WorldWideScience

Sample records for crystallization water effect

  1. Differing effects of water fugacity deformation of quartzites and milky quartz single crystals

    Science.gov (United States)

    Holyoke, C. W.; Kronenberg, A. K.

    2010-12-01

    creep with n=4). The exponent for Black Hills quartzite is consistent with previous studies for quartzites, while the exponent (m nearly 1.0) for single crystals is more readily understood in terms of point defects and their influence on deformation. Microstructures in the quartzites include wavy grain boundaries and undulatory extinction, indicating deformation by climb-accommodated dislocation creep and the onset of bulge recrystallization. Microstructures observed in the single crystals include deformation bands perpendicular to elongate zones of undulatory extinction, with no recrystallization, indicating deformation by climb-accommodated dislocation creep. These results indicate that much of the effect of increasing water fugacity on quartzite rheology is due to enhanced recovery near grain boundaries facilitated by grain boundary migration.

  2. Effect of Processing Conditions on the Crystallization behavior and Destabilization Kinetics of Oil-in-Water Emulsions

    OpenAIRE

    Martini, Silvana; Tippetts, Megan

    2008-01-01

    The objective of this research was to systematically study the effect of processing conditions on the crystallization behavior and destabilization mechanisms of oil-in-water emulsions. The effect of crystallization temperature (T c) and homogenization conditions on both thermal behavior and destabilization mechanisms were analyzed. Results show that the crystallization of lipids present in the emulsions was inhibited when compared with bulk lipids as evidenced by a lower onset and peak temper...

  3. Synergistic Effects of Exposure of Surfaces of Ionic Crystals to Radiation and Water

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, J T.; Nwe, Khin H.; Hess, Wayne P.; Langford, S C.

    2003-03-15

    We present studies of the consequences of simultaneous exposure of inorganic single crystals to radiation and water. The first case consists of a biomineral, CaHPO4-2H2O (brushite), which is a wide band gap, hydrated inorganic single crystal. We examine the laser-induced ion and neutral emissions accompanying 248 nm excimer laser radiation.

  4. Effect of surfactants or a water soluble polymer on the crystal transition of clarithromycin during a wet granulation process.

    Science.gov (United States)

    Nozawa, Kenji; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2015-11-10

    To generate products containing a stable form of clarithromycin (CAM) (form II) regardless of the initial crystal form of CAM or type of granulation solvent, the effects of five surfactants, or a water-soluble polymer (macrogol 400) were determined on the crystal transition of CAM. The metastable form (form I) was kneaded with water, after adding surfactants, or a water-soluble polymer. Form II was also kneaded with ethanol, after adding the same additives. The resulting samples were analyzed by powder X-ray diffraction. Form I was completely converted to form II by a wet granulation using water with additives bearing polyoxyethylene chains such as polysorbate 80 (PS80), polyoxyl 40 stearate or macrogol 400. The granulation of the form II using ethanol with these additives did not result in a crystal transition to form I. Furthermore, CAM tablets were manufactured using granules with PS80, and these crystal forms and dissolution behaviors were investigated. As a result, the wet granulation of CAM with PS80 gave CAM tablets containing only form II and PS80 did not have any adverse effects on tablet characteristics. Therefore, these data suggests that the crystal form of CAM can be controlled to be form II using a wet granulation process with additives bearing polyoxyethylene chains regardless of the initial crystal form of CAM or type of granulation solvent. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry; Al-Jassim, Mowafak M.; Zhu, Kai; Zhou, Weilie; Berry, J. J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 °C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 °C in ±25 °C steps (150-200 °C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  6. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry G.; Al-Jassim, Mowafak; Zhu, Kai; Zhou, Weilie; Berry, Joseph J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 degrees C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 degrees C in +/-25 degrees C steps (150-200 degrees C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  7. Porosity effects on crystallization kinetics of amorphous solid water: Implications for cold icy objects in the outer solar system

    Science.gov (United States)

    Mitchell, Emily H.; Raut, Ujjwal; Teolis, Benjamin D.; Baragiola, Raúl A.

    2017-03-01

    We have investigated the effects of porosity on the crystallization kinetics of amorphous solid water (ASW). Porosity in ASW films, condensed from the vapor phase at varying incidences at 10 K, was characterized using ultraviolet-visible interferometry and quartz crystal microgravimetry. The films were heated to crystallization temperatures between 130 and 141 K, resulting in partial pore compaction. The isothermal phase transformation was characterized using transmission infrared spectroscopy to monitor the time evolution of the 3.1-μm Osbnd H stretch absorption band. We find that ASW crystallization unfolds in two distinct stages. The first stage, responsible for ∼10% transformation, is initiated from nucleation at the external surface. The dominant second stage begins with nucleation at the internal pore surfaces and completes the transformation of the film at a faster rate compared to the first stage. A key finding is that porosity has major influence on crystallization kinetics; a film with five-times-higher porosity was observed to crystallize ∼15 times faster, compared to the less porous counterpart. We extrapolate our results to predict crystallization times for amorphous ices condensed on Europa's surface from plume sources, as recently observed by the Hubble Space Telescope.

  8. Crystallization and X-ray diffraction of crystals formed in water-plasticized amorphous lactose.

    Science.gov (United States)

    Jouppila, K; Kansikas, J; Roos, Y H

    1998-01-01

    Effects of storage time and relative humidity on crystallization and crystal forms produced from amorphous lactose were investigated. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage relative humidity. Lactose crystallized mainly as alpha-lactose monohydrate and anhydrous crystals with alpha- and beta-lactose in a molar ratio of 5:3. The results suggested that the crystal form was defined by the early nucleation process. The crystallization data are important in modeling of crystallization phenomena and prediction of stability of lactose-containing food and pharmaceutical materials.

  9. Effect of Phytosterols on the Crystallization Behavior of Oil-in-Water Milk Fat Emulsions.

    Science.gov (United States)

    Zychowski, Lisa M; Logan, Amy; Augustin, Mary Ann; Kelly, Alan L; Zabara, Alexandru; O'Mahony, James A; Conn, Charlotte E; Auty, Mark A E

    2016-08-31

    Milk has been used commercially as a carrier for phytosterols, but there is limited knowledge on the effect of added plant sterols on the properties of the system. In this study, phytosterols dispersed in milk fat at a level of 0.3 or 0.6% were homogenized with an aqueous dispersion of whey protein isolate (WPI). The particle size, morphology, ζ-potential, and stability of the emulsions were investigated. Emulsion crystallization properties were examined through the use of differential scanning calorimetry (DSC) and Synchrotron X-ray scattering at both small and wide angles. Phytosterol enrichment influenced the particle size and physical appearance of the emulsion droplets, but did not affect the stability or charge of the dispersed particles. DSC data demonstrated that, at the higher level of phytosterol addition, crystallization of milk fat was delayed, whereas, at the lower level, phytosterol enrichment induced nucleation and emulsion crystallization. These differences were attributed to the formation of separate phytosterol crystals within the emulsions at the high phytosterol concentration, as characterized by Synchrotron X-ray measurements. X-ray scattering patterns demonstrated the ability of the phytosterol to integrate within the milk fat triacylglycerol matrix, with a concomitant increase in longitudinal packing and system disorder. Understanding the consequences of adding phytosterols, on the physical and crystalline behavior of emulsions may enable the functional food industry to design more physically and chemically stable products.

  10. Effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Yan, Jiejuan; Liu, Cailong; Liu, Xizhe; Han, Yonghao, E-mail: hanyh@jlu.edu.cn, E-mail: cc060109@qq.com; Gao, Chunxiao, E-mail: hanyh@jlu.edu.cn, E-mail: cc060109@qq.com [State Key Lab for Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Ke, Feng; Wang, Qinglin [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Li, Yanchun [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049 (China); Ma, Yanzhang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2015-11-16

    The effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure has been investigated by in situ X-ray diffraction and alternating current impedance spectra measurements. The crystallization water was found to be a key role in modulating the structural stability of CuWO{sub 4} at high pressures. The anhydrous CuWO{sub 4} undergoes two pressure-induced structural transitions at 8.8 and 18.5 GPa, respectively, while CuWO{sub 4}·2H{sub 2}O keeps its original structure up to 40.5 GPa. Besides, the crystallization water makes the electrical transport behavior of anhydrous CuWO{sub 4} and CuWO{sub 4}·2H{sub 2}O quite different. The charge carrier transportation is always isotropic in CuWO{sub 4}·2H{sub 2}O, but anisotropic in the triclinic and the third phase of anhydrous CuWO{sub 4}. The grain resistance of CuWO{sub 4}·2H{sub 2}O is always larger than that of anhydrous CuWO{sub 4} in the entire pressure range. By analyzing the relaxation response, we found that the large number of hydrogen bonds can soften the grain characteristic frequency of CuWO{sub 4}·2H{sub 2}O over CuWO{sub 4} by one order of magnitude.

  11. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry.

    Directory of Open Access Journals (Sweden)

    Xiuchun Lin

    Full Text Available Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0-10.0 and ionic strength (50-200 mg L(-1 NaCl as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs.

  12. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry.

    Science.gov (United States)

    Lin, Xiuchun; Li, Jingyi; Ma, Si; Liu, Gesheng; Yang, Kun; Tong, Meiping; Lin, Daohui

    2014-01-01

    Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs) are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm) and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0-10.0) and ionic strength (50-200 mg L(-1) NaCl) as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs.

  13. Effects of impurities on crystal growth in fructose crystallization

    Science.gov (United States)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  14. Grain boundary barrier modification due to coupling effect of crystal polar field and water molecular dipole in ZnO-based structures

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xu; Zhu, Yuan, E-mail: zhuy9@mail.sysu.edu, E-mail: phzktang@ust.hk; Chen, Mingming; Su, Longxing; Chen, Anqi; Zhao, Chengchun; Gui, Xuchun; Xiang, Rong; Huang, Feng [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Tang, Zikang, E-mail: zhuy9@mail.sysu.edu, E-mail: phzktang@ust.hk [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-06-16

    Surface water molecules induced grain boundaries (GBs) barrier modification was investigated in ZnO and ZnMgO/ZnO films. Tunable electronic transport properties of the samples by water were characterized via a field effect transistor (FET) device structure. The FETs fabricated from polar C-plane ZnO and ZnMgO/ZnO films that have lots of GBs exhibited obvious double Schottky-like current-voltage property, whereas that fabricated from nonpolar M-plane samples with GBs and ZnO bulk single-crystal had no obvious conduction modulation effects. Physically, these hallmark properties are supposed to be caused by the electrostatical coupling effect of crystal polar field and molecular dipole on GBs barrier.

  15. Generation of Absolute Controlled Crystal Chirality by the Removal of Crystal Water from Achiral Crystal of Nucleobase Cytosine

    OpenAIRE

    Kawasaki, Tsuneomi; Hakoda, Yuko; Mineki, Hiroko; Suzuki, Kenta; Soai, Kenso

    2010-01-01

    The enantioselective formation of chiral crystal of achiral nucleobase cytosine was achieved mediated by the crystal direction selective dehydration of crystal water in the achiral crystal of cytosine monohydrate (P21/c). Heat transfer from the enantiotopic face of the single crystal of cytosine monohydrate afforded the enantiomorphous crystal of anhydrous cytosine.

  16. Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water

    Science.gov (United States)

    Liu, Jukun; Jia, Tianqing; Zhao, Hongwei; Huang, Yaoqing

    2016-11-01

    We report the period-increasing effect of low spatial frequency ripples on a GaP crystal irradiated by 1 kHz, 50 fs, 800 nm femtosecond laser pulses. Massive free electrons are excited by a two-photon absorption process and surface plasmon is excited. The Drude model is used to estimate the changing of the dielectric constant of the GaP crystal. The period-increasing effects of low spatial frequency laser-induced ripples are theoretically predicted in air/water, and the experimental results agree well. The experimental and theoretical results indicate that surface plasmon excited by two-photon absorption plays a key role in the formation of low spatial frequency ripples.

  17. Porosity effects on crystallization kinetics of Amorphous Solid Water: Implications for cold icy objects in the Outer Solar System

    Science.gov (United States)

    Mitchell, Emily H.; Raut, Ujjwal; Baragiola, Raul A.

    2015-11-01

    Crystalline ice has been identified on the cold surfaces of most icy satellites and TNOs [1]. This is surprising since accretion of water vapor at temperatures (T isothermal transition from amorphous to fully crystalline phase was characterized by analyzing the time-dependent evolution of the OH-stretch absorption band using transmission infrared spectroscopy. Our initial results show that τc decreases with increasing porosity; for instance, a film deposited at 45° was observed to crystallize ~6 times faster than a film deposited at 0°. The preliminary estimate of the porosity of the 45° film is ~50% higher than that of the film deposited at normal incidence. Our findings can explain the reported variation in temperature-dependent τc [2] and contribute to the understanding of crystalline ice on cold bodies in the Outer Solar System.1. Mastrapa, R.M.E. et al. In: Gudipati, M.S. & Castillo-Rogez, J., Eds, The Science of Solar System Ices, Springer, New York, 2013.2. Baragiola, R.A. In: Devlin & Buch, Eds, Water in Confining Geometries, Springer-Verlag, 2003.3. Jewitt, D.C. & Luu, J., Nature 432, 731, 2004.4. Porter, S.B. et al. Icarus 208, 492, 2010.5. Stevenson, K.P., et al. Science 283, 1505, 1999.6. Francis, R.J. & O’Hare, D., J. Chem. Soc., Dalton Trans., 3133, 1998.7. Kirsch, B.L. et al., J. Phys. Chem. B., 108, 12698, 2004.

  18. Adsorption of Water on Two-Dimensional Crystals: Water/Graphene and Water/Silicatene

    Directory of Open Access Journals (Sweden)

    Uwe Burghaus

    2016-04-01

    Full Text Available The adsorption of water on solid surfaces is a scientific evergreen which again recently prompted considerable attention in the materials, nano-, and surface science communities, respectively, due to conflicting evidence presented in the most highly regarded scientific journals. This mini review is a brief and personal perspective of the current literature (and our own data about water adsorption for two examples, namely graphene and silicatene, which are both two-dimensional (2D crystals. Silicatene, an inorganic companion of graphene, is intriguing as it presents us with the possibility to synthesize a 2D analog to zeolites by doping this crystalline silicon film. The wettability by water and whether or not support effects of epitaxial 2D crystals are present is of concern. Regarding applications: some 2D crystals appear promising for the hydrogen evolution reaction, i.e., hydrogen generation from water; a functionalization of graphene (by oxygen/water to graphene oxide may be interesting for metal-free catalysis; the latest highlight in this field appears to be “icephobicity”, an application related to the hydrophobicity of surfaces.

  19. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs.

    Science.gov (United States)

    Sarode, Ashish L; Wang, Peng; Obara, Sakae; Worthen, David R

    2014-04-01

    The influence of polymers on the dissolution, supersaturation, crystallization, and partitioning of poorly water soluble compounds in biphasic media was evaluated. Amorphous solid dispersions (ASDs) containing felodipine (FLD) and itraconazole (ITZ) were prepared by hot melt mixing (HMM) using various polymers. The ASDs were analyzed using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and HPLC. Amorphous drug conversion was confirmed using DSC and PXRD, and drug stability by HPLC. Single- and biphasic dissolution studies of the ASDs with concurrent dynamic light scattering (DLS) and polarized light microscopic (PLM) analysis of precipitated drugs were performed. HPLC revealed no HMM-induced drug degradation. Maximum partitioning into the organic phase was dependent upon the degree of supersaturation. Although the highest supersaturation of FLD was attained using Eudragit® EPO and AQOAT® AS-LF with better nucleation and crystal growth inhibition using the latter, higher partitioning of the drug into the organic phase was achieved using Pharmacoat® 603 and Kollidon® VA-64 by maintaining supersaturation below critical nucleation. Critical supersaturation for ITZ was surpassed using all of the polymers, and partitioning was dependent upon nucleation and crystal growth inhibition in the order of Pharmacoat® 603>Eudragit® L-100-55>AQOAT® AS-LF. HMM drug-polymer systems that prevent drug nucleation by staying below critical supersaturation are more effective for partitioning than those that achieve the highest supersaturation.

  20. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  1. Application of Membrane Crystallization for Minerals’ Recovery from Produced Water

    Directory of Open Access Journals (Sweden)

    Aamer Ali

    2015-11-01

    Full Text Available Produced water represents the largest wastewater stream from oil and gas production. Generally, its high salinity level restricts the treatment options. Membrane crystallization (MCr is an emerging membrane process with the capability to extract simultaneously fresh water and valuable components from various streams. In the current study, the potential of MCr for produced water treatment and salt recovery was demonstrated. The experiments were carried out in lab scale and semi-pilot scale. The effect of thermal and hydrodynamic conditions on process performance and crystal characteristics were explored. Energy dispersive X-ray (EDX and X-ray diffraction (XRD analyses confirmed that the recovered crystals are sodium chloride with very high purity (>99.9%, also indicated by the cubic structure observed by microscopy and SEM (scanning electron microscopy analysis. It was demonstrated experimentally that at recovery factor of 37%, 16.4 kg NaCl per cubic meter of produced water can be recovered. Anti-scaling surface morphological features of membranes were also identified. In general, the study provides a new perspective of isolation of valuable constituents from produced water that, otherwise, is considered as a nuisance.

  2. Zirconium fluoride glass - Surface crystals formed by reaction with water

    Science.gov (United States)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  3. Additivity of water sorption, alpha-relaxations and crystallization inhibition in lactose-maltodextrin systems.

    Science.gov (United States)

    Potes, Naritchaya; Kerry, Joseph P; Roos, Yrjö H

    2012-08-01

    Water sorption of lactose-maltodextrin (MD) systems, structural relaxations and lactose crystallization were studied. Accurate water sorption data for non-crystalline lactose previously not available over a wide range of water activity, aw (maltodextrin (MD) systems were strongly affected by water and MD. At high MD contents, inhibition of crystallization was significant. Inhibition with a high dextrose equivalent (DE) MD was more pronounced possibly because of molecular number and size effects. At 0.55-0.76aw, inhibition increased with increasing MD content. At aw>0.66, the rate of lactose crystallization decreased at increasing MD contents. Different MDs with similar Tg in lactose-MD systems showed different crystallization inhibition effects. The results of the present study showed that the DE in selection of MD for applications has important effects on component crystallization characteristics.

  4. Effect of an ionic liquid on vancomycin crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Geon Soo; Kim, Jin-Hyun [Kongju National University, Cheonan (Korea, Republic of)

    2015-04-15

    We first developed a vancomycin crystallization process using an ionic liquid (IL) and improved the crystallization efficiency by optimization of crystallization conditions (pH, conductivity, solution of distilled water and IL/acetone ratio, crystallization temperature, IL concentration). We also investigated the effect of major process parameters on crystallization, using an electron microscope, and identified morphology by XRD analysis. Using ILs (1-butyl-3- methylimidazolium tetrafluoroborate ([BMIm][BF{sub 4}]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm] [PF6])), vancomycin crystals were successfully formed under the optimal crystallization conditions: pH 4.5; conductivity, 10 mS/cm; solution of distilled water and IL/acetone ratio, 1 : 3.5 (v/v); crystallization temperature, 10 .deg. C; IL concentration, 20% (v/v). When using an IL ([BMIm][BF{sub 4}]), the time required for crystallization in the existing crystallization methods (⁓24 hr) was dramatically decreased (⁓9 hr) and high-quality vancomycin crystals were successfully formed.

  5. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  6. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

  7. The crystal acceleration effect for cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Braginetz, Yu. P., E-mail: aiver@pnpi.spb.ru [Petersburg Nuclear Physics Institute NRC KI (Russian Federation); Berdnikov, Ya. A. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Fedorov, V. V., E-mail: vfedorov@pnpi.spb.ru; Kuznetsov, I. A.; Lasitsa, M. V.; Semenikhin, S. Yu., E-mail: ssy@pnpi.spb.ru; Vezhlev, E. O.; Voronin, V. V., E-mail: vvv@pnpi.spb.ru [Petersburg Nuclear Physics Institute NRC KI (Russian Federation)

    2017-01-15

    A new mechanism of neutron acceleration is discussed and studied experimentally in detail for cold neutrons passing through the accelerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal refraction index (neutron-crystal interaction potential) for neutron in the vicinity of the Bragg resonance sharply depends on the parameter of deviation from the exact Bragg condition, i.e. on the crystal-neutron relative velocity. Therefore the neutrons enter into accelerated crystal with one neutron-crystal interaction potential and exit with the other. Neutron kinetic energy cannot vary inside the crystal due to its homogeneity. So after passage through such a crystal neutrons will be accelerated or decelerated because of the different energy change at the entrance and exit crystal boundaries.

  8. Surface effects on the crystallization of ritonavir glass.

    Science.gov (United States)

    Kawakami, Kohsaku

    2015-01-01

    In our previous study, initiation time of crystallization was shown to be basically expressed as a function of only the reduced temperature, which was a ratio of storage and glass transition temperatures. This conclusion was obtained using quenched glasses with minimized surface area stored under a dried atmosphere. In this study, the surface effects on the crystallization were investigated using freeze-dried ritonavir (RTV) glass. Although quenched RTV glass exhibited exceptionally long initiation time, the initiation was accelerated by using the freeze-dried glasses. Storage of the samples under humid conditions further accelerated the crystallization. These surface effects eliminated the energetic barrier for nucleation, and the RTV glass exhibited universal initiation time. In contrast, subsequent crystal growth was slower for the freeze-dried glasses relative to the quenched one, presumably because of less condensed and porous structures that would suppress molecular cooperativity. Storage under a humid atmosphere also appeared to inhibit the crystal growth, presumably because of disruption of the molecular network by water. These findings support the existence of the universal initiation time for crystallization and indicated the importance of surface effects in crystallization behavior. Also, the suppression of crystal growth because of the void structure and incorporation of water molecules were indicated.

  9. High Pressure Cryocooling of Protein Crystals: The Enigma of Water

    Science.gov (United States)

    Gruner, Sol M.

    2010-03-01

    A novel high-pressure cryocooling technique for preparation biological samples for x-ray analysis is described. The method, high-pressure cryocooling, involves cooling samples to cryogenic temperatures (e.g., 100 K) in high-pressure Helium gas (up to 200 MPa). It bears both similarities and differences to high-pressure cooling methods that have been used to prepare samples for electron microscopy, and has been especially useful for cryocooling of macromolecular crystals for x-ray diffraction. Examples will be given where the method has been effective in providing high quality crystallographic data for difficult samples, such as cases where ligands needed to be stabilized in binding sites to be visualized, or where very high resolution data were required. The talk concludes with a discussion of data obtained by high-pressure cryocooling that pertains to two of the most important problems in modern science: the enigma of water and how water affects the activity of proteins.

  10. Crystal packing effects on protein loops.

    Science.gov (United States)

    Rapp, Chaya S; Pollack, Rena M

    2005-07-01

    The effects of crystal packing on protein loop structures are examined by (1) a comparison of loops in proteins that have been crystallized in alternate packing arrangements, and (2) theoretical prediction of loops both with and without the inclusion of the crystal environment. Results show that in a minority of cases, loop geometries are dependent on crystal packing effects. Explicit representation of the crystal environment in a loop prediction algorithm can be used to model these effects and to reconstruct the structures, and relative energies, of a loop in alternative packing environments. By comparing prediction results with and without the inclusion of the crystal environment, the loop prediction algorithm can further be used to identify cases in which a crystal structure does not represent the most stable state of a loop in solution. We anticipate that this capability has implications for structural biology.

  11. Crystal-field effects in fluoride crystals for optical refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory

    2010-01-01

    thermal energy from the solid and carries it away as high-entropy light, thereby cooling the material. In the ideal case, the respective laser-cooling power is given by the pump wavelength ({lambda}{sub p}), the mean fluorescence wavelength ({bar {lambda}}{sub L}), and the absorption coefficient (a{sub r}) of the pumped transition. These quantities are solely determined by crystal field interactions. On one hand, a large crystal-field splitting offers a favorably large difference of {lambda}{sub p} - {bar {lambda}}{sub L} and thus a high cooling efficiency {eta}{sub cool} = ({lambda}{sub p} - {bar {lambda}}{sub L})/{bar {lambda}}{sub L}. On the other hand, a small crystal-field splitting offers a high thermal population (n{sub i}) of the initial state of the pumped transition, giving a high pump absorption coefficient and thus high laser cooling power, particularly at low temperatures. A quantitative description of crystal-field interactions is therefore critical to the understanding and optimization of optical refrigeration. In the case of Yb3+ as the laser cooling ion, however, development of a crystal-field model is met with substantial difficulties. First, Yb3+ has only two 4/multiplets, {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2}, which lead to at most 7 crystal-field levels. This makes it difficult, and in some cases impossible, to evaluate the crystal-field Hamiltonian, which has at least 4 parameters for any Yb3+ point symmety lower than cubic. Second, {sup 2}F{sub 7/2}{leftrightarrow}{sup 2}F{sub 5/2} transitions exhibit an exceptionally strong electron-phonon coupling compared to 4f transitions of other rare earths. This makes it difficult to distinguish electronic from vibronic transitions in the absorption and luminescence spectra and to reliably identify the crystal-field levels. Yb3+ crystal-field splittings reported in the literature should thus generally be viewed with caution. This paper explores the effects of crystal-field interactions on the laser cooling

  12. Surface and bulk crystallization of amorphous solid water films: Confirmation of "top-down" crystallization

    Science.gov (United States)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-10-01

    The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a "top-down" crystallization mechanism.

  13. Surface and bulk crystallization of amorphous solid water films: Confirmation of “top-down” crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-10-01

    The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.

  14. The Dynamics of Water in Porous Two-Dimensional Crystals.

    Science.gov (United States)

    Strong, Steven E; Eaves, Joel D

    2017-01-12

    Porous two-dimensional crystals offer many promises for water desalination applications. For computer simulation to play a predictive role in this area, however, one needs to have reliable methods for simulating an atomistic system with hydrodynamic currents and interpretative tools to relate microscopic interactions to emergent macroscopic dynamical quantities, such as friction, slip length, and permeability. In this article, we use Gaussian dynamics, a nonequilibrium molecular dynamics method that provides microscopic insights into the interactions that control the flows of both simple liquids and liquid water through atomically small channels. In simulations of aqueous transport, we mimic the effect of changing the membrane chemical composition by adjusting the attractive strength of the van der Waals interactions between the membrane atoms and water. We find that the wetting contact angle, a common measure of a membrane's hydrophobicity, does not predict the permeability of a membrane. Instead, the hydrophobic effect is subtle, with both static and dynamic effects that can both help and hinder water transport through these materials. The competition between the static and dynamical hydrophobicity balances an atomic membrane's tendency to wet against hydrodynamic friction, and determines an optimal contact angle for water passage through nonpolar membranes. To a reasonable approximation, the optimal contact angle depends only on the aspect ratio of the pore. We also find that water molecules pass through the most hydrophobic membranes in a punctuated series of bursts that are separated by long pauses. A continuous-time Markov model of these data provides evidence of a molecular analogue to the clogging transition, a phenomenon observed in driven granular flows.

  15. Crystallization of Esomeprazole Magnesium Water/Butanol Solvate

    Directory of Open Access Journals (Sweden)

    Jenna Skieneh

    2016-04-01

    Full Text Available The molecular structure of esomeprazole magnesium derivative in the solid-state is reported for the first time, along with a simplified crystallization pathway. The structure was determined using the single crystal X-ray diffraction technique to reveal the bonding relationships between esomeprazole heteroatoms and magnesium. The esomeprazole crystallization process was carried out in 1-butanol and water was utilized as anti-solvent. The product proved to be esomeprazole magnesium tetrahydrate with two 1-butanol molecules that crystallized in P63 space group, in a hexagonal unit cell. Complete characterization of a sample after drying was conducted by the use of powder X-ray diffraction (PXRD, 1H-nuclear magnetic resonance (NMR, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, infrared spectroscopy (IR, and dynamic vapor sorption (DVS. Investigation by 1H-NMR and TGA has shown that the solvent content in the dried sample consists of two water molecules and 0.3 butanol molecules per esomeprazole magnesium molecule. This is different from the single crystal X-ray diffraction results and can be attributed to the loss of some water and 1-butanol molecules stabilized by intermolecular interactions. The title compound, after drying, is a true solvate in terms of water; conversely, 1-butanol fills the voids of the crystal lattice in non-stoichiometric amounts.

  16. Origins of Water Molecules in the Photosystem II Crystal Structure.

    Science.gov (United States)

    Sakashita, Naoki; Watanabe, Hiroshi C; Ikeda, Takuya; Saito, Keisuke; Ishikita, Hiroshi

    2017-06-20

    The cyanobacterial photosystem II (PSII) crystal structure includes more than 1300 water molecules in each monomer unit; however, their precise roles in water oxidation are unclear. To understand the origins of water molecules in the PSII crystal structure, the accessibility of bulk water molecules to channel inner spaces in PSII was investigated using the water-removed PSII structure and molecular dynamics (MD) simulations. The inner space of the channel that proceeds toward the D1-Glu65/D2-Glu312 pair (E65/E312 channel) was entirely filled with water molecules from the bulk region. In the same channel, a diamond-shaped cluster of water molecules formed near redox-active TyrZ in MD simulations. Reorientation of the D2-Leu352 side chain resulted in formation of a hexagonal water network at the Cl(-)2 binding site. Water molecules could not enter the main region of the O4-water chain, which proceeds from the O4 site of the Mn4CaO5 cluster. However, in the O4-water chain, the two water binding sites that are most distant from the protein bulk surface were occupied by water molecules that approached along the E65/E312 channel, one of which formed an H-bond with the O4 site. These findings provide key insights into the significance of the channel ends, which may utilize water molecules during the PSII photocycle.

  17. Couette-Taylor crystallizer: Effective control of crystal size distribution and recovery of L-lysine in cooling crystallization

    Science.gov (United States)

    Nguyen, Anh-Tuan; Yu, Taekyung; Kim, Woo-Sik

    2017-07-01

    A Couette-Taylor crystallizer is developed to enhance the L-Lysine crystal size distribution and recovery in the case of continuous cooling crystallization. When using the proposed Couette-Taylor (CT) crystallizer, the size distribution and crystal product recovery were much narrower and higher, respectively, than those from a conventional stirred tank (ST) crystallizer. Here, the coefficient of the size distribution for the crystal product from the CT crystallizer was only 0.45, while it was 0.78 in the case of the conventional ST crystallizer at an agitation speed of 700 rpm, mean residence time of 20 min, and feed concentration of 900 (g/L). Furthermore, when using the CT crystallizer, the crystal product recovery was remarkably enhanced up to 100%wt with a mean residence time of only 20 min, while it required a mean residence time of at least 60 min when using the conventional ST crystallizer. This result indicates that the CT crystallizer was much more effective than the conventional ST crystallizer in terms of controlling a narrower size distribution and achieving a 100%wt L-lysine crystal product recovery from continuous cooling crystallization. The advantage of the CT crystallizer over the conventional ST crystallizer was explained based on the higher energy dissipation of the Taylor vortex flow and larger surface area for heat transfer of the CT crystallizer. Here, the energy dissipation of the Taylor vortex flow in the CT crystallizer was 13.6 times higher than that of the random fluid motion in the conventional ST crystallizer, while the surface area per unit volume for heat transfer of the CT crystallizer was 8.0 times higher than that of the conventional ST crystallizer. As a result, the mixing condition and heat transfer of the CT crystallizer were much more effective than those of the conventional ST crystallizer for the cooling crystallization of L-lysine, thereby enhancing the L-lysine crystal size distribution and product recovery.

  18. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    Science.gov (United States)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  19. Effects of Gravity on ZBLAN Glass Crystallization

    Science.gov (United States)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary

    2004-01-01

    The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AIF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  20. Photonic crystal fibres and effective index approaches

    DEFF Research Database (Denmark)

    Riishede, Jesper; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2001-01-01

    Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres.......Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres....

