WorldWideScience

Sample records for crystallographic homogenization method

  1. Asymmetric Rolling Process Simulations by Dynamic Explicit Crystallographic Homogenized Finite Element Method

    International Nuclear Information System (INIS)

    Ngoc Tam, Nguyen; Nakamura, Yasunori; Terao, Toshihiro; Kuramae, Hiroyuki; Nakamachi, Eiji; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    Recently, the asymmetric rolling (ASR) has been applied to the material processing of aluminum alloy sheet to control micro-crystal structure and texture in order to improve the mechanical properties. Previously, several studies aimed at high formability sheet generation have been carried out experimentally, but finite element simulations to predict the deformation induced texture evolution of the asymmetrically rolled sheet metals have not been investigated rigorously. In this study, crystallographic homogenized finite element (FE) codes are developed and applied to analyze the asymmetrical rolling processes. The textures of sheet metals were measured by electron back scattering diffraction (EBSD), and compared with FE simulations. The results from the dynamic explicit type Crystallographic homogenization FEM code shows that this type of simulation is a comprehensive tool to predict the plastic induced texture evolution

  2. Development of triple scale finite element analyses based on crystallographic homogenization methods

    International Nuclear Information System (INIS)

    Nakamachi, Eiji

    2004-01-01

    Crystallographic homogenization procedure is implemented in the piezoelectric and elastic-crystalline plastic finite element (FE) code to assess its macro-continuum properties of piezoelectric ceramics and BCC and FCC sheet metals. Triple scale hierarchical structure consists of an atom cluster, a crystal aggregation and a macro- continuum. In this paper, we focus to discuss a triple scale numerical analysis for piezoelectric material, and apply to assess a macro-continuum material property. At first, we calculate material properties of Perovskite crystal of piezoelectric material, XYO3 (such as BaTiO3 and PbTiO3) by employing ab-initio molecular analysis code CASTEP. Next, measured results of SEM and EBSD observations of crystal orientation distributions, shapes and boundaries of a real material (BaTiO3) are employed to define an inhomogeneity of crystal aggregation, which corresponds to a unit cell of micro-structure, and satisfies the periodicity condition. This procedure is featured as a first scaling up from the molecular to the crystal aggregation. Finally, the conventional homogenization procedure is implemented in FE code to evaluate a macro-continuum property. This final procedure is featured as a second scaling up from the crystal aggregation (unit cell) to macro-continuum. This triple scale analysis is applied to design piezoelectric ceramic and finds an optimum crystal orientation distribution, in which a macroscopic piezoelectric constant d33 has a maximum value

  3. Development of dynamic explicit crystallographic homogenization finite element analysis code to assess sheet metal formability

    International Nuclear Information System (INIS)

    Nakamura, Yasunori; Tam, Nguyen Ngoc; Ohata, Tomiso; Morita, Kiminori; Nakamachi, Eiji

    2004-01-01

    The crystallographic texture evolution induced by plastic deformation in the sheet metal forming process has a great influence on its formability. In the present study, a dynamic explicit finite element (FE) analysis code is newly developed by introducing a crystallographic homogenization method to estimate the polycrystalline sheet metal formability, such as the extreme thinning and 'earing'. This code can predict the plastic deformation induced texture evolution at the micro scale and the plastic anisotropy at the macro scale, simultaneously. This multi-scale analysis can couple the microscopic crystal plasticity inhomogeneous deformation with the macroscopic continuum deformation. In this homogenization process, the stress at the macro scale is defined by the volume average of those of the corresponding microscopic crystal aggregations in satisfying the equation of motion and compatibility condition in the micro scale 'unit cell', where the periodicity of deformation is satisfied. This homogenization algorithm is implemented in the conventional dynamic explicit finite element code by employing the updated Lagrangian formulation and the rate type elastic/viscoplastic constitutive equation.At first, it has been confirmed through a texture evolution analyses in cases of typical deformation modes that Taylor's 'constant strain homogenization algorithm' yields extreme concentration toward the preferred crystal orientations compared with our homogenization one. Second, we study the plastic anisotropy effects on 'earing' in the hemispherical cup deep drawing process of pure ferrite phase sheet metal. By the comparison of analytical results with those of Taylor's assumption, conclusions are drawn that the present newly developed dynamic explicit crystallographic homogenization FEM shows more reasonable prediction of plastic deformation induced texture evolution and plastic anisotropy at the macro scale

  4. The SPH homogeneization method

    International Nuclear Information System (INIS)

    Kavenoky, Alain

    1978-01-01

    The homogeneization of a uniform lattice is a rather well understood topic while difficult problems arise if the lattice becomes irregular. The SPH homogeneization method is an attempt to generate homogeneized cross sections for an irregular lattice. Section 1 summarizes the treatment of an isolated cylindrical cell with an entering surface current (in one velocity theory); Section 2 is devoted to the extension of the SPH method to assembly problems. Finally Section 3 presents the generalisation to general multigroup problems. Numerical results are obtained for a PXR rod bundle assembly in Section 4

  5. World directory of crystallographers and of other scientists employing crystallographic methods

    CERN Document Server

    Filippini, G; Hashizume, H; Torriani, I; Duax, W

    1995-01-01

    The 9th edition of the World Directory of Crystallographers and of Other Scientists Employing Crystallographic Methods, which contains 7907 entries embracing 72 countries, differs considerably from the 8th edition, published in 1990. The content has been updated, and the methods used to acquire the information presented and to produce this new edition of the Directory have involved the latest advances in technology. The Directory is now also available as a regularly updated electronic database, accessible via e-mail, Telnet, Gopher, World-Wide Web, and Mosaic. Full details are given in an Appendix to the printed edition.

  6. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  7. A second stage homogenization method

    International Nuclear Information System (INIS)

    Makai, M.

    1981-01-01

    A second homogenization is needed before the diffusion calculation of the core of large reactors. Such a second stage homogenization is outlined here. Our starting point is the Floquet theorem for it states that the diffusion equation for a periodic core always has a particular solution of the form esup(j)sup(B)sup(x) u (x). It is pointed out that the perturbation series expansion of function u can be derived by solving eigenvalue problems and the eigenvalues serve to define homogenized cross sections. With the help of these eigenvalues a homogenized diffusion equation can be derived the solution of which is cos Bx, the macroflux. It is shown that the flux can be expressed as a series of buckling. The leading term in this series is the well known Wigner-Seitz formula. Finally three examples are given: periodic absorption, a cell with an absorber pin in the cell centre, and a cell of three regions. (orig.)

  8. Homogenization methods for heterogeneous assemblies

    International Nuclear Information System (INIS)

    Wagner, M.R.

    1980-01-01

    The third session of the IAEA Technical Committee Meeting is concerned with the problem of homogenization of heterogeneous assemblies. Six papers will be presented on the theory of homogenization and on practical procedures for deriving homogenized group cross sections and diffusion coefficients. That the problem of finding so-called ''equivalent'' diffusion theory parameters for the use in global reactor calculations is of great practical importance. In spite of this, it is fair to say that the present state of the theory of second homogenization is far from being satisfactory. In fact, there is not even a uniquely accepted approach to the problem of deriving equivalent group diffusion parameters. Common agreement exists only about the fact that the conventional flux-weighting technique provides only a first approximation, which might lead to acceptable results in certain cases, but certainly does not guarantee the basic requirement of conservation of reaction rates

  9. Hybrid diffusion–transport spatial homogenization method

    International Nuclear Information System (INIS)

    Kooreman, Gabriel; Rahnema, Farzad

    2014-01-01

    Highlights: • A new hybrid diffusion–transport homogenization method. • An extension of the consistent spatial homogenization (CSH) transport method. • Auxiliary cross section makes homogenized diffusion consistent with heterogeneous diffusion. • An on-the-fly re-homogenization in transport. • The method is faster than fine-mesh transport by 6–8 times. - Abstract: A new hybrid diffusion–transport homogenization method has been developed by extending the consistent spatial homogenization (CSH) transport method to include diffusion theory. As in the CSH method, an “auxiliary cross section” term is introduced into the source term, making the resulting homogenized diffusion equation consistent with its heterogeneous counterpart. The method then utilizes an on-the-fly re-homogenization in transport theory at the assembly level in order to correct for core environment effects on the homogenized cross sections and the auxiliary cross section. The method has been derived in general geometry and tested in a 1-D boiling water reactor (BWR) core benchmark problem for both controlled and uncontrolled configurations. The method has been shown to converge to the reference solution with less than 1.7% average flux error in less than one third the computational time as the CSH method – 6 to 8 times faster than fine-mesh transport

  10. Computational Method for Atomistic-Continuum Homogenization

    National Research Council Canada - National Science Library

    Chung, Peter

    2002-01-01

    The homogenization method is used as a framework for developing a multiscale system of equations involving atoms at zero temperature at the small scale and continuum mechanics at the very large scale...

  11. Layout optimization using the homogenization method

    Science.gov (United States)

    Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.

  12. Statistical methods for assessment of blend homogeneity

    DEFF Research Database (Denmark)

    Madsen, Camilla

    2002-01-01

    In this thesis the use of various statistical methods to address some of the problems related to assessment of the homogeneity of powder blends in tablet production is discussed. It is not straight forward to assess the homogeneity of a powder blend. The reason is partly that in bulk materials......, it is shown how to set up parametric acceptance criteria for the batch that gives a high confidence that future samples with a probability larger than a specified value will pass the USP threeclass criteria. Properties and robustness of proposed changes to the USP test for content uniformity are investigated...

  13. Core homogenization method for pebble bed reactors

    International Nuclear Information System (INIS)

    Kulik, V.; Sanchez, R.

    2005-01-01

    This work presents a core homogenization scheme for treating a stochastic pebble bed loading in pebble bed reactors. The reactor core is decomposed into macro-domains that contain several pebble types characterized by different degrees of burnup. A stochastic description is introduced to account for pebble-to-pebble and pebble-to-helium interactions within a macro-domain as well as for interactions between macro-domains. Performance of the proposed method is tested for the PROTEUS and ASTRA critical reactor facilities. Numerical simulations accomplished with the APOLLO2 transport lattice code show good agreement with the experimental data for the PROTEUS reactor facility and with the TRIPOLI4 Monte Carlo simulations for the ASTRA reactor configuration. The difference between the proposed method and the traditional volume-averaged homogenization technique is negligible while only one type of fuel pebbles present in the system, but it grows rapidly with the level of pebble heterogeneity. (authors)

  14. Investigation of methods for hydroclimatic data homogenization

    Science.gov (United States)

    Steirou, E.; Koutsoyiannis, D.

    2012-04-01

    We investigate the methods used for the adjustment of inhomogeneities of temperature time series covering the last 100 years. Based on a systematic study of scientific literature, we classify and evaluate the observed inhomogeneities in historical and modern time series, as well as their adjustment methods. It turns out that these methods are mainly statistical, not well justified by experiments and are rarely supported by metadata. In many of the cases studied the proposed corrections are not even statistically significant. From the global database GHCN-Monthly Version 2, we examine all stations containing both raw and adjusted data that satisfy certain criteria of continuity and distribution over the globe. In the United States of America, because of the large number of available stations, stations were chosen after a suitable sampling. In total we analyzed 181 stations globally. For these stations we calculated the differences between the adjusted and non-adjusted linear 100-year trends. It was found that in the two thirds of the cases, the homogenization procedure increased the positive or decreased the negative temperature trends. One of the most common homogenization methods, 'SNHT for single shifts', was applied to synthetic time series with selected statistical characteristics, occasionally with offsets. The method was satisfactory when applied to independent data normally distributed, but not in data with long-term persistence. The above results cast some doubts in the use of homogenization procedures and tend to indicate that the global temperature increase during the last century is between 0.4°C and 0.7°C, where these two values are the estimates derived from raw and adjusted data, respectively.

  15. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Science.gov (United States)

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  16. A new concept of equivalent homogenization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Pogoskekyan, Leonid; Kim, Young Il; Ju, Hyung Kook; Chang, Moon Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The offered concept covers both those of K. Koebke and K. Smith; both of them can be simulated within framework of new concept. Also, the offered concept covers Siemens KWU approach for baffle/reflector simulation, where the equivalent homogenized reflector XS are derived from the conservation of response matrix at the interface in 1D simi-infinite slab geometry. The IM and XS of new concept satisfy the same assumption about response matrix conservation in 1D semi-infinite slab geometry. It is expected that the new concept provides more accurate approximation of heterogeneous cell, especially in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are: improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith`s approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b) control blades simulation; (c) mixed UO{sub 2}/MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANDOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions. 9 figs., 7 refs. (Author).

  17. A Modified Homogeneous Balance Method and Its Applications

    International Nuclear Information System (INIS)

    Liu Chunping

    2011-01-01

    A modified homogeneous balance method is proposed by improving some key steps in the homogeneous balance method. Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneous balance method. Generalized Boussinesq equation, KP equation, and mKdV equation are chosen as examples to illustrate our method. This approach is also applicable to a large variety of nonlinear evolution equations. (general)

  18. [Methods for enzymatic determination of triglycerides in liver homogenates].

    Science.gov (United States)

    Höhn, H; Gartzke, J; Burck, D

    1987-10-01

    An enzymatic method is described for the determination of triacylglycerols in liver homogenate. In contrast to usual methods, higher reliability and selectivity are achieved by omitting the extraction step.

  19. Hydrogen storage materials and method of making by dry homogenation

    Science.gov (United States)

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  20. DNA Dynamics Studied Using the Homogeneous Balance Method

    International Nuclear Information System (INIS)

    Zayed, E. M. E.; Arnous, A. H.

    2012-01-01

    We employ the homogeneous balance method to construct the traveling waves of the nonlinear vibrational dynamics modeling of DNA. Some new explicit forms of traveling waves are given. It is shown that this method provides us with a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Strengths and weaknesses of the proposed method are discussed. (general)

  1. Applications of a systematic homogenization theory for nodal diffusion methods

    International Nuclear Information System (INIS)

    Zhang, Hong-bin; Dorning, J.J.

    1992-01-01

    The authors recently have developed a self-consistent and systematic lattice cell and fuel bundle homogenization theory based on a multiple spatial scales asymptotic expansion of the transport equation in the ratio of the mean free path to the reactor characteristics dimension for use with nodal diffusion methods. The mathematical development leads naturally to self-consistent analytical expressions for homogenized diffusion coefficients and cross sections and flux discontinuity factors to be used in nodal diffusion calculations. The expressions for the homogenized nuclear parameters that follow from the systematic homogenization theory (SHT) are different from those for the traditional flux and volume-weighted (FVW) parameters. The calculations summarized here show that the systematic homogenization theory developed recently for nodal diffusion methods yields accurate values for k eff and assembly powers even when compared with the results of a fine mesh transport calculation. Thus, it provides a practical alternative to equivalence theory and GET (Ref. 3) and to simplified equivalence theory, which requires auxiliary fine-mesh calculations for assemblies embedded in a typical environment to determine the discontinuity factors and the equivalent diffusion coefficient for a homogenized assembly

  2. Spatial homogenization method based on the inverse problem

    International Nuclear Information System (INIS)

    Tóta, Ádám; Makai, Mihály

    2015-01-01

    Highlights: • We derive a spatial homogenization method in slab and cylindrical geometries. • The fluxes and the currents on the boundary are preserved. • The reaction rates and the integral of the fluxes are preserved. • We present verification computations utilizing two- and four-energy groups. - Abstract: We present a method for deriving homogeneous multi-group cross sections to replace a heterogeneous region’s multi-group cross sections; providing that the fluxes, the currents on the external boundary, the reaction rates and the integral of the fluxes are preserved. We consider one-dimensional geometries: a symmetric slab and a homogeneous cylinder. Assuming that the boundary fluxes are given, two response matrices (RMs) can be defined concerning the current and the flux integral. The first one derives the boundary currents from the boundary fluxes, while the second one derives the flux integrals from the boundary fluxes. Further RMs can be defined that connects reaction rates to the boundary fluxes. Assuming that these matrices are known, we present formulae that reconstruct the multi-group diffusion cross-section matrix, the diffusion coefficients and the reaction cross sections in case of one-dimensional (1D) homogeneous regions. We apply these formulae to 1D heterogeneous regions and thus obtain a homogenization method. This method produces such an equivalent homogeneous material, that the fluxes and the currents on the external boundary, the reaction rates and the integral of the fluxes are preserved for any boundary fluxes. We carry out the exact derivations in 1D slab and cylindrical geometries. Verification computations for the presented homogenization method were performed using two- and four-group material cross sections, both in a slab and in a cylindrical geometry

  3. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    International Nuclear Information System (INIS)

    Bennett, Joseph W.; Rabe, Karin M.

    2012-01-01

    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb 1/2 Mn 1/2 )O 3 as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MSb 2 O 4 ; and (3) ferroelectric semiconductors with formula M 2 P 2 (S,Se) 6 . A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties. - Graphical abstract: Integration of first-principles methods with crystallographic database mining, for the discovery and design of novel ferroelectric materials, could potentially lead to new classes of multifunctional materials. Highlights: ► Integration of first-principles methods and database mining. ► Minor structural families with desirable functional properties. ► Survey of polar entries in the Inorganic Crystal Structural Database.

  4. Homogenized description and retrieval method of nonlinear metasurfaces

    Science.gov (United States)

    Liu, Xiaojun; Larouche, Stéphane; Smith, David R.

    2018-03-01

    A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry

  5. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  6. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis; Mouhot, Clé ment

    2011-01-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  7. Crystallographic orientation study of silicon steels using X-ray diffraction, electrons diffraction and the Etch Pit method

    International Nuclear Information System (INIS)

    Santos, Hamilta de Oliveira

    1999-01-01

    The aim of the present study is the microstructural and crystallographic orientation of Fe-3%Si steel. The silicon steel shows good electrical properties and it is used in the nuclear and electrical power fields. The studied steel was supplied by Cia. Acos Especiais Itabira S/A - ACESITA. The material was received in the hot compressed condition, in one or two passes. The hot compressing temperatures used were 900, 1000 and 1100 deg C with soaking times ranging from 32 to 470 s. The material preferential crystallographic orientation was evaluated in every grain of the samples. The characterization techniques used were: scanning electron microscopy (SEM) using the etch pit method; X ray diffraction using the Laue back-reflection method; orientation imaging microscopy (OIM). Microstructural characterization in terms of grain size measurement and mean number of grains in the sample were also undertaken. The Laue method was found an easy technique to access crystallographic orientation of this work polycrystalline samples 2.5 mm average grain size. This was due to the inability to focus the X-rays on a single grain of the material. The scanning electron microscopy showed microcavities left by the etch pit method, which allowed the observation of the crystallographic orientation of each grain from the samples. No conclusive grain crystallographic orientation was possible to obtain by the OIM technique due to the non-existing rolling direction. A more extensive work with the OIM technique must be undertaken on the Fe-3%Si with oriented grains and non oriented grains. (author)

  8. On some methods in homogenization and their applications

    International Nuclear Information System (INIS)

    Allaire, Gregoire

    1993-01-01

    This report (which reproduces an 'Habilitation' thesis) is concerned with the homogenization theory which can be defined as the union of all mathematical techniques allowing to pass from a microscopic behavior to a macroscopic (or averaged, or effective) behavior of a physical phenomenon, modeled by one or several partial differential equations. Some new results are discussed, both from the point of view of methods, and from that of applications. The first chapter deals with viscous incompressible fluid flows in porous media, and, in particular, contains a derivation of Darcy and Brinkman's law. The second chapter is dedicated to the two-scale convergence method. The third chapter focus on the problem of optimal bounds for the effective properties of composite materials. Finally, in the fourth chapter the previous results are applied to the optimal design problem for elastic shapes. (author) [fr

  9. Title: a simple method to evaluate linac beam homogeneity

    International Nuclear Information System (INIS)

    Monti, A.F.; Ostinelli, A.; Gelosa, S.; Frigerio, M.

    1995-01-01

    Quality Control (QC) tests in Radiotherapy represent a basic requirement to asses treatment units performance and treatment quality. Since they are generally time consuming, it is worth while to introduce procedures and methods which can be carried on more easily and quickly. Since 1994 in the Radiotherapy Department of S. Anna Hospital, it had been employed a commercially available solid phantom (PRECITRON) with a 10 diodes array, to investigate beam homogeneity (symmetry and flatness). In particular, global symmetry percentage indexes were defined which consider pairs of corresponding points along each axis (x and y) and compare the readings of the respective diodes, following the formula: (I gs =((X d + X -d ) - (Y d + Y -d )((X d + X -d ) + (Y d + Y -d )*200 where X d and X -d are points 8 or 10 cm equally spaced from the beam centre along x axis and the same for Y d and Y -d along y axis. Even if non supporting international protocols requirements as a whole, this parameter gives an important information about beam homogeneity, when only few points of measure are available in a plane, and it can be daily determined, thus fulfilling the aim of lightning immediately each situation capable to compromise treatment accuracy and effectiveness. In this poster we report the results concerning this parameter for a linear accelerator (Varian Clinac 1800), since September 1994 to September 1995

  10. Cluster-cell calculation using the method of generalized homogenization

    International Nuclear Information System (INIS)

    Laletin, N.I.; Boyarinov, V.F.

    1988-01-01

    The generalized-homogenization method (GHM), used for solving the neutron transfer equation, was applied to calculating the neutron distribution in the cluster cell with a series of cylindrical cells with cylindrically coaxial zones. Single-group calculations of the technological channel of the cell of an RBMK reactor were performed using GHM. The technological channel was understood to be the reactor channel, comprised of the zirconium rod, the water or steam-water mixture, the uranium dioxide fuel element, and the zirconium tube, together with the adjacent graphite layer. Calculations were performed for channels with no internal sources and with unit incoming current at the external boundary as well as for channels with internal sources and zero current at the external boundary. The PRAKTINETs program was used to calculate the symmetric neutron distributions in the microcell and in channels with homogenized annular zones. The ORAR-TsM program was used to calculate the antisymmetric distribution in the microcell. The accuracy of the calculations were compared for the two channel versions

  11. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    International Nuclear Information System (INIS)

    Keefe, L.J.; Lattman, E.E.; Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J.

    1992-01-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal α helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.)

  12. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, L.J.; Lattman, E.E. (Dept. of Biophysics and Biophysical Chemistry, Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J. (Middle Atlantic Mass Spectrometry Lab., Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1992-04-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal {alpha} helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.).

  13. Method of the characteristics for calculation of VVER without homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Suslov, I.R.; Komlev, O.G.; Novikova, N.N.; Zemskov, E.A.; Tormyshev, I.V.; Melnikov, K.G.; Sidorov, E.B. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    2005-07-01

    The first stage of the development of characteristics code MCCG3D for calculation of the VVER-type reactor without homogenization is presented. The parallel version of the code for MPI was developed and tested on cluster PC with LINUX-OS. Further development of the MCCG3D code for design-level calculations with full-scale space-distributed feedbacks is discussed. For validation of the MCCG3D code we use the critical assembly VENUS-2. The geometrical models with and without homogenization have been used. With both models the MCCG3D results agree well with the experimental power distribution and with results generated by the other codes, but model without homogenization provides better results. The perturbation theory for MCCG3D code is developed and implemented in the module KEFSFGG. The calculations with KEFSFGG are in good agreement with direct calculations. (authors)

  14. Some variance reduction methods for numerical stochastic homogenization.

    Science.gov (United States)

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).

  15. Tidal Dissipation in a Homogeneous Spherical Body. 1. Methods

    Science.gov (United States)

    2014-11-01

    mantle (with χ = χlmpq ≡ |ωlmpq| being the physical forcing frequency). The dependency J̄ (χ ) follows from the rheological model . Evidently, the... current paper. Key words: planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general... modeling the body with a homogeneous sphere of a certain rheology. However, the simplistic nature of the approach limits the precision of the ensuing

  16. Cell homogenization methods for pin-by-pin core calculations tested in slab geometry

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Kitamura, Yasunori; Yamane, Yoshihiro

    2004-01-01

    In this paper, performances of spatial homogenization methods for fuel or non-fuel cells are compared in slab geometry in order to facilitate pin-by-pin core calculations. Since the spatial homogenization methods were mainly developed for fuel assemblies, systematic study of their performance for the cell-level homogenization has not been carried out. Importance of cell-level homogenization is recently increasing since the pin-by-pin mesh core calculation in actual three-dimensional geometry, which is less approximate approach than current advanced nodal method, is getting feasible. Four homogenization methods were investigated in this paper; the flux-volume weighting, the generalized equivalence theory, the superhomogenization (SPH) method and the nonlinear iteration method. The last one, the nonlinear iteration method, was tested as the homogenization method for the first time. The calculations were carried out in simplified colorset assembly configurations of PWR, which are simulated by slab geometries, and homogenization performances were evaluated through comparison with the reference cell-heterogeneous calculations. The calculation results revealed that the generalized equivalence theory showed best performance. Though the nonlinear iteration method can significantly reduce homogenization error, its performance was not as good as that of the generalized equivalence theory. Through comparison of the results obtained by the generalized equivalence theory and the superhomogenization method, important byproduct was obtained; deficiency of the current superhomogenization method, which could be improved by incorporating the 'cell-level discontinuity factor between assemblies', was clarified

  17. Geostatistical Analysis Methods for Estimation of Environmental Data Homogeneity

    Directory of Open Access Journals (Sweden)

    Aleksandr Danilov

    2018-01-01

    Full Text Available The methodology for assessing the spatial homogeneity of ecosystems with the possibility of subsequent zoning of territories in terms of the degree of disturbance of the environment is considered in the study. The degree of pollution of the water body was reconstructed on the basis of hydrochemical monitoring data and information on the level of the technogenic load in one year. As a result, the greatest environmental stress zones were isolated and correct zoning using geostatistical analysis techniques was proved. Mathematical algorithm computing system was implemented in an object-oriented programming C #. A software application has been obtained that allows quickly assessing the scale and spatial localization of pollution during the initial analysis of the environmental situation.

  18. Comparison of cell homogenization methods considering interaction effect between fuel cells and control rod cells

    International Nuclear Information System (INIS)

    Takeda, T.; Uto, N.

    1988-01-01

    Several methods to determine cell-averaged group cross sections and anisotropic diffusion coefficients which consider the interaction effect between core fuel cells and control rods or control rod followers have been compared to discuss the physical meaning included in cell homogenization. As the cell homogenization methods considered are the commonly used flux-weighting method, the reaction rate preservation method and the reactivity preservation method. These homogenization methods have been applied to control rod worth calculations in 1-D slab cores to investigate their applicability. (author). 6 refs, 2 figs, 9 tabs

  19. Iterative and variational homogenization methods for filled elastomers

    Science.gov (United States)

    Goudarzi, Taha

    Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly

  20. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    Science.gov (United States)

    Purwar, Namrta

    Biomolecules play an essential role in performing the necessary functions for life. The goal of this thesis is to contribute to an understanding of how biological systems work on the molecular level. We used two biological systems, beef liver catalase (BLC) and photoactive yellow protein (PYP). BLC is a metalloprotein that protects living cells from the harmful effects of reactive oxygen species by converting H2O2 into water and oxygen. By binding nitric oxide (NO) to the catalase, a complex was generated that mimics the Cat-H2O2 adduct, a crucial intermediate in the reaction promoted by the catalase. The Cat-NO complex is obtained by using a convenient NO generator (1-(N,N-diethylamino)diazen-1-ium-1,2-diolate). Concentrations up to 100˜200 mM are reached by using a specially designed glass cavity. With this glass apparatus and DEANO, sufficient NO occupation is achieved and structure determination of the catalase with NO bound to the heme iron becomes possible. Structural changes upon NO binding are minute. NO has a slightly bent geometry with respect to the heme normal, which results in a substantial overlap of the NO orbitals with the iron-porphyrin molecular orbitals. From the structure of the iron-NO complex, conclusions on the electronic properties of the heme iron can be drawn that ultimately lead to an insight into the catalytic properties of this enzyme. Enzyme kinetics is affected by additional parameters such as temperature and pH. Additionally, in crystallography, the absorbed X-ray dose may impair protein function. To address the effect of these parameters, we performed time-resolved crystallographic experiments on a model system, PYP. By collecting multiple time-series on PYP at increasing X-ray dose levels, we determined a kinetic dose limit up to which kinetically meaningful X-ray data sets can be collected. From this, we conclude that comprehensive time-series spanning up to 12 orders of magnitude in time can be collected from a single PYP

  1. Determination of perfluorinated compounds in fish fillet homogenates: method validation and application to fillet homogenates from the Mississippi River.

    Science.gov (United States)

    Malinsky, Michelle Duval; Jacoby, Cliffton B; Reagen, William K

    2011-01-10

    We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100±13% with a precision (%RSD) ≤18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Determination of perfluorinated compounds in fish fillet homogenates: Method validation and application to fillet homogenates from the Mississippi River

    International Nuclear Information System (INIS)

    Malinsky, Michelle Duval; Jacoby, Cliffton B.; Reagen, William K.

    2011-01-01

    We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100 ± 13% with a precision (%RSD) ≤18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented.

  3. Determination of perfluorinated compounds in fish fillet homogenates: Method validation and application to fillet homogenates from the Mississippi River

    Energy Technology Data Exchange (ETDEWEB)

    Malinsky, Michelle Duval, E-mail: mmalinsky@mmm.com [3M Environmental Laboratory, 3M Center, Building 0260-05-N-17, St. Paul, MN 55144-1000 (United States); Jacoby, Cliffton B.; Reagen, William K. [3M Environmental Laboratory, 3M Center, Building 0260-05-N-17, St. Paul, MN 55144-1000 (United States)

    2011-01-10

    We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100 {+-} 13% with a precision (%RSD) {<=}18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented.

  4. Homogenization of metamaterials: Parameters retrieval methods and intrinsic problems

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2010-01-01

    Metamaterials (MTMs) claim a lot of attention worldwide. Description of the MTMs in terms of effective parameters is a simple and useful tool for characterisation of their electromagnetic properties. So a reliable effective parameters restoration method is on demand. In this paper we report about...

  5. The colour analysis method applied to homogeneous rocks

    Directory of Open Access Journals (Sweden)

    Halász Amadé

    2015-12-01

    Full Text Available Computer-aided colour analysis can facilitate cyclostratigraphic studies. Here we report on a case study involving the development of a digital colour analysis method for examination of the Boda Claystone Formation which is the most suitable in Hungary for the disposal of high-level radioactive waste. Rock type colours are reddish brown or brownish red, or any shade between brown and red. The method presented here could be used to differentiate similar colours and to identify gradual transitions between these; the latter are of great importance in a cyclostratigraphic analysis of the succession. Geophysical well-logging has demonstrated the existence of characteristic cyclic units, as detected by colour and natural gamma. Based on our research, colour, natural gamma and lithology correlate well. For core Ib-4, these features reveal the presence of orderly cycles with thicknesses of roughly 0.64 to 13 metres. Once the core has been scanned, this is a time- and cost-effective method.

  6. Comparison of Three Different Methods for Pile Integrity Testing on a Cylindrical Homogeneous Polyamide Specimen

    Science.gov (United States)

    Lugovtsova, Y. D.; Soldatov, A. I.

    2016-01-01

    Three different methods for pile integrity testing are proposed to compare on a cylindrical homogeneous polyamide specimen. The methods are low strain pile integrity testing, multichannel pile integrity testing and testing with a shaker system. Since the low strain pile integrity testing is well-established and standardized method, the results from it are used as a reference for other two methods.

  7. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    OpenAIRE

    Pan, Zhenzhong; Cui, Bo; Zeng, Zhanghua; Feng, Lei; Liu, Guoqiang; Cui, Haixin; Pan, Hongyu

    2015-01-01

    The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt) and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate) screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with ...

  8. Study of titanium nitride elasticity characteristics in the homogeneity range by ultrasonic resonance method

    International Nuclear Information System (INIS)

    Khidirov, I.; Khajdarov, T.

    1995-01-01

    Elasticity characteristics of cubic and tetragonal phases of titanium nitride in the homogeneity range were studied for the first time by ultrasonic resonance method. It is established that the Young modulus, the shift and volume module of cubic titanium nitride elasticity in the homogeneity range change nonlinearly with decrease in nitrogen concentration and correlate with concentration dependences of other physical properties.15 refs., 2 figs

  9. Realization of highly crystallographic three-dimensional nanosheets by a stress-induced oriented-diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Gharooni, M.; Hosseini, M.; Mohajerzadeh, S., E-mail: mohajer@ut.ac.ir; Taghinejad, M.; Taghinejad, H. [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of); Abdi, Y. [Nano-Physics Research Lab, Department of Physics, University of Tehran, Tehran 1439955961 (Iran, Islamic Republic of)

    2014-07-28

    Morphologically controlled nanostructures have been increasingly important because of their strongly shape dependent physical and chemical properties. Formation of nanoscale silicon based structures that employ high levels of strain, intentional, and unintentional twins or grain boundaries can be dramatically different from the commonly conceived bulk processes. We report, realization of highly crystallographic 3D nanosheets with unique morphology and ultra-thin thickness by a stress-induced oriented-diffusion method, based on plasma processing of metal layer deposited on Si substrate and its post deep reactive ion etching. Annealing in plasma ambient creates rod-like metal alloy precursors which induce stress at its interface with Si substrate due to the mismatch of lattice constants. This stress opens facilitated gateways for orientated-diffusion of metal atoms in 〈110〉 directions and leads to formation of NSs (nanosheets) with [111] crystalline essence. Nanosheets are mainly triangular, hexagonal, or pseudo hexagonal in shape and their thicknesses are well controlled from several to tens of nanometers. The structural and morphological evolution of features were investigated in detail using transmission electron microscope, atomic force microscope, scanning electron microscope and possible mechanism is proposed to explain the formation of the thermodynamically unfavorable morphology of nanosheets. Significant photoemission capability of NSs was also demonstrated by photoluminescence spectroscopy.

  10. A Proposal on the Quantitative Homogeneity Analysis Method of SEM Images for Material Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Kim, Jong Woo; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Choi, Jung-Hoon; Cho, In-Hak; Park, Hwan Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A scanning electron microscope (SEM) is a method to inspect the surface microstructure of materials. The SEM uses electron beams for imaging high magnifications of material surfaces; therefore, various chemical analyses can be performed from the SEM images. Therefore, it is widely used for the material inspection, chemical characteristic analysis, and biological analysis. For the nuclear criticality analysis field, it is an important parameter to check the homogeneity of the compound material for using it in the nuclear system. In our previous study, the SEM was tried to use for the homogeneity analysis of the materials. In this study, a quantitative homogeneity analysis method of SEM images is proposed for the material inspections. The method is based on the stochastic analysis method with the information of the grayscales of the SEM images.

  11. A Proposal on the Quantitative Homogeneity Analysis Method of SEM Images for Material Inspections

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Jong Woo; Shin, Chang Ho; Choi, Jung-Hoon; Cho, In-Hak; Park, Hwan Seo

    2015-01-01

    A scanning electron microscope (SEM) is a method to inspect the surface microstructure of materials. The SEM uses electron beams for imaging high magnifications of material surfaces; therefore, various chemical analyses can be performed from the SEM images. Therefore, it is widely used for the material inspection, chemical characteristic analysis, and biological analysis. For the nuclear criticality analysis field, it is an important parameter to check the homogeneity of the compound material for using it in the nuclear system. In our previous study, the SEM was tried to use for the homogeneity analysis of the materials. In this study, a quantitative homogeneity analysis method of SEM images is proposed for the material inspections. The method is based on the stochastic analysis method with the information of the grayscales of the SEM images

  12. Analysis of Crystallographic Structure of a Japanese Sword by the Pulsed Neutron Transmission Method

    Science.gov (United States)

    Kino, K.; Ayukawa, N.; Kiyanagi, Y.; Uchida, T.; Uno, S.; Grazzi, F.; Scherillo, A.

    We measured two-dimensional transmission spectra of pulsed neutron beams for a Japanese sword sample. Atom density, crystalline size, and preferred orientation of crystals were obtained using the RITS code. The position dependence of the atomic density is consistent with the shape of the sample. The crystalline size is very small and shows position dependence, which is understood by the unique structure of Japanese swords. The preferred orientation has strong position dependence. Our study shows the usefulness of the pulsed neutron transmission method for cultural metal artifacts.

  13. Description of comparison method for evaluating spatial or temporal homogeneity of environmental monitoring data

    International Nuclear Information System (INIS)

    Mecozzi, M.; Cicero, A.M.

    1995-01-01

    In this paper a comparison method to verify the homogeneity/inhomogeneity of environmental monitoring data is described. The comparison method is based on the simultaneous application of three statistical tests: One-Way ANOVA, Kruskal Wallis and One-Way IANOVA. Robust tests such as IANOVA and Kruskal Wallis can be more efficient than the usual ANOVA methods because are resistant against the presence of outliers and divergences from the normal distribution of the data. The evidences of the study are that the validation of the result about presence/absence of homogeneity in the data set is obtained when it is confirmed by two tests at least

  14. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    Science.gov (United States)

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.

  15. Methods study of homogeneity and stability test from cerium oxide CRM candidate

    International Nuclear Information System (INIS)

    Samin; Susanna TS

    2016-01-01

    The methods study of homogeneity and stability test from cerium oxide CRM candidate has been studied based on ISO 13258 and KAN DP. 01. 34. The purpose of this study was to select the test method homogeneity and stability tough on making CRM cerium oxide. Prepared 10 sub samples of cerium oxide randomly selected types of analytes which represent two compounds, namely CeO_2 and La_2O_3. At 10 sub sample is analyzed CeO_2 and La_2O_3 contents in duplicate with the same analytical methods, by the same analyst, and in the same laboratory. Data analysis results calculated statistically based on ISO 13528 and KAN DP.01.34. According to ISO 13528 Cerium Oxide samples said to be homogeneous if Ss ≤ 0.3 σ and is stable if | Xr – Yr | ≤ 0.3 σ. In this study, the data of homogeneity test obtained CeO_2 is Ss = 2.073 x 10-4 smaller than 0.3 σ (0.5476) and the stability test obtained | Xr - Yr | = 0.225 and the price is < 0.3 σ. Whereas for La_2O_3, the price for homogeneity test obtained Ss = 1.649 x 10-4 smaller than 0.3 σ (0.4865) and test the stability of the price obtained | Xr - Yr | = 0.2185 where the price is < 0.3 σ. Compared with the method from KAN, a sample of cerium oxide has also been homogenized for Fcalc < Ftable and stable, because | Xi - Xhm | < 0.3 x n IQR. Provided that the results of the evaluation homogeneity and stability test from CeO_2 CRM candidate test data were processed using statistical methods ISO 13528 is not significantly different with statistical methods from KAN DP.01.34, which together meet the requirements of a homogeneous and stable. So the test method homogeneity and stability test based on ISO 13528 can be used to make CRM cerium oxide. (author)

  16. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai

    2015-06-05

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  17. Homogeneous SiGe crystal growth in microgravity by the travelling liquidus-zone method

    International Nuclear Information System (INIS)

    Kinoshita, K; Arai, Y; Inatomi, Y; Sakata, K; Takayanagi, M; Yoda, S; Miyata, H; Tanaka, R; Sone, T; Yoshikawa, J; Kihara, T; Shibayama, H; Kubota, Y; Shimaoka, T; Warashina, Y

    2011-01-01

    Homogeneous SiGe crystal growth experiments will be performed on board the ISS 'Kibo' using a gradient heating furnace (GHF). A new crystal growth method invented for growing homogeneous mixed crystals named 'travelling liquidus-zone (TLZ) method' is evaluated by the growth of Si 0.5 Ge 0.5 crystals in space. We have already succeeded in growing homogeneous 2mm diameter Si 0.5 Ge 0.5 crystals on the ground but large diameter homogeneous crystals are difficult to be grown due to convection in a melt. In microgravity, larger diameter crystals can be grown with suppressing convection. Radial concentration profiles as well as axial profiles in microgravity grown crystals will be measured and will be compared with our two-dimensional TLZ growth model equation and compositional variation is analyzed. Results are beneficial for growing large diameter mixed crystals by the TLZ method on the ground. Here, we report on the principle of the TLZ method for homogeneous crystal growth, results of preparatory experiments on the ground and plan for microgravity experiments.

  18. Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids

    Directory of Open Access Journals (Sweden)

    A.D. Matveev

    2016-12-01

    Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

  19. Systematic assembly homogenization and local flux reconstruction for nodal method calculations of fast reactor power distributions

    International Nuclear Information System (INIS)

    Dorning, J.J.

    1991-01-01

    A simultaneous pin lattice cell and fuel bundle homogenization theory has been developed for use with nodal diffusion calculations of practical reactors. The theoretical development of the homogenization theory, which is based on multiple-scales asymptotic expansion methods carried out through fourth order in a small parameter, starts from the transport equation and systematically yields: a cell-homogenized bundled diffusion equation with self-consistent expressions for the cell-homogenized cross sections and diffusion tensor elements; and a bundle-homogenized global reactor diffusion equation with self-consistent expressions for the bundle-homogenized cross sections and diffusion tensor elements. The continuity of the angular flux at cell and bundle interfaces also systematically yields jump conditions for the scaler flux or so-called flux discontinuity factors on the cell and bundle interfaces in terms of the two adjacent cell or bundle eigenfunctions. The expressions required for the reconstruction of the angular flux or the 'de-homogenization' theory were obtained as an integral part of the development; hence the leading order transport theory angular flux is easily reconstructed throughout the reactor including the regions in the interior of the fuel bundles or computational nodes and in the interiors of the pin lattice cells. The theoretical development shows that the exact transport theory angular flux is obtained to first order from the whole-reactor nodal diffusion calculations, done using the homogenized nuclear data and discontinuity factors, is a product of three computed quantities: a ''cell shape function''; a ''bundle shape function''; and a ''global shape function''. 10 refs

  20. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets.

