substrate interface. X-ray diffraction analyses indicated that the highest crystallinity coatings consisted of almost entirely HA and an amorphous calcium phosphate phase. As the coating crystallinity decreased, increasing amounts of alpha- and beta-tricalcium phosphate and tetracalcium phosphate were detected. The mean percent crystallinity for the three sets of coatings ranged from 50-60%. The mean HA crystallite size for the three sets of coatings ranged from about 0.02-0.04 mum. Differences in mean interplanar spacings for three selected
The X-ray system of crystallographic programs for any computer having a PIDGIN FORTRAN compiler
Stewart, J. M.; Kruger, G. J.; Ammon, H. L.; Dickinson, C.; Hall, S. R.
1972-01-01
A manual is presented for the use of a library of crystallographic programs. This library, called the X-ray system, is designed to carry out the calculations required to solve the structure of crystals by diffraction techniques. It has been implemented at the University of Maryland on the Univac 1108. It has, however, been developed and run on a variety of machines under various operating systems. It is considered to be an essentially machine independent library of applications programs. The report includes definition of crystallographic computing terms, program descriptions, with some text to show their application to specific crystal problems, detailed card input descriptions, mass storage file structure and some example run streams.
Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC.
Liu, Jin-Xun; Su, Hai-Yan; Sun, Da-Peng; Zhang, Bing-Yan; Li, Wei-Xue
2013-11-06
Identifying the structure sensitivity of catalysts in reactions, such as Fischer-Tropsch synthesis from CO and H2 over cobalt catalysts, is an important yet challenging issue in heterogeneous catalysis. Based on a first-principles kinetic study, we find for the first time that CO activation on hexagonal close-packed (HCP) Co not only has much higher intrinsic activity than that of face centered-cubic (FCC) Co but also prefers a different reaction route, i.e., direct dissociation with HCP Co but H-assisted dissociation on the FCC Co. The origin is identified from the formation of various denser yet favorable active sites on HCP Co not available for FCC Co, due to their distinct crystallographic structure and morphology. The great dependence of the activity on the crystallographic structure and morphology of the catalysts revealed here may open a new avenue for better, stable catalysts with maximum mass-specific reactivity.
Determination of crystallographic and macroscopic orientation of planar structures in TEM
DEFF Research Database (Denmark)
Huang, X.; Liu, Q.
1998-01-01
With the aid of a double-tilt holder in a transmission electron microscope (TEM), simple methods are described for determination of the crystallographic orientation of a planar structure and for calculation of the macroscopic orientation of the planar structure. The correlation between a planar s...... taken at tilted positions, can be transformed to the real macroscopic orientation of the planar structures with estimated error of about +/- 2 degrees. (C) 1998 Elsevier Science B.V. All rights reserved....... structure and a crystallographic plane can be found by comparing the differences in their trace directions on the projection plane and inclination angles with respect to that plane. The angles between the traces of planar structures and the sample axis measured from the TEM micrographs, which have been...
Preferred crystallographic orientation in the ice I ← II transformation and the flow of ice II
Bennett, K.; Wenk, H.-R.; Durham, W.B.; Stern, L.A.; Kirby, S.H.
1997-01-01
The preferred crystallographic orientation developed during the ice I ← II transformation and during the plastic flow of ice II was measured in polycrystalline deuterium oxide (D2O) specimens using low-temperature neutron diffraction. Samples partially transformed from ice I to II under a non-hydrostatic stress developed a preferred crystallographic orientation in the ice II. Samples of pure ice II transformed from ice I under a hydrostatic stress and then when compressed axially, developed a strong preferred orientation of compression axes parallel to (1010). A match to the observed preferred orientation using the viscoplastic self-consistent theory was obtained only when (1010) [0001] was taken as the predominant slip system in ice II.
Sei, J.; Morato, F.; Kra, G.; Staunton, S.; Quiquampoix, H.; Jumas, J. C.; Olivier-Fourcade, J.
2006-10-01
Thirteen clay samples from four deposits in the Ivory Coast (West Africa) were studied using X-ray diffraction, thermogravimetric analysis and chemical analysis. Mineralogical, crystallographic and morphological characteristics of these samples are given. Kaolinite is the principal mineral but other minerals are present in small quantities: illite, quartz, anatase and iron oxides (oxides and oxyhydroxides). The crystallographic, morphological and surface characteristics are influenced by the presence of these impurities. In particular, the presence of iron oxides was associated with reduced structural ordering and thermal stability of kaolinite and increased specific surface area. These clays could be used in the ceramics industry to make tiles and bricks, and also in agronomy as supports for chemical fertilizers or for environmental protection by immobilising potentially toxic waste products.
Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum
Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang; Wu, Guilin; Liu, Qing; Juul Jensen, Dorte
2016-12-01
Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations. It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed at different indentations within one original grain are analyzed and it is found that the orientation distribution of the nuclei is far from random. It is suggested that it relates to the orientations present near the indentation tips which in turn depend on the orientation of the selected grain in which they form. Finally, possible nucleation mechanisms are briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Bange, Gert; Petzold, Georg; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Centre (BZH), INF 328, 69120 Heidelberg (Germany)
2007-05-01
Preliminary crystallographic data are reported for the third SRP GTPase FlhF from Bacillus subtilis. The Gram-positive bacterium Bacillus subtilis contains three proteins belonging to the signal recognition particle (SRP) type GTPase family. The well characterized signal sequence-binding protein SRP54 and the SRP receptor protein FtsY are universally conserved components of the SRP system of protein transport. The third member, FlhF, has been implicated in the placement and assembly of polar flagella. This article describes the overexpression and preliminary X-ray crystallographic analysis of an FlhF fragment that corresponds to the well characterized GTPase domains in SRP54 and FtsY. Three crystal forms are reported with either GDP or GMPPNP and diffract to a resolution of about 3 Å.
Rubiano, C A Rios; Mitnik, D M; Silkin, V M; Gravielle, M S
2016-01-01
The influence of the crystallographic orientation of a typical metal surface, like aluminum, on electron emission spectra produced by grazing incidence of ultrashort laser pulses is investigated by using the band-structure-based-Volkov (BSB-V) approximation. The present version of the BSB-V approach includes not only a realistic description of the surface interaction, accounting for band structure effects, but also effects due to the induced potential that originates from the collective response of valence-band electrons to the external electromagnetic field. The model is applied to evaluate differential electron emission probabilities from the valence band of Al(100) and Al(111). For both crystallographic orientations, the contribution of partially occupied surface electronic states and the influence of the induced potential are separately analyzed as a function of the laser carrier frequency. We found that the induced potential strongly affects photoelectron emission distributions, opening a window to scrut...