  1. Molecular simulation of water behaviors on crystal faces of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    PAN Haihua; TAO Jinhui; WU Tao; TANG Ruikang

    2007-01-01

    The water behavior on (001) and (100) crystal faces of hydroxyapatite (HAP) were studied using molecular dynamics (MD) simulations.The study showed that the water molecules between the HAP faces were under conditions of strong electrical field and high pressure,and hence formed 2-3 well-organized water layers on the crystal surfaces.These structured water layers had ice-like features.Compared with the crystallographic [100] direction of HAP,the polarity along the [001] direction was stronger,which resulted in more structured water layers on the surface.The interaction of water molecules with the calcium and phosphate sites at the HAP-water interface was also studied.The results indicated the multiple pathways of water adsorption onto the HAP surfaces.This study revealed the formation and the detailed structure of water layers on HAP surfaces and suggested that the interracial water played an important role in stabilizing the HAP particles in aqueous solutions.

  2. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  3. Spontaneous charging and crystallization of water droplets in oil

    NARCIS (Netherlands)

    de Graaf, J.; Zwanikken, J.W.; Bier, Markus; Baarsma, Arjen; Oloumi, Yasha; Spelt, Mischa; van Roij, R.H.H.G.

    2008-01-01

    We study the spontaneous charging and the crystallization of spherical micron-sized water-droplets dispersed in oil by numerically solving, within a Poisson-Boltzmann theory in the geometry of a spherical cell, for the density profiles of the cations and anions in the system. We take into account

  4. Water softening by induced crystallization in fluidized bed.

    Science.gov (United States)

    Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel

    2016-12-01

    Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process.

  5. Antisolvent crystallization of a cardiotonic drug in ionic liquids: Effect of mixing on the crystal properties

    Science.gov (United States)

    de Azevedo Jacqueline, Resende; Fabienne, Espitalier; Jean-Jacques, Letourneau; Inês, Ré Maria

    2017-08-01

    LASSBio-294 (3,4-methylenedioxybenzoyl-2-thienylhydrazon) is a poorly soluble drug which has been proposed to have major advantages over other cardiotonic drugs. Poorly water soluble drugs present limited bioavailability due to their low solubility and dissolution rate. An antisolvent crystallization processing can improve the dissolution rate by decreasing the crystals particle size. However, LASSBio-294 is also poorly soluble in organic solvents and this operation is limited. In order to open new perspectives to improve dissolution rate, this work has investigated LASSBio-294 in terms of its antisolvent crystallization in 1-ethyl-3-methylimidazolium methyl phosphonate [emim][CH3O(H)PO2] as solvent and water as antisolvent. Two modes of mixing are tested in stirred vessel with different pre-mixers (Roughton or T-mixers) in order to investigate the mixing effect on the crystal properties (crystalline structure, particle size distribution, residual solvent and in vitro dissolution rate). Smaller drug particles with unchanged crystalline structure were obtained. Despite the decrease of the elementary particles size, the recrystallized particles did not achieve a better dissolution profile. However, this study was able to highlight a certain number of findings such as the impact of the hydrodynamic conditions on the crystals formation and the presence of a gel phase limiting the dissolution rate.

  6. Effects of magnetic fields on dissolution of arthritis causing crystals

    Science.gov (United States)

    Takeuchi, Y.; Iwasaka, M.

    2015-05-01

    The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.

  7. Modelling heating effects in cryocooled protein crystals

    CERN Document Server

    Nicholson, J; Fayz, K; Fell, B; Garman, E

    2001-01-01

    With the application of intense X-ray beams from third generation synchrotron sources, damage to cryocooled macromolecular crystals is being observed more commonly . In order to fully utilize synchrotron facilities now available for studying biological crystals, it is essential to understand the processes involved in radiation damage and beam heating so that, if possible, action can be taken to slow the rate of damage. Finite Element Analysis (FEA) has been applied to model the heating effects of X-rays on cryocooled protein crystals, and to compare the relative cooling efficiencies of nitrogen and helium.

  8. Counter-intuitive effect of non-crystallizing sugars on the crystallization of gemcitabine HCl in frozen solutions.

    Science.gov (United States)

    Munjal, Bhushan; Bansal, Arvind K

    2015-01-15

    In this study, the effect of four non-crystallizing sugars, namely fructose, trehalose, sucrose and raffinose, was assessed on the crystallization of gemcitabine hydrochloride (GHCl) in frozen solutions. Aqueous solutions containing GHCl (50 mg/mL) and a sugar at varying concentrations (10-60 mg/mL) were frozen in situ in DSC and analyzed in the subsequent heating run. Crystallization propensity of GHCl was quantified in terms of reduced crystallization temperature (RCT) as a function of sugar type and concentration. Multivariate analysis option in JMP(®) software was employed for calculating correlation between the variables. All sugars inhibited GHCl crystallization in a concentration dependent manner. At equal concentration, fructose (with the lowest Tg') exerted the strongest inhibitory effect, whereas raffinose (with the highest Tg') exerted the weakest inhibitory effect. Additionally, RCT showed a poor correlation with Tg' (r=0.2327). Thus, the inhibitory effect of sugars could not be described by their anti-plasticization effect. This counter-intuitive behavior was explained by the inhibitory effect of sugars on ice crystallization, which increased the unfrozen water content (UWC) in the freeze concentrate, thereby lowering the supersaturation of GHCl. This was established by observing a good correlation (r=0.9666) between RCT and ln(1/UWC). Additionally, reduced diffusion kinetics of GHCl in presence of sugar molecules was also postulated. This study highlights the importance of unfrozen water towards governing the crystallization behavior of solutes in multi-component frozen systems.

  9. MAGNETORESISTANCE AND HALL EFFECT IN SINGLE CRYSTALS OF ALUMINUM

    Science.gov (United States)

    ALUMINUM, *SINGLE CRYSTALS, CRYSTALS, HALL EFFECT , IMPURITIES, LOW PRESSURE, MAGNETIC FIELDS, MAGNETIC PROPERTIES, PARTICLE TRAJECTORIES, ELECTRICAL RESISTANCE, SOLID STATE PHYSICS, SURFACE PROPERTIES.

  10. Radiation piezoelectric effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1977-06-01

    Irradiation with ionizing particles of a germanium single crystal and uniaxial deformation at right-angles to the particle beam produced an electric field and a corresponding emf due to the radiation piezoelectric effect. Measurements were carried out when such a single crystal was irradiated with ..cap alpha.. particles and protons. The piezoelectric emf increased linearly with the compressive stress and the ..cap alpha..-particle flux intensity. The emf depended weakly on the particle energy. The observed effect was due to the anisotropy resulting from uniaxial deformation.

  11. Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study

    Directory of Open Access Journals (Sweden)

    M. Rajeswari Kulkarni

    2017-03-01

    Full Text Available Effluent water from dyeing industries has now for long been a taxing issue. Of the various dyes which are extremely toxic, Crystal Violet which is used in the dyeing industry is known for its mutagenic and mitotic poisoning nature. Water hyacinth (Eichhornia crassipes is a perennial aquatic plant notorious for its rapid invasive growth on the surface of water bodies causing ill-effects on the biodiversity. The potential of powdered roots of water hyacinth was studied for decolorization of Crystal Violet dye. Influence of parameters such as initial pH (2.0–10.0, initial dye concentration (100–500 ppm, biosorbent dosage (0.5–5 g/l, contact time (10–240 min and temperature (300–323 K were examined. Maximum removal of dye was observed at pH 7.8. The obtained data were fit into different kinetic models and the biosorption was found to follow pseudo second order kinetic model. The Langmuir monolayer biosorption capacity of water hyacinth was estimated as 322.58 mg/g. The study has demonstrated water hyacinth as a potential low cost biosorbent for effective removal of Crystal Violet dye from aqueous solution.

  12. Lattice effects in YVO3 single crystal

    NARCIS (Netherlands)

    Marquina, C; Sikora, M; Ibarra, MR; Nugroho, AA; Palstra, TTM

    2005-01-01

    In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at T-N =

  13. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy.

    Science.gov (United States)

    Lai, Wei-Cheng; Chakravarty, Swapnajit; Zou, Yi; Chen, Ray T

    2013-10-01

    We experimentally demonstrate simultaneous selective detection of xylene and trichloroethylene (TCE) using multiplexed photonic crystal waveguides (PCWs) by near-infrared optical absorption spectroscopy on a chip. Based on the slow light effect of photonic crystal structure, the sensitivity of our device is enhanced to 1 ppb (v/v) for xylene and 10 ppb (v/v) for TCE in water. Multiplexing is enabled by multimode interference power splitters and Y-combiners that integrate multiple PCWs on a silicon chip in a silicon-on-insulator platform.

  14. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    Science.gov (United States)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number

  15. Chiral Liquid Crystals: Structures, Phases, Effects

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2014-06-01

    Full Text Available The introduction of chirality, i.e., the lack of mirror symmetry, has a profound effect on liquid crystals, not only on the molecular scale but also on the supermolecular scale and phase. I review these effects, which are related to the formation of supermolecular helicity, the occurrence of novel thermodynamic phases, as well as electro-optic effects which can only be observed in chiral liquid crystalline materials. In particular, I will discuss the formation of helical superstructures in cholesteric, Twist Grain Boundary and ferroelectric phases. As examples for the occurrence of novel phases the Blue Phases and Twist Grain Boundary phases are introduced. Chirality related effects are demonstrated through the occurrence of ferroelectricity in both thermotropic as well as lyotropic liquid crystals. Lack of mirror symmetry is also discussed briefly for some biopolymers such as cellulose and DNA, together with its influence on liquid crystalline behavior.

  16. Ordering of solid microparticles at liquid crystal-water interfaces.

    Science.gov (United States)

    Lin, I-Hsin; Koenig, Gary M; de Pablo, Juan J; Abbott, Nicholas L

    2008-12-25

    We report a study of the organization of solid microparticles at oil-water interfaces, where the oil is a thermotropic liquid crystal (LC). The study was motivated by the proposition that microparticle organization and LC ordering would be coupled at these interfaces. Surfactant-functionalized polystyrene microparticles were spread at air-water interfaces at prescribed densities and then raised into contact with supported films of nematic 4-pentyl-4'-cyanobiphenyl (5CB). Whereas this method of sample preparation led to quantitative transfer of microparticles from the air-water interface to an isotropic oil-water interface, forces mediated by the nematic order of 5CB were observed to rapidly displace microparticles laterally across the interface of the water upon contact with nematic 5CB, thus leading to a 65% decrease in the density of microparticles at the LC-water interface. These lateral forces were determined to be caused by microparticle-induced deformation of the LC, the energy of which was estimated to be approximately 10(4) kT. We also observed microparticles transferred to the LC-water interface to assemble into chainlike structures that were not seen when using isotropic oils, indicating the presence of LC-mediated interparticle interactions at this interface. Optical textures of the LC in the vicinity of the microparticles were consistent with formation of topological defects with dipolar symmetry capable of promoting the chaining of the microparticles. The presence of microparticles at the interface also impacted the ordering of the LCs, including a transition from parallel to perpendicular ordering of the LC with increasing microparticle density. These observations, when combined, demonstrate that LC-mediated interactions can direct the assembly of solid microparticles at LC-water interfaces and that the ordering of the LC is also strongly coupled to the presence of microparticles.

  17. Efficient visible light photocatalytic water oxidation on Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}·2H{sub 2}O nanoplates: Effects of exposed facet and local crystal structure distortion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lingling; Tang, Yiwen; Tong, Liping; Zhou, Han; Ding, Jian; Fan, Tongxiang, E-mail: txfan@sjtu.edu.cn; Zhang, Di

    2015-08-15

    Highlights: • Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}·2H{sub 2}O nanoplates were hydrothermally fabricated at different pH values. • The morphology and local crystal structure of sample has a close relationship with pH. • Sample prepared at low pH exhibited the highest photocatalytic water oxidation ability. • The H{sub 2}O molecule adsorption on different exposed facets was investigated by DFT. - Abstract: Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}·2H{sub 2}O samples with high visible-light photocatalytic water oxidation activity were hydrothermally fabricated at different pH conditions. The crystalline phase, morphology and local crystal structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), corresponding selected area diffraction (SAED) and Raman techniques. According to the SEM results, all the samples exhibited aggregates of irregular nanoplates with the average diameter of 100–200 nm and thickness of ∼20 nm. Furthermore, some factors, such as pH conditions, influencing the morphologies and local crystal structure of the Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}·2H{sub 2}O nanoplates have been systematically investigated. The photocatalytic activities of the Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}·2H{sub 2}O were evaluated by photocatalytic water oxidation under visible light irradiation. It was found that Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}·2H{sub 2}O prepared at low pH exhibited high photocatalytic water oxidation activity, indicating that different morphologies and the different extent of local crystal structure distortion can effectively influence the water oxidation activity of Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}·2H{sub 2}O. Moreover, the relationship between the exposed facets of Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}·2H{sub 2}O and the H{sub 2}O molecule adsorption was investigated by density functional theory (DFT). The results of our study indicated that the extent of

  18. Differential effect of buffering agents on the crystallization of gemcitabine hydrochloride in frozen solutions.

    Science.gov (United States)

    Patel, Mehulkumar; Munjal, Bhushan; Bansal, Arvind K

    2014-08-25

    The purpose of this study was to evaluate the differential effect of buffering agents on the crystallization of gemcitabine hydrochloride (GHCl) in frozen solutions. Four buffering agents, viz. citric acid (CA), malic acid (MA), succinic acid (SA) and tartaric acid (TA) were selected and their effect on GHCl crystallization was monitored using standard DSC and low temperature XRD. Onset of GHCl crystallization during heating run in DSC was measured to compare the differential effect of buffering agents. Glass transition temperature (Tg'), unfrozen water content in the freeze concentrate and crystallization propensity of the buffering agents was also determined for mechanistic understanding of the underlying effects. CA and MA inhibited while SA facilitated crystallization of GHCl even at 25 mM concentration. Increasing the concentration enhanced their effect. However, TA inhibited GHCl crystallization at concentrations crystallization could be explained by consideration of two opposing factors: (i) their own crystallization tendency and (ii) unfrozen water content in the freeze concentrate. In conclusion, it was established that API crystallization in frozen solution is affected by the type and concentration of the buffering agents.

  19. Generation of Tin(II) Oxide Crystals on Lead-Free Solder Joints in Deionized Water

    Science.gov (United States)

    Chang, Hong; Chen, Hongtao; Li, Mingyu; Wang, Ling; Fu, Yonggao

    2009-10-01

    The effect of the anode and cathode on the electrochemical corrosion behavior of lead-free Sn-Ag-Cu and Sn-Ag-Cu-Bi solder joints in deionized water was investigated. Corrosion studies indicate that SnO crystals were generated on the surfaces of all lead-free solder joints. The constituents of the lead-free solder alloys, such as Ag, Cu, and Bi, did not affect the corrosion reaction significantly. In contrast to lead-free solders, PbO x was formed on the surface of the traditional 63Sn-37Pb solder joint in deionized water. A cathode, such as Au or Cu, was necessary for the electrochemical corrosion reaction of solders to occur. The corrosion reaction rate decreased with reduction of the cathode area. The formation mechanism of SnO crystals was essentially a galvanic cell reaction. The anodic reaction of Sn in the lead-free solder joints occurred through solvation by water molecules to form hydrated cations. In the cathodic reaction, oxygen dissolved in the deionized water captures electrons and is deoxidized to hydroxyl at the Au or Cu cathode. By diffusion, the anodic reaction product Sn2+ and the cathodic reaction product OH- meet to form Sn(OH)2, some of which can dehydrate to form more stable SnO· xH2O crystals on the surface of the solder joints. In addition, thermodynamic analysis confirms that the Sn corrosion reaction could occur spontaneously.

  20. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    Science.gov (United States)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (DBeer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  1. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    Science.gov (United States)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our protoplanetary disk.

  2. Effect of pyrophosphate on the light scatter in KDP crystal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pyrophosphate doped potassium dihydrogen phosphate (KDP) crystal was grown from aqueous solution by the temperature lowering method. Light scatter in KDP crystal was detected with the ultramicroscopic method. The light scatter in KDP crystal was aggravated when pyrophosphate was doped into the growth solution, which was distributed ununiformly in prism and pyramidal sectors of KDP crystal. Different effects of pyrophosphate on prism and pyramidal sectors of KDP crystal can explain this case. The transmission in this crystal was measured, showing that pyrophosphate affects the transmission evidently.

  3. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    Science.gov (United States)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  4. Effects of magnetic fluids on crystallization characterizations in a multi-component and multiphase system

    Institute of Scientific and Technical Information of China (English)

    SHU BiFen; SHEN Hui; CHEN MeiYuan; XIA JianHan; WANG Xiang; SUN JianWei

    2008-01-01

    In this study, experiments are carried out on the effects of magnetic fluids on the crystallization char- acterizations in a multi-component and multiphase system, which contains the liquid and the vapor of HCFC141b, water, water vapor, and gas hydrates. The mass transfer phenomena between the phase interfaces of water-HCFC141b and water-vapor are also researched. The experimental results show that in the presence of a rotary magnetic field, magnetic fluids can remarkably enhance the heat and mass transfer between phase interfaces and, therefore, improve the performance of crystallization, especially in improving the formation temperature and velocity.

  5. Influence of fat crystals in the oil phase on stability of oil-in-water emulsions

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    1980-01-01

    Coalescence at rest and during flow was studied in emulsions of paraffin oil in water with several surfactants and with crystals of solid paraffin or tristearate in the oil phase. Solid fat in the oil phase was estimated by pulsed nuclear magnetic resonance. Without crystals, oil-in-water emulsions

  6. Oxidation and crystal field effects in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  7. Reversed Doppler effect in photonic crystals.

    Science.gov (United States)

    Reed, Evan J; Soljacić, Marin; Joannopoulos, John D

    2003-09-26

    Nonrelativistic reversed Doppler shifts have never been observed in nature and have only been speculated to occur in pathological systems with simultaneously negative effective permittivity and permeability. This Letter presents a different, new physical phenomenon that leads to a nonrelativistic reversed Doppler shift in light. It arises when light is reflected from a moving shock wave propagating through a photonic crystal. In addition to reflection of a single frequency, multiple discrete reflected frequencies or a 10 GHz periodic modulation can also be observed when a single carrier frequency of wavelength 1 microm is incident.

  8. The effect of ice crystal shape on aircraft contrails

    Science.gov (United States)

    Meza Castillo, Omar E.

    Aircraft contrails are a common phenomenon observed in the sky. They are formed mainly of water, from the ambient atmosphere and as a by-product of the combustion process, in the form of ice crystals. They have been identified as a potential contributor to global warming. Some contrails can be long-lived and create man-made cloud cover, thus possibly altering the radiative balance of the earth. There has been a great deal of research on various aspects of contrail development, but to date, little has been done on the influence of ice crystal shapes on the contrail evolution. In-situ studies have reported that young contrails are mainly quasi-spherical crystals while older contrails can have a much more diverse spectrum of possible shapes. The most common shapes found in contrails are quasi-spherical, hexagonal columns, hexagonal plates, and bullet rosettes. Numerical simulations of contrails to date typically have assumed "spherical" as the default ice shape. This work simulated contrail development with a large eddy simulation (LES) model that implemented both spherical and non-spherical shapes to examine the effects. The included shape effect parameters, such as capacitance coefficient, ventilation factor, Kelvin effect, fall velocity and ice crystal surface area, help to establish the shape difference in the results. This study also investigated initial sensitivities to an additional ice parameter, the ice deposition coefficient. The literature shows conflicting values for this coefficient over a wide range. In the course of this investigation a comparison of various ice metrics was made for simulations with different assumed crystal shapes (spheres, hexagonal columns, hexagonal plates, bullet rosettes and combination of shapes). The simulations were performed at early and late contrail time, with a range of ice crystal sizes, and with/without coupled radiation. In young and older contrails and without coupled radiation, the difference from the shape effect in

  9. An effective packing density of binary cubic crystals

    Science.gov (United States)

    Eremin, I. E.; Eremina, V. V.; Sychev, M. S.; Moiseenko, V. G.

    2015-04-01

    The methodology of effective macroscopic calculation of numerical values of internuclear distances in binary crystals of a cubic crystal system is based on the use of coefficients of the structural packing density of the crystal lattice. The possibility of combining the reference data on the main physicochemical parameters of the substance is implemented by synthesis of the corresponding mathematical models.

  10. Salts and Co-crystals of Theobromine and their phase transformations in water

    Indian Academy of Sciences (India)

    Palash Sanphui; Ashwini Nangia

    2014-09-01

    Theobromine, a xanthine derivative analogous to caffeine and theophylline, is an effective central nervous system stimulant. It has lower aqueous solubility than caffeine and theophylline. Salts of theobromine with hydrochloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid and -toluenesulfonic acid were prepared using liquid-assisted grinding (LAG). Proton transfer from the strong acid to the weak base imidazole N resulted in N+-H…O− hydrogen-bonded supramolecular assemblies of theobromine salts. The mesylate salt is polymorphic with amide N-H…O dimer and catemer synthons for the theobromine cations. A variable stoichiometry for phosphate salts (1:3 and 1:2.5) were observed with the latter being more stable. All new salts were characterized by FT-IR, PXRD, DSC and finally single crystal X-ray diffraction. In terms of stability, these salts transformed to theobromine within 1 h of dissolution in water. Remarkably, the besylate and tosylate salts are 88 and 58 times more soluble than theobromine, but they dissociated within 1 h. In contrast, theobromine co-crystals with gallic acid, anthranilic acid and 5-chlorosalicylic acid were found to be stable for more than 24 h in the aqueous slurry conditions, except malonic co-crystal which transformed to theobrominewithin 1 h.Water mediated phase transformation of theobromine salts and co-crystalmay be due to the incongruency (high solubility difference) between the components. These results suggest that even though traditional salts are highly soluble compared to co-crystals, co-crystals can be superior in terms of stability.

  11. From globules to crystals: a spectral study of poly(2-isopropyl-2-oxazoline) crystallization in hot water.

    Science.gov (United States)

    Sun, Shengtong; Wu, Peiyi

    2015-12-28

    One easy strategy to comprehend the complex folding/crystallization behaviors of proteins is to study the self-assembly process of their synthetic polymeric analogues with similar properties owing to their simple structures and easy access to molecular design. Poly(2-isopropyl-2-oxazoline) (PIPOZ) is often regarded as an ideal pseudopeptide with similar two-step crystallization behavior to proteins, whose aqueous solution experiences successive lower critical solution temperature (LCST)-type liquid-liquid phase separation upon heating and irreversible crystallization when annealed above LCST for several hours. In this paper, by microscopic observations, IR and Raman spectroscopy in combination with 2D correlation analysis, we show that the second step of PIPOZ crystallization in hot water can be further divided into two apparent stages, i.e., nucleation and crystal growth, and perfect crystalline PIPOZ chains are found to only develop in the second stage. While all the groups exhibit changes in initial nucleation, only methylene groups on the backbone participate in the crystal growth stage. During nucleation, a group motion transfer is found from the side chain to the backbone, and nucleation is assumed to be mainly driven by the cleavage of bridging C=O···D-O-D···O=C hydrogen bonds followed by chain arrangement due to amide dipolar orientation. Nevertheless, during crystal growth, a further chain ordering process occurs resulting in the final formation of crystalline PIPOZ chains with partial trans conformation of backbones and alternative side chains on the two sides. The underlying crystallization mechanism of PIPOZ in hot water we present here may provide very useful information for understanding the crystallization of biomacromolecules in biological systems.

  12. Organic Matter in Extraterrestrial Water-Bearing Salt Crystals

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Kebukwa, Y.; Fries, M.; Steele, A.

    2017-01-01

    Introduction: Direct samples of early Solar System fluids are present in two thermally-metamorphosed ordinary chondrite regolith breccias (Monahans (1998) [H5] and Zag [H3-6]), which were found to contain brine-bearing halite (NaCl) crystals that have been added to the regolith of an S-type asteroid following asteroidal metamorphism [1, 2]. The brine-bearing halite grains were proposed to be formed on an icy C-type asteroids (possibly Ceres), and transferred to an S-type asteroid via cryovolcanic event(s) [3]. A unique aspect of these halites is that they contain abundant organic rich solid inclusions hosted within the halites alongside the water inclusions. Methods: We analyzed in detail the compositions of the organic solids and the amino acid content of the halite crystals with two-step laser desorption/laser ionization mass spectrometry (L(sup 2) MS), Raman spectroscopy, X-ray absorption near edge structure (XANES), nanoscale secondary ion mass spectrometry (NanoSIMS), and ultra-performance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry (UPLC-FD/QToF-MS). Results and Discussion: The L(sup 2) MS results show signatures of low-mass polyaromatic hydro-carbons (PAHs) indicated by sequences of peaks separated by 14 atomic mass units (amu) due to successive addition of methylene (CH2) groups to the PAH skeletons [4]. Raman spectra of the micron-sized solid inclusions of the halites indicate the presence of abundant and highly variable organic matter that include a mixture of short-chain aliphatic compounds and macromolecular carbon. C-XANES analysis identified C-rich areas with peaks at 285.0 eV (aromatic C=C) and 286.6 eV (vinyl-keto C=O). However, there is no 1s-sigma* exciton peak (291.7 eV) that is indicative of the development of graphene structure [5], which suggests the organics were synthesized cold. Na-noSIMS analyses show C-rich and N-rich areas that exhibit similar isotopic values with that of the IOM in

  13. Design of a Eutectic Freeze Crystallization process for multicomponent waste water stream

    DEFF Research Database (Denmark)

    Lewis, Alison E.; Nathoo, J.; Thomsen, Kaj

    2010-01-01

    Complex, hypersaline brines originating from the mining and extractive metallurgical industries have the potential to be treated using Eutectic Freeze Crystallization (EFC). Although EFC has been shown to be effective in separating a single salt and water, it has yet to be applied to the complex...... hypersaline brines that are typical of reverse osmosis retentates in South Africa. This paper focuses on the application of EFC for the purification of a typical brine containing high levels of sodium, chlorine, sulphate and ammonia that cannot be achieved with other separation techniques. The presence...

  14. CRYSTAL Simulation Code and New Coherent Effects in Bent Crystal at the LHC

    CERN Document Server

    Sytov, Alexei I

    2015-01-01

    The LHC crystal-based collimation system is mainly addressed. A CRYSTAL simulation code for particle tracking in crystals is introduced. Its essence consists in both adequate and fast sampling of proton trajectories in crystals which is crucial for both correct description of experiments and quantitative prediction of new effects. The H8 single-pass experiment at the CERN SPS as well as 7 TeV proton deflection by a bent crystal at the LHC are simulated. We predict the existence of dechanneling peaks corresponding to the planar channeling oscillations as well as describe the possibility of their observation at high energies, specifically in the LHC crystal-assisted collimation experiment planned on 2015. An effect of excess over the amorphous level of ionization losses in the channeling mode was also found for the LHC energy. In addition, the LHC crystal-based collimation system is simulated as well as its possible improved layouts with application of a crystal with the cut and multiple volume reflection in on...

  15. NonLinear Effects in Photorefractive Crystals

    Science.gov (United States)

    1988-01-01

    Counterpropagating beams impinging on a crystal exhibiting optical activity was studied by Kukhtarev, Dov- galenko and Starkov [741. Diffraction...Dovgalenko, and V. N. Starkov . Influence of the optical activity on hologram formation in photorefractive crystals. Applied Physics A, 33:227-230, 1984

  16. Effect of Co2+ doping on solubility, crystal growth and properties of ADP crystals

    Science.gov (United States)

    Ganesh, V.; Shkir, Mohd.; AlFaify, S.; Yahia, I. S.

    2016-09-01

    Bulk size crystal growth of ADP with different concentrations doping of cobalt (Co2+) has been done by low cost slow evaporation technique at ambient conditions. The solubility measurement was carried out on pure and doped crystals and found that the solubility is decreasing with doping concentrations. The presence of Co2+ ion in crystalline matrix of ADP has been confirmed by structural, vibrational and elemental analyses. Scanning electron microscopic study reveals that the doping has strong effect on the quality of the crystals. The optical absorbance and transmission confirms the enhancement of quality of ADP crystals due to Co2+ doping and so the optical band gap. Further the dislocation, photoluminescence, dielectric and mechanical studies confirms that the properties of grown crystals with Co2+ doping has been enriched and propose it as a better candidate for optoelectronic applications.

  17. City of Crystal City, Missouri - Clean Water Act Public Notice

    Science.gov (United States)

    The EPA is providing notice of proposed Administrative Penalty Assessment against the City of Crystal City, Missouri, a municipality located in Jefferson County, Missouri, 63019, for alleged violations associated with the City’s wastewater treatment progra

  18. Ultraviolet Photoelectric Effect in ZrO2 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    XING Jie; WANG Xu; ZHAO Kun; LI Jie; JIN Kui-Juan; HE Meng; ZHENG Dong-Ning; L(U) Hui-Bin

    2007-01-01

    Nanosecond photoelectric effect is observed in a ZrO2 single crystal at ambient temperature for the first time.The rise time is 20ns and the full width at half maximum is about 30ns for the photovoltaic pulse when the wafer surface of the ZrO2 single crystal is irradiated by 248nm KrF laser pulses. The experimental results show that ZrO2 single crystals may be a potential candidate in UV photodetectors.

  19. Theoretical modeling of orientational effects in liquid-crystal layers

    Science.gov (United States)

    Melnikova, E. A.

    2005-11-01

    In the work the approximate analytical relations describing the director distribution in depth of a plane-parallel layer of nematic liquid crystal are presented. The analytical expression determining the orientational effect of the periodic surface in a system "relief grating - liquid crystal" is derived. Its diffraction characteristics are studied theoretically. Relaxation kinetics of the director in a plane-parallel layer of nematic liquid crystal is considered taking account of the microscopic inertia moment.

  20. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof;

    The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  1. Application of ZnO single crystals for light-induced water splitting under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suhak, Yuriy, E-mail: suhak@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Izdebska, Katarzyna; Skupiński, Paweł; Wierzbicka, Aleksandra; Reszka, Anna; Sybilski, Piotr; Kowalski, Bogdan J.; Mycielski, Andrzej; Zytkiewicz, Zbigniew R. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Soszko, Michał [Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw (Poland); Suchocki, Andrzej [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Physics, University of Bydgoszcz, Weyssenhoffa 11, 85-072 Bydgoszcz (Poland)

    2014-02-14

    This paper presents experimental results of implementation of ZnO single crystals as photoanodes in photoelectrochemical (PEC) cells for hydrogen generation through the process of water splitting. Both, as-grown and O{sub 2}-annealed ZnO single crystals were investigated for this purpose. A 351 nm argon laser line was used as the light source. The XRD investigations showed that used ZnO crystals are of good crystalline quality. It was found that the as-grown ZnO single crystals possess higher conversion efficiencies comparing to the O{sub 2}-annealed one. The photocurrent density was found to increase significantly with the increase of external bias applied and excitation light intensity. Time dependent photocurrent density characteristics showed that the decay of photocurrent density was not observed within the measurement time. The differences in behaviour of the as-grown and the annealed in O{sub 2} ZnO single crystals are discussed in terms of crystals intrinsic defects. - Highlights: • ZnO single crystals show excellent performance as photoanodes for water splitting. • ZnO single crystals showed good stability in aqueous solution. • Mid-gap band state introduction does not influence the efficiency of water splitting.

  2. Membrane protein crystallization in lipidic mesophases: detergent effects.

    OpenAIRE

    Ai, X.; Caffrey, M.

    2000-01-01

    The "cubic phase method" for growing crystals of membrane proteins uses a complex mixture of water, lipid, protein, and other components. The current view is that the cubic phase is integral to the process. Thus additives from whatever source introduce the possibility of destabilizing the phase, thereby compromising the crystallization process. Detergents are used to solubilize membrane proteins and are likely to be ported into the cubic medium with the target protein. Depending on the identi...

  3. Effects of Humidity and Surfaces on the Melt Crystallization of Ibuprofen

    Directory of Open Access Journals (Sweden)

    Il Won Kim

    2012-08-01

    Full Text Available Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with –CH3, –OH, and –COOH functional groups. Effects of the humidity were studied at room temperature (18–20 °C with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at −20 °C (relative humidity 36% to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.