    Science.gov (United States)

    Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

    2015-07-17

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.

  1. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    Science.gov (United States)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  2. Homogenized parameters of light water fuel elements computed by a perturbative (perturbation) method

    International Nuclear Information System (INIS)

    Koide, Maria da Conceicao Michiyo

    2000-01-01

    A new analytic formulation for material parameters homogenization of the two dimensional and two energy-groups diffusion model has been successfully used as a fast computational tool for recovering the detailed group fluxes in full reactor cores. The homogenization method which has been proposed does not require the solution of the diffusion problem by a numerical method. As it is generally recognized that currents at assembly boundaries must be computed accurately, a simple numerical procedure designed to improve the values of currents obtained by nodal calculations is also presented. (author)

  3. Frequency-dependant homogenized properties of composite using spectral analysis method

    International Nuclear Information System (INIS)

    Ben Amor, M; Ben Ghozlen, M H; Lanceleur, P

    2010-01-01

    An inverse procedure is proposed to determine the material constants of multilayered composites using a spectral analysis homogenization method. Recursive process gives interfacial displacement perpendicular to layers in term of deepness. A fast-Fourier transform (FFT) procedure has been used in order to extract the wave numbers propagating in the multilayer. The upper frequency bound of this homogenization domain is estimated. Inside the homogenization domain, we discover a maximum of three planes waves susceptible to propagate in the medium. A consistent algorithm is adopted to develop an inverse procedure for the determination of the materials constants of multidirectional composite. The extracted wave numbers are used as the inputs for the procedure. The outputs are the elastic constants of multidirectional composite. Using this method, the frequency dependent effective elastic constants are obtained and example for [0/90] composites is given.

  4. Continuous energy Monte Carlo method based homogenization multi-group constants calculation

    International Nuclear Information System (INIS)

    Li Mancang; Wang Kan; Yao Dong

    2012-01-01

    The efficiency of the standard two-step reactor physics calculation relies on the accuracy of multi-group constants from the assembly-level homogenization process. In contrast to the traditional deterministic methods, generating the homogenization cross sections via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data bank can be used for a wide range of applications, resulting in the versatility using Monte Carlo codes for homogenization. As the first stage to realize Monte Carlo based lattice homogenization, the track length scheme is used as the foundation of cross section generation, which is straight forward. The scattering matrix and Legendre components, however, require special techniques. The Scattering Event method was proposed to solve the problem. There are no continuous energy counterparts in the Monte Carlo calculation for neutron diffusion coefficients. P 1 cross sections were used to calculate the diffusion coefficients for diffusion reactor simulator codes. B N theory is applied to take the leakage effect into account when the infinite lattice of identical symmetric motives is assumed. The MCMC code was developed and the code was applied in four assembly configurations to assess the accuracy and the applicability. At core-level, A PWR prototype core is examined. The results show that the Monte Carlo based multi-group constants behave well in average. The method could be applied to complicated configuration nuclear reactor core to gain higher accuracy. (authors)

  5. Study on critical effect in lattice homogenization via Monte Carlo method

    International Nuclear Information System (INIS)

    Li Mancang; Wang Kan; Yao Dong

    2012-01-01

    In contrast to the traditional deterministic lattice codes, generating the homogenization multigroup constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum. thus provides more accuracy parameters. An infinite lattice of identical symmetric motives is usually assumed when performing the homogenization. However, the finite size of a reactor is reality and it should influence the lattice calculation. In practice of the homogenization with Monte Carlo method, B N theory is applied to take the leakage effect into account. The fundamental mode with the buckling B is used as a measure of the finite size. The critical spectrum in the solution of 0-dimensional fine-group B 1 equations is used to correct the weighted spectrum for homogenization. A PWR prototype core is examined to verify that the presented method indeed generates few group constants effectively. In addition, a zero power physical experiment verification is performed. The results show that B N theory is adequate for leakage correction in the multigroup constants generation via Monte Carlo method. (authors)

  6. Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method

    Science.gov (United States)

    Sokołowski, Damian; Kamiński, Marcin

    2018-01-01

    This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).

  7. A homogenization method for ductile-brittle composite laminates at large deformations

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2018-01-01

    -elastic behavior in the reinforcement as well as for the bending stiffness of the reinforcement layers. Additionally to previously proposed models, the present method includes Lemaitre type damage for the reinforcement, making it applicable to a wider range of engineering applications. The capability...... of the proposed method in representing the combined effect of plasticity, damage and buckling at microlevel within a homogenized setting is demonstrated by means of direct comparisons to a reference discrete model.......This paper presents a high fidelity homogenization method for periodically layered composite structures that accounts for plasticity in the matrix material and quasi-brittle damage in the reinforcing layers, combined with strong geometrical nonlinearities. A set of deliberately chosen internal...

  8. Mitoxantrone removal by electrochemical method: A comparison of homogenous and heterogenous catalytic reactions

    Directory of Open Access Journals (Sweden)

    Abbas Jafarizad

    2017-08-01

    Full Text Available Background: Mitoxantrone (MXT is a drug for cancer therapy and a hazardous pharmaceutical to the environment which must be removed from contaminated waste streams. In this work, the removal of MXT by the electro-Fenton process over heterogeneous and homogenous catalysts is reported. Methods: The effects of the operational conditions (reaction medium pH, catalyst concentration and utilized current intensity were studied. The applied electrodes were carbon cloth (CC without any processing (homogenous process, graphene oxide (GO coated carbon cloth (GO/CC (homogenous process and Fe3O4@GO nanocomposite coated carbon cloth (Fe3O4@GO/CC (heterogeneous process. The characteristic properties of the electrodes were determined by atomic force microscopy (AFM, field emission scanning electron microscopy (FE-SEM and cathode polarization. MXT concentrations were determined by using ultraviolet-visible (UV-Vis spectrophotometer. Results: In a homogenous reaction, the high concentration of Fe catalyst (>0.2 mM decreased the MXT degradation rate. The results showed that the Fe3O4@GO/CC electrode included the most contact surface. The optimum operational conditions were pH 3.0 and current intensity of 450 mA which resulted in the highest removal efficiency (96.9% over Fe3O4@GO/CC electrode in the heterogeneous process compared with the other two electrodes in a homogenous process. The kinetics of the MXT degradation was obtained as a pseudo-first order reaction. Conclusion: The results confirmed the high potential of the developed method to purify contaminated wastewaters by MXT.

  9. Neutron thermalization in absorbing infinite homogeneous media: theoretical methods; Methodes theoriques pour l'etude de la thermalisation des neutrons dans les milieux absorbants infinis et homogenes

    Energy Technology Data Exchange (ETDEWEB)

    Cadilhac, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-11-15

    After a general survey of the theory of neutron thermalization in homogeneous media, one introduces, through a proper formulation, a simplified model generalizing both the Horowitz model (generalized heavy free gas approximation) and the proton gas model. When this model is used, the calculation of spectra is reduced to the solution of linear second order differential equations. Since it depends on two arbitrary functions, the model gives a good approximation of any usual moderator for reactor physics purposes. The choice of these functions is discussed from a theoretical point of view; a method based on the consideration of the first two moments of the scattering law is investigated. Finally, the possibility of discriminating models by using experimental informations is considered. (author) [French] Apres un passage en revue de generalites sur la thermalisation des neutrons dans les milieux homogenes, on developpe un formalisme permettant de definir et d'etudier un modele simplifie de thermaliseur. Ce modele generalise l'approximation proposee par J. HOROWITZ (''gaz lourd generalise'') et comporte comme cas particulier le modele ''hydrogene gazeux monoatomique''. Il ramene le calcul des spectres a la resolution d'equations differentielles lineaires du second ordre. Il fait intervenir deux fonctions arbitraires, ce qui lui permet de representer les thermaliseurs usuels de facon satisfaisante pour les besoins de la physique des reacteurs. L'ajustement theorique de ces fonctions est discute; on etudie une methode basee sur la consideration des deux premiers moments de la loi de diffusion. On envisage enfin la possibilite de discriminer les modeles d'apres des renseignements d'origine experimentale. (auteur)

  10. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    Science.gov (United States)

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  11. Synthesis and Characterization of Anatase TiO_2 Powder using a Homogeneous Precipitation Method

    International Nuclear Information System (INIS)

    Choi, Soon Ok; Cho, Jee Hee; Lim, Sung Hwan; Chung, Eun Young

    2011-01-01

    This paper studies the experimental method that uses the homogeneous precipitation method to prepare mica flakes coated with anatase-type titania pearlescent pigment with urea as precipitant. The optimum technology parameters, the chemical composition, the microstructure, and the color property of resulting pigments are discussed. The coating principle of mica coated titania with various coating thickness is analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and tested by spectrophotometer analysis. The colored nanocrystalline pigments with different morphology and coating thickness 45-170 nm were prepared by homogeneous precipitation treatment of TiOSO_4(titanum oxysulfate) aqueous solutions. Characterizations on the pigments show that the pearlescent effects of the pigments depend mainly on mica size, thickness of the metal oxide deposit, its chemical composition, and crystal structure.

  12. Synergy between experimental and theoretical methods in the exploration of homogeneous transition metal catalysis

    DEFF Research Database (Denmark)

    Lupp, Daniel; Christensen, Niels Johan; Fristrup, Peter

    2014-01-01

    n this Perspective, we will focus on the use of both experimental and theoretical methods in the exploration of reaction mechanisms in homogeneous transition metal catalysis. We briefly introduce the use of Hammett studies and kinetic isotope effects (KIE). Both of these techniques can be complem......n this Perspective, we will focus on the use of both experimental and theoretical methods in the exploration of reaction mechanisms in homogeneous transition metal catalysis. We briefly introduce the use of Hammett studies and kinetic isotope effects (KIE). Both of these techniques can...... be complemented by computational chemistry – in particular in cases where interpretation of the experimental results is not straightforward. The good correspondence between experiment and theory is only possible due to recent advances within the applied theoretical framework. We therefore also highlight...

  13. Jaws calibration method to get a homogeneous distribution of dose in the junction of hemi fields

    International Nuclear Information System (INIS)

    Cenizo de Castro, E.; Garcia Pareja, S.; Moreno Saiz, C.; Hernandez Rodriguez, R.; Bodineau Gil, C.; Martin-Viera Cueto, J. A.

    2011-01-01

    Hemi fields treatments are widely used in radiotherapy. Because the tolerance established for the positioning of each jaw is 1 mm, may be cases of overlap or separation of up to 2 mm. This implies heterogeneity of doses up to 40% in the joint area. This paper presents an accurate method of calibration of the jaws so as to obtain homogeneous dose distributions when using this type of treatment. (Author)

  14. An infrared small target detection method based on multiscale local homogeneity measure

    Science.gov (United States)

    Nie, Jinyan; Qu, Shaocheng; Wei, Yantao; Zhang, Liming; Deng, Lizhen

    2018-05-01

    Infrared (IR) small target detection plays an important role in the field of image detection area owing to its intrinsic characteristics. This paper presents a multiscale local homogeneity measure (MLHM) for infrared small target detection, which can enhance the performance of IR small target detection system. Firstly, intra-patch homogeneity of the target itself and the inter-patch heterogeneity between target and the local background regions are integrated to enhance the significant of small target. Secondly, a multiscale measure based on local regions is proposed to obtain the most appropriate response. Finally, an adaptive threshold method is applied to small target segmentation. Experimental results on three different scenarios indicate that the MLHM has good performance under the interference of strong noise.

  15. Preparation and Optimization of 10-Hydroxycamptothecin Nanocolloidal Particles Using Antisolvent Method Combined with High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Bolin Lian

    2017-01-01

    Full Text Available The aim of this study was to prepare 10-hydroxycamptothecin nanocolloidal particles (HCPTNPs to increase the solubility of drugs, reduce the toxicity, improve the stability of the drug, and so forth. HCPTNPs was prepared by antisolvent precipitation (AP method combined with high pressure homogenization (HPH, followed by lyophilization. The main parameters during antisolvent process including volume ratio of dimethyl sulfoxide (DMSO and H2O and dripping speed were optimized and their effects on mean particle size (MPS and yield of HCPT primary particles were investigated. In the high pressure homogeneous procedure, types of surfactants, amount of surfactants, and homogenization pressure (HP were optimized and their influences on MPS, zeta potential (ZP, and morphology were analyzed. The optimum conditions of HCPTNPs were as follows: 0.2 mg/mL HCPT aqueous suspension, 1% of ASS, 1000 bar of HP, and 20 passes. Finally, the HCPTNPs via lyophilization using glucose as lyoprotectant under optimum conditions had an MPS of 179.6 nm and a ZP of 28.79 ± 1.97 mV. The short-term stability of HCPTNPs indicated that the MPS changed in a small range.

  16. An homogeneization method applied to the seismic analysis of LMFBR cores

    International Nuclear Information System (INIS)

    Brochard, D.; Hammami, L.

    1991-01-01

    Important structures like nuclear reactor cores, steam generator bundle, are schematically composed by a great number of beams, immersed in a fluid. The fluid structure interaction is an important phenomenon influencing the dynamical response of bundle. The study of this interaction through classical methods would need a refined modelisation at the scale of the beams and lead to important size of problems. The homogeneization method constitutes an alternative approach if we are mainly interested by the global behaviour of the bundle. Similar approaches have been already used for other types of industrial structures (Sanchez-Palencia 1980, Bergman and al. 1985, Theodory 1984, Benner and al. 1981). This method consists in replacing the physical heterogeneous medium by an homogeneous medium, which characteristics are determined from the resolution of a set problems on the elementary cell. In the first part of this paper the main assumptions of the method will be summarized. Moreover, other important phenomena may contribute to the dynamical behaviour of the industrial above mentioned structures: those are the impacts between the beams. These impacts could be due to supports limiting the displacements of the beams or to differences in the vibratory characteristics of the various beams. The second part of the paper will concern the way of taking into account the impacts in the linear hemogeneous formalism. Finally an application to the seismic analysis of the FBR core mock-up RAPSODIE will be presented

  17. Numerical method for solution of transient, homogeneous, equilibrium, two-phase flows in one space dimension

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1979-10-01

    A solution method is presented for transient, homogeneous, equilibrium, two-phase flows of a single-component fluid in one space dimension. The method combines a direct finite-difference procedure and the method of characteristics. The finite-difference procedure solves the interior points of the computing domain; the boundary information is provided by a separate procedure based on the characteristics theory. The solution procedure for boundary points requires information in addition to the physical boundary conditions. This additional information is obtained by a new procedure involving integration of characteristics in the hodograph plane. Sample problems involving various combinations of basic boundary types are calculated for two-phase water/steam mixtures and single-phase nitrogen gas, and compared with independent method-of-characteristics solutions using very fine characteristic mesh. In all cases, excellent agreement is demonstrated

  18. Synthesis of CuO-NiO core-shell nanoparticles by homogeneous precipitation method

    International Nuclear Information System (INIS)

    Bayal, Nisha; Jeevanandam, P.

    2012-01-01

    Highlights: ► CuO-NiO core-shell nanoparticles have been synthesized using a simple homogeneous precipitation method for the first time. ► Mechanism of the formation of core-shell nanoparticles has been investigated. ► The synthesis route may be extended for the synthesis of other mixed metal oxide core-shell nanoparticles. - Abstract: Core-shell CuO–NiO mixed metal oxide nanoparticles in which CuO is the core and NiO is the shell have been successfully synthesized using homogeneous precipitation method. This is a simple synthetic method which produces first a layered double hydroxide precursor with core-shell morphology which on calcination at 350 °C yields the mixed metal oxide nanoparticles with the retention of core-shell morphology. The CuO–NiO mixed metal oxide precursor and the core-shell nanoparticles were characterized by powder X-ray diffraction, FT-IR spectroscopy, thermal gravimetric analysis, elemental analysis, scanning electron microscopy, transmission electron microscopy, and diffuse reflectance spectroscopy. The chemical reactivity of the core-shell nanoparticles was tested using catalytic reduction of 4-nitrophenol with NaBH 4 . The possible growth mechanism of the particles with core-shell morphology has also been investigated.

  19. Methods for estimating the enthalpy of formation of inorganic compounds; thermochemical and crystallographic investigations of uranyl salts of group VI elements

    International Nuclear Information System (INIS)

    Brandenburg, N.P.

    1978-01-01

    The first part of this thesis is concerned with parameter methods for estimating the standard enthalpy of formation, ΔH 0 sub(f), of inorganic compounds. In this type of method the estimate is a function of parameters, assigned to cation and anion, respectively. The usefulness of a new estimation method is illustrated in the case of uranyl sulphide. In the second part of this thesis crystallographic and thermochemical properties of uranyl salts of group VI elements are described. Crystal structures are given for β-UO 2 SO 4 , UO 2 SeO 3 , and α-UO 2 SeO 4 . Thermochemical measurements have been restricted to the determination of ΔH 0 sub(f)(UO 2 SO 3 ) and ΔH 0 sub(f)(UO 2 TeO 3 ) by means of isoperibol solution calorimetry. (Auth.)

  20. The necessity of improvement for the current LWR fuel assembly homogenization method

    International Nuclear Information System (INIS)

    Tang Chuntao; Huang Hao; Zhang Shaohong

    2007-01-01

    When the modern LWR core analysis method is used to do core nuclear design and in-core fuel management calculation, how to accurately obtain the fuel assembly homogenized parameters is a crucial issue. In this paper, taking the NEA C5G7-MOX benchmark problem as a severe test problem, which involves low-enriched uranium assemblies interspersed with MOX assemblies, we have re-examined the applicability of the two major assumptions of the modern equivalence theory for fuel assembly homoge- nization, i.e. the isolated assembly spatial spectrum assumption and the condensed two- group representation assumption. Numerical results have demonstrated that for LWR cores with strong spectrum interaction, both of these two assumptions are no longer applicable and the improvement for the homogenization method is necessary, the current two-group representation should be improved by the multigroup representation and the current reflective assembly boundary condition should be improved by the 'real' assembly boundary condition. This is a research project supported by National Natural Science Foundation of China (10605016). (authors)

  1. A Method for Ferulic Acid Production from Rice Bran Oil Soapstock Using a Homogenous System

    Directory of Open Access Journals (Sweden)

    Hoa Thi Truong

    2017-08-01

    Full Text Available Ferulic acid (FA is widely used as an antioxidant, e.g., as a Ultraviolet (UV protectant in cosmetics and in various medical applications. It has been produced by the hydrolysis of γ-oryzanol found in rice bran oil soapstock. In this study, the base-catalyzed, homogenous hydrolysis of γ-oryzanol was conducted using various ratios of potassium hydroxide (KOH to γ-oryzanol, initial concentrations of γ-oryzanol in the reaction mixture, and ratios of ethanol (EtOH (as cosolvent/ethyl acetate (EtOAc (γ-oryzanol solution. Acceleration of the reaction using a planar type of ultrasound sonicator (78 and 130 kHz at different reaction temperatures was explored. By using a heating method, the 80% yield of FA was attained at 75 °C in 4 h under homogeneous conditions (initial concentration of γ-oryzanol 12 mg/mL, the KOH/γ-oryzanol ratio (wt/wt 10/1, and EtOH/EtOAc ratio (v/v 5/1. With the assistance of 78 and 130 kHz irradiation, the yields reached 90%. The heating method was applied for the γ-oryzanol-containing extract prepared from rice bran oil soapstock. From soapstock, the 74.3% yield of FA was obtained, but 20% of the trans-FA in the reaction mixture was transformed into cis-form within one month.

  2. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    Directory of Open Access Journals (Sweden)

    Zhenzhong Pan

    2015-01-01

    Full Text Available The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with high dispersity and stability. The mean particle size and polydispersity index of the nanosuspension were 16.01 ± 0.11 nm and 0.266 ± 0.002, respectively. The high zeta potential value of −41.7 ± 1.3 mV and stable crystalline state of the nanoparticles indicated the excellent physical and chemical stability. The method could be widely used for preparing nanosuspension of various pesticides with melting points below boiling point of water. This formulation may avoid the use of organic solvents and reduce surfactants and is perspective for improving bioavailability and reducing residual pollution of pesticide in agricultural products and environment.

  3. Modelling of the dynamical behaviour of LWR internals by homogeneization methods

    International Nuclear Information System (INIS)

    Brochard, D.; Lepareux, M.; Gibert, R.J.; Delaigue, D.; Planchard, J.

    1987-01-01

    The upper plenum of the internals of PWR, the steam generator bundle, the nuclear reactor core, may be schematically represented by a beam bundle immersed in a fluid. The dynamical study of such a system needs to take into account fluid structure interaction. A refined modelisation at the scale of the tubes can be used but leads to a very important size of problem difficult to solve even on the biggest computers. The homogeneization method allows to have an approximation of the fluid structure interaction for the global behaviour of the bundle. It consists in replacing the heterogeneous physical medium (tubes and fluid) by an equivalent homogeneous medium whose characteristics are determined from the resolution of a set of problems on the elementary cell. The aim of this paper is to present the main steps of the determination of this equivalent medium in the case of small displacements (acoustic behaviour of the fluid) and in using displacement variables for both fluid and tubes. Then some precisions about the implementation of this method in computer codes will be given. (orig.)

  4. A method to improve the B0 homogeneity of the heart in vivo.

    Science.gov (United States)

    Jaffer, F A; Wen, H; Balaban, R S; Wolff, S D

    1996-09-01

    A homogeneous static (B0) magnetic field is required for many NMR experiments such as echo planar imaging, localized spectroscopy, and spiral scan imaging. Although semi-automated techniques have been described to improve the B0 field homogeneity, none has been applied to the in vivo heart. The acquisition of cardiac field maps is complicated by motion, blood flow, and chemical shift artifact from epicardial fat. To overcome these problems, an ungated three-dimensional (3D) chemical shift image (CSI) was collected to generate a time and motion-averaged B0 field map. B0 heterogeneity in the heart was minimized by using a previous algorithm that solves for the optimal shim coil currents for an input field map, using up to third-order current-bounded shims (1). The method improved the B0 homogenelty of the heart in all 11 normal volunteers studied. After application of the algorithm to the unshimmed cardiac field maps, the standard deviation of proton frequency decreased by 43%, the magnitude 1H spectral linewidth decreased by 24%, and the peak-peak gradient decreased by 35%. Simulations of the high-order (second- and third-order) shims in B0 field correction of the heart show that high order shims are important, resulting for nearly half of the improvement in homogeneity for several subjects. The T2* of the left ventricular anterior wall before and after field correction was determined at 4.0 Tesis. Finally, results show that cardiac shimming is of benefit in cardiac 31P NMR spectroscopy and cardiac echo planar imaging.

  5. A Homogeneous Time-Resolved Fluorescence Immunoassay Method for the Measurement of Compound W.

    Science.gov (United States)

    Huang, Biao; Yu, Huixin; Bao, Jiandong; Zhang, Manda; Green, William L; Wu, Sing-Yung

    2018-01-01

    Using compound W (a 3,3'-diiodothyronine sulfate [T 2 S] immuno-crossreactive material)-specific polyclonal antibodies and homogeneous time-resolved fluorescence immunoassay assay techniques (AlphaLISA) to establish an indirect competitive compound W (ICW) quantitative detection method. Photosensitive particles (donor beads) coated with compound W or T 2 S and rabbit anti-W antibody were incubated with biotinylated goat anti-rabbit antibody. This constitutes a detection system with streptavidin-coated acceptor particle. We have optimized the test conditions and evaluated the detection performance. The sensitivity of the method was 5 pg/mL, and the detection range was 5 to 10 000 pg/mL. The intra-assay coefficient of variation averages W levels in extracts of maternal serum samples. This may have clinical application to screen congenital hypothyroidism in utero.

  6. Crystallographic properties of fertilizer compounds

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  7. An analysis of the Rose's shim method for improvement of magnetic field homogeneity

    International Nuclear Information System (INIS)

    Ban, Etsuo

    1981-01-01

    Well known Rose's method has been applied to the magnets requiring high homogeneity (e.g. for magnetic resonance). The analysis of the Rose's shim is based on the conformal representation, and it is applicable to the poles of any form obtained by the combination of polygons. It provides rims for the magnetic poles of 90 deg edges. In this paper, the solution is determined by the elliptic function to give the magnetic field at any point in the space, directly integrating by the Schwarz-Christoffel transformation, instead of the approximate numerical integration employed by Rose, and compared with the example having applied it to a cylindrical pole. For the conditions of Rose's optimum correction, the exact solution is given as the case that the parameters of Jacobi's third kind elliptic function are equal to a half of first kind perfect elliptic integral. Since Rose depended on the approximate numerical integration, Rose's diagram showed a little insufficient correction. It was found that the pole shape giving excess correction of 10 -4 or so produced a good result for the cylindrical magnetic pole having the ratio of pole diameter to gap length of 2.5. In order to obtain the correction by which the change in homogeneity is small up to considerably intense field, the pole edges are required to be of curved surfaces. (Wakatsuki, Y.)

  8. Fluid structure interaction in LMFBR cores modelling by an homogenization method

    International Nuclear Information System (INIS)

    Brochard, D.

    1988-01-01

    The upper plenum of the internals of PWR, the steam generator bundle, the nuclear reactor core, may be schematically represented by a beam bundle immersed in a fluid. The dynamical study of such a system needs to take into account fluid structure interaction. A refined model at the scale of the tubes can be used but leads to a very difficult problem to solve even on the largest computers. The homogenization method allows to have an approximation of the fluid structure interaction for the global behaviour of the bundle. It consists of replacing the heterogeneous physical medium (tubes and fluid) by an equivalent homogeneous medium whose characteristics are determined from the resolution of a set of problems on the elementary cell. The aim of this paper is to present the main steps of the determination of this equivalent medium in the case of small displacements (acoustic behaviour of the fluid). Then an application to LMFBR core geometry has been realised, which shows the lowering effect on eigenfrequencies due to the fluid. Some comparisons with test results will be presented. 6 refs, 7 figs, 2 tabs

  9. Testing the ISP method with the PARIO device: Accuracy of results and influence of homogenization technique

    Science.gov (United States)

    Durner, Wolfgang; Huber, Magdalena; Yangxu, Li; Steins, Andi; Pertassek, Thomas; Göttlein, Axel; Iden, Sascha C.; von Unold, Georg

    2017-04-01

    The particle-size distribution (PSD) is one of the main properties of soils. To determine the proportions of the fine fractions silt and clay, sedimentation experiments are used. Most common are the Pipette and Hydrometer method. Both need manual sampling at specific times. Both are thus time-demanding and rely on experienced operators. Durner et al. (Durner, W., S.C. Iden, and G. von Unold (2017): The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation, Water Resources Research, doi:10.1002/2016WR019830) recently developed the integral suspension method (ISP) method, which is implemented in the METER Group device PARIOTM. This new method estimates continuous PSD's from sedimentation experiments by recording the temporal evolution of the suspension pressure at a certain measurement depth in a sedimentation cylinder. It requires no manual interaction after start and thus no specialized training of the lab personnel. The aim of this study was to test the precision and accuracy of new method with a variety of materials, to answer the following research questions: (1) Are the results obtained by PARIO reliable and stable? (2) Are the results affected by the initial mixing technique to homogenize the suspension, or by the presence of sand in the experiment? (3) Are the results identical to the one that are obtained with the Pipette method as reference method? The experiments were performed with a pure quartz silt material and four real soil materials. PARIO measurements were done repetitively on the same samples in a temperature-controlled lab to characterize the repeatability of the measurements. Subsequently, the samples were investigated by the pipette method to validate the results. We found that the statistical error for silt fraction from replicate and repetitive measurements was in the range of 1% for the quartz material to 3% for soil materials. Since the sand fractions, as in any sedimentation method, must

  10. Research on reactor physics analysis method based on Monte Carlo homogenization

    International Nuclear Information System (INIS)

    Ye Zhimin; Zhang Peng

    2014-01-01

    In order to meet the demand of nuclear energy market in the future, many new concepts of nuclear energy systems has been put forward. The traditional deterministic neutronics analysis method has been challenged in two aspects: one is the ability of generic geometry processing; the other is the multi-spectrum applicability of the multigroup cross section libraries. Due to its strong geometry modeling capability and the application of continuous energy cross section libraries, the Monte Carlo method has been widely used in reactor physics calculations, and more and more researches on Monte Carlo method has been carried out. Neutronics-thermal hydraulics coupling analysis based on Monte Carlo method has been realized. However, it still faces the problems of long computation time and slow convergence which make it not applicable to the reactor core fuel management simulations. Drawn from the deterministic core analysis method, a new two-step core analysis scheme is proposed in this work. Firstly, Monte Carlo simulations are performed for assembly, and the assembly homogenized multi-group cross sections are tallied at the same time. Secondly, the core diffusion calculations can be done with these multigroup cross sections. The new scheme can achieve high efficiency while maintain acceptable precision, so it can be used as an effective tool for the design and analysis of innovative nuclear energy systems. Numeric tests have been done in this work to verify the new scheme. (authors)

  11. Hybrid design method for air-core solenoid with axial homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-03-15

    In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million)

  12. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    Science.gov (United States)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  13. Environment-based pin-power reconstruction method for homogeneous core calculations

    International Nuclear Information System (INIS)

    Leroyer, H.; Brosselard, C.; Girardi, E.

    2012-01-01

    Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOX assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)

  14. A New and Simple Method for Crosstalk Estimation in Homogeneous Trench-Assisted Multi-Core Fibers

    DEFF Research Database (Denmark)

    Ye, Feihong; Tu, Jiajing; Saitoh, Kunimasa

    2014-01-01

    A new and simple method for inter-core crosstalk estimation in homogeneous trench-assisted multi-core fibers is presented. The crosstalk calculated by this method agrees well with experimental measurement data for two kinds of fabricated 12-core fibers.......A new and simple method for inter-core crosstalk estimation in homogeneous trench-assisted multi-core fibers is presented. The crosstalk calculated by this method agrees well with experimental measurement data for two kinds of fabricated 12-core fibers....

  15. Method to study the effect of blend flowability on the homogeneity of acetaminophen.

    Science.gov (United States)

    Llusá, Marcos; Pingali, Kalyana; Muzzio, Fernando J

    2013-02-01

    Excipient selection is key to product development because it affects their processability and physical properties, which ultimately affect the quality attributes of the pharmaceutical product. To study how the flowability of lubricated formulations affects acetaminophen (APAP) homogeneity. The formulations studied here contain one of two types of cellulose (Avicel 102 or Ceollus KG-802), one of three grades of Mallinckrodt APAP (fine, semi-fine, or micronized), lactose (Fast-Flo) and magnesium stearate. These components are mixed in a 300-liter bin blender. Blend flowability is assessed with the Gravitational Displacement Rheometer. APAP homogeneity is assessed with off-line NIR. Excluding blends dominated by segregation, there is a trend between APAP homogeneity and blend flow index. Blend flowability is affected by the type of microcrystalline cellulose and by the APAP grade. The preliminary results suggest that the methodology used in this paper is adequate to study of the effect of blend flow index on APAP homogeneity.

  16. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    Science.gov (United States)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  17. A Review of the Scattering-Parameter Extraction Method with Clarification of Ambiguity Issues in Relation to Metamaterial Homogenization

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Hansen, Troels Vejle; Mortensen, N. Asger

    2013-01-01

    The scattering-parameter extraction method of metamaterial homogenization is reviewed to show that the only ambiguity is that related to the choice of the branch of the complex logarithmic function (or the complex inverse cosine function). It is shown that the method has no ambiguity for the sign...

  18. Elastic full waveform inversion based on the homogenization method: theoretical framework and 2-D numerical illustrations

    Science.gov (United States)

    Capdeville, Yann; Métivier, Ludovic

    2018-05-01

    Seismic imaging is an efficient tool to investigate the Earth interior. Many of the different imaging techniques currently used, including the so-called full waveform inversion (FWI), are based on limited frequency band data. Such data are not sensitive to the true earth model, but to a smooth version of it. This smooth version can be related to the true model by the homogenization technique. Homogenization for wave propagation in deterministic media with no scale separation, such as geological media, has been recently developed. With such an asymptotic theory, it is possible to compute an effective medium valid for a given frequency band such that effective waveforms and true waveforms are the same up to a controlled error. In this work we make the link between limited frequency band inversion, mainly FWI, and homogenization. We establish the relation between a true model and an FWI result model. This relation is important for a proper interpretation of FWI images. We numerically illustrate, in the 2-D case, that an FWI result is at best the homogenized version of the true model. Moreover, it appears that the homogenized FWI model is quite independent of the FWI parametrization, as long as it has enough degrees of freedom. In particular, inverting for the full elastic tensor is, in each of our tests, always a good choice. We show how the homogenization can help to understand FWI behaviour and help to improve its robustness and convergence by efficiently constraining the solution space of the inverse problem.

  19. A Riccati Based Homogeneous and Self-Dual Interior-Point Method for Linear Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Edlund, Kristian

    2013-01-01

    In this paper, we develop an efficient interior-point method (IPM) for the linear programs arising in economic model predictive control of linear systems. The novelty of our algorithm is that it combines a homogeneous and self-dual model, and a specialized Riccati iteration procedure. We test...

  20. Cellular uptake of beta-carotene from protein stabilized solid lipid nano-particles prepared by homogenization-evaporation method

    Science.gov (United States)

    Using a homogenization-evaporation method, beta-carotene (BC) loaded nano-particles were prepared with different ratios of food-grade sodium caseinate (SC), whey protein isolate (WPI), or soy protein isolate (SPI) to BC and evaluated for their physiochemical stability, in vitro cytotoxicity, and cel...

  1. From creep damage mechanics to homogenization methods a liber amicorum to celebrate the birthday of Nobutada Ohno

    CERN Document Server

    Matsuda, Tetsuya; Okumura, Dai

    2015-01-01

    This volume presents a collection of contributions on materials modeling, which were written to celebrate the 65th birthday of Prof. Nobutada Ohno. The book follows Prof. Ohno’s scientific topics, starting with creep damage problems and ending with homogenization methods.

  2. Constitutive modeling of two phase materials using the Mean Field method for homogenization

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2010-01-01

    A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent

  3. A method to eliminate wetting during the homogenization of HgCdTe

    Science.gov (United States)

    Su, Ching-Hua; Lehoczky, S. L.; Szofran, F. R.

    1986-01-01

    Adhesion of HgCdTe samples to fused silica ampoule walls, or 'wetting', during the homogenization process was eliminated by adopting a slower heating rate. The idea is to decrease Cd activity in the sample so as to reduce the rate of reaction between Cd and the silica wall.

  4. Analysis of the premeability characteristics along rough-walled fractures using a homogenization method

    International Nuclear Information System (INIS)

    Chae, Byung Gon; Choi, Jung Hae; Ichikawa, Yasuaki; Seo, Yong Seok

    2012-01-01

    To compute a permeability coefficient along a rough fracture that takes into account the fracture geometry, this study performed detailed measurements of fracture roughness using a confocal laser scanning microscope, a quantitative analysis of roughness using a spectral analysis, and a homogenization analysis to calculate the permeability coefficient on the microand macro-scale. The homogenization analysis is a type of perturbation theory that characterizes the behavior of microscopically inhomogeneous material with a periodic boundary condition in the microstructure. Therefore, it is possible to analyze accurate permeability characteristics that are represented by the local effect of the fracture geometry. The Cpermeability coefficients that are calculated using the homogenization analysis for each rough fracture model exhibit an irregular distribution and do not follow the relationship of the cubic law. This distribution suggests that the permeability characteristics strongly depend on the geometric conditions of the fractures, such as the roughness and the aperture variation. The homogenization analysis may allow us to produce more accurate results than are possible with the preexisting equations for calculating permeability.

  5. Homogeneity analysis with k sets of variables: An alternating least squares method with optimal scaling features

    NARCIS (Netherlands)

    van der Burg, Eeke; de Leeuw, Jan; Verdegaal, Renée

    1988-01-01

    Homogeneity analysis, or multiple correspondence analysis, is usually applied tok separate variables. In this paper we apply it to sets of variables by using sums within sets. The resulting technique is called OVERALS. It uses the notion of optimal scaling, with transformations that can be multiple

  6. Control and homogenization of oxygen distribution in Si crystals by the novel technique: electromagnetic Czochralski method (EMCZ)

    Science.gov (United States)

    Watanabe, Masahito; Eguchi, Minoru; Hibiya, Taketoshi

    1999-07-01

    A novel method for control and homogenization oxygen distribution in silicon crystals by using electromagnetic force (EMF) to rotate the melt without crucible rotation has been developed. We call it electromagnetic Czochralski method. An EMF in the azimuthal direction is generated in the melt by the interaction between an electric current through the melt in the radial direction and a vertical magnetic field. (B). The rotation rate (ωm) of the silicon melt is continuously changed from 0 to over 105 rpm under I equals 0 to 8 A and B equals 0 to 0.1 T. Thirty-mm-diameter silicon single crystals free of dislocations could be grown under several conditions. The oxygen concentration in the crystals was continuously changed from 1 X 1017 to 1 X 1018 atoms/cm3 with increase of melt rotation by electromagnetic force. The homogeneous oxygen distributions in the radial directions were achieved. The continuous change of oxygen concentration and the homogenization of oxygen distribution along the radial direction are attributed to the control of the diffusion-boundary-layer at both the melt/crucible and crystal/melt by forced flow due to the EMF. This new method would be useful for growth of the large-diameter silicon crystals with a homogeneous distribution of oxygen.

  7. Synthesis of Fe Ni Alloy Nano materials by Proteic Sol-Gel Method: Crystallographic, Morphological, and Magnetic Properties

    International Nuclear Information System (INIS)

    Santos, C.M.D.; Martins, A.F.N.; Sasaki, J.M.; Costa, B. C.; Ribeiro, T.S.; Braga, T.P.; Soares, J.M.

    2016-01-01

    Proteic Sol-Gel method was used for the synthesis of Fe Ni alloy at different temperature conditions and flow reduction. The solids were characterized by XRD, H_2-TPR, SEM, TEM, Moessbauer spectroscopy, and VSM. It was observed by X-ray diffraction pure Fe Ni alloy in the samples reduced at 600 degree (40 ml/min H_2 flow) and 700 degree (25 ml/min H_2 flow). The Fe Ni alloy presented stability against the oxidizing atmosphere up to 250 degree. The morphology exhibited agglomerates relatively spherical and particles in the range of 10-40 nm. Moessbauer spectroscopy showed the presence of disordered ferromagnetic Fe Ni alloy, and magnetic hysteresis loop revealed a typical behavior of soft magnetic material.

  8. Synthesis of FeNi Alloy Nanomaterials by Proteic Sol-Gel Method: Crystallographic, Morphological, and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Cássio Morilla dos Santos

    2016-01-01

    Full Text Available Proteic Sol-Gel method was used for the synthesis of FeNi alloy at different temperature conditions and flow reduction. The solids were characterized by XRD, H2-TPR, SEM, TEM, Mössbauer spectroscopy, and VSM. It was observed by X-ray diffraction pure FeNi alloy in the samples reduced at 600°C (40 mL/min H2 flow and 700°C (25 mL/min H2 flow. The FeNi alloy presented stability against the oxidizing atmosphere up to 250°C. The morphology exhibited agglomerates relatively spherical and particles in the range of 10–40 nm. Mössbauer spectroscopy showed the presence of disordered ferromagnetic FeNi alloy, and magnetic hysteresis loop revealed a typical behavior of soft magnetic material.

  9. Homogeneity characterisation of (U,Gd)O2 sintered pellets by X-ray diffraction powder analysis applying Rietveld method

    International Nuclear Information System (INIS)

    Leyva, Ana G.; Vega, Daniel R.; Trimarco, Veronica G.; Marchi, Daniel E.

    1999-01-01

    The (U,Gd)O 2 sintered pellets are fabricated by different methods. The homogeneity characterisation of Gd content seems to be necessary as a production control to qualify the process and the final product. The micrographic technique is the most common method used to analyse the homogeneity of these samples, this method requires time and expertise to obtain good results. In this paper, we propose an analysis of the X-ray diffraction powder patterns through the Rietveld method, in which the differences between the experimental data and the calculated from a crystalline structure model proposed are evaluated. This result allows to determine the cell parameters, that can be correlated with the Gd concentration, and the existence of other phases with different Gd ratio. (author)

  10. The nonlinear Galerkin method: A multi-scale method applied to the simulation of homogeneous turbulent flows

    Science.gov (United States)

    Debussche, A.; Dubois, T.; Temam, R.