Institute of Scientific and Technical Information of China (English)
LIU Jiangwen; LUO Chengping; WU Dongxiao
2005-01-01
Progress in the crystallography of lath martensitic and lower bainitic transformations is briefly reviewed, followed by a presentation of the experimentally measured crystallographic characteristics of both lath martensite and lower bainite formed in mediumcarbon steels containing Si, Mn and Mo. It is found that the bainite plates relate to each other by a relative rotation of 54.7°or 60°about the normal to their common close-packed planes {110} b, which ensures a pseudo- {112}b twin relationship between two adjacent plates,and that all bainite variants formed in a single packet keep a unique G-T orientation relationship with the austenite matrix. These two types of OR of lower bainite are similar to that of the lath martensite, respectively. Furthermore, the measured habit planes of both the lower bainite and lath martensite are all {335} f type, which can verify the crystallographic similarity between the lath martensite and lower bainite.
1976-01-01
Technologies required to support the stated OAST thrust to increase information return by X1000, while reducing costs by a factor of 10 are identified. The most significant driver is the need for an overall end-to-end data system management technology. Maximum use of LSI component technology and trade-offs between hardware and software are manifest in most all considerations of technology needs. By far, the greatest need for data handling technology was identified for the space Exploration and Global Services themes. Major advances are needed in NASA's ability to provide cost effective mass reduction of space data, and automated assessment of earth looking imagery, with a concomitant reduction in cost per useful bit. A combined approach embodying end-to-end system analysis, with onboard data set selection, onboard data processing, highly parallel image processing (both ground and space), low cost, high capacity memories, and low cost user data distribution systems would be necessary.
1976-01-01
The six themes identified by the Workshop have many common navigation guidance and control needs. All the earth orbit themes have a strong requirement for attitude, figure and stabilization control of large space structures, a requirement not currently being supported. All but the space transportation theme have need for precision pointing of spacecraft and instruments. In addition all the themes have requirements for increasing autonomous operations for such activities as spacecraft and experiment operations, onboard mission modification, rendezvous and docking, spacecraft assembly and maintenance, navigation and guidance, and self-checkout, test and repair. Major new efforts are required to conceptualize new approaches to large space antennas and arrays that are lightweight, readily deployable, and capable of precise attitude and figure control. Conventional approaches offer little hope of meeting these requirements. Functions that can benefit from increasing automation or autonomous operations are listed.
Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L
2017-03-01
Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P21/c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C13H9N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C12H8N2, and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C8H12N2. (13)C and (19)F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from (19)F to (13)C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional (1)H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental (13)C and (19)F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.
Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A
Energy Technology Data Exchange (ETDEWEB)
Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721 (Egypt); Wynne, B.P.; Rainforth, W.M. [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Threadgill, P.L. [TWI LTD, Granta Park, Great Abington, Cambridge CB21 6AL (United Kingdom)
2012-02-15
In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder. The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.
2015-01-01
In the present work, we perform molecular dynamics simulations corroborated by experimental validations to elucidate the underlying deformation mechanisms of single-crystalline aluminum under direct imprint using a rigid silicon master. We investigate the influence of crystallographic orientation on the microscopic deformation behavior of the substrate materials and its correlation with the macroscopic pattern replications. Furthermore, the surface mechanical properties of the patterned struc...
2015-01-01
In the present work, we perform experiments and molecular dynamics simulations to elucidate the underlying deformation mechanisms of single crystalline copper under the load-controlled multi-passes nanoscratching using a triangular pyramidal probe. The correlation of microscopic deformation behavior of the material with macroscopically-observed machining results is revealed. Moreover, the influence of crystallographic orientation on the nanoscratching of single crystalline copper is examined....
Crystallographic mechanism of inverse twinning in ordered β′-CuZn alloy
Institute of Scientific and Technical Information of China (English)
毛卫民
2000-01-01
The basic process of mechanical twinning in β’-CuZn phase, as an example of B2 structured metals, has been analyzed under the rolling stresses. The behavior of inverse twinning in B2 structured metals is discussed in terms of mechanics and crystallographic stability. It is shown that the inverse twinning could remain the B2 structure, and the resulting strains will have the lowest resistance during the rolling deformation of the polycrystalline.
Crystallographic mechanism of inverse twinning in ordered β'-CuZn alloy
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The basic process of mechanical twinning in β'-CuZn phase, as an example of B2 structured metals, has been analyzed under the rolling stresses. The behavior of inverse twinning in B2 structured metals is discussed in terms of mechanics and crystallographic stability. It is shown that the inverse twinning could remain the B2 structure, and the resulting strains will have the lowest resistance during the rolling deformation of the polycrystalline.
DEFF Research Database (Denmark)
Dar, Imran; Bonny, Christophe; Pedersen, Jan Torleif
2003-01-01
with unmodified protein and deliberately oxidized protein have led to different crystal forms. X-ray data have been collected to 3.0 A resolution from a crystal form with rectangular prism morphology. These crystals are orthorhombic (P2(1)2(1)2(1)), with unit-cell parameters a = 45.9, b = 57.0, c = 145.5 A....... These are the first crystallographic data on a scaffold molecule such as IB1 to be reported....
Keep it together: restraints in crystallographic refinement of macromolecule–ligand complexes
Steiner, Roberto A.; Tucker, Julie A.
2017-01-01
A short introduction is provided to the concept of restraints in macromolecular crystallographic refinement. A typical ligand restraint-generation process is then described, covering types of input, the methodology and the mechanics behind the software in general terms, how this has evolved over recent years and what to look for in the output. Finally, the currently available restraint-generation software is compared, concluding with some thoughts for the future. PMID:28177305
1976-01-01
Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.
1976-01-01
The approach of matching technology areas with various themes needs was not effective for the materials and thermal control discipline because of the diversity of requirements for each. Top priorities were evolved from the advanced space transportation system and the space power platform because these are essential building blocks in fulfilling some of the other themes. Important needs identified include life long-life cryogenic cooling systems for sensors, masers, and other devices and the needs for lightweight nuclear shielding materials for nuclear electric propulsion.