  4. CRYSTAL simulation code and modeling of coherent effects in a bent crystal at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I., E-mail: alex_sytov@mail.ru [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str., 11, 220030 Minsk (Belarus); INFN Sezione di Ferrara, Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara (Italy); Tikhomirov, V.V., E-mail: vvtikh@mail.ru [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str., 11, 220030 Minsk (Belarus)

    2015-07-15

    A CRYSTAL simulation code for particle tracking in crystals is introduced. Its essence consists in both adequate and fast sampling of proton trajectories in crystals which is crucial for both correct description of experiments and quantitative prediction of new effects. The H8 single-pass experiment at the CERN SPS as well as 7 TeV proton deflection by a bent crystal at the LHC are simulated. We predict the existence of dechanneling peaks corresponding to the planar channeling oscillations as well as describe the possibility of their observation at high energies, specifically at the LHC energy. An effect of excess over the amorphous level of ionization losses in the channeling mode was also found at 7 TeV.

  5. CRYSTAL simulation code and modeling of coherent effects in a bent crystal at the LHC

    Science.gov (United States)

    Sytov, A. I.; Tikhomirov, V. V.

    2015-07-01

    A CRYSTAL simulation code for particle tracking in crystals is introduced. Its essence consists in both adequate and fast sampling of proton trajectories in crystals which is crucial for both correct description of experiments and quantitative prediction of new effects. The H8 single-pass experiment at the CERN SPS as well as 7 TeV proton deflection by a bent crystal at the LHC are simulated. We predict the existence of dechanneling peaks corresponding to the planar channeling oscillations as well as describe the possibility of their observation at high energies, specifically at the LHC energy. An effect of excess over the amorphous level of ionization losses in the channeling mode was also found at 7 TeV.

  6. Capillary effects in guided crystallization of organic thin films

    Directory of Open Access Journals (Sweden)

    Alta Fang

    2015-03-01

    Full Text Available Recently, it has been demonstrated that solvent-vapor-induced crystallization of triethylsilylethynyl anthradithiophene (TES ADT thin films can be directed on millimeter length scales along arbitrary paths by controlling local crystal growth rates via pre-patterning the substrate. Here, we study the influence of capillary effects on crystallization along such channels. We first derive an analytical expression for the steady-state growth front velocity as a function of channel width and validate it with numerical simulations. Then, using data from TES ADT guided crystallization experiments, we extract a characteristic channel width, which provides the smallest feature size that can be obtained by this technique.

  7. Distributed Feedback Effects in Active Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields.......We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields....

  8. Distinctive features of a crystal, crystal-like properties of a liquid and atomic quantum effects

    Science.gov (United States)

    Pavlov, V. V.

    2008-02-01

    It is believed that 'a crystal is similar to the crowd which is tightly compressed within enclosed space' and its structure in the simplest case is similar to the closest ball packing. Based on this assumption the strength of a crystal, long range ordering, the granular structure, capability for polymorphic transformation etc. were deduced. In a liquid such properties are impossible even in feebly marked form. However some of crystal-like features of melts are revealed in experiments and they frequently remain unacknowledged with a theory. From the other hand, computer model of crystal does not give even listed distinctive features of a crystal state. In the classical model the solidification more than to sunflower oil consistence was not obtained. It is possible to reach the real solidification if quantum 'freezing' of a part of atomic degrees of freedom would taken into account and any movement would stopped at zero energy level. There are some reasons to believe that another crystal properties and corresponding crystal-like features of liquids also can be got basing on these atomic quantum effects. In this case the reasons of many discussions on 'heredity', 'memory' of liquid and its microheterogeneity disappear.

  9. Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly

    Science.gov (United States)

    Kowacz, Magdalena; Marchel, Mateusz; Juknaité, Lina; Esperança, José M. S. S.; Romão, Maria João; Carvalho, Ana Luísa; Rebelo, Luís Paulo N.

    2017-01-01

    We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of IR light on the structuring of protein interfacial water. Our results indicate that the IR radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by IR light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of IR radiation may have important implications for biological and bio-inspired systems.

  10. Effect of Galla chinensis on enhancing remineralization of enamel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lei; Huang Shengbin [State Key Laboratory of Oral Disease, Sichuan University, Chengdu (China); Li Jiyao; Zhou Xuedong, E-mail: stonedentist@yahoo.c [West China College of Stomatology, Sichuan University, Chengdu (China)

    2009-06-15

    The aim of this scanning electron microscopy (SEM) study was to investigate the effect of chemical compounds of Galla chinensis (GCE, gallic acid) on the remineralization of enamel crystals in vitro. Bovine enamel blocks with an in vitro produced initial lesion were used. The lesions were subjected to a pH-cycling regime for 12 days. Each daily cycle included 4 x 1 min applications with one of six treatments: group A: 1000 ppm F aq. (as NaF, positive control); group B: deionized water (DDW, negative control); group C: 4000 ppm crude aqueous extract of GCE; group D: 4000 ppm gallic acid; group E: 4000 ppm GCE with 1000 ppm F; group F: 4000 ppm gallic acid with 1000 ppm F. The surface and vertical section of the enamel lesions were analyzed by SEM. The results indicated that the chemical compounds of G. chinensis could regulate the de-/remineralization balance through influencing the morphology and structure of enamel crystals, and the mechanisms seem to be different for GCE and gallic acid.

  11. Control of crystal growth in water purification by directional freeze crystallization

    Science.gov (United States)

    Conlon, William M. (Inventor)

    1996-01-01

    A Directional Freeze Crystallization system employs an indirect contact heat exchanger to freeze a fraction of liquid to be purified. The unfrozen fraction is drained away and the purified frozen fraction is melted. The heat exchanger must be designed in accordance with a Growth Habit Index to achieve efficient separation of contaminants. If gases are dissolved in the liquid, the system must be pressurized.

  12. Convective flow effects on protein crystal growth

    Science.gov (United States)

    Rosenberger, Franz

    1995-01-01

    During the fifth semi-annual period under this grant we have pursued the following activities: (1) Characterization of the purity and further purification of lysozyme solutions, these efforts are summarized in Section 2; (2) Crystal growth morphology and kinetics studies with tetragonal lysozyme, our observation on the dependence of lysozyme growth kinetics on step sources and impurities has been summarized in a manuscript which was accepted for publication in the Journal of Crystal Growth; (3) Numerical modelling of the interaction between bulk transport and interface kinetics, for a detailed summary of this work see the manuscript which was accepted for publication in the Journal of Crystal Growth; and (4) Light scattering studies, this work has been summarized in a manuscript that has been submitted for publication to the Journal of Chemical Physics.

  13. Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation

    Science.gov (United States)

    Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.

    2007-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically-symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over- saturation, determines crystal morphology, there are no quantitative models that relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be direct relationships between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D lattice Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. Crystal growth patterns can be varied between random growth and deterministic growth (along the maximum concentration gradient for example). The input parameters needed are the isotope- dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the condensation coefficient for ice is uncertain. The ratio D/k is a length (order 1 micron) that determines the minimum scale of dendritic growth features

  14. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Otto S. Wolfbeis

    2012-12-01

    Full Text Available Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  15. High-resolution X-ray study of the effects of deuteration on crystal growth and the crystal structure of proteinase K.

    Science.gov (United States)

    Chatake, Toshiyuki; Ishikawa, Takuya; Yanagisawa, Yasuhide; Yamada, Taro; Tanaka, Ichiro; Fujiwara, Satoru; Morimoro, Yukio

    2011-11-01

    Deuteration of macromolecules is an important technique in neutron protein crystallography. Solvent deuteration of protein crystals is carried out by replacing water (H(2)O) with heavy water (D(2)O) prior to neutron diffraction experiments in order to diminish background noise. The effects of solvent deuteration on the crystallization of proteinase K (PK) with polyethylene glycol as a precipitant were investigated using high-resolution X-ray crystallography. In previous studies, eight NO(3)(-) anions were included in the PK crystal unit cell grown in NaNO(3) solution. In this study, however, the PK crystal structure did not contain NO(3)(-) anions; consequently, distortions of amino acids arising from the presence of NO(3)(-) anions were avoided in the present crystal structures. High-resolution (1.1 Å) X-ray diffraction studies showed that the degradation of PK crystals induced by solvent deuteration was so small that this degradation would be negligible for the purpose of neutron protein crystallography experiments at medium resolution. Comparison of the nonhydrogen structures of nondeuterated and deuterated crystal structures demonstrated very small structural differences. Moreover, a positive correlation between the root-mean-squared differences and B factors indicated that no systematic difference existed.

  16. Indicative Surfaces for Crystal Optical Effects

    OpenAIRE

    R.Vlokh,; O.Mys; Vlokh, O.

    2007-01-01

    This paper has mainly a pedagogical meaning. Our aim is to demonstrate a correct general approach for constructing indicative surfaces of higher-rank tensors. We reconstruct the surfaces of piezo-optic tensor for beta-BaB2O4 and LiNbO3 crystals, which have been incorrectly presented in our recent papers.

  17. Goethite liquid crystals and magnetic field effects

    NARCIS (Netherlands)

    van den Pol, E

    2010-01-01

    In this thesis the liquid crystal phase behavior of colloidal, boardlike, goethite (alpha-FeOOH) particles is described. Apart from the nematic phase, a smectic A phase is formed in systems with a low and high polydispersity. Strong fractionation occurs which is able to reduce the local length polyd

  18. Water weakening in experimentally deformed milky quartz single crystals

    Science.gov (United States)

    Stunitz, H.; Thust, A.; Kilian, R.; Heilbronner, R.; Behrens, H.; Tarantola, A.; Fitz Gerald, J. D.

    2015-12-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of recycling of H2O between FI´s, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FI´s during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  19. Effect of magnetic field on the crystallization of zinc sulfate

    Directory of Open Access Journals (Sweden)

    Freitas A. M. B.

    2000-01-01

    Full Text Available The effect of magnetic field on the crystallization of diamagnetic zinc sulfate was investigated in a series of controlled batch cooling experiments. Zinc sulfate solutions were exposed to magnetic fields of different intensities, up to a maximum of 0.7T. A clear influence of magnetic field on the following zinc sulfate crystallization parameters was found: an increase in saturation temperature, a decrease in metastable zone width, and an increase in growth rate and average crystal size. These effects were observed for the diamagnetic zinc sulfate, but not in similar, previously reported experiments for paramagnetic copper sulfate.

  20. Crystal growth in fluid flow: Nonlinear response effects

    Science.gov (United States)

    Peng, H. L.; Herlach, D. M.; Voigtmann, Th.

    2017-08-01

    We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.

  1. Fabrication of Terahertz Wave Resonators with Alumina Diamond Photonic Crystals for Frequency Amplification in Water Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, N; Niki, T; Kirihara, S, E-mail: n-ohta@jwri.osaka-u.ac.jp [Smart Processing Research Center, Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka, 567-0047 (Japan)

    2011-05-15

    Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.

  2. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  3. Photonic crystal fiber coil sensor for water-depth sensing

    Science.gov (United States)

    Fan, Chen-Feng; Yu, Chin-Ping

    2013-05-01

    We fabricate a PCF coil sensor for water-depth sensing by winding a PCF on a plastic straw. Due to the bending-induced birefringence along the PCF, we can observe clear interference pattern in the output spectrum by placing the PCF coil into a Sagnac fiber loop. As we horizontally immerse the fabricated PCF coil into water, a nonlinear relationship between the water depth and the wavelength shift can be obtained. We have also measured the interference spectrum by vertically immersing the PCF coil into water. We can observe a linear relationship between the water depth and the wavelength shift, and the measured water-depth sensitivity for vertical immersion is -1.17 nm/mm.

  4. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation....... The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11, 12, 13, 14, 15, 16, 17 relevant for applications....

  5. Studying Crystal Growth With the Peltier Effect

    Science.gov (United States)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  6. Effects of purification on the crystallization of lysozyme

    Science.gov (United States)

    Ewing, Felecia L.; Forsythe, Elizabeth L.; van der Woerd, Mark; Pusey, Marc L.

    1996-03-01

    We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20°C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal ↔ orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.

  7. Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes

    Directory of Open Access Journals (Sweden)

    Francesco Di Stasio

    2013-10-01

    Full Text Available We demonstrate control of the photoluminescence spectra and decay rates of water-soluble green-emitting conjugated polyrotaxanes by incorporating them in polystyrene opals with a stop-band spectrally tuned on the rotaxane emission (405–650 nm. We observe a suppression of the luminescence within the photonic stop-band and a corresponding enhancement of the high-energy edge (405–447 nm. Time-resolved measurements reveal a wavelength-dependent modification of the emission lifetime, which is shortened at the high-energy edge (by ∼11%, in the range 405–447 nm, but elongated within the stop-band (by ∼13%, in the range 448–482 nm. We assign both effects to the modification of the density of photonic states induced by the photonic crystal band structure. We propose the growth of fluorescent composite photonic crystals from blends of “solvent-compatible” non-covalently bonded nanosphere-polymer systems as a general method for achieving a uniform distribution of polymeric dopants in three-dimensional self-assembling photonic structures.

  8. Implication of Crystal Water Molecules in Inhibitor Binding at ALR2 Active Site

    Directory of Open Access Journals (Sweden)

    Hymavati

    2012-01-01

    Full Text Available Water molecules play a crucial role in mediating the interaction between a ligand and a macromolecule. The solvent environment around such biomolecule controls their structure and plays important role in protein-ligand interactions. An understanding of the nature and role of these water molecules in the active site of a protein could greatly increase the efficiency of rational drug design approaches. We have performed the comparative crystal structure analysis of aldose reductase to understand the role of crystal water in protein-ligand interaction. Molecular dynamics simulation has shown the versatile nature of water molecules in bridge H bonding during interaction. Occupancy and life time of water molecules depend on the type of cocrystallized ligand present in the structure. The information may be useful in rational approach to customize the ligand, and thereby longer occupancy and life time for bridge H-bonding.

  9. Interactions between crystal violet and AOT in aqueous solutions and in AOT/isooctane/water microemulsions

    Institute of Scientific and Technical Information of China (English)

    HAO Xiaojuan; AN Xueqin; CHEN Zhiyun; SHEN Weiguo

    2004-01-01

    The absorbance of crystal violet (CV) in a series of aqueous solutions and a series of sodium bis(2-ethyl- hexyl) sulfosuccinate (AOT)/isooctane/water microemulsions has been determined. Association models have been used to analyse the experimental data to obtain the association constants of CV and AOT in the above two media. It was found that about up to 57% CV was associated by AOT in AOT/ isooctane/water microemulsions, which reduced the reaction rate of alkaline fading of crystal violet in the microemulsions.

  10. Effect of microheterogeneity on horse spleen apoferritin crystallization

    Science.gov (United States)

    Thomas, B. R.; Carter, D.; Rosenberger, F.

    1998-05-01

    Apoferritin (APO) is an interesting model protein for crystal growth studies, as an alternative to the widely used hen egg white lysozyme. The effect of naturally occurring oligomers on the crystallization of isolated, microhomogeneous APO monomers (24 subunits, Mr=440 000) was investigated. SDS PAGE analysis and immunoblotting showed that commercial APO was free of foreign proteins (>99.9% w/w). The quaternary structure of APO oligomers that form prior to the addition of precipitant was analyzed in native 4-15% T (1-2% C) gradient PAGE. Optical densitometry of these gels showed that oligomers (>24 subunit monomer) constituted approximately 45% w/w of the total APO. The primary oligomeric contaminants were dimers (48 subunits) with 35% w/w, and several bands constituting trimers (˜72 subunits) with 10% w/w. Directly determined physical molecular weights ( Mw) and conformational data for oligomers obtained by analytical gel filtration fast protein-liquid-chromatography separations utilizing UV and multi-angle laser light scattering detectors (GF-FPLC-MALLS) confirmed and expanded the native PAGE results. This technique allowed the discovery of large oligomers ( Mw=5 000 000 and 80 000 000) present in concentrations contamination to 5% w/w, and to produce 0.25 g of microhomogeneous monomers from 0.5 g APO. Crystallization from microhomogeneous monomer solutions yielded large crystals 0.5-1.0 mm in size. These crystals yielded an X-ray diffraction resolution of 1.8 Å. Reconstitutive experiments in which isolated oligomers were added to monomer preparations showed that dimers perturb the growth habit and reduce the crystal growth, without significantly affecting the nucleation. On trimer addition, the nucleation was increased and the crystal growth decreased. Addition of cadmium sulfate precipitant to unpurified APO did not affect the nature or quantity of the oligomers. These effects of oligomers on crystallization underline microheterogeneity as a

  11. Effect of process parameters on crystal size and morphology of lactose in ultrasound-assisted crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2011-03-15

    {alpha}-lactose monohydrate is widely used as a pharmaceutical excipient. Drug delivery system requires the excipient to be of narrow particle size distribution with regular particle shape. Application of ultrasound is known to increase or decrease the growth rate of certain crystal faces and controls the crystal size distribution. In the present paper, effect of process parameters such as sonication time, anti-solvent concentration, initial lactose concentration and initial pH of sample on lactose crystal size, shape and thermal transition temperature was studied. The parameters were set according to the L{sub 9}-orthogonal array method at three levels and recovered lactose from whey by sonocrystallization. The recovered lactose was analyzed by particle size analyzer, scanning electron microscopy and differential scanning calorimeter. It was found that the morphology of lactose crystal was rod/needle like shape. Crystal size distribution of lactose was observed to be influenced by different process parameters. From the results of analysis of variance, the sonication time interval was found to be the most significant parameter affecting the volume median diameter of lactose with the highest percentage contribution (74.28%) among other parameters. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Beam fanning effect and image storage in Ce: KNSBN crystal

    Institute of Scientific and Technical Information of China (English)

    LI PanLai; GUO QingLin; WANG ZhiJun; PANG LiBin; LIANG BaoLai

    2007-01-01

    A non-synchronously-numerating experimental system is applied in this research. The effect of the incident beam intensity Ⅰ and the beam incident angle θ on beam fanning effect is investigated with a singular beam incident on Ce:KNSBN crystal. The results show that the beam fanning effect strongly depends on Iand θ. The threshold effect of/for the beam fanning in Ce:KNSBN crystal is observed, and the threshold intensity of incident beam keeps the same value of 38.2 mW/cm2 for different θ, and the steady beam fanning intensity Ifsat reaches a peak at θ=15° under the same Ⅰ. In addition, the effect of the incident beam modulated on the beam fanning noise and holographic storage in Ce:KNSBN crystal is studied. And the results suggest that the beam fanning noise is effectively suppressed, and the quality of the reappearance image is greatly improved.

  13. Fiber field-effect device via in situ channel crystallization.

    Science.gov (United States)

    Danto, Sylvain; Sorin, Fabien; Orf, Nicholas D; Wang, Zheng; Speakman, Scott A; Joannopoulos, John D; Fink, Yoel

    2010-10-01

    The in situ crystallization of the incorporated amorphous semiconductor within the multimaterial fiber device yields a large decrease in defect density and a concomitant five-order-of-magnitude decrease in resistivity of the novel metal-insulator-crystalline semiconductor structure. Using a post-drawing crystallization process, the first tens-of-meters-long single-fiber field-effect device is demonstrated. This work opens significant opportunities for incorporating higher functionality in functional fibers and fabrics.

  14. Aharonov-Casher Effect in One-Dimensional Wigner Crystals

    Science.gov (United States)

    Tserkovnyak, Yaroslav; Kindermann, Markus

    2010-03-01

    We theoretically study the effects of spin-orbit coupling on spin exchange in a low-density Wigner crystal. In addition to the familiar antiferromagnetic Heisenberg exchange, we find general anisotropic interactions in spin space if the exchange paths allowed by the crystal structure form loops in real space. In particular, it is shown that the two-electron exchange interaction can acquire ferromagnetic character. Tserkovnyak and Kindermann, Phys. Rev. Lett. 102 (2009) 126801.

  15. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  16. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  17. Anomalous bending effect in photonic crystal fibers.

    Science.gov (United States)

    Tu, Haohua; Jiang, Zhi; Marks, Daniel L; Boppart, Stephen A

    2008-04-14

    An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.

  18. Sensitivity Studies For Cirrus Effective Ice Crystal Size Retrieval In The Infrared

    Science.gov (United States)

    Radel, G.; Stubenrauch, C.; Holz, R.; Mitchell, D.

    During the last years, much effort has been made to find a realistic description of the single-scattering properties of non-spherical ice crystals of cirrus clouds explicitely in dependence of ice crystal shape and size distribution. By using single scattering properties of non-spherical ice crystals instead of ice spheres, one observes that the spectral region between 8 and 12 micron offers a possibility of effective ice crystal size retrieval. The difference between cirrus emissivities at these wavelengths is sen- sitive to the mean ice crystal size of the cirrus cloud. At present, we use two different sets of ice crystal single scattering properties in the infrared: one for randomly oriented planar polycrystals and the other for hexagonal columns. For planar polycrystals, mod- ified Anomalous Diffraction Approximation (mADA) is used to describe absorption coefficients as analytical expressions of size distribution parameters, ice crystal shape, wavelength and refractive index, taking into account a parameterized correction for internal reflection and refraction. As scattering cannot be calculated through mADA, scattering contributions are obtained from different combinations of Improved Geo- metric Optics and Finite Difference Time Domain. For hexagonal columns the single scattering properties have been computed using the Finite Difference Time Domain method. Retrievals of mean effective ice crystal sizes in the infrared have the advan- tage that they are less dependent on the assumed shape of the ice crystals, in contrary to retrievals from differences between the visible and near-infrared radiation. Several satellite instruments measure now emitted and scattered radiation from different lev- els of the atmosphere. The longest time period is covered by the TOVS instruments aboard the NOAA Polar Orbiting Environmental Satellites (since 1979). These obser- vations have been converted into atmospheric temperature and water vapor profiles as well as cloud and

  19. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    Science.gov (United States)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  20. Promotional effects of new types of additives on fat crystallization.

    Science.gov (United States)

    Yoshikawa, Shinichi; Kida, Haruyasu; Sato, Kiyotaka

    2014-01-01

    We examined the promotional effects of additives on fat crystallization, such as inorganic (talc, carbon nanotube (CNT), and graphite) and organic (theobromine, ellagic acid dihydrate (EAD), and terephthalic acid) materials. The triacylglycerols (TAGs) of trilauroylglycerol (LLL), trimyristoylglycerol (MMM), and tripalmitoylglycerol (PPP) were employed as the fats. The additives (1 wt%) were added to the molten TAGs, and then the mixtures were cooled at a rate of 1°C/min followed by heating at a rate of 5°C/min. The crystallization and melting properties were observed using differential scanning calorimetry, X-ray diffraction, and polarized optical microscope (POM). Consequently, we found that the above six additives remarkably increased the initial temperatures of crystallization (Ti) on cooling without changing the melting temperatures. For example, in the case of LLL, the increases in Ti were 2.6°C (talc), 3.9°C (CNT), 8.1°C (graphite), 1.1°C (theobromine), 2.0°C (EAD), and 6.8°C (terephthalic acid). Very similar effects were observed for the crystallization of MMM and PPP with the six additives. Furthermore, the polymorphs of the first occurring crystals were changed from metastable to more stable forms by many of these additives. The POM observation revealed that the crystallization was initiated at the surfaces of additive particles. This study has shown for the first time that the heterogeneous nucleation of fat crystals can be greatly promoted by new types of additives. Such additives have great potential to promote fat crystallization by not only hydrophobic but also hydrophilic molecular interactions between the fats and additives.

  1. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    DEFF Research Database (Denmark)

    Xing, P.F.; Zhuang, Yanxin; Wang, W.H.

    2002-01-01

    The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using...... effect on crystallization is studied by in situ high-pressure and high-temperature XRD using synchrotron radiation. Two crystallization temperatures, observed by in-situ XRD, behave differently with varying pressure. The onset crystallization temperature increases with pressure with a slope of 9.5 K...

  2. ZEOLITES: EFFECTIVE WATER PURIFIERS

    Science.gov (United States)

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  3. Organic single-crystal field-effect transistors

    Directory of Open Access Journals (Sweden)

    Colin Reese

    2007-03-01

    Full Text Available Organic molecular crystals hold great promise for the rational development of organic semiconductor materials. Their long-range order not only reveals the performance limits of organic materials, but also provides unique insight into their intrinsic transport properties. The field-effect transistor (FET has served as a versatile tool for electrical characterization of many facets of their performance. In the last few years, breakthroughs in single-crystal FET fabrication techniques have enabled the realization of field-effect mobilities far surpassing amorphous Si, observation of the Hall effect in an organic material, and the study of transport as an explicit function of molecular packing and chemical structure.

  4. Light-induced deformation of photoresponsive liquid crystals on a water surface.

    Science.gov (United States)

    Okano, Kunihiko; Shinohara, Masato; Yamashita, Takashi

    2009-01-01

    Photodeformation: Azobenzene derivatives showing a room-temperature liquid crystal (LC) phase exhibit photoinduced deformation on a water surface. While a droplet of a LC sample floating on the surface expands upon UV irradiation, a LC sample containing a solvent is condensed towards the center of the illuminated regions (see figure).

  5. Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Eng-Poh, E-mail: epng@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Awala, Hussein [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ghoy, Jia-Pei [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Vicente, Aurélie [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ling, Tau Chuan [Institute of Biological Sciences, Faculty of Science, University of Malaya (Malaysia); Ng, Yun Hau [School of Chemical Engineering, The University of New South Wales, Sydney (Australia); Mintova, Svetlana [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Adam, Farook, E-mail: farook@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia)

    2015-06-01

    Synthesis of EMT zeolite nanocrystals from rice husk ash biomass (RHA) under continuous ultrasonic irradiation is reported. The aging, nucleation and crystallization stages of EMT zeolite in the system were monitored at ambient temperature, and compared with the conventional hydrothermal method. It was found that ultrasonic wave induced rapid crystal growth of the nanosized EMT zeolite. Complete crystallization of EMT nanocrystals was achieved within 24 h which was much faster than conventional hydrothermal synthesis (36 h). Furthermore, XRD and TEM analyses revealed that more nuclei were formed during the nucleation stage, allowing the preparation of smaller zeolite nanocrystals with high crystallinity. The results also showed that sonocrystallization produced EMT zeolite with high yield (ca. 80%). The ultrasound-prepared EMT nanocrystals were also found to have high porosity and high hydrophilicity, making the material promising for water sorption applications including vapor sensing, heat pump and adsorption technologies. - Highlights: • Nanosized EMT zeolites are formed from rice husk ash under ultrasonic irradiation. • The effects of ultrasonic waves in nanosized EMT zeolite synthesis are studied. • Ultrasound induces rapid crystal growth and produces high zeolite yield. • Smaller zeolite nanocrystals with high crystallinity and large defect sites are obtained. • Improved surface hydrophilicity of crystals is beneficial for water sorption applications.

  6. Substituent effect on the thermodynamic solubility of structural analogs: relative contribution of crystal packing and hydration.

    Science.gov (United States)

    Ozaki, Shunsuke; Nakagawa, Yoshiaki; Shirai, Osamu; Kano, Kenji

    2014-11-01

    Thermodynamic analysis of the solubility of benzoylphenylurea (BPU) derivatives was conducted to investigate the relative importance of crystal packing and hydration for improving solubility with minor structural modification. The contribution of crystal packing to solubility was evaluated from the change in Gibbs energy on the transition from the crystalline to liquid state. Hydration Gibbs energy was estimated using a linear free-energy relationship between octanol-water partition coefficients and gas-water partition coefficients. The established solubility model satisfactorily explained the relative thermodynamic solubility of the model compounds and revealed that crystal packing and hydration equally controlled solubility of the structural analogs. All hydrophobic substituents were undesirable for solubility in terms of hydration, as expected. On the other hand, some of these hydrophobic substituents destabilized crystal packing and improved the solubility of the BPU derivatives when their impact on crystal packing exceeded their negative influence on hydration. The replacement of a single substituent could cause more than a 10-fold enhancement in thermodynamic solubility; this degree of improvement was comparable to that generally achieved by amorphous formulations. Detailed analysis of thermodynamic solubility will allow us to better understand the true substituent effect and design drug-like candidates efficiently.

  7. The short range anion-H interaction is the driving force for crystal formation of ions in water.

    Science.gov (United States)

    Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre

    2009-05-07

    The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.

  8. Water Structure in Trichosanthin Crystal at 1.73 Resolution

    Institute of Scientific and Technical Information of China (English)

    高奔; 马星奇; 王耀萍; 陈世芝; 吴伸; 董贻诚

    1994-01-01

    The water-structure model in Trichosanthin crystal is presented,and 133 water moleculesare included and 118 water molecules are hydrogen-bonded to protein.In the interior of Trichosanthin,thereare four discrete internal water molecules,among which two water molecules W251 and W252 are separated-ly hydrogen-bonded to the side-chain groupsof 156Gln and 157Ser in the distorted segment of A5 helix andplay a role in maintaining the conformation of the active site.The comparative result of water structures incrystals indicates that when approaching the protein,the ribosome induces a conformational change in theresidues of the active site,which leads to an appropriate alignment of catalytic groups as well as the optimalconformation for the catalysis,and activates a water molecule (W257) to participate in the ribosome inactiva-tion.

  9. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds. The the......A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...... on the susceptibility, the first and second moment frequencies and the line shape are calculated self-consistently....

  10. Effects of impurities on growth habit of KDP crystal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of metaphosphate, boric acid and quaternary ammonium cations with different concentration on the growth habit of KDP crystal are reported. The results are analyzed and discussed, which show that the effects of different impurities on the growth habit of KDP are not the same. It is due to the different adsorption mechanism of the impurities.

  11. Determination of the crystal growth mechanism of KCl in ethanol?water system

    Science.gov (United States)

    Liszi, I.; Hasznosné-Nezdei, M.; Lakatos, B. G.; Sapundzhiev, Ts. J.; Popov, R. G.

    1999-03-01

    The mechanism of crystal growth of KCl in ethanol-water system is studied by Nielsen's map-model, and the growth rate is estimated by the induction time (nucleation rate, growth rate) function in a salting-out crystallization system. In the experiments, the induction time and the particle size distribution of the final product were measured, and the solid-liquid interfacial tension was calculated from the induction period data. The map of rate control of crystal-growth for the KCl-ethanol-water salting out system was constructed by taking into consideration that the liquid-vapour interfacial tension varied with the variation of the ethanol concentration, and, as a consequence, the solid-liquid interfacial tension varied as well. As a result, diffusion controlled crystal growth was obtained as a rate-determining step for supersaturation ratios 0.01<0.45. For determining the crystal growth rate, the nucleation rate was estimated from the experimental average particle number and induction period, applying the assumption that all nuclei were born during the induction period. The results, obtained by using linear and non-linear regressions, have appeared to be in good agreement with the data published in the literature.

  12. Effective dislocation lines in continuously dislocated crystals. III. Kinematics

    CERN Document Server

    Trzesowski, Andrzej

    2007-01-01

    A class of congruences of principal Volterra-type effective dislocation lines associated with a dislocation density tensor is distinguished in order to investigate the kinematics of continuized defective crystals in terms of their dislocation densities (tensorial as well as scalar). Moreover, it shown, basing oneself on a formula defining the mean curvature of glide surfaces for principal edge effective dislocation lines, that the considered kinematics of continuized defective crystals is consistent with some relations appearing in the physical theory of plasticity (e.g. with the Orowan-type kinematic relations and with the treatment of shear stresses as driving stresses of moving dislocations).

  13. Quantum effects for particles channeling in a bent crystal

    Science.gov (United States)

    Feranchuk, Ilya; San, Nguyen Quang

    2016-09-01

    Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.

  14. Effects of crystallization in the presence of the diastereomer on the crystal properties of (SS)-(+)-pseudoephedrine hydrochloride.