    1993-01-01

    Using results of Direct Numerical Simulation (DNS) in the case of two-dimensional homogeneous isotropic flows, the behavior of the small and large scales of Kolmogorov like flows at moderate Reynolds numbers are first analyzed in detail. Several estimates on the time variations of the small eddies and the nonlinear interaction terms were derived; those terms play the role of the Reynolds stress tensor in the case of LES. Since the time step of a numerical scheme is determined as a function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction terms over one iteration can become negligible by comparison with the accuracy of the computation. Based on this remark, a multilevel scheme which treats differently the small and the large eddies was proposed. Using mathematical developments, estimates of all the parameters involved in the algorithm, which then becomes a completely self-adaptive procedure were derived. Finally, realistic simulations of (Kolmorov like) flows over several eddy-turnover times were performed. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.

  11. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    International Nuclear Information System (INIS)

    Österreicher, Johannes Albert; Kumar, Manoj; Schiffl, Andreas; Schwarz, Sabine; Hillebrand, Daniel; Bourret, Gilles Remi

    2016-01-01

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopy images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.

  12. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Österreicher, Johannes Albert; Kumar, Manoj [LKR Light Metals Technologies Ranshofen, Austrian Institute of Technology, Postfach 26, 5282 Ranshofen (Austria); Schiffl, Andreas [Hammerer Aluminium Industries Extrusion GmbH, Lamprechtshausener Straße 69, 5282 Ranshofen (Austria); Schwarz, Sabine [University Service Centre for Transmission Electron Microscopy, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Hillebrand, Daniel [Hammerer Aluminium Industries Extrusion GmbH, Lamprechtshausener Straße 69, 5282 Ranshofen (Austria); Bourret, Gilles Remi, E-mail: gilles.bourret@sbg.ac.at [Department of Materials Science and Physics, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg (Austria)

    2016-12-15

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopy images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.

  13. Method of producing homogeneous mixed metal oxides and metal--metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution to leave a molten urea solution containing the metal values. The molten urea solution is heated to above about 180 0 C, whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles

  14. A Method for Ferulic Acid Production from Rice Bran Oil Soapstock Using a Homogenous System

    OpenAIRE

    Hoa Thi Truong; Manh Do Van; Long Duc Huynh; Linh Thi Nguyen; Anh Do Tuan; Thao Le Xuan Thanh; Hung Duong Phuoc; Norimichi Takenaka; Kiyoshi Imamura; Yasuaki Maeda

    2017-01-01

    Ferulic acid (FA) is widely used as an antioxidant, e.g., as a Ultraviolet (UV) protectant in cosmetics and in various medical applications. It has been produced by the hydrolysis of γ-oryzanol found in rice bran oil soapstock. In this study, the base-catalyzed, homogenous hydrolysis of γ-oryzanol was conducted using various ratios of potassium hydroxide (KOH) to γ-oryzanol, initial concentrations of γ-oryzanol in the reaction mixture, and ratios of ethanol (EtOH) (as cosolvent)/ethyl acetate...

  15. An Improved Surface Simplification Method for Facial Expression Animation Based on Homogeneous Coordinate Transformation Matrix and Maximum Shape Operator

    Directory of Open Access Journals (Sweden)

    Juin-Ling Tseng

    2016-01-01

    Full Text Available Facial animation is one of the most popular 3D animation topics researched in recent years. However, when using facial animation, a 3D facial animation model has to be stored. This 3D facial animation model requires many triangles to accurately describe and demonstrate facial expression animation because the face often presents a number of different expressions. Consequently, the costs associated with facial animation have increased rapidly. In an effort to reduce storage costs, researchers have sought to simplify 3D animation models using techniques such as Deformation Sensitive Decimation and Feature Edge Quadric. The studies conducted have examined the problems in the homogeneity of the local coordinate system between different expression models and in the retainment of simplified model characteristics. This paper proposes a method that applies Homogeneous Coordinate Transformation Matrix to solve the problem of homogeneity of the local coordinate system and Maximum Shape Operator to detect shape changes in facial animation so as to properly preserve the features of facial expressions. Further, root mean square error and perceived quality error are used to compare the errors generated by different simplification methods in experiments. Experimental results show that, compared with Deformation Sensitive Decimation and Feature Edge Quadric, our method can not only reduce the errors caused by simplification of facial animation, but also retain more facial features.

  16. Comparative analysis of storage conditions and homogenization methods for tick and flea species for identification by MALDI-TOF MS.

    Science.gov (United States)

    Nebbak, A; El Hamzaoui, B; Berenger, J-M; Bitam, I; Raoult, D; Almeras, L; Parola, P

    2017-12-01

    Ticks and fleas are vectors for numerous human and animal pathogens. Controlling them, which is important in combating such diseases, requires accurate identification, to distinguish between vector and non-vector species. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was applied to the rapid identification of arthropods. The growth of this promising tool, however, requires guidelines to be established. To this end, standardization protocols were applied to species of Rhipicephalus sanguineus (Ixodida: Ixodidae) Latreille and Ctenocephalides felis felis (Siphonaptera: Pulicidae) Bouché, including the automation of sample homogenization using two homogenizer devices, and varied sample preservation modes for a period of 1-6 months. The MS spectra were then compared with those obtained from manual pestle grinding, the standard homogenization method. Both automated methods generated intense, reproducible MS spectra from fresh specimens. Frozen storage methods appeared to represent the best preservation mode, for up to 6 months, while storage in ethanol is also possible, with some caveats for tick specimens. Carnoy's buffer, however, was shown to be less compatible with MS analysis for the purpose of identifying ticks or fleas. These standard protocols for MALDI-TOF MS arthropod identification should be complemented by additional MS spectrum quality controls, to generalize their use in monitoring arthropods of medical interest. © 2017 The Royal Entomological Society.

  17. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    Science.gov (United States)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    shear zone formed at or near the brittle-ductile transition under relatively high stress conditions. Moreover, we demonstrate the utility of combined crystallographic and rigid grain methods of vorticity analysis for deducing deformation geometries, kinematics, and tectonic histories in polyphase shear zones.

  18. Multiscale iterative methods, coarse level operator construction and discrete homogenization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Griebel, M. [Technische Universitaet Muenchen (Germany)

    1996-12-31

    For problems which model locally strong varying phenomena on a micro-scale level, the grid for numerical simulation can not be chosen sufficiently fine enough due to reasons of storage requirements and numerical complexity. A typical example for such kind of a problem is the diffusion equation with strongly varying diffusion coefficients as it arises as Darcy law in reservoir simulation and related problems for flow in porous media. Therefore, on the macro-scale level, it is necessary to work with averaged equations which describe directly the large-scale behavior of the problem under consideration. In the numerical simulation of reservoir performance this is achieved e.g. by renormalization or homogenization, as simpler approaches like the arithmetic, geometric or harmonic mean turn out to be invalid for systems with strong permeability variations.

  19. A homogenization method for the analysis of a coupled fluid-structure interaction problem with inner solid structure

    International Nuclear Information System (INIS)

    Sigrist, Jean-Francois; Laine, Christian; Broc, Daniel

    2006-01-01

    The present paper exposes a homogenization method developed in order to perform the seismic analysis of a nuclear reactor with internal structures modelling and taking fluid structure interaction effects into account. The numerical resolution of fluid-structure interactions has made tremendous progress over the past decades and some applications of the various developed techniques in the industrial field can be found in the literature. As builder of nuclear naval propulsion reactors (ground prototype reactor or embarked reactor on submarines), DCN Propulsion has been working with French nuclear committee CEA for several years in order to integrate fluid-structure analysis in the design stage of current projects. In previous papers modal and seismic analyses of a nuclear reactor with fluid-structure interaction effect were exposed. The studies highlighted the importance of fluid- structure coupling phenomena in the industrial case and focussed on added mass and added stiffness effects. The numerical model used in the previous studies did not take into account the presence of internal structures within the pressure vessel. The present study aims at improving the numerical model of the nuclear reactor to take into account the presence of the internal structures. As the internal structures are periodical within the inner and outer structure of the pressure vessel the proposed model is based on the development of a homogenization method: the presence of internal structure and its effect on the fluid-structure physical interaction is taken into account, although they are not geometrically modeled. The basic theory of the proposed homogenization method is recalled, leading to the modification of fluid-structure coupling operator in the finite element model. The physical consistency of the method is proved by an evaluation of the system mass with the various mass operators (structure, fluid and fluid-structure operators). The method is exposed and validated in a 2 D case

  20. Fabrication of ITO particles using a combination of a homogeneous precipitation method and a seeding technique and their electrical conductivity

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2015-09-01

    Full Text Available The present work proposes a method to fabricate indium tin oxide (ITO particles using precursor particles synthesized with a combination of a homogeneous precipitation method and a seeding technique, and it also describes their electronic conductivity properties. Seed nanoparticles were produced using a co-precipitation method with aqueous solutions of indium (III chloride, tin (IV chloride aqueous solution and sodium hydroxide. Three types of ITO nanoparticles were fabricated. The first type was fabricated using the co-precipitation method (c-ITO. The second and third types were fabricated using a homogeneous precipitation method with the seed nanoparticles (s-ITO and without seeds (n-ITO. The as-prepared precursor particles were annealed in air at 500 °C, and their crystal structures were cubic ITO. The c-ITO nanoparticles formed irregular-shaped agglomerates of nanoparticles. The n-ITO nanoparticles had a rectangular-parallelepiped or quasi-cubic structure. Most s-ITO nanoparticles had a quasi-cubic structure, and their size was larger than the n-ITO particles. The volume resistivities of the c-ITO, n-ITO and s-ITO powders decreased in that order because the regular-shaped particles were made to strongly contact with each other.

  1. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haiqiang; Qi, Weihong, E-mail: qiwh216@csu.edu.cn; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting [Central South University, School of Materials Science and Engineering (China)

    2017-05-15

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles (~90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  2. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    International Nuclear Information System (INIS)

    Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting

    2017-01-01

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles (~90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  3. Methods for assessing homogeneity in ThO2--UO2 fuels (LWBR Development Program)

    International Nuclear Information System (INIS)

    Berman, R.M.

    1978-06-01

    ThO 2 -UO 2 solid solutions fabricated as LWBR fuel pellets are examined for uniform uranium distribution by means of autoradiography. Kodak NTA plates are used. Images of inhomogeneities are 29 +- 10 microns larger in diameter than the high-urania segregations that caused them, due to the range of alpha particles in the emulsion, and an appropriate correction must be made. Photographic density is approximately linear with urania content in the region between underexposure and overexposure, but the slope of the calibration curve varies with aging and growth of alpha activity from the parasitic 232 U and its decomposition products. A calibration must therefore be performed using two known points--the average photographic density (corresponding to the average composition) and an extrapolated background (corresponding to zero urania). As part of production pellet inspection, plates are evaluated by inspectors, who count segregations by size classes. This is supplemented by microdensitometer scans of the autoradiograph and by electron probe studies of the original sample if apparent homogeneity is marginal

  4. Novel method to ascertain chromatin accessibility at specific genomic loci from frozen brain homogenates and laser capture microdissected defined cells.

    Science.gov (United States)

    Delvaux, Elaine; Mastroeni, Diego; Nolz, Jennifer; Coleman, Paul D

    2016-06-01

    We describe a novel method for assessing the "open" or "closed" state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with qPCR to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than one gene and multiple sites within one gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue we also recognize its applicability to other tissue types.

  5. Novel method to ascertain chromatin accessibility at specific genomic loci from frozen brain homogenates and laser capture microdissected defined cells

    Directory of Open Access Journals (Sweden)

    Elaine Delvaux

    2016-06-01

    Full Text Available We describe a novel method for assessing the “open” or “closed” state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with quantitative polymerase chain reaction to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than 1 gene and multiple sites within 1 gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue, we also recognize its applicability to other tissue types.

  6. An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems.

    Science.gov (United States)

    Joyce, Duncan; Parnell, William J; Assier, Raphaël C; Abrahams, I David

    2017-05-01

    In Parnell & Abrahams (2008 Proc. R. Soc. A 464 , 1461-1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme.

  7. Extended phase homogeneity and electrical properties of barium calcium titanate prepared by the wet chemical methods

    International Nuclear Information System (INIS)

    Jayanthi, S.; Kutty, T.R.N.

    2004-01-01

    Ca-substituted BaTiO 3 with extended homogeneity range upto ∼50 mol% CaTiO 3 have been prepared by three different chemical routes namely carbonate-oxalate (COBCT), gel-carbonate (GCBCT), and gel-to-crystallite conversion (GHBCT) followed by heat treatment above 1150 deg. C. X-ray powder diffraction (XRD) data show continuous decrease in the tetragonal unit cell parameters as well as c 0 /a 0 ratio with CaTiO 3 content, which are in accordance with the substitution of smaller sized Ca 2+ ions at the barium sites. The microstructure as well as the dielectric properties are greatly influenced by the cationic ratio, α=(Ba+Ca)/Ti. The grain size decreases with CaTiO 3 content for the stoichiometric samples (α=1), whereas ultrafine microstructure is observed in the case of off-stoichiometric samples (α>1) for the whole compositional range of CaTiO 3 concentrations. Sharper ε r -T characteristics at lower calcium content and broader ε r -T with decreased ε max , in the higher calcium range are observed in the case of α=1. Whereas nanometer grained ceramics exhibiting diffuse ε r -T characteristics are obtained in the case of α>1. The positive temperature coefficient of resistivity (PTCR) is realized for barium calcium titanate ceramics having 0.3 at.% Sb as the donor dopant for higher CaTiO 3 (typically 30 mol%) containing samples (α=1), indicating that Ca 2+ ions do not behave as acceptors if they were to substitute at the Ti 4+ sites. Whereas the off-stoichiometric (α>1) ceramics retained high resistivity, indicative of the Ti-site occupancy for Ca 2+ in fine grain ceramics

  8. Effects of fat content, pasteurization method, homogenization pressure, and storage time on the mechanical and sensory properties of bovine milk.

    Science.gov (United States)

    Li, Y; Joyner, H S; Carter, B G; Drake, M A

    2018-04-01

    Fluid milk may be pasteurized by high-temperature short-time pasteurization (HTST) or ultrapasteurization (UP). Literature suggests that UP increases milk astringency, but definitive studies have not demonstrated this effect. Thus, the objective of this study was to determine the effects of pasteurization method, fat content, homogenization pressure, and storage time on milk sensory and mechanical behaviors. Raw skim (fat), 2%, and 5% fat milk was pasteurized in duplicate by indirect UP (140°C, 2.3 s) or by HTST pasteurization (78°C, 15 s), homogenized at 20.7 MPa, and stored at 4°C for 8 wk. Additionally, 2% fat milk was processed by indirect UP and homogenized at 13.8, 20.7, and 27.6 MPa and stored at 4°C for 8 wk. Sensory profiling, instrumental viscosity, and friction profiles of all milk were evaluated at 25°C after storage times of 1, 4, and 8 wk. Sodium dodecyl sulfate PAGE and confocal laser scanning microscopy were used to determine protein structural changes in milk at these time points. Fresh HTST milk was processed at wk 7 for wk 8 evaluations. Ultrapasteurization increased milk sensory and instrumental viscosity compared with HTST pasteurization. Increased fat content increased sensory and instrumental viscosity, and decreased astringency and friction profiles. Astringency, mixed regimen friction profiles, and sensory viscosity also increased for UP versus HTST. Increased storage time showed no effect on sensory viscosity or mechanical viscosity. However, increased storage time generally resulted in increased friction profiles and astringency. Sodium dodecyl sulfate PAGE and confocal laser scanning microscopy showed increased denatured whey protein in UP milk compared with HTST milk. The aggregates or network formed by these proteins and casein micelles likely caused the increase in viscosity and friction profiles during storage. Homogenization pressure did not significantly affect friction behaviors, mechanical viscosity, or astringency; however

  9. Advances in methods of commercial FBR core characteristics analyses. Investigations of a treatment of the double-heterogeneity and a method to calculate homogenized control rod cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Kazuteru [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Iwai, Takehiko

    1998-07-01

    A standard data base for FBR core nuclear design is under development in order to improve the accuracy of FBR design calculation. As a part of the development, we investigated an improved treatment of double-heterogeneity and a method to calculate homogenized control rod cross sections in a commercial reactor geometry, for the betterment of the analytical accuracy of commercial FBR core characteristics. As an improvement in the treatment of double-heterogeneity, we derived a new method (the direct method) and compared both this and conventional methods with continuous energy Monte-Carlo calculations. In addition, we investigated the applicability of the reaction rate ratio preservation method as a advanced method to calculate homogenized control rod cross sections. The present studies gave the following information: (1) An improved treatment of double-heterogeneity: for criticality the conventional method showed good agreement with Monte-Carlo result within one sigma standard deviation; the direct method was consistent with conventional one. Preliminary evaluation of effects in core characteristics other than criticality showed that the effect of sodium void reactivity (coolant reactivity) due to the double-heterogeneity was large. (2) An advanced method to calculate homogenize control rod cross sections: for control rod worths the reaction rate ratio preservation method agreed with those produced by the calculations with the control rod heterogeneity included in the core geometry; in Monju control rod worth analysis, the present method overestimated control rod worths by 1 to 2% compared with the conventional method, but these differences were caused by more accurate model in the present method and it is considered that this method is more reliable than the conventional one. These two methods investigated in this study can be directly applied to core characteristics other than criticality or control rod worth. Thus it is concluded that these methods will

  10. Validation of the intrinsic spatial efficiency method for non cylindrical homogeneous sources using MC simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramírez, Pablo, E-mail: rapeitor@ug.uchile.cl; Ruiz, Andrés [Departamento de Física, Facultad de Ciencias, Universidad de Chile (Chile)

    2016-07-07

    The Monte Carlo simulation of the gamma spectroscopy systems is a common practice in these days. The most popular softwares to do this are MCNP and Geant4 codes. The intrinsic spatial efficiency method is a general and absolute method to determine the absolute efficiency of a spectroscopy system for any extended sources, but this was only demonstrated experimentally for cylindrical sources. Due to the difficulty that the preparation of sources with any shape represents, the simplest way to do this is by the simulation of the spectroscopy system and the source. In this work we present the validation of the intrinsic spatial efficiency method for sources with different geometries and for photons with an energy of 661.65 keV. In the simulation the matrix effects (the auto-attenuation effect) are not considered, therefore these results are only preliminaries. The MC simulation is carried out using the FLUKA code and the absolute efficiency of the detector is determined using two methods: the statistical count of Full Energy Peak (FEP) area (traditional method) and the intrinsic spatial efficiency method. The obtained results show total agreement between the absolute efficiencies determined by the traditional method and the intrinsic spatial efficiency method. The relative bias is lesser than 1% in all cases.

  11. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin R.

    2015-01-01

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters

  12. The Effect of Homogenization Pressures on Extraction of Avocado Oil by Wet Method

    OpenAIRE

    Basuni Hamzah

    2013-01-01

    Avocado tree usually planted by people of Indonesia in rural are small in scale. Mostly, in the modern and high scale industry especially company has a large avocado farm the extraction of avocado oil is extracted through vacuum drying in low temperature. However, in rural area avocado tree spread out in small number of tree, so it needs alternative method of avocado oil extraction. In this experiment, wet method of avocado extraction was applied similar to traditional extraction of coconut o...

  13. [Crystallographic evaluation of structural changes in water].

    Science.gov (United States)

    Farashchuk, N F; Rakhmanin, Yu A; Savostikova, O N; Telenkova, O G

    2014-01-01

    The study of the structural state of tap water that has been stored for two days in the packaging materials of various type and in different conditions, was performed with the use of crystallographic method for the investigation of liquids based on a special approach for dehydration of the drop, which is a fixed thin "slice" of the examines liquid. Most organized crystallographic pattern was shown to observe in a drop of water after treatment Bioptron lamp (content of liquid-crystal associates (LCA)--6.90 ± 0.23), and stored in a silver vessel (content LCA--6.28 ± 0.17), and the least organized, almost amorphous precipitate is formed in a drop of water stored in plastic containers (content LCA--2.92 ± 0.15%). Basing on the obtained results, it can be concluded that the crystallographic method can be used for the identification of qualitative changes occurring in liquid water under the influence of various physical factors, for the identification of the rationality of the use of hereafter sophisticated quantitative techniques.

  14. Measuring the homogeneity of Bi(2223)/Ag tapes by four-probe method and a Hall probe array

    International Nuclear Information System (INIS)

    Kovac, P.

    1999-01-01

    The nature of the BSCCO compound and application of the powder-in-tube technique usually lead to non-uniform quality across and/or along the ceramic fibres and finally to variations in the critical current and its irregular distribution in the Bi(2223)/Ag tape. Therefore, the gliding four-probe method and contactless field monitoring measurements have been used for homogeneity studies. The gliding potential contacts moved along the tape surface and a sensitive system based on an integrated Hall probe array containing 16 or 19 in-line probes supported by PC-compatible electronics with software allowed us to make a comparison of contact and contactless measurements at any elements of Bi(2223)/Ag sample. The results of both methods show very good correlation and the possibility of using a sensitive Hall probe array for monitoring the final quality of Bi(2223)/Ag tapes. (author)

  15. Investigation of dynamics of discrete framed structures by a numerical wave-based method and an analytical homogenization approach

    Directory of Open Access Journals (Sweden)

    Changwei Zhou

    2017-02-01

    Full Text Available In this article, the analytical homogenization method of periodic discrete media (HPDM and the numerical condensed wave finite element method (CWFEM are employed to study the longitudinal and transverse vibrations of framed structures. The valid frequency range of the HPDM is re-evaluated using the wave propagation feature identified by the CWFEM. The relative error of the wavenumber by the HPDM compared to that by the CWFEM is illustrated in functions of frequency and scale ratio. A parametric study on the thickness of the structure is carried out where the dispersion relation and the relative error are given for three different thicknesses. The dynamics of a finite structure such as natural frequency and forced response are also investigated using the HPDM and the CWFEM.

  16. Fluid-structure interaction in tube bundles: homogenization methods, physical analysis

    International Nuclear Information System (INIS)

    Broc, D.; Sigrist, J.F.

    2009-01-01

    It is well known that the movements of a structure may be strongly influenced by fluid. This topic, called 'Fluid Structure Interaction' is important in many industrial applications. Tube bundles immersed in fluid are found in many cases, especially in nuclear industry: (core reactors, steam generators,...). The fluid leads to 'inertial effects' (with a decrease of the vibration frequencies) and 'dissipative effects' (with higher damping). The paper first presents the methods used for the simulation of the dynamic behaviour of tube bundles immersed in a fluid, with industrial examples. The methods used are based on the Euler equations for the fluid (perfect fluid), which allow to take into account the inertial effects. It is possible to take into account dissipative effects also, by using a Rayleigh damping. The conclusion focuses on improvements of the methods, in order to take into account with more accuracy the influence of the fluid, mainly the dissipative effects, which may be very important, especially in the case of a global fluid flow. (authors)

  17. Homogenization of Mammalian Cells.

    Science.gov (United States)

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  18. Reflector homogenization

    International Nuclear Information System (INIS)

    Sanchez, R.; Ragusa, J.; Santandrea, S.

    2004-01-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P 0 transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP N core calculations. (Author)

  19. Preparation and Characterization of Estradiol-Loaded PLGA Nanoparticles Using Homogenization-Solvent Diffusion Method

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2008-09-01

    Full Text Available Background: The inherent shortcomings of conventional drug delivery systems containing estrogens and the potential of nanoparticles (NPs have offered tremendous scope for investigation. Although polymeric NPs have been used as drug carriers for many active agents, the use of appropriate polymer and method of NP preparation to overcome different challenges is very important. Materials and methods: Poly lactide-co-glycolide (PLGA NPs containing estradiol valerate were prepared by the modified spontaneous emulsification solvent diffusion method. Several parameters including the drug/polymer ratios in range of 2.5-10%, poly vinyl alcohol (PVA in concentration of 0-4% as stabilizer and internal phase volume and composition were examined to optimize formulation. The size distribution and morphology of the NPs, encapsulation efficacy and in vitro release profile in phosphate buffer medium (pH 7.4 during 12 hrs were then investigated. Results: The NPs prepared in this study were spherical with a relatively mono-dispersed size distribution. By adjustment of the process parameters, the size and the drug encapsulation efficacy as well as the drug release kinetics can be optimally controlled. The mean particle size of the best formula with encapsulation efficiency of 100% was 175 ± 19, in which release profile was best fitted to Higuchi's model of release which showed that release mechanism was mainly controlled by diffusion of the drug to the release medium. Conclusion: According to the size and surface properties of the prepared particles, it may be concluded that they are a good formulation for non-parenteral routes of administration.

  20. Study of technological parameters influence on homogeneity of rubber mixings by means of radiotracer methods

    International Nuclear Information System (INIS)

    Koczorowska, E.

    1995-01-01

    The radiotracer methods have been worked out for analysis of physico-chemical phenomena. The analysis were carried out for rubber mixings in technological conditions and played a deciding role for quality of manufacturing assortment. The 35 S and 65 Zn have been used as radiotracers. Analysis of different technological parameters influence on behaviour of soluble and polymerized sulfur, zinc compounds as well as other components of the rubber mixing enables to formulate the conclusions important for rubber industry and technology from view point of quality of manufacturing products

  1. A preliminary neutron crystallographic study of thaumatin

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Susana C. M. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); Blakeley, Matthew P. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Leal, Ricardo M. F. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Mitchell, Edward P. [EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Forsyth, V. Trevor, E-mail: tforsyth@ill.fr [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.

  2. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    A method for preparing particulate metal or metal oxide of controlled partile size comprises contacting an an aqueous solution containing dissolved metal values with excess urea at a temperature sufficient to cause urea to react with water to provide a molten urea solution containing the metal values; heating the molten urea solution to cause the metal values to precipitate, forming a mixture containing precipitated metal values; heating the mixture containing precipitated metal values to evaporate volatile material leaving a dry powder containing said metal values. The dry powder can be calcined to provide particulate metal oxide or reduced to provide particulate metal. Oxide mixtures are provided when the aqueous solution contains values of more than one metal. Homogeneousmetal-metal oxide mistures for preparing cermets can be prepared by selectively reducing at least one of the metal oxides. (auth)

  3. Two-dimensional Haar wavelet Collocation Method for the solution of Stationary Neutron Transport Equation in a homogeneous isotropic medium

    International Nuclear Information System (INIS)

    Patra, A.; Saha Ray, S.

    2014-01-01

    Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet Collocation Method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: This paper emphasizes on finding the solution for a stationary transport equation using the technique of Haar wavelet Collocation Method (HWCM). Haar wavelet Collocation Method is efficient and powerful in solving wide class of linear and nonlinear differential equations. Recently Haar wavelet transform has gained the reputation of being a very effective tool for many practical applications. This paper intends to provide the great utility of Haar wavelets to nuclear science problem. In the present paper, two-dimensional Haar wavelets are applied for solution of the stationary Neutron Transport Equation in homogeneous isotropic medium. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency of the method, one test problem is discussed. It can be observed from the computational simulation that the numerical approximate solution is much closer to the exact solution

  4. The application of polynomial chaos methods to a point kinetics model of MIPR: An Aqueous Homogeneous Reactor

    International Nuclear Information System (INIS)

    Cooling, C.M.; Williams, M.M.R.; Nygaard, E.T.; Eaton, M.D.

    2013-01-01

    Highlights: • A point kinetics model for the Medical Isotope Production Reactor is formulated. • Reactivity insertions are simulated using this model. • Polynomial chaos is used to simulate uncertainty in reactor parameters. • The computational efficiency of polynomial chaos is compared to that of Monte Carlo. -- Abstract: This paper models a conceptual Medical Isotope Production Reactor (MIPR) using a point kinetics model which is used to explore power excursions in the event of a reactivity insertion. The effect of uncertainty of key parameters is modelled using intrusive polynomial chaos. It is found that the system is stable against reactivity insertions and power excursions are all bounded and tend towards a new equilibrium state due to the negative feedbacks inherent in Aqueous Homogeneous Reactors (AHRs). The Polynomial Chaos Expansion (PCE) method is found to be much more computationally efficient than that of Monte Carlo simulation in this application

  5. The Crystallographic Information File (CIF

    Directory of Open Access Journals (Sweden)

    I D Brown

    2006-11-01

    Full Text Available The Crystallographic Information File (CIF, owned by the International Union of Crystallography, is a file structure based on tag-value ASCII pairs with tags defined in machine-readable dictionaries. The crystallographic community publishes and archives large quantities of numeric information generated by crystal structure determinations, and CIF's acceptance was assured by its adoption as the submission format for Acta Crystallographica and by the obvious needs of the community. CIF's strength lies in its dictionaries, which define most of the concepts of crystallography; its weakness is the difficulty of writing software that exploits its full potential.

  6. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  7. Preparation of the new certified reference material Virginia Tobacco Leaves (CTA-VTL-2) and development of suitable methods for checking the homogeneity

    International Nuclear Information System (INIS)

    Dybczynski, R.; Polkowska-Motrenko, H.; Samczynski, Z.; Szopa, Z.

    1994-01-01

    The aim of this project in the long run has been reparation of a new biological reference material: Tobacco leaves of the 'Virginia' type and its certification for the content of possibly great number of trace elements. Further aims have been: development of the suitable methods for checking the homogeneity with the special emphasis on homogeneity of small samples and the critical analysis of the performance of various analytical techniques

  8. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...

  9. Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    Science.gov (United States)

    Montalto, L.; Natali, P. P.; Daví, F.; Mengucci., P.; Paone, N.; Rinaldi, D.

    2017-12-01

    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual (a, c) crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the (a, c) crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.

  10. High homogeneity powder of Ti-Ba-Ca-Cu-O (2223) prepared by Freeze-Drying method

    International Nuclear Information System (INIS)

    Al-Shakarchi, Emad Kh.; Toma, Ziad A.

    1999-01-01

    Full text.Homogeneous high temerature superconductor ceramic powder of TI-Ba-Ca-Cu-O with transition temperature [Tc=123K] have been successfully prepared from the mixture of nitrate salts [TlNO 3 , Ba(NO 3 ) 2 , Ca(NO 3 ) 2 .4H 2 O and Cu(NO 3 ) 2 .3H 2 O] by using freeze-drying method. Freeze-dryer that was used in this work designed locally in our laboratory. This technique consider a better to get a fine powder of ceramic materials by depending on the procedure of frozen droplets with present of liquid nitrogen. SEM pictures showed the size of grains of about [0.8 μm]. We conclude that the high sintering temperature, for the prepared powders in this technique, for long time [120 hrs] will increase the inter diffusion between the grains ahich caused the decreasing in the density of the sample which may be given a better results than the obtained in a previous works

  11. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    Science.gov (United States)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  12. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    Science.gov (United States)

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  13. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  14. Laser beam uniformity and stability using homogenizer-based fiber optic launch method: square core fiber delivery

    Science.gov (United States)

    Lizotte, Todd E.

    2011-03-01

    Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.

  15. Crystallographic Topology 2: Overview and Work in Progress

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1999-08-01

    This overview describes an application of contemporary geometric topology and stochastic process concepts to structural crystallography. In this application, crystallographic groups become orbifolds, crystal structures become Morse functions on orbifolds, and vibrating atoms in a crystal become vector valued Gaussian measures with the Radon-Nikodym property. Intended crystallographic benefits include new methods for visualization of space groups and crystal structures, analysis of the thermal motion patterns seen in ORTEP drawings, and a classification scheme for crystal structures based on their Heegaard splitting properties.

  16. Methods to homogenize electrochemical concentration cell (ECC ozonesonde measurements across changes in sensing solution concentration or ozonesonde manufacturer

    Directory of Open Access Journals (Sweden)

    T. Deshler

    2017-06-01

    ≥  30 hPa, and thus the transfer function can be characterized as a simple ratio of the less sensitive to the more sensitive method. This ratio is 0.96 for both solution concentration and ozonesonde type. The ratios differ at pressures < 30 hPa such that OZ0. 5%/OZ1. 0 % =  0. 90 + 0. 041 ⋅ log10(p and OZSciencePump/OZENSCI =  0. 764 + 0. 133 ⋅ log10(p for p in units of hPa. For the manufacturer-recommended solution concentrations the dispersion of the ratio (SP-1.0 / EN-0.5 %, while significant, is generally within 3 % and centered near 1.0, such that no changes are recommended. For stations which have used multiple ozonesonde types with solution concentrations different from the WMO's and manufacturer's recommendations, this work suggests that a reasonably homogeneous data set can be created if the quantitative relationships specified above are applied to the non-standard measurements. This result is illustrated here in an application to the Nairobi data set.

  17. Distribution of Al and in impurities along homogeneous Ge-Si crystals grown by the Czochralski method using Si feeding rod

    Science.gov (United States)

    Kyazimova, V. K.; Alekperov, A. I.; Zakhrabekova, Z. M.; Azhdarov, G. Kh.

    2014-05-01

    A distribution of Al and In impurities in Ge1 - x Si x crystals (0 ≤ x ≤ 0.3) grown by a modified Czochralski method (with continuous feeding of melt using a Si rod) have been studied experimentally and theoretically. Experimental Al and In concentrations along homogeneous crystals have been determined from Hall measurements. The problem of Al and In impurity distribution in homogeneous Ge-Si single crystals grown in the same way is solved within the Pfann approximation. A set of dependences of Al and In concentrations on the crystal length obtained within this approximation demonstrates a good correspondence between the experimental and theoretical data.

  18. Homogenization of Classification Functions Measurement (HOCFUN): A Method for Measuring the Salience of Emotional Arousal in Thinking.

    Science.gov (United States)

    Tonti, Marco; Salvatore, Sergio

    2015-01-01

    The problem of the measurement of emotion is a widely debated one. In this article we propose an instrument, the Homogenization of Classification Functions Measure (HOCFUN), designed for assessing the influence of emotional arousal on a rating task consisting of the evaluation of a sequence of images. The instrument defines an indicator (κ) that measures the degree of homogenization of the ratings given over 2 rating scales (pleasant-unpleasant and relevant-irrelevant). Such a degree of homogenization is interpreted as the effect of emotional arousal on thinking and therefore lends itself to be used as a marker of emotional arousal. A preliminary study of validation was implemented. The association of the κ indicator with 3 additional indicators was analyzed. Consistent with the hypotheses, the κ indicator proved to be associated, even if weakly and nonlinearly, with a marker of the homogenization of classification functions derived from a separate rating task and with 2 indirect indicators of emotional activation: the speed of performance on the HOCFUN task and an indicator of mood intensity. Taken as a whole, such results provide initial evidence supporting the HOCFUN construct validity.

  19. Development and application of an ultratrace method for speciation of organotin compounds in cryogenically archived and homogenized biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Point, David; Davis, W.C.; Christopher, Steven J.; Ellisor, Michael B.; Pugh, Rebecca S.; Becker, Paul R. [Hollings Marine Laboratory, National Institute of Standards and Technology, Analytical Chemistry Division, Charleston, SC (United States); Donard, Olivier F.X. [Laboratoire de Chimie Analytique BioInorganique et Environnement UMR 5034 du CNRS, Pau (France); Porter, Barbara J.; Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States)

    2007-04-15

    An accurate, ultra-sensitive and robust method for speciation of mono, di, and tributyltin (MBT, DBT, and TBT) by speciated isotope-dilution gas chromatography-inductively coupled plasma-mass spectrometry (SID-GC-ICPMS) has been developed for quantification of butyltin concentrations in cryogenic biological materials maintained in an uninterrupted cryo-chain from storage conditions through homogenization and bottling. The method significantly reduces the detection limits, to the low pg g{sup -1} level (as Sn), and was validated by using the European reference material (ERM) CE477, mussel tissue, produced by the Institute for Reference Materials and Measurements. It was applied to three different cryogenic biological materials - a fresh-frozen mussel tissue (SRM 1974b) together with complex materials, a protein-rich material (whale liver control material, QC03LH03), and a lipid-rich material (whale blubber, SRM 1945) containing up to 72% lipids. The commutability between frozen and freeze-dried materials with regard to spike equilibration/interaction, extraction efficiency, and the absence of detectable transformations was carefully investigated by applying complementary methods and by varying extraction conditions and spiking strategies. The inter-method results enabled assignment of reference concentrations of butyltins in cryogenic SRMs and control materials for the first time. The reference concentrations of MBT, DBT, and TBT in SRM 1974b were 0.92 {+-} 0.06, 2.7 {+-} 0.4, and 6.58 {+-} 0.19 ng g{sup -1} as Sn (wet-mass), respectively; in SRM 1945 they were 0.38 {+-} 0.06, 1.19 {+-} 0.26, and 3.55 {+-} 0.44 ng g{sup -1}, respectively, as Sn (wet-mass). In QC03LH03, DBT and TBT concentrations were 30.0 {+-} 2.7 and 2.26 {+-} 0.38 ng g{sup -1} as Sn (wet-mass). The concentration range of butyltins in these materials is one to three orders of magnitude lower than in ERM CE477. This study demonstrated that cryogenically processed and stored biological materials are

  20. Crystallographically uniform arrays of ordered (In)GaN nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Gačević, Ž., E-mail: gacevic@isom.upm.es; Bengoechea-Encabo, A.; Albert, S.; Calleja, E. [ETSIT-ISOM, Universidad Politécnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Torres-Pardo, A.; González-Calbet, J. M. [Dept. Química Inorgánica, Universidad Complutense, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, Madrid (Spain)

    2015-01-21

    In this work, through a comparative study of self-assembled (SA) and selective area grown (SAG) (In)GaN nanocolumn (NC) ensembles, we first give a detailed insight into improved crystallographic uniformity (homogeneity of crystallographic tilts and twists) of the latter ones. The study, performed making use of: reflective high energy electron diffraction, X-ray diffraction and scanning electron microscopy, reveals that unlike their SA counterparts, the ensembles of SAG NCs show single epitaxial relationship to both sapphire(0001) and Si(111) underlying substrates. In the second part of the article, making use of X-ray diffraction, we directly show that the selective area growth leads to improved compositional uniformity of InGaN NC ensembles. This further leads to improved spectral purity of their luminescence, as confirmed by comparative macro-photoluminescence measurements performed on SA and SAG InGaN NC ensembles. An improved crystallographic uniformity of NC ensembles facilitates their integration into optoelectronic devices, whereas their improved compositional uniformity allows for their employment in single-color optoelectronic applications.

  1. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-I: Theory and method

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained

  2. Synthesis of homogeneous Ca0.5Sr0.5FeO2.5+δ compound using a mirror furnace method

    International Nuclear Information System (INIS)

    Mahboub, M.S.; Zeroual, S.; Boudjada, A.

    2012-01-01

    Graphical abstract: X-ray diffraction pattern indexing of Ca 0.5 Sr 0.5 FeO 2.5+δ powder sample obtained by mirror furnace method after thermal treatment. Highlights: ► A homogenous compound Ca 0.5 Sr 0.5 FeO 2.5+δ has been synthesized for the first time by a mirror furnace method. ► Ca 0.5 Sr 0.5 FeO 2.5+δ powder sample is perfectly homogenous, confirmed by X-ray diffraction, Raman spectroscopy and EDS technique. ► The thermal treatment of Ca 0.5 Sr 0.5 FeO 2.5+δ powder sample can increase their average grain sizes. -- Abstract: A new synthesis method using melting zone technique via the double mirror furnace around 1600 °C is used to obtain homogenous brownmillerite compounds Ca 1−x Sr x FeO 2.5+δ in the range 0.3 ≤ x ≤ 0.7. These compounds play important role in understanding the mystery of the oxygen diffusion in the perovskite-related oxides. We have successfully solved the miscibility gap problem by synthesizing a good quality of homogenous powder samples of Ca 0.5 Sr 0.5 FeO 2.5+δ compound. Our result was confirmed by X-rays diffraction, Raman spectroscopy and energy dispersive spectroscopy analysis. Thermal treatment was also applied until 800 °C under vacuum to confirm again the homogeneity of powder samples, improve its quality and show that no decomposition or return to form Ca- and Sr-enriched microdomains takes place as a result of phase separation.

  3. Predicting the losses and the efficiency of a 1-3 piezo-composite transducer through a partial homogeneization method

    Directory of Open Access Journals (Sweden)

    Pastor, J.

    2002-02-01

    Full Text Available The topic of this work is the theoretical study of a disc-shaped acoustic transducer made with a 1-3 piezoelectric composite material. This material consists of PZT ceramic rods embedded in a polymer matrix. A modeling of this ideal transversally periodic structure is proposed. It is based on a finite element approach derived from homogenization techniques mainly used for composite material studies. The analysis focuses on a representative unit cell with specific boundary conditions on the lateral surfaces taking accurately into account the periodicity of the structure. The first step proposed is the development of a three-dimensional Fortran code with complex variables, especially adapted for this problem. Using the principle of correspondence of Lee-Mandel, this technique allows the prediction of the damping properties of the transducer from the complex modulus of the constituents. Both the versatility of the method and the rigorous character of the model are pointed out through various boundary conditions and mixed loadings. An interesting result is that, despite the lossy polymer matrix, a 1-3 composite can advantageously replace a much heavier massive transducer, in terms of efficiency and loss factor.