Balan, Andrea; Santacruz-Pérez, Carolina; Moutran, Alexandre; Ferreira, Luís Carlos Souza; Neshich, Goran; Gonçalves Barbosa, João Alexandre Ribeiro
2008-02-01
In Xanthomonas axonopodis pv. citri (Xac or X. citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala38 and Ser151, are shown to be part of the ligand-binding pocket.
Matulková, I.; Fridrichová, M.; Císařová, I.; Vaněk, P.; Uhlík, F.; Němec, I.
2017-03-01
The family of known guanylurea(1+) sulphates was extended for two novel triclinic (space group P-1) members - bis(guanylurea(1+)) sulphate dihydrate and tetrakis(guanylurea(1+)) bis(hydrogen sulphate) sulphate. Additionally, the monoclinic (space group P21/n) guanylurea(1+) hydrogen selenate was also isolated and characterised. Besides of X-ray diffraction study these novel guanylurea chalcogenates were studied by the methods of vibrational spectroscopy. The study of thermal behaviour of the prepared salts revealed reversible λ-shaped anomaly for tetrakis(guanylurea(1+)) bis(hydrogen sulphate) sulphate at 354 K. This effect was studied in detail by the combination of DSC and temperature-dependent IR and Raman spectroscopies.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yan-Feng; Li, Lan-Fen [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Yang, Cheng [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381 (United States); Liang, Yu-He, E-mail: liangyh@pku.edu.cn [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Su, Xiao-Dong, E-mail: liangyh@pku.edu.cn [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Shenzhen Graduate School of Peking University, Shenzhen 518055 (China)
2008-01-01
SMU.573 from S. mutans was expressed in E. coli and crystallized. The crystals belong to space group I4 and 2.5 Å resolution diffraction data were collected at an in-house chromium radiation source. SMU.573 from Streptococcus mutans is a structurally and functionally uncharacterized protein that was selected for structural biology studies. Native and SeMet-labelled proteins were expressed with an N-His tag in Escherichia coli BL21 (DE3) and purified by Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals of the SeMet-labelled protein were obtained by the hanging-drop vapour-diffusion method and a 2.5 Å resolution diffraction data set was collected using an in-house chromium radiation source. The crystals belong to space group I4, with unit-cell parameters a = b = 96.53, c = 56.26 Å, α = β = γ = 90°.
Energy Technology Data Exchange (ETDEWEB)
Meining, Winfried, E-mail: wim@csb.ki.se [Karolinska Institutet, Department of Biosciences, Center of Structural Biochemistry (Sweden); Scheuring, Johannes; Fischer, Markus; Weinkauf, Sevil [Technische Universität München, Chemistry Department (Germany); Karolinska Institutet, Department of Biosciences, Center of Structural Biochemistry (Sweden)
2006-06-01
SecA ATPase from E. faecalis has been cloned, overexpressed, purified and crystallized. Crystals belong to space group C2 and diffract to 2.4 Å resolution. The gene coding for SecA from Enterococcus faecalis was cloned and overexpressed in Escherichia coli. In this protein, the lysine at position 6 was replaced by an asparagine in order to reduce sensitivity towards proteases. The modified protein was purified and crystallized. Crystals diffracting to 2.4 Å resolution were obtained using the vapour-diffusion technique. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 203.4, b = 49.8, c = 100.8 Å, α = γ = 90.0, β = 119.1°. A selenomethionine derivative was prepared and is currently being tested in crystallization trials.
Castro, C
2004-01-01
We construct the Extended Relativity Theory in Born-Clifford-Phase spaces with an upper and lower length scales (infrared/ultraviolet cutoff). The invariance symmetry leads naturally to the real Clifford algebra Cl (2, 6, R ) and complexified Clifford Cl_C ( 4 ) algebra related to Twistors. We proceed with an extensive review of Smith's 8D model based on the Clifford algebra Cl ( 1 ,7) that reproduces at low energies the physics of the Standard Model and Gravity; including the derivation of all the coupling constants, particle masses, mixing angles, ....with high precision. Further results by Smith are discussed pertaining the interplay among Clifford, Jordan, Division and Exceptional Lie algebras within the hierarchy of dimensions D = 26, 27, 28 related to bosonic string, M, F theory. Two Geometric actions are presented like the Clifford-Space extension of Maxwell's Electrodynamics, Brandt's action related the 8D spacetime tangent-bundle involving coordinates and velocities (Finsler geometries) followed by a...
1976-01-01
Developments required to support the space power, SETI, solar system exploration and global services programs are identified. Instrumentation and calibration sensors (rather than scientific) are needed for the space power system. Highly sophisticated receivers for narrowband detection of microwave sensors and sensors for automated stellar cataloging to provide a mapping data base for SETI are needed. Various phases of solar system exploration require large area solid state imaging arrays from UV to IR; a long focal plane telescope; high energy particle detectors; advanced spectrometers; a gravitometer; and atmospheric distanalyzer; sensors for penetrometers; in-situ sensors for surface chemical analysis, life detection, spectroscopic and microscopic analyses of surface soils, and for meteorological measurements. Active and passive multiapplication sensors, advanced multispectral scanners with improved resolution in the UV and IR ranges, and laser techniques for advanced probing and oceanographic characterization will enhance for global services.
Flohr, J R; Tokach, M D; DeRouchey, J M; Woodworth, J C; Goodband, R D; Dritz, S S
2016-10-01
A total of 1,092 finishing pigs (initially 36.3 kg) were used in a 117-d study to evaluate the impact of initial floor space allowance and removal strategy on the growth of pigs up to 140 kg BW. There were 4 experimental treatments with 14 pens per treatment. The first treatment provided 0.91 m per pig (15 pigs/pen). The other 3 treatments initially provided 0.65 m per pig (21 pigs/pen) with 3 different removal strategies. The second treatment (2:2:2) removed the 2 heaviest pigs from pens on d 64, 76, and 95 when floor space allowance was predicted to be limiting. Treatment 3 (2:4) removed the 2 heaviest pigs on d 76 and the 4 heaviest pigs on d 105. Treatment 4 (6) removed the heaviest 6 pigs on d 105. All pigs remaining in pens after removals were fed to d 117. Overall (d 0 to 117), pigs initially provided 0.91 m of floor space had increased ( strategy, but ADG was not different compared with pigs on the 2:2:2 removal strategy. Total BW gain per pen was greater ( strategies; however, feed usage per pig was greater ( strategies. Feed usage, on a pig or pen basis, was less ( strategy compared to pigs on the 2:4 or the 6 removal strategy. Income over feed and facility cost (IOFFC) was less ( strategies. Also, IOFFC was less ( strategies. In conclusion, increasing the floor space allowance or the time points at which pigs are removed from the pen improved the growth of pigs remaining in the pen; however, IOFFC may be reduced because fewer pigs are marketed from each pen (pigs stocked at 0.91 m throughout the study) or from reducing total weight produced (2:2:2 removal strategy).