    Science.gov (United States)

    Gu, C H; Grant, D J

    2000-01-01

    The formation and separation of diastereomers is widely used to resolve enantiomers. However, during crystallization of a chiral compound from a solution containing its diastereomer, the diastereomer may be incorporated as an impurity into the host crystal lattice, leading to changes in the thermodynamic properties and intrinsic dissolution rate of the host crystals. This hypothesis was tested by growing crystals of (SS)-(+)-pseudoephedrine hydrochloride (+PC) from aqueous solution containing various amounts of (RS)-(-)-ephedrine hydrochloride (-EC). Although the melting phase diagram of these two solid compounds, determined by differential scanning calorimetry (DSC), shows eutectic behavior, 0.034-2.4 mol% of -EC was incorporated into the crystal lattice of +PC during crystallization to form terminal solid solutions with a segregation coefficient of 0.31. In a single batch, the larger crystals contain more incorporated impurities than smaller crystals. The enthalpy and entropy of fusion measured by DSC decrease with increasing incorporation of the guest molecules into the host, indicating increases in the enthalpy and entropy of the solid. The disruption index, which indicates the disruptive effect of guest molecules in the host crystal lattice, is 60 at lattice. The average intrinsic dissolution rate of impure crystals in 2-propanol is 15.8% lower than that of pure host crystals, suggesting the formation of stable solid solutions.

  15. Thermal Effect in KTP Crystals During High Power Laser Operation

    Institute of Scientific and Technical Information of China (English)

    YAO Jian-Quan; YU Yi-Zhong; CHEN Jin; ZHANG Fan; WANG Peng; WANG Tao; ZHANG Bai-Gang

    2001-01-01

    We report on the theoretical and experimental studies of the thermal effect of the KTP crystal during high power operation. From the dependence of the refractive index temperature coefficients on wavelength, the dependence of the optimum phase-matching angles on temperature is derived. In the experiment, the angle of the frequency-doubled KTP crystal is tilted to compensate for the thermal effect and to obtain △φ = 0.7° when the green laser output power is 30 W and the KTP crystal temperature is about 80°C. We obtained the highest stable output power greater than 40 W with an L-shaped flat-flat intracavity frequency-doubled Nd:YAG laser. The experimental results are very consistent with the theoretical analysis.

  16. Effect of crystal habit on the dissolution behaviour of simvastatin crystals and its relationship to crystallization solvent properties.

    Science.gov (United States)

    Bukovec, P; Benkic, P; Smrkolj, M; Vrecer, F

    2016-05-01

    Simvastatin crystals, having same crystal structure but different types of habits and hence different intrinsic dissolution rate, were prepared by recrystallization from solvents selected according to their polarity index. Scanning electron microscopy, laser diffraction, image analysis, X-ray powder diffractometry, Fourier transform infrared spectroscopy and differential scanning calorimetry were used to investigate the physicochemical characteristics of the prepared crystals. The isolated crystals exhibited different crystal habits but possessed the same internal crystal structure. In this study the comparative intrinsic dissolution behaviour of the simvastatin crystals with different types of habits was studied and explained by surface energy and correlated to different solvent systems that were used for crystallization. In our work we diminished the influence of all other physical parameters that could influence the dissolution rate, e.g. particle size, specific surface area and polymorphism in order to focus the study onto the impact of crystal shape itself on the dissolution rate of simvastatin crystals. Rod shaped crystals isolated from more hydrophilic solvent mixture dissolved faster than plate-like crystals obtained from solvent mixture with lower polarity index. We correlated this fact to the different growth rate of the individual faces which resulted in different relative size of the individual crystal faces exposed to the dissolution medium as well as the chemical nature of those faces which in turn influenced the wettability and subsequent dissolution of the active pharmaceutical ingredient.

  17. Effect of nucleating agents on crystallization kinetics of PET

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Effects of three nucleating agents concluding talc, sodium benzoate (SB and an ionomer (Ion., Na+ on crystallization of poly(ethylene terephthalate (PET were studied by differential scanning calorimetry (DSC and polarized optical microscope (POM, the parameters of crystallization kinetics were obtained through Avrami and Ozawa equations. The fold surface free energy σe of pure PET and PET/nucleating agent blends were calculated by Hoffman-Lauritzen theory. The results indicate that the three kinds of nucleating agents increase the crystallization rate constant through promoting their nucleating effect for PET crystallization, among which SB is the best one with the same content. The crystallization mode of PET might shift from three-dimensional growth to two-dimensional growth by the addition of the nucleating agents. The values of σe of PET/nucleating agent blends are much less than that of pure PET, and PET/SB (99:1 blend has the least value of σe (18.2 mJ/m2. The conclusion based on Hoffman theory is similar to the analysis by Avrami and Ozawa equations.

  18. Growth and Solvent Effects of a Promising Nonlinear Optical Sodium Paranitrophenolate Dihydrate (NO2-C6H4-ONa·2H2O) Single Crystal

    Institute of Scientific and Technical Information of China (English)

    B.Milton Boaz; A.Leyo Rajesh; S. Xavier Jesu Raja; S. Jerome Das

    2004-01-01

    Sodium paranitrophenolate dihydrate (NPNa·2H2O) is an excellent semiorganic nonlinear optical (NLO) material, crystallizes both in water and methanol with high degree of transparency. Good optical quality single crystals of dimension upto 18 mmx6 mmx3 mm are obtained by isothermal solvent evaporation technique. The solubility of the crystal in different solvents was measured gravimetrically. The single crystals of NPNa·2H2O show variation in physical properties and growth rate in different solvents. Methanol or ethanol solution yields crystals of bipyramidal shape with clear morphology. However, methanol grown crystal is exhibiting improved hardness parameters and possesses excellent thermal stability as compared to water grown crystals. The effects of solvent on hardness parameter along with thermal and optical properties of NPNa·2H2O was revealed in this paper.

  19. Water adsorption on etched hydrophobic surfaces of L-, D- and DL-valine crystals

    Science.gov (United States)

    Segura, J. J.; Verdaguer, A.; Fraxedas, J.

    2014-03-01

    The adsorption of water on etched (001) surfaces of L-, D- and DL-valine crystals has been characterized by atomic force microscopy (AFM) using different operational modes (contact, non-contact and electrostatic) above and below the dew point, the temperature at which water vapor from humid air condenses into liquid water at constant atmospheric pressure. The analysis of the images suggests the formation of aggregates of solvated valine molecules that easily diffuse on the hydrophobic terraces only constrained by step barriers of the well-defined chiral parallelepipedic patterns induced by the etching process.

  20. The contrasting effect of the Ta/Nb ratio in (111)-layered B-site deficient hexagonal perovskite Ba5Nb4-xTaxO15 crystals on visible-light-induced photocatalytic water oxidation activity of their oxynitride derivatives.

    Science.gov (United States)

    Hojamberdiev, Mirabbos; Bekheet, Maged F; Zahedi, Ehsan; Wagata, Hajime; Vequizo, Junie Jhon M; Yamakata, Akira; Yubuta, Kunio; Gurlo, Aleksander; Domen, Kazunari; Teshima, Katsuya

    2016-08-02

    The effect of the Ta/Nb ratio in the (111)-layered B-site deficient hexagonal perovskite Ba5Nb4-xTaxO15 (0 ≤ x ≤ 4) crystals grown by a KCl flux method on visible-light-induced photocatalytic water oxidation activity of their oxynitride derivatives BaNb1-xTaxO2N (0 ≤ x ≤ 1) was investigated. The Rietveld refinement of X-ray data revealed that all Ba5Nb4-xTaxO15 samples were well crystallized in the space group P3[combining macron]m1 (no. 164). Phase-pure BaNb1-xTaxO2N (0 ≤ x ≤ 1) porous structures were obtained by nitridation of the flux-grown oxide crystals at 950 °C for 20, 25, 30, 35, and 40 h, respectively. The absorption edge of BaNb1-xTaxO2N (0 ≤ x ≤ 1) was slightly shifted from 720 to 690 nm with the increasing Ta/Nb ratio. The O2 evolution rate gradually progressed and reached the highest value (127.24 μmol in the first 2 h) with the Ta content up to 50 mol% but decreased at 75 and 100 mol% presumably due to the reduced specific surface area and high density of structural defects, such as grain boundaries acting as recombination centers, originated from high-temperature nitridation for prolonged periods. Transient absorption spectroscopy provided evidence for the effect of the Ta/Nb ratio on the behavior and energy states of photogenerated charge carriers, indicating a direct correlation with photocatalytic water oxidation activity of BaNb1-xTaxO2N.

  1. Spontaneous Water Oxidation at Hematite (α-Fe2O3) Crystal Faces

    Energy Technology Data Exchange (ETDEWEB)

    Chatman, Shawn ME; Zarzycki, Piotr P.; Rosso, Kevin M.

    2015-01-28

    Hematite (α-Fe2O3) persists as a promising candidate for photoelectrochemical water splitting but a slow oxygen evolution reaction (OER) at its surfaces remains a limitation. Here we extend a series of studies that examine pH-dependent surface potentials and electron transfer properties of effectively perfect low-index crystal faces of hematite in contact with simple electrolyte. Zero resistance amperometry was performed in a two electrode configuration to quantify spontaneous dark current between hematite crystal face pairs (001)/(012), (001)/(113), and (012)/(113) at pH 3. Exponentially decaying currents initially of up to 200 nA were reported between faces over four minute experiments. Fourth order ZRA kinetics indicated rate limitation by the OER for current that flows between (001)/(012) and (001)/(113) face pairs, with the (012) and (113) faces serving as the anodes when paired with (001). The cathodic partner reaction is reductive dissolution of the (001) face, converting surface Fe3+ to solubilized aqueous Fe2+, at a rate maintained by the OER at the anode. In contrast, OER rate limitation does not manifest for the (012)/(113) pair. The uniqueness of the (001) face is established in terms of a faster intrinsic ability to accept the protons required for the reductive dissolution reaction. OER rate limitation inversely may thus arise from sluggish kinetics of hematite surfaces to dispense with the protons that accompany the four-electron OER. The results are explained in terms of semi-quantitative energy band diagrams. The finding may be useful as a consideration for tailoring the design of polycrystalline hematite photoanodes that present multiple terminations to the interface with electrolyte.

  2. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water

    Science.gov (United States)

    Furukawa, Yoshinori; Nagashima, Ken; Nakatsubo, Shun-ichi; Yoshizaki, Izumi; Tamaru, Haruka; Shimaoka, Taro; Sone, Takehiko; Yokoyama, Etsuro; Zepeda, Salvador; Terasawa, Takanori; Asakawa, Harutoshi; Murata, Ken-ichiro; Sazaki, Gen

    2017-01-01

    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as ‘antifreeze’ in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing. PMID:28262787

  3. Continued research on direct contact heat exchangers: Effects of crystallization

    Science.gov (United States)

    Jacobs, H. R.

    1987-07-01

    This report describes a preliminary study to determine whether crystallizer schemes could be effectively used in binary geothermal power plants. An industry and literature search was conducted for models that predict potential scale formation. The results indicated that the theoretical models for predicting not only homogeneous nucleation, but also secondary nucleation are suspect.

  4. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting...

  5. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  6. Field-effect transistors on tetracene single crystals

    NARCIS (Netherlands)

    De Boer, R.W.I.; Klapwijk, T.M.; Morpurgo, A.F

    2003-01-01

    We report on the fabrication and electrical characterization of field-effect transistors at the surface of tetracene single crystals. We find that the mobility of these transistors reaches the room-temperature value of 0.4 cm2/V s. The nonmonotonous temperature dependence of the mobility, its weak g

  7. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting...

  8. TOPICAL REVIEW: Organic field-effect transistors using single crystals

    Science.gov (United States)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  9. Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening.

    Science.gov (United States)

    Chen, Yingying; Davis, Jake R; Nguyen, Chi H; Baygents, James C; Farrell, James

    2016-06-01

    This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H(+) form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H(+) ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO4(2-), Cl(-), and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated.

  10. Strain gradient crystal plasticity effects on flow localization

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented...... in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered...... for metals described by the reformulated Fleck-Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory...

  11. Treating temperature effect on bandgap in polymer opal photonic crystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The optical reflective spectra and microstruc- tures of polystyrene opal photonic crystals treated with dif- ferent temperatures have been investigated. With tempera- ture increasing, the polystyrene spheres in opal structure transform to dodecahedrons, and the peak of reflective spec- trum moves to shorter wavelength. The experiment result testifies the effect of the effective refractive index and the filling ratio to the bandgap position, and it corresponds to the theoretical simulative result.

  12. Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting.

    Science.gov (United States)

    Wang, Tuo; Gong, Jinlong

    2015-09-07

    Solar water splitting provides a clean and renewable approach to produce hydrogen energy. In recent years, single-crystal semiconductors such as Si and InP with narrow band gaps have demonstrated excellent performance to drive the half reactions of water splitting through visible light due to their suitable band gaps and low bulk recombination. This Minireview describes recent research advances that successfully overcome the primary obstacles in using these semiconductors as photoelectrodes, including photocorrosion, sluggish reaction kinetics, low photovoltage, and unfavorable planar substrate surface. Surface modification strategies, such as surface protection, cocatalyst loading, surface energetics tuning, and surface texturization are highlighted as the solutions.

  13. Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Zhukova, Elena S., E-mail: zhukovaelenka@gmail.com; Gorshunov, Boris P. [Moscow Institute of Physics and Technology, 9 Institutskiy per., 141700 Dolgoprudny, Moscow Region (Russian Federation); 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Street 38, 119991 Moscow (Russian Federation); Torgashev, Victor I. [Faculty of Physics, Southern Federal University, 5 Zorge St., 344090 Rostov-on-Don (Russian Federation); Lebedev, Vladimir V. [Moscow Institute of Physics and Technology, 9 Institutskiy per., 141700 Dolgoprudny, Moscow Region (Russian Federation); Landau Institute for Theoretical Physics, Russian Academy of Sciences, Akademika Semenova av., 1-A, 142432 Chernogolovka, Moscow Region (Russian Federation); Shakurov, Gil' man S. [Kazan Physical-Technical Institute, Russian Academy of Sciences, 10/7 Sibirsky Trakt, 420029 Kazan (Russian Federation); Kremer, Reinhard K. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Pestrjakov, Efim V. [Institute of Laser Physics, Russian Academy of Sciences, 13/3 Ac. Lavrentyev' s Prosp., 630090 Novosibirsk (Russian Federation); Thomas, Victor G.; Fursenko, Dimitry A. [Institute of Geology and Mineralogy, Russian Academy of Sciences, 3 Ac. Koptyug' s Prosp., 630090 Novosibirsk (Russian Federation); Prokhorov, Anatoly S. [Moscow Institute of Physics and Technology, 9 Institutskiy per., 141700 Dolgoprudny, Moscow Region (Russian Federation); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Street 38, 119991 Moscow (Russian Federation); Dressel, Martin [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany)

    2014-06-14

    Low-energy excitations of a single water molecule are studied when confined within a nano-size cavity formed by the ionic crystal lattice. Optical spectra are measured of manganese doped beryl single crystal Mn:Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}, that contains water molecules individually isolated in 0.51 nm diameter voids within the crystal lattice. Two types of orientation are distinguished: water-I molecules have their dipole moments aligned perpendicular to the c axis and dipole moments of water-II molecules are parallel to the c-axis. The optical conductivity σ(ν) and permittivity ε{sup ′}(ν) spectra are recorded in terahertz and infrared ranges, at frequencies from several wavenumbers up to ν = 7000 cm{sup −1}, at temperatures 5–300 K and for two polarizations, when the electric vector E of the radiation is parallel and perpendicular to the c-axis. Comparative experiments on as-grown and on dehydrated samples allow to identify the spectra of σ(ν) and ε{sup ′}(ν) caused exclusively by water molecules. In the infrared range, well-known internal modes ν{sub 1}, ν{sub 2}, and ν{sub 3} of the H{sub 2}O molecule are observed for both polarizations, indicating the presence of water-I and water-II molecules in the crystal. Spectra recorded below 1000 cm{sup −1} reveal a rich set of highly anisotropic features in the low-energy response of H{sub 2}O molecule in a crystalline nano-cavity. While for E∥c only two absorption peaks are detected, at ∼90 cm{sup −1} and ∼160 cm{sup −1}, several absorption bands are discovered for E⊥c, each consisting of narrower resonances. The bands are assigned to librational (400–500 cm{sup −1}) and translational (150–200 cm{sup −1}) vibrations of water-I molecule that is weakly coupled to the nano-cavity “walls.” A model is presented that explains the “fine structure” of the bands by a splitting of the energy levels due to quantum tunneling between the minima in a six-well potential

  14. Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice.

    Science.gov (United States)

    Zhukova, Elena S; Torgashev, Victor I; Gorshunov, Boris P; Lebedev, Vladimir V; Shakurov, Gil'man S; Kremer, Reinhard K; Pestrjakov, Efim V; Thomas, Victor G; Fursenko, Dimitry A; Prokhorov, Anatoly S; Dressel, Martin

    2014-06-14

    Low-energy excitations of a single water molecule are studied when confined within a nano-size cavity formed by the ionic crystal lattice. Optical spectra are measured of manganese doped beryl single crystal Mn:Be3Al2Si6O18, that contains water molecules individually isolated in 0.51 nm diameter voids within the crystal lattice. Two types of orientation are distinguished: water-I molecules have their dipole moments aligned perpendicular to the c axis and dipole moments of water-II molecules are parallel to the c-axis. The optical conductivity σ(ν) and permittivity ɛ'(ν) spectra are recorded in terahertz and infrared ranges, at frequencies from several wavenumbers up to ν = 7000 cm(-1), at temperatures 5-300 K and for two polarizations, when the electric vector E of the radiation is parallel and perpendicular to the c-axis. Comparative experiments on as-grown and on dehydrated samples allow to identify the spectra of σ(ν) and ɛ'(ν) caused exclusively by water molecules. In the infrared range, well-known internal modes ν1, ν2, and ν3 of the H2O molecule are observed for both polarizations, indicating the presence of water-I and water-II molecules in the crystal. Spectra recorded below 1000 cm(-1) reveal a rich set of highly anisotropic features in the low-energy response of H2O molecule in a crystalline nano-cavity. While for E∥c only two absorption peaks are detected, at ~90 cm(-1) and ~160 cm(-1), several absorption bands are discovered for E⊥c, each consisting of narrower resonances. The bands are assigned to librational (400-500 cm(-1)) and translational (150-200 cm(-1)) vibrations of water-I molecule that is weakly coupled to the nano-cavity "walls." A model is presented that explains the "fine structure" of the bands by a splitting of the energy levels due to quantum tunneling between the minima in a six-well potential relief felt by a molecule within the cavity.

  15. Effects of Polymeric Additives on the Crystallization and Release Behavior of Amorphous Ibuprofen

    Directory of Open Access Journals (Sweden)

    Su Yang Lee

    2013-01-01

    Full Text Available Some polymeric additives were studied to understand their effects on the amorphous phase of ibuprofen (IBU, used as a poorly water soluble pharmaceutical model compound. The amorphous IBU in bulk, as well as in nanopores (diameter ~24 nm of anodic aluminum oxide, was examined with the addition of poly(acrylic acid, poly(N-vinyl pyrrolidone, or poly(4-vinylphenol. Results of bulk crystallization showed that they were effective in limiting the crystal growth, while the nucleation of the crystalline phase in contact with water was nearly instantaneous in all cases. Poly(N-vinyl pyrrolidone, the most effective additive, was in specific interaction with IBU, as revealed by IR spectroscopy. The addition of the polymers was combined with the nanoscopic confinement to further stabilize the amorphous phase. Still, the IBU with addition of polymeric additives showed sustained release behavior. The current study suggested that the inhibition of the crystal nucleation was probably the most important factor to stabilize the amorphous phase and fully harness its high solubility.

  16. Diffusion of water and ethanol in silicalite crystals synthesized in fluoride media

    KAUST Repository

    Zhang, Ke

    2013-04-01

    Diffusion of water and ethanol in silicalite has been studied in large crystals (70 μm × 30 μm × 15 μm) synthesized via a fluoride mediated route. The near-perfect hydrophobic silicalite (F-) crystals have very few internal silanol defects and, as a result, display water and ethanol transport behavior that is uncontaminated by these defects. The transport diffusivity (Dt) of ethanol is higher than that of water at the same sorbate activity. However, this difference is due to the difference in the shape of the isotherms. The thermodynamically corrected diffusivity (D o) of water is almost an order of magnitude higher than that of ethanol reflecting the difference in molecular size. Estimates of the permeability/permselectivity/separation factors for ethanol/water separation based on the present kinetic and equilibrium data for the fluoride synthesized crystals are compared with the values observed for traditional silicalite membranes. The present diffusivity values for fluoride synthesized silicalite are similar to the values for regular silicalite (OH-) derived from uptake rate measurements but much smaller (by more than four orders of magnitude) than the self-diffusivities derived from PFG-NMR measurements. This result is consistent with the results of other measurements of the diffusion of small molecules in silicalite which suggest that, in macroscopic measurements, the rate of intra-crystalline transport is controlled by the sub-structure (extensive twinning), rather than by diffusion in the ideal MFI micropores. In this situation microscale measurements such as PFG-NMR will lead to erroneously high estimates of transport rates and therefore of permeability and permselectivity. © 2012 Elsevier Inc. All rights reserved.

  17. The Effect of Water on Crack Interaction

    Science.gov (United States)

    Gaede, O.; Regenauer-Lieb, K.

    2009-04-01

    While the mechanical coupling between pore fluid and solid phase is relatively well understood, quantitative studies dealing with chemical-mechanical weakening in geological materials are rare. Many classical poroelastic problems can be addressed with the simple law of effective stress. Experimental studies show that the presence of a chemically active fluid can have effects that exceed the predictions of the law of effective stress. These chemical fluid-rock interactions alter the mechanical properties of the solid phase. Especially chemical-mechanical weakening has important ramifications for many areas of applied geosciences ranging from nuclear waste disposal over reservoir enhancement to fault stability. In this study, we model chemically induced changes of the size of the process zone around a crack tip. The knowledge of the process zone size is used to extend existing effective medium approximations of cracked solids. The stress distribution around a crack leads to a chemical potential gradient. This gradient will be a driver for mass diffusion through the solid phase. As an example, mass diffusion is towards the crack tip for a mode I crack. In this case a chemical reaction, that weakens the solid phase, will increase the size of the process zone around the crack tip. We apply our model to the prominent hydrolytic weakening effect observed in the quartz-water system (Griggs and Blacic, 1965). Hydrolytic weakening is generally attributed to water hydrolyzing the strong Si-O bonds of the quartz crystal. The hydrolysis replaces a Si-O-Si bridge with a relatively weak hydrogen bridge between two silanol groups. This enhances dislocation mobility and hence the yield stress is reduced. The plastic process zone around a crack tip is therefore larger in a wet crystal than in a dry crystal. We calculate the size of the process zone by solving this coupled mechanical-chemical problem with the Finite Element code ABAQUS. We consider single crack, collinear crack and

  18. Surface and Bulk Effects in Photochemical Reactions and Photomechanical Effects in Dynamic Molecular Crystals.

    Science.gov (United States)

    Nath, Naba K; Runčevski, Tomče; Lai, Chia-Yun; Chiesa, Matteo; Dinnebier, Robert E; Naumov, Panče

    2015-11-04

    The increasing number of reports on photomechanical effects in molecular crystals necessitates systematic studies to understand the intrinsic and external effectors that determine and have predictive power of their type and magnitude. Differential light absorption and product gradient between the surface and the bulk of the crystal are often invoked to qualitatively explain the mechanical response of crystals to light; however, the details on how this difference in photochemical response accounts for macroscopic effects such as surface modification, deformation, or disintegration of crystals are yet to be established. Using both bulk- and surface-sensitive analytical techniques, a rare instance of benzylidenefuranone crystals is studied here, and it is capable of several distinct types of photomechanical response including surface striation and delamination, photosalient effect (ballistic disintegration and motion), and photoinduced bending by dimerization. The results provide a holistic view on these effects and set the stage for the development of overarching theoretical models to describe the photomechanics in the ordered solid state.

  19. Effects of formulation and process factors on the crystal structure of freeze-dried Myo-inositol.

    Science.gov (United States)

    Izutsu, Ken-Ichi; Yomota, Chikako; Okuda, Haruhiro; Kawanishi, Toru; Yamaki, Takuya; Ohdate, Ryohei; Yu, Zhaokun; Yonemochi, Etsuo; Terada, Katsuhide

    2014-08-01

    The objective of this study was to elucidate effects of formulation and process variables on the physical forms of freeze-dried myo-inositol. Physical properties of myo-inositol in frozen solutions, freeze-dried solids, and cooled heat-melt solids were characterized by powder X-ray diffraction (PXRD), thermal analysis (differential scanning calorimetry [DSC] and thermogravimetric), and simultaneous PXRD-DSC analysis. Cooling of heat-melt myo-inositol produced two forms of metastable anhydrate crystals that change to stable form (melting point 225 °C-228 °C) with transition exotherms at around 123 °C and 181 °C, respectively. Freeze-drying of single-solute aqueous myo-inositol solutions after rapid cooling induced crystallization of myo-inositol as metastable anhydrate (transition at 80 °C-125 °C) during secondary drying segment. Contrarily, postfreeze heat treatment (i.e., annealing) induced crystallization of myo-inositol dihydrate. Removal of the crystallization water during the secondary drying produced the stable-form myo-inositol anhydrate crystal. Shelf-ramp slow cooling of myo-inositol solutions resulted in the stable and metastable anhydrous crystal solids depending on the solute concentrations and the solution volumes. Colyophilization with phosphate buffer retained myo-inositol in the amorphous state. Crystallization in different process segments varies crystal form of freeze-dried myo-inositol solids.

  20. Polyoxometalate/Polyethylene Glycol Interactions in Water: From Nanoassemblies in Water to Crystal Formation by Electrostatic Screening.

    Science.gov (United States)

    Buchecker, Thomas; Le Goff, Xavier; Naskar, Bappaditya; Pfitzner, Arno; Diat, Olivier; Bauduin, Pierre

    2017-06-22

    In the last decade organic-inorganic hybrid materials have become essential in materials science as they combine properties of both building blocks. Nowadays the main routes for their synthesis involve electrostatic coupling, covalent grafting, and/or solvent effects. In this field, polyoxometalates (POMs) have emerged as interesting inorganic functional building blocks due to their outstanding properties. In the present work the well-known α-Keggin polyoxometalate, α-PW12 O40(3-) (PW), is shown to form hybrid crystalline materials with industrial (neutral) polyethylene glycol oligomers (PEG) under mild conditions, that is, in aqueous medium and at room temperature. The formation of these materials originates from the spontaneous self-assembly of PW with EOx , (EO=ethylene oxide) with at least four EO units (x>4). The PW-PEG nanoassemblies, made of a POM surrounded by about two PEG oligomers, are stabilized by electrostatic repulsions between the negatively charged PW anions. Addition of NaCl, aimed at screening the inter-nanoassembly repulsions, induces aggregation and formation of hybrid crystalline materials. Single-crystal analysis showed a high selectivity of PW towards EO5 -EO6 oligomers from PEG200, which is made of a mixture of EO3-8 . Therefore, a general "soft" route to produce POM-organic composites is proposed here through the control of electrostatic repulsions between spontaneously formed nanoassemblies in water. However, this rational design of new POM hybrid (crystalline) materials with hydrophilic blocks, using such a simple mixing procedure of the components, requires a deep understanding of the molecular interactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multiband Effects on -FeSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic C.; Lei, H.; Graf, D.; Hu, R.; Ryu, H.; Choi, E.S.; Tozer, S.W.

    2012-03-01

    We present the upper critical fields {mu}{sub 0}H{sub c2}(T) and Hall effect in {beta}-FeSe single crystals. The {mu}{sub 0}H{sub c2}(T) increases as the temperature is lowered for fields applied parallel and perpendicular to (101), the natural growth facet of the crystal. The {mu}{sub 0}H{sub c2}(T) for both field directions and the anisotropy at low temperature increase under pressure. Hole carriers are dominant at high magnetic fields. However, the contribution of electron-type carriers is significant at low fields and low temperature. Our results show that multiband effects dominate {mu}{sub 0}H{sub c2}(T) and electronic transport in the normal state.

  2. Small molecule, big difference: the role of water in the crystallization of paclitaxel.

    Science.gov (United States)

    Vella-Zarb, Liana; Baisch, Ulrich; Dinnebier, Robert E

    2013-02-01

    Paclitaxel is an important antineoplastic drug, which is used widely in the treatment of many forms of cancer. The crystal structures of the anhydrous form and the hemihydrate were determined from laboratory X-ray powder diffraction data, whereas the dihydrate was solved from single-crystal synchrotron diffraction data. Intermolecular spaces allow for the inclusion of loosely bound water molecules, which are then lost easily upon heating. All three forms were found to crystallize in the orthorhombic spacegroup P2(1)2(1)2(1), with Z' = 2. The unit cell parameters were found to be a = 9.6530(3) Å, b = 28.1196(8) Å, c = 33.5378(14) Å, and V = 9103.5(5) Å for the anhydrous form (363 K); a = 9.6890(2) Å, b = 28.0760(4) Å, c = 33.6166(8) Å, and V = 9144.7(3) Å(3) for the hemihydrate (333 K); and a = 9.512(6) Å, b = 28.064(16) Å, c = 33.08(2) Å, and V = 8829.0(9) Å(3) for the dihydrate (120 K). Water loss occurs in two steps between 120 K ≤ t ≤ 363 K. The thermal stability of the hydrates and accompanying unit cell changes were observed in situ via temperature-resolved X-ray powder diffraction and thermogravimetric analysis.

  3. Purification, crystallization and preliminary X-ray diffraction analysis of water-soluble chlorophyll-binding protein from Chenopodium album

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, Takayuki [Department of Bimolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510 (Japan); Ohshima, Shigeru [Department of Environmental Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510 (Japan); Uchida, Akira, E-mail: auchida@biomol.sci.toho-u.ac.jp [Department of Bimolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510 (Japan)

    2007-09-01

    A water-soluble chlorophyll-binding protein with photoconvertibility from C. album was extracted, purified and crystallized in a darkroom. The crystal diffracted to around 2.0 Å resolution. A water-soluble chlorophyll-binding protein (WSCP) with photoconvertibility from Chenopodium album was extracted, purified and crystallized in a darkroom. Green crystals suitable for data collection appeared in about 10 d. A native data set was collected to 2.0 Å resolution at 100 K. The space group of the crystal was determined to be orthorhombic I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.13, b = 60.59, c = 107.21 Å. Preliminary analysis of the X-ray data indicated that there is one molecule per asymmetric unit.

  4. Phase-space properties of two-dimensional elastic phononic crystals and anharmonic effects in nano-phononic crystals

    Science.gov (United States)

    Swinteck, Nichlas Z.

    molecular dynamics simulation techniques, that phonon-boundary collision effects and coherent phononic effects (band-folding) are two competing scattering mechanisms responsible for the reduction of acoustic and optical phonon lifetimes. Conclusions drawn about the lifetime of thermal phonons in phononic crystal patterned graphene are linked with the anharmonic, one-dimensional crystal model.

  5. Effects of Degree of Enzymatic Interesterification on the Physical Properties of Margarine Fats: Solid Fat Content, Crystallization Behavior, Crystal Morphology, and Crystal Network

    DEFF Research Database (Denmark)

    Zhang, Hong; Smith, Paul; Adler-Nissen, Jens

    2004-01-01

    In this study enzymatic-interesterified margarine fats with different conversion degrees were produced in a packed-bed reactor. The effects of conversion degree on the formation of free fatty acids and diacyglycerols, solid fat content, crystallization behavior, microstructure, and crystal network...... was observed for both the blend and products. Isothermal crystallization kinetics was characterized by the Fisher- Turnbull model. The highest free energy was observed for the blend. A small deformation with oscillation tests shows a significant difference between the blend and interesterified products...

  6. Enhanced Nonlinear Optical Effect in Hybrid Liquid Crystal Cells Based on Photonic Crystal

    Science.gov (United States)

    Bugaychuk, Svitlana; Iljin, Andrey; Lytvynenko, Oleg; Tarakhan, Ludmila; Karachevtseva, Lulmila

    2017-07-01

    Nonlinear-optical response of photorefractive hybrid liquid crystal (LC) cells has been studied by means of dynamic holographic technique in two-wave mixing arrangement. The LC cells include nonuniform silicon substrates comprising a micrometer-range photonic crystal. A thin LC layer is set between silicon substrate and a flat glass substrate covered by a transparent (ITO) electrode. A dynamic diffraction grating was induced in the LC volume by the two-wave mixing of laser beams with simultaneous application of DC electric field to the cell. Theoretical model of Raman-Nath self-diffraction was developed. This model allows for calculation of nonlinear optical characteristics in thin samples on the base of two-wave mixing experimental data, and with taking into account light losses on absorption and/or scattering. The hybrid LC cells demonstrate strong nonlinear optical effect, prospective for many applications in electro-optical microsystems, such as SLMs, as well as in multi-channel systems.