    El objetivo de este trabajo es el estudio teórico de un transductor acústico con forma de disco construido con un composite piezoeléctrico 1-3. Este material consiste en barras cerámicas de PZT embebidas en una matriz polimérica. Se propone un modelo de su estructura periódica transversal ideal basándose en una aproximación mediante elementos finitos derivada de técnicas de homogeneización usadas principalmente para estudios de materiales compuestos. El análisis se enfoca a una celdilla unidad representativa con unas condiciones de contorno específicas sobre las superficies laterales, teniendo en cuenta adecuadamente la periodicidad de la estructura. El primer paso propuesto es el desarrollo de un código Fortran

  4. Electro-magnetostatic homogenization of bianisotropic metamaterials

    OpenAIRE

    Fietz, Chris

    2012-01-01

    We apply the method of asymptotic homogenization to metamaterials with microscopically bianisotropic inclusions to calculate a full set of constitutive parameters in the long wavelength limit. Two different implementations of electromagnetic asymptotic homogenization are presented. We test the homogenization procedure on two different metamaterial examples. Finally, the analytical solution for long wavelength homogenization of a one dimensional metamaterial with microscopically bi-isotropic i...

  5. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    Science.gov (United States)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  7. Characterization and evaluation in vivo of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method.

    Science.gov (United States)

    Shi-Ying, Jin; Jin, Han; Shi-Xiao, Jin; Qing-Yuan, Lv; Jin-Xia, Bai; Chen, Hong-Ge; Rui-Sheng, Li; Wei, Wu; Hai-Long, Yuan

    2014-01-01

    To improve the absorption and bioavailability of baicalin using a nanocrystal (or nanosuspension) drug delivery system. A tandem, ultrasonic-homogenization-fluid bed drying technology was applied to prepare baicalin-nanocrystal dried powders, and the physicochemical properties of baicalin-nanocrystals were characterized by scanning electron microscopy, photon correlation spectroscopy, powder X-ray diffraction, physical stability, and solubility experiments. Furthermore, in situ intestine single-pass perfusion experiments and pharmacokinetics in rats were performed to make a comparison between the microcrystals of baicalin and pure baicalin in their absorption properties and bioavailability in vivo. The mean particle size of baicalin-nanocrystals was 236 nm, with a polydispersity index of 0.173, and a zeta potential value of -34.8 mV, which provided a guarantee for the stability of the reconstituted nanosuspension. X-Ray diffraction results indicated that the crystallinity of baicalin was decreased through the ultrasonic-homogenization process. Physical stability experiments showed that the prepared baicalin-nanocrystals were sufficiently stable. It was shown that the solubility of baicalin in the form of nanocrystals, at 495 μg·mL(-1), was much higher than the baicalin-microcrystals and the physical mixture (135 and 86.4 μg·mL(-1), respectively). In situ intestine perfusion experiments demonstrated a clear advantage in the dissolution and absorption characteristics for baicalin-nanocrystals compared to the other formulations. In addition, after oral administration to rats, the particle size decrease from the micron to nanometer range exhibited much higher in vivo bioavailability (with the AUC(0-t) value of 206.96 ± 21.23 and 127.95 ± 14.41 mg·L(-1)·h(-1), respectively). The nanocrystal drug delivery system using an ultrasonic-homogenization-fluid bed drying process is able to improve the absorption and in vivo bioavailability of baicalin, compared with pure

  8. Ion-induced Auger electron spectroscopy: a new detection method for compositional homogeneities of alloyed atoms in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, A [Osaka Univ., Japan; Imura, T; Iwami, M; Kim, S C; Ushita, K; Okamoto, H; Hamakawa, Y

    1979-09-01

    Auger spectra of Si LMM transitions induced by keV Ar/sup +/ ion bombardment of Si alloy systems have been studied. The spectra observed are composed of two well-defined peaks termed elsewhere the atomic-like and bulk-like peaks, repsectively. A clear correlation has been found between the intensity of the atomic-like peak lying at 88 eV and the content of the foreign atoms alloyed with Si. Experiments were carried out on metallic silicides, or Si alloys with Au, Cu, Pd and Ni, and covalently bonded non-metallic Si alloys of C and H. From these studies, we propose that ion-induced Auger electron spectroscopy might be a useful tool for the determination of alloyed foreign atoms as well as for the study of their compositional homogeneity in binary alloy systems of silicon.

  9. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR.

    Science.gov (United States)

    Sung, Heungsup; Yong, Dongeun; Ki, Chang Seok; Kim, Jae Seok; Seong, Moon Woo; Lee, Hyukmin; Kim, Mi Na

    2016-09-01

    Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1-35.4 with the PK-DNase method, 34.7-39.0 with the PBS method, and 33.9-38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both Phomogenizing sputum samples prior to RNA extraction.

  10. Use of statistical methods for determining homogeneous layers of volcanic soils at a site in the slopes of Volcan Irazu, Cartago, Costa Rica

    International Nuclear Information System (INIS)

    Mora, Rolando

    2013-01-01

    A Statistical method was used to delineate homogeneous layers of volcanic soils in two sites where dynamic penetration soundings have been implemented. The study includes two perforations (DPL 1A and DPL 1B) with dynamic penetrometer light (DPL), carried out in the canton de La Union, Cartago. The data of the number of blows as a function od the depth of the DPL perforations depth were used to calculate the intraclass correlation coefficient (IR) and clearly determine the limits of homogeneous layers in volcanic soils. The physical and mechanical properties of each determined layer were established with the help of computers programs, as well as the variation according to depth of its allowable bearing capacity. With the obtained results is has been possible to determine the most suitable site to establish the foundation of a potable water storage tank [es

  11. Application of the Monte Carlo method in calculation of energy-time distribution from a pulsed photon source in homogeneous air environment

    International Nuclear Information System (INIS)

    Ilic, R.D.; Vojvodic, V.I.; Orlic, M.P.

    1981-01-01

    The stochastic nature of photon interactions with matter and the characteristics of photon transport through real materials, are very well suited for applications of the Monte Carlo method in calculations of the energy-space distribution of photons. Starting from general principles of the Monte Carlo method, physical-mathematical model of photon transport from a pulsed source is given for the homogeneous air environment. Based on that model, a computer program is written which is applied in calculations of scattered photons delay spectra and changes of the photon energy spectrum. Obtained results provide the estimation of the timespace function of the electromagnetic field generated by photon from a pulsed source. (author)

  12. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Alexandra Henriques

    2014-11-01

    Full Text Available Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  13. Some non-linear physics in crystallographic structures

    International Nuclear Information System (INIS)

    Aubry, S.

    1977-10-01

    A summary of studies on simple but strongly nonlinear crystallographic models that make use of some methods in stochasticity is presented. Two one-dimensional models are described; one has been studied to understand some aspects of the nonlinear dynamics in crystals when close to the transition temperature, the other is for commensurability and incommensurability problems. Periodic orbits and the dynamics of a one-dimensional coupled double-well chain are considered, along with lattice locking and stochasticity

  14. Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries

    International Nuclear Information System (INIS)

    Das, Shyamal K.; Bhattacharyya, Aninda J.

    2011-01-01

    Highlights: → Carbon wired TiO 2 nanotubes as anode for lithium ion batteries. → Mixed phase nanotubes show higher energy and power density than titania nanosheets. → Lithium storage and phase stabilization influenced by morphology of carbon coating. - Abstract: The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO 2 is discussed here. TiO 2 nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO 2 (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO 2 nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g -1 ) for TiO 2 nanotube and nanosheet were 355 mAh g -1 and 225 mAh g -1 , respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g -1 for TiO 2 nanotubes to 96 mAh g -1 and 57 mAh g -1 respectively for Ag and carbon modified TiO 2 nanotubes. The homogeneously coated amorphous carbon over TiO 2 renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO 2 due to efficient hopping of electrons.

  15. The effect of crystallographic orientation on the active corrosion of pure magnesium

    International Nuclear Information System (INIS)

    Liu Ming; Qiu Dong; Zhao Mingchun; Song, Guangling; Atrens, Andrej

    2008-01-01

    An improved method was used to investigate the influence of crystallographic orientation on the corrosion of pure magnesium in 0.1 N HCl. The corrosion depth and orientation of surface features were mapped against crystallographic orientation (obtained by electron backscatter diffraction) for many off-principal magnesium crystals. The grains near (0 0 0 1) orientation are the most corrosion resistant. Most grains exhibited a striated structure of long and narrow hillocks with a unique direction

  16. An alternative to the crystallographic reconstruction of austenite in steels

    International Nuclear Information System (INIS)

    Bernier, Nicolas; Bracke, Lieven; Malet, Loïc; Godet, Stéphane

    2014-01-01

    An alternative crystallographic austenite reconstruction programme written in Matlab is developed by combining the best features of the existing models: the orientation relationship refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. This programme can be directly applied to experimental electron backscatter diffraction mappings. Its applicability is demonstrated on both quenching and partitioning and as-quenched lath-martensite steels. - Highlights: • An alternative crystallographic austenite reconstruction program is developed. • The method combines a local analysis and a nuclei identification/spreading strategy. • The validity of the calculated orientation relationship is verified on a Q and P steel. • The accuracy of the reconstructed microtexture is investigated on a martensite steel

  17. Automated identification of crystallographic ligands using sparse-density representations

    International Nuclear Information System (INIS)

    Carolan, C. G.; Lamzin, V. S.

    2014-01-01

    A novel procedure for identifying ligands in macromolecular crystallographic electron-density maps is introduced. Density clusters in such maps can be rapidly attributed to one of 82 different ligands in an automated manner. A novel procedure for the automatic identification of ligands in macromolecular crystallographic electron-density maps is introduced. It is based on the sparse parameterization of density clusters and the matching of the pseudo-atomic grids thus created to conformationally variant ligands using mathematical descriptors of molecular shape, size and topology. In large-scale tests on experimental data derived from the Protein Data Bank, the procedure could quickly identify the deposited ligand within the top-ranked compounds from a database of candidates. This indicates the suitability of the method for the identification of binding entities in fragment-based drug screening and in model completion in macromolecular structure determination

  18. A simple gold nanoparticle-mediated immobilization method to fabricate highly homogeneous DNA microarrays having higher capacities than those prepared by using conventional techniques

    International Nuclear Information System (INIS)

    Jung, Cheulhee; Mun, Hyo Young; Li, Taihua; Park, Hyun Gyu

    2009-01-01

    A simple, highly efficient immobilization method to fabricate DNA microarrays, that utilizes gold nanoparticles as the mediator, has been developed. The fabrication method begins with electrostatic attachment of amine-modified DNA to gold nanoparticles. The resulting gold-DNA complexes are immobilized on conventional amine or aldehyde functionalized glass slides. By employing gold nanoparticles as the immobilization mediator, implementation of this procedure yields highly homogeneous microarrays that have higher binding capacities than those produced by conventional methods. This outcome is due to the increased three-dimensional immobilization surface provided by the gold nanoparticles as well as the intrinsic effects of gold on emission properties. This novel immobilization strategy gives microarrays that produce more intense hybridization signals for the complementary DNA. Furthermore, the silver enhancement technique, made possible only in the case of immobilized gold nanoparticles on the microarrays, enables simple monitoring of the integrity of the immobilized DNA probe.

  19. An investigation into the equivalent parameter method for homogeneous transport equivalent parameters for use in fast reactor control assemblies

    International Nuclear Information System (INIS)

    Tullett, J.D.

    1990-01-01

    P Benoist has developed a method for calculating cross-sections for Fast Reactor control rods and their followers described by a single homogenised region (the Equivalent Parameter Method). When used in a diffusion theory calculation, these equivalent cross-sections should give the same rod worth as one would obtain from a transport theory calculation with a heterogeneous description of the control rod and the follower. In this report, Benoist's theory is described, and a comprehensive set of tests is presented. These tests show that the method gives very good results over a range of geometries and control rod positions for a model fast reactor core. (author)

  20. Determining experimentally the parameters of the unsteady thermal behaviour of homogeneously layered walls by the reference plates method

    International Nuclear Information System (INIS)

    Beron, Rodolphe

    1988-01-01

    In this work, we introduce an experimental determination method of parameters which are characteristics of the transfer functions of walls in buildings by the use of an easy equipment which use needs no significant constraint. This method called 'reference plates method' is based on the working out of the thermo-grams which result from any thermal perturbation. The first part of our work deals with the theoretical development of the methods of working out the measures used for both single-Iayered and multi-layered walls. The second part discusses the applying of the method on single-Iayered sample. The values of thermophysical characteristics of the wall is based on the working out of the heat equation written in terms an integral transformation which we take as Laplace's transformation. The case of multi-Iayered wall which we discuss in the third part, lead to the determination of 'z transforms coefficients' of the transfer functions of the studied wall. In addition to the theoretical study, we analyse the results of prospective experiments in the fourth part of our work and show the usefulness of such a measurement method. The last part is devoted to the presentation of the application of our work to the determination of thermal parameters of more general wall's configurations. (author) [fr

  1. Homogeneity spoil spectroscopy

    International Nuclear Information System (INIS)

    Hennig, J.; Boesch, C.; Martin, E.; Grutter, R.

    1987-01-01

    One of the problems of in vivo MR spectroscopy of P-31 is spectra localization. Surface coil spectroscopy, which is the method of choice for clinical applications, suffers from the high-intensity signal from subcutaneous muscle tissue, which masks the spectrum of interest from deeper structures. In order to suppress this signal while maintaining the simplicity of surface coil spectroscopy, the authors introduced a small sheet of ferromagnetically dotted plastic between the surface coil and the body. This sheet destroys locally the field homogeneity and therefore all signal from structures around the coil. The very high reproducibility of the simple experimental procedure allows long-term studies important for monitoring tumor therapy

  2. Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028

    Science.gov (United States)

    Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu

    2018-03-01

    The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.

  3. Spinor structures on homogeneous spaces

    International Nuclear Information System (INIS)

    Lyakhovskii, V.D.; Mudrov, A.I.

    1993-01-01

    For multidimensional models of the interaction of elementary particles, the problem of constructing and classifying spinor fields on homogeneous spaces is exceptionally important. An algebraic criterion for the existence of spinor structures on homogeneous spaces used in multidimensional models is developed. A method of explicit construction of spinor structures is proposed, and its effectiveness is demonstrated in examples. The results are of particular importance for harmonic decomposition of spinor fields

  4. Essential Mathematics for the Physical Sciences; Volume I: Homogeneous boundary value problems, Fourier methods, and special functions

    Science.gov (United States)

    Borden, Brett; Luscombe, James

    2017-10-01

    Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus a sound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations and the special functions introduced. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well.

  5. Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis

    Science.gov (United States)

    Nomura, Kotohiro; Mitsudome, Takato; Tsutsumi, Ken; Yamazoe, Seiji

    2018-06-01

    Selected examples in V K-edge X-ray Absorption Near Edge Structure (XANES) analysis of a series of vanadium complexes containing imido ligands (possessing metal-nitrogen double bond) in toluene solution have been introduced, and their pre-edge and the edge were affected by their structures and nature of ligands. Selected results in exploring the oxidation states of the active species in ethylene dimerization/polymerization using homogeneous vanadium catalysts [consisting of (imido)vanadium(V) complexes and Al cocatalysts] by X-ray absorption spectroscopy (XAS) analyses have been introduced. It has been demonstrated that the method should provide more clear information concerning the active species in situ, especially by combination with the other methods (NMR and ESR spectra, X-ray crystallographic analysis, and reaction chemistry), and should be powerful tool for study of catalysis mechanism as well as for the structural analysis in solution.

  6. Homogenization of neutronic diffusion models

    International Nuclear Information System (INIS)

    Capdebosq, Y.

    1999-09-01

    In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)

  7. Mechanical tests imaging on metallic matrix composites. Experimental contribution to homogenization methods validation and identification of phase-related mechanical properties

    International Nuclear Information System (INIS)

    Quoc-Thang Vo

    2013-01-01

    This work is focused on a matrix/inclusion metal composite. A simple method is proposed to evaluate the elastic properties of one phase while the properties of the other phase are assumed to be known. The method is based on both an inverse homogenization scheme and mechanical field's measurements by 2D digital image correlation. The originality of the approach rests on the scale studied, i.e. the microstructure scale of material: the characteristic size of the inclusions is about few tens of microns. The evaluation is performed on standard uniaxial tensile tests associated with a long-distance microscope. It allows observation of the surface of a specimen on the microstructure scale during the mechanical stress. First, the accuracy of the method is estimated on 'perfect' mechanical fields coming from numerical simulations for four microstructures: elastic or porous single inclusions having either spherical or cylindrical shape. Second, this accuracy is estimated on real mechanical field for two simple microstructures: an elasto-plastic metallic matrix containing a single cylindrical micro void or four cylindrical micro voids arranged in a square pattern. Third, the method is used to evaluate elastic properties of αZr inclusions with arbitrary shape in an oxidized Zircaloy-4 sample of the fuel cladding of a pressurized water reactor after an accident loss of coolant accident (LOCA). In all this study, the phases are assumed to have isotropic properties. (author) [fr

  8. Characteristic comparison of triglyceride-rich remnant lipoprotein measurement between a new homogenous assay (RemL-C and a conventional immunoseparation method (RLP-C

    Directory of Open Access Journals (Sweden)

    Saikawa Shinichi

    2008-05-01

    Full Text Available Abstract Background Increased serum remnant lipoproteins are supposed to predict cardiovascular disease in addition to increased LDL. A new homogenous assay for remnant lipoprotein-cholesterol (RemL-C has been developed as an alternative to remnant-like particle-cholesterol (RLP-C, an immunoseparation assay, widely used for the measurement of remnant lipoprotein cholesterol. Methods We evaluated the correlations and data validation between the 2 assays in 83 subjects (49 men and 34 women without diabetes, hypertension and medications for hyperlipidemia, diabetes, and hypertension, and investigated the characteristics of remnant lipoproteins obtained by the two methods (RLP-C and RemL-C and their relationships with IDL-cholesterol determined by our developed HPLC method. Results A positive correlation was significantly found between the two methods (r = 0.853, 95%CI 0.781–0.903, p RLP-C level. RemL-C (r = 0.339, 95%CI 0.152–0.903; p = 0.0005 significantly correlated with IDL-cholesterol, but not RLP-C (r = 0.17, 95%CI -0.047–0.372; p = 0.1237 in all the samples (n = 83. Conclusion These results suggest that there is generally a significant correlation between RemL-C and RLP-C. However, RemL-C assay is likely to reflect IDL more closely than RLP-C.

  9. The use of Fourier reverse transforms in crystallographic phase refinement

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, Sharon [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations.

  10. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    Science.gov (United States)

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically

  11. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 1. Statical polymer method

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-02-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  12. Investigations into homogenization of electromagnetic metamaterials

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau

    This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in term...

  13. A new method for the homogeneous precipitative separation of trace level lanthanides as oxalates: application to different types of geological samples

    International Nuclear Information System (INIS)

    Premadas, A.; Cyriac, Bincy; Kesavan, V.S.

    2013-01-01

    Oxalate precipitation of lanthanides in acidic medium is a widely used selective group separation method at percentage to trace level in different types of geological samples. Most of the procedures are based on the heterogeneous oxalate precipitation of lanthanides using calcium as carrier. In the heterogeneous precipitation, the co-precipitated impurities from the matrix elements are more, besides if the pH at the time of precipitation is not monitored carefully there is a chance of losing some of the lanthanides. In this report, we present a new homogeneous oxalate precipitation of trace level lanthanides from different types of geological samples using calcium as carrier. In the present method pH is getting adjusted (pH ∼1) on its own, after the hydrolysis of urea added to the sample solution. This acidic pH is essential for the complete precipitation of the lanthanides. Therefore, no critical parameter adjustment for the precipitation is involved in the proposed method. The oxalate precipitate obtained was in crystalline nature which facilitates the fast settlement, easy filtration; besides the co-precipitated matrix elements are very less as compared to normal heterogeneous oxalate precipitation of lanthanides. Another advantage is more quantity of the sample can be taken for the separation of lanthanides which is a limitation for other separation methods reported. Accuracy of the method was checked by analyzing nine international reference materials comprising different types of geological samples obtained from Canadian Certified Reference Project Materials such as syenite samples SY-2, SY-3 and SY-4; gabro sample MRG-1; soil samples SO-1 and SO-2; iron formation sample FeR-2; lake sediments LKSD-2 and LKSD-4. The values of the lanthanides obtained for these reference materials are comparable with recommended values, indicating that the method is accurate. The reproducibility is characterized by a relative standard deviation (RSD) of 1 to 6% (n=4). (author)

  14. CeO2 and TiO2 obtained by urea assisted homogeneous hydrolyses method as catalysts for environmental protection: Effect of Ti/Ce ratio

    Czech Academy of Sciences Publication Activity Database

    Mileva, A.; Issa, G.; Henych, Jiří; Štengl, Václav; Kovacheva, D.; Tsoncheva, T.

    2017-01-01

    Roč. 49, SI A (2017), s. 77-83 ISSN 0324-1130. [National Crystallographic Symposium /6./. Sofia, 05.10.2016-07.10.2016] R&D Projects: GA MŠk(CZ) LM2015073 Grant - others:AV ČR(CZ) BAS-17-13 Program:Bilaterální spolupráce Institutional support: RVO:61388980 Keywords : nanostructured oxides * ethyl acetate combustion * methanol decomposition Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 0.238, year: 2016 http://www.bgcryst.com/symp16/BCC2017/11_Mileva_BCC_49_Sp_Is_A_2017.pdf

  15. New method based on combining ultrasonic assisted miniaturized matrix solid-phase dispersion and homogeneous liquid-liquid extraction for the determination of some organochlorinated pesticides in fish

    International Nuclear Information System (INIS)

    Rezaei, Farahnaz; Hosseini, Mohammad-Reza Milani

    2011-01-01

    Highlights: → Ultrasonic assisted miniaturized matrix solid-phase dispersion combined with HLLE was developed as a new method for the extraction of OCPs in fish. → The goal of this combination was to enhance the selectivity of HLLE procedure and to extend its application in biological samples. → This method proposed the advantages of good detection limits, lower consumption of reagents, and does not need any special instrumentation. - Abstract: In this study, ultrasonic assisted miniaturized matrix solid-phase dispersion (US-MMSPD) combined with homogeneous liquid-liquid extraction (HLLE) has been developed as a new method for the extraction of organochlorinated pesticides (OCPs) in fish prior to gas chromatography with electron capture detector (GC-ECD). In the proposed method, OCPs (heptachlor, aldrin, DDE, DDD, lindane and endrin) were first extracted from fish sample into acetonitrile by US-MMSPD procedure, and the extract was then used as consolute solvent in HLLE process. Optimal condition for US-MMSPD step was as follows: volume of acetonitrile, 1.5 mL; temperature of ultrasound, 40 deg. C; time of ultrasound, 10 min. For HLLE step, optimal results were obtained at the following conditions: volume of chloroform, 35 μL; volume of aqueous phase, 1.5 mL; volume of double distilled water, 0.5 mL; time of centrifuge, 10 min. Under the optimum conditions, the enrichment factors for the studied compounds were obtained in the range of 185-240, and the overall recoveries were ranged from 39.1% to 81.5%. The limits of detection were 0.4-1.2 ng g -1 and the relative standard deviations for 20 ng g -1 of the OCPs, varied from 3.2% to 8% (n = 4). Finally, the proposed method has been successfully applied to the analysis of the OCPs in real fish sample, and satisfactory results were obtained.

  16. New method based on combining ultrasonic assisted miniaturized matrix solid-phase dispersion and homogeneous liquid-liquid extraction for the determination of some organochlorinated pesticides in fish

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Farahnaz [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846 (Iran, Islamic Republic of); Hosseini, Mohammad-Reza Milani, E-mail: drmilani@iust.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846 (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Narmak, Tehran 16846 (Iran, Islamic Republic of)

    2011-09-30

    Highlights: {yields} Ultrasonic assisted miniaturized matrix solid-phase dispersion combined with HLLE was developed as a new method for the extraction of OCPs in fish. {yields} The goal of this combination was to enhance the selectivity of HLLE procedure and to extend its application in biological samples. {yields} This method proposed the advantages of good detection limits, lower consumption of reagents, and does not need any special instrumentation. - Abstract: In this study, ultrasonic assisted miniaturized matrix solid-phase dispersion (US-MMSPD) combined with homogeneous liquid-liquid extraction (HLLE) has been developed as a new method for the extraction of organochlorinated pesticides (OCPs) in fish prior to gas chromatography with electron capture detector (GC-ECD). In the proposed method, OCPs (heptachlor, aldrin, DDE, DDD, lindane and endrin) were first extracted from fish sample into acetonitrile by US-MMSPD procedure, and the extract was then used as consolute solvent in HLLE process. Optimal condition for US-MMSPD step was as follows: volume of acetonitrile, 1.5 mL; temperature of ultrasound, 40 deg. C; time of ultrasound, 10 min. For HLLE step, optimal results were obtained at the following conditions: volume of chloroform, 35 {mu}L; volume of aqueous phase, 1.5 mL; volume of double distilled water, 0.5 mL; time of centrifuge, 10 min. Under the optimum conditions, the enrichment factors for the studied compounds were obtained in the range of 185-240, and the overall recoveries were ranged from 39.1% to 81.5%. The limits of detection were 0.4-1.2 ng g{sup -1} and the relative standard deviations for 20 ng g{sup -1} of the OCPs, varied from 3.2% to 8% (n = 4). Finally, the proposed method has been successfully applied to the analysis of the OCPs in real fish sample, and satisfactory results were obtained.

  17. Colloidal properties of sodium caseinate-stabilized nanoemulsions prepared by a combination of a high-energy homogenization and evaporative ripening methods.

    Science.gov (United States)

    Montes de Oca-Ávalos, J M; Candal, R J; Herrera, M L

    2017-10-01

    Nanoemulsions stabilized by sodium caseinate (NaCas) were prepared using a combination of a high-energy homogenization and evaporative ripening methods. The effects of protein concentration and sucrose addition on physical properties were analyzed by dynamic light scattering (DLS), Turbiscan analysis, confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). Droplets sizes were smaller (~100nm in diameter) than the ones obtained by other methods (200 to 2000nm in diameter). The stability behavior was also different. These emulsions were not destabilized by creaming. As droplets were so small, gravitational forces were negligible. On the contrary, when they showed destabilization the main mechanism was flocculation. Stability of nanoemulsions increased with increasing protein concentrations. Nanoemulsions with 3 or 4wt% NaCas were slightly turbid systems that remained stable for at least two months. According to SAXS and Turbiscan results, aggregates remained in the nano range showing small tendency to aggregation. In those systems, interactive forces were weak due to the small diameter of flocs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 'Seeing' Atoms: The Crystallographic Revolution.

    Science.gov (United States)

    Schwarzenbach, Dieter

    2014-02-26

    Laue's experiment in 1912 of the diffraction of X-rays by crystals led to one of the most influential discoveries in the history of science: the first determinations of crystal structures, NaCl and diamond in particular, by W. L. Bragg in 1913. For the first time, the visualisation of the structure of matter at the atomic level became possible. X-ray diffraction provided a sort of microscope with atomic resolution, atoms became observable physical objects and their relative positions in space could be seen. All branches of science concerned with matter, solid-state physics, chemistry, materials science, mineralogy and biology, could now be firmly anchored on the spatial arrangement of atoms. During the ensuing 100 years, structure determination by diffraction methods has matured into an indispensable method of chemical analysis. We trace the history of the development of 'small-structure' crystallography (excepting macromolecular structures) in Switzerland. Among the pioneers figure Peter Debye and Paul Scherrer with powder diffraction, and Paul Niggli and his Zurich School with space group symmetry and geometrical crystallography. Diffraction methods were applied early on by chemists at the Universities of Bern and Geneva. By the 1970s, X-ray crystallography was firmly established at most Swiss Universities, directed by full professors. Today, chemical analysis by structure determination is the task of service laboratories. However, the demand of diffraction methods to solve problems in all disciplines of science is still increasing and powerful radiation sources and detectors are being developed in Switzerland and worldwide.

  19. Functionality and homogeneity.

    NARCIS (Netherlands)

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass,

  20. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  1. The crystallographic growth directions of Sn whiskers

    International Nuclear Information System (INIS)

    Stein, J.; Welzel, U.; Leineweber, A.; Huegel, W.; Mittemeijer, E.J.

    2015-01-01

    The growth directions of 55 Sn whiskers, i.e. the crystallographic orientation parallel to the whisker-growth axes, were determined using (i) a focused ion beam microscope for the determination of the physical growth angles of the whiskers with respect to a specimen (reference) coordinate system and (ii) an electron backscatter detector in a scanning electron microscope for the determination of the crystallographic orientation of the whiskers. The Sn whiskers were found to grow preferentially along low-index directions of the β-Sn crystal structure. The experimental findings of this study (and most of the results presented in the literature as well) were explained by applying, in a modified way, the Hartman–Perdok concept of periodic bond chains, i.e. chains of strong bonds running uninterruptedly through the structure, to the Sn whisker-growth phenomenon

  2. Crystallographic computing system JANA2006: General features

    Czech Academy of Sciences Publication Activity Database

    Petříček, Václav; Dušek, Michal; Palatinus, Lukáš

    2014-01-01

    Roč. 229, č. 5 (2014), s. 345-352 ISSN 0044-2968 R&D Projects: GA ČR(CZ) GAP204/11/0809; GA ČR(CZ) GA14-03276S Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : JANA2006 * aperiodic structures * magnetic structures * crystallographic computing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.310, year: 2014

  3. Magnetic design and method of a superconducting magnet for muon g - 2/EDM precise measurements in a cylindrical volume with homogeneous magnetic field

    Science.gov (United States)

    Abe, M.; Murata, Y.; Iinuma, H.; Ogitsu, T.; Saito, N.; Sasaki, K.; Mibe, T.; Nakayama, H.

    2018-05-01

    A magnetic field design method of magneto-motive force (coil block (CB) and iron yoke) placements for g - 2/EDM measurements has been developed and a candidate placements were designed under superconducting limitations of current density 125 A/mm2 and maximum magnetic field on CBs less than 5.5 T. Placements of CBs and an iron yoke with poles were determined by tuning SVD (singular value decomposition) eigenmode strengths. The SVD was applied on a response matrix from magneto-motive forces to the magnetic fields in the muon storage region and two-dimensional (2D) placements of magneto-motive forces were designed by tuning the magnetic field eigenmode strengths obtained by the magnetic field. The tuning was performed iteratively. Magnetic field ripples in the azimuthal direction were minimized for the design. The candidate magnetic design had five CBs and an iron yoke with center iron poles. The magnet satisfied specifications of homogeneity (0.2 ppm peak-to-peak in 2D placements (the cylindrical coordinate of the radial position R and axial position Z) and less than 1.0 ppm ripples in the ring muon storage volume (0.318 m 0.0 m) for the spiral muon injection from the iron yoke at top.

  4. Crystallographic theory of the martensitic transformation

    Directory of Open Access Journals (Sweden)

    Edwar A. Torres-López

    2014-08-01

    Full Text Available The martensitic transformation is one of the most researched topics in the materials science during the 20th century. The second half of this century was mainly remembered by the development of several theories related with the kinetics of phase transformation, the mechanisms involved in the nucleation phenomenon, and the way as the crystallographic change is produced. In this paper are described the fundamental concepts that are defined in the crystallographic framework of the martensitic transformation. The study is focused on the application of the most outstanding crystallographic models: the Bain; the Wechsler, Lieberman & Read; and the Bowles & Mackenzie. The topic is presented based upon the particular features of the martensitic transformation, such as its non-diffusional character, type of interface between parent (austenite and product (martensite phases, the formation of substructural defects, and the shape change; all of these features are mathematically described by equations aimed to predict how the transformation will take place rather than to explain the actual movement of the atoms within the structure. This mathematical development is known as the Phenomenological Theory of Martensite Crystallography (PTMC.

  5. Towards automated crystallographic structure refinement with phenix.refine

    Energy Technology Data Exchange (ETDEWEB)

    Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel; Headd, Jeffrey J.; Moriarty, Nigel W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720 (United States); Mustyakimov, Marat; Terwilliger, Thomas C. [Los Alamos National Laboratory, M888, Los Alamos, NM 87545 (United States); Urzhumtsev, Alexandre [CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Université Henri Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy (France); Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720 (United States); University of California Berkeley, Berkeley, CA 94720 (United States)

    2012-04-01

    phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods. phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing refinement projects. X-ray or neutron diffraction data can be used separately or jointly in refinement. phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure refinement, structure validation and deposition to the wwPDB. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods.

  6. A literature review on biotic homogenization

    OpenAIRE

    Guangmei Wang; Jingcheng Yang; Chuangdao Jiang; Hongtao Zhao; Zhidong Zhang

    2009-01-01

    Biotic homogenization is the process whereby the genetic, taxonomic and functional similarity of two or more biotas increases over time. As a new research agenda for conservation biogeography, biotic homogenization has become a rapidly emerging topic of interest in ecology and evolution over the past decade. However, research on this topic is rare in China. Herein, we introduce the development of the concept of biotic homogenization, and then discuss methods to quantify its three components (...

  7. Degradation of ciprofloxacin antibiotic by Homogeneous Fenton oxidation: Hybrid AHP-PROMETHEE method, optimization, biodegradability improvement and identification of oxidized by-products.

    Science.gov (United States)

    Salari, Marjan; Rakhshandehroo, Gholam Reza; Nikoo, Mohammad Reza

    2018-09-01

    The main purpose of this experimental study was to optimize Homogeneous Fenton oxidation (HFO) and identification of oxidized by-products from degradation of Ciprofloxacin (CIP) using hybrid AHP-PROMETHEE, Response Surface Methodology (RSM) and High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MS). At the first step, an assessment was made for performances of two catalysts (FeSO 4 ·7H 2 O and FeCl 2 ·4H 2 O) based on hybrid AHP-PROMETHEE decision making method. Then, RSM was utilized to examine and optimize the influence of different variables including initial CIP concentration, Fe 2+ concentration, [H 2 O 2 ]/[ Fe 2+ ] mole ratio and initial pH as independent variables on CIP removal, COD removal, and sludge to iron (SIR) as the response functions in a reaction time of 25 min. Weights of the mentioned responses as well as cost criteria were determined by AHP model based on pairwise comparison and then used as inputs to PROMETHEE method to develop hybrid AHP-PROMETHEE. Based on net flow results of this hybrid model, FeCl 2 ·4H 2 O was more efficient because of its less environmental stability as well as lower SIR production. Then, optimization of experiments using Central Composite Design (CCD) under RSM was performed with the FeCl 2 ·4H 2 O catalyst. Biodegradability of wastewater was determined in terms of BOD 5 /COD ratio, showing that HFO process is able to improve wastewater biodegradability from zero to 0.42. Finally, the main intermediaries of degradation and degradation pathways of CIP were investigated with (HPLC-MS). Major degradation pathways from hydroxylation of both piperazine and quinolonic rings, oxidation and cleavage of the piperazine ring, and defluorination (OH/F substitution) were suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Algebraic K-theory of crystallographic groups the three-dimensional splitting case

    CERN Document Server

    Farley, Daniel Scott

    2014-01-01

    The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.

  9. Identification of some crystallographic features of martensite in steels by microdiffraction

    International Nuclear Information System (INIS)

    Sarikaya, M.; Rao, B.V.N.; Thomas, G.

    1980-03-01

    Considerable attention should be paid to the interpretation of electron diffraction, such as the understanding of the extra reflections and other effects in an SAD pattern obtained from lath martensite by making allowances for spatial resolution limitations in the SAD patterns. These difficulties can be overcome by utilizing the convergent beam electron diffraction (CBED) method which permits the use of different probe sizes to obtain crystallographic information from very small regions. Some crystallographic features of lath martensite in low and medium C steels have been identified and some others verified by using CBED

  10. Determination of crystallographic and macroscopic orientation of planar structures in TEM

    DEFF Research Database (Denmark)

    Huang, X.; Liu, Q.

    1998-01-01

    With the aid of a double-tilt holder in a transmission electron microscope (TEM), simple methods are described for determination of the crystallographic orientation of a planar structure and for calculation of the macroscopic orientation of the planar structure. The correlation between a planar...... structure and a crystallographic plane can be found by comparing the differences in their trace directions on the projection plane and inclination angles with respect to that plane. The angles between the traces of planar structures and the sample axis measured from the TEM micrographs, which have been...

  11. Systematic homogenization and self-consistent flux and pin power reconstruction for nodal diffusion methods. 1: Diffusion equation-based theory

    International Nuclear Information System (INIS)

    Zhang, H.; Rizwan-uddin; Dorning, J.J.

    1995-01-01

    A diffusion equation-based systematic homogenization theory and a self-consistent dehomogenization theory for fuel assemblies have been developed for use with coarse-mesh nodal diffusion calculations of light water reactors. The theoretical development is based on a multiple-scales asymptotic expansion carried out through second order in a small parameter, the ratio of the average diffusion length to the reactor characteristic dimension. By starting from the neutron diffusion equation for a three-dimensional heterogeneous medium and introducing two spatial scales, the development systematically yields an assembly-homogenized global diffusion equation with self-consistent expressions for the assembly-homogenized diffusion tensor elements and cross sections and assembly-surface-flux discontinuity factors. The rector eigenvalue 1/k eff is shown to be obtained to the second order in the small parameter, and the heterogeneous diffusion theory flux is shown to be obtained to leading order in that parameter. The latter of these two results provides a natural procedure for the reconstruction of the local fluxes and the determination of pin powers, even though homogenized assemblies are used in the global nodal diffusion calculation

  12. Crystallographic Investigation of Ag (4 mol%) Doped ZnO (SZO) Thin Films by XRD

    International Nuclear Information System (INIS)

    Lwin Lwin Nwe; Sandar Dwe; Khant Khant Lin; Khin Thuzar; Than Than Win; Ko Ko Kyaw Soe

    2008-03-01

    Silver doped ZnO(SZO) thin films are prepared by sol-based method. The silver dopant concentration is 4 mol % in this case. XRD analysis carried out to determine, crystallographic properties such as lattice parameters and crystallite size of SZO thin films.

  13. Coupling between Experimental Measurements and Finite Element Calculations for identification of crystallographic constitutive law. Application to zirconium alloys; Methode de couplage entre experimentations et simulations numeriques en vue de l'identification de lois de comportement intracristallin. Application aux alliages de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Dexet, M

    2006-10-15

    This thesis presents a methodology for multi scale coupling between the morphology and texture of a microstructure as has been characterised experimentally, and the results of mechanical strain field analysis. This methodology is based on a coupling between experimental characterisation of the microstructure, ex-situ mechanical tests, local strain field measurements performed at the grain scale, and finite element simulations. Then, a definition of a cost function is proposed in order to optimise the parameters of the crystallographic constitutive law. This method is applied to the studies of zirconium alloys in order to improve the understanding of their mechanical behaviour in relation with their microstructures, which is a key requirement for their use in the nuclear industries. This work was funded by the joint research program SMIRN between EDF, CEA and CNRS. (author)

  14. Homogenization approach in engineering

    International Nuclear Information System (INIS)

    Babuska, I.

    1975-10-01

    Homogenization is an approach which studies the macrobehavior of a medium by its microproperties. Problems with a microstructure play an essential role in such fields as mechanics, chemistry, physics, and reactor engineering. Attention is concentrated on a simple specific model problem to illustrate results and problems typical of the homogenization approach. Only the diffusion problem is treated here, but some statements are made about the elasticity of composite materials. The differential equation is solved for linear cases with and without boundaries and for the nonlinear case. 3 figures, 1 table

  15. Condensation and homogenization of cross sections for the deterministic transport codes with Monte Carlo method: Application to the GEN IV fast neutron reactors

    International Nuclear Information System (INIS)

    Cai, Li

    2014-01-01

    In the framework of the Generation IV reactors neutronic research, new core calculation tools are implemented in the code system APOLLO3 for the deterministic part. These calculation methods are based on the discretization concept of nuclear energy data (named multi-group and are generally produced by deterministic codes) and should be validated and qualified with respect to some Monte-Carlo reference calculations. This thesis aims to develop an alternative technique of producing multi-group nuclear properties by a Monte-Carlo code (TRIPOLI-4). At first, after having tested the existing homogenization and condensation functionalities with better precision obtained nowadays, some inconsistencies are revealed. Several new multi-group parameters estimators are developed and validated for TRIPOLI-4 code with the aid of itself, since it has the possibility to use the multi-group constants in a core calculation. Secondly, the scattering anisotropy effect which is necessary for handling neutron leakage case is studied. A correction technique concerning the diagonal line of the first order moment of the scattering matrix is proposed. This is named the IGSC technique and is based on the usage of an approximate current which is introduced by Todorova. An improvement of this IGSC technique is then presented for the geometries which hold an important heterogeneity property. This improvement uses a more accurate current quantity which is the projection on the abscissa X. The later current can represent the real situation better but is limited to 1D geometries. Finally, a B1 leakage model is implemented in the TRIPOLI-4 code for generating multi-group cross sections with a fundamental mode based critical spectrum. This leakage model is analyzed and validated rigorously by the comparison with other codes: Serpent and ECCO, as well as an analytical case.The whole development work introduced in TRIPOLI-4 code allows producing multi-group constants which can then be used in the core

  16. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    Directory of Open Access Journals (Sweden)

    Yoonhee Lee

    2016-06-01

    Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  17. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  18. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Douglas class were classified in [3]; they are unilateral block shifts of arbitrary block size (i.e. dim H(n) can be anything). However, no examples of irreducible homogeneous bilateral block shifts of block size larger than 1 were known until now.