Zu, Ying
2012-01-01
The large scale infall of galaxies around massive clusters provides a potentially powerful diagnostic of structure growth, dark energy, and cosmological deviations from General Relativity. We develop and test a method to recover galaxy infall kinematics (GIK) from measurements of the redshift-space cluster-galaxy cross-correlation function \\xi_{cg}(r_p,r_\\pi). Using galaxy and halo samples from the Millennium simulation, we calibrate an analytic model of the galaxy kinematic profiles comprised of a virialized component with an isotropic Gaussian velocity distribution and an infall component described by a skewed 2D t-distribution with a characteristic infall velocity v_r and separate radial and tangential dispersions. We show that convolving the real-space cross-correlation function with this velocity distribution accurately predicts the redshift-space \\xi_{cg}, and we show that measurements of \\xi_{cg} can be inverted to recover the four distinct elements of the GIK profiles. These in turn provide diagnostic...
Ferromagnetic behavior of formyl-group-carrying stable thioaminyl radicals.
Miura, Yozo; Nakamura, Shogo; Teki, Yoshio
2003-10-17
Four formyl-group-carrying thioaminyl radicals were generated, and one radical could be isolated as radical crystals. Magnetic susceptibility measurements of the isolated radical showed a ferromagnetic regular linear-chain interaction of 2J/k(B) = 3.2 K, which was explained in terms of the X-ray crystallographic results.
Institute of Scientific and Technical Information of China (English)
ShiEnhui; ZhouLizhen; ZhouYoucheng
2003-01-01
It is proved that there is no chaotic group actions on any topological space with free arc.In this paper the chaotic actions of the group like G×F,where F is a finite group,are studied.In particular,under a suitable assumption ,if F is a cyclic group,then the topological space which admits a chaotic action of Z×F must admit a chatotic homeomorphism.A topological space which admits a chaotic group action but admits no chaotic horneomorphism is constructed.
Irimia, Adriana; Sarkar, Anita; Stanfield, Robyn L; Wilson, Ian A
2016-01-19
Numerous studies of the anti-HIV-1 envelope glycoprotein 41 (gp41) broadly neutralizing antibody 4E10 suggest that 4E10 also interacts with membrane lipids, but the antibody regions contacting lipids and its orientation with respect to the viral membrane are unknown. Vaccine immunogens capable of re-eliciting these membrane proximal external region (MPER)-like antibodies may require a lipid component to be successful. We performed a systematic crystallographic study of lipid binding to 4E10 to identify lipids bound by the antibody and the lipid-interacting regions. We identified phosphatidic acid, phosphatidylglycerol, and glycerol phosphate as specific ligands for 4E10 in the crystal structures. 4E10 used its CDRH1 loop to bind the lipid head groups, while its CDRH3 interacted with the hydrophobic lipid tails. Identification of the lipid binding sites on 4E10 may aid design of immunogens for vaccines that include a lipid component in addition to the MPER on gp41 for generation of broadly neutralizing antibodies.
Energy Technology Data Exchange (ETDEWEB)
Han, Sang Hee; Ha, Jun Yong; Kim, Kyoung Hoon; Oh, Sung Jin; Kim, Do Jin; Kang, Ji Yong; Yoon, Hye Jin [Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Se-Hee; Seo, Ji Hae; Kim, Kyu-Won [NeuroVascular Coordination Research Center, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of); Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of)
2006-11-01
An N-terminal acetyltransferase ARD1 subunit-related protein (Ta0058) and an N-terminal acetyltransferase-related protein (Ta1140) from T. acidophilum were crystallized. X-ray diffraction data were collected to 2.17 and 2.40 Å, respectively. N-terminal acetylation is one of the most common protein modifications in eukaryotes, occurring in approximately 80–90% of cytosolic mammalian proteins and about 50% of yeast proteins. ARD1 (arrest-defective protein 1), together with NAT1 (N-acetyltransferase protein 1) and possibly NAT5, is responsible for the NatA activity in Saccharomyces cerevisiae. In mammals, ARD1 is involved in cell proliferation, neuronal development and cancer. Interestingly, it has been reported that mouse ARD1 (mARD1{sup 225}) mediates ∊-acetylation of hypoxia-inducible factor 1α (HIF-1α) and thereby enhances HIF-1α ubiquitination and degradation. Here, the preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins encoded by the Ta0058 and Ta1140 genes of Thermoplasma acidophilum are reported. The Ta0058 protein is related to an N-terminal acetyltransferase complex ARD1 subunit, while Ta1140 is a putative N-terminal acetyltransferase-related protein. Ta0058 shows 26% amino-acid sequence identity to both mARD1{sup 225} and human ARD1{sup 235}.The sequence identity between Ta0058 and Ta1140 is 28%. Ta0058 and Ta1140 were overexpressed in Escherichia coli fused with an N-terminal purification tag. Ta0058 was crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium acetate pH 4.6, 8%(w/v) polyethylene glycol 4000 and 35%(v/v) glycerol. X-ray diffraction data were collected to 2.17 Å. The Ta0058 crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 49.334, c = 70.384 Å, α = β = γ = 90°. The asymmetric unit contains a monomer, giving a calculated crystal volume per protein weight (V{sub M}) of 2.13 Å{sup 3} Da{sup −1} and a solvent content of 42
Banerjee, Amit; Das, Debajyoti
2015-03-01
Using low-pressure planar inductively coupled plasma CVD at 87% H2-dilution to the SiH4 plasma, nc-Si:H films are prepared that possess preferential growth along crystallographic orientation with I220/I111 > 1.2, bonded H-content of ∼5.5 at.%, a low microstructure factor of ∼0.56, along with a reasonably high σD ∼ 5.2 × 10-4 S cm-1, ΔE ∼ 143 meV and σPh ∼ 1.4 × 10-3 S cm-1. The growth of the nc-Si:H network has been optimized to a moderately high nanocrystallinity (∼68%), with an average grain size of ∼8 nm. The overall network comprises a significant fraction of ultra-nanocrystalline component, Xunc/Xnc ∼ 0.47, which are dominantly inhabited by the thermodynamically preferred crystallographic orientation that provides convenient electrical transport perpendicular to the film surface and subsequently could facilitate photovoltaic performance. The cross-sectional view of the fracture surface demonstrates columnar structures, closely correlated to the favored growth of the nanocrystallites along crystallographic orientation that retains direction perpendicular to the substrate surface. The underlying phenomena could be demonstrated as a consequence of preferential growth induced by high atomic H density present in the planar inductively coupled SiH4 plasma obtained via much lower H2-dilution compared to that realized in conventional capacitively coupled plasma-CVD. The nc-Si:H films with precise material properties as well as the allied low-pressure ICP-CVD growth process could be of significant use in further progress of nc-Si solar cells.