  7. Timescales of spherulite crystallization in obsidian inferred from water concentration profiles

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Jonathan M.; Beck, Pierre; Tuffen, Hugh; Nichols, Alexander R.L.; Dingwell, Donald B.; Martin, Michael C

    2008-06-25

    We determined the kinetics of spherulite growth in obsidians from Krafla volcano, Iceland. We measured water concentration profiles around spherulites in obsidian by synchrotron Fourier transform infrared spectroscopy. The distribution of OH? groups surrounding spherulites decreases exponentially away from the spherulite-glass border, reflecting expulsion of water during crystallization of an anhydrous paragenesis (plagioclase + SiO2 + clinopyroxene + magnetite). This pattern is controlled by a balance between the growth rate of the spherulites and the diffusivity of hydrous solute in the rhyolitic melt. We modeled advective and diffusive transport of the water away from the growing spherulites by numerically solving the diffusion equation with a moving boundary. Numerical models fit the natural data best when a small amount of post-growth diffusion is incorporated in the model. Comparisons between models and data constrain the average spherulite growth rates for different temperatures and highlight size-dependent growth among a small population of spherulites.

  8. Two-octave supercontinuum generation in a water-filled photonic crystal fiber.

    Science.gov (United States)

    Bethge, J; Husakou, A; Mitschke, F; Noack, F; Griebner, U; Steinmeyer, G; Herrmann, J

    2010-03-15

    Supercontinuum generation in a water-filled photonic crystal fiber is reported. By only filling the central hollow core of this fiber with water, the fiber properties are changed such that the air cladding provides broadband guiding. Using a pump wavelength of 1200 nm and few-microjoule pump pulses, the generation of supercontinua with two-octave spectral coverage from 410 to 1640 nm is experimentally demonstrated. Numerical simulations confirm these results, revealing a transition from a soliton-induced mechanism to self-phase modulation dominated spectral broadening with increasing pump power. Compared to supercontinua generated in glass core photonic fibers, the liquid core supercontinua show a higher degree of coherence, and the larger mode field area and the higher damage threshold of the water core enable significantly higher pulse energies of the white light pulses, ranging up to 0.39microJ.

  9. Mixing effects in the crystallization of supercooled quantum binary liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kühnel, M.; Kalinin, A. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S. [Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Tramonto, F.; Galli, D. E. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Nava, M. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Grisenti, R. E. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  10. Shape-memory effect in Co-Ni single crystal

    Institute of Scientific and Technical Information of China (English)

    周伟敏; 刘岩; 张少宗; 江伯鸿

    2004-01-01

    The thermal shape-memory effect at room temperature for Co-32% Ni(mass fraction) magnetic shape memory alloy of single crystal was presented. When compressing the sample along the [001] direction at room temperature, strain can be recovered to some extent during later heating and the recovery rate varies with the pre-strain.But no obvious recoverable strain can be obtained along other crystal directions. For the thermal-mechanical training of the sample along [001], the recovery strain decreases obviously during the second round of compress and nearly no recovery happens after the third round of compress. A possible mechanism based on reversible motions of Shockley partial dislocations was proposed.

  11. Rotational spin Hall effect in a uniaxial crystal

    Science.gov (United States)

    Fadeyeva, Tatyana A.; Alexeyev, Constantine N.; Rubass, Alexander F.; Ivanov, Maksym O.; Zinov'ev, Alexey O.; Konovalenko, Victor L.; Volyar, Alexander V.

    2012-04-01

    We have considered the propagation process of the phase-matched array of singular beams through a uniaxial crystal. We have revealed that local beams in the array are rotated when propagating. However the right and left rotations are unequal. There are at least two processes responsible for the array rotation: the interference of local beams and the spatial depolarization. The interference takes place in the vortex birth and annihilation events forming the symmetrical part of the rotation. The depolarization process contributes to the asymmetry of the rotation that is called the rotational spin Hall effect. It can be brought to light due to the difference between the envelopes of the dependences of the angular displacement on the inclination angle of the local beams or the crystal length reaching the value some angular degree. The direction of the additional array rotation is exclusively defined by the handedness of the circular polarization in the initial beam array.

  12. Annealing Effect on Photovoltages of Quartz Single Crystals

    Institute of Scientific and Technical Information of China (English)

    TIAN Lu; ZHAO Song-Qing; ZHAO Kun

    2010-01-01

    @@ We investigate the photovoltaic effects of quartz single crystals annealed at high temperatures in ambient atmosphere.The open-circuit photovoltages and surface morphologies strongly depend on the heating treatments.When the annealing temperature increases from room temperature to 900℃,the rms roughness of quartz single crystal wafers increases from 0.207 to 1.011 nm.In addition,the photovoltages decrease from 1.994#V at room temperature to 1.551 μ V after treated at 500℃,and then increase up to 9.8μV after annealed at 900℃.The inner mechanism of the present photovoltaic response and surface morphologies is discussed.

  13. In Situ Observations of Crystallization in Water-Undersaturated Pegmatite Liquids

    Science.gov (United States)

    Sirbescu, M. L. C.; Wilke, M.; Gehrmann, S.; Schmidt, C.

    2014-12-01

    Crystallization behavior of water-undersaturated haplogranite-Li-B-H2O melts was observed and recorded in diamond anvil cell (DAC) experiments. We have generated salient pegmatitic features such as coarse and zoned crystals; comb and radiating textures; and graphic intergrowths from moderately-fluxed granitic melts in the absence of a hydrous phase. The experimental conditions placed the hydrous melt under variable degrees of undercooling between their liquidus and glass transition. Undercooling of ~100-150°C below the liquidus produced crystals that reached 0.4 of cell diameter in less than one day. The starting material was a homogeneous glass with 2% Li2O, 4.6% B2O3, and 3.0 or 6.5% H2O synthesized in an internally heated pressure vessel at 1200°C and 400 MPa. The composition was selected to approximate bulk cores of Li-rich pegmatites. The crystallization temperature was dropped in 50°C intervals from 600°C to 400°C to simulate pegmatite cooling. Run duration was laser drilling) included in the cell. The shift in the wavenumber of the ν3-SiO4Raman band of a chemically inert zircon crystal was used to determine pressure as a function of temperature. Reproducible phase assemblages were documented using Raman spectroscopy and EPMA. Virgilite (solid solution between SiO2 and LiAlSi2O6) nucleated at T≤600°C. Alkali-feldspar and muscovite nucleated at T≤550°C. Virgilite and alkali-feldspar nucleated heterogeneously on surfaces of zircon, gasket, and diamond windows (see attached figure), whereas muscovite nucleated homogeneously. Development of pegmatite texture was facilitated by the relatively low nucleation density at P of ~300 to 400 MPa. Radically higher nucleation density at an estimated P of Time-lapse photography allowed for accurate growth-rate measurements and demonstrated constant volumetric growth rate of unobstructed crystals at low to moderate fraction of crystallization. The DAC experiments complement prior kinetic studies conducted in 3 to

  14. Effect of clay on melt crystallization, crystallization kinetics and spherulitic morphology of poly(trimethylene terephthalate) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Lawrence; Vasanthan, Nadarajah, E-mail: nadarajah.vasanthan@liu.edu

    2015-10-10

    Graphical abstract: - Highlights: • PTT/clay exfoliated nanocomposites films were prepared by novel two-step approach. • It has been shown that the incorporation of clay accelerates the rate of crystallization and increases the total crystallinity of PTT nanocomposites compared to neat PTT. • FTIR results showed that the amorphous trans conformation transforms into the crystalline gauche conformation with increasing clay content and crystallization temperature. - Abstract: Poly(trimethylene terephthalate) (PTT)/clay nanocomposite films have been prepared via a novel two-step approach. The resulting nanocomposites have been characterized by Fourier transform infrared spectroscopy (FTIR), wide angle X-ray diffraction (XRD), differential scanning calorimetry (DSC) and polarized light microscopy (PLM). XRD results showed this two-step process of preparation forms predominantly exfoliated structures. The effect of nanoclay on the isothermal and nonisothermal melt crystallization behaviors of PTT has been investigated and shown that the incorporation of clay accelerates the rate of crystallization and increases the total crystallinity of PTT nanocomposites compared to neat PTT. Nonisothermal melt crystallization kinetics of neat PTT and PTT nanocomposites was analyzed using crystallization isotherm. The Avrami analysis modified by Jeziorny was successfully used to describe the non-isothermal crystallization kinetics of neat PTT and PTT nanocomposites, shown by the decrease in half time (t{sub 1/2}) of crystallization and increase in rate constant (Z{sub c}) as organoclay content increased up to 10%. FTIR spectroscopy has been utilized for the first time to monitor conformational changes during the melt crystallization of PTT nanocomposites. It was demonstrated that the amorphous trans conformation transforms into the crystalline gauche conformation with increasing clay content, which suggests that nanoclay accelerates the polymer chain conformational transition

  15. Solubility and some crystallization properties of conglomerate forming chiral drug guaifenesin in water.

    Science.gov (United States)

    Fayzullin, Robert R; Lorenz, Heike; Bredikhina, Zemfira A; Bredikhin, Alexander A; Seidel-Morgenstern, Andreas

    2014-10-01

    The solubility of 3-(2-methoxyphenoxy)-propane-1,2-diol, the well-known chiral drug guaifenesin 1, in water has been investigated by means of polythermal and isothermal approaches. It was found that the solubilities of racemic and enantiomeric diols rac- and (R)-1 depend strongly on temperature. The ternary phase diagram of the guaifenesin enantiomers in water in the temperature range between 10°C and 40°C was constructed. Clear evidence was obtained that rac-1 crystallizes as a stable conglomerate. The Meyerhoffer coefficient for the guaifenesin-water system is more than two and strongly depends on temperature. Neither crystalline hydrates nor polymorphs were detected within the range of conditions covered. Metastable zone width data with regard to primary nucleation were also collected for rac-1 and (R)-1. On the basis of the knowledge acquired, the resolution of racemic guaifenesin by preferential crystallization from solution could be realized successfully. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Crystal field effects on interionic distance in cubic MgO crystal doped with Fe{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Ivascu, S.; Gruia, A.S. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan 4, 300223-Timisoara (Romania); Avram, N.M., E-mail: avram@physics.uvt.ro [Faculty of Physics, West University of Timisoara, Bd. V. Parvan 4, 300223-Timisoara (Romania); Academy of Romanian Scientists, Independentei 54, 050094-Bucharest (Romania)

    2014-10-01

    The exchange charge model of crystal field was applied to determine the dependence of the crystal field strength 10Dq on interionic distances R between the Fe{sup 2+} impurity ion and O{sup 2−} ligands in cubic MgO:Fe{sup 2+}. The obtained results were extrapolated by the power law and was shown that 10Dq depends on R as 1/R{sup n}, with n=6.3486. The deviations of these values from the value n=5 (predicted by the simple point charge model of crystal field) is explained by the covalent and exchange effects between impurity ion and ligands; the contribution of these effects into the total crystal field strength was considered separately. The 10Dq functions obtained as a result of our calculations were used for estimations of the electron–vibrational constants, Huang–Rhys parameters, and Jahn–Teller stabilization energy, and compared with available literature data.

  17. Crystal field effects on interionic distance in cubic MgO crystal doped with Fe2+ ions

    Science.gov (United States)

    Ivascu, S.; Gruia, A. S.; Avram, N. M.

    2014-10-01

    The exchange charge model of crystal field was applied to determine the dependence of the crystal field strength 10Dq on interionic distances R between the Fe2+ impurity ion and O2- ligands in cubic MgO:Fe2+. The obtained results were extrapolated by the power law and was shown that 10Dq depends on R as 1/R, with n=6.3486. The deviations of these values from the value n=5 (predicted by the simple point charge model of crystal field) is explained by the covalent and exchange effects between impurity ion and ligands; the contribution of these effects into the total crystal field strength was considered separately. The 10Dq functions obtained as a result of our calculations were used for estimations of the electron-vibrational constants, Huang-Rhys parameters, and Jahn-Teller stabilization energy, and compared with available literature data.

  18. Pressure effects on crystal and electronic structure of bismuth tellurohalides

    Science.gov (United States)

    Rusinov, I. P.; Menshchikova, T. V.; Sklyadneva, I. Yu; Heid, R.; Bohnen, K.-P.; Chulkov, E. V.

    2016-11-01

    We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal-TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.

  19. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery.

    Science.gov (United States)

    Brough, Chris; Williams, R O

    2013-08-30

    Poor water-solubility is a common characteristic of drug candidates in pharmaceutical development pipelines today. Various processes have been developed to increase the solubility, dissolution rate and bioavailability of these active ingredients belonging to BCS II and IV classifications. Over the last decade, nano-crystal delivery forms and amorphous solid dispersions have become well established in commercially available products and industry literature. This article is a comparative analysis of these two methodologies primarily for orally delivered medicaments. The thermodynamic and kinetic theories relative to these technologies are presented along with marketed product evaluations and a survey of commercial relevant scientific literature.

  20. Formation of H-type liquid crystal dimer at air-water interface

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, C., E-mail: karthik.c@pilani.bits-pilani.ac.in; Gupta, Adbhut, E-mail: karthik.c@pilani.bits-pilani.ac.in; Joshi, Aditya, E-mail: karthik.c@pilani.bits-pilani.ac.in; Manjuladevi, V., E-mail: karthik.c@pilani.bits-pilani.ac.in; Gupta, Raj Kumar, E-mail: karthik.c@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan -333031 (India); Varia, Mahesh C.; Kumar, Sandeep [Raman Research Institute, Sadashivanagar, Bangalore - 560080 (India)

    2014-04-24

    We have formed the Langmuir monolayer of H-shaped Azo linked liquid crystal dimer molecule at the air-water interface. Isocycles of the molecule showed hysteresis suggesting the ir-reversible nature of the monolayer formed. The thin film deposited on the silicon wafer was characterized using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The images showed uniform domains of the dimer molecule. We propose that these molecules tend to take book shelf configuration in the liquid phase.

  1. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs.

    Science.gov (United States)

    Ozaki, Shunsuke; Kushida, Ikuo; Yamashita, Taro; Hasebe, Takashi; Shirai, Osamu; Kano, Kenji

    2013-07-01

    The impact of water-soluble polymers on drug supersaturation behavior was investigated to elucidate the role of water-soluble polymers in enhancing the supersaturation levels of amorphous pharmaceuticals. Hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), and Eudragit L-100 (Eudragit) were used as representative polymers, and griseofulvin and danazol were used as model drugs. Supersaturation profiles of amorphous drugs were measured in biorelevant dissolution tests. Crystal growth rate was measured from the decrease in dissolved drug concentration in the presence of seed crystals. Nucleation kinetics was evaluated by measuring the induction time for nucleation. All experiments were performed in the presence and absence of polymers. The degree of supersaturation of the amorphous model drugs increased with an increase in the inhibitory efficiency of polymers against crystal nucleation and growth (HPMC > PVP > Eudragit). In the presence of HPMC, the addition of seed crystals diminished the supersaturation ratio dramatically for griseofulvin and moderately for danazol. The results demonstrated that the polymers contributed to drug supersaturation by inhibiting both nucleation and growth. The effect of the polymers was drug dependent. The detailed characterization of polymers would allow selection of appropriate crystallization inhibitors and a planned quality control strategy for the development of supersaturable formulations. Copyright © 2013 Wiley Periodicals, Inc.

  2. Influence of heat transfer on thermal effects of the endpumped laser crystal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin-ke; HE Yan-ping; ZAN Hui-ping; YANG Hao

    2010-01-01

    A thermal model of crystal is established. The temperature field differential equation of the diode-end-pumped laser crystal with circular cross-section and new boundary conditions, in which the convection heat transfer is supposed to exist between laser crystal ends and air, is established. The analytical expressions of temperature field, thermal distortion and additional optical path difference (OPD) of crystal are obtained. By numerical calculation, the influence of heat transfer on the thermal effects of laser crystal Nd:YAG is studied. Results show that crystal's thermal effects, including temperature field, thermal distortion, OPD and thermal focal length, are all weakened as the heat transfer through ends of crystal is strengthened. This conclusion could be used to control thermal effects of laser crystal and improve laser working stability.

  3. Electret effect in intercalated crystals of the AIIIBVI group

    Directory of Open Access Journals (Sweden)

    I.Grygorchak

    2007-01-01

    Full Text Available Measurements of dielectric properties of Ni-intercalated GaSe and InSe have been performed. The present study is aimed at the investigation of the low-admixture region where the intercalation induced electret effect occurs. The effect exhibits pronounced peak-like concentration dependences and a non-monotonous temperature behaviour with maximum magnitudes at low temperatures. Intercalation leads to over tenfold increase of dielectric permittivity over the whole measured frequency range with up to several orders at low frequencies for GaSe. Temperature dependences of the permittivity demonstrate well-defined peaks with localizations and heights strongly depending on the concentration. A microscopic model of order-disorder type has been proposed that considers redistribution of intercalant atoms between non-polar octahedral and polar tetrahedral positions in the crystal van der Waals gaps. Such a redistribution can occur in the form of phase transition to the polar phase (corresponding to the electret effect which is stabilized by the internal field. For the case of octahedral positions being more preferable, the model predicts a peak-like dependence of the crystal polarization on chemical potential due to passing through the interjacent polar phase in accordance with the measured behaviour of the electret effect. The calculated temperature dependences of dielectric susceptibility qualitatively reproduce experimental results for permittivity as well.

  4. Determining ice water content from 2D crystal images in convective cloud systems

    Science.gov (United States)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  5. Design and analysis of a high heat load pin-post monochromator crystal with an integral water manifold

    Energy Technology Data Exchange (ETDEWEB)

    Schildkamp, W. [Consortium for Advanced Radiation Sources, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Tonnessen, T. [Rocketdyne Albuquerque Operations, 2511 C. Broadbent Parkway, N.E., Albuquerque, NM 87107 (United States)

    1996-09-01

    Conventional minichannel water cooling geometry will not perform satisfactorily for x-radiation from a wiggler source at the Advanced Photon Source. For closed-gap wiggler operation, cryogenic silicon appears to be the only option for crystals in Bragg-Bragg geometry. For operation of the wiggler at more modest critical energies ({lt}17 keV), the first crystal can be cooled by a pin-post cooling scheme, using water at room temperature as a coolant. In order to limit the water consumption to 4 gpm and hence the risk of introducing vibrations to the crystal, the intensely cooled area of the crystal was matched to the footprint of the beam, leaving a less cooled area of the crystal subject to survival in a missteered beam but not to perform as a monochromator. The manifold design avoids large areas of high water pressure that would bow the crystal. We present here the design of a pin-post monochromator consisting of a four-layer silicon manifold system and an integrally bonded 39{percent} nickel-iron alloy base plate. A transparent prototype of the design will be exhibited. Fabrication techniques and design advantages will be discussed. {copyright} {ital 1996 American Institute of Physics.}

  6. Water sorption-induced crystallization, structural relaxations and strength analysis of relaxation times in amorphous lactose/whey protein systems

    OpenAIRE

    Fan, Fanghui; Mou, Tian; Nurhadi, Bambang; Roos, Yrjö H.

    2016-01-01

    Water sorption-induced crystallization, α-relaxations and relaxation times of freeze-dried lactose/whey protein isolate (WPI) systems were studied using dynamic dewpoint isotherms (DDI) method and dielectric analysis (DEA), respectively. The fractional water sorption behavior of lactose/WPI mixtures shown at aw ≤ 0.44 and the critical aw for water sorption-related crystallization (aw(cr)) of lactose were strongly affected by protein content based on DDI data. DEA results showed that the α-rel...

  7. The Effect of Solution Parameters on Lysozyme Nucleation Rates and Crystal Quality

    Science.gov (United States)

    Judge, R. A.; Snell, E. H.

    1998-01-01

    In the pursuit of strongly diffracting high quality macromolecule crystals of suitable volume, this study investigates how the formation of macromolecules in solution and their growth characteristics effect crystal volume and diffracting quality. We systematically investigated the effect of solution conditions on lysozyme nucleation rates and the volume of crystals produced. Batch crystallization plates were used in combination with a video microscope system to measure nucleation rates and crystal volume. As expected from classical nucleation theory, crystal numbers were found to increase with increases in temperature and supersaturation. Small changes in solution pH, at constant supersaturation values were found, however, to dramatically effect the number of crystals nucleated in the wells varying from 1000s to 10s in the pH range 4.0 to 5.2. Having optimized the conditions required to produce an appropriate number of crystals of a suitable volume for X-ray analysis, a large number of uniform crystals were produced under exactly the same conditions. In the X-ray analysis of more than 50 such crystals there was found a wide variation in crystal lattice parameters and data quality. The variation in X-ray quality crystal samples is thought to be related to the growth rate variation caused by growth rate dispersion seen in lysozyme crystal growth experiments.

  8. A luminescent-water soluble inorganic co-crystal for a selective pico-molar range arsenic(III) sensor in water medium.

    Science.gov (United States)

    Dey, Biswajit; Saha, Rajat; Mukherjee, Priyanka

    2013-08-14

    The water solution of an intriguing luminescent 'Inorganic Co-crystal' of Cu(II) monomeric and dimeric units shows extremely selective sensing ability towards inorganic arsenic(III) in water medium in the pico-molar concentration range even in the presence of other cations.

  9. The peculiarities of water crystallization and ice melting processes in the roots of one-year plants (Plantago major L.).

    Science.gov (United States)

    Bakradze, N; Kiziria, E; Sokhadze, V; Gogichaishvili, S

    2008-01-01

    Results are presented of a water phase transition study in plantain (Plantago major L.) roots, which were used as a model system to research the peculiarities of water crystallization and ice melting processes in complex heterogeneous biological systems. It was confirmed that water in such systems is crystallized in two clearly distinguished temperature ranges: -10 to -25 degree capital ES, Cyrillic and -25 to -45 degree capital ES, Cyrillic. These water fractions are conditionally attributed to extracellular (-10 to -25 degree capital ES, Cyrillic) and intracellular (-25 to -45 degree capital ES, Cyrillic) solutions. A possible explanation is given for such significant supercooling of the intracellular solution. The values of osmotic pressures of extra- and intracellular solutions were determined according to ice melting curves. It is noted that the intracellular solution, which crystallized at lower temperatures, had a lower osmotic pressure.

  10. Nanoscale size effects in crystallization of metallic glass nanorods.

    Science.gov (United States)

    Sohn, Sungwoo; Jung, Yeonwoong; Xie, Yujun; Osuji, Chinedum; Schroers, Jan; Cha, Judy J

    2015-09-01

    Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding.

  11. Spatially resolved detection of crystallized water ice in a TTauri object

    CERN Document Server

    Schegerer, Alexander A

    2010-01-01

    We search for frozen water and its processing around young stellar objects (YSOs of class I/II). We try to detect potential, regional differences in water ice evolution within YSOs, which is relevant to understanding the chemical structure of the progenitors of protoplanetary systems and the evolution of solid materials. Water plays an important role as a reaction bed for rich chemistry and is an indispensable requirement for life as known on Earth. We present our analysis of NAOS-CONICA/VLT spectroscopy of water ice at 3um for the TTauri star YLW 16A in the rho-Ophiuchi molecular cloud. We obtained spectra for different regions of the circumstellar environment. The observed absorption profiles are deconvolved with the mass extinction profiles of amorphous and crystallized ice measured in laboratory. We take into account both absorption and scattering by ice grains. Water ice in YLW 16A is detected with optical depths of between tau=1.8 and tau=2.5. The profiles that are measured can be fitted predominantly b...

  12. Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica

    Science.gov (United States)

    Bonadiman, C.; Nazzareni, S.; Coltorti, M.; Comodi, P.; Giuli, G.; Faccini, B.

    2014-03-01

    Amphibole is the hydrous metasomatic phase in spinel-bearing mantle xenoliths from Baker Rocks, Northern Victoria Land, Antarctica. It occurs in veins or in disseminated form in spinel lherzolites. Both types derive from reaction between metasomatic melts and the pristine paragenesis of the continental lithospheric mantle beneath Northern Victoria Land. To determine the effective role of water circulation during the metasomatic process and amphibole formation, six amphibole samples were fully characterized. Accurate determination of the site population and the state of dehydrogenation in each of these amphiboles was carried out using single-crystal X-ray diffraction, electron microprobe and secondary ion mass spectroscopy on the same single crystal. The Fe3+/ΣFe ratio was determined by X-ray absorption near edge spectroscopy on amphibole powder. The degree of dehydrogenation determined by SIMS is 0.870-0.994 O3(O2-) a.p.f.u., primary and ascribed to the Ti-oxy component of the amphibole, as indicated by atom site populations; post-crystallization H loss is negligible. Estimates of aH2O (0.014-0.054) were determined from the dehydration equilibrium among end-member components assuming that amphiboles are in equilibrium with the anhydrous peridotitic phases. A difference up to 58 % in determination of aH2O can be introduced if the chemical formula of the amphiboles is calculated based on 23 O a.p.f.u. without knowing the effective amount of dehydrogenation. The oxygen fugacity of the Baker Rocks amphibole-bearing mantle xenoliths calculated based upon the dissociation constant of water (by oxy-amphibole equilibrium) is between -2.52 and -1.32 log units below the fayalite-magnetite-quartz (FMQ) buffer. These results are systematically lower and in a narrow range of values relative to those obtained from anhydrous olivine-orthopyroxene-spinel equilibria ( fO2 between -1.98 and -0.30 log units). A comparative evaluation of the two methods suggests that when amphibole

  13. Amino Acids in the Asteroidal Water-Bearing Salt Crystals Hosted in the Zag Meteorite

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Burton, A. S.; Locke, D. R.

    2016-01-01

    Solid evidence of liquid water in primitive meteorites is given by the ordinary chondrites H5 Monahans (1998) and H3-6 Zag. Aqueous fluid inclusion-bearing halite (NaCl) crystals were shown to be common in Zag. These striking blue/purple crystals (Figure 1), which gained the coloration from electron-trapping in the Cl-vacancies through exposure to ionizing radiation, were determined to be over 4.0-4.7 billion years old by I-Xe dating. The halite grains are present as discrete grains within an H-chondrite matrix with no evidence for aqueous alteration that indicates a xenogenic source, possibly ancient cryovolcanism. They were proposed to be formed from the cryovolcanic plumes on icy C-type asteroids (possibly Ceres), and were transferred and incorporated into the H chondrite parent asteroid following the eruption event(s). A unique aspect of these halites is that they contain abundant solid inclusions hosted within the halites alongside the water inclusions. The solid inclusions were suggested to be entrained within the fluid erupted from the cryovolcanic event(s), and were shown to be comprised of abundant organics. Spectrofluorometric study and Raman imaging of the halites have identified macromolecular carbon and aliphatic carbon compounds. In order to investigate the type of organics present in Zag and in particular within the fluid-bearing halites, we studied for the first time the amino acid contents of a selected mineral (halite) phase in a meteorite sample.

  14. Size effects on void growth in single crystals with distributed voids

    DEFF Research Database (Denmark)

    Borg, Ulrik; Niordson, Christian Frithiof; Kysar, J.W.

    2008-01-01

    The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal...

  15. Effect of borax on the wetting properties and crystallization behavior of sodium sulfate

    NARCIS (Netherlands)

    Granneman, S.J.C.; Shahidzadeh, N.; Lubelli, B.A.; Hees, R.P.J. van

    2017-01-01

    Borax has been identified as a possible crystallization modifier for sodium sulfate. Understanding the effect of borax on factors influencing transport and crystallization kinetics of sodium sulfate helps to clarify how this modifier might limit crystallization damage. It has been observed that the

  16. Organic single-crystal light-emitting field-effect transistors

    NARCIS (Netherlands)

    Hotta, Shu; Yamao, Takeshi; Bisri, Satria Zulkarnaen; Takenobu, Taishi; Iwasa, Yoshihiro

    2014-01-01

    Growth and characterisation of single crystals constitute a major field of materials science. In this feature article we overview the characteristics of organic single-crystal light-emitting field-effect transistors (OSCLEFETs). The contents include the single crystal growth of organic semiconductor

  17. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings.

    Science.gov (United States)

    Yang, Chung-Wei; Lui, Truan-Sheng

    2009-09-01

    Hydroxyapatite coatings (HACs) with a low crystalline state were prepared using the plasma spraying process followed by hermetic autoclaving hydrothermal treatment at 100, 150 and 200 degrees C. Experimental evidence confirmed that the HACs became significantly crystallized and the content of amorphous calcium phosphate decreased by performing the autoclaving hydrothermal treatment in an ambient saturated steam pressure system. The obvious chemisorbed hydroxy groups (OH) peak in the X-ray photoelectron spectra detected from the hydrothermally crystallized HAC specimens means that the hydroxyl-deficient state of plasma-sprayed HACs is significantly improved by the abundant replenished OH groups. The HA nanocrystallite observed from scanning electron microscopy and transmission electron microscopy images within hydrothermally treated HACs is the result of nucleation and grain growth through the replenishment of OH groups into the hydroxyl-deficient HA crystal structure. The microstructural self-healing effect is a result of reduction in defects (pores, microcracks and lamellar boundaries) due to new-growth HA nanocrystallite. According to the systematic derivation of the Arrhenius equation, the HA crystallization is a second-order Arrhenius reaction kinetics. Besides the effects of heating temperature and an atmosphere with abundant water molecules, the saturated steam pressure is a crucial factor which significantly improves the crystallization rate constant and further reduces the activation energy for the hydrothermal HA crystallization.

  18. An Explanation of the Effects of Gravity on the Crystallization of ZBLAN Glass

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    The effects of gravity on crystallization of ZBLAN glasses have been studied utilizing NASA's KC-135 aircraft and a sounding rocket. Fibers were heated to the crystallization temperature in unit and reduced gravity. The fibers processed in unit gravity exhibited crystallization, while fibers processed in reduced gravity showed no signs of crystallization. An explanation based on shear thinning of liquids is presented to explain these results.

  19. Radiation-electromagnetic effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-10-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with ..cap alpha.. particles, protons, or x rays in magnetic fields up to 8 kOe. The source of ..cap alpha.. particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10/sup 11/ particles .cm/sup -2/ .sec/sup -1/). In the energy range 4--40 MeV the emf was practically independent of the ..cap alpha..-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the ..cap alpha..-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with ..cap alpha.. particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect.

  20. Aging and memory effect in magnetoelectric gallium ferrite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijay; Mukherjee, Somdutta [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Mitra, Chiranjib [Department of Physics, Indian Institute of Science Education and Research, Kolkata 741252 (India); Garg, Ashish [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Gupta, Rajeev, E-mail: guptaraj@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-02-01

    Here, we present a time and temperature dependent magnetization study to understand the spin dynamics in flux grown single crystals of gallium ferrite (GaFeO{sub 3}), a known magnetoelectric, ferroelectric and ferrimagnet. Results of the magnetic measurements conducted in the field-cooled (FC) and zero-field-cooled (ZFC) protocols in the heating and cooling cycles were reminiscent of a “memory” effect. Subsequent time dependent magnetic relaxation measurements carried out in ZFC mode at 30 K with an intermittent cooling to 20 K in the presence of a small field show that the magnetization in the final wait period tends to follow its initial state which was present before the cooling break taken at 20 K. These observations provide an unambiguous evidence of single crystal gallium ferrite having a spin glass like phase. - Highlights: • Gallium ferrite a room temperature magnetoelectric and ferrimagnetic material. • Spin‐glass like phase at low temperatures below ∼200 K. • Observation of memory and aging effects in GFO.

  1. Evaluation of water repellent treatments applied to stones used in andalusian cathedrals. II. Salt crystallization test

    Directory of Open Access Journals (Sweden)

    Villegas Sánchez, R.