  19. Homogeneity and Entropy

    Science.gov (United States)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  20. Homogeneous Poisson structures

    International Nuclear Information System (INIS)

    Shafei Deh Abad, A.; Malek, F.

    1993-09-01

    We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs

  1. Multi Scale Finite Element Analyses By Using SEM-EBSD Crystallographic Modeling and Parallel Computing

    International Nuclear Information System (INIS)

    Nakamachi, Eiji

    2005-01-01

    A crystallographic homogenization procedure is introduced to the conventional static-explicit and dynamic-explicit finite element formulation to develop a multi scale - double scale - analysis code to predict the plastic strain induced texture evolution, yield loci and formability of sheet metal. The double-scale structure consists of a crystal aggregation - micro-structure - and a macroscopic elastic plastic continuum. At first, we measure crystal morphologies by using SEM-EBSD apparatus, and define a unit cell of micro structure, which satisfy the periodicity condition in the real scale of polycrystal. Next, this crystallographic homogenization FE code is applied to 3N pure-iron and 'Benchmark' aluminum A6022 polycrystal sheets. It reveals that the initial crystal orientation distribution - the texture - affects very much to a plastic strain induced texture and anisotropic hardening evolutions and sheet deformation. Since, the multi-scale finite element analysis requires a large computation time, a parallel computing technique by using PC cluster is developed for a quick calculation. In this parallelization scheme, a dynamic workload balancing technique is introduced for quick and efficient calculations

  2. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.; Efendiev, Yalchin R.; Li, Guanglian; Savatorova, Viktoria

    2015-01-01

    , Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point

  3. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.

    2015-10-01

    In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.

  4. XTAL system of crystallographic programs: programmer's manual

    International Nuclear Information System (INIS)

    Hall, S.R.; Stewart, J.M.; Norden, A.P.; Munn, R.J.; Freer, S.T.

    1980-02-01

    This document establishes the basis for collaborative writing of transportable computer programs for x-ray crystallography. The concepts and general-purpose utility subroutines described here can be readily adapted to other scientific calculations. The complete system of crystallographic programs and subroutines is called XTAL and replaces the XRAY (6,7,8) system of programs. The coding language for the XTAL system is RATMAC (5). The XTAL system of programs contains routines for controlling execution of application programs. In this sense it forms a suboperating system that presents the same computational environment to the user and programmer irrespective of the operating system in use at a particular installation. These control routines replace all FORTRAN I/O code, supply character reading and writing, supply binary file reading and writing, serve as a support library for applications programs, and provide for interprogram communication

  5. Benchmarking homogenization algorithms for monthly data

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  6. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  7. Homogeneous turbulence dynamics

    CERN Document Server

    Sagaut, Pierre

    2018-01-01

    This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence  and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...

  8. Homogen Mur - et udviklingsprojekt

    DEFF Research Database (Denmark)

    Dahl, Torben; Beim, Anne; Sørensen, Peter

    1997-01-01

    Mølletorvet i Slagelse er det første byggeri i Danmark, hvor ydervæggen er udført af homogene bærende og isolerende teglblokke. Byggeriet viser en række af de muligheder, der både med hensyn til konstruktioner, energiforhold og arkitektur ligger i anvendelsen af homogent blokmurværk.......Mølletorvet i Slagelse er det første byggeri i Danmark, hvor ydervæggen er udført af homogene bærende og isolerende teglblokke. Byggeriet viser en række af de muligheder, der både med hensyn til konstruktioner, energiforhold og arkitektur ligger i anvendelsen af homogent blokmurværk....

  9. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  10. Homogeneous M2 duals

    International Nuclear Information System (INIS)

    Figueroa-O’Farrill, José; Ungureanu, Mara

    2016-01-01

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS 4 ×P 7 , with P riemannian and homogeneous under the action of SO(5), or S 4 ×Q 7 with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  11. Homogeneous M2 duals

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)

    2016-01-25

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  12. Jaws calibration method to get a homogeneous distribution of dose in the junction of hemi fields; Metodo de calibracion de mandibulas para conseguir una distribucion homogenea de dosis en la zona de union de hemicampos

    Energy Technology Data Exchange (ETDEWEB)

    Cenizo de Castro, E.; Garcia Pareja, S.; Moreno Saiz, C.; Hernandez Rodriguez, R.; Bodineau Gil, C.; Martin-Viera Cueto, J. A.

    2011-07-01

    Hemi fields treatments are widely used in radiotherapy. Because the tolerance established for the positioning of each jaw is 1 mm, may be cases of overlap or separation of up to 2 mm. This implies heterogeneity of doses up to 40% in the joint area. This paper presents an accurate method of calibration of the jaws so as to obtain homogeneous dose distributions when using this type of treatment. (Author)

  13. Assembly homogenization techniques for light water reactor analysis

    International Nuclear Information System (INIS)

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  14. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  15. Homogeneous Finsler Spaces

    CERN Document Server

    Deng, Shaoqiang

    2012-01-01

    "Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc

  16. Global crystallographic textures obtained by neutron and synchrotron radiation

    International Nuclear Information System (INIS)

    Brokmeier, Heinz-Guenter

    2006-01-01

    Global crystallographic textures belong to the main characteristic parameters of engineering materials. The global crystallographic texture is always the average texture of a well-defined sample volume which is representative to solve practical engineering problems. Thus a beam having a high penetration power is needed available as neutron or high energetic X-ray radiation. Texture type and texture sharpness are of great importance for materials properties such as the deep drawing behaviour, one of the basic techniques in many industries. Advantages and disadvantages of both radiations make them complementary for measuring crystallographic textures in a wide range of materials

  17. Deriving Quantitative Crystallographic Information from the Wavelength-Resolved Neutron Transmission Analysis Performed in Imaging Mode

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2017-12-01

    Full Text Available Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm with high spatial resolution (~100 μm. Furthermore, by using suitable spectrum analysis methods for wavelength-dependent neutron transmission data, quantitative visualization of the crystallographic information can be achieved. For example, crystallographic texture imaging, crystallite size imaging and crystalline phase imaging with texture/extinction corrections are carried out by the Rietveld-type (wide wavelength bandwidth profile fitting analysis code, RITS (Rietveld Imaging of Transmission Spectra. By using the single Bragg-edge analysis mode of RITS, evaluations of crystal lattice plane spacing (d-spacing relating to macro-strain and d-spacing distribution’s FWHM (full width at half maximum relating to micro-strain can be achieved. Macro-strain tomography is performed by a new conceptual CT (computed tomography image reconstruction algorithm, the tensor CT method. Crystalline grains and their orientations are visualized by a fast determination method of grain orientation for Bragg-dip neutron transmission spectrum. In this paper, these imaging examples with the spectrum analysis methods and the reliabilities evaluated by optical/electron microscope and X-ray/neutron diffraction, are presented. In addition, the status at compact accelerator driven pulsed neutron sources is also presented.

  18. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    International Nuclear Information System (INIS)

    Baranyai, L.

    1983-01-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with 198 Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed. (orig.) [de

  19. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Baranyai, L

    1983-12-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with /sup 198/Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed.

  20. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  1. Crystallographic orientations in one-directional gray cast solidification

    International Nuclear Information System (INIS)

    Roviglione, A.; Hermida, J.D.

    1991-01-01

    The aim of this work is to determine the crystallographic orientations of austenite and the A laminar graphite and the compact, in one-directionally grown samples to decide upon the validity of the mentioned theory. (Author) [es

  2. A Journey into Reciprocal Space; A crystallographer's perspective

    Science.gov (United States)

    Glazer, A. M.

    2017-10-01

    This book introduces undergraduate and graduate students to a crystallographer's view of real and reciprocal space, a concept that has been of particular use by crystallographers to understand the patterns of spots when x-rays are diffracted by crystals. It then proceeds to develop the concept in a form suitable for physics applications; such as how solid-state physicists use reciprocal space to explain various solid-state properties such as thermal and electrical phenomena.

  3. Crystallographic cut that maximizes of the birefringence in photorefractive crystals

    OpenAIRE

    Rueda-Parada, Jorge Enrique

    2017-01-01

    The electro-optical birefringence effect depends on the crystal type, cut crystal, applied electric field and the incidence direction of light on the principal crystal faces. It is presented a study of maximizing the birefringence in photorefractive crystals of cubic crystallographic symmetry, in terms of these three parameters. General analytical expressions for the birefringence were obtained, from which birefringence can be established for any type of cut. A new crystallographic cut was en...

  4. Homogeneous instantons in bigravity

    International Nuclear Information System (INIS)

    Zhang, Ying-li; Sasaki, Misao; Yeom, Dong-han

    2015-01-01

    We study homogeneous gravitational instantons, conventionally called the Hawking-Moss (HM) instantons, in bigravity theory. The HM instantons describe the amplitude of quantum tunneling from a false vacuum to the true vacuum. Corrections to General Relativity (GR) are found in a closed form. Using the result, we discuss the following two issues: reduction to the de Rham-Gabadadze-Tolley (dRGT) massive gravity and the possibility of preference for a large e-folding number in the context of the Hartle-Hawking (HH) no-boundary proposal. In particular, concerning the dRGT limit, it is found that the tunneling through the so-called self-accelerating branch is exponentially suppressed relative to the normal branch, and the probability becomes zero in the dRGT limit. As far as HM instantons are concerned, this could imply that the reduction from bigravity to the dRGT massive gravity is ill-defined.

  5. A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: I - Finite-strain theory

    Science.gov (United States)

    Song, Dawei; Ponte Castañeda, P.

    2018-06-01

    We make use of the recently developed iterated second-order homogenization method to obtain finite-strain constitutive models for the macroscopic response of porous polycrystals consisting of large pores randomly distributed in a fine-grained polycrystalline matrix. The porous polycrystal is modeled as a three-scale composite, where the grains are described by single-crystal viscoplasticity and the pores are assumed to be large compared to the grain size. The method makes use of a linear comparison composite (LCC) with the same substructure as the actual nonlinear composite, but whose local properties are chosen optimally via a suitably designed variational statement. In turn, the effective properties of the resulting three-scale LCC are determined by means of a sequential homogenization procedure, utilizing the self-consistent estimates for the effective behavior of the polycrystalline matrix, and the Willis estimates for the effective behavior of the porous composite. The iterated homogenization procedure allows for a more accurate characterization of the properties of the matrix by means of a finer "discretization" of the properties of the LCC to obtain improved estimates, especially at low porosities, high nonlinearties and high triaxialities. In addition, consistent homogenization estimates for the average strain rate and spin fields in the pores and grains are used to develop evolution laws for the substructural variables, including the porosity, pore shape and orientation, as well as the "crystallographic" and "morphological" textures of the underlying matrix. In Part II of this work has appeared in Song and Ponte Castañeda (2018b), the model will be used to generate estimates for both the instantaneous effective response and the evolution of the microstructure for porous FCC and HCP polycrystals under various loading conditions.

  6. Homogenized electromechanical properties of crystalline and ceramic relaxor ferroelectric 0.58Pb(Mg1/3Nb2/3)O3 0.42PbTiO3

    Science.gov (United States)

    Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.

    2007-10-01

    A modelling framework that incorporates the peculiarities of microstructural features, such as the spatial correlation of crystallographic orientations and morphological texture in piezoelectrics, is established. The mathematical homogenization theory of a piezoelectric medium is implemented using the finite element method by solving the coupled equilibrium electrical and mechanical fields. The dependence of the domain orientation on the macroscopic electromechanical properties of crystalline as well as polycrystalline ceramic relaxor ferroelectric 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 (PMN-42% PT) is studied based on this model. The material shows large anisotropy in the piezoelectric coefficient ejK in its crystalline form. The homogenized electromechanical moduli of polycrystalline ceramic also exhibit significantly anisotropic behaviours. An optimum texture at which the piezoceramic exhibits its maximum longitudinal piezoelectric response is identified.

  7. Shape effect related to crystallographic orientation of deformation behavior in copper crystals

    International Nuclear Information System (INIS)

    Kim, K.H.; Chang, C.H.; Koo, Y.M.; MacDowell, A.A.

    1999-01-01

    The deformation behavior of pure copper single crystals has been investigated by scanning electron microscopy and synchrotron radiation using the in situ reflection Laue method. Two types of samples with the same orientation of tensile axes, but with different crystallographic orientations in the directions of the width and thickness of the samples, have been studied. They showed different characteristics of deformation behavior, such as the activated slip systems, the movement of the tensile axis, and the mode of fracture

  8. Determination of lower bound crystallographic yield loci of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Costa Viana, C.S. da

    1980-01-01

    The use of zircaloy-4 tubing in fuel elements of water cooled reactors is discussed with respect to its mechanisms of deformation and also its resulting anisotropic plastic behaviour. A method for obtaining lower bound crystallographic yield loci of α-Zr is presented and applied to individual crystal orientations and to a real texture described by the main components observed on a direct pole figure. (Author) [pt

  9. Diffusion piecewise homogenization via flux discontinuity ratios

    International Nuclear Information System (INIS)

    Sanchez, Richard; Dante, Giorgio; Zmijarevic, Igor

    2013-01-01

    We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion sub-meshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no sub-mesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with sub-mesh. This is not the case, however, for cell-centered finite differences. (authors)

  10. The relationship between continuum homogeneity and statistical homogeneity in cosmology

    International Nuclear Information System (INIS)

    Stoeger, W.R.; Ellis, G.F.R.; Hellaby, C.

    1987-01-01

    Although the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe models are based on the concept that the Universe is spatially homogeneous, up to the present time no definition of this concept has been proposed that could in principle be tested by observation. Such a definition is here proposed, based on a simple spatial averaging procedure, which relates observable properties of the Universe to the continuum homogeneity idea that underlies the FLRW models. It turns out that the statistical homogeneity often used to describe the distribution of matter on a large scale does not imply spatial homogeneity according to this definition, and so cannot be simply related to a FLRW Universe model. Values are proposed for the homogeneity parameter and length scale of homogeneity of the Universe. (author)

  11. Preliminary X-ray crystallographic analysis of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    Zhang, Yanfei; Cherney, Maia M.; Solomonson, Matthew; Liu, Jianshe; James, Michael N. G.; Weiner, Joel H.

    2009-01-01

    The sulfide:quinone oxidoreductase from A. ferrooxidans ATCC 23270 was overexpressed in E. coli and purified. Crystallization and preliminarily X-ray crystallographic analysis were performed for the recombinant enzyme. The gene product of open reading frame AFE-1293 from Acidithiobacillus ferrooxidans ATCC 23270 is annotated as encoding a sulfide:quinone oxidoreductase, an enzyme that catalyses electron transfer from sulfide to quinone. Following overexpression in Escherichia coli, the enzyme was purified and crystallized using the hanging-drop vapour-diffusion method. The native crystals belonged to the tetragonal space group P4 2 2 1 2, with unit-cell parameters a = b = 131.7, c = 208.8 Å, and diffracted to 2.3 Å resolution. Preliminary crystallographic analysis indicated the presence of a dimer in the asymmetric unit, with an extreme value of the Matthews coefficient (V M ) of 4.53 Å 3 Da −1 and a solvent content of 72.9%

  12. A preliminary neutron crystallographic study of proteinase K at pD 6.5

    Energy Technology Data Exchange (ETDEWEB)

    Gardberg, Anna S [ORNL; Blakeley, Matthew P. [Institut Laue-Langevin (ILL); Myles, Dean A A [ORNL

    2009-01-01

    AbstractA preliminary neutron crystallographic study of the proteolytic enzyme proteinase K is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the vapour-diffusion method. Data were collected to a resolution of 2.3 on the LADI-III diffractometer at the Institut Laue Langevin (ILL) in 2.5 days. The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, particularly at the active site. This information will contribute to further understanding of the molecular mechanisms underlying proteinase K's catalytic activity and to an enriched understanding of the subtilisin clan of serine proteases.

  13. Economical preparation of extremely homogeneous nuclear accelerator targets

    International Nuclear Information System (INIS)

    Maier, H.J.

    1983-01-01

    Techniques for target preparation with a minimum consumption of isotopic material are described. The rotating substrate method, which generates extremely homogeneous targets, is discussed in some detail

  14. Contribution to numerical methods for all Mach flow regimes and to fluid-porous coupling for the simulation of homogeneous two-phase flows in nuclear reactors

    International Nuclear Information System (INIS)

    Zaza, Chady

    2015-01-01

    The numerical simulation of steam generators of pressurized water reactors is a complex problem, involving different flow regimes and a wide range of length and time scales. An accidental scenario may be associated with very fast variations of the flow with an important Mach number. In contrast in the nominal regime the flow may be stationary, at low Mach number. Moreover whatever the regime under consideration, the array of U-tubes is modelled by a porous medium in order to avoid taking into account the complex geometry of the steam generator, which entails the issue of the coupling conditions at the interface with the free-fluid. We propose a new pressure-correction scheme for cell-centered finite volumes for solving the compressible Navier-Stokes and Euler equations at all Mach number. The existence of a discrete solution, the consistency of the scheme in the Lax sense and the positivity of the internal energy were proved. Then the scheme was extended to the homogeneous two-phase flow models of the GENEPI code developed at CEA. Lastly a multigrid-AMR algorithm was adapted for using our pressure-correction scheme on adaptive grids. Regarding the second issue addressed in this work, the numerical simulation of a fluid flow over a porous bed involves very different length scales. Macroscopic interface models - such as Ochoa-Tapia-Whitaker or Beavers-Joseph law for a viscous flow - represent the transition region between the free-fluid and the porous region by an interface of discontinuity associated with specific transmission conditions. An extension to the Beavers-Joseph law was proposed for the convective regime. By introducing a jump in the kinetic energy at the interface, we recover an interface condition close to the Beavers-Joseph law but with a non-linear slip coefficient, which depends on the free-fluid velocity at the interface and on the Darcy velocity. The validity of this new transmission condition was assessed with direct numerical simulations at

  15. The evaporative vector: Homogeneous systems

    International Nuclear Information System (INIS)

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  16. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study

    Science.gov (United States)

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-01-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689

  17. Homogenization of resonant chiral metamaterials

    OpenAIRE

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten; Malureanu, Radu; Lederer, Falk; Lavrinenko, Andrei

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as e.g. propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to pho...

  18. Bilipschitz embedding of homogeneous fractals

    OpenAIRE

    Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng

    2014-01-01

    In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.

  19. Homogeneous liquid-liquid extraction (HoLLE) via flotation combined with gas chromatography-flame ionization detection as a very simple, rapid and sensitive method for the determination of fenitrothion in water samples.

    Science.gov (United States)

    Mashayekhi, Hossein Ali

    2013-01-01

    Homogeneous liquid-liquid extraction via flotation assistance (HoLLE-FA) and gas chromatography-flame ionization detection (GC-FID) was presented for the extraction and determination of fenitrothion in water samples. In this work, a rapid, simple and efficient HoLLE-FA method was developed based on applying low-density organic solvents without employing centrifugation. A special extraction cell was designed to facilitate the collection of low-density solvent extraction in the determination of fenitrothion in water samples. The water sample solution was added into an extraction cell that contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Under the optimum conditions, the method performance was studied in terms of the linear dynamic range (LDR from 1.0 up to 100 μg L⁻¹), linearity (r² > 0.998), and precision (repeatability extraction and determination of fenitrothion in three different water samples.

  20. Electron diffraction study of {alpha}-AlMnSi crystals including non-crystallographic axes

    Energy Technology Data Exchange (ETDEWEB)

    Song, G.L.; Bursill, L.A.

    1997-06-01

    The structure of crystalline {alpha}-AlMnSi is examined by electron diffraction. Six distinct zone axes are examined, including both normal crystallographic and non-crystallographic zones axes, allowing the space group symmetry to be studied. Electron diffraction patterns characteristic of Pm3-bar were obtained for thicker specimens. However, for very thin specimens, as used for HRTEM imaging, the electron diffraction patterns were characteristic of Im3-bar space group symmetry. The structural basis of the Pm3-bar to Im3-bar transformation may be understood in terms of an analysis of the icosahedral structural elements located at the corners and body-centers of the cubic unit cell. A method for indexing the non-crystallographic zone axis diffraction patterns is described. An electron diffraction pattern of the 5-fold axis of the quasicrystalline phase i-AlMnSi is also included; this is compared with the experimental results and calculations for the [0{tau}1] axis of Pm3-bar and Im3-bar crystalline phases. 26 refs., 4 tabs., 7 figs.

  1. On stability and reflection-transmission analysis of the bipenalty method in contact-impact problems: A one-dimensional, homogeneous case study

    Czech Academy of Sciences Publication Activity Database

    Kopačka, Ján; Tkachuk, A.; Gabriel, Dušan; Kolman, Radek; Bischoff, M.; Plešek, Jiří

    2018-01-01

    Roč. 113, č. 10 (2018), s. 1607-1629 ISSN 0029-5981 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA ČR(CZ) GA17-22615S; GA ČR GA17-12925S; GA ČR(CZ) GA16-03823S Grant - others:AV ČR(CZ) DAAD-16-12 Program:Bilaterální spolupráce Institutional support: RVO:61388998 Keywords : bipenalty method * explicit time integration * finite element method * penalty method * reflection-transmission analysis * stability analysis Subject RIV: JC - Computer Hardware ; Software OBOR OECD: Applied mechanics Impact factor: 2.162, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/nme.5712/full

  2. Survey of total error of precipitation and homogeneous HDL-cholesterol methods and simultaneous evaluation of lyophilized saccharose-containing candidate reference materials for HDL-cholesterol

    NARCIS (Netherlands)

    C.M. Cobbaert (Christa); H. Baadenhuijsen; L. Zwang (Louwerens); C.W. Weykamp; P.N. Demacker; P.G.H. Mulder (Paul)

    1999-01-01

    textabstractBACKGROUND: Standardization of HDL-cholesterol is needed for risk assessment. We assessed for the first time the accuracy of HDL-cholesterol testing in The Netherlands and evaluated 11 candidate reference materials (CRMs). METHODS: The total error (TE) of

  3. Homogeneous versus heterogeneous zeolite nucleation

    NARCIS (Netherlands)

    Dokter, W.H.; Garderen, van H.F.; Beelen, T.P.M.; Santen, van R.A.; Bras, W.

    1995-01-01

    Aggregates of fractal dimension were found in the intermediate gel phases that organize prior to nucleation and crystallization (shown right) of silicalite from a homogeneous reaction mixture. Small- and wide-angle X-ray scattering studies prove that for zeolites nucleation may be homogeneous or

  4. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  5. Homogenization theory in reactor lattices

    International Nuclear Information System (INIS)

    Benoist, P.

    1986-02-01

    The purpose of the theory of homogenization of reactor lattices is to determine, by the mean of transport theory, the constants of a homogeneous medium equivalent to a given lattice, which allows to treat the reactor as a whole by diffusion theory. In this note, the problem is presented by laying emphasis on simplicity, as far as possible [fr

  6. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  7. Experimental wear behavioral studies of as-cast and 5 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load based on taguchi method

    Science.gov (United States)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the present study, an experimental study of the volumetric wear behaviour of Aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 5Hr homogenized with T6 heat treatment is carried out at constant load. The Pin on disc apparatus was used to carry out the sliding wear test. Taguchi method based on L-16 orthogonal array was employed to evaluate the data on the wear behavior. Signal-to-noise ratio among the objective of smaller the better and mean of means results were used. General regression model is obtained by correlation. Lastly confirmation test was completed to compose a comparison between the experimental results foreseen from the mention correlation. The mathematical model reveals the load has maximum contribution on the wear rate compared to speed. Scanning Electron Microscope was used to analyze the worn-out wear surfaces. Wear results show that 5Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance as compared to as cast samples.

  8. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy† †Electronic supplementary information (ESI) available: Synthesis schemes, experimental methods, NMR spectra, X-ray crystallographic information, emission spectra, cyclic voltammetry, electronic structure calculations, data analysis and numerical methods, and other additional figures. CCDC 1561879. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04055e

    Science.gov (United States)

    Kohler, Lars; Hadt, Ryan G.; Zhang, Xiaoyi; Liu, Cunming

    2017-01-01

    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)–Ru(ii) analogs of the homodinuclear Cu(i)–Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations. PMID:29629153

  9. Gradual growth of gold nanoseeds on silica for SiO2-gold homogeneous nano core/shell applications by the chemical reduction method

    International Nuclear Information System (INIS)

    Rezvani Nikabadi, H; Shahtahmasebi, N; Rezaee Rokn-Abadi, M; Bagheri Mohagheghi, M M; Goharshadi, E K

    2013-01-01

    In this paper, a facile method for the synthesis of gold nanoseeds on the functionalized surface of silica nanoparticles has been investigated. Mono-dispersed silica particles and gold nanoparticles were prepared by the chemical reduction method. The thickness of the Au shell was well controlled by repeating the reduction time of HAuCl 4 on silica/3-aminopropyltriethoxysilane (APTES)/initial gold nanoparticles. The prepared SiO 2 -gold core/shell nanoparticles were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and ultraviolet visible (UV-Vis) spectroscopy. The TEM images indicated that the silica nanoparticles were spherical in shape with 100 nm diameters and functionalizing silica nanoparticles with a layer of bi-functional APTES molecules and tetrakis hydroxy methyl phosphonium chloride. The gold nanoparticles show a narrow size of up to 5 nm and by growing gold nanoseeds over the silica cores a red shift in the maximum absorbance of UV-Vis spectroscopy from 524 to 637 nm was observed.

  10. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yundong [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116 (China); Flesch, Rodolfo C.C. [Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Jin, Tao, E-mail: jintly@fzu.edu.cn [College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116 (China)

    2017-06-15

    Highlights: • The effects of blood vessels on temperature field distribution are investigated. • The critical thermal energy of hyperthermia is computed by the Finite Element Analysis. • A treatment method is proposed by using the MNPs with low Curie temperature. • The cooling effects due to the blood flow can be controlled. - Abstract: Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  11. A generalized model for homogenized reflectors

    International Nuclear Information System (INIS)

    Pogosbekyan, Leonid; Kim, Yeong Il; Kim, Young Jin; Joo, Hyung Kook

    1996-01-01

    A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The method of K. Smith can be simulated within framework of new method, while the new method approximates hetero-geneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are:improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b)control blades simulation; (c) mixed UO 2 /MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions

  12. Mechanized syringe homogenization of human and animal tissues.

    Science.gov (United States)

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  13. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Science.gov (United States)

    Tang, Yundong; Flesch, Rodolfo C. C.; Jin, Tao

    2017-06-01

    Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  14. Homogenized group cross sections by Monte Carlo

    International Nuclear Information System (INIS)

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  15. Homogeneous Spaces and Equivariant Embeddings

    CERN Document Server

    Timashev, DA

    2011-01-01

    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  16. X-Ray powder diffractometry, crystallographic phase analysis and ...

    African Journals Online (AJOL)

    Computerized X-Ray diffraction system has been used to determine the composition and lattice parameters of raw and activated kaolinite. The universal diffractometry URD 63 was interfaced with computer via an APX 63 software package for rapid capturing of data on reflected intensity and other crystallographic ...

  17. Qualitative analysis of homogeneous universes

    International Nuclear Information System (INIS)

    Novello, M.; Araujo, R.A.

    1980-01-01

    The qualitative behaviour of cosmological models is investigated in two cases: Homogeneous and isotropic Universes containing viscous fluids in a stokesian non-linear regime; Rotating expanding universes in a state which matter is off thermal equilibrium. (Author) [pt

  18. On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space.

    Science.gov (United States)

    Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P

    2018-06-01

    Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Reciprocity theory of homogeneous reactions

    Science.gov (United States)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  20. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto

    2017-02-08

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

  1. Recovery of crystallographic texture in remineralized dental enamel.

    Science.gov (United States)

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  2. Recovery of crystallographic texture in remineralized dental enamel.

    Directory of Open Access Journals (Sweden)

    Samera Siddiqui

    Full Text Available Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture and position of the (002 Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected

  3. A personal view on homogenization

    International Nuclear Information System (INIS)

    Tartar, L.

    1987-02-01

    The evolution of some ideas is first described. Under the name homogenization are collected all the mathematical results who help understanding the relations between the microstructure of a material and its macroscopic properties. Homogenization results are given through a critically detailed bibliography. The mathematical models given are systems of partial differential equations, supposed to describe some properties at a scale ε and we want to understand what will happen to the solutions if ε tends to 0

  4. Homogenization of discrete media

    International Nuclear Information System (INIS)

    Pradel, F.; Sab, K.

    1998-01-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.)

  5. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  6. Homogenization of discrete media

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, F.; Sab, K. [CERAM-ENPC, Marne-la-Vallee (France)

    1998-11-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.) 7 refs.

  7. Computational Method for Atomistic-Continuum Homogenization

    National Research Council Canada - National Science Library

    Chung, Peter

    2002-01-01

    ...." Physical Review Letters. vol. 61, no. 25, pp. 2879-2882, 19 December 1988; Brenner, D. W. "Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films...

  8. FDTD Method for Piecewise Homogeneous Dielectric Media

    Directory of Open Access Journals (Sweden)

    Zh. O. Dombrovskaya

    2016-01-01

    Full Text Available In this paper, we consider a numerical solution of Maxwell’s curl equations for piecewise uniform dielectric medium by the example of a one-dimensional problem. For obtaining the second order accuracy, the electric field grid node is placed into the permittivity discontinuity point of the medium. If the dielectric permittivity is large, the problem becomes singularly perturbed and a contrast structure appears. We propose a piecewise quasi-uniform mesh which resolves all characteristic solution parts of the problem (regular part, boundary layer and transition zone placed between them in detail. The features of the mesh are discussed. 

  9. Rules of Thumb for Depth of Investigation, Pseudo-Position and Resolution of the Electrical Resistivity Method from Analysis of the Moments of the Sensitivity Function for a Homogeneous Half-Space

    Science.gov (United States)

    Butler, S. L.

    2017-12-01

    The electrical resistivity method is now highly developed with 2D and even 3D surveys routinely performed and with available fast inversion software. However, rules of thumb, based on simple mathematical formulas, for important quantities like depth of investigation, horizontal position and resolution have not previously been available and would be useful for survey planning, preliminary interpretation and general education about the method. In this contribution, I will show that the sensitivity function for the resistivity method for a homogeneous half-space can be analyzed in terms of its first and second moments which yield simple mathematical formulas. The first moment gives the sensitivity-weighted center of an apparent resistivity measurement with the vertical center being an estimate of the depth of investigation. I will show that this depth of investigation estimate works at least as well as previous estimates based on the peak and median of the depth sensitivity function which must be calculated numerically for a general four electrode array. The vertical and horizontal first moments can also be used as pseudopositions when plotting 1, 2 and 3D pseudosections. The appropriate horizontal plotting point for a pseudosection was not previously obvious for nonsymmetric arrays. The second moments of the sensitivity function give estimates of the spatial extent of the region contributing to an apparent resistivity measurement and hence are measures of the resolution. These also have simple mathematical formulas.

  10. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the

  11. 7 CFR 58.920 - Homogenization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.920 Section 58.920 Agriculture... Procedures § 58.920 Homogenization. Where applicable concentrated products shall be homogenized for the... homogenization and the pressure at which homogenization is accomplished will be that which accomplishes the most...

  12. Crystallographic Analysis of a Japanese Sword by using Bragg Edge Transmission Spectroscopy

    Science.gov (United States)

    Shiota, Yoshinori; Hasemi, Hiroyuki; Kiyanagi, Yoshiaki

    Neutron imaging using a pulsed neutron source can give crystallographic information over wide area of a sample by analysing position dependent transmission spectra. With the use of a Bragg edge imaging method we non-destructively obtained crystallographic information of a Japanese sword, signed by Bishu Osafune Norimitsu, in order to know position dependent crystallographic characteristics and to check usefulness of the method for the Japanese sword investigation. Strong texture appeared on the back side. On the other hand in the middle area almost isotropic feature appeared and edge side showed feature between them. Rather isotropic area in the centre area gradually reduced from the grip side to the tip side. The crystallite size was smaller near the edge and became larger towards the back side. The smaller crystallite size will be due to quenching around the edge and this trend disappeared in the grip (nakago) area. The larger crystallite size will be due to strong hammering. Coarse grains were also observed directly as transmission images with the use of a high spatial resolution detector. The spatial distribution of the grains was not uniform but the reason have not been understood. Furthermore, a white area around a tip area was proved to be a void by looking at the Brag edge transmission spectra. This void may be formed during forging process of two kinds of steel. It is suggested that consideration on differences in the texture and the crystallite size depending on position will give information to clarify the manufacturing process, and Bragg edge analysis will be a profitable tool for research of Japanese sword.

  13. Homogenization of variational inequalities for obstacle problems

    International Nuclear Information System (INIS)

    Sandrakov, G V

    2005-01-01

    Results on the convergence of solutions of variational inequalities for obstacle problems are proved. The variational inequalities are defined by a non-linear monotone operator of the second order with periodic rapidly oscillating coefficients and a sequence of functions characterizing the obstacles. Two-scale and macroscale (homogenized) limiting variational inequalities are obtained. Derivation methods for such inequalities are presented. Connections between the limiting variational inequalities and two-scale and macroscale minimization problems are established in the case of potential operators.

  14. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  15. Homogeneous Biosensing Based on Magnetic Particle Labels

    KAUST Repository

    Schrittwieser, Stefan

    2016-06-06

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  16. Homogeneous Biosensing Based on Magnetic Particle Labels

    Science.gov (United States)

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  17. Homogeneous Biosensing Based on Magnetic Particle Labels

    KAUST Repository

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang; Lentijo Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschö pe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  18. Crystallographically-based analysis of the NMR spectra of maghemite

    International Nuclear Information System (INIS)

    Spiers, K.M.; Cashion, J.D.

    2012-01-01

    All possible iron environments with respect to nearest neighbour vacancies in vacancy-ordered and vacancy-disordered maghemite have been evaluated and used as the foundation for a crystallographically-based analysis of the published NMR spectra of maghemite. The spectral components have been assigned to particular configurations and excellent agreement obtained in comparing predicted spectra with published spectra taken in applied magnetic fields. The broadness of the published NMR lines has been explained by calculations of the magnetic dipole fields at the various iron sites and consideration of the supertransferred hyperfine fields. - Highlights: ► Analysis of 57 Fe NMR of maghemite based on vacancy ordering and nearest neighbour vacancies. ► Assignment of NMR spectral components based on crystallographic analysis of unique iron sites. ► Strong agreement between predicted spectra and published spectra taken in applied magnetic fields. ► Maghemite NMR spectral broadening due to various iron sites and supertransferred hyperfine field.

  19. A crystallographic perspective on sharing data and knowledge

    Science.gov (United States)

    Bruno, Ian J.; Groom, Colin R.

    2014-10-01

    The crystallographic community is in many ways an exemplar of the benefits and practices of sharing data. Since the inception of the technique, virtually every published crystal structure has been made available to others. This has been achieved through the establishment of several specialist data centres, including the Cambridge Crystallographic Data Centre, which produces the Cambridge Structural Database. Containing curated structures of small organic molecules, some containing a metal, the database has been produced for almost 50 years. This has required the development of complex informatics tools and an environment allowing expert human curation. As importantly, a financial model has evolved which has, to date, ensured the sustainability of the resource. However, the opportunities afforded by technological changes and changing attitudes to sharing data make it an opportune moment to review current practices.

  20. Crystallographic data processing for free-electron laser sources

    International Nuclear Information System (INIS)

    White, Thomas A.; Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-01-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam

  1. Crystallographic data processing for free-electron laser sources

    Energy Technology Data Exchange (ETDEWEB)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Holton, James M. [University of California, San Francisco, CA 94158 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kirian, Richard A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287 (United States); Zatsepin, Nadia A. [Arizona State University, Tempe, AZ 85287 (United States); Chapman, Henry N. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  2. Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank.

    Science.gov (United States)

    Joosten, Robbie P; Joosten, Krista; Cohen, Serge X; Vriend, Gert; Perrakis, Anastassis

    2011-12-15

    Macromolecular crystal structures in the Protein Data Bank (PDB) are a key source of structural insight into biological processes. These structures, some >30 years old, were constructed with methods of their era. With PDB_REDO, we aim to automatically optimize these structures to better fit their corresponding experimental data, passing the benefits of new methods in crystallography on to a wide base of non-crystallographer structure users. We developed new algorithms to allow automatic rebuilding and remodeling of main chain peptide bonds and side chains in crystallographic electron density maps, and incorporated these and further enhancements in the PDB_REDO procedure. Applying the updated PDB_REDO to the oldest, but also to some of the newest models in the PDB, corrects existing modeling errors and brings these models to a higher quality, as judged by standard validation methods. The PDB_REDO database and links to all software are available at http://www.cmbi.ru.nl/pdb_redo. r.joosten@nki.nl; a.perrakis@nki.nl Supplementary data are available at Bioinformatics online.

  3. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Gian Song

    2017-12-01

    Full Text Available Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM Inconel 718 samples, using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL Spallation Neutron Source (SNS. Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing, which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures.

  4. The crystallographic space groups and Heterotic string theory

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2009-01-01

    While the 17 planar crystallographic groups were shown to correspond to 17 two and three Stein spaces with a total dimension equal to DimE12=5α-bar o ≅685, the present work reveals that the corresponding 219 three dimensional groups leads to a total dimensionality equal to N o ≅8872 which happens to be the exact total number of massless states of the transfinite version of Heterotic super string spectrum.

  5. Towards automated crystallographic structure refinement with phenix.refine

    OpenAIRE

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel; Headd, Jeffrey J.; Moriarty, Nigel W.; Mustyakimov, Marat; Terwilliger, Thomas C.; Urzhumtsev, Alexandre; Zwart, Peter H.; Adams, Paul D.

    2012-01-01

    phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An i...

  6. Crystallographic features of lath martensite in low-carbon steel

    International Nuclear Information System (INIS)

    Kitahara, Hiromoto; Ueji, Rintaro; Tsuji, Nobuhiro; Minamino, Yoritoshi

    2006-01-01

    Electron backscattering diffraction with field-emission scanning electron microscopy was used to analyze crystallographically the lath martensite structure in a 0.20% carbon steel. The crystallographic features of the lath martensite structure, of the order of the prior austenite grain size or larger, were clarified. Although the orientations of the martensite crystals were scattered around the ideal variant orientations, the martensite in this steel maintained the Kurdjumov-Sachs (K-S) orientation relationship. The procedures of the crystallographic analysis of the martensite (ferrite) phase with the K-S orientation relationship were explained in detail. Variant analysis showed that all 24 possible variants did not necessarily appear within a single prior austenite grain and that all six variants did not necessarily appear within each packet. Specific combinations of two variants appeared within local regions (sub-blocks), indicating a strict rule for variant selection. Prior austenite grain boundaries and most of the packet boundaries were clearly recognized. However, it was difficult to determine the block boundaries within the sub-blocks

  7. Crystallographic deterioration of MOVPE InN during the growth

    International Nuclear Information System (INIS)

    Sugita, K.; Nagai, Y.; Houchin, Y.; Hashimoto, A.; Yamamoto, A.

    2007-01-01

    This paper reports the crystallographic degradation of MOVPE InN during the growth. Using FWHMs of X-ray rocking curve, tilt ((0002)) and twist ((10-10)) angle distributions are evaluated and effects of the major growth parameters, such as growth temperature, growth time and with/without GaN buffer in the degradation, are revealed. With increasing either thickness of grown InN or growth temperature up to 600 C, the tilt angle distribution is markedly increased, indicating the crystallographic degradation of grown films. The use of a GaN buffer reduces such degradation. Since the twist angle distribution is scarcely changed by such growth parameters, the destruction of InN crystals during growth and annealing is concluded to be anisotropic. The trends of the crystallographic degradation revealed here are in good agreement with those for the electrical and optical degradation previously reported. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Design of SC solenoid with high homogeneity

    International Nuclear Information System (INIS)

    Yang Xiaoliang; Liu Zhong; Luo Min; Luo Guangyao; Kang Qiang; Tan Jie; Wu Wei

    2014-01-01

    A novel kind of SC (superconducting) solenoid coil is designed to satisfy the homogeneity requirement of the magnetic field. In this paper, we first calculate the current density distribution of the solenoid coil section through the linear programming method. Then a traditional solenoid and a nonrectangular section solenoid are designed to produce a central field up to 7 T with a homogeneity to the greatest extent. After comparison of the two solenoid coils designed in magnet field quality, fabrication cost and other aspects, the new design of the nonrectangular section of a solenoid coil can be realized through improving the techniques of framework fabrication and winding. Finally, the outlook and error analysis of this kind of SC magnet coil are also discussed briefly. (authors)

  9. Smooth homogeneous structures in operator theory

    CERN Document Server

    Beltita, Daniel

    2005-01-01

    Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research. Requiring only a moderate familiarity with functional analysis and general topology, the author begins with an introduction to infinite dimensional Lie theory with emphasis on the relationship between Lie groups and Lie algebras. A detailed examination of smooth homogeneous spaces follows. This study is illustrated by familiar examples from operator theory and develops methods that allow endowing such spaces with structures of complex manifolds. The final section of the book explores equivariant monotone operators and Kähler structures. It examines certain symmetry properties of abstract reproducing kernels and arrives at a very general version of the construction of restricted Grassmann manifolds from the theory of loo...