Institute of Scientific and Technical Information of China (English)
崔成
2016-01-01
以上海市宝山区淞南八村组团绿地为例，根据淞南八村居民，尤其是老人在组团绿地内的活动特点，对该组团绿地进行使用后评价（POE）。根据活动人群的实际需求，做出相应调适设计，试图提供一个建立在环境行为理论基础上的，具有可操作性、可持续发展的组团绿地调适设计案例。研究揭示了设计师和管理者在进行组团绿地设计和管理时需要不断跟踪服务，根据实际需要进行调适设计。%With group green space in Songnanba Village, Baoshan District, Shanghai City as example, according to activity features of resi-dents, especially old people, post occupancy evaluation(POE) was conducted in group green space.According to people’s actual demands, corresponding adaptive design was made, which aims to provide an adaptive design case for group green space with operability and sustainable development based on theory of environmental behavior.The study reveals that the designers and managers need to keep track of the service in the design and management of group green space, and adjust the design according to the actual demand.
Batuk, Dmitry; Batuk, Maria; Tsirlin, Alexander A; Hadermann, Joke; Abakumov, Artem M
2015-12-01
The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.
Li, Guoqiang; Varga, Tamas; Yan, Pengfei; Wang, Zhiguo; Wang, Chongmin; Chambers, Scott A; Du, Yingge
2015-06-21
We investigated the impact of crystallographic orientation on the photocatalytic activity of single crystalline WO3 thin films prepared by molecular beam epitaxy on the photodegradation of rhodamine B (RhB). A clear effect is observed, with (111) being the most reactive surface, followed by (110) and (001). Photoreactivity is directly correlated with the surface free energy determined by density functional theory calculations. The RhB photodegradation mechanism is found to involve hydroxyl radicals in solution formed from photo-generated holes and differs from previous studies performed on nanoparticles and composites.
Isaenkova, M.; Perlovich, Yu; Fesenko, V.
2016-04-01
This paper summarizes researches of the authors, which are directed on the development of the methodological basis of X-ray studies in the materials science of zirconium and on the systematization of new experimental results obtained using developed methods. The paper describes regularities of the formation of the crystallographic texture and the substructure inhomogeneity of cladding tubes from zirconium alloys at various stages of their manufacturing, i.e. during hot and cold deformation, recrystallization, phase transformations and interactions of the above processes.
Energy Technology Data Exchange (ETDEWEB)
Onellion, M. (Wisconsin Univ., Madison, WI (USA). Dept. of Physics); Dowben, P.A. (Syracuse Univ., NY (USA). Dept. of Physics)
1990-01-01
As part of our request for renewal of our grant, we include this progress report on the significant results obtained under grant number FG02-89ER45319, Fundamental Studies of New Magnetic Heterostructures: Their Growth, Crystallographic Structure, Magnetic and Electronic Properties,'' since the inception of the grant. The results include the scientific accomplishments, the instrumentation developed, and the technological applications of our work. Each area is discussed separately and an initial summary of all areas is provided before the detailed discussion.
Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.
2016-01-01
A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221
Morphological and crystallographic evolution of bainite transformation in Fe-0.15C binary alloy.
Zhang, Di; Terasaki, Hidenori; Komizo, Yuichi
2010-01-01
In this article, an in situ observation method, combining laser scanning confocal microscopy and electron backscattering diffraction, was used to investigate the morphological and crystallographic evolution of bainite transformation in a Fe-0.15C binary alloy. The nucleation at a grain boundary and inclusions, sympathetic nucleation, and impingement event of bainitic ferrite were directly shown in real time. The variant evolution during bainite transformation and misorientation between bainitic ferrites were clarified. Strong variant selection was observed during sympathetic nucleation. (c) 2009 Wiley-Liss, Inc.
Kudoh, Y.; Kuribayashi, T.; Suzuki, A.; Ohtani, E.; Kamada, T.
2003-04-01
A single crystal of δ-AlOOH synthesized by Suzuki et al. (2000) at conditions of 1000^oC and 21 GPa was used in this study. A set of X-ray diffraction intensities up to sinθ/λ=0.80 Å-1 were measured with a single crystal of 83×35×24 μm using MoKα radiation (50 kV, 40 mA). Al:Mg:Si ratio 0.84:0.07:0.09 measured by EDS with the same crystal used in the X-ray diffraction intensity measurement yielded the chemical formula (Al0.84Mg0.07Si0.09)H0.98O_2. Suzuki et al. (2000) reported the space group P2_1nm from powder X-ray data but the systematic absence of reflections observed in this study indicated another space group Pnn2. The systematic absence of reflections observed in the present work were h+l odd for h0l and k+l odd for 0kl, indicating possible space group Pnn2 or Pnnm. The N(Z) test for a center of symmetry indicated an acentric space group. The non-centrosymmetric space group Pnn2 was therefore employed and was confirmed by the structural refinement. The agreement factors for 109 independent reflections (Io>= 3.0σ Io) were R=3.6% with anisotropic temperature factors. The difference Fourier synthesis was calculated and two significant Fourier peaks H1 and H2 for the possible hydrogen sites were found. The H1 site locates around two-fold rotation axis with H1-H1 distance of 0.55 Å. The H1 site is considered to be for symmetrical statistical distribution of hydrogen atoms. The H2-H2 are separated with H2-H2 distance 2.12 Å which is larger than the sum of van der Waals radii of hydrogen atoms. The partial occupancy of Mg and Si atoms at Al site suggests the possibility of limited solid solution among δ-AlOOH, stishovite SiO_2 and hypothetical rutile-structured Mg(OH)_2. The H1 site is considered to be for AlOOH and the H_2 site for Mg(OH)_2.