    1993-06-01

    Full Text Available In a previous paper we have studied the changes that have ocurred in the properties related to water access and movement in the stone after the application of water repellent treatments. In this work we compare the weathering resistance of treated and untreated samples by means of sodium sulphate crystallization test. After finishing the test (75 cycles properties related to water have been measured again to know if the treatments have undergone any kind of deterioration and lose their water repellent characteristics.

    En un artículo anterior se han evaluado los cambios producidos en las propiedades relacionadas con el acceso y movimiento de agua en la piedra como consecuencia de la aplicación de tratamientos de hidrofugación. En este trabajo se compara la resistencia a la alteración producida por sales de las probetas tratadas y sin tratar, sometiéndolas al ensayo de cristalización de sulfato sódico. Tras finalizar el ensayo (75 ciclos se han medido nuevamente las propiedades relacionadas con el agua, con objeto de comprobar si los tratamientos han sufrido alguna alteración y si mantienen sus características hidrófugas.

  2. Dispersive Stabilization of Liquid Crystal-in-Water with Acrylamide Copolymer/Surfactant Mixture: Nematic Curvilinear Aligned Phase Composite Film.

    Science.gov (United States)

    Park; Lee

    1999-11-01

    The effect of nonionic surfactant, (H(OCH(2)-CH(2))(8)-OC(6)H(4)-C(9)H(19)), on the dispersion stabilization of liquid crystal (LC)-in-water with acrylamide copolymer containing the related nonylphenyl groups was studied. It was observed that the addition of nonionic surfactant increases the stability of LC dispersions and improves the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. On the basis of the surface tension, reduced viscosity, cloud point, and coalescence time measurements, it was proposed that formation of an integrated structure induced by interactions between hydrophobic groups in the polymer chains is probably important to fabrication of a polymer composite film made of LC and polymer matrix. Copyright 1999 Academic Press.

  3. Effect of gallbladder hypomotility on cholesterol crystallization and growth in CCK-deficient mice.

    Science.gov (United States)

    Wang, Helen H; Portincasa, Piero; Liu, Min; Tso, Patrick; Samuelson, Linda C; Wang, David Q-H

    2010-02-01

    We investigated the effect of gallbladder hypomotility on cholesterol crystallization and growth during the early stage of gallstone formation in CCK knockout mice. Contrary to wild-type mice, fasting gallbladder volumes were enlarged and the response of gallbladder emptying to a high-fat meal was impaired in knockout mice on chow or the lithogenic diet. In the lithogenic state, large amounts of mucin gel and liquid crystals as well as arc-like and tubular crystals formed first, followed by rapid formation of classic parallelogram-shaped cholesterol monohydrate crystals in knockout mice. Furthermore, three patterns of crystal growth habits were observed: proportional enlargement, spiral dislocation growth, and twin crystal growth, all enlarging solid cholesterol crystals. At day 15 on the lithogenic diet, 75% of knockout mice formed gallstones. However, wild-type mice formed very little mucin gel, liquid, and solid crystals, and gallstones were not observed. We conclude that lack of CCK induces gallbladder hypomotility that prolongs the residence time of excess cholesterol in the gallbladder, leading to rapid crystallization and precipitation of solid cholesterol crystals. Moreover, during the early stage of gallstone formation, there are two pathways of liquid and polymorph anhydrous crystals evolving to monohydrate crystals and three modes for cholesterol crystal growth.

  4. Crystal acceleration effect for cold neutrons in the vicinity of the Bragg resonance

    Directory of Open Access Journals (Sweden)

    Yulia P. Braginetz

    2016-03-01

    Full Text Available A new mechanism of neutron acceleration is studied experimentally in detail for cold neutrons passing through the accelerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal refraction index (neutron–crystal interaction potential for neutron in the vicinity of the Bragg resonance sharply depends on the parameter of deviation from the exact Bragg condition, i.e. on the crystal–neutron relative velocity. Therefore the neutrons enter into the accelerated crystal with one neutron–crystal interaction potential and exit with the other. Neutron kinetic energy cannot vary inside the crystal due to its homogeneity. So, after passage through such a crystal, neutrons will be accelerated or decelerated because of the different energy change at the entrance and exit crystal boundaries.

  5. The Crystal Water Affect in the Interaction between the Tenebrio Molitor Alpha-Amylase and Its Inhibitor

    Directory of Open Access Journals (Sweden)

    Zhu Zhi-Fei

    2008-01-01

    Full Text Available Molecular dynamics simulation of the interaction between the Tenebrio molitor alpha-amylase and its inhibitor at different proportion of crystal water was carried out with OPLS force field by hyperchem 7.5 software. In the correlative study, the optimal temperature of wheat monomeric and dimeric protein inhibitors was from 273 K to 318 K. The the average temperature of experimentation is 289 K. (1 The optimal temperature of interaction between alpha-amylase and its inhibitors was 280 K without crystal water that was close to the results of experimentation. The forming of enzyme-water and inhibitor-water was easy, but incorporating third monomer was impossible. (2 Having analyzed the potential energy data, the optimal temperature of interaction energy between alpha-amylase and its inhibitors covering 9 : 1, 5 : 5, 4 : 6, and 1 : 9 proportion crystal water was 290 K. (3 We compared the correlative QSAR properties. The proportion of crystal water was close to the data of polarizability (12.4% in the QSAR properties. The optimal temperature was 280 K. This result was close to 289 K. These findings have theoretical and practical implications.

  6. Coriolis effect on water waves

    OpenAIRE

    Benjamin, Melinand

    2015-01-01

    This paper is devoted to the study of water waves under the influence of the gravity and the Coriolis force. It is quite common in the physical literature that the rotating shallow water equations are used to study such water waves. We prove a local wellposedness theorem for the water waves equations with vorticity and Coriolis force, taking into account the dependence on various physical parameters and we justify rigorously the shallow water model. We also consider a possible non constant pr...

  7. Hydrogen Photo-production from Ethanol and Water over Au/TiO2 Rutile Single Crystal

    Science.gov (United States)

    2014-03-26

    Approved for Public Release; Distribution Unlimited Hydrogen Photo-production from Ethanol and Water over Au/ TiO2 Rutile Single Crystal The views...production from Ethanol and Water over Au/ TiO2 Rutile Single Crystal Report Title This project in its final form has focused on hydrogen production from...Hydrogen Production from Ethanol over Au/ TiO2 Nanoparticles”, Nature Chemistry, 3 (6) 489-492 ( 2011.) [2] I.R.Macdonald, R.F.Howe, X.Yang, W.Zhou, “In

  8. Conductimetric study of struvite crystallization in water as a function of pH

    Science.gov (United States)

    Moulessehoul, A.; Gallart-Mateu, D.; Harrache, D.; Djaroud, S.; de la Guardia, M.; Kameche, M.

    2017-08-01

    The main objective of this work was to investigate the best pH for phosphorus removal from synthetic aqueous solutions using chemical precipitation of struvite, at constant temperature. The experimental approach, developed in the present study, consisted to precipitate struvite in synthetic wastewater containing PO43-, NH4+ and Mg2+ ions in an equal molar ratio, using a stirred tank with continuous monitoring by conductimetry, at 25 °C. Different laboratory experiments were used to evaluate the effects of pH in the range of 8.5 till 11.8, on size, shape, and purity of the precipitated crystals. Struvite crystals were characterized by Infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The phosphorus conversion rate was determined by spectrophotometric determination of residual phosphorus. The experimental results showed that pH 8.5 provided the best conditions for struvite crystal growth, being obtained a 98% phosphorus to phosphate conversion rate, for an initial concentration of 474 mg/L.

  9. Effect of Copper Addition on Crystallization and Properties of Hafnium Containing HITPERM Alloys

    Science.gov (United States)

    2010-05-01

    AFRL-RZ-WP-TP-2010-2190 EFFECT OF COPPER ADDITION ON CRYSTALLIZATION AND PROPERTIES OF HAFNIUM CONTAINING HITPERM ALLOYS (POSTPRINT) L...SUBTITLE EFFECT OF COPPER ADDITION ON CRYSTALLIZATION AND PROPERTIES OF HAFNIUM CONTAINING HITPERM ALLOYS (POSTPRINT) 5a. CONTRACT NUMBER In-house...8-98) Prescribed by ANSI Std. Z39-18 Effect of copper addition on crystallization and properties of hafnium containing HITPERM alloys „invited

  10. Effects of Thermal Exposure on Structures of DD6 Single Crystal Superalloy with Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    DONG Jianmin

    2016-10-01

    Full Text Available In order to investigate the effect of water grit-blasting and high temperature thermal exposure on the microstructures of DD6 alloy with TBCs, DD6 single crystal superalloy specimens were water grit-blasted with 0.3 MPa pressure, then the specimens were coated with thermal barrier coatings by electron beam physical vapor deposition (EB-PVD. Specimens with TBCs were exposed at 1100℃ for 50 and 100 hours in the air respectively, and then these specimens were subjected to stress-rupture tests under the condition of 1100℃/130 MPa. The results show that grit-blasting doesn't lead into the recrystallization, thermal exposure can induce element interdiffusion between the bond coat and alloy substrate, the residual stress and element diffusion lead into the changes of γ' phase coarsing direction. After stress rupture tests, the secondary reaction zone emerges into a local area.

  11. Unraveling the microscopic pathway of homogeneous water crystallization at supercooled conditions from direct simulations

    Science.gov (United States)

    Martelli, Fausto; Palmer, Jeremy; Singh, Rakesh; Debenedetti, Pablo; Car, Roberto

    By means of unbiased classical molecular dynamics simulations, we identify the microscopic pathways of spontaneous homogeneous crystallization in supercooled ST2 water. By introducing a new order parameter, we are able to monitor formation/disruption of locally ordered regions characterized by small ice clusters with intermediate range order. When two of these regions are close each other, they percolate and form a larger ordered region. The process is slow enough to allow for polymorphic selection in favor of cubic ice (Ic). The formation of an ice nucleus requires percolation of many small clusters so that the transformations at the interface of the nucleus do not involve its core, thus guaranteeing the stability of the nucleus. The growth of the crystalline nucleus is fast and involves direct transformation of interfacial liquid molecules as well as percolation of small Ic/Ih clusters. The growth is too fast to allow conversion of Ih into Ic sites, originating the formation of a stacking fault in the final crystal. We recognize Euclidean structures in the oxygen configuration of the second shell in Ic and Ih clusters. This new point of view allows us to explain the source of the ordered stacking fault geometry.

  12. Reversible crystal-to-amorphous-to-crystal phase transition and a large magnetocaloric effect in a spongelike metal organic framework material.

    Science.gov (United States)

    Tian, Chong-Bin; Chen, Rui-Ping; He, Chao; Li, Wei-Jin; Wei, Qi; Zhang, Xu-Dong; Du, Shao-Wu

    2014-02-21

    Reversible crystal-to-amorphous-to-crystal phase transition accompanied by changes in magnetic and NLO properties was first observed in a rigid non-porous spongelike MOF material. The crystal phase exhibits a high magnetocaloric effect, while the amorphous phase has potential application as a magnetic DMF sensor.

  13. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge.

    Science.gov (United States)

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-01-01

    Basal aquifer water is deep groundwater found at the bottom of geological formations, underlying bitumen-saturated sands. Some of the concerns associated with basal aquifer water at the Athabasca oil sands are the high concentrations of hardness-causing compounds, alkalinity, and total dissolved solids. The objective of this pilot-scale study was to treat basal aquifer water to a quality suitable for its reuse in the production of synthetic oil. To achieve zero-liquid discharge (ZLD) conditions, the treatment train included chemical oxidation, polymeric ultrafiltration (UF), reverse osmosis (RO), and evaporation-crystallization technologies. The results indicated that the UF unit was effective in removing solids, with UF filtrate turbidity averaging 2.0 NTU and silt density index averaging 0.9. Membrane autopsies indicated that iron was the primary foulant on the UF and RO membranes. Laboratory and pilot-scale tests on RO reject were conducted to determine the feasibility of ZLD crystallization. Due to the high amounts of calcium, magnesium, and bicarbonate in the RO reject, softening of the feed was required to avoid scaling in the evaporator. Crystals produced throughout the testing were mainly sodium chloride. The results of this study indicated that the ZLD approach was effective in both producing freshwater and minimizing brine discharges.

  14. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, R.N.; Lennert, K.

    2012-01-01

    chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km 2 (0.5-1 m thick) drifting ice floe in the Fram Strait...... during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced...... within the ice floe of 0.3-1.3 mmol m -2 sea ice d -1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO 2 uptake. © Author(s) 2012....

  15. The effect of alkylpolyglycoside surfactants on the crystallization of spray-dried salbutamol sulphate: a GravimetricNear-Infrared Spectroscopy Study.

    Science.gov (United States)

    Columbano, Angela; Buckton, Graham; Wikeley, Philip

    2002-01-01

    This study monitored the effect of a series of structurally related surfactants on the crystallization of amorphous salbutamol sulphate. Amorphous salbutamol sulphate was prepared by spray drying from a solution in water and in the presence of various alkylpolyglycosides (APGs) at different concentrations. The particles were then analyzed using isothermal microcalorimetry and water vapor sorption (Dynamic Vapour Sorption, DVS) analysis combined with near-infrared spectroscopy (DVS-NIR). Both isothermal microcalorimetry and DVS-NIR were able to detect the transition from the amorphous to the crystalline state. The presence of APG surfactants modified the shape of the crystallization peak obtained using isothermal microcalorimetry. The gravimetric study combined with NIR revealed that while the crystallization was similar for the particles with or without surfactant, there was a great difference in the release of water from the newly formed crystal. In the presence of some of the surfactants tested, salbutamol sulphate released the water much faster than in the absence of surfactant. These results helped to explain the differences found in the isothermal microcalorimeter data. Differences were observed in the shapes of the NIR water peaks related to water due to the presence of the surfactant. In conclusion, the use of DVS combined with NIR has helped to analyze and understand the effect of APGs on the crystallization of amorphous salbutamol sulphate.

  16. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting

    KAUST Repository

    Wang, Hong

    2017-01-04

    Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting.

  17. Effect of Colloidal Interactions on the Rate of Interdroplet Heterogeneous Nucleation in Oil-in-Water Emulsions

    Science.gov (United States)

    McClements; Dungan

    1997-02-01

    Pulsed nuclear magnetic resonance was used to monitor the crystallization of supercooled liquid droplets in 30 wt% n-hexadecane oil-in-water emulsions at 6°C. Crystallization was induced in the liquid droplets when solid droplets of the same material were present. The rate of induced crystallization increased as the concentration of free non-ionic surfactant (polyoxyethylene sorbitan monolaurate) in the aqueous phase increased from 0 to 14 wt%. Differential scanning calorimetry measurements indicated that free surfactant had no effect on crystal nucleation of individual droplets. These results indicate that the surfactant enhances induced crystallization by altering colloidal interactions between droplets. Creaming measurements showed that flocculation was enhanced in emulsions when the free surfactant concentration was increased. We propose that the presence of free surfactant micelles increases the attraction between droplets because of an osmotic effect, and this attraction facilitates the ability of solid crystals from one droplet to induce crystallization in an adjacent liquid droplet.

  18. Use of layer silicate for protein crystallization: effects of Micromica and chlorite powders in hanging drops.

    Science.gov (United States)

    Takehara, Masahide; Ino, Keita; Takakusagi, Yoichi; Oshikane, Hiroyuki; Nureki, Osamu; Ebina, Takeo; Mizukami, Fujio; Sakaguchi, Kengo

    2008-02-15

    Two kinds of layer silicate powder, Micromica and chlorite, were used to aid protein crystallization by the addition to hanging drops. Using appropriate crystallization buffers, Micromica powder facilitated crystal growth speed for most proteins tested in this study. Furthermore, the addition of Micromica powder to hanging drops allowed the successful crystallization of lysozyme, catalase, concanavalin A, and trypsin even at low protein concentrations and under buffer conditions that otherwise would not generate protein crystals. Except for threonine synthase and apoferritin, the presence of chlorite delayed crystallization but induced the formation of large crystals. X-ray analysis of thaumatin crystals generated by our novel procedure gave better quality data than did that of crystals obtained by a conventional hanging drop method. Our results suggest that the speed of crystal growth and the quality of the corresponding X-ray data may be inversely related, at least for the formation of thaumatin crystals. The effect of Micromica and chlorite powders and the application of layer silicate powder for protein crystallization are discussed.

  19. Faraday effect in hybrid magneto-plasmonic photonic crystals.

    Science.gov (United States)

    Caballero, B; García-Martín, A; Cuevas, J C

    2015-08-24

    We present a theoretical study of the Faraday effect in hybrid magneto-plasmonic crystals that consist of Au-Co-Au perforated membranes with a periodic array of sub-wavelength holes. We show that in these hybrid systems the interplay between the extraordinary optical transmission and the magneto-optical activity leads to a resonant enhancement of the Faraday rotation, as compared to purely ferromagnetic membranes. In particular, we determine the geometrical parameters for which this enhancement is optimized and show that the inclusion of a noble metal like Au dramatically increases the Faraday rotation over a broad bandwidth. Moreover, we show that the analysis of the Faraday rotation in these periodically perforated membranes provides a further insight into the origin of the extraordinary optical transmission.

  20. Drainage water management effects on tile dicharge and water quality

    Science.gov (United States)

    Drainage water management (DWM) has received considerable attention as a potential best management practice for improving water quality in tile drained landscapes. However, only a limited number of studies have documented the effectiveness of DWM in mitigating nitrogen (N) and phosphorus (P) loads. ...

  1. The effect of tailor-made additives on crystal growth of methyl paraben: Experiments and modelling

    Science.gov (United States)

    Cai, Zhihui; Liu, Yong; Song, Yang; Guan, Guoqiang; Jiang, Yanbin

    2017-03-01

    In this study, methyl paraben (MP) was selected as the model component, and acetaminophen (APAP), p-methyl acetanilide (PMAA) and acetanilide (ACET), which share the similar molecular structure as MP, were selected as the three tailor-made additives to study the effect of tailor-made additives on the crystal growth of MP. HPLC results indicated that the MP crystals induced by the three additives contained MP only. Photographs of the single crystals prepared indicated that the morphology of the MP crystals was greatly changed by the additives, but PXRD and single crystal diffraction results illustrated that the MP crystals were the same polymorph only with different crystal habits, and no new crystal form was found compared with other references. To investigate the effect of the additives on the crystal growth, the interaction between additives and facets was discussed in detail using the DFT methods and MD simulations. The results showed that APAP, PMAA and ACET would be selectively adsorbed on the growth surfaces of the crystal facets, which induced the change in MP crystal habits.

  2. Crystallization of lactose from carbopol gels.

    Science.gov (United States)

    Zeng, X M; Martin, G P; Marriott, C; Pritchard, J

    2000-07-01

    To crystallize lactose under static conditions with a view to preparing crystals of well-defined morphology. et-Lactose monohydrate was crystallized from neutralized Carbopol 934 gels. When the majority of crystals had grown to maturity, the gels were acidified using diluted hydrochloric acid and the crystals were harvested by filtration or centrifugation and washed with ethanol-water mixtures. Crystals prepared from the gel had a consistently narrower size distribution than control crystals, prepared from solution under constant stirring. If crystallization was effected in the gel without sedimentation of the crystals, then the resultant crystals had smooth surfaces without visually detectable surface roughness or asperities viewed by optical microscopy. The crystals from Carbopol gels also exhibited the uniform shape of an elongated tomahawk regardless of the crystallization conditions, in contrast to crystallization under constant stirring, where the crystal shape of lactose changed with crystallization conditions especially as a function of the initial concentration of lactose. All batches of lactose crystals prepared from Carbopol gels existed as alpha-lactose monohydrate, which showed better flowability than the controls of a similar particle size. Crystallization from Carbopol gel produces lactose crystals of uniform size, regular shape, smooth surface, and improved flowability.

  3. Effect of pressure on the crystallization behaviour of polyethylene terephthalate

    CERN Document Server

    Li Li; Huang Rui

    2002-01-01

    Crystallized polyethylene terephthalate (PET) samples were obtained at high pressures of 200-400 MPa at a temperature of 603 K, and another group of the samples were made at pressures of 250-350 MPa and different temperatures with a fixed supercooling. The samples were investigated by means of differential scanning calorimetry and scanning electron microscopy. Characterization results suggested that high pressure could increase the crystallization rate and promote the thickening process of PET lamellar crystals.

  4. Effects of Emulsifying Fish Oil on the Water-Holding Capacity and Ice Crystal Formation of Heat-Induced Surimi Gel during Frozen Storage%乳化鱼油对冻藏期间狭鳕鱼糜热凝胶持水性和冰结晶形成的影响

    Institute of Scientific and Technical Information of China (English)

    牛丽琼; HUYNH Thi Thu Huong; 贾茹; 高元沛; 中澤奈穂; 大迫一史; 岡﨑惠美子

    2016-01-01

    评估乳化鱼油对冻藏期间狭鳕鱼糜热凝胶持水性和冰结晶形成的影响。鱼糜经盐擂后,加入5%鱼油经乳化制得乳化鱼糜热凝胶。随后用快速冻结和慢速冻结2种方式冻结样品并评估其在冻藏期间热凝胶品质的变化。研究结果表明:与对照相比,乳化热凝胶在冻藏期间的解冻损失和压榨损失均有降低。显微观察结果显示经3个月冻藏后乳化热凝胶内的冰结晶平均粒径与其对照相比均有减小,其中快速冻结乳化样品为7.2μm,对照样品为13.1μm,慢速冻结乳化样品为13.7μm,对照样品为31.2μm。以上结果表明乳化鱼油可能对冻藏期间的热凝胶的冰结晶形成和其分布的影响而导致其持水性不同。%This study was performed to evaluate the effects of emulsifying fish oil on the water-holding capacity (WHC) and ice crystal formation of heat-induced surimi gel during frozen storage. Alaska polack surimi was ground with water and salt, mixed and emulsified with 5% fish oil, and prepared into gels by heat induction. The surimi gels were frozen by quick and slow freezing methods, and the gel quality was evaluated. The results showed that emulsified surimi gels displayed lower thawing drip and expressible drip compared to the control gel. Microscopic observation revealed that the sizes of ice crystals in the emulsified surimi gel stored for 3 months after freezing by quick and slow freezing methods were smaler than those of the control gels, 7.2μm vs. 13.1μmand 13.7μmvs. 31.2μm, respectively. These results indicated that the gel structure derived from emulsification of fish oil affected ice crystal formation and its frequency, consequently exerting a positive effect on the WHC of the gels during frozen storage.

  5. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications.

    Science.gov (United States)

    Benetou, M I; Bouillard, J-S; Segovia, P; Dickson, W; Thomsen, B C; Bayvel, P; Zayats, A V

    2015-11-06

    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.

  6. Effect of milling on morphology of molten salt synthesized Sr3Ti2O7 crystals

    Directory of Open Access Journals (Sweden)

    Kijamnajsuk, S.

    2007-07-01

    Full Text Available Effect of milling liquid (acetone and ethanol, and milling times on morphology of Sr3Ti2O7 (ST7 crystals grow in molten potassium chloride salt at 1250oC for 4 h was investigated. Two kinds of crystals with different morphologies were found: ST7 crystals having a tabular shape of less than 20 μm diameter and small secondary-phase crystals having high symmetry. Milling starting materials in ethanol yielded ST7 crystals that were up to 3 times thinner than those milled with acetone, increasing the (00l Lotgering factor almost twice that when prepared with acetone. Large crystals become a bit smaller and the number of small crystals increased when the milling time increased.

  7. 水溶性蛋白盐析的一维结晶%One-dimensional Crystallization of Salting Out Water-soluble Protein

    Institute of Scientific and Technical Information of China (English)

    杨光弟; 周红锋; 靳林

    2011-01-01

    Objective: The habit of water-soluble protein salting out crystallizes was researched and the physical mechanism of one-dimensional crystallization of salting out water-soluble protein is revealed. Methods: The albumin standard solution, human serum, human hemoglobin, hepatitis B gamma globulin, ovalbumin and other water-soluble protein were analyzed by means of two-dimensional salting. And Pictures of these. Protein were obtained by microscopic photography, then Microscopic Pictures of crystal were analyze. Results: Water-soluble form of protein crystallization of salt generally has no marked the interval, shielding effect, typical fractal characteristic; however when protein eoncentration is lower and directly onto the glass slide,the presumptuous shaped structure of one-dimensional crystals can be observed. Conclusions: Based on analysis water-soluble protein of the digitalized image of scanning electron microscope (SEM) micrographs, the result shows: water-soluble protein fraetal geometry crystallization, however, one-dimensional crystallization can produce at the special condition. The theoretical analysis of water-soluble salt by one-dimensional protein crystals is made, one-dimensional protein crystallization mechanism is explained with electric dipole model.%目的:研究水溶性蛋白质盐析结晶的形态,揭示水溶性蛋白盐析一维结晶的物理机理.方法:选择白蛋白标准液,人血清,人血红蛋白,乙肝丙种球蛋白,卵清蛋白等水溶性蛋白质进行二维盐析,用显微摄影技术得到显微摄影图片,再对结晶的显微图像进行分析.结果:水溶性蛋白质盐析结晶的形态一般情况下具有无标度区间,具有屏蔽效应,具有典型的分形特征;但是,在蛋白质浓度较低,并直接滴在载玻片时,也观察到非分形结构的一维结晶.结论:水溶性蛋白涂片盐析结晶显微图片的分析发现,水溶性蛋白涂片盐析结晶一般形成分形结晶,但在特定情况下可

  8. Crystallization using reverse micelles and water-in-oil microemulsion systems: the highly selective tool for the purification of organic compounds from complex mixtures.

    Science.gov (United States)

    Kljajic, Alen; Bester-Rogac, Marija; Klobcar, Andrej; Zupet, Rok; Pejovnik, Stane

    2013-02-01

    The active pharmaceutical ingredient orlistat is usually manufactured using a semi-synthetic procedure, producing crude product and complex mixtures of highly related impurities with minimal side-chain structure variability. It is therefore crucial for the overall success of industrial/pharmaceutical application to develop an effective purification process. In this communication, we present the newly developed water-in-oil reversed micelles and microemulsion system-based crystallization process. Physiochemical properties of the presented crystallization media were varied through surfactants and water composition, and the impact on efficiency was measured through final variation of these two parameters. Using precisely defined properties of the dispersed water phase in crystallization media, a highly efficient separation process in terms of selectivity and yield was developed. Small-angle X-ray scattering, high-performance liquid chromatography, mass spectrometry, and scanning electron microscopy were used to monitor and analyze the separation processes and orlistat products obtained. Typical process characteristics, especially selectivity and yield in regard to reference examples, were compared and discussed. Copyright © 2012 Wiley Periodicals, Inc.

  9. Size effects in single crystal thin films : nonlocal crystal plasticity simulations

    NARCIS (Netherlands)

    Yefimov, S; van der Giessen, E

    2005-01-01

    Stress relaxation in single crystalline thin films on substrates subjected to thermal loading is studied using a recently proposed nonlocal continuum crystal plasticity theory. The theory is founded on a statistical-mechanics description of the collective behaviour of dislocations in multiple slip,

  10. Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution.

    Science.gov (United States)

    Adhikari, Nirmal; Dubey, Ashish; Gaml, Eman A; Vaagensmith, Bjorn; Reza, Khan Mamun; Mabrouk, Sally Adel Abdelsalam; Gu, Shaopeng; Zai, Jiantao; Qian, Xuefeng; Qiao, Qiquan

    2016-02-07

    An optimal small amount of water added into methyl ammonium iodide (MAI) solution in isopropyl alcohol (IPA) helps perovskite crystallization and leads to larger grain size from sequential deposition of perovskite films. The concentration of water was varied from 1% to 7% (vol% of IPA) in MAI solution and optical absorption, crystallization, morphology of perovskite films and their photovoltaic performance were studied in perovskite solar cells. 5% by volume was found to lead to preferential crystallization in the (110) plane with grain size about three times that of perovskite films prepared without adding water into the MAI solution. The optimal water concentration of 5% by volume in the MAI solution led to average perovskite grain size of ∼600 nm and solar cell efficiency of 12.42% at forward scan with a rate of 0.5 V s(-1). Device performance decreases after increasing water concentration beyond 5% in the MAI solution due to formation of the PbI2 phase. Transient photocurrent and photovoltage measurements show the shortest charge transport time at 0.99 μs and the longest charge carrier life time at 13.6 μs for perovskite films prepared from 5% water in MAI solution, which improved perovskite solar cell efficiency from 9.04% to 12.42%.

  11. Single-crystal organic field-effect transistors based on dibenzo-tetrathiafulvalene

    NARCIS (Netherlands)

    Mas-Torrent, M.; Hadley, P.; Bromley, S.T.; Crivillers, N.; Veciana, J.; Rovira, C.

    2004-01-01

    We report on the fabrication and characterization of field-effect transistors based on single crystals of the organic semiconductor dibenzo-tetrathiafulvalene (DB-TTF). We demonstrate that it is possible to prepare very-good-quality DB-TTF crystals from solution. These devices show high field-effect

  12. Anisotropic dynamics of water ultraconfined in macroscopically oriented channels of single-crystal beryl: a multifrequency analysis.

    Science.gov (United States)

    Anovitz, Lawrence M; Mamontov, Eugene; ben Ishai, Paul; Kolesnikov, Alexander I

    2013-11-01

    The properties of fluids can be significantly altered by the geometry of their confining environments. While there has been significant work on the properties of such confined fluids, the properties of fluids under ultraconfinement, environments where, at least in one plane, the dimensions of the confining environment are similar to that of the confined molecule, have not been investigated. This paper investigates the dynamic properties of water in beryl (Be(3)Al(2)Si(6)O(18)), the structure of which contains approximately 5-Å-diam channels parallel to the c axis. Three techniques, inelastic neutron scattering, quasielastic neutron scattering, and dielectric spectroscopy, have been used to quantify these properties over a dynamic range covering approximately 16 orders of magnitude. Because beryl can be obtained in large single crystals we were able to quantify directional variations, perpendicular and parallel to the channel directions, in the dynamics of the confined fluid. These are significantly anisotropic and, somewhat counterintuitively, show that vibrations parallel to the c-axis channels are significantly more hindered than those perpendicular to the channels. The effective potential for vibrations in the c direction is harder than the potential in directions perpendicular to it. There is evidence of single-file diffusion of water molecules along the channels at higher temperatures, but below 150 K this diffusion is strongly suppressed. No such suppression, however, has been observed in the channel-perpendicular direction. Inelastic neutron scattering spectra include an intramolecular stretching O-H peak at ~465 meV. As this is nearly coincident with that known for free water molecules and approximately 30 meV higher than that in liquid water or ice, this suggests that there is no hydrogen bonding constraining vibrations between the channel water and the beryl structure. However, dielectric spectroscopic measurements at higher temperatures and lower

  13. Effect of inorganic salts on crystallization of poly(ethylene glycol) in frozen solutions.

    Science.gov (United States)

    Izutsu, Ken-ichi; Aoyagi, Nobuo

    2005-01-06

    The effect of inorganic salts on eutectic crystallization of poly(ethylene glycol) (PEG) 1500-20,000 in frozen solution was studied to model the polymer and inorganic salt interaction in freeze-dried formulations. Thermal analysis of an aqueous PEG 3000 solution showed a eutectic PEG crystallization exotherm at approximately -47 degrees C and a subsequent PEG crystal melting endotherm at -14.9 degrees C. Addition of sodium chloride prevented the PEG crystallization in the freeze-concentrated solution surrounding ice crystals. Higher concentration NaCl was required to retain higher molecular weight PEG in the amorphous state. Various inorganic salts prevented the PEG crystallization to varying degrees depending mainly on the position of the anion in the Hofmeister's lyotropic series. Some salting-in and 'intermediate' salts (NaSCN, NaI, NaBr, NaCl, LiCl, KCl, and RbCl) inhibited the crystallization of PEG 7500 in frozen solutions. On the other hand, salting-out salts (NaH2PO4, Na2HPO4, Na2SO4, and NaF) did not show an apparent effect on the PEG crystallization. Some salting-out salts induced PEG crystallization in PEG and sucrose combination frozen solutions. The varying abilities of salts to prevent the PEG crystallization in frozen solutions strongly suggested that the solutes had different degrees of miscibility in the freeze-concentrates.