  10. Shape optimization in biomimetics by homogenization modelling

    International Nuclear Information System (INIS)

    Hoppe, Ronald H.W.; Petrova, Svetozara I.

    2003-08-01

    Optimal shape design of microstructured materials has recently attracted a great deal of attention in material science. The shape and the topology of the microstructure have a significant impact on the macroscopic properties. The present work is devoted to the shape optimization of new biomorphic microcellular ceramics produced from natural wood by biotemplating. We are interested in finding the best material-and-shape combination in order to achieve the optimal prespecified performance of the composite material. The computation of the effective material properties is carried out using the homogenization method. Adaptive mesh-refinement technique based on the computation of recovered stresses is applied in the microstructure to find the homogenized elasticity coefficients. Numerical results show the reliability of the implemented a posteriori error estimator. (author)

  11. Synthesis, structure and magnetic properties of crystallographically aligned CuCr_2Se_4 thin films

    International Nuclear Information System (INIS)

    Esters, Marco; Liebig, Andreas; Ditto, Jeffrey J.; Falmbigl, Matthias; Albrecht, Manfred; Johnson, David C.

    2016-01-01

    We report the low temperature synthesis of highly textured CuCr_2Se_4 thin films using the modulated elemental reactant (MER) method. The structure of CuCr_2Se_4 is determined for the first time in its thin film form and exhibits cell parameters that are smaller than found in bulk CuCr_2Se_4. X-ray diffraction and precession electron diffraction show a strong degree of crystallographic alignment of the crystallites, where the axis is oriented perpendicular to the substrate surface, while being rotationally disordered within the plane. Temperature and field dependent in-plane and out-of-plane magnetization measurements show that the film is ferromagnetic with a Curie temperature of 406 K CuCr_2Se_4 synthesized utilizing the MER method shows stronger magnetic anisotropy (effective anisotropy: 1.82 × 10"6 erg cm"−"3; shape anisotropy: 1.07 × 10"6 erg cm"−"3), with the easy axis lying out of plane, and a larger magnetic moment (6 μ_B/f.u.) than bulk CuCr_2Se_4. - Highlights: • Crystallographically aligned, phase pure CuCr_2Se_4 were synthesized. • The degree of alignment decreases with annealing time. • The films are ferromagnetic with the easy axis along the direction. • The magnetization is larger than bulk CuCr_2Se_4 or other CuCr_2Se_4 films made to date.

  12. Enhancing nanoscale SEM image segmentation and reconstruction with crystallographic orientation data and machine learning

    International Nuclear Information System (INIS)

    Converse, Matthew I.; Fullwood, David T.

    2013-01-01

    Current methods of image segmentation and reconstructions from scanning electron micrographs can be inadequate for resolving nanoscale gaps in composite materials (1–20 nm). Such information is critical to both accurate material characterizations and models of piezoresistive response. The current work proposes the use of crystallographic orientation data and machine learning for enhancing this process. It is first shown how a machine learning algorithm can be used to predict the connectivity of nanoscale grains in a Nickel nanostrand/epoxy composite. This results in 71.9% accuracy for a 2D algorithm and 62.4% accuracy in 3D. Finally, it is demonstrated how these algorithms can be used to predict the location of gaps between distinct nanostrands — gaps which would otherwise not be detected with the sole use of a scanning electron microscope. - Highlights: • A method is proposed for enhancing the segmentation/reconstruction of SEM images. • 3D crystallographic orientation data from a nickel nanocomposite is collected. • A machine learning algorithm is used to detect trends in adjacent grains. • This algorithm is then applied to predict likely regions of nanoscale gaps. • These gaps would otherwise be unresolved with the sole use of an SEM

  13. Calculation of strained BaTiO3 with different exchange correlation functionals examined with criterion by Ginzburg-Landau theory, uncovering expressions by crystallographic parameters

    Science.gov (United States)

    Watanabe, Yukio

    2018-05-01

    In the calculations of tetragonal BaTiO3, some exchange-correlation (XC) energy functionals such as local density approximation (LDA) have shown good agreement with experiments at room temperature (RT), e.g., spontaneous polarization (PS), and superiority compared with other XC functionals. This is due to the error compensation of the RT effect and, hence, will be ineffective in the heavily strained case such as domain boundaries. Here, ferroelectrics under large strain at RT are approximated as those at 0 K because the strain effect surpasses the RT effects. To find effective XC energy functionals for strained BaTiO3, we propose a new comparison, i.e., a criterion. This criterion is the properties at 0 K given by the Ginzburg-Landau (GL) theory because GL theory is a thermodynamic description of experiments working under the same symmetry-constraints as ab initio calculations. With this criterion, we examine LDA, generalized gradient approximations (GGA), meta-GGA, meta-GGA + local correlation potential (U), and hybrid functionals, which reveals the high accuracy of some XC functionals superior to XC functionals that have been regarded as accurate. This result is examined directly by the calculations of homogenously strained tetragonal BaTiO3, confirming the validity of the new criterion. In addition, the data points of theoretical PS vs. certain crystallographic parameters calculated with different XC functionals are found to lie on a single curve, despite their wide variations. Regarding these theoretical data points as corresponding to the experimental results, analytical expressions of the local PS using crystallographic parameters are uncovered. These expressions show the primary origin of BaTiO3 ferroelectricity as oxygen displacements. Elastic compliance and electrostrictive coefficients are estimated. For the comparison of strained results, we show that the effective critical temperature TC under strain 1000 K from an approximate method combining ab initio

  14. Matrix-dependent multigrid-homogenization for diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Knapek, S. [Institut fuer Informatik tu Muenchen (Germany)

    1996-12-31

    We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

  15. Observational homogeneity of the Universe

    International Nuclear Information System (INIS)

    Bonnor, W.B.; Ellis, G.F.R.

    1986-01-01

    A new approach to observational homogeneity is presented. The observation that stars and galaxies in distant regions appear similar to those nearby may be taken to imply that matter has had a similar thermodynamic history in widely separated parts of the Universe (the Postulate of Uniform Thermal Histories, or PUTH). The supposition is now made that similar thermodynamic histories imply similar dynamical histories. Then the distant apparent similarity is evidence for spatial homogeneity of the Universe. General Relativity is used to test this idea, taking a perfect fluid model and implementing PUTH by the condition that the density and entropy per baryon shall be the same function of the proper time along all galaxy world-lines. (author)

  16. Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding.

    Science.gov (United States)

    Ryan, Daniel Patrick Obelenis; Fais, Laiza Maria Grassi; Antonio, Selma Gutierrez; Hatanaka, Gabriel Rodrigues; Candido, Lucas Miguel; Pinelli, Ligia Antunes Pereira

    2017-07-26

    This study evaluated microstructural and crystallographic phase changes after grinding (G) and regeneration firing/anneling (R) of Y-TZP ceramics. Thirty five bars (Lava TM and Ice Zirkon) were divided: Y-TZP pre-sintered, control (C), regeneration firing (R), dry grinding (DG), dry grinding+regeneration firing (DGR), wet grinding (WG) and wet grinding+regeneration firing (WGR). Grinding was conducted using a diamond bur and annealing at 1,000°C. The microstructure was analyzed by SEM and the crystalline phases by X-ray diffraction (XRD). XRD showed that pre-sintered specimens contained tetragonal and monoclinic phases, while groups C and R showed tetragonal, cubic and monoclinic phases. After grinding, the cubic phase was eliminated in all groups. Annealing (DGR and WGR) resulted in only tetragonal phase. SEM showed semi-circular cracks after grinding and homogenization of particles after annealing. After grinding, surfaces show tetragonal and monoclinic phases and R can be assumed to be necessary prior to porcelain layering when grinding is performed.

  17. Conclusions about homogeneity and devitrification

    International Nuclear Information System (INIS)

    Larche, F.

    1997-01-01

    A lot of experimental data concerning homogeneity and devitrification of R7T7 glass have been published. It appears that: - the crystallization process is very limited, - the interfaces due to bubbles and the container wall favor crystallization locally but the ratio of crystallized volume remains always below a few per cents, and - crystallization has no damaging long-term effects as far as leaching tests can be trusted. (A.C.)

  18. Is charity a homogeneous good?

    OpenAIRE

    Backus, Peter

    2010-01-01

    In this paper I estimate income and price elasticities of donations to six different charitable causes to test the assumption that charity is a homogeneous good. In the US, charitable donations can be deducted from taxable income. This has long been recognized as producing a price, or taxprice, of giving equal to one minus the marginal tax rate faced by the donor. A substantial portion of the economic literature on giving has focused on estimating price and income elasticities of giving as th...

  19. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Feriduni, Behruz; Mogaddam, Mohammad Reza Afshar

    2016-01-01

    In this paper, a new extraction method based on counter current salting-out homogenous liquid-liquid extraction (CCSHLLE) followed by dispersive liquid-liquid microextraction (DLLME) has been developed for the extraction and preconcentration of widely used pesticides in fruit juice samples prior to their analysis by gas chromatography-flame ionization detection (GC-FID). In this method, initially, sodium chloride as a separation reagent is filled into a small column and a mixture of water (or fruit juice) and acetonitrile is passed through the column. By passing the mixture sodium chloride is dissolved and the fine droplets of acetonitrile are formed due to salting-out effect. The produced droplets go up through the remained mixture and collect as a separated layer. Then, the collected organic phase (acetonitrile) is removed with a syringe and mixed with 1,1,2,2-tetrachloroethane (extraction solvent at µL level). In the second step, for further enrichment of the analytes the above mixture is injected into 5 mL de-ionized water placed in a test tube with conical bottom in order to dissolve acetonitrile into water and to achieve a sedimented phase at µL-level volume containing the enriched analytes. Under the optimal extraction conditions (extraction solvent, 1.5 mL acetonitrile; pH, 7; flow rate, 0.5 mL min(-1); preconcentration solvent, 20 µL 1,1,2,2-tetrachloroethane; NaCl concentration; 5%, w/w; and centrifugation rate and time, 5000 rpm and 5 min, respectively), the extraction recoveries and enrichment factors ranged from 87% to 96% and 544 to 600, respectively. Repeatability of the proposed method, expressed as relative standard deviations, ranged from 2% to 6% for intra-day (n=6, C=250 or 500 µg L(-1)) and inter-days (n=4, C=250 or 500 µg L(-1)) precisions. Limits of detection are obtained between 2 and 12 µg L(-1). Finally, the proposed method is applied for the determination of the target pesticide residues in the juice samples. Copyright © 2015

  20. Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2003-12-01

    Full Text Available Abstract Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium.

  1. The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks

    Directory of Open Access Journals (Sweden)

    Ghada Badri

    2014-04-01

    Full Text Available A crystallographic bar-joint framework, C in Rd, is shown to be almost periodically infinitesimally rigid if and only if it is strictly periodically infinitesimally rigid and the rigid unit mode (RUM spectrum, Ω (C, is a singleton. Moreover, the almost periodic infinitesimal flexes of C are characterised in terms of a matrix-valued function, ΦC(z, on the d-torus, Td, determined by a full rank translation symmetry group and an associated motif of joints and bars.

  2. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  3. Homogenization of linearly anisotropic scattering cross sections in a consistent B1 heterogeneous leakage model

    International Nuclear Information System (INIS)

    Marleau, G.; Debos, E.

    1998-01-01

    One of the main problems encountered in cell calculations is that of spatial homogenization where one associates to an heterogeneous cell an homogeneous set of cross sections. The homogenization process is in fact trivial when a totally reflected cell without leakage is fully homogenized since it involved only a flux-volume weighting of the isotropic cross sections. When anisotropic leakages models are considered, in addition to homogenizing isotropic cross sections, the anisotropic scattering cross section must also be considered. The simple option, which consists of using the same homogenization procedure for both the isotropic and anisotropic components of the scattering cross section, leads to inconsistencies between the homogeneous and homogenized transport equation. Here we will present a method for homogenizing the anisotropic scattering cross sections that will resolve these inconsistencies. (author)

  4. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Directory of Open Access Journals (Sweden)

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  5. Homogenization and structural topology optimization theory, practice and software

    CERN Document Server

    Hassani, Behrooz

    1999-01-01

    Structural topology optimization is a fast growing field that is finding numerous applications in automotive, aerospace and mechanical design processes. Homogenization is a mathematical theory with applications in several engineering problems that are governed by partial differential equations with rapidly oscillating coefficients Homogenization and Structural Topology Optimization brings the two concepts together and successfully bridges the previously overlooked gap between the mathematical theory and the practical implementation of the homogenization method. The book is presented in a unique self-teaching style that includes numerous illustrative examples, figures and detailed explanations of concepts. The text is divided into three parts which maintains the book's reader-friendly appeal.

  6. Estimation of the crystallographic strain limit during the reversible β ⇄ α″ martensitic transformation in titanium shape memory alloys

    Science.gov (United States)

    Zhukova, Yu. S.; Petrzhik, M. I.; Prokoshkin, S. D.

    2010-11-01

    Three methods are described to calculate the crystallographic strain limit that is determined by the maximum deformation of the crystal lattice in the reversible βbcc ⇄ α″orth martensitic transformation and ensures pseudoelastic deformation accumulation and shape recovery in Ti-Nb-Ta alloys.

  7. Research on the phenomenon of graphitization. Crystallographic study - Study of bromine sorption

    International Nuclear Information System (INIS)

    Maire, Jacques

    1967-01-01

    This research thesis reports the study of the mechanism of graphitization of carbon by using X-ray diffraction analysis and the physical and chemical study of lamellar reactions between carbon and bromine. The author first presents generalities and results of preliminary studies (meaning of graphitization, presentation of the various carbon groups and classes), and then reports the study of the graphitization of compact carbons (soft carbons). More precisely, he reports the crystallographic study of partially graphitized carbons: methods and principles, experimental results and their analysis, discussion of the graphitization mechanism. In the next part, the author reports the study of bromine sorption on carbons: experimental method, isotherms of a natural graphite and of a graphitized carbon, structure of carbon-bromine complexes, isotherms of graphitizable carbons and of all other carbons, distribution of bromine layers in partially graphitized carbons, bromine sorption and Fermi level

  8. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations.

    Science.gov (United States)

    Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2015-05-01

    The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.

  9. Physical applications of homogeneous balls

    CERN Document Server

    Scarr, Tzvi

    2005-01-01

    One of the mathematical challenges of modern physics lies in the development of new tools to efficiently describe different branches of physics within one mathematical framework. This text introduces precisely such a broad mathematical model, one that gives a clear geometric expression of the symmetry of physical laws and is entirely determined by that symmetry. The first three chapters discuss the occurrence of bounded symmetric domains (BSDs) or homogeneous balls and their algebraic structure in physics. The book further provides a discussion of how to obtain a triple algebraic structure ass

  10. Heterotic strings on homogeneous spaces

    International Nuclear Information System (INIS)

    Israel, D.; Kounnas, C.; Orlando, D.; Petropoulos, P.M.

    2005-01-01

    We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact conformal field theories. They contain left cosets of compact groups by their maximal tori supported by NS-NS 2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions, then we consider some examples such as SU(2)/U(1)∝S 2 (already described in a previous paper) and the SU(3)/U(1) 2 flag space. As an application we construct new supersymmetric string vacua with magnetic fluxes and a linear dilaton. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  11. Crystallographic investigation of grain selection during initial solidification

    International Nuclear Information System (INIS)

    Esaka, H; Shinozuka, K; Kataoka, Y

    2016-01-01

    Normally, macroscopic solidified structure consists of chill, columnar and equiaxed zones. In a chill zone, many fine grains nucleate on the mold surface and grow their own preferred growth direction. Only a few of them continue to grow because of grain selection. In order to understand the grain selection process, crystallographic investigation has been carried out in the zone of initial solidification in this study. 10 g of Al-6 wt%Si alloy was melted at 850 °C and poured on the thick copper plate. Longitudinal cross section of the solidified shell was observed by a SEM and analyzed by EBSD. The result of EBSD mapping reveals that crystallographic orientation was random in the range of initial solidification. Further, some grains are elongated along their <100> direction. Columnar grains, whose growth directions are almost parallel to the heat flow direction, develop via grain selection. Here, a dendrite whose growth direction is close to the heat flow direction overgrows the other dendrite whose growth direction is far from the heat flow direction. However, sometimes we observed that dendrite, whose zenith angle is large, overgrew the other dendrite. It can be deduced that the time of nucleation on the mold surface is not constant. (paper)

  12. Homogenization of aligned “fuzzy fiber” composites

    KAUST Repository

    Chatzigeorgiou, George

    2011-09-01

    The aim of this work is to study composites in which carbon fibers coated with radially aligned carbon nanotubes are embedded in a matrix. The effective properties of these composites are identified using the asymptotic expansion homogenization method in two steps. Homogenization is performed in different coordinate systems, the cylindrical and the Cartesian, and a numerical example are presented. © 2011 Elsevier Ltd. All rights reserved.

  13. At-tank Low-Activity Feed Homogeneity Analysis Verification

    International Nuclear Information System (INIS)

    DOUGLAS, J.G.

    2000-01-01

    This report evaluates the merit of selecting sodium, aluminum, and cesium-137 as analytes to indicate homogeneity of soluble species in low-activity waste (LAW) feed and recommends possible analytes and physical properties that could serve as rapid screening indicators for LAW feed homogeneity. The three analytes are adequate as screening indicators of soluble species homogeneity for tank waste when a mixing pump is used to thoroughly mix the waste in the waste feed staging tank and when all dissolved species are present at concentrations well below their solubility limits. If either of these conditions is violated, then the three indicators may not be sufficiently chemically representative of other waste constituents to reliably indicate homogeneity in the feed supernatant. Additional homogeneity indicators that should be considered are anions such as fluoride, sulfate, and phosphate, total organic carbon/total inorganic carbon, and total alpha to estimate the transuranic species. Physical property measurements such as gamma profiling, conductivity, specific gravity, and total suspended solids are recommended as possible at-tank methods for indicating homogeneity. Indicators of LAW feed homogeneity are needed to reduce the U.S. Department of Energy, Office of River Protection (ORP) Program's contractual risk by assuring that the waste feed is within the contractual composition and can be supplied to the waste treatment plant within the schedule requirements

  14. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  15. Improving homogeneity by dynamic speed limit systems.

    NARCIS (Netherlands)

    Nes, N. van Brandenberg, S. & Twisk, D.A.M.

    2010-01-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12

  16. 7 CFR 58.636 - Homogenization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.636 Section 58.636 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.636 Homogenization. Homogenization of the pasteurized mix shall be accomplished to...

  17. The homogeneous geometries of real hyperbolic space

    DEFF Research Database (Denmark)

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use...... our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components....

  18. Orthogonality Measurement for Homogenous Projects-Bases

    Science.gov (United States)

    Ivan, Ion; Sandu, Andrei; Popa, Marius

    2009-01-01

    The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…

  19. A convenient procedure for magnetic field homogeneity evaluation

    International Nuclear Information System (INIS)

    Teles, J; Garrido, C E; Tannus, A

    2004-01-01

    In many areas of research that utilize magnetic fields in their studies, it is important to obtain fields with a spatial distribution as homogeneous as possible. A procedure usually utilized to evaluate and to optimize field homogeneity is the expansion of the measured field in spherical harmonic components. In addition to the methods proposed in the literature, we present a more convenient procedure for evaluation of field homogeneity inside a spherical volume. The procedure uses the orthogonality property of the spherical harmonics to find the field variance. It is shown that the total field variance is equal to the sum of the individual variances of each field component in the spherical harmonic expansion. Besides the advantages of the linear behaviour of the individual variances, there is the fact that the field variance and standard deviation are the best parameters to achieve global homogeneity field information

  20. Purification, identification and preliminary crystallographic studies of Pru du amandin, an allergenic protein from Prunus dulcis

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Vineet; Sethi, Dhruv K.; Salunke, Dinakar M., E-mail: dinakar@nii.res.in [National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2008-01-01

    The purification, identification, crystallization and preliminary crystallographic studies of an allergy-related protein, Pru du amandin, from P. dulcis nuts are reported. Food allergies appear to be one of the foremost causes of hypersensitivity reactions. Nut allergies account for most food allergies and are often permanent. The 360 kDa hexameric protein Pru du amandin, a known allergen, was purified from almonds (Prunus dulcis) by ammonium sulfate fractionation and ion-exchange chromatography. The protein was identified by a BLAST homology search against the nonredundant sequence database. Pru du amandin belongs to the 11S legumin family of seed storage proteins characterized by the presence of a cupin motif. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 150.7, c = 164.9 Å.

  1. Recombinant ACHT1 from Arabidopsis thaliana: crystallization and X-ray crystallographic analysis.

    Science.gov (United States)

    Pan, Weimin; Wang, Junchao; Yang, Ye; Liu, Lin; Zhang, Min

    2017-07-01

    Thioredoxins (Trxs) play important roles in chloroplasts by linking photosynthetic light reactions to a series of plastid functions. They execute their function by regulating the oxidation and reduction of disulfide bonds. ACHT1 (atypical cysteine/histidine-rich Trx1) is a thylakoid-associated thioredoxin-type protein found in the Arabidopsis thaliana chloroplast. Recombinant ACHT1 protein was overexpressed in Escherichia coli, purified and crystallized by the vapour-diffusion method. The crystal diffracted to 1.7 Å resolution and a complete X-ray data set was collected. Preliminary crystallographic analysis suggested that the crystals belonged to space group C222 1 , with unit-cell parameters a = 102.7, b = 100.6, c = 92.8 Å.

  2. The distribution function of crystalline orientation's usefulness in crystallographic texture analysis

    International Nuclear Information System (INIS)

    Hermida, J.D.; Pochettino, A.A.

    1982-01-01

    The theoretical fundaments of the Distribution Function of Crystalline Orientations (DFCO) are described and this method is compared with the usual description of the crystallographic texture by direct pole figures. Such function is applied to the study of a Zry-4 sample obtained from a tube belonging to a CANDU type fuel element. The DFCO is obtained from the pole figures (0002), (101-bar0) and (101-bar1). The results show the existence of six fundamental components of texture, which are enunciated below, in decreasing order of importance: (2-bar115) ; (3-bar128) ; (1-bar013) ; (2-bar114) ; (0001) ; (0001) . A much more complete view of the crystals' orientation state of such sample can be obtained by analyzing the weight and the distribution of the different components. (M.E.L.) [es

  3. Expression, purification and preliminary crystallographic analysis of sucrose phosphate synthase (SPS) from Halothermothrix orenii

    International Nuclear Information System (INIS)

    Huynh, Frederick; Tan, Tien-Chye; Swaminathan, Kunchithapadam; Patel, Bharat K. C.

    2004-01-01

    The first crystallographic study of a sucrose phosphate synthase from H. orenii, an organism that is both thermophilic and halophilic, is reported. The protein crystal diffracts X-rays to 3.01 Å. This is the first report of the crystallization of a sucrose phosphate synthase (SPS; EC 2.4.1.14). It also constitutes the first study of a sucrose phosphate synthase from a non-photosynthetic thermohalophilic anaerobic bacterium, Halothermothrix orenii. The purified recombinant spsA protein has been crystallized in the monoclinic space group C2, with unit-cell parameters a = 154.2, b = 47.9, c = 72.3 Å, β = 103.16°, using the hanging-drop vapour-diffusion method. The crystal diffracts X-rays to a resolution limit of 3.01 Å. Heavy-metal and halide-soaking trials are currently in progress to solve the structure

  4. Influence of crystallographic orientation on the response of copper crystallites to nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Korchuganov, Aleksandr V., E-mail: avkor@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Kryzhevich, Dmitrij S., E-mail: kryzhev@ispms.tsc.ru, E-mail: kost@ispms.tsc.ru; Zolnikov, Konstantin P., E-mail: kryzhev@ispms.tsc.ru, E-mail: kost@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G., E-mail: sp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    Molecular dynamics simulation was performed to study the features of nucleation and development of plastic deformation in copper crystallites in nanoindentation with different crystallographic orientations of their loaded surface: (011), (001), and (111). Atomic interaction was described by a potential constructed in terms of the embedded atom method. It is shown that behavior of the crystallite reaction force correlates well with a change in the fraction of atoms involved in local structural rearrangements. The generation of local structural changes decreases the slope of the crystallite reaction force curve or results in an extremum due to internal stress relaxation. Analysis of structural changes in the material being indented demonstrates that the orientation of its loaded surface greatly affects the features of nucleation and development of plastic deformation.

  5. Purification, identification and preliminary crystallographic studies of a 2S albumin seed protein from Lens culinaris

    International Nuclear Information System (INIS)

    Gupta, Pankaj; Gaur, Vineet; Salunke, Dinakar M.

    2008-01-01

    A 2S albumin from L. culinaris was purified and crystallized and preliminary crystallographic studies were carried out. Lens culinaris (lentil) is a widely consumed high-protein-content leguminous crop. A 2S albumin protein (26.5 kDa) has been identified using NH 2 -terminal sequencing from a 90% ammonium sulfate saturation fraction of total L. culinaris seed protein extract. The NH 2 -terminal sequence shows very high homology to PA2, an allergy-related protein from Pisum sativum. The 2S albumin protein was purified using a combination of size-exclusion and ion-exchange chromatography. Crystals of the 2S seed albumin obtained using the hanging-drop vapour-diffusion method diffracted to 2.5 Å resolution and were indexed in space group P4 1 (or P4 3 ), with unit-cell parameters a = b = 78.6, c = 135.2 Å

  6. Purification, identification and preliminary crystallographic studies of Pru du amandin, an allergenic protein from Prunus dulcis

    International Nuclear Information System (INIS)

    Gaur, Vineet; Sethi, Dhruv K.; Salunke, Dinakar M.

    2007-01-01

    The purification, identification, crystallization and preliminary crystallographic studies of an allergy-related protein, Pru du amandin, from P. dulcis nuts are reported. Food allergies appear to be one of the foremost causes of hypersensitivity reactions. Nut allergies account for most food allergies and are often permanent. The 360 kDa hexameric protein Pru du amandin, a known allergen, was purified from almonds (Prunus dulcis) by ammonium sulfate fractionation and ion-exchange chromatography. The protein was identified by a BLAST homology search against the nonredundant sequence database. Pru du amandin belongs to the 11S legumin family of seed storage proteins characterized by the presence of a cupin motif. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P4 1 (or P4 3 ), with unit-cell parameters a = b = 150.7, c = 164.9 Å

  7. Crystallographic disorder and magnetism in UPd2-xSn

    International Nuclear Information System (INIS)

    Suellow, S.; Mattheus, C.C.; Becker, B.; Snel, C.E.; Nieuwenhuys, G.J.; Mydosh, J.A.; Schenck, A.

    1997-01-01

    The intermetallic compound UPd 2 Sn has been shown in previous investigations to crystallize in an orthorhombic structure (space group Pnma). No indications for magnetic or superconducting transitions were found. However, if the Pd content is reduced, then, similar to UNi 2 Sn, a structural transition occurs. We prepared UPd 1.85 Sn and found it to crystallize as a Heusler compound in the MnCu 2 Al-structure (space group Fm anti 3m). Now the system undergoes a transition into a disordered magnetic state at T mag ≅ 28 K. Here, we present our measurements of the specific heat, susceptibility and muon relaxation of UPd 1.85 Sn, and discuss the nature of the magnetic state in relation to the crystallographic structure. (orig.)

  8. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Science.gov (United States)

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Transuranic Hybrid Materials: Crystallographic and Computational Metrics of Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Surbella, Robert G. [Department; Ducati, Lucas C. [Department; Pellegrini, Kristi L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; McNamara, Bruce K. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Autschbach, Jochen [Department; Schwantes, Jon M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Cahill, Christopher L. [Department

    2017-07-26

    A family of twelve supramolecular [AnO2Cl4]2- (An = U, Np, Pu) containing compounds assembled via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I) is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons are the norm. We present a hierarchy of assembly criteria based on crystallographic observations, and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials (ESPs) of the actinyl tetrahalide dianions and reconcile crystallographically observed structural motifs and non-covalent interaction (NCI) acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ~2 kJ mol-1 across the AnO22+ series, indicating the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen N-H+. Subsequent analyses using the Quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches support this conclusion and highlight the structure directing role of the cations. Whereas one can infer that the 2 Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.

  10. Toward whole-core neutron transport without spatial homogenization

    International Nuclear Information System (INIS)

    Lewis, E. E.

    2009-01-01

    Full text of publication follows: A long-term goal of computational reactor physics is the deterministic analysis of power reactor core neutronics without incurring significant discretization errors in the energy, spatial or angular variables. In principle, given large enough parallel configurations with unlimited CPU time and memory, this goal could be achieved using existing three-dimensional neutron transport codes. In practice, however, solving the Boltzmann equation for neutrons over the six-dimensional phase space is made intractable by the nature of neutron cross-sections and the complexity and size of power reactor cores. Tens of thousands of energy groups would be required for faithful cross section representation. Likewise, the numerous material interfaces present in power reactor lattices require exceedingly fine spatial mesh structures; these ubiquitous interfaces preclude effective implementation of adaptive grid, mesh-less methods and related techniques that have been applied so successfully in other areas of engineering science. These challenges notwithstanding, substantial progress continues in the pursuit for more robust deterministic methods for whole-core neutronics analysis. This paper examines the progress over roughly the last decade, emphasizing the space-angle variables and the quest to eliminate errors attributable to spatial homogenization. As prolog we briefly assess 1990's methods used in light water reactor analysis and review the lessons learned from the C5G7 benchmark exercises which were originated in 1999 to appraise the ability of transport codes to perform core calculations without homogenization. We proceed by examining progress over the last decade much of which falls into three areas. These may be broadly characterized as reduced homogenization, dynamic homogenization and planar-axial synthesis. In the first, homogenization in three-dimensional calculations is reduced from the fuel assembly to the pin-cell level. In the second

  11. Primary healthcare solo practices: homogeneous or heterogeneous?

    Science.gov (United States)

    Pineault, Raynald; Borgès Da Silva, Roxane; Provost, Sylvie; Beaulieu, Marie-Dominique; Boivin, Antoine; Couture, Audrey; Prud'homme, Alexandre

    2014-01-01

    Introduction. Solo practices have generally been viewed as forming a homogeneous group. However, they may differ on many characteristics. The objective of this paper is to identify different forms of solo practice and to determine the extent to which they are associated with patient experience of care. Methods. Two surveys were carried out in two regions of Quebec in 2010: a telephone survey of 9180 respondents from the general population and a postal survey of 606 primary healthcare (PHC) practices. Data from the two surveys were linked through the respondent's usual source of care. A taxonomy of solo practices was constructed (n = 213), using cluster analysis techniques. Bivariate and multilevel analyses were used to determine the relationship of the taxonomy with patient experience of care. Results. Four models were derived from the taxonomy. Practices in the "resourceful networked" model contrast with those of the "resourceless isolated" model to the extent that the experience of care reported by their patients is more favorable. Conclusion. Solo practice is not a homogeneous group. The four models identified have different organizational features and their patients' experience of care also differs. Some models seem to offer a better organizational potential in the context of current reforms.

  12. Cosmic Ray Hit Detection with Homogenous Structures

    Science.gov (United States)

    Smirnov, O. M.

    Cosmic ray (CR) hits can affect a significant number of pixels both on long-exposure ground-based CCD observations and on the Space Telescope frames. Thus, methods of identifying the damaged pixels are an important part of the data preprocessing for practically any application. The paper presents an implementation of a CR hit detection algorithm based on a homogenous structure (also called cellular automata ), a concept originating in artificial intelligence and dicrete mathematics. Each pixel of the image is represented by a small automaton, which interacts with its neighbors and assumes a distinct state if it ``decides'' that a CR hit is present. On test data, the algorithm has shown a high detection rate (~0.7 ) and a low false alarm rate (frame. A homogenous structure is extremely trainable, which can be very important for processing large batches of data obtained under similar conditions. Training and optimizing issues are discussed, as well as possible other applications of this concept to image processing.

  13. WHAMP - waves in homogeneous, anisotropic, multicomponent plasmas

    International Nuclear Information System (INIS)

    Roennmark, K.

    1982-06-01

    In this report, a computer program which solves the dispersion relation of waves in a magnetized plasma is described. The dielectric tensor is derived using the kinetic theory of homogeneous plasmas with Maxwellian velocity distribution. Up to six different plasma components can be included in this version of the program, and each component is specified by its density, temperature, particle mass, anisotropy and drift velocity along the magnetic field. The program is thus applicable to a very wide class of plasmas, and the method should in general be useful whenever a homogeneous magnetized plasma can be approximated by a linear combination of Maxwellian components. The general theory underlying the program is outlined. It is shown that by introducing a Pade approximant for the plasma dispersion function Z, the infinite sums of modified Bessel functions which appear in the dielectric tensor may be reduced to a summable form. The Pade approximant is derived and the accuracy of the approximation is also discussed. The subroutines making up the program are described. (Author)

  14. Homogenization models for thin rigid structured surfaces and films.

    Science.gov (United States)

    Marigo, Jean-Jacques; Maurel, Agnès

    2016-07-01

    A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.

  15. Electromagnetic Radiation in a Uniformly Moving, Homogeneous Medium

    DEFF Research Database (Denmark)

    Johannsen, Günther

    1972-01-01

    A new method of treating radiation problems in a uniformly moving, homogeneous medium is presented. A certain transformation technique in connection with the four-dimensional Green's function method makes it possible to elaborate the Green's functions of the governing differential equations...

  16. A new formulation for the problem of fuel cell homogenization

    International Nuclear Information System (INIS)

    Chao, Y.-A.; Martinez, A.S.

    1982-01-01

    A new homogenization method for reactor cells is described. This new method consists in eliminating the NR approximation for the fuel resonance and the Wigner approximation for the resonance escape probability; the background cross section is then redefined and the problem studied is reanalyzed. (E.G.) [pt

  17. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    International Nuclear Information System (INIS)

    Wikman, Linnea E. K.; Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N.; Papageorgiou, Anastassios C.

    2005-01-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2 1 , with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml −1 purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2 1 space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment

  18. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Linnea E. K. [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland); Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N. [Institute for Biomedical Chemistry, Russian Academy of Medical Sciences, 559-B, 10 Pogodinskay St, Moscow 119121 (Russian Federation); Papageorgiou, Anastassios C., E-mail: tassos.papageorgiou@btk.fi [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland)

    2005-04-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2{sub 1}, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml{sup −1} purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2{sub 1} space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment.

  19. Moral Beliefs and Cognitive Homogeneity

    Directory of Open Access Journals (Sweden)

    Nevia Dolcini

    2018-04-01

    Full Text Available The Emotional Perception Model of moral judgment intends to account for experientialism about morality and moral reasoning. In explaining how moral beliefs are formed and applied in practical reasoning, the model attempts to overcome the mismatch between reason and action/desire: morality isn’t about reason for actions, yet moral beliefs, if caused by desires, may play a motivational role in (moral agency. The account allows for two kinds of moral beliefs: genuine moral beliefs, which enjoy a relation to desire, and motivationally inert moral beliefs acquired in ways other than experience. Such etiology-based dichotomy of concepts, I will argue, leads to the undesirable view of cognition as a non-homogeneous phenomenon. Moreover, the distinction between moral beliefs and moral beliefs would entail a further dichotomy encompassing the domain of moral agency: one and the same action might possibly be either genuine moral, or not moral, if acted by individuals lacking the capacity for moral feelings, such as psychopaths.

  20. Homogeneous modes of cosmological instantons

    Energy Technology Data Exchange (ETDEWEB)

    Gratton, Steven; Turok, Neil

    2001-06-15

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or Coleman{endash}De Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe.

  1. Homogeneous modes of cosmological instantons

    International Nuclear Information System (INIS)

    Gratton, Steven; Turok, Neil

    2001-01-01

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or ColemanendashDe Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe

  2. Preparation of homogeneous isotopic targets with rotating substrate

    International Nuclear Information System (INIS)

    Xu, G.J.; Zhao, Z.G.

    1993-01-01

    Isotopically enriched accelerator targets were prepared using the evaporation-condensation method from a resistance heating crucible. For high collection efficiency and good homogeneity the substrate was rotated at a vertical distance of 1.3 to 2.5 cm from the evaporation source. Measured collection efficiencies were 13 to 51 μg cm -2 mg -1 and homogeneity tests showed values close to the theoretically calculated ones for a point source. Targets, selfsupporting or on backings, could be fabricated with this method for elements and some compounds with evaporation temperatures up to 2300 K. (orig.)

  3. Precipitation of plutonium oxalate from homogeneous solutions

    International Nuclear Information System (INIS)

    Rao, V.K.; Pius, I.C.; Subbarao, M.; Chinnusamy, A.; Natarajan, P.R.

    1986-01-01

    A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92-98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(Csub(2)Osub(4))sub(2).6Hsub(2)O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuOsub(2) obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen. (author)

  4. Homogenization in thermoelasticity: application to composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Peyroux, R [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France); Licht, C [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France)

    1993-11-01

    One of the obstacles to the industrial use of metal matrix composite materials is the damage they rapidly undergo when they are subjected to cyclic thermal loadings; local thermal stresses of high level can develop, sometimes nearby or over the elastic limit, due to the mismatch of elastic and thermal coefficients between the fibers and the matrix. For the same reasons, early cracks can appear in composites like ceramic-ceramic. Therefore, we investigate the linear thermoelastic behaviour of heterogeneous materials, taking account of the isentropic coupling term in the heat conduction equation. In the case of periodic materials, recent results, using the homogenization theory, allowed us to describe macroscopic and microscopic behaviours of such materials. This paper is concerned with the numerical simulation of this problem by a finite element method, using a multiscale approach. (orig.).

  5. Multishell structure formation in Ni nanowire under uniaxial strain along <0 0 1> crystallographic direction: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li, E-mail: wanglihxf@sdu.edu.c [School of Mechanical and Electrical Engineering, Shandong University at Weihai, 180 Wenhuaxi Road, Weihai 264209 (China); Peng Chuanxiao [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Gong Jianhong [School of Mechanical and Electrical Engineering, Shandong University at Weihai, 180 Wenhuaxi Road, Weihai 264209 (China)

    2010-04-01

    Molecular dynamics simulations based upon embedded-atom-method potential are employed to explore the fracture behavior of Ni nanowire along <0 0 1> crystallographic direction at temperature of 300 K. We find the formation of (5,5) multishell structure (MS), which is transformed from (6,5) MS at the necking region of nanowire under the strain rate of 0.02%ps{sup -1}. A reorientation transformation from <0 0 1> to <1 1 0> is first detected before formation of (6,5) MS. The formed (5,5) MS is more stable and can be tensioned longer as lower strain rate is loaded.

  6. Radiotracer application in determining changes in cement mix homogeneity

    International Nuclear Information System (INIS)

    Breda, M.

    1979-01-01

    A small amount of cement labelled with 24 Na is added to the concrete mix and the relative activity of the mix is measured using a scintillation detector in preset points at different time intervals of the mixing process. The detector picks up information from a volume of 10 to 15 litres. The values characterize the degree of homogeneity of the cement component in the mix. Mathematical statistics methods are used for assessing mixing or the homogeneity changes. The technique is quick and simple and is used to advantage in determining the effect of the duration and method of transport of the cement mix on its homogeneity, and in monitoring the mixing process and determining the minimum mixing time for all types of concrete mix. (M.S.)

  7. Homogenization technique for strongly heterogeneous zones in research reactors

    International Nuclear Information System (INIS)

    Lee, J.T.; Lee, B.H.; Cho, N.Z.; Oh, S.K.

    1991-01-01

    This paper reports on an iterative homogenization method using transport theory in a one-dimensional cylindrical cell model developed to improve the homogenized cross sections fro strongly heterogeneous zones in research reactors. The flux-weighting homogenized cross sections are modified by a correction factor, the cell flux ratio under an albedo boundary condition. The albedo at the cell boundary is iteratively determined to reflect the geometry effects of the material properties of the adjacent cells. This method has been tested with a simplified core model of the Korea Multipurpose Research Reactor. The results demonstrate that the reaction rates of an off-center control shroud cell, the multiplication factor, and the power distribution of the reactor core are close to those of the fine-mesh heterogeneous transport model

  8. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  9. Homogeneity and thermodynamic identities in geometrothermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Rome (Italy); Quevedo, Maria N. [Universidad Militar Nueva Granada, Departamento de Matematicas, Facultad de Ciencias Basicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2017-03-15

    We propose a classification of thermodynamic systems in terms of the homogeneity properties of their fundamental equations. Ordinary systems correspond to homogeneous functions and non-ordinary systems are given by generalized homogeneous functions. This affects the explicit form of the Gibbs-Duhem relation and Euler's identity. We show that these generalized relations can be implemented in the formalism of black hole geometrothermodynamics in order to completely fix the arbitrariness present in Legendre invariant metrics. (orig.)