DEFF Research Database (Denmark)
Knecht, Stefan; Jensen, Hans Jørgen Aagaard; Fleig, Timo
2010-01-01
We present a parallel implementation of a large-scale relativistic double-group configuration interaction CIprogram. It is applicable with a large variety of two- and four-component Hamiltonians. The parallel algorithm is based on a distributed data model in combination with a static load balanci...
Chinese Space Insurance Opportunities
Institute of Scientific and Technical Information of China (English)
LiuJie
2005-01-01
Jiang Tai Insurance Broker Co., Ltd and China Pacific Insurance (group) Co., Ltd jointly held a conference on Space and Space Insurance on January 13 and 14, 2005. About 50 representatives from 30 domestic insurance companies attended the event.
Patil, Dipak N; Datta, Manali; Chaudhary, Anshul; Tomar, Shailly; Sharma, Ashwani Kumar; Kumar, Pravindra
2009-04-01
A protein with chitinase activity has been isolated and purified from tamarind (Tamarindus indica) seeds. N-terminal amino-acid sequence analysis of this protein confirmed it to be an approximately 34 kDa endochitinase which belongs to the acidic class III chitinase family. The protein was crystallized by the vapour-diffusion method using PEG 4000. The crystals belonged to the tetragonal space group P4(1), with two molecules per asymmetric unit. Diffraction data were collected to a resolution of 2.6 A.
Energy Technology Data Exchange (ETDEWEB)
Lu, Feifei [East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of (China); Gao, Feng [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of (China); Li, Honglin [East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of (China); Gong, Weimin [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of (China); Zhou, Lin, E-mail: gdtb-bg@vip.163.com [Center for Tuberculosis Control of Guangdong Province, Guangzhou, People’s Republic of (China); Bi, Lijun, E-mail: gdtb-bg@vip.163.com [East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of (China)
2014-07-23
The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv3705c from M. tuberculosis are described. The conserved protein Rv3705c from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant. The Rv3705c crystals exhibited space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 198.0, c = 364.1 Å, α = β = 90, γ = 120°, and diffracted to a resolution of 3.3 Å.
Preliminary X-ray crystallographic study of cyanase from Escherichia coli.
Kim, K H; Honzatko, R B; Little, R M; Anderson, P M
1987-11-01
Cyanase, an oligomeric enzyme of Escherichia coli that catalyzes the decomposition of cyanate to ammonia and bicarbonate, crystallizes in the space group P1 with unit cell parameters a = 85.96 A, b = 83.17 A, c = 83.28 A, alpha = 110.29 degrees, beta = 118.29 degrees and gamma = 72.40 degrees. Crystals diffract to a resolution of at least 2.5 A. The crystal data, in conjunction with a subunit molecular weight of 17,008, suggest that two oligomers are in the asymmetric unit of the crystal and that eight subunits comprise a single oligomer.
Institute of Scientific and Technical Information of China (English)
CHEN Yushu; LI Xiaofeng; LOU Zhiyong; WANG Weina; PANG Hai; RAO Zihe
2006-01-01
Human geranylgeranyl pyrophosphate synthase (GGPS) is an enzyme that catalyzes the synthesis of geranylgeranyl py rophosphate (GGPP) from farnesyldiphosphate and isopentenyldiphosphate. Recombinant human GGPS was crystallized by the hanging-drop vapor diffusion method. Crystals were grown at 18℃ using PEG 4000 as precipitant. Diffraction data were obtained to a resolution of 2.8 (A) from a single frozen crystal belonging to space group PI, with unit-cell parameters: α = 68.9 (A), b = 107.7 (A), c = 137.4 (A),α=99.6°, β=97.6°, γ=97.8°.
Preliminary crystallographic analysis of a cruciferin protein from seeds of Moringa oleifera.
Akrem, Ahmed; Yousef, Nasser; Begum, Afshan; Negm, Amr; Meyer, Arne; Perbandt, Markus; Buck, Friedrich; Betzel, Christian
2014-06-01
A 55 kDa cruciferin protein has been purified and characterized from seeds of Moringa oleifera plant. Protein blast of N-terminal amino-acid sequence showed 60 % sequence similarity with cruciferin from Brassica napus. The M. oleifera protein has been crystallized applying the sitting drop method using 5 % polyethylene glycol 8,000, 38.5 % 3-methyl-1,5-pentanediol and 0.1 M sodium cacodylate pH 6.5. The crystals belonged to the P6322 hexagonal space group with cell dimensions, a = b = 98.4, c = 274.3 Å. Initial diffraction data have been collected to a resolution of 6 Å.
Preliminary crystallographic analysis of recombinant chicken liver fructose-2,6-bisphosphatase
Institute of Scientific and Technical Information of China (English)
包素锦; 万柱礼; 常文瑞; 桂璐璐; 梁栋材; 凌嵩; 李林; 许根俊; Simon J. Pilkis
1996-01-01
The bisphosphatase domain of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphos-phosphatase was expressed in high yield Escherichia coli and purified to homogeneity. Single crystals of chicken liver bisphophatase domain suitable for X-ray diffraction were obtained by the hanging drop vapor diffusion method. The crystals belong to tetragonal space group P41212 or P43213 with two molecules per asymmetric unit. The determined cell dimensions are: a=b= 10.02 nm, c= 13.98 nm, α=β=г=90°. EHffraction data were collected on Weissenberg camera with synchrotron radiation at 0.32nm resolution.
Crystallization and preliminary crystallographic study of cathepsin D inhibitor from potatoes.
Baudys, M; Ghosh, M; Harlos, K; Mares, M; Fusek, M; Kostka, V; Blake, C C
1991-03-05
Single crystals of the glycosylated inhibitor of cathepsin D and trypsin isolated from potato tubers were obtained using the hanging drop vapor diffusion method and ammonium nitrate as precipitant. The crystals exhibit strong F222 pseudo symmetry but belong to the orthorhombic space group C222 or C222(1), with cell parameters a = 73.8 A, b = 119.9 A and c = 133.2 A with two molecules per asymmetric unit. The crystals diffract to a resolution of 2.4 A.