  14. Investigation of the size effect for photonic crystals

    Science.gov (United States)

    Liu, M.; Xu, W.; Bai, J.; Chua, C. K.; Wei, J.; Li, Z.; Gao, Y.; Kim, D. H.; Zhou, K.

    2016-10-01

    Three types of photonic crystal (PC) thin films have been prepared for the investigation of their deformation behaviors by nanoindentation tests at the microscale and nanoscale. Each type of PC thin film was composed of poly(methyl methacrylate) (PMMA) nanoparticles with a uniform size. Another type of thin film was prepared by assembling nanoparticles with three different sizes. It was exciting to observe that the hardness and Young’s modulus were significantly improved (more than 15 times) in well-ordered PC thin films than disordered ones. Furthermore, size-dependent mechanical properties were observed for the three types of PCs. Such a size effect phenomenon can be attributed to the special polycrystalline material having a periodical face-centered cubic structure of PC thin films. Furthermore, the indentation size effect that shows that the indentation hardness decreases with an increasing indentation depth has also been observed for all four types of thin films. It is conjectured that the application of the PC structure to other functional materials may enhance their mechanical properties.

  15. Effect of substrates on crystallization of high density polyethylene

    Institute of Scientific and Technical Information of China (English)

    范毓润; 林渊; 阮绵照

    2008-01-01

    The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate’s ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.

  16. Determination of absolute configuration using heavy atom based co-crystallization method: Halogen atom effects

    Science.gov (United States)

    Wang, Jian-Rong; Fan, Xiaowu; Ding, Qiaoce; Mei, Xuefeng

    2016-09-01

    Heavy atom (chloride, bromide, and iodide) based co-crystals for determination of absolute configuration (AC) for chiral molecules were synthesized and evaluated. Co-crystals of cholestanol and L-ascorbic acid were analysed and the effects and potential benefits of varying the heavy atom are discussed. Changing the halogen atoms (chloride, bromide, or iodide) affects the co-crystal formation, X-ray absorption, and anomalous dispersion, and hence the ability to determine AC.

  17. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  18. Patterning technology for solution-processed organic crystal field-effect transistors

    OpenAIRE

    Yun Li; Huabin Sun; Yi Shi; Kazuhito Tsukagoshi

    2014-01-01

    Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recent development...

  19. Effect of anisotropy on deep cellular crystal growth in directional solidification

    Science.gov (United States)

    Jiang, Han; Chen, Ming-Wen; Shi, Guo-Dong; Wang, Tao; Wang, Zi-Dong

    2016-06-01

    The effect of anisotropic surface tension and anisotropic interface kinetics on deep cellular crystal growth is studied. An asymptotic solution of deep cellular crystal growth in directional solidification is obtained by using the matched asymptotic expansion method and the multiple variable expansion method. The results show that as the anisotropic parameters increase, the total length of deep cellular crystal increases and the root depth increases, whereas the curvature of the interface near the root increases or the curvature radius decreases.

  20. The Effect of Ionic Liquids on the CaCO3 Crystal Growth

    Institute of Scientific and Technical Information of China (English)

    Zhi Guo HU; Shi Li SONG; Jian Ji WANG; Lin YANG

    2004-01-01

    In this paper, the effect of ionic liquids on the CaCO3 crystal growth has been studied for the first time. The obtained CaCO3 crystals were charactered by the X-ray diffraction and scanning electron micrographs. The results showed that the control ability of ionic liquids for CaCO3 crystals growth was dependent on the counter anion very much.

  1. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS) ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS) on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  2. Confined Crystal Growth in Space. Deterministic vs Stochastic Vibroconvective Effects

    Science.gov (United States)

    Ruiz, Xavier; Bitlloch, Pau; Ramirez-Piscina, Laureano; Casademunt, Jaume

    The analysis of the correlations between characteristics of the acceleration environment and the quality of the crystalline materials grown in microgravity remains an open and interesting question. Acceleration disturbances in space environments usually give rise to effective gravity pulses, gravity pulse trains of finite duration, quasi-steady accelerations or g-jitters. To quantify these disturbances, deterministic translational plane polarized signals have largely been used in the literature [1]. In the present work, we take an alternative approach which models g-jitters in terms of a stochastic process in the form of the so-called narrow-band noise, which is designed to capture the main statistical properties of realistic g-jitters. In particular we compare their effects so single-frequency disturbances. The crystalline quality has been characterized, following previous analyses, in terms of two parameters, the longitudinal and the radial segregation coefficients. The first one averages transversally the dopant distribution, providing continuous longitudinal information of the degree of segregation along the growth process. The radial segregation characterizes the degree of lateral non-uniformity of the dopant in the solid-liquid interface at each instant of growth. In order to complete the description, and because the heat flux fluctuations at the interface have a direct impact on the crystal growth quality -growth striations -the time dependence of a Nusselt number associated to the growing interface has also been monitored. For realistic g-jitters acting orthogonally to the thermal gradient, the longitudinal segregation remains practically unperturbed in all simulated cases. Also, the Nusselt number is not significantly affected by the noise. On the other hand, radial segregation, despite its low magnitude, exhibits a peculiar low-frequency response in all realizations. [1] X. Ruiz, "Modelling of the influence of residual gravity on the segregation in

  3. The effect factors of potassium dihydrogen phosphate crystallization in aqueous solution

    Science.gov (United States)

    Zhou, Cun; Sun, Fei; Liu, Xuzhao

    2017-01-01

    The effects of cooling rate and pH on the potassium dihydrogen phosphate crystallization process were studied by means of batch crystallization process. The experiment shows that with the increase of cooling rate, the metastable zone width increase and the induction period decrease. When the pH is 3.0, the metastable zone width and induction period are both the minimum, while the crystallization rate is the highest. The crystallization products were characterized by scanning election microscope. Potassium Dihydrogen Phosphate (KDP) is a kind of excellent nonlinear optical materials, and belongs to tetragonal system, and ideal shape is aggregate of tetragonal prism and tetragonal dipyramid, the (100) cone is alternating accumulation by double positive ions and double negative ions [1-4]. The crystals of aqueous solution method to grow have large electro-optical nonlinear coefficient and high loser-damaged threshold, and it is the only nonlinear optical crystal could be used in inertial confinement fusion (ICF), KDP crystals are the ideal system to study the native defects of complex oxide insulating material [5-7]. With the development of photovoltaic technology, KDP crystals growth and performance have become a research focus worldwide [8, 9]. The merits of the crystallization process directly affect the quality of KDP products, so the study of the effect of crystallization conditions has an important significance on industrial production. This paper studied the change rule of metastable zone width, induction period, crystallization rate and particle size distribution in crystal process, and discussed the technical condition of KDP crystallization.

  4. Experimental study of the effect of mica on pressure solution of single crystal calcite

    Science.gov (United States)

    Karcz, Z.; Laronne, L.; Polizzotti, R. S.; Ertas, D.; Aharonov, E.

    2007-12-01

    Field and experimental studies suggest that clays and micas accelerate the rate of pressure solution in various geomaterials. It is not clear however whether the "clay effect" is purely mechanical (i.e., maintaining a thick conduit for fluids at the contact) or whether its surface chemistry plays a critical role. A case in point is the insoluble clay filling of stylolites, which are thought by some to be merely an inert byproduct of dissolution, or by others to be a necessary feature for the propagation of the seam. To study the effect of mica on carbonate pressure solution, the corner of a cleaved calcite single crystal rhomb was polished into a triangular face (edge length ~ 200micron) and pressed against either muscovite or quartz discs to yield a nominal stress of 10-20MPa. Immersing the contact in pre-saturated (with respect to microcrystalline calcite) solutions of distilled water or 0.25M NH4Cl caused axial shortening of the crystal. This axial strain was measured with a capacitance sensor (perimeter roughens. The second stage is distinguished by high axial strain rates (~40nm/h) and changes in the size and spatial position of isolated contacts (diameterfaces adjacent to it. At this point we see no significant difference between the calcite quartz and calcite muscovite experiments under similar load conditions.

  5. In-Line Measurement of Water Content in Ethanol Using a PVA-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2014-01-01

    Full Text Available An in-line device for measuring the water content in ethanol was developed using a polyvinyl alcohol (PVA-coated quartz crystal microbalance. Bio-ethanol is widely used as the replacement of gasoline, and its water content is a key component of its specifications. When the PVA-coated quartz crystal microbalance is contacted with ethanol containing a small amount of water, the water is absorbed into the PVA increasing the load on the microbalance surface to cause a frequency drop. The determination performance of the PVA-coated microbalance is examined by measuring the frequency decreases in ethanol containing 2% to 10% water while the ethanol flows through the measurement device. The measurements indicates that the higher water content is the more the frequency reduction is, though some deviation in the measurements is observed. This indicates that the frequency measurement of an unknown concentration of water in ethanol can be used to determine the water content in ethanol. The PVA coating is examined by microscopy and FTIR (Fourier transform infrared spectroscopy.

  6. In-line measurement of water content in ethanol using a PVA-coated quartz crystal microbalance.

    Science.gov (United States)

    Kim, Byoung Chul; Yamamoto, Takuji; Kim, Young Han

    2014-01-16

    An in-line device for measuring the water content in ethanol was developed using a polyvinyl alcohol (PVA)-coated quartz crystal microbalance. Bio-ethanol is widely used as the replacement of gasoline, and its water content is a key component of its specifications. When the PVA-coated quartz crystal microbalance is contacted with ethanol containing a small amount of water, the water is absorbed into the PVA increasing the load on the microbalance surface to cause a frequency drop. The determination performance of the PVA-coated microbalance is examined by measuring the frequency decreases in ethanol containing 2% to 10% water while the ethanol flows through the measurement device. The measurements indicates that the higher water content is the more the frequency reduction is, though some deviation in the measurements is observed. This indicates that the frequency measurement of an unknown concentration of water in ethanol can be used to determine the water content in ethanol. The PVA coating is examined by microscopy and FTIR (Fourier transform infrared) spectroscopy.

  7. Effect of asphaltenes on crude oil wax crystallization

    DEFF Research Database (Denmark)

    Kriz, Pavel; Andersen, Simon Ivar

    2005-01-01

    The paper summarizes the experimental work done on asphaltene influenced wax crystallization. Three different asphaltenes (from stable oil, instable oil, and deposit) were mixed at several concentrations or dispersions into the waxy crude oil. These blends were evaluated by viscometry and yield...... stress measurement and compared with the original crude oil. A complex asphaltene−wax interaction as a function of asphaltene concentration and degree of asphaltene dispersion under dynamic and static condition was observed. The crystallization and the wax network strength was strongly dependent...... influence the wax crystallization at static condition more significantly than the more flocculated....

  8. Effect of asphaltenes on crude oil wax crystallization

    DEFF Research Database (Denmark)

    Kriz, Pavel; Andersen, Simon Ivar

    2005-01-01

    The paper summarizes the experimental work done on asphaltene influenced wax crystallization. Three different asphaltenes (from stable oil, instable oil, and deposit) were mixed at several concentrations or dispersions into the waxy crude oil. These blends were evaluated by viscometry and yield...... stress measurement and compared with the original crude oil. A complex asphaltene−wax interaction as a function of asphaltene concentration and degree of asphaltene dispersion under dynamic and static condition was observed. The crystallization and the wax network strength was strongly dependent...... influence the wax crystallization at static condition more significantly than the more flocculated....

  9. Supercontinuum generation using a selectively water-filled photonic crystal fiber for enhancement in the visible spectral region

    Science.gov (United States)

    Yoshida, Eiichi; Wada, Akira; Karasawa, Naoki

    2016-07-01

    We generated a supercontinuum from a selectively water-filled photonic crystal fiber (PCF) for enhancement in the visible spectral region using an optical pulse from a Ti:sapphire oscillator at 804 nm. We prepared a 7-cm-long fused silica PCF, where the holes adjacent to the central core were filled with water, using a UV-curable adhesive to close holes selectively before filling holes with water by capillary force. Compared with that of the PCF without water, the group velocity dispersion curve of the selectively water-filled PCF became flatter near 800 nm and the intensity in the visible spectral region of the supercontinuum became higher and more uniform. The spectra simulated using the calculated dispersion properties of the selectively water-filled PCF showed good agreement with the experimental spectra.

  10. Impact of Polymer Conformation on the Crystal Growth Inhibition of a Poorly Water-Soluble Drug in Aqueous Solution

    OpenAIRE

    Schram, Caitlin J.; Beaudoin, Stephen P.; Taylor, Lynne S.

    2014-01-01

    Poor aqueous solubility is a major hindrance to oral delivery of many emerging drugs. Supersaturated drug solutions can improve passive absorption across the gastrointestinal tract membrane as long as crystallization can be inhibited, enhancing the delivery of such poorly soluble therapeutics. Polymers can inhibit crystallization and prolong supersaturation; therefore, it is desirable to understand the attributes which render a polymer effective. In this study, the conformation of a polymer a...

  11. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, R.N.; Lennert, K.

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO 2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO 3•6H 2O) in Arctic and Antarctic sea ice, which indicate that multiple...... chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km 2 (0.5-1 m thick) drifting ice floe in the Fram Strait...... during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced...

  12. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-03-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m−2 sea ice d−1 or to 3.5 ton km−2 ice floe week−1.

  13. Memory effect in composites of liquid crystal and silica aerosil

    Energy Technology Data Exchange (ETDEWEB)

    Relaix, Sabrina; Leheny, Robert L.; Reven, Linda; Sutton, Mark (McGill); (JHU)

    2012-02-07

    Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a 'permanent' memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from 'training' of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

  14. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals.

    Science.gov (United States)

    Nirmala, L Ruby; Thomas Joseph Prakash, J

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals.

  15. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals

    Science.gov (United States)

    Nirmala, L. Ruby; Prakash, J. Thomas Joseph

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals.

  16. Crystal field effects in TmCu2 compound

    Science.gov (United States)

    Zajac, Š.; Šíma, V.; Smetana, Z.

    1987-01-01

    The splitting of the3H6 multiplet has been estimated for the Tm3+ ion in the crystal electric field of the orthorhombic TmCu2 compound. Using the energy levels and appropriate eigenfunctions the crystal field only susceptibility has been calculated along the principal orthorhombic axes at temperatures 10 to 300 K. The obtained results are compared with our measurements of specific heat and paramagnetic susceptibility on polycrystalline sample.

  17. Crystallization kinetics of polypropylenes. Effect of nucleating agents?

    OpenAIRE

    Boyer, Séverine A.E.; Billon, Noëlle; Haudin, Jean-Marc

    2008-01-01

    International audience; Thermal conditions and formulation affect the crystallization mechanisms of polymers and the associated kinetics in a coupled manner. In that field, the objective of this investigation is to compare overall crystallization kinetics and structural organization of one clarified polypropylene (specifically designed for stretch-blow molding) and a homopolypropylene. Liquid/solid transitions are investigated in- and ex-situ under isothermal and non-isothermal conditions com...

  18. The crystal morphology effect of Iridium tris-acetylacetonate on MOCVD iridium coatings

    Science.gov (United States)

    Shi, Jing; Hao, Yupeng; Yu, Xiaodong; Tan, Chengwen

    2017-07-01

    Iridium tris-acetylacetonate is the most commonly used precursor for the metal organic chemical vapour deposition (MOCVD) of iridium coating. In this paper, the crystal morphology effect of iridium tris-acetylacetonate on iridium coatings prepared by MOCVD was studied. Two kinds of Ir(acac)3 crystalline powder were prepared. A precursor sublimation experiment in a fixed bed reactor and an iridium deposition experiment in a cold-wall atmospheric CVD reactor were designed. It is found that the volatility of the hexagonal columnar crystals is better than that of the tetragonal flake crystals under the experimental conditions. It’s due to the hexagonal columnar crystals exposed more crystal faces than the tetragonal flake crystals, increasing its contact area with the transport gas. An adequate supply of iridium tris-acetylacetonate during the pre-deposition period contributed to obtain an iridium coating with a smooth and uniform continuity surface.

  19. Sonocrystallization: effect on lactose recovery and crystal habit.

    Science.gov (United States)

    Bund, R K; Pandit, A B

    2007-02-01

    Sonocrystallization is the use of power ultrasound to control the crystallization process, commonly used during the nucleation phase of crystallization. However, in the present study a different approach has been tried, in which the whole process of lactose crystallization from model reconstituted lactose solutions was completed rapidly with the aid of ultrasound, in the presence of 'ethanol' as an anti-solvent, at temperature of 30+/-2 degrees C (ambient temperature). The lactose recovery and crystal properties from sonicated samples were compared with non-sonicated samples. For optimization of sonocrystallization process for rapid lactose recovery, variations in the time of sonication, lactose concentration, protein concentration and pH were tried. A lactose recovery of 91.48% was obtained in 5 min of sonication time, from a reconstituted lactose solution (17.5% w/v, pH 4.2) as against 14.63% under only stirring. Lactose recovery decreased with lowering of pH from 4.2 to 2.8. The protein showed maximum influence on lactose recovery even at concentration of 0.2% w/v. A rapid process of crystallization gave a better uniformity in crystal size distribution of lactose samples.

  20. I. Enabling Single-Chain Surfactants to Form Vesicles by Nonamphiphilic Liquid Crystals in Water II. Controlling Attachment and Ligand-Mediated Adherence of Candida albicans on Monolayers

    Science.gov (United States)

    Varghese, Nisha

    This dissertation describes a fundamental study of weak noncovalent interactions and surface forces that exist at the interfaces of various interacting moieties (small molecules or microbes), and its relevance to colloidal and material chemistry. Chapter 1 presents an emulsion system that enables single-chain anionic or nonionic surfactants to sequester and encapsulate certain water-soluble organic salts, leading to the formation of vesicles in water. The water-soluble organic salt in the system comprises of disodium cromoglycate crystals that are emulsified by surfactants in water to form stable liquid crystal droplets. The work provides an exception to the rule of geometric packing factor that dictates formation of micelles by the surfactants in water. Chapter 2 shows that the odd or even number of carbon atoms present in the aliphatic chain of surfactants affect the ability of surfactants to emulsify aqueous-based liquid crystals of disodium cromoglycate. Such an odd-even effect is frequently observed for solid state properties like melting point, heat of fusion and refractive index but is rarely observed for molecules present in solution. When mixed in water, anionic single-chain surfactants with odd number of carbon atoms emulsifies disodium cromoglycate to form liquid crystal droplets, while surfactants with even number of carbon atoms fail to emulsify disodium cromoglycate. Chapter 3 Bolaamphiphiles usually form vesicles only in extreme conditions or in the presence of surfactants. Here, we explore the co-assembly system of synthesized bolaamphiphiles and disodium cromoglycate in water. The combination of the self-assembly forces of the bolaamphiphile and self-associating property of disodium cromoglycate liquid crystals act together at the interface form a unique microemulsion of liquid crystal droplets of disodium cromoglycate embedded in liquid crystal phase. Chapter 4 describes a key event (adhesion) that precedes infections caused by Candida albicans

  1. 紫外线辐射与土壤干旱胁迫对紫花苜蓿叶表皮蜡质晶体结构及含量的影响%Effect of soil water deficit and enhanced ultraviolet radiation on contents and crystal structure of cuticular waxes in alfalfa (Medicago sativa) leaf

    Institute of Scientific and Technical Information of China (English)

    郭彦军; 郭芸江; 唐华; 李智燕; 韩龙

    2011-01-01

    Enhanced ultraviolet radiation induced by human activities widely influenced plant adaptation, which accompanied with drought stress severely reduced crop yields. In the current study, two alfalfa (Medicago sati-va) cultivars with different drought resistances, Aohan (high resistance) and Sanditi (low resistance), were used to analyze the responses of leaf cuticular wax content and crystal structure, leaf water potential (LWP) , and ultraviolet absorbing compounds under soil water deficit and enhanced ultraviolet radiation (UVR) stresses. The results showed that the leaf wax content in Aohan was significantly higher than that in Sanditi. Compared to well-watered plants, leaf wax content and LWP in Aohan with combined treatments of UVR and soil water deficit increased, while LWP in Sanditi changed insignificantly. This indicates that high-drought resistant cultivar might maintain higher level of LWP to control water loss by increasing wax deposition on leaf surface. Under the conditions of 0. 05 W/m2 UVR dose or combined treatments of UVR and soil water deficit, the platelet wax crystalloid on leaf surface of both alfalfa cultivars melted, which increased covering areas and UVR reflection rate, and thus would reduce cuticular water loss. Under 0. 1 W/m2 UVR dose, some crystal platelets paralleling leaf surface while vertically distributing above other crystalloid, appeared on leaf surface of Aohan, which efficiently reduced the effect of UVR on plant physiology, while the wax crystalloids of Sanditi further melted. The structure of wax crystalloids had no significant response to solely water deficit treatment. The contents of ultraviolet absorbing compounds had no significant response to enhanced UVR, indicating that the wax crystalloid structure on alfalfa leaf surface had direct defense mechanism to UVR, which partly might delay or replace the defense mechanisms from secondary metabolic compound such as ultraviolet absorbing compounds.%选用紫花苜蓿强抗旱

  2. Determination of crystal violet in water by direct solid phase spectrophotometry after rotating disk sorptive extraction.

    Science.gov (United States)

    Manzo, Valentina; Navarro, Orielle; Honda, Luis; Sánchez, Karen; Inés Toral, M; Richter, Pablo

    2013-03-15

    The microextraction of crystal violet (CV) from water samples into polydimethylsiloxane (PDMS) using the rotating disk sorptive extraction (RDSE) technique was performed. The extracting device was a small Teflon disk that had an embedded miniature magnetic stirring bar and a PDMS (560 μL) film attached to one side of the disk using double-sided tape. The extraction involves a preconcentration of CV into the PDMS, where the analyte is then directly quantified using solid phase spectrophotometry at 600 nm. Different chemical and extraction device-related variables were studied to achieve the best sensitivity for the determination. The optimum extraction was performed at pH 14 because under this condition, CV is transformed to the neutral and colorless species carbinol, which can be quantitatively transferred to the PDMS phase. Although the colorless species is the chemical form extracted in the PDMS, an intense violet coloration appeared in the phase because the -OH bond in the carbinol molecule is weakened through the formation of hydrogen bonds with the oxygen atoms of the PDMS, allowing the resonance between the three benzene rings to compensate for the charge deficit on the central carbon atom of the molecule. The accuracy and precision of the method were evaluated in river water samples spiked with 10 and 30 μg L(-1) of CV, yielding a relative standard deviation of 6.2% and 8.4% and a recovery of 98.4% and 99.4%, respectively. The method detection limit was 1.8 μg L(-1) and the limit of quantification was 5.4 μg L(-1), which can be decreased if the sample volume is increased.

  3. Surface viscoelastic properties of spread ferroelectric liquid crystal monolayer on air-water interface

    Science.gov (United States)

    Kaur, Ramneek; Bhullar, Gurpreet Kaur; Raina, K. K.

    2013-06-01

    Ferroelectric Liquid crystal having Smectic C* phase at room temperature was capable of forming Langmuir monolayer due to presence of both hydrophilic and hydrophobic groups in it. Surface viscoelasticity properties of FLC monolayer spread on water surface had been determined by dynamic oscillation method and discussed as a function of surface pressure. Dynamic viscoelastic properties such as G (Elastic modulus), G' (storage (elastic) modulus), G' (Loss (viscous) modulus) and phase change with sinusoidal oscillation had been measured at phase changing surface pressure values. As monolayer was becoming condensed, increasing trend was observed in G' values while G' was decreasing. At higher frequencies, viscous modulus G' had negative values. This relaxation phenomenon was probably caused by conformational rearrangements that acted to fluidize monolayer. Phase change tan θ was positive, response in surface pressure was ahead of the de-formation in area and the monolayer had positive dilatational viscosity. Phase change tan θ was negative, response in surface pressure was hysteretic to the deformation in area, and negative dilatational viscosity had been observed. Studies of monolayer in barrier oscillating mode provided us the surface pressure which was most suitable for Langmuir Blodgett monolayer deposition.

  4. Liquid-liquid coexistence and crystallization in supercooled ST2 water

    Science.gov (United States)

    Martelli, Fausto; Palmer, Jeremy; Debenedetti, Pablo; Car, Roberto

    2014-03-01

    We have computed the free energy landscape of ST2 water in the supercooled regime (228.6 K and 2.4 kbar) using several state-of-the-art computational techniques, including umbrella sampling and metadynamics. Such results conclusively demonstrate coexistence between two liquid phases, a high-density liquid (HDL) and a low-density liquid (HDL), which are metastable with respect to cubic ice. We show that the three phases have distinct structural features characterized by the local structure index and ring statistics. We also find that ice nucleation, should it occur, does so from the low-density liquid. Interestingly, we find that the number of 6-member rings increases monotonically along the path from HDL to LDL, while non-monotonic behavior is observed near the saddle point along the LDL-ice Ic path. This behavior indicates a complex re-arrangement of the H-bond network, followed by progressive crystallization. DOE: DE-SC0008626 (F. M. and R.C.)

  5. Elucidating the Effect of Biomolecule Structure on Calcium Carbonate Crystal Formation

    Science.gov (United States)

    Kulbok, K. E.; Duckworth, O.

    2011-12-01

    Anthropogenic emissions of carbon dioxide have lead to a steady increase in atmospheric concentration. This greenhouse gas has been identified as a key driver of climate change and also has lead to increased acidification of marine and terrestrial waters. Calcium carbonate precipitation at the Earth's surface is an integral linkage in the global carbon cycle, especially in regards to regulating atmospheric carbon dioxide. As concern for the effect of increasing atmospheric CO2 levels grows, the need to understand calcium carbonate systems escalates concurrently. Calcium carbonate phases are the most abundant group of biominerals; therefore, elucidating the mechanism of biomineralization is critical to understanding CaCO3 precipitation and may aid in the development of novel carbon sequestration strategies. The ubiquity of microorganisms leads to an extensive number of biomolecules present in the Earth's systems, and thus an extensive range of possible effects on CaCO3 formation. Carboxylic acids are very common biomolecules and have a relatively simple structure, thus making them an ideal family of model compounds. This study examines the kinetics, thermodynamics, phase, and morphology of calcium carbonate crystals precipitated in the presence of carboxylate-containing biomolecules, including citric acid, succinic acid, and aspartic acid. The experiments utilize a unique (NH4)2CO3 gas-diffusion reactor, which allows in-situ measurements of chemical conditions during the precipitation and growth of crystals. Continuous monitoring of the in-situ conditions of pCO2, pH, [Ca2+], and optical absorbance provides data on the supersaturation at which nucleation occurs and the kinetics of mineral growth. The use of scanning electron microscopy and X-ray diffraction provides information on the morphology and mineralogy of precipitates. The combination of these data sets will provide an in-depth view of the ideal concentration of calcium ions required for solution saturation

  6. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    Science.gov (United States)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  7. Retrieval of ice crystals' mass from ice water content and particle distribution measurements: a numerical optimization approach

    Science.gov (United States)

    Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    A new method to retrieve cloud water content from in-situ measured 2D particle images from optical array probes (OAP) is presented. With the overall objective to build a statistical model of crystals' mass as a function of their size, environmental temperature and crystal microphysical history, this study presents the methodology to retrieve the mass of crystals sorted by size from 2D images using a numerical optimization approach. The methodology is validated using two datasets of in-situ measurements gathered during two airborne field campaigns held in Darwin, Australia (2014), and Cayenne, France (2015), in the frame of the High Altitude Ice Crystals (HAIC) / High Ice Water Content (HIWC) projects. During these campaigns, a Falcon F-20 research aircraft equipped with state-of-the art microphysical instrumentation sampled numerous mesoscale convective systems (MCS) in order to study dynamical and microphysical properties and processes of high ice water content areas. Experimentally, an isokinetic evaporator probe, referred to as IKP-2, provides a reference measurement of the total water content (TWC) which equals ice water content, (IWC) when (supercooled) liquid water is absent. Two optical array probes, namely 2D-S and PIP, produce 2D images of individual crystals ranging from 50 μm to 12840 μm from which particle size distributions (PSD) are derived. Mathematically, the problem is formulated as an inverse problem in which the crystals' mass is assumed constant over a size class and is computed for each size class from IWC and PSD data: PSD.m = IW C This problem is solved using numerical optimization technique in which an objective function is minimized. The objective function is defined as follows: 2 J(m)=∥P SD.m - IW C ∥ + λ.R (m) where the regularization parameter λ and the regularization function R(m) are tuned based on data characteristics. The method is implemented in two steps. First, the method is developed on synthetic crystal populations in

  8. THE EFFECT OF CLAY DISPERSION ON THE CRYSTALLIZATION AND MORPHOLOGY OF POLYPROPYLENE/CLAY COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Qin Zhang; Xiao-lin Gao; Ke Wang; Qiang Fu

    2004-01-01

    PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and panicle-like dispersion, were prepared by direct melt intercalation or compounding. The effect of clay dispersion on the crystallization and morphology of PP was investigated via PLM, SAXS and DSC. Experimental results show that exfoliated clay layers are much more efficient than intercalated clay and agglomerates of clay in serving as nucleation agent due to the nano-scale dispersion of clay, resulting in a dramatic decrease in crystal size (lamellar thickness and spherulites) and an increase of crystallization temperature and crystallization rate. On the other hand, a decrease of melting temperature and crystallinity was also observed in PP/clay composites with exfoliated dispersion, due to the strong interaction between PP and clay. Compared with exfoliated clay layers, the intercalated clay layers have a less important effect on the crystallization and crystal morphology. No effect is seen for samples with agglomerates and panicle-like dispersion, in regard to melting temperature, crystallization temperature, crystal thickness and crystallinity.

  9. Effect of Mixed Solvents and Additives on the Habit Modification of 6-APA Crystals

    Institute of Scientific and Technical Information of China (English)

    GONG Junbo; WANG Jingkang; WEI Hongyuan

    2005-01-01

    6-aminopenicillanic acid (6-APA) crystals obtained under different physical and chemical conditions of the solutions may present different habits. The habits of diamond-shaped plates are desirable compared with other habits of 6-APA crystals. To obtain ideal 6-APA crystals, the effects of the mixed solvents and additives on 6-APA crystal habits were investigated. Ethanol or acetone was used as the organic solvent, and impurities existing in the 6-APA purification process were used as the additives. 6-APA growth habits were changed when the concentrations of ethanol, acetone or phenyl acetic acid were increased to exceed their critical concentration. The observed results show that the dominant face on 6-APA crystals was identified to be {020}, but the overall habit was controlled by the relative growth rates of the {101} and {002} faces. Crystal growth rates and habits can be appreciably changed by specific adsorption of additives on crystal faces.In some cases solvent molecules can act in a similar way and may be regarded as bulk additives. The effects of additives and organic solvents on 6-APA crystal habits were the results of adsorption effect, which fitted the experimental results quite well.

  10. The effect of HPMCAS functional groups on drug crystallization from the supersaturated state and dissolution improvement.

    Science.gov (United States)

    Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2014-04-10

    The inhibitory effect on drug crystallization in aqueous solution was evaluated using various forms of hydroxypropyl methylcellulose acetate succinate (HPMCAS). HPMCAS suppressed crystallization of carbamazepine (CBZ), nifedipine (NIF), mefenamic acid, and dexamethasone. The inhibition of drug crystallization mainly derived from molecular level hydrophobic interactions between the drug and HPMCAS. HPMCAS with a lower succinoyl substituent ratio strongly suppressed drug crystallization. The inhibition of crystallization was affected by pH, with the CBZ crystallization being inhibited at a higher pH due to the hydrophilization of HPMCAS derived from succinoyl ionization. The molecular mobility of CBZ in an HPMCAS solution was evaluated by 1D-(1)H NMR and relaxation time measurements. CBZ mobility was strongly suppressed in the HPMCAS solutions where strong inhibitory effects on CBZ crystallization were observed. The mobility suppression of CBZ in the HPMCAS solution was derived from intermolecular interactions between CBZ and HPMCAS leading to an inhibition of crystallization. The effect of HPMCAS on the drug dissolution rate was evaluated using an NIF/HPMCAS solid dispersion. The dissolution rate of NIF was increased when HPMCAS with a higher succinoyl substituent ratio was used.