  10. Cluster Analysis of Time-Dependent Crystallographic Data: Direct Identification of Time-Independent Structural Intermediates

    Science.gov (United States)

    Kostov, Konstantin S.; Moffat, Keith

    2011-01-01

    The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which these intermediates interconvert; and thereby to elucidate a chemical kinetic mechanism. One strategy toward achieving this goal is to use cluster analysis, a statistical method that groups objects based on their similarity. If the difference electron density at a particular voxel in the time-dependent difference electron density (TDED) maps is sensitive to the presence of one and only one intermediate, then its temporal evolution will exactly parallel the concentration profile of that intermediate with time. The rationale is therefore to cluster voxels with respect to the shapes of their TDEDs, so that each group or cluster of voxels corresponds to one structural intermediate. Clusters of voxels whose TDEDs reflect the presence of two or more specific intermediates can also be identified. From such groupings one can then infer the number of intermediates, obtain their time-independent difference density characteristics, and refine the structure of each intermediate. We review the principles of cluster analysis and clustering algorithms in a crystallographic context, and describe the application of the method to simulated and experimental time-resolved crystallographic data for the photocycle of photoactive yellow protein. PMID:21244840

  11. Self-consolidating concrete homogeneity

    Directory of Open Access Journals (Sweden)

    Jarque, J. C.

    2007-08-01

    Full Text Available Concrete instability may lead to the non-uniform distribution of its properties. The homogeneity of self-consolidating concrete in vertically cast members was therefore explored in this study, analyzing both resistance to segregation and pore structure uniformity. To this end, two series of concretes were prepared, self-consolidating and traditional vibrated materials, with different w/c ratios and types of cement. The results showed that selfconsolidating concretes exhibit high resistance to segregation, albeit slightly lower than found in the traditional mixtures. The pore structure in the former, however, tended to be slightly more uniform, probably as a result of less intense bleeding. Such concretes are also characterized by greater bulk density, lower porosity and smaller mean pore size, which translates into a higher resistance to pressurized water. For pore diameters of over about 0.5 μm, however, the pore size distribution was found to be similar to the distribution in traditional concretes, with similar absorption rates.En este trabajo se estudia la homogeneidad de los hormigones autocompactantes en piezas hormigonadas verticalmente, determinando su resistencia a la segregación y la uniformidad de su estructura porosa, dado que la pérdida de estabilidad de una mezcla puede conducir a una distribución no uniforme de sus propiedades. Para ello se han fabricado dos tipos de hormigones, uno autocompactante y otro tradicional vibrado, con diferentes relaciones a/c y distintos tipos de cemento. Los resultados ponen de manifiesto que los hormigones autocompactantes presentan una buena resistencia a la segregación, aunque algo menor que la registrada en los hormigones tradicionales. A pesar de ello, su estructura porosa tiende a ser ligeramente más uniforme, debido probablemente a un menor sangrado. Asimismo, presentan una mayor densidad aparente, una menor porosidad y un menor tamaño medio de poro, lo que les confiere mejores

  12. Central Andean temperature and precipitation measurements and its homogenization

    Science.gov (United States)

    Hunziker, Stefan; Gubler, Stefanie

    2015-04-01

    Observation of climatological parameters and the homogenization of these time series have a well-established history in western countries. This is not the case for many other countries, such as Bolivia and Peru. In Bolivia and Peru, the organization of measurements, quality of measurement equipment, equipment maintenance, training of staff and data management are fundamentally different compared to the western standard. The data needs special attention, because many problems are not detected by standard quality control procedures. Information about the weather stations, best achieved by station visits, is very beneficial. If the cause of the problem is known, some of the data may be corrected. In this study, cases of typical problems and measurement errors will be demonstrated. Much of research on homogenization techniques (up to subdaily scale) has been completed in recent years. However, data sets of the quality of western station networks have been used, and little is known about the performance of homogenization methods on data sets from countries such as Bolivia and Peru. HOMER (HOMogenizaton softwarE in R) is one of the most recent and widely used homogenization softwares. Its performance is tested on Peruvian-like data that has been sourced from Swiss stations (similar station density and metadata availability). The Swiss station network is a suitable test bed, because climate gradients are strong and the terrain is complex, as is also found in the Central Andes. On the other hand, the Swiss station network is dense, and long time series and extensive metadata are available. By subsampling the station network and omitting the metadata, the conditions of a Peruvian test region are mimicked. Results are compared to a dataset homogenized by THOMAS (Tool for Homogenization of Monthly Data Series), the homogenization tool used by MeteoSwiss.

  13. Synthesis, crystallographic and magnetic properties of protactinium pnictides

    International Nuclear Information System (INIS)

    Hery, Yves.

    1979-03-01

    From a theoretical point of view, protactinium lies in a very important place in the periodic system for it seems to be the first element of the actinide series where the 5f state is occupied. We have studied protactinium pnictides, particularly arsenides and antimonides. PaAs 2 , Pa 3 As 4 , PaSb 2 and Pa 3 Sb 4 were synthetized and their crystallographic properties were determined and discussed. We have measured the magnetic susceptibilities of PaC, PaAs 2 and PaSb 2 . Protactinium exhibits a dual character. In its monocarbide, which is a weakly diamagnet, it behaves as a transition element while in the temperature independent paramagnets PaAs 2 and PaSb 2 , it behaves like a 'f' element. This 'f' element character increases with increasing metal-metal distances. Furthermore the radial expansion of the protactinium 5f orbital seems to be more important than the Uranium one, and consequently the corresponding protactinium 5f electrons are less localized. In addition, some protactinium chalcogenides (βPaS 2 , γPaSe 2 and PaOSe) have been identified [fr

  14. Preliminary crystallographic characterization of an RNA helicase from Kunjin virus

    International Nuclear Information System (INIS)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario; Brisbarre, Nadège; Lamballerie, Xavier de; Coutard, Bruno; Canard, Bruno; Khromykh, Alexander; Bolognesi, Martino

    2006-01-01

    The C-terminal 440 amino acids of the NS3 protein from Kunjin virus (Flaviviridae) code for a helicase. The protein has been overexpressed and crystallized. Characterization of the isolated monoclinic crystal form and diffraction data (at 3.0 Å resolution) are presented, together with a preliminary molecular-replacement solution. Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3′ nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds

  15. Neutron crystallographic studies of amino acids and nucleic acids

    International Nuclear Information System (INIS)

    Kashiwagi, Tatsuki

    2014-01-01

    Neutron crystallographic studies of two representative umami materials were executed utilizing iBLX at MLF/J-PARC. The results of them will be summarized in this report. At first, structure analysis of the alpha form crystal of L-glutamic acid was performed in order to assess the usefulness of neutron crystallography at iBIX to our company's R and D. Neutron crystal structure of it was successfully determined at 0.6 A resolution. All hydrogen atoms were clearly observed. Next, the mixed crystal of disodium Inosine-5'-phosphate (IMP · 2Na) and disodium Guanosine-5'-phosphate (GMP · 2Na) was analyzed by neutron crystallography. Neutron crystal structure of the mixed crystal of IMP and GMP (IM/GMP rate = 1.7) was successfully determined at 0.8 A resolution. In the neutron crystal structure of the mixed crystal, the hydrogen atom bonded to the C2 atom of purine base in IMP and the nitrogen atom bonded to the C2 atom of purine base in GMP were clearly observed in the nuclear density map, structurally demonstrating that this crystal is the mixed crystal. (author)

  16. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-04-01

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  17. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  18. CRYSTMET—The NRCC Metals Crystallographic Data File

    Science.gov (United States)

    Wood, Gordon H.; Rodgers, John R.; Gough, S. Roger; Villars, Pierre

    1996-01-01

    CRYSTMET is a computer-readable database of critically evaluated crystallographic data for metals (including alloys, intermetallics and minerals) accompanied by pertinent chemical, physical and bibliographic information. It currently contains about 60 000 entries and covers the literature exhaustively from 1913. Scientific editing of the abstracted entries, consisting of numerous automated and manual checks, is done to ensure consistency with related, previously published studies, to assign structure types where necessary and to help guarantee the accuracy of the data and related information. Analyses of the entries and their distribution across key journals as a function of time show interesting trends in the complexity of the compounds studied as well as in the elements they contain. Two applications of CRYSTMET are the identification of unknowns and the prediction of properties of materials. CRYSTMET is available either online or via license of a private copy from the Canadian Scientific Numeric Database Service (CAN/SND). The indexed online search and analysis system is easy and economical to use yet fast and powerful. Development of a new system is under way combining the capabilities of ORACLE with the flexibility of a modern interface based on the Netscape browsing tool. PMID:27805157

  19. Brillouin-zone database on the Bilbao Crystallographic Server.

    Science.gov (United States)

    Aroyo, Mois I; Orobengoa, Danel; de la Flor, Gemma; Tasci, Emre S; Perez-Mato, J Manuel; Wondratschek, Hans

    2014-03-01

    The Brillouin-zone database of the Bilbao Crystallographic Server (http://www.cryst.ehu.es) offers k-vector tables and figures which form the background of a classification of the irreducible representations of all 230 space groups. The symmetry properties of the wavevectors are described by the so-called reciprocal-space groups and this classification scheme is compared with the classification of Cracknell et al. [Kronecker Product Tables, Vol. 1, General Introduction and Tables of Irreducible Representations of Space Groups (1979). New York: IFI/Plenum]. The compilation provides a solution to the problems of uniqueness and completeness of space-group representations by specifying the independent parameter ranges of general and special k vectors. Guides to the k-vector tables and figures explain the content and arrangement of the data. Recent improvements and modifications of the Brillouin-zone database, including new tables and figures for the trigonal, hexagonal and monoclinic space groups, are discussed in detail and illustrated by several examples.

  20. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM.

    Science.gov (United States)

    Kobler, A; Kübel, C

    2017-02-01

    Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a '180° ambiguity problem'. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. Copyright © 2017. Published by Elsevier B.V.

  1. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM

    Energy Technology Data Exchange (ETDEWEB)

    Kobler, A. [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Kübel, C., E-mail: christian.kuebel@kit.edu [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany)

    2017-02-15

    Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a ‘180° ambiguity problem’. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. - Highlights: • Tilt series of nanocrystalline Pd thin films. • Quantitative ACOM-TEM data processing, including a rotation map of crystallites. • Noise filter for orientation data: Ambiguity Filter and min. distance filter.

  2. Numerical computation of homogeneous slope stability.

    Science.gov (United States)

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  3. Numerical Computation of Homogeneous Slope Stability

    Directory of Open Access Journals (Sweden)

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  4. Effect of pre-existing crystallographic preferred orientation on the rheology of Carrara marble

    NARCIS (Netherlands)

    de Raadt, W.S.; Burlini, L.; Kunze, K.; Spiers, C.J.

    2014-01-01

    Abstract Localized deformation during high temperature plastic flow is frequently attributed to mechanical weakening caused by grain size reduction and, in some cases, by the development of a crystallographic preferred orientation (CPO). This study aims to investigate experimentally the contribution

  5. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.; Kronsbein, Cornelia; Legoll, Fré dé ric

    2015-01-01

    it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison

  6. On superspinor structure of homogeneous superspace of orthosymplectic groups

    International Nuclear Information System (INIS)

    Volkov, D.V.; Soroka, V.A.; Tkach, V.I.

    1984-01-01

    Superspinor structure of homogeneous superspaces of orthosymplectic groups are considered. It is shown how the properties of orthosymplectic group superspaces of OSp(N, 2K) group playing an important role in the supersymmetry theory can be described using superspinors. An example confirming a possibility of the relation between . canonical ratios of Butten bracket and conventional methods of quantization is considered

  7. Molecular weight enlargement : a molecular approach to continuous homogeneous catalysis

    NARCIS (Netherlands)

    Janssen, M.C.C.

    2010-01-01

    Homogeneous catalysts play an increasingly important role in organic synthesis today, because of their high activity and selectivity. Usually, precious metals are used in combination with valuable ligands and since metal prices are expected to increase further in the future, methods for their

  8. Subspace identification of distributed clusters of homogeneous systems

    NARCIS (Netherlands)

    Yu, C.; Verhaegen, M.H.G.

    2017-01-01

    This note studies the identification of a network comprised of interconnected clusters of LTI systems. Each cluster consists of homogeneous dynamical systems, and its interconnections with the rest of the network are unmeasurable. A subspace identification method is proposed for identifying a single

  9. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...

  10. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  11. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  12. Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.

  13. Homogeneity of Prototypical Attributes in Soccer Teams

    Directory of Open Access Journals (Sweden)

    Christian Zepp

    2015-09-01

    Full Text Available Research indicates that the homogeneous perception of prototypical attributes influences several intragroup processes. The aim of the present study was to describe the homogeneous perception of the prototype and to identify specific prototypical subcategories, which are perceived as homogeneous within sport teams. The sample consists of N = 20 soccer teams with a total of N = 278 athletes (age M = 23.5 years, SD = 5.0 years. The results reveal that subcategories describing the cohesiveness of the team and motivational attributes are mentioned homogeneously within sport teams. In addition, gender, identification, team size, and the championship ranking significantly correlate with the homogeneous perception of prototypical attributes. The results are discussed on the basis of theoretical and practical implications.

  14. CRYSTALLOGRAPHIC RELATIONS OF CEMENTITE–AUSTENITE–FERRITE IN THE DIFFUSIVE DECOMPOSITION OF AUSTENITE

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Summary. It was made a search for new and more accurate orientation relations between the crystal lattice in the pearlite and bainite austenite decomposition products. Methods. It were used the methods: transmission electron microscopy, the micro-, mathematical matrix and stereographic analysis. The purpose of the research is with theoretical, numerical and experimental methods to set up to a 0.2 degree angular orientation relations between the lattices of ferrite and cementite in the austenite decomposition products in the temperature range 400 ... 700С. Results. It was established a new, refined value for grids in the diffusion decay of γ → α + (α + θ. Practical significance. It was proposed a new oriented dependence and the corresponding double gnomonic projection with poles to planes α and θ phases, which can be used in patterns of crystallographic lattices relations studies at phase transitions, as well as the subsequent modeling of complex physical processes of structure formation in metals and binary systems.

  15. Stochastic model of milk homogenization process using Markov's chain

    Directory of Open Access Journals (Sweden)

    A. A. Khvostov

    2016-01-01

    Full Text Available The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model parameters was carried out by minimizing the standard deviation calculated from the experimental data for each fraction of dairy products fat phase. As the set of experimental data processing results of the micrographic images of fat globules of whole milk samples distribution which were subjected to homogenization at different pressures were used. Pattern Search method was used as optimization method with the Latin Hypercube search algorithm from Global Optimization Тoolbox library. The accuracy of calculations averaged over all fractions of 0.88% (the relative share of units, the maximum relative error was 3.7% with the homogenization pressure of 30 MPa, which may be due to the very abrupt change in properties from the original milk in the particle size distribution at the beginning of the homogenization process and the lack of experimental data at homogenization pressures of below the specified value. The mathematical model proposed allows to calculate the profile of volume and mass distribution of the fat phase (fat globules in the product, depending on the homogenization pressure and can be used in the laboratory and research of dairy products composition, as well as in the calculation, design and modeling of the process equipment of the dairy industry enterprises.

  16. Metallographic Index-Based Quantification of the Homogenization State in Extrudable Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Panagiota I. Sarafoglou

    2016-05-01

    Full Text Available Extrudability of aluminum alloys of the 6xxx series is highly dependent on the microstructure of the homogenized billets. It is therefore very important to characterize quantitatively the state of homogenization of the as-cast billets. The quantification of the homogenization state was based on the measurement of specific microstructural indices, which describe the size and shape of the intermetallics and indicate the state of homogenization. The indices evaluated were the following: aspect ratio (AR, which is the ratio of the maximum to the minimum diameter of the particles, feret (F, which is the maximum caliper length, and circularity (C, which is a measure of how closely a particle resembles a circle in a 2D metallographic section. The method included extensive metallographic work and the measurement of a large number of particles, including a statistical analysis, in order to investigate the effect of homogenization time. Among the indices examined, the circularity index exhibited the most consistent variation with homogenization time. The lowest value of the circularity index coincided with the metallographic observation for necklace formation. Shorter homogenization times resulted in intermediate homogenization stages involving rounding of edges or particle pinching. The results indicated that the index-based quantification of the homogenization state could provide a credible method for the selection of homogenization process parameters towards enhanced extrudability.

  17. Numerical analysis for Darcy-Forchheimer flow in presence of homogeneous-heterogeneous reactions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available A mathematical study is presented to investigate the influences of homogeneous and heterogeneous reactions in local similar flow caused by stretching sheet with a non-linear velocity and variable thickness. Porous medium effects are characterized by using Darcy-Forchheimer porous-media. A simple isothermal model of homogeneous-heterogeneous reactions is used. The multiphysical boundary value problem is dictated by ten thermophysical parameters: ratio of mass diffusion coefficients, Prandtl number, local inertia coefficient parameter, inverse Darcy number, shape parameter, surface thickness parameter, Hartman number, Homogeneous heat reaction, strength of homogeneous-heterogeneous reactions and Schmidt number. Resulting systems are computed by Runge-Kutta-Fehlberg method. Different shapes of velocity are noticed for n > 1 and n < 1. Keywords: Homogeneous-heterogeneous reactions, Non Darcy porous medium, Variable sheet thickness, Homogeneous heat reaction with stoichiometric coefficient, Runge-Kutta-Fehlberg method

  18. Shape and crystallographic orientation of nanodiamonds for quantum sensing.

    Science.gov (United States)

    Ong, S Y; Chipaux, M; Nagl, A; Schirhagl, R

    2017-05-03

    Nanodiamonds with dimensions down to a few tens of nanometers containing nitrogen-vacancy (NV) color centers have revealed their potential as powerful and versatile quantum sensors with a unique combination of spatial resolution and sensitivity. The NV centers allow transducing physical properties, such as strain, temperature, and electric or magnetic field, to an optical transition that can be detected in the single photon range. For example, this makes it possible to sense a single electron spin or a few nuclear spins by detecting their magnetic resonance. The location and orientation of these defects with respect to the diamond surface play a crucial role in interpreting the data and predicting their sensitivities. Despite its relevance, the geometry of these nanodiamonds has never been thoroughly investigated. Without accurate data, spherical models have been applied to interpret or predict results in the past. With the use of High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), we investigated nanodiamonds with an average hydrodynamic diameter of 25 nm (the most common type for quantum sensing) and found a flake-like geometry, with 23.2 nm and 4.5 nm being the average lateral and vertical dimensions. We have also found evidence for a preferred crystallographic orientation of the main facet in the (110) direction. Furthermore, we discuss the consequences of this difference in geometry on diamond-based applications. Shape not only influences the creation efficiency of nitrogen-vacancy centers and their quantum coherence properties (and thus sensing performance), but also the optical properties of the nanodiamonds, their interaction with living cells, and their surface chemistry.

  19. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  20. String pair production in non homogeneous backgrounds

    International Nuclear Information System (INIS)

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  1. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    Science.gov (United States)

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  2. Crystallization and preliminary crystallographic study of carnosinase CN2 from mice

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Tetsuo; Unno, Hideaki; Ujita, Sayuri; Otani, Hiroto; Okumura, Nobuaki; Hashida-Okumura, Akiko; Nagai, Katsuya; Kusunoki, Masami, E-mail: kusunoki@protein.osaka-u.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2006-10-01

    Mouse carnosinase was crystallized in complex with Zn{sup 2+} or Mn{sup 2+} and the complexes are undergoing structure determination by the MAD method. Mammalian tissues contain several histidine-containing dipeptides, of which l-carnosine is the best characterized and is found in various tissues including the brain and skeletal muscles. However, the mechanism for its biosynthesis and degradation have not yet been fully elucidated. Crystallographic study of carnosinase CN2 from mouse has been undertaken in order to understand its enzymatic mechanism from a structural viewpoint. CN2 was crystallized by the hanging-drop vapour-diffusion technique using PEG 3350 as a precipitant. Crystals were obtained in complex with either Mn{sup 2+} or Zn{sup 2+}. Both crystals of CN2 belong to the monoclinic space group P2{sub 1} and have almost identical unit-cell parameters (a = 54.41, b = 199.77, c = 55.49 Å, β = 118.52° for the Zn{sup 2+} complex crystals). Diffraction data were collected to 1.7 and 2.3 Å for Zn{sup 2+} and Mn{sup 2+} complex crystals, respectively, using synchrotron radiation. Structure determination is ongoing using the multiple-wavelength anomalous diffraction (MAD) method.

  3. Crystallization and preliminary crystallographic study of carnosinase CN2 from mice

    International Nuclear Information System (INIS)

    Yamashita, Tetsuo; Unno, Hideaki; Ujita, Sayuri; Otani, Hiroto; Okumura, Nobuaki; Hashida-Okumura, Akiko; Nagai, Katsuya; Kusunoki, Masami

    2006-01-01

    Mouse carnosinase was crystallized in complex with Zn 2+ or Mn 2+ and the complexes are undergoing structure determination by the MAD method. Mammalian tissues contain several histidine-containing dipeptides, of which l-carnosine is the best characterized and is found in various tissues including the brain and skeletal muscles. However, the mechanism for its biosynthesis and degradation have not yet been fully elucidated. Crystallographic study of carnosinase CN2 from mouse has been undertaken in order to understand its enzymatic mechanism from a structural viewpoint. CN2 was crystallized by the hanging-drop vapour-diffusion technique using PEG 3350 as a precipitant. Crystals were obtained in complex with either Mn 2+ or Zn 2+ . Both crystals of CN2 belong to the monoclinic space group P2 1 and have almost identical unit-cell parameters (a = 54.41, b = 199.77, c = 55.49 Å, β = 118.52° for the Zn 2+ complex crystals). Diffraction data were collected to 1.7 and 2.3 Å for Zn 2+ and Mn 2+ complex crystals, respectively, using synchrotron radiation. Structure determination is ongoing using the multiple-wavelength anomalous diffraction (MAD) method

  4. Neutron transport equation - indications on homogenization and neutron diffusion

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1992-06-01

    In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks

  5. Advanced homogenization strategies in material modeling of thermally sprayed TBCs

    International Nuclear Information System (INIS)

    Bobzin, K.; Lugscheider, E.; Nickel, R.; Kashko, T.

    2006-01-01

    Thermal barrier coatings (TBC), obtained by atmospheric plasma spraying (APS), have a complex microstructure (lamellar, porous, micro-cracked). Process parameters take an influence on this microstructure. Two methods based on the homogenization for periodic structures are presented in this article. The methods are used to calculate the effective material behavior of APS-TBCs made of partially yttria stabilized zirconia (PYSZ) depending on the microstructure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. Color Segmentation of Homogeneous Areas on Colposcopical Images

    Directory of Open Access Journals (Sweden)

    Kosteley Yana

    2016-01-01

    Full Text Available The article provides an analysis of image processing and color segmentation applied to the problem of selection of homogeneous regions in the parameters of the color model. Methods of image processing such as Gaussian filter, median filter, histogram equalization and mathematical morphology are considered. The segmentation algorithm with the parameters of color components is presented, followed by isolation of the resulting connected component of a binary segmentation mask. Analysis of methods performed on images colposcopic research.

  7. Homogeneity evaluation of mesenchymal stem cells based on electrotaxis analysis

    OpenAIRE

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Kim, Dohyun; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    2017-01-01

    Stem cell therapy that can restore function to damaged tissue, avoid host rejection and reduce inflammation throughout body without use of immunosuppressive drugs. The established methods were used to identify and to isolate specific stem cell markers by FACS or by immunomagnetic cell separation. The procedures for distinguishing population of stem cells took a time and needed many preparations. Here we suggest an electrotaxis analysis as a new method to evaluate the homogeneity of mesenchyma...

  8. Anisotropic chemical etching of semipolar {101-bar 1-bar}/{101-bar +1} ZnO crystallographic planes: polarity versus dangling bonds

    International Nuclear Information System (INIS)

    Palacios-Lidon, E; Perez-GarcIa, B; Colchero, J; Vennegues, P; Zuniga-Perez, J; Munoz-Sanjose, V

    2009-01-01

    ZnO thin films grown by metal-organic vapor phase epitaxy along the nonpolar [112-bar] direction and exhibiting semipolar {101-bar 1-bar}/{101-bar +1} facets have been chemically etched with HCl. In order to get an insight into the influence of the ZnO wurtzite structure in the chemical reactivity of the material, Kelvin probe microscopy and convergent beam electron diffraction have been employed to unambiguously determine the absolute polarity of the facets, showing that {101-bar +1} facets are unstable upon etching in an HCl solution and transform into (000+1)/{101-bar 1-bar} planes. In contrast, {101-bar 1-bar} undergo homogeneous chemical etching perpendicular to the initial crystallographic plane. The observed etching behavior has been explained in terms of surface oxygen dangling bond density, suggesting that the macroscopic polarity plays a secondary role in the etching process.

  9. Poisson-Jacobi reduction of homogeneous tensors

    International Nuclear Information System (INIS)

    Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P

    2004-01-01

    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N

  10. Homogenization and Control of Lattice Structures

    National Research Council Canada - National Science Library

    Blankenship, G. L

    1985-01-01

    ...., trusses may be modeled by beam equations). Using a technique from the mathematics of asymptotic analysis called "homogenization," the author shows how such approximations may be derived in a systematic way that avoids errors made using...

  11. Lagrangian statistics in compressible isotropic homogeneous turbulence

    Science.gov (United States)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  12. Forming homogeneous clusters for differential risk information

    International Nuclear Information System (INIS)

    Maardberg, B.

    1996-01-01

    Latent risk situations are always present in society. General information on these risk situations is supposed to be received differently by different groups of people in the population. In the aftermath of specific accidents different groups presumably have need of specific information about how to act to survive, to avoid injuries, to find more information, to obtain facts about the accidents etc. As targets for information these different groups could be defined in different ways. The conventional way is to divide the population according to demographic variables, such as age, sex, occupation etc. Another way would be to structure the population according to dependent variables measured in different studies. They may concern risk perception, emotional reactions, specific technical knowledge of the accidents, and belief in the information sources. One procedure for forming such groupings of people into homogeneous clusters would be by statistical clustering methods on dependent variables. Examples of such clustering procedures are presented and discussed. Data are from a Norwegian study on the perception of radiation from nuclear accidents and other radiation sources. Speculations are made on different risk information strategies. Elements of a research programme are proposed. (author)

  13. Homogenized thermal conduction model for particulate foods

    OpenAIRE

    Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel

    2002-01-01

    International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...

  14. Control rod homogenization in heterogeneous sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Andersson, Mikael

    2016-01-01

    The sodium-cooled fast reactor is one of the candidates for a sustainable nuclear reactor system. In particular, the French ASTRID project employs an axially heterogeneous design, proposed in the so-called CFV (low sodium effect) core, to enhance the inherent safety features of the reactor. This thesis focuses on the accurate modeling of the control rods, through the homogenization method. The control rods in a sodium-cooled fast reactor are used for reactivity compensation during the cycle, power shaping, and to shutdown the reactor. In previous control rod homogenization procedures, only a radial description of the geometry was implemented, hence the axially heterogeneous features of the CFV core could not be taken into account. This thesis investigates the different axial variations the control rod experiences in a CFV core, to determine the impact that these axial environments have on the control rod modeling. The methodology used in this work is based on previous homogenization procedures, the so-called equivalence procedure. The procedure was newly implemented in the PARIS code system in order to be able to use 3D geometries, and thereby be take axial effects into account. The thesis is divided into three parts. The first part investigates the impact of different neutron spectra on the homogeneous control-rod cross sections. The second part investigates the cases where the traditional radial control-rod homogenization procedure is no longer applicable in the CFV core, which was found to be 5-10 cm away from any material interface. In the third part, based on the results from the second part, a 3D model of the control rod is used to calculate homogenized control-rod cross sections. In a full core model, a study is made to investigate the impact these axial effects have on control rod-related core parameters, such as the control rod worth, the capture rates in the control rod, and the power in the adjacent fuel assemblies. All results were compared to a Monte

  15. Study on homogeneous charge diesel combustion engine. 4th Report. Search for low emission combustion method with diesel fuel pre-mixture; Kin`itsu kongo asshuku chakka diesel kikan ni kansuru kenkyu. 4. Keiyu yokongoka deno tei emission no kanosei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Koike, S; Odaka, M [Traffic Safety and Nuisance Research Inst., Tokyo (Japan)

    1997-10-01

    Single fuel operation with diesel fuel has been tried experimentally for the Homogeneous Charge Diesel Combustion method (HCDC). The higher the pre-mixed fuel ratio, the lower the emissions. But diesel knock due to early self ignition may be occurred under high pre-mixed fuel ratio conditions and consequently the maximum pre-mixed fuel ratio is restricted by these knock limits. Full load operations with higher pre-mixed fuel ratio can be possible with a supercharging which improve the knock limits and emissions. 8 refs., 12 figs.

  16. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    Science.gov (United States)

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  17. Formulae and Bounds connected to Optimal Design and Homogenization of Partial Differential Operators and Integral Functionals

    Energy Technology Data Exchange (ETDEWEB)

    Lukkassen, D.

    1996-12-31

    When partial differential equations are set up to model physical processes in strongly heterogeneous materials, effective parameters for heat transfer, electric conductivity etc. are usually required. Averaging methods often lead to convergence problems and in homogenization theory one is therefore led to study how certain integral functionals behave asymptotically. This mathematical doctoral thesis discusses (1) means and bounds connected to homogenization of integral functionals, (2) reiterated homogenization of integral functionals, (3) bounds and homogenization of some particular partial differential operators, (4) applications and further results. 154 refs., 11 figs., 8 tabs.

  18. Homogenization of metasurfaces formed by random resonant particles in periodical lattices

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Petrov, Mihail

    2016-01-01

    In this paper we suggest a simple analytical method for description of electromagnetic properties of a geometrically regular two-dimensional subwavelength arrays (metasurfaces) formed by particles with randomly fluctuating polarizabilities. We propose an analytical homogenization method applicable...

  19. Purification, crystallization and preliminary X-ray crystallographic analysis of diaminopimelate epimerase from Acinetobacter baumannii

    International Nuclear Information System (INIS)

    Park, Jeong Soon; Lee, Woo Cheol; Song, Jung Hyun; Kim, Seung Il; Lee, Je Chul; Cheong, Chaejoon; Kim, Hye-Yeon

    2012-01-01

    The crystallization and preliminary X-ray crystallographic analysis of diaminopimelate epimerase from A. baumannii are reported. The meso isomer of diaminopimelate (meso-DAP) is a biosynthetic precursor of l-lysine in bacteria and plants, and is a key component of the peptidoglycan layer in the cell walls of Gram-negative and some Gram-positive bacteria. Diaminopimelate epimerase (DapF) is a pyridoxal-5′-phosphate-independent racemase which catalyses the interconversion of (6S,2S)-2,6-diaminopimelic acid (ll-DAP) and meso-DAP. In this study, DapF from Acinetobacter baumannii was overexpressed in Escherichia coli strain SoluBL21, purified and crystallized using a vapour-diffusion method. A native crystal diffracted to a resolution of 1.9 Å and belonged to space group P3 1 or P3 2 , with unit-cell parameters a = b = 74.91, c = 113.35 Å, α = β = 90, γ = 120°. There were two molecules in the asymmetric unit

  20. Purification, crystallization and preliminary crystallographic studies on 2-dehydro-3-deoxygalactarate aldolase from Leptospira interrogans

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xu; Huang, Hua [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Song, Xiaomin [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Wang, Yanli; Xu, Hang [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Teng, Maikun [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gong, Weimin, E-mail: wgong@sun5.ibp.ac.cn [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2006-12-01

    Preliminary crystallographic studies on 2-dehydro-3-deoxygalactarate aldolase from L. interrogans. 2-Dehydro-3-deoxygalactarate (DDG) aldolase is a member of the class II aldolase family and plays an important role in the pyruvate-metabolism pathway, catalyzing the reversible aldol cleavage of DDG to pyruvate and tartronic semialdehyde. As it is a potential novel antibiotic target, it is necessary to elucidate the catalytic mechanism of DDG aldolase. To determine the crystal structure, crystals of DDG aldolase from Leptospira interrogans were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution using a Cu Kα rotating-anode X-ray source. The crystal belonged to space group C2, with unit-cell parameters a = 293.5, b = 125.6, c = 87.6 Å, β = 100.9°. The V{sub M} is calculated to be 2.4 Å{sup 3} Da{sup −1}, assuming there to be 12 protein molecules in the asymmetric unit.

  1. Preliminary crystallographic analysis of two hypothetical ribose-5-phosphate isomerases from Streptococcus mutans

    International Nuclear Information System (INIS)

    Wang, Chen; Fan, Xuexin; Cao, Xiaofang; Liu, Xiang; Li, Lanfen; Su, Xiaodong

    2012-01-01

    Two hypothetical ribose-5-phosphate isomerases from S. mutans have been produced in E. coli and crystallized. The crystals diffracted to high resolutions suitable for crystallographic analyses. Study of the enzymes from sugar metabolic pathways may provide a better understanding of the pathogenesis of the human oral pathogen Streptococcus mutans. Bioinformatics, biochemical and crystallization methods were used to characterize and understand the function of two putative ribose-5-phosphate isomerases: SMU1234 and SMU2142. The proteins were cloned and constructed with N-terminal His tags. Protein purification was performed by Ni 2+ -chelating and size-exclusion chromatography. The crystals of SUM1234 diffracted to 1.9 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.97, b = 98.27, c = 101.09 Å, α = β = γ = 90°. The optimized SMU2142 crystals diffracted to 2.7 Å resolution and belonged to space group P1, with unit-cell parameters a = 53.7, b = 54.1, c = 86.5 Å, α = 74.2, β = 73.5, γ = 83.7°. Initial phasing of both proteins was attempted by molecular replacement; the structure of SMU1234 could easily be solved, but no useful results were obtained for SMU2142. Therefore, SeMet-labelled SMU2142 will be prepared for phasing

  2. Crystallization and preliminary crystallographic analysis of human LR11 Vps10p domain

    International Nuclear Information System (INIS)

    Nakata, Zenzaburo; Nagae, Masamichi; Yasui, Norihisa; Bujo, Hideaki; Nogi, Terukazu; Takagi, Junichi

    2010-01-01

    LR11/sorLA contains in its extracellular region a large (∼700-residue) Vps10p domain that is implicated in its intracellular protein-trafficking function. Here, the expression, purification, crystallization and preliminary crystallographic characterization of this domain are described. Low-density lipoprotein receptor (LDLR) relative with 11 binding repeats (LR11; also known as sorLA) is genetically associated with late-onset Alzheimer’s disease and is thought to be involved in neurodegenerative processes. LR11 contains a vacuolar protein-sorting 10 protein (Vps10p) domain. As this domain has been implicated in protein–protein interaction in other receptors, its structure and function are of great biological interest. Human LR11 Vps10p domain was expressed in mammalian cells and the purified protein was crystallized using the hanging-drop vapour-diffusion method. Enzymatic deglycosylation of the sample was critical to obtaining diffraction-quality crystals. Deglycosylated LR11 Vps10p-domain crystals belonged to the hexagonal space group P6 1 22. A diffraction data set was collected to 2.4 Å resolution and a clear molecular-replacement solution was obtained

  3. Purification, crystallization and preliminary crystallographic studies on 2-dehydro-3-deoxygalactarate aldolase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Li, Xu; Huang, Hua; Song, Xiaomin; Wang, Yanli; Xu, Hang; Teng, Maikun; Gong, Weimin

    2006-01-01

    Preliminary crystallographic studies on 2-dehydro-3-deoxygalactarate aldolase from L. interrogans. 2-Dehydro-3-deoxygalactarate (DDG) aldolase is a member of the class II aldolase family and plays an important role in the pyruvate-metabolism pathway, catalyzing the reversible aldol cleavage of DDG to pyruvate and tartronic semialdehyde. As it is a potential novel antibiotic target, it is necessary to elucidate the catalytic mechanism of DDG aldolase. To determine the crystal structure, crystals of DDG aldolase from Leptospira interrogans were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution using a Cu Kα rotating-anode X-ray source. The crystal belonged to space group C2, with unit-cell parameters a = 293.5, b = 125.6, c = 87.6 Å, β = 100.9°. The V M is calculated to be 2.4 Å 3 Da −1 , assuming there to be 12 protein molecules in the asymmetric unit

  4. Crystallographic Study of U-Th bearing minerals in Tranomaro, Anosy Region-Madagascar

    International Nuclear Information System (INIS)

    Sahoa, F.E.; Rabesiranana, N.; Raoelina Andriambololona; Geckeis, H.; Marquardt, C.; Finck, K.

    2011-01-01

    As an alternative to conventional fossil fuel, there is a renewed interest in the nuclear fuel to support increasing energy demand. New studies are then undertaken to characterize Madagascar U-Th bearing minerals. This is the case for the urano-thorianite bearing pyroxenites in the south East of Madagascar. In this region, several quarries were abandoned, after being mined by the French Atomic Energy Commission (C.E.A) in the fifties and sixties and are now explored by new mining companies. For this purpose, seven U-Th bearing mineral samples from old abandoned uranium quarries in Tranomaro, Amboasary Sud, Madagascar, have been collected. To determine the mineral microstructure, they were investigated for qualitative and quantitative identification of crystalline compounds using X-ray powder diffraction analytical method (XRD). Results showed that the U and Th compounds, as minor elements, are present in various crystalline structures. This is important to understand their environmental behaviours, in terms of crystallographic dispersion of U-Th minerals and their impacts on human health.

  5. Homogenization of Stokes and Navier-Stokes equations

    International Nuclear Information System (INIS)

    Allaire, G.

    1990-04-01

    This thesis is devoted to homogenization of Stokes and Navier-Stokes equations with a Dirichlet boundary condition in a domain containing many tiny obstacles. Tipycally those obstacles are distributed at the modes of a periodic lattice with same small period in each axe's direction, and their size is always asymptotically smaller than the lattice's step. With the help of the energy method, and thanks to a suitable pressure's extension, we prove the convergence of the homogenization process when the lattice's step tends to zero (and thus the number of obstacles tends to infinity). For a so-called critical size of the obstacles, the homogenized problem turns out to be a Brinkman's law (i.e. Stokes or Navier-Stokes equation plus a linear zero-order term for the velocity in the momentum equation). For obstacles which have a size smaller than the critical one, the limit problem reduces to the initial Stokes or Navier-Stokes equations, while for larger sizes the homogenized problem a Darcy's law. Furthermore, those results have been extended to the case of obstacles included in a hyperplane, and we establish a simple model of fluid flows through grids, which is based on a special form of Brinkman's law [fr

  6. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends

    Science.gov (United States)

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas

    2014-01-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  7. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    International Nuclear Information System (INIS)

    Moutsopoulos, George

    2013-01-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre–Petrov types and discuss the warped de Sitter spacetime. (paper)

  8. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    Science.gov (United States)

    Moutsopoulos, George

    2013-06-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.

  9. Crystallographic contribution to the formation of the columnar grain structure in cobalt films

    International Nuclear Information System (INIS)

    Hara, K.; Itoh, K.; Okamoto, K.; Hashimoto, T.

    1996-01-01

    In order to clarify the crystallographic contribution to the formation of the columnar grain structure, the geometric and crystallographic alignments of columnar grains in cobalt films were investigated on the basis of magnetic and optical measurements. The films were deposited by sputtering at an incidence angle of 45 on glass substrates heated at 332 K. The film thickness ranged from 20 to 850 nm. Above 50 nm the columnar grains align in the direction parallel to the incidence plane and form a two-degree crystallographic orientation. The packing density of columnar grains decreases with increasing thickness when the thickness exceeds 50 nm. From these results we conclude that the crystal habit appearing on column tops induces the two-degree orientation through geometric selection and aligns the selected columnar grains in the parallel direction. (orig.)

  10. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    Science.gov (United States)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  11. Homogeneity and scale testing of generalized gamma distribution

    International Nuclear Information System (INIS)

    Stehlik, Milan

    2008-01-01

    The aim of this paper is to derive the exact distributions of the likelihood ratio tests of homogeneity and scale hypothesis when the observations are generalized gamma distributed. The special cases of exponential, Rayleigh, Weibull or gamma distributed observations are discussed exclusively. The photoemulsion experiment analysis and scale test with missing time-to-failure observations are present to illustrate the applications of methods discussed

  12. Homogenized boundary conditions and resonance effects in Faraday cages

    OpenAIRE

    Hewett, DP; Hewitt, IJ

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage e ect'). Taking the limit as the number of wires in the cage tends to in nity we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an e ective cage boundary. We show how the resulting models depend on key cage parameters such as the...

  13. Rapid biotic homogenization of marine fish assemblages

    Science.gov (United States)

    Magurran, Anne E.; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J.; McGill, Brian

    2015-01-01

    The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change. PMID:26400102

  14. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  15. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations....... It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed...... they form. Finally, possible nucleation mechanisms are briefly discussed....