Imamura, Kayo; Matsuura, Takanori; Ye, Zhengmao; Takaha, Takeshi; Fujii, Kazutoshi; Kusunoki, Masami; Nitta, Yasunori
2005-01-01
Disproportionating enzyme (D-enzyme; EC 2.4.1.25) is a 59 kDa protein that belongs to the alpha-amylase family. D-enzyme catalyses intramolecular and intermolecular transglycosylation reactions of alpha-1,4 glucan. A crystal of the D-enzyme from potato was obtained by the hanging-drop vapour-diffusion method. Preliminary X-ray data showed that the crystal diffracts to 2.0 A resolution and belongs to space group C222(1), with unit-cell parameters a = 69.7, b = 120.3, c = 174.2 A.
van Erp, Erik
2010-01-01
We explore the geometry that underlies the osculating structures of the Heisenberg calculus. For a smooth manifold M with a distribution H in TM analysts have developed explicit (and rather complicated) coordinate formulas to define the nilpotent groups that are central to the calculus. Our aim is, specifically, to gain insight in the intrinsic structures that underlie these coordinate formulas. There are two key ideas. First, we construct a certain generalization of the notion of tangent vectors, called "parabolic arrows", involving a mix of first and second order derivatives. Parabolic arrows are the natural elements for the nilpotent groups of the osculating structure. Secondly, we formulate the natural notion of exponential map for the fiber bundle of parabolic arrows, and show that it explains the coordinate formulas of osculating structures. The result is a conceptual simplification and unification of the treatment of the Heisenberg calculus found in the analytic literature. As a bonus we obtain insight...
Oliveira, Leonardo C.; Neves, Leonardo G.; Raboy, Becky E.; Dietz, James M.
2011-08-01
Cabruca is an agroforest of cacao trees shaded by native forest trees. It is the predominant vegetation type throughout eastern part of the range of the golden-headed lion tamarins, Leontopithecus chrysomelas, an endangered primate endemic to Atlantic Forest. Understanding how lion tamarins use this agroforest is a conservation priority. To address this question, we documented the diet, home range size, group sizes and composition, density, number of litters and body condition of lion tamarins living in cabruca, and other habitats. Jackfruit, Artocarpus heterophyllus, was the most used species used by lion tamarins in cabruca and was widely available and used throughout the year. In cabruca, home range size was the smallest (22-28 ha) and density of lion tamarins was the highest (1.7 ind/ha) reported for the species. Group size averaged 7.4 individuals and was not significantly different among the vegetation types. In cabruca, groups produced one or two litters a year, and all litters were twins. Adult males in cabruca were significantly heavier than males in primary forest. Our study is the first to demonstrate that breeding groups of golden-headed lion tamarins can survive and reproduce entirely within cabruca agroforest. Jackfruit proved to be a keystone resource for lion tamarins in cabruca, and bromeliads were important as an animal prey foraging microhabitat. In cases where cabruca contains concentrated resources, such as jackfruit and bromeliads, lion tamarins may not only survive and reproduce but may fare better than in other forest types, at least for body condition and reproduction.
Mathematical aspects of molecular replacement. II. Geometry of motion spaces.
Chirikjian, Gregory S; Yan, Yan
2012-03-01
Molecular replacement (MR) is a well established computational method for phasing in macromolecular crystallography. In MR searches, spaces of motions are explored for determining the appropriate placement of rigid models of macromolecules in crystallographic asymmetric units. In the first paper of this series, it was shown that this space of motions, when endowed with an appropriate composition operator, forms an algebraic structure called a quasigroup. In this second paper, the geometric properties of these MR search spaces are explored and analyzed. This analysis includes the local differential geometry, global geometry and symmetry properties of these spaces.
Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.
2017-02-01
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.
Erbium-ion implantation into various crystallographic cuts of Al2O3
Nekvindova, P.; Mackova, A.; Malinsky, P.; Cajzl, J.; Svecova, B.; Oswald, J.; Wilhelm, R. A.
2015-12-01
This paper reports on the importance of crystallographic cuts with a different orientation on the luminescent properties and structural changes of Al2O3 implanted with Er+ ions at 190 keV and with a fluence of 1.0 × 1016 cm-2. Post-implantation annealing at 1000 °C in oxygen atmosphere was also done. The chemical compositions and erbium concentration-depth profiles of implanted layers were studied by Rutherford Backscattering Spectrometry (RBS) and compared to SRIM simulations. The same value of the maximum erbium concentration (up to 2 at.%) was observed at a depth of about 40 nm for all crystallographic cuts. The structural properties of the prepared layers were characterised by RBS/channelling. The relative amount of disordered atoms of 70-80% was observed in the prepared implanted layers and discussed for various cuts. It has been found that erbium is positioned randomly in the Al2O3 crystalline matrix, and no preferential positions appeared even after the annealing procedure. Erbium luminescence properties were measured in the wavelength range of 1440-1650 nm for all samples. As-implanted Al2O3 samples had a significant luminescence band at 1530 nm. The best luminescence was repeatedly observed in the cut of Al2O3. The annealing procedure significantly improved the luminescent properties.
Crystallographic structure of Ni-Co coating on the affinity adsorption of histidine-tagged protein.
Chang, Yaw-Jen; Chen, Sheng-Zheng; Ho, Ching-Yuan
2015-04-01
The principle of immobilized metal affinity chromatography (IMAC) has been recently implemented for protein microarrays for the study of protein abundance and function. Ni-Co film fabricated by electrodeposition is a novel microarray surface in an alloy type for immobilizing histidine-tagged proteins based on IMAC. In this paper, the effects of crystallographic structures and surface properties of Ni-Co coatings, with and without the annealing process, on the immobilization of histidine-tagged proteins were systematically investigated. The experimental results reveal that the stronger hcp texture, due to a higher Co content, results in better affinity adsorption for histidine-tagged biotin. Nevertheless, the allotropic phase transformation from hcp to fcc, due to the annealing process, leads to the decrease of affinity adsorption. The wettability property and the surface roughness of Ni-Co coating are, however, not important factors. Obviously, the crystallographic structure of Ni-Co coating is the dominant factor for the specific affinity adsorption of histidine-tagged protein.