  16. Homological functor of a torsion free crystallographic group of dimension five with a nonabelian point group

    Science.gov (United States)

    Ting, Tan Yee; Idrus, Nor'ashiqin Mohd.; Masri, Rohaidah; Sarmin, Nor Haniza; Hassim, Hazzirah Izzati Mat

    2014-06-01

    Torsion free crystallographic groups, called Bieberbach groups, appear as fundamental groups of compact, connected, flat Riemannian manifolds and have many interesting properties. New properties of the group can be obtained by, not limited to, exploring the groups and by computing their homological functors such as nonabelian tensor squares, the central subgroup of nonabelian tensor squares, the kernel of the mapping of nonabelian tensor squares of a group to the group and many more. In this paper, the homological functor, J(G) of a centerless torsion free crystallographic group of dimension five with a nonabelian point group which is a dihedral point group is computed using commutator calculus.

  17. High resolution neutron diffraction crystallographic investigation of Oxide Dispersion Strengthened steels of interest for fusion technology

    International Nuclear Information System (INIS)

    Coppola, R.; Rodriguez-Carvajal, J.; Wang, M.; Zhang, G.; Zhou, Z.

    2014-01-01

    High resolution neutron diffraction measurements have been carried out to characterize the crystallographic phases present in different Oxide Dispersion Strengthened (ODS) steels of interest for fusion technology. The different lattice structures, Im3m for the ferritic ODS and Fm3m for the austenitic ODS, are resolved showing line anisotropy effects possibly correlated with differences in dislocation densities and texture. Many contributions from minority phases are detected well above the background noise; none of the expected crystallographic phases, such as M 23 C 6 and including Y 2 O 3 , fits them, but the TiN phase is identified in accordance with results of other microstructural techniques

  18. Correlation between Crystallographic and Magnetic Domains at Co/NiO(001) Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ohldag, H.; van der Laan, G.; Arenholz, E.

    2008-12-18

    Using soft x-ray spectromicroscopy we show that NiO(001) exhibits a crystallographic and magnetic domain structure near the surface identical to that of the bulk. Upon Co deposition a perpendicular coupling between the Ni and Co moments is observed that persists even after formation of uncompensated Ni spins at the interface through annealing. The chemical composition at the interface alters its crystallographic structure and leads to a reorientation of the Ni moments from the <112> to the <110> direction. We show that this reorientation is driven by changes in the magnetocrystalline anisotropy rather than exchange coupling mediated by residual uncompensated spins.

  19. The effect of silicon crystallographic orientation on the formation of silicon nanoclusters during anodic electrochemical etching

    International Nuclear Information System (INIS)

    Timokhov, D. F.; Timokhov, F. P.

    2009-01-01

    Possible ways for increasing the photoluminescence quantum yield of porous silicon layers have been investigated. The effect of the anodization parameters on the photoluminescence properties for porous silicon layers formed on silicon substrates with different crystallographic orientations was studied. The average diameters for silicon nanoclusters are calculated from the photoluminescence spectra of porous silicon. The influence of the substrate crystallographic orientation on the photoluminescence quantum yield of porous silicon is revealed. A model explaining the effect of the substrate orientation on the photoluminescence properties for the porous silicon layers formed by anode electrochemical etching is proposed.

  20. Internal homogenization: effective permittivity of a coated sphere.

    Science.gov (United States)

    Chettiar, Uday K; Engheta, Nader

    2012-10-08

    The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.

  1. Flows and chemical reactions in homogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2013-01-01

    Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c

  2. Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Xu Hui; Tao Wenquan; Zhang Yan

    2009-01-01

    We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM

  3. Chaos Control on a Duopoly Game with Homogeneous Strategy

    Directory of Open Access Journals (Sweden)

    Manying Bai

    2016-01-01

    Full Text Available We study the dynamics of a nonlinear discrete-time duopoly game, where the players have homogenous knowledge on the market demand and decide their outputs based on adaptive expectation. The Nash equilibrium and its local stability are investigated. The numerical simulation results show that the model may exhibit chaotic phenomena. Quasiperiodicity is also found by setting the parameters at specific values. The system can be stabilized to a stable state by using delayed feedback control method. The discussion of control strategy shows that the effect of both firms taking control method is better than that of single firm taking control method.

  4. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimin; Long, Mary C.; Ranganathan, Senthil; Escuyer, Vincent; Parker, William B.; Li, Rongbao, E-mail: li@sri.org [Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205 (United States)

    2005-06-01

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3{sub 1}21, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme.

  5. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Wang, Yimin; Long, Mary C.; Ranganathan, Senthil; Escuyer, Vincent; Parker, William B.; Li, Rongbao

    2005-01-01

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3 1 21, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme

  6. The homogeneous marginal utility of income assumption

    NARCIS (Netherlands)

    Demuynck, T.

    2015-01-01

    We develop a test to verify if every agent from a population of heterogeneous consumers has the same marginal utility of income function. This homogeneous marginal utility of income assumption is often (implicitly) used in applied demand studies because it has nice aggregation properties and

  7. Synthesis of silica nanosphere from homogeneous and ...

    Indian Academy of Sciences (India)

    WINTEC

    avoid it, reaction in heterogeneous system using CTABr was carried out. Nanosized silica sphere with ... Homogeneous system contains a mixture of ethanol, water, aqueous ammonia and ... heated to 823 K (rate, 1 K/min) in air and kept at this.

  8. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  9. Homogeneous nucleation of water in synthetic air

    NARCIS (Netherlands)

    Fransen, M.A.L.J.; Sachteleben, E.; Hruby, J.; Smeulders, D.M.J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    Homogeneous nucleation rates for water vapor in synthetic air are measured by means of a Pulse-Expansion Wave Tube (PEWT). A comparison of the experimental nucleation rates with the Classical Nucleation Theory (CNT) shows that a more elaborated model is necessary to describe supercooled water

  10. Homogeneity in Social Groups of Iraqis

    NARCIS (Netherlands)

    Gresham, J.; Saleh, F.; Majid, S.

    With appreciation to the Royal Institute for Inter-Faith Studies for initiating the Second World Congress for Middle Eastern Studies, this paper summarizes findings on homogeneity in community-level social groups derived from inter-ethnic research conducted during 2005 among Iraqi Arabs and Kurds

  11. Abelian gauge theories on homogeneous spaces

    International Nuclear Information System (INIS)

    Vassilevich, D.V.

    1992-07-01

    An algebraic technique of separation of gauge modes in Abelian gauge theories on homogeneous spaces is proposed. An effective potential for the Maxwell-Chern-Simons theory on S 3 is calculated. A generalization of the Chern-Simons action is suggested and analysed with the example of SU(3)/U(1) x U(1). (author). 11 refs

  12. Benchmarking homogenization algorithms for monthly data

    Czech Academy of Sciences Publication Activity Database

    Venema, V. K. C.; Mestre, O.; Aquilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertačník, G.; Szentimrey, T.; Štěpánek, Petr; Zahradníček, Pavel; Viarre, J.; Mueller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Duran, M. P.; Likso, T.; Esteban, P.; Brandsma, T.

    2012-01-01

    Roč. 8, č. 1 (2012), s. 89-115 ISSN 1814-9324 Institutional support: RVO:67179843 Keywords : climate data * instrumental time-series * greater alpine region * homogeneity test * variability * inhomogeneities Subject RIV: EH - Ecology, Behaviour Impact factor: 3.556, year: 2012

  13. Extension theorems for homogenization on lattice structures

    Science.gov (United States)

    Miller, Robert E.

    1992-01-01

    When applying homogenization techniques to problems involving lattice structures, it is necessary to extend certain functions defined on a perforated domain to a simply connected domain. This paper provides general extension operators which preserve bounds on derivatives of order l. Only the special case of honeycomb structures is considered.

  14. Homogeneous scintillating LKr/Xe calorimeters

    International Nuclear Information System (INIS)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K.; Akyuz, D.; Chen, E.; Gaudreau, M.P.J.; Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V.; Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V.; Akopyan, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Masuda, K.; Shibamura, E.; Ishida, N.; Sugimoto, S.

    1993-01-01

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using α's, radiation hardness as well as the uniformity required for δE/E≅0.5% for e/γ's above 50 GeV. (orig.)

  15. Traffic planning for non-homogeneous traffic

    Indian Academy of Sciences (India)

    Western traffic planning methodologies mostly address the concerns of homogeneous traffic and therefore often prove inadequate in solving problems involving ... Transportation Research and Injury Prevention Programme, Indian Institute of Technology, Hauz Khas, New Delhi 110 016; Civil and Architectural Engineering ...

  16. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  17. Mach's principle in spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    On the basis of Mach's Principle it is concluded that the only singularity-free solution to the empty space Einstein equations is flat space. It is shown that the only singularity-free solution to the empty space Einstein equations which is spatially homogeneous and globally hyperbolic is in fact suitably identified Minkowski space. (Auth.)

  18. Water Filtration through Homogeneous Granulated Charge

    Directory of Open Access Journals (Sweden)

    A. M. Krautsou

    2005-01-01

    Full Text Available General relationship for calculation of water filtration through homogeneous granulated charge has been obtained. The obtained relationship has been compared with experimental data. Discrepancies between calculated and experimental values do not exceed 6 % throughout the entire investigated range.

  19. Osteoarthritic cartilage is more homogeneous than healthy cartilage

    DEFF Research Database (Denmark)

    Qazi, Arish A; Dam, Erik B; Nielsen, Mads

    2007-01-01

    it evolves as a consequence to disease and thereby can be used as a progression biomarker. MATERIALS AND METHODS: A total of 283 right and left knees from 159 subjects aged 21 to 81 years were scanned using a Turbo 3D T1 sequence on a 0.18-T MRI Esaote scanner. The medial compartment of the tibial cartilage...... sheet was segmented using a fully automatic voxel classification scheme based on supervised learning. From the segmented cartilage sheet, homogeneity was quantified by measuring entropy from the distribution of signal intensities inside the compartment. Each knee was examined by radiography...... of the region was evaluated by testing for overfitting. Three different regularization techniques were evaluated for reducing overfitting errors. RESULTS: The P values for separating the different groups based on cartilage homogeneity were 2 x 10(-5) (KL 0 versus KL 1) and 1 x 10(-7) (KL 0 versus KL >0). Using...

  20. Synthesis, structure and magnetic properties of crystallographically aligned CuCr{sub 2}Se{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Esters, Marco [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Liebig, Andreas [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Ditto, Jeffrey J.; Falmbigl, Matthias [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Albrecht, Manfred [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Johnson, David C., E-mail: davej@uoregon.edu [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States)

    2016-06-25

    We report the low temperature synthesis of highly textured CuCr{sub 2}Se{sub 4} thin films using the modulated elemental reactant (MER) method. The structure of CuCr{sub 2}Se{sub 4} is determined for the first time in its thin film form and exhibits cell parameters that are smaller than found in bulk CuCr{sub 2}Se{sub 4}. X-ray diffraction and precession electron diffraction show a strong degree of crystallographic alignment of the crystallites, where the <111> axis is oriented perpendicular to the substrate surface, while being rotationally disordered within the plane. Temperature and field dependent in-plane and out-of-plane magnetization measurements show that the film is ferromagnetic with a Curie temperature of 406 K CuCr{sub 2}Se{sub 4} synthesized utilizing the MER method shows stronger magnetic anisotropy (effective anisotropy: 1.82 × 10{sup 6} erg cm{sup −3}; shape anisotropy: 1.07 × 10{sup 6} erg cm{sup −3}), with the easy axis lying out of plane, and a larger magnetic moment (6 μ{sub B}/f.u.) than bulk CuCr{sub 2}Se{sub 4}. - Highlights: • Crystallographically aligned, phase pure CuCr{sub 2}Se{sub 4} were synthesized. • The degree of alignment decreases with annealing time. • The films are ferromagnetic with the easy axis along the <111> direction. • The magnetization is larger than bulk CuCr{sub 2}Se{sub 4} or other CuCr{sub 2}Se{sub 4} films made to date.

  1. Synthesis and crystal structure of a new Cu3Au-type ternary phase in the Au-In-Pd system: distribution of atoms over crystallographic positions.

    Science.gov (United States)

    Ptashkina, Evgeniya A; Kabanova, Elizaveta G; Tursina, Anna I; Yatsenko, Alexandr V; Kuznetsov, Victor N

    2018-03-01

    A new Cu 3 Au-type ternary phase (τ phase) is found in the AuPd-rich part of the Au-In-Pd system. It has a broad homogeneity range based on extensive (Pd,Au) and (In,Au) replacement, with the composition varying between Au 17.7 In 25.3 Pd 57.0 and Au 50.8 In 16.2 Pd 33.0 . The occupancies of the crystallographic positions were studied by single-crystal X-ray diffraction for three samples of different composition. The sites with m-3m symmetry are occupied by atoms with a smaller scattering power than the atoms located on 4/mmm sites. Two extreme structure models were refined. Within the first, the occupation type changes from (Au,In,Pd) 3 (Pd,In) to (Au,Pd) 3 (In,Pd,Au) with an increase in the Au gross content. For the second model, the occupation type (Au,In,Pd) 3 (Pd,Au) remains essentially unchanged for all Au concentrations. Although the diffraction data do not allow the choice of one of these models, the latter model, where Au substitutes In on 4/mmm sites, seems to be preferable, since it agrees with the fact that the homogeneity range of the τ phase is inclined to the Au corner and provides the same occupation type for all the studied samples of different compositions.

  2. Physical properties of homogeneous TiO.sub.2./sub. films prepared by high power impulse magnetron sputtering as a function of crystallographic phase and nanostructure

    Czech Academy of Sciences Publication Activity Database

    Straňák, Vítězslav; Čada, Martin; Quaas, M.; Block, S.; Bogdanowicz, R.; Kment, Štěpán; Wulff, H.; Hubička, Zdeněk; Helm, Ch.A.; Tichý, M.; Hippler, R.

    2009-01-01

    Roč. 42, č. 10 (2009), 105204/1-105204/12 ISSN 0022-3727 R&D Projects: GA AV ČR KAN301370701; GA AV ČR KJB100100805; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z10100522 Keywords : TiO 2 * high power magnteron sputtering * plasma diagnostic * film diagnostic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.083, year: 2009

  3. Comparison of different homogenization approaches for elastic–viscoplastic materials

    International Nuclear Information System (INIS)

    Mercier, S; Molinari, A; Berbenni, S; Berveiller, M

    2012-01-01

    Homogenization of linear viscoelastic and non-linear viscoplastic composite materials is considered in this paper. First, we compare two homogenization schemes based on the Mori–Tanaka method coupled with the additive interaction (AI) law proposed by Molinari et al (1997 Mech. Mater. 26 43–62) or coupled with a concentration law based on translated fields (TF) originally proposed for the self-consistent scheme by Paquin et al (1999 Arch. Appl. Mech. 69 14–35). These methods are also evaluated against (i) full-field calculations of the literature based on the finite element method and on fast Fourier transform, (ii) available analytical exact solutions obtained in linear viscoelasticity and (iii) homogenization methods based on variational approaches. Developments of the AI model are obtained for linear and non-linear material responses while results for the TF method are shown for the linear case. Various configurations are considered: spherical inclusions, aligned fibers, hard and soft inclusions, large material contrasts between phases, volume-preserving versus dilatant anelastic flow, non-monotonic loading. The agreement between the AI and TF methods is excellent and the correlation with full field calculations is in general of quite good quality (with some exceptions for non-linear composites with a large volume fraction of very soft inclusions for which a discrepancy of about 15% was found for macroscopic stress). Description of the material behavior with internal variables can be accounted for with the AI and TF approaches and therefore complex loadings can be easily handled in contrast with most hereditary approaches. (paper)

  4. Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation

    International Nuclear Information System (INIS)

    Suram, Santosh K.; Rajan, Krishna

    2013-01-01

    The purpose of this work is to develop a methodology to estimate the APT reconstruction parameters when limited crystallographic information is available. Reliable spatial scaling of APT data currently requires identification of multiple crystallographic poles from the field desorption image for estimating the reconstruction parameters. This requirement limits the capacity of accurately reconstructing APT data for certain complex systems, such as highly alloyed systems and nanostructured materials wherein more than one pole is usually not observed within one grain. To overcome this limitation, we develop a quantitative methodology for calibrating the reconstruction parameters in an APT dataset by ensuring accurate inter-planar spacing and optimizing the curvature correction for the atomic planes corresponding to a single crystallographic orientation. We validate our approach on an aluminum dataset and further illustrate its capabilities by computing geometric reconstruction parameters for W and Al–Mg–Sc datasets. - Highlights: ► Quantitative approach is developed to accurately reconstruct APT data. ► Curvature of atomic planes in APT data is used to calibrate the reconstruction. ► APT reconstruction parameters are determined from a single crystallographic axis. ► Quantitative approach is demonstrated on W, Al and Al–Mg–Sc systems. ► Accurate APT reconstruction of complex materials is now possible

  5. Experimental studies on the crystallographic and plastic anisotropies of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Costa Viana, C.S. da

    1982-01-01

    The crystallographic and plastic anisotropies of a zircaloy-4 tubing using direct pole figures and experimental yield loci are analyzed. Tensile and plane-strain compression tests were used to assess the mecahnical behaviour. The results are discussed with respect to the dimensional stability and mechanical behaviour expected for the tube in its use in the core of pressurized water cooled reactors. (Author) [pt

  6. Axial‐type olivine crystallographic preferred orientations: the effect of strain geometry on mantle texture

    NARCIS (Netherlands)

    Chatzaras, V.; Kruckenberg, Seth C.; Cohen, Shaina M.; Medaris Jr., L. Gordon; Withers, Anthony C.; Bagley, Brian

    The effect of finite strain geometry on crystallographic preferred orientation (CPO) is poorly constrained in the upper mantle. Specifically, the relationship between shape preferred orientation (SPO) and CPO in the mantle rocks remains unclear. We analyzed a suite of 40 spinel peridotite xenoliths

  7. Discovery of novel inhibitors for DHODH via virtual screening and X-ray crystallographic structures

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Larry R.; Zhang, Ying; Degnen, William; Peppard, Jane; Cabel, Dasha; Zou, Chao; Tsay, Joseph T.; Subramaniam, Arun; Vaz, Roy J.; Li, Yi (Sanofi)

    2010-10-28

    Amino-benzoic acid derivatives 1-4 were found to be inhibitors for DHODH by virtual screening, biochemical, and X-ray crystallographic studies. X-ray structures showed that 1 and 2 bind to DHODH as predicted by virtual screening, but 3 and 4 were found to be structurally different from the corresponding compounds initially identified by virtual screening.

  8. Experimental determination of the boundary condition for diffuse photons in a homogeneous turbid medium

    International Nuclear Information System (INIS)

    Everitt, David L.; Zhu, Tuo; Zhu, H.-M.; Zhu, X. D.

    2000-01-01

    We present a simple experimental method that permits an empirical determination of the effective boundary condition and the extrapolated end point for the diffuse photon density in a homogeneous turbid medium. (c) 2000 Optical Society of America

  9. Feasibility Study of Aseptic Homogenization: Affecting Homogenization Steps on Quality of Sterilized Coconut Milk

    Directory of Open Access Journals (Sweden)

    Phungamngoen Chanthima

    2016-01-01

    Full Text Available Coconut milk is one of the most important protein-rich food sources available today. Separation of an emulsion into an aqueous phase and cream phase is commonly occurred and this leads an unacceptably physical defect of either fresh or processed coconut milk. Since homogenization steps are known to affect the stability of coconut milk. This work was aimed to study the effect of homogenization steps on quality of coconut milk. The samples were subject to high speed homogenization in the range of 5000-15000 rpm under sterilize temperatures at 120-140 °C for 15 min. The result showed that emulsion stability increase with increasing speed of homogenization. The lower fat particles were generated and easy to disperse in continuous phase lead to high stability. On the other hand, the stability of coconut milk decreased, fat globule increased, L value decreased and b value increased when the high sterilization temperature was applied. Homogenization after heating led to higher stability than homogenization before heating due to the reduced particle size of coconut milk after aggregation during sterilization process. The results implied that homogenization after sterilization process might play an important role on the quality of the sterilized coconut milk.

  10. Crystallographic, microstructure and mechanical characteristics of dynamically processed IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.D., E-mail: ads.hpu@gmail.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Sharma, A.K. [Terminal Ballistics Research Laboratory, Chandigarh 160030 (India); Thakur, N. [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)

    2014-06-01

    Highlights: • Measurement of detonation velocity and compaction of powder are achieved together. • A plastic explosive detonation results into dense compacts without grain-growth. • We have studied crystallographic, micromechanical and microstructural features. • The results show no segregation within the compacts. • Density (98%), microhardness (470 ± 3)H{sub v}, microstrain (0.3%), UTS (806 MPa) are obtained. - Abstract: Dynamic consolidation of IN718 superalloy powder without grain-growth and negligible density gradient is accomplished through explosively generated shock wave loading. The compaction of powder and measurement of detonation velocity are achieved successfully in a single-shot experiment by employing instrumented detonics. A plastic explosive having a detonation velocity of the order of 7.1 km/s in a direct proximity with superalloy powder is used for the consolidation process. The compacted specimens are examined for structural, microstructure and mechanical characteristics. X-ray diffraction (XRD) study suggests intact crystalline structure of the compacts. A small micro-strain (0.26%) is observed by using Williamson–Hall method. Wavelength dispersive spectroscopy indicates no segregation within the shock processed superalloy compacted specimens. The monoliths investigated for fractography by using field emission scanning electron microscopy (FE-SEM) show original dendritic structure accompanied by re-solidified molten regions across the interparticle boundaries. Depth-sensing indentations (at 1.96 N) on compacted specimens show excellent micro-hardness of the order of (470 ± 3)H{sub v}. Tensile and compressive strengths of the superalloy monolith are observed to be 806 and 822 MPa, respectively.

  11. Regional homogeneity of electoral space: comparative analysis (on the material of 100 national cases

    Directory of Open Access Journals (Sweden)

    A. O. Avksentiev

    2015-12-01

    Full Text Available In the article the author examines dependence on electoral behavior from territorial belonging. «Regional homogeneity» and «electoral space» categories are conceptualized. It is argued, that such regional homogeneity is a characteristic of electoral space and can be quantified. Quantitative measurement of government regional homogeneity has direct connection with risk of separatism, civil conflicts, or legitimacy crisis on deviant territories. It is proposed the formulae for evaluation of regional homogeneity quantitative method which has been based on statistics analysis instrument, especially, variation coefficient. Possible directions of study with the use of this index according to individual political subjects and the whole political space (state, region, electoral district are defined. Calculation of appropriate indexes for Ukrainian electoral space (return of 1991­2015 elections and 100 other national cases. The dynamics of Ukraine regional homogeneity on the material of 1991­2015 electoral statistics is analyzed.

  12. SuPer-Homogenization (SPH) Corrected Cross Section Generation for High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hiruta, Hikaru [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-01

    The deterministic full core simulators require homogenized group constants covering the operating and transient conditions over the entire lifetime. Traditionally, the homogenized group constants are generated using lattice physics code over an assembly or block in the case of prismatic high temperature reactors (HTR). For the case of strong absorbers that causes strong local depressions on the flux profile require special techniques during homogenization over a large volume. Fuel blocks with burnable poisons or control rod blocks are example of such cases. Over past several decades, there have been a tremendous number of studies performed for improving the accuracy of full-core calculations through the homogenization procedure. However, those studies were mostly performed for light water reactor (LWR) analyses, thus, may not be directly applicable to advanced thermal reactors such as HTRs. This report presents the application of SuPer-Homogenization correction method to a hypothetical HTR core.

  13. Improvement of the homogeneity of atomized particles dispersed in high uranium density research reactor fuels

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Yoon-Sang; Lee, Don-Bae; Sohn, Woong-Hee; Hong, Soon-Hyung

    1998-01-01

    A study on improving the homogeneous dispersion of atomized spherical particles in fuel meats has been performed in connection with the development of high uranium density fuel. In comparing various mixing methods, the better homogeneity of the mixture could be obtained as in order of Spex mill, V-shape tumbler mixer, and off-axis rotating drum mixer. The Spex mill mixer required some laborious work because of its small capacity per batch. Trough optimizing the rotating speed parameter for the V-shape tumbler mixer, almost the same homogeneity as with the Spex mill could be obtained. The homogeneity of the extruded fuel meats appeared to improve through extrusion. All extruded fuel meats with U 3 Si powder of 50-volume % had fairly smooth surfaces. The homogeneity of fuel meats by V-shaped tumbler mixer revealed to be fairly good on micrographs. (author)

  14. Preliminary development of thermal nuclear cell homogenization code

    International Nuclear Information System (INIS)

    Su'ud, Z.; Shafii, M. A.; Yudha, S. P.; Waris, A.; Rijal, K.

    2012-01-01

    Nuclear fuel cell homogenization for thermal reactors usually include three main parts, i.e., fast energy resonance part which usually adopt narrow resonance approximation to treat the resonance, low (intermediate) energy region in which the resonance can not be treated accurately using NR approximation and therefore we should use intermediate resonance treatment, and thermal energy region (very low) in which the effect of thermal must be treated properly. In n this study the application of the intermediate resonance approximation treatment for low energy nuclear resonance is discussed. The method is iterative based. As a sample the method is applied in U-235 low lying resonance and the result is presented and discussed.

  15. Ab initio molecular dynamics in a finite homogeneous electric field.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  16. Intercalibration of analytical methods on marine environmental samples. Results of MEDPOL II exercise for the intercomparison of trace element measurements on mussel tissue homogenate and marine sediment (MA-M-2/TM and SD-N-1/2/TM)

    International Nuclear Information System (INIS)

    1986-12-01

    Mussels and coastal sediments are often considered as pollution indicators of the marine environment. These intercalibration exercises were organised in order to check the analytical performances of environmental laboratories. The samples MA-M-2/TM of Mediterranean mussels and SD-N-1/2/TM of surface sediment from the Scheldt Estuary (North Sea) were analysed by 19 laboratories for determination of 15 elements: Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, V and Zn. The analytical methods of atomic absorption spectroscopy, neutron activation analysis and voltametry were used in this intercomparison. For the mussel MA-M-2/TM, 65% of the reported coefficients of variation lie between 0 and 10%, 25% are between 10 and 20%, 9% between 20 and 30% and only 1% higher than 30%. In the case of the sediment SD-N-1/2/TM, 90% of the reported coefficients of variation lie between 0 and 10% and the remaining 10% are between 10 and 20%. The total number of outliers is moderate (9.2% of all results in the case of MA-M-2/TM and 3.0% in the case of SD-N-1/2/TM)

  17. Biosynthetic incorporation of telluromethionine into dihydrofolate reductase and crystallographic analysis of the distribution of tellurium atoms in the protein molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kunkle, M.G.; Lewinski, K.; Boles, J.O.; Dunlap, R.B.; Odom, J.D.; Lebioda, L. [Univ. of South Carolina, Columbia, SC (United States)

    1994-12-01

    Recent successes in crystallographic studies of proteins with methionine (Met) residues replaced with SeMet, pioneered by Hendrickson and coworkers, inspired us to replace Met with TeMet in Escherichia coli dihydrofolate reductase (DHFR). E. coli DHFR, which catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate, consists of 159 residues, 5 of which are Met. TeMet was incorporated into DHFR using the Met auxotroph, E. coli DL41, carrying the expression vector pWT8 with an IPTG inducible promoter and ampicillin resistance gene. The enzyme was purified by successive chromatography on Q-Sepharose and PHenyl Sepharose resins, yielding milligram quantities of homogeneous enzyme with a specific activity of 40 units/mg. TeMet DHFR exhibits kinetic properties similar to those of wt DHFR. Amino acid analysis indicated 3 authentic Met residues in TeMet DHFR, whereas atomic absorption spectroscopy detected 2 Te per protein molecule. Amino acid sequence analysis results suggested that only authentic Met was present in the first three Met positions (1,16,and 20). Crystals of Te-DHFR were grown in the presence of methotrexate from PEG 4000 and were isomorphous with wt-DHFR crystals grown from ethanol. Difference Fourier maps and restrained least-squares refinement show very little, if any, Te in the first three Met positions: Met{sup 1}, Met{sup 16}, and Met{sup 20}, whereas the occupancy of Te in positions 42 and 92 is 0.64. Apparently, the process of folding, subsequent purification, and crystallization select DHFR molecules with Te in Met{sup 42} and Met{sup 92}. Replacing Met with TeMet provides an internal probe that should facilitate structural and mechanistic studies of proteins.

  18. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Preliminary X-ray crystallographic studies of Bacillus subtilis SpeA protein

    International Nuclear Information System (INIS)

    Liu, Xiao-Yan; Lei, Jian; Liu, Xiang; Su, Xiao-Dong; Li, Lanfen

    2009-01-01

    In order to further illustrate the catalytic mechanism of arginine decarboxylase by determining the three-dimensional structure of the enzyme the speA gene was amplified from B. subtilis genomic DNA and cloned. The enzyme was expressed in Escherichia coli and purified to homogeneity by nickel-chelation chromatography followed by size-exclusion chromatography. High-quality crystals were obtained using the hanging-drop vapour-diffusion method at 298 K. The speA gene in Bacillus subtilis encodes arginine decarboxylase, which catalyzes the conversion of arginine to agmatine. Arginine decarboxylase is an important enzyme in polyamine metabolism in B. subtilis. In order to further illustrate the catalytic mechanism of arginine decarboxylase by determining the three-dimensional structure of the enzyme, the speA gene was amplified from B. subtilis genomic DNA and cloned into the expression vector pET-28a(+). SpeA was expressed in Escherichia coli and purified to homogeneity by nickel-chelation chromatography followed by size-exclusion chromatography. High-quality crystals were obtained using the hanging-drop vapour-diffusion method at 289 K. The best crystal diffracted to 2.0 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 86.4, b = 63.3 c = 103.3 Å, β = 113.9°

  20. Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis

    International Nuclear Information System (INIS)

    2015-01-01

    Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed. This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.

  1. Testing homogeneity in Weibull-regression models.

    Science.gov (United States)

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  2. Genetic homogeneity of Fascioloides magna in Austria.

    Science.gov (United States)

    Husch, Christian; Sattmann, Helmut; Hörweg, Christoph; Ursprung, Josef; Walochnik, Julia

    2017-08-30

    The large American liver fluke, Fascioloides magna, is an economically relevant parasite of both domestic and wild ungulates. F. magna was repeatedly introduced into Europe, for the first time already in the 19th century. In Austria, a stable population of F. magna has established in the Danube floodplain forests southeast of Vienna. The aim of this study was to determine the genetic diversity of F. magna in Austria. A total of 26 individuals from various regions within the known area of distribution were investigated for their cytochrome oxidase subunit 1 (cox1) and nicotinamide dehydrogenase subunit 1 (nad1) gene haplotypes. Interestingly, all 26 individuals revealed one and the same haplotype, namely concatenated haplotype Ha5. This indicates a homogenous population of F. magna in Austria and may argue for a single introduction. Alternatively, genetic homogeneity might also be explained by a bottleneck effect and/or genetic drift. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization.

    Science.gov (United States)

    Kwiatkowski, M; Wurlitzer, M; Krutilin, A; Kiani, P; Nimer, R; Omidi, M; Mannaa, A; Bussmann, T; Bartkowiak, K; Kruber, S; Uschold, S; Steffen, P; Lübberstedt, J; Küpker, N; Petersen, H; Knecht, R; Hansen, N O; Zarrine-Afsar, A; Robertson, W D; Miller, R J D; Schlüter, H

    2016-02-16

    Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Quantum groups and quantum homogeneous spaces

    International Nuclear Information System (INIS)

    Kulish, P.P.

    1994-01-01

    The usefulness of the R-matrix formalism and the reflection equations is demonstrated on examples of the quantum group covariant algebras (quantum homogeneous spaces): quantum Minkowski space-time, quantum sphere and super-sphere. The irreducible representations of some covariant algebras are constructed. The generalization of the reflection equation to super case is given and the existence of the quasiclassical limits is pointed out. (orig.)

  5. Process to produce homogenized reactor fuels

    International Nuclear Information System (INIS)

    Hart, P.E.; Daniel, J.L.; Brite, D.W.

    1980-01-01

    The fuels consist of a mixture of PuO 2 and UO 2 . In order to increase the homogeneity of mechanically mixed fuels the pellets are sintered in a hydrogen atmosphere with a sufficiently low oxygen potential. This results in a reduction of Pu +4 to Pu +3 . By the reduction process water vapor is obtained increasing the pressure within the PuO 2 particles and causing PuO 2 to be pressed into the uranium oxide structure. (DG) [de

  6. Homogeneous scintillating LKr/Xe calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K. (Lab. for Nuclear Science, MIT, Cambridge, MA (United States)); Akyuz, D.; Chen, E.; Gaudreau, M.P.J. (Plasma Fusion Center, MIT, Cambridge, MA (United States)); Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V. (ITEP, Moscow (Russia)); Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V. (IHEP, Serpukhov (Russia)); Akopyan, M. (Inst. for Nuclear Research, Moscow (Russia)); Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T. (Science and Eng. Res. Lab., Waseda Univ., Tokyo (Japan)); Masuda, K.; Shibamura, E. (Saitama Coll. of Health (Japan)); Ishida, N. (Seikei Univ. (Japan)); Sugimoto, S. (INS, Univ. Tokyo (Japan))

    1993-03-20

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using [alpha]'s, radiation hardness as well as the uniformity required for [delta]E/E[approx equal]0.5% for e/[gamma]'s above 50 GeV. (orig.).

  7. Fluoroscopic screen which is optically homogeneous

    International Nuclear Information System (INIS)

    1975-01-01

    A high efficiency fluoroscopic screen for X-ray examination consists of an optically homogeneous crystal plate of fluorescent material such as activated cesium iodide, supported on a transparent protective plate, with the edges of the assembly beveled and optically coupled to a light absorbing compound. The product is dressed to the desired thickness and provided with an X-ray-transparent light-opaque cover. (Auth.)

  8. Correlated equilibria in homogenous good Bertrand competition

    DEFF Research Database (Denmark)

    Jann, Ole; Schottmüller, Christoph

    2015-01-01

    We show that there is a unique correlated equilibrium, identical to the unique Nash equilibrium, in the classic Bertrand oligopoly model with homogenous goods and identical marginal costs. This provides a theoretical underpinning for the so-called "Bertrand paradox'' as well as its most general f...... formulation to date. Our proof generalizes to asymmetric marginal costs and arbitrarily many players in the following way: The market price cannot be higher than the second lowest marginal cost in any correlated equilibrium....

  9. Homogenization of food samples for gamma spectrometry using tetramethylammonium hydroxide and enzymatic digestion

    International Nuclear Information System (INIS)

    Kimi Nishikawa; Abdul Bari; Abdul Jabbar Khan; Xin Li; Traci Menia; Semkow, T.M.

    2017-01-01

    We have developed a method of food sample preparation for gamma spectrometry involving the use of tetramethylammonium hydroxide (TMAH) and/or enzymes such as α-amylase or cellulase for sample homogenization. We demonstrated the effectiveness of this method using food matrices spiked with "6"0Co, "1"3"1I, "1"3"4","1"3"7Cs, and "2"4"1Am radionuclides, homogenized with TMAH (mixed salad, parmesan cheese, and ground beef); enzymes (α-amylase for bread, and cellulase for baked beans); or α-amylase followed by TMAH (cheeseburgers). Procedures were developed which are best compromises between the degree of homogenization, accuracy, speed, and minimizing laboratory equipment contamination. Based on calculated sample biases and z-scores, our results suggest that homogenization using TMAH and enzymes would be a useful method of sample preparation for gamma spectrometry samples during radiological emergencies. (author)

  10. Homogenate extraction of crude polysaccharides from Lentinus edodes and evaluation of the antioxidant activity

    Directory of Open Access Journals (Sweden)

    Leqin KE

    2016-01-01

    Full Text Available Abstract Crude polysaccharides of Lentinus edodes were extracted using homogenate method. Factors affecting the yield of crude polysaccharides were investigated and optimized by response surface methodology. The homogenate extraction method was compared with traditional heating extraction method. The antioxidant activity of crude polysaccharides from Lentinus edodes was evaluated. Results showed that, the optimal conditions of homogenate extraction were as follows: solvent pH, 10; liquid-solid ratio, 30: 1 (mL: g, extraction time, 66 s; number of extraction, 1. Under these conditions, the yield of crude polysaccharides was (13.2 ± 0.9%, which was 29.82% higher than that of traditional heating extraction. Crude polysaccharides of Lentinus edodes had good DPPH scavenging activity. Compared with the traditional heating extraction, the homogenate extraction had notable advantages including good extraction yield, short extraction time and low extraction temperature. It is an efficient way to extract crude polysaccharides from Lentinus edodes.

  11. Some properties of spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Coomer, G.C.

    1979-01-01

    This paper discusses two features of the universe which are influenced in a fundamental way by the spacetime geometry of the universe. The first is the growth of density fluctuations in the early stages of the evolution of the universe. The second is the propagation of electromagnetic radiation in the universe. A spatially homogeneous universe is assumed in both discussions. The gravitational instability theory of galaxy formation is investigated for a viscous fluid and for a charged, conducting fluid with a magnetic field added as a perturbation. It is found that the growth rate of density perturbations in both cases is lower than in the perfect fluid case. Spatially homogeneous but nonisotropic spacetimes are investigated next. Two perfect fluid solutions of Einstein's field equations are found which have spacelike hypersurfaces with Bianchi type II geometry. An expression for the spectrum of the cosmic microwave background radiation in a spatially homogeneous but nonisotropic universe is found. The expression is then used to determine the angular distribution of the intensity of the radiation in the simpler of the two solutions. When accepted values of the matter density and decoupling temperature are inserted into this solution, values for the age of the universe and the time of decoupling are obtained which agree reasonably well with the values of the standard model of the universe

  12. Commensurability effects in holographic homogeneous lattices

    International Nuclear Information System (INIS)

    Andrade, Tomas; Krikun, Alexander

    2016-01-01

    An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices.' Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.

  13. Testing Homogeneity with the Galaxy Fossil Record

    CERN Document Server

    Hoyle, Ben; Jimenez, Raul; Heavens, Alan; Clarkson, Chris; Maartens, Roy

    2013-01-01

    Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past lightcone, while observations take place on the lightcone. The history of star formation rates (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked Luminous Red Galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal area contiguous sky patches and 10 redshift slices (0.2homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is n...

  14. Nonlinear vibration of a traveling belt with non-homogeneous boundaries

    Science.gov (United States)

    Ding, Hu; Lim, C. W.; Chen, Li-Qun

    2018-06-01

    Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.

  15. Assessment of some homogeneous methods for the regional ...

    Indian Academy of Sciences (India)

    Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University,. P.O. Box .... river watershed based on environmental identifiers ...... from badland areas in Mediterranean environments; Prog.

  16. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  17. Homogenization on Multi-Materials’ Elements: Application to Printed Circuit Boards and Warpage Analysis

    Directory of Open Access Journals (Sweden)

    Araújo Manuel

    2016-01-01

    Full Text Available Multi-material domains are often found in industrial applications. Modelling them can be computationally very expensive due to meshing requirements. The finite element properties comprising different materials are hardly accurate. In this work, a new homogenization method that simplifies the computation of the homogenized Young modulus, Poisson ratio and thermal expansion coefficient is proposed, and applied to composite-like material on a printed circuit board. The results show a good properties correspondence between the homogenized domain and the real geometry simulation.

  18. Homogeneity and internal defects detect of infrared Se-based chalcogenide glass

    Science.gov (United States)

    Li, Zupana; Wu, Ligang; Lin, Changgui; Song, Bao'an; Wang, Xunsi; Shen, Xiang; Dai, Shixunb

    2011-10-01

    Ge-Sb-Se chalcogenide glasses is a kind of excellent infrared optical material, which has been enviromental friendly and widely used in infrared thermal imaging systems. However, due to the opaque feature of Se-based glasses in visible spectral region, it's difficult to measure their homogeneity and internal defect as the common oxide ones. In this study, a measurement was proposed to observe the homogeneity and internal defect of these glasses based on near-IR imaging technique and an effective measurement system was also constructed. The testing result indicated the method can gives the information of homogeneity and internal defect of infrared Se-based chalcogenide glass clearly and intuitionally.

  19. Influence of different kinds of rolling on the crystallographic texture and magnetic induction of a NOG 3 wt% Si steel

    Science.gov (United States)

    Silva, J. M.; Baêta Júnior, E. S.; Moraes, N. R. D. C.; Botelho, R. A.; Felix, R. A. C.; Brandao, L.

    2017-01-01

    The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes.

  20. Fabrication of homogeneous titania/MWNT composite materials

    International Nuclear Information System (INIS)

    Korbely, Barbara; Nemeth, Zoltan; Reti, Balazs; Seo, Jin Won; Magrez, Arnaud; Forro, Laszlo; Hernadi, Klara

    2011-01-01

    Highlights: → Homogenous titania coverage on MWNT surface in a controllable way. → Various titanium alkoxy precursors are suitable for layer formation. → Acetone and ethanol are the best to promote interaction between MWNT and titania. -- Abstract: MWNT/titania nanocomposites were prepared by an impregnation method and subsequent heat treatment at 400 o C. Precursor compounds such as titanium (IV) propoxide and titanium (IV) ethoxide were used to cover the surface of CNTs under solution conditions. Electron microscopy and X-ray diffraction techniques were carried out to characterize the as-prepared titania layers.