Crystallographic superstructure in R2PdSi3 compounds (R=heavy rare earth)
Tang, Fei; Frontzek, Matthias; Dshemuchadse, Julia; Leisegang, Tilmann; Zschornak, Matthias; Mietrach, Robert; Hoffmann, Jens-Uwe; Löser, Wolfgang; Gemming, Sibylle; Meyer, Dirk C.; Loewenhaupt, Michael
2011-09-01
The R2PdSi3 intermetallic compounds have been reported to crystallize in a hexagonal AlB2-derived structure, with the rare earth atoms on the Al sites and Pd and Si atoms randomly distributed on the B sites. However, the intricate magnetic properties observed in the series of compounds have always suggested complications to the assumed structure. To clarify the situation, x-ray and neutron diffraction measurements were performed on the heavy rare earth compounds with R=Gd, Tb, Dy, Ho, Er, Tm, which revealed the existence of a crystallographic superstructure. The superstructure features a doubled unit cell in the hexagonal basal plane and an octuplication along the perpendicular c direction with respect to the primitive cell. No structural transition was observed between 300 and 1.5 K. Extended x-ray absorption fine structure (EXAFS) analysis as well as density functional theory (DFT) calculations were utilized to investigate the local environments of the respective atoms. In this paper the various experimental results will be presented and it will be shown that the superstructure is mainly due to the Pd-Si order on the B sites. A structure model will be proposed to fully describe the superstructure of Pd-Si order in R2PdSi3. The connection between the crystallographic superstructure and the magnetic properties will be discussed in the framework of the presented model.
Koizumi, Sanae; Suzuki, Tohru S.; Sakka, Yoshio; Yabe, Kosuke; Hiraga, Takehiko
2016-11-01
This study develops a fabrication technique to obtain Fe-free and Fe-bearing (Fe:Mg = 1:9) olivine aggregates not only with high density and fine grain size but with crystallographic preferred orientation (CPO). A magnetic field (≤12 T) is applied to synthetic, fine-grained ( 120 nm), olivine particles dispersed in solvent. The alignment of certain crystallographic axes of the particles with respect to a magnetic direction is anticipated due to magnetic anisotropy of olivine. The dispersed particles are gradually consolidated on a porous alumina mold covered with a solid-liquid separation filter during drainage of the solvent. The resultant aligned consolidated aggregate is then isostatically pressed and vacuum sintered. We find that (1) preparation of fully reacted olivine particles, with less propensity to coalesce; (2) preparation of a suspension with highly dispersed particles; and (3) application of a certain strength of the magnetic field are essential to obtain well-sintered and well-aligned aggregates. High density (i.e., olivine aggregates were successfully synthesized with uniaxially aligned a- and c-axes, respectively. Attempts to uniaxially align the magnetization hard axis and to triaxially align Fe-bearing olivine by rotating the suspension in the magnetic field succeeded in obtaining weakly developed CPO aggregates.
Crystallographic and electronic properties of AlCrN films that absorb visible light
Tatemizo, N.; Imada, S.; Miura, Y.; Nishio, K.; Isshiki, T.
2017-05-01
We investigate the crystallographic and electronic properties of wurtzite Cr-doped AlN (AlCrN) films (Cr ≤12.0%) that absorb visible light. We confirmed that the films consist of wurtzite columnar single crystals that are densely packed, c-axis oriented, and exhibit a random rotation along the a-axis in plane by using transmission electron microscopy. The oxidation state of Cr was found to be 3+ using Cr K-edge X-ray absorption near edge structure, which implies that Cr can be a substitute for Al3+ in AlN. The first nearest neighbor distances estimated using Cr K-edge extended X-ray absorption fine structure (EXAFS) were found to be nearly isotropic for incident light with electric fields that are parallel and perpendicular to the plane. The results of ab initio lattice relaxation calculations for the model of wurtzite Al1-xCrxN supercell where Cr replaces Al support the EXAFS results. The calculations for the model showed that additional energy bands are formed in the band gap of AlN, in which the Fermi energy (EF) is present. As expected from the calculation results, the electrical conductivity increases with increase in the Cr concentration, implying that the density of states at EF increases monotonically. From these results, we can conclude that AlCrN films are an intermediate band material with respect to their crystallographic and electric properties.
Singh, Sajal Sagar; Pal, Prem; Pandey, Ashok Kumar; Xing, Yan; Sato, Kazuo
2016-12-01
In wet bulk micromachining, the etching characteristics are orientation dependent. As a result, prolonged etching of mask openings of any geometric shape on both Si{100} and Si{110} wafers results in a structure defined by the slowest etching planes. In order to fabricate microstructures with high dimensional accuracy, it is vital to align the mask edges along the crystal directions comprising of these slowest etching planes. Thus, precise alignment of mask edges is important in micro/nano fabrication. As a result, the determination of accurate crystal directions is of utmost importance and is in fact the first step to ensure dimensionally accurate microstructures for improved performance. In this review article, we have presented a comprehensive analysis of different techniques to precisely determine the crystallographic directions. We have covered various techniques proposed in the span of more than two decades to determine the crystallographic directions on both Si{100} and Si{110} wafers. Apart from a detailed discussion of each technique along with their design and implementation, we have provided a critical analysis of the associated constraints, benefits and shortcomings. We have also summed up the critical aspects of each technique and presented in a tabular format for easy reference for readers. This review article comprises of an exhaustive discussion and is a handy reference for researchers who are new in the field of wet anisotropic etching or who want to get abreast with the techniques of determination of crystal directions.
Sharma, Archna; Reva, Igor; Fausto, Rui; Hesse, Susanne; Xue, Zhifeng; Suhm, Martin A; Nayak, Susanta K; Sathishkumar, Ranganthan; Pal, Rumpa; Row, Tayur N Guru
2011-12-21
Aggregation in hydroxyacetone (HA) is studied using low-temperature FTIR, supersonic jet expansion, and X-ray crystallographic (in situ cryocrystallization) techniques. Along with quantum chemical methods (MP2 and DFT), the experiments unravel the conformational preferences of HA upon aggregation to dimers and oligomers. The O-H···O═C intramolecular hydrogen bond present in the gas-phase monomer partially opens upon aggregation in supersonic expansions, giving rise to intermolecular cooperatively enhanced O-H···O-H hydrogen bonds in competition with isolated O-H···O═C hydrogen bonds. On the other hand, low-temperature IR studies on the neat solid and X-ray crystallographic data reveal that HA undergoes profound conformational changes upon crystallization, with the HOCC dihedral angle changing from ~0° in the gas phase to ~180° in the crystalline phase, hence giving rise to a completely new conformation. These conclusions are supported by theoretical calculations performed on the geometry derived from the crystalline phase. © 2011 American Chemical Society
The fourth crystallographic closest packing unveiled in the gold nanocluster crystal
Gan, Zibao; Chen, Jishi; Wang, Juan; Wang, Chengming; Li, Man-Bo; Yao, Chuanhao; Zhuang, Shengli; Xu, An; Li, Lingling; Wu, Zhikun
2017-03-01
Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate μ4-S atoms not previously reported in the Au-S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au-S bonding and solid photoluminescence of gold nanoclusters.