  11. Effect of additives on isothermal crystallization kinetics and physical characteristics of coconut oil.

    Science.gov (United States)

    Chaleepa, Kesarin; Szepes, Anikó; Ulrich, Joachim

    2010-05-01

    The effect of lauric acid and low-HLB sucrose esters (L-195, S170) on the isothermal crystallization of coconut oil was investigated by differential scanning calorimetry. The fundamental crystallization parameters, such as induction time of nucleation and crystallization rate, were obtained by using the Gompertz equation. The Gibb's free energy of nucleation was calculated via the Fisher-Turnbull equation based on the equilibrium melting temperature. All additives, investigated in this work, proved to have an inhibition effect on nucleation and crystallization kinetics of coconut oil. Our results revealed that the inhibition effect is related to the dissimilarity of the molecular characteristics between coconut oil and the additives. The equilibrium melting temperature (T(m) degrees ) of the coconut oil-additive mixtures estimated by the Hoffman-Weeks method was decreased with the addition of lauric acid and increased by using sucrose esters as additives. Micrographs showing simultaneous crystallization of coconut oil and lauric acid indicated that strong molecular interaction led to the increase in lamellar thickness resulting in the T(m) degrees depression of coconut oil. The addition of L-195 modified the crystal morphology of coconut oil into large, dense, non-porous crystals without altering the polymorphic occurrence of coconut oil. The enhancement in lamellar thickness and crystal perfection supported the T(m) degrees elevation of coconut oil.

  12. Effect of additives on size and shape of lithium carbonate crystals

    Science.gov (United States)

    Taborga, P.; Brito, I.; Graber, T. A.

    2017-02-01

    Generally, properties such internal structure, shape, and size distribution influence the reactivity, fluidity and wettability of the crystals, and may be modified by the use of additives such as polyelectrolytes or surfactants. The aim of this study was to investigate the effect of different additives on the size and morphology of lithium carbonate crystals obtained by reactive crystallization from solutions of LiCl and Na2CO3. The additives used were: polyethylenimine (PEI), polyethylene glycol (PEG), poly (4-styrenesulfonic acid), (P4SA), polyacrylic acid (PAA), sodium dodecyl sulfate (SDS), and sodium dodecyl benzenesulfonate (SDBS). Obtained crystals were observed using scanning electron microscopy, the crystal size distribution was determined by a size image analyzer, and the crystal structure were analyzed by X-ray diffraction. The results showed that the presence of PEI, PEG and P4SA, increased the length of the lithium carbonate particles. The presence of SDS decreases the crystals size. Using SDBS as additive, the crystals had a needle-like shape, Finally PAA allowed the production of Li2CO3 spherulites. Crystal structure of lithium carbonate did not change in the presence of the tested additives.

  13. Effect of Crystal Quality on HCP-BCC Phase Transition in Solid 4He

    CERN Document Server

    Mikhin, N; Rudavskii, E; Vekhov, Y; Mikhin, Nikolay; Polev, Andrey; Rudavskii, Eduard; Vekhov, Yegor

    2006-01-01

    The kinetics of HCP-BCC structure phase transition is studied by precise pressure measurement technique in 4He crystals of different quality. An anomalous pressure behavior in bad quality crystals under constant volume conditions is detected just after HCP-BCC structure phase transition. A sharp pressure drop of 0.2 bar was observed at constant temperature. The subsequent pressure kinetics is a non-monotonic temperature function. The effect observed can be explained if we suppose that microscopic liquid droplets appear on the HCP-BCC interphase region in bad quality crystals. After the interphase region disappearance, these droplets are crystallized with pressure reduction. It is shown that this effect is absent in high quality thermal-treated crystals.

  14. Effects of buoyancy-driven convection on nucleation and growth of protein crystals.

    Science.gov (United States)

    Nanev, Christo N; Penkova, Anita; Chayen, Naomi

    2004-11-01

    Protein crystallization has been studied in presence or absence of buoyancy-driven convection. Gravity-driven flow was created, or suppressed, in protein solutions by means of vertically directed density gradients that were caused by generating suitable temperature gradients. The presence of enhanced mixing was demonstrated directly by experiments with crustacyanin, a blue-colored protein, and other materials. Combined with the vertical tube position the enhanced convection has two main effects. First, it reduces the number of nucleated hen-egg-white lysozyme (HEWL) crystals, as compared with those in a horizontal capillary. By enabling better nutrition from the protein in the solution, convection results in growth of fewer larger HEWL crystals. Second, we observe that due to convection, trypsin crystals grow faster. Suppression of convection, achieved by decreasing solution density upward in the capillary, can to some extent mimic conditions of growth in microgravity. Thus, impurity supply, which may have a detrimental effect on crystal quality, was avoided.

  15. Effect of ultrasonic irradiation on the number of acetylsalicylic acid crystals produced under the supersaturated condition and the ability of controlling the final crystal size via primary nucleation

    Science.gov (United States)

    Miyasaka, Etsuko; Kato, Yumi; Hagisawa, Minoru; Hirasawa, Izumi

    2006-03-01

    The purposes of this study were to investigate the effects of ultrasound irradiation on the number of crystals formed in an acetylsalicyclic acid crystallization process and to assess the controllability of the final product size via the number of primary nuclei. The number of crystals present after primary nucleation was counted and the relationship between the final product size and the number of crystals was examined. Additionally, the growing ASA crystals were observed, since ultrasound energy not only may control primary nucleation but may also the perfection of the crystal shape. At a high level of ultrasonic energy, ultrasound irradiation increased the average number of crystals, an effect that has been reported often; however, at a low level of ultrasonic energy it decreased the average number of crystals, and moreover, these opposing ultrasonic effects on the number of crystals interchanged at a specific energy threshold. These results reveal two novel phenomena—that there is an energy region where ultrasonic irradiation inhibits primary nucleation, and that a specific amount of ultrasonic energy is needed to activate primary nucleation. On the other hand, the final product size almost depended upon the number of primary nuclei, indicating that the final product size could be controlled via the number of crystals influenced by ultrasound irradiation. According to the photographs of crystals, they were not destroyed by the process. Therefore, it was proposed that ultrasound energy does not destroy the perfection of the crystal shape but only controls primary nucleation under the condition: both short irradiation time and low supersaturated condition.

  16. Stability and plasticizing and crystallization effects of vitamins in amorphous sugar systems.

    Science.gov (United States)

    Zhou, Yankun; Roos, Yrjö H

    2012-02-01

    Increased molecular mobility and structural changes resulting from water plasticization of glassy solids may lead to loss of the entrapped compounds from encapsulant systems. In the present study, the stability of water-soluble vitamins, vitamin B(1) (vB(1), thiamin hydrochloride) and vitamin C (vC, ascorbic acid), in freeze-dried lactose and trehalose at various water activities was studied. Water sorption of lactose-vB(1), lactose-vC, trehalose-vB(1), and trehalose-vC systems was determined gravimetrically. Glass transition and crystallization of anhydrous and plasticized sugar-vitamin systems were determined using thermal analysis. Critical water activity was calculated using water sorption and glass transition data. The retention of the vitamins was measured spectrophotometrically. The results showed that the amorphous structure protected the entrapped vitamins at low a(w). Crystallization of lactose accelerated vitamin degradation, whereas trehalose retained much higher amounts of the vitamins. Glass transition and critical water activity of solids and crystallization of component sugars should be considered in the stabilization of sensitive components.

  17. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-08-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air–sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air–sea CO2 uptake of 10.6 mmol m−2 sea ice d−1 or to 3.3 ton km−2 ice floe week−1. This is markedly higher than the estimated primary production within the ice floe of 0.3–1.3 mmol m−2 sea ice d−1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  18. Double Doppler effect in two-dimensional photonic crystal with negative effective index

    Science.gov (United States)

    Jiang, Qiang; Chen, Jiabi; Liang, Binming; Zhuang, Songlin

    2016-11-01

    The inverse Doppler effect in photonic crystal with negative refractive index had been proofed experimentally in our previous research. In this paper, we studied the spatial harmonics of Bloch wave propagating in such PhCs by FFT method. The lagging and front phase evolutions reveal that both backward wave and forward wave exist in these harmonics. Subsequently, we studied the double Doppler effect phenomenon that both the normal and inverse Doppler exist in one photonic crystal simultaneously by using the improved dynamic FDTD method which we made it suitable for dealing with moving objects. The simulative Doppler frequency shifts were consistent with the theoretical values. Our study provides a potential technology in measurement area.

  19. Lithium vanadyl oxalatophosphite: Influence of the water content on the crystal structures and the dehydration scheme

    Energy Technology Data Exchange (ETDEWEB)

    Auguste, S.; Alonzo, V. [Sciences Chimiques de Rennes, UMR 6226, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Université Européenne de Bretagne, 12 avenue Janvier, 35000 Rennes (France); Bataille, T. [Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1, CNRS, Campus de Beaulieu, 35042 Rennes Cedex (France); Université Européenne de Bretagne, 12 avenue Janvier, 35000 Rennes (France); Le Pollès, L. [Sciences Chimiques de Rennes, UMR 6226, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Université Européenne de Bretagne, 12 avenue Janvier, 35000 Rennes (France); Cañón-Mancisidor, W.; Venegas-Yazigi, D. [Facultad de Quimia y Biologia, Universitad de Santiago de Chile, USACH, Casilla, 40 Correo 33, Santiago (Chile); Centro para el Desarrollo de Nanociencias y Nanotecnología, CEDENNA (Chile); Le Fur, E., E-mail: eric.le-fur@ensc-rennes.fr [Sciences Chimiques de Rennes, UMR 6226, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Université Européenne de Bretagne, 12 avenue Janvier, 35000 Rennes (France)

    2014-03-15

    Two new lithium vanadyl oxalatophosphites have been synthesized by hydrothermal treatment. The respective formula are Li{sub 2}(VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 6H{sub 2}O (1) and Li{sub 2}(VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 4H{sub 2}O (2). The structures of the compounds have been determined by single crystal X-ray diffraction. Compound 1 crystallizes in triclinic symmetry in space group P-1, a=6.3592(2) Å, b=8.0789(3) Å, c=9.1692(3) Å, α=64.390(2), β=87.277(2)°, γ=67.624(2) and, compound 2 in monoclinic symmetry, space group P2{sub 1}/a, a=6.3555(2) Å b=12.6368(7) Å c=9.0242(4) Å β=105.167(3)°. The vanadium phosphite framework consists of infinite chains of corner-sharing vanadium octahedra and hydrogenophosphite tetrahedra. The oxalate groups ensure the connection between the chains. The lithium ions and the water molecules are located between the anionic [(VO){sub 2}(HPO{sub 3}){sub 2}C{sub 2}O{sub 4}]{sup 2−} layers. Thermal behavior of both compounds was carefully studied by combining thermogravimetric analyses and thermal dependant X-ray diffraction in order to study the thermal stability of the layered oxalatophosphites and to see the influence of the decomposition of the carbon-based anions into the final lithium vanadyl phosphate. Various intermediate phases were evidenced and for both compounds the final product was LiVOPO{sub 4}. -- Graphical abstract: Two new lithium vanadyl oxalatophosphites layered compounds, Li{sub 2} (VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 6H{sub 2}O (1) and Li{sub 2} (VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 4H{sub 2}O (2) have been hydrothermally synthesized. Lithium ions and water molecules are located between the anionic [(VO){sub 2}(HPO{sub 3}){sub 2}C{sub 2}O{sub 4}]{sup 2−} layers. Thermal behaviors were carefully studied by thermogravimetric and thermal dependant X-ray diffraction. Various intermediate phases were evidenced and for both compounds the final product was LiVOPO{sub 4}. Highlights: • The first

  20. effects of magnetically treated water on germination and growth of ...

    African Journals Online (AJOL)

    Toshiba

    Keywords: irrigation, magnetically treated water, magnetic water, tomato. INTRODUCTION. Magnetic ... water can alleviate adverse effect of water stress ..... the soil used was not fertile and water shortage .... and Semi-Arid Ecosystem, The 3rd.

  1. Some NUDET effects due to water containment

    Energy Technology Data Exchange (ETDEWEB)

    Symbalisty, E.M.D.

    1994-07-01

    The effect on the optical and acoustical signals of containing a nominal low yield nuclear device in a sphere of water is studied. The silicon photodiode optical signal is seen to be distorted by a relatively small amount of water. The acoustical signal timing and shape change little.

  2. Crystal orientation effects on wurtzite quantum well electromechanical fields

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten

    2010-01-01

    A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings of ...

  3. Thin film process forms effective electrical contacts on semiconductor crystals

    Science.gov (United States)

    Formigoni, N. P.; Roberts, J. S.

    1967-01-01

    Process makes microscopic, low-resistance electrical contacts on hexagonal n-type silicon carbide crystals used for microelectronic devices. A vacuum deposition of aluminum is etched to expose the bare silicon carbide where the electrical contacts are made. Sputtering alternating layers of tantalum and gold forms the alloy film.

  4. Shape-Memory and Self-Healing Effects in Mechanosalient Molecular Crystals.

    Science.gov (United States)

    Karothu, Durga Prasad; Weston, James; Desta, Israel Tilahun; Naumov, Panče

    2016-10-12

    The thermosalient crystals of terephthalic acid are extraordinarily mechanically compliant and reversibly shape-shift between two forms with different crystal habits. While the transition of form II to form I is spontaneous, the transition of form I to form II is latent and can be triggered by applying local mechanical stress, whereby crystals leap several centimeters in air. This mechanosalient effect (mechanically stimulated motility) is due to sudden release of strain that has accrued in the crystal of form I, which is a metastable structure at ambient conditions. High-speed optical analysis and serial scanning electron microscopy reveal that the mechanical effect is due to rapid reshaping of crystal domains on a millisecond time scale triggered by mechanical stimulation. Mechanically pre-deformed crystals taken over the thermal phase transition exhibit memory effects and partially regain their shape, while cracked, sliced, or otherwise damaged crystals tend to recover their macroscopic integrity by restorative action of intermolecular π-π interactions in a manner which resembles the behavior of shape-memory and self-healing polymers. These observations provide additional evidence that the thermo-/photo-/mechanosalient effects are macroscopic manifestations of martensitic-type transitions in molecular solids.

  5. Crystal effects in the neutralization of He+ ions in the low energy ion scattering regime.

    Science.gov (United States)

    Primetzhofer, D; Markin, S N; Juaristi, J I; Taglauer, E; Bauer, P

    2008-05-30

    Investigating possible crystal effects in ion scattering from elemental surfaces, measurements of the positive ion fraction P+ are reported for He+ ions scattered from single and polycrystalline Cu surfaces. In the Auger neutralization regime, the ion yield is determined by scattering from the outermost atomic layer. For Cu(110) P+ exceeds that for polycrystalline Cu by up to a factor of 2.5, thus exhibiting a strong crystal effect. It is much less pronounced at higher energies, i.e., in the reionization regime. However, there a completely different angular dependence of the ion yield is observed for poly- and single crystals, due to massive subsurface contributions in nonchanneling directions.

  6. The effect of some homopolymers on the crystallization of calcium phosphates

    Science.gov (United States)

    García-Ramos, J. V.; Carmona, P.

    1982-04-01

    Homopolymer additives (poly-L-glutamic acid, poly-L-aspartic acid and polyglycine) were examined for their effects on the crystallization of hydroxyapatite (HA) and brushite. An accelerating effect of poly-L-glutamic acid on the precipitation of HA and brushite was discovered, whereas polyacrylic acid accelerates preferentially the HA precipitation. This accelerating efficiency is shown to be correlated with structural factors. The crystal habit of HA is modified by adsorption of poly-L-aspartic acid, this habit becoming similar to that of HA crystals from renal stones.

  7. Interference effects from coexisting fatty acids on elaidic acid separation by fractionating crystallization: A model study

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Bjerring, Thomas;

    2010-01-01

    A multi-stage temperature-programmed fractionating crystallization process was carried out to examine the effects of the presence of stearic acid (SA), oleic acid (OA), and linoleic acid (LA) on the separation of elaidic acid (EA). The results showed that the efficiency of fractionating crystalli......A multi-stage temperature-programmed fractionating crystallization process was carried out to examine the effects of the presence of stearic acid (SA), oleic acid (OA), and linoleic acid (LA) on the separation of elaidic acid (EA). The results showed that the efficiency of fractionating...

  8. The effect of stirring on the heterogeneous nucleation of water and of clathrates of tetrahydrofuran/water mixtures

    Directory of Open Access Journals (Sweden)

    P.W. Wilson

    2016-03-01

    Full Text Available The statistics of liquid-to-crystal nucleation are measured for both water and for clathrate-forming mixtures of tetrahydrofuran (THF and water using an automatic lag time apparatus (ALTA. We measure the nucleation temperature using this apparatus in which a single sample is repeatedly cooled, nucleated and thawed. The effect of stirring on nucleation has been evaluated numerically and is discussed. We find that stirring of the solution makes no difference to the nucleation temperature of a given solution in a given tube.

  9. Study on Dispersion Properties of Photonic Crystal Fiber by Effective-Index Model

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative hole size/was studied.

  10. Study on Dispersion Properties of Photonic Crystal Fiber by Effective-Index Model

    Institute of Scientific and Technical Information of China (English)

    Ren Guobin; Wang Zhi; Lou Shuqin; Jian Shuisheng

    2003-01-01

    The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch and the relative hole size f was studied.

  11. Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kittle, Joshua D; Du, Xiaosong; Jiang, Feng; Qian, Chen; Heinze, Thomas; Roman, Maren; Esker, Alan R

    2011-08-08

    Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.

  12. Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring.

    Science.gov (United States)

    Kittle, Joshua D; Du, Xiaosong; Jiang, Feng; Qian, Chen; Heinze, Thomas; Roman, Maren; Esker, Alan R

    2011-08-08

    Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.

  13. In-Line Measurement of Water Contents in Ethanol Using a Zeolite-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2015-10-01

    Full Text Available A quartz crystal microbalance (QCM was utilized to measure the water content in ethanol. For the improvement of measurement sensitivity, the QCM was modified by applying zeolite particles on the surface with poly(methyl methacrylate (PMMA binder. The measurement performance was examined with ethanol of 1% to 5% water content in circulation. The experimental results showed that the frequency drop of the QCM was related with the water content though there was some deviation. The sensitivity of the zeolite-coated QCM was sufficient to be implemented in water content determination, and a higher ratio of silicon to aluminum in the molecular structure of the zeolite gave better performance. The coated surface was inspected by microscopy to show the distribution of zeolite particles and PMMA spread.

  14. Effects of wave propagation anisotropy on the wave focusing by negative refractive sonic crystal flat lenses

    Institute of Scientific and Technical Information of China (English)

    S.Alagoz

    2012-01-01

    In this study,wave propagation anisotropy in a triangular lattice crystal structure and its associated waveform shaping in a crystal structure are investigated theoretically.A directional variation in wave velocity inside a crystal structure is shown to cause bending wave envelopes.The authors report that a triangular lattice sonic crystal possesses six numbers of a high symmetry direction,which leads to a wave convergence caused by wave velocity anisotropy inside the crystal.However,two of them are utilized mostly in wave focusing by an acoustic flat lens.Based on wave velocity anisotropy,the pseudo ideal imaging effect obtained in the second band of the flat lens is discussed.

  15. Ion effects in the adsorption of carboxylate on oxide surfaces, studied with quartz crystal microbalance

    NARCIS (Netherlands)

    Wang, Lei; Siretanu, Igor; Duits, Michel H.G.; Cohen Stuart, Martien A.; Mugele, Frieder

    2016-01-01

    We chose water-soluble sodium hexanoate as a model organic molecule to study the role of salt ions (Ca2+, Na+, Cl−) in the adsorption of carboxylates to mineral surfaces (silica, alumina, gibbsite) of variable surface charge and chemistry. Quartz crystal microbalance (QCM-D) measurements reveal a qu

  16. The Effect of RDX Crystal Defect Structure on Mechanical Response of a Polymer-Bonded Explosive

    Science.gov (United States)

    2015-11-09

    deformation [a] R. H. B. Bouma Department Process Instrumentation and Design TNO, Organisation for Applied Scientific Research P.O. Box 6012 2600 JA, Delft, The...DOI: 10.1002/prep.201500222 The Effect of RDX Crystal Defect Structure on Mechanical Response of a Polymer-Bonded Explosive Richard H. B. Bouma[a...systematically varied by using three different qualities of Class I RDX. The effect of internal defect structure of the RDX crystal on the shock

  17. Studies of the effect of charged hadrons on lead tungstate crystals

    CERN Document Server

    Nessi-Tedaldi, Francesca

    2008-01-01

    Scintillating crystals are used for calorimetry in several high-energy physics experiments. For some of them, performance has to be ensured in difficult operating conditions, like a high radiation environment, very large particle fluxes and high collision rates. Results are presented here from a thorough series of measurements concerning mainly the effect of charged hadrons on lead tungstate. It is also shown how these results can be used to predict the effect on crystals due to a given flux of particles.

  18. Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces.

    Science.gov (United States)

    Soboleva, I V; Moskalenko, V V; Fedyanin, A A

    2012-03-23

    The Goos-Hänchen effect and Fano resonance are studied in photonic crystals that are considered Fourier counterparts in wave-vector-coordinate space. The Goos-Hänchen effect, which is enhanced by the excitation of Bloch surface electromagnetic waves, is visualized using far-field microscopy and measured at the surface of photonic crystals by angular spectroscopy. The maximal Goos-Hänchen shift is observed to be 66  μm.

  19. Effect of antimony incorporation on structural properties of CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabeh, M., E-mail: mohamedbenrabeh@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Chaglabou, N., E-mail: nadia_chaglabou@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Kanzari, M., E-mail: Mounir.Kanzari@ipeit.rnu.t [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2010-02-15

    CuInS{sub 2} (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS{sub 2} phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  20. Effects of crystallization fractions on mechanical properties of Zr-based metallic glass matrix composites

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Zr41Ti14Cu12.5Ni10Be22.5 (at.%) bulk metallic glass composites with various crystallization fractions were prepared by pretreating the bulk metallic glassy samples with pulsing current, and then by isothermal annealing at near initial crystallization temperature for different periods of time. The precipitations and crystallization fractions were studied by X-ray diffraction (XRD) and differential scanning calorimetry (DSC), and their effects on mechanical properties of the composite were studied by microhardness, uniaxial compression test and scanning electron microscopy (SEM). The experimental results show that the primary precipitate is quasicrystalline phase and other metastable phases including Be2Zr, Zr2Cu and FCC would precipitate subsequently. In the initial crystallization process, in which the crystallization fraction increases from 0 to 8.2%, both fracture strength and plastic strain increase, with the maximum plastic strain up to 6.4%. When the crystallization fraction is larger than 8.2%, the fracture strength and the plastic strain decrease sharply. Furthermore, the alloy with low crystallization fraction is fractured by shearing, while for high crystallization fraction it is fractured by splitting and cleavage. The results show that the mechanical properties of the glassy alloy could be optimized by controlling the processing parameters.

  1. Pyroelectric properties and electrocaloric effect in TGS1-xPx single crystals

    Science.gov (United States)

    Sampathkumar, P.; Srinivasan, K.

    2016-10-01

    Triglycine sulfate (TGS) single crystals modified with phosphoric acid (TGS1-xPx) have been grown by slow evaporation technique at room temperature. Lattice parameters were identified by using single crystal x-ray diffractometer. The dielectric, pyroelectric, ferroelectric properties and electrocaloric effect have been investigated. Curie temperature of grown crystals was determined from dielectric constant measurements at various temperatures at a frequency of 1 kHz. The Curie temperature is found decreased for the TGS single crystals with the addition of phosphoric acid. Room temperature P-E hysteresis loops of TGS1-xPx single crystals are presented. The values of coercive field Ec, spontaneous polarization Ps and internal bias field Eb were obtained from the hysteresis loops. Discussion on pyroelectric properties as a function of temperature and applied electric field is presented. Figure of merits (FOMs) were determined to study the pyroelectric performance of the grown crystals. Among all compositions of x, x = 0.2 (i.e., TGS0.8P0.2) single crystals exhibited the largest pyroelectric coefficient and pyroelectric figure of merit at room temperature. From the above investigations the electrocaloric temperature change, ΔT of TGS1-xPx single crystals at selected applied fields and temperatures are obtained by indirect method and discussed.

  2. [Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology].

    Science.gov (United States)

    Zhou, Xue-Yong; Liu, Ning; Zhao, Man; Li, He; Zhou, Lang; Tang, Zong-Wen; Cao, Fei; Li, Wei

    2011-05-01

    With the large scale cultivation of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystal proteins in the world, the problem of environmental safety caused by these Bt crops has received extensive attention. These insecticidal crystal proteins can be released into the soil continuously in the growing period of Bt plants. If their accumulation of the insecticidal crystal proteins exceeds consumption by insect larvae and degradation by the environmental factors, these insecticidal crystal proteins could constitute a hazard to non-target insects and soil microbiota. There are three main ways to release insecticidal crystal proteins into soil for Bt plants: root exudates, pollen falling, and crop reside returning. The Bt insecticidal crystal proteins released into soil can be adsorbed rapidly by active soil particles and the absorption equilibrium attained within 1-3 h. The adsorption protects Bt insecticidal crystal proteins against soil microbial degradation or enzyme degradation, which leads to remarkable prolong of the persistence of insecticidal activity. The change of soil microorganism species is an important index for evaluating the effect of Bt plants on soil ecology. The research showed that these insecticidal crystal proteins released by the Bt plant root exudates or Bt organism had no toxicity to the soil earthworms, nematodes, protozoa, bacteria and fungi; however, it could reduce the mycelium length of the arbuscular mycorrhizal fungi (AMF) and restrain AMF to form invasion unit. The influencing degree of Bt protein on soil enzyme activity varied with the releasing modes or growth period of Bt crops. Bt Cry1Ab protein can be taken up from soil by parts of following crops; however, different results were obtained with different commercial kits. To better understand the soil ecological evaluation about the insecticidal crystal proteins released from transgenic Bt crops, this review provides a comprehensive overview about the release

  3. Crystal Properties and Radiation Effects in Solid Molecular Hydrogens

    Energy Technology Data Exchange (ETDEWEB)

    Kozioiziemski, B

    2000-09-01

    The crystal lattice structure, growth shapes and helium generated by beta-decay of solid deuterium-tritium (D-T) mixtures have been studied. Understanding of these D-T properties is important for predicting and optimizing the target design of the National Ignition Facility (NIF). Raman spectroscopy showed the D-T crystal structure is hexagonal close packed, common to the non-tritiated isotopes. The isotopic mixtures of both tritiated and non-tritiated species broadens the rotational transitions, especially of the lighter species in the mixture. The vibrational frequencies of each isotope is shifted to higher energy in the mixture than the pure components. The J = 1-0 population decreases exponentially with a 1/e time constant which rapidly increases above 10.5 K for both D{sub 2} and T{sub 2} in D-T. The conversion rate is nearly constant from 5 K to 10 K for both D{sub 2} and T{sub 2} at 7.1 hours and 2.1 hours, respectively. The smoothing of D-T layers by beta decay heating is limited by the crystal surface energy. Deuterium and hydrogen-deuteride crystals were grown at a number of temperatures below the triple point to determine the surface energy and roughening transition. Several distinct crystal shapes were observed on a number of different substrates. The a facet roughens between 0.9 T{sub TP} and T{sub TP}, while the c facet persists up to the melting temperature. This is very different from the behavior of the other rare gas crystals which grow completely rounded above 0.8 T{sub TP}. Helium bubbles formed as a product of the beta decay were observed using optical microscopy and the diffusion of smaller bubbles measured with dynamic light scattering. Bubble diffusion coefficients as high as 2.0 x 10{sup -16} m{sup 2}/s were measured for 10-50 nm bubbles. The bubbles move in response to a thermal gradient, with speeds between 1 {micro}m/hour and 100 {micro}m/hour for thermal gradients and temperatures appropriate to NIF targets.

  4. Silole-infiltrated photonic crystal films as effective fluorescence sensor for Fe3+ and Hg2+.

    Science.gov (United States)

    Zhang, Yuqi; Li, Xiangdong; Gao, Loujun; Qiu, Jianhua; Heng, Liping; Tang, Ben Zhong; Jiang, Lei

    2014-02-24

    We develop a highly effective silole-infiltrated photonic crystal (PC) film fluorescence sensor with high sensitivity, good selectivity and excellent reproducibility for Fe(3+) and Hg(2+) ions. Hexaphenylsilole (HPS) infiltrated PCs show amplified fluorescence due to the slow photon effect of PC because the emission wavelength of HPS is at the blue band edge of the selected PC's stopband. The fluorescence can be quenched significantly by Fe(3+)/Hg(2+) ions owing to electron transfer between HPS and metal ions. The amplified fluorescence enhances the sensitivity of detection, with a detection limit of 5 nM for Fe(3+)/Hg(2+) ions. The sensor is negligibly responsive to other metal ions and can easily be reproduced by rinsing with pure water due to the special surface wettability of PC. As a result, a highly effective Fe(3+)/Hg(2+) ions sensor based on HPS-infiltrated PC film has been achieved, which will be important for effective and practical detection of heavy metal ions.

  5. Measuring water adsorption on mineral surfaces in air, CO2, and supercritical CO2 with a quartz-crystal microbalance

    Science.gov (United States)

    Bryan, C. R.; Wells, R. K.; Burton, P. D.; Heath, J. E.; Dewers, T. A.; Wang, Y.

    2011-12-01

    Carbon sequestration via underground storage in geologic formations is a proposed approach for reducing industrial CO2 emissions. However, current models for carbon injection and long-term storage of supercritical CO2 (scCO2) do not consider the development and stability of adsorbed water films at the scCO2-hydrophilic mineral interface. The thickness and properties of the water films control the surface tension and wettability of the mineral surface, and on the core scale, affect rock permeability, saturation, and capillary properties. The film thickness is strongly dependent upon the activity of water in the supercritical fluid, which will change as initially anhydrous scCO2 absorbs water from formation brine. As described in a companion paper by the coauthors, the thickness of the adsorbed water layer is controlled by the disjoining pressure; structural and van der Waals components dominate at low water activity, while electrostatic forces become more important with increasing film thickness (higher water activities). As scCO2 water activity and water layer thickness increase, concomitant changes in mineral surface properties and reservoir/caprock hydrologic properties will affect the mobility of the aqueous phase and of scCO2. Moreover, the development of a water layer may be critical to mineral dissolution reactions in scCO2. Here, we describe the use of a quartz-crystal microbalance (QCM) to monitor adsorption of water by mineral surfaces. QCMs utilize a piezoelectrically-stimulated quartz wafer to measure adsorbed or deposited mass via changes in vibrational frequency. When used to measure the mass of adsorbed liquid films, the frequency response of the crystal must be corrected for the viscoelastic, rather than elastic, response of the adsorbed layer. Results are presented for adsorption to silica in N2 and CO2 at one bar, and in scCO2. Additional data are presented for water uptake by clays deposited on a QCM wafer. In this case, water uptake occurs by the

  6. 贵州绥阳水晶温泉水化学特征及医疗价值研究%On Chemistry Characteristics and Physiotherapy Value of Guizhou Suiyang Crystal Spring Water

    Institute of Scientific and Technical Information of China (English)

    肖欣; 陈淼; 黎博翼; 梁锋

    2015-01-01

    以贵州绥阳水晶温泉为研究对象,从温泉水形成的地质背景、水化学特征、医疗作用方面分析研究了水晶温泉的应用价值.结果表明:水晶温泉水的pH值为7.42,水质呈中性,水化学类型为SO2-4・HCO3-—Ca2+型,泉水中含有大量硒、锶、偏硅酸、氟、锂等对人体有益的元素,其中锶已达到我国饮用天然矿泉水标准及理疗热矿水水质标准、偏硅酸达到医疗矿水的命名.经过临床试验表明,水晶温泉水对胃肠道病、心血管病、血尿酸及痛风病、神经性皮炎、尿结石、糖尿病、癌症术后康复具有很好的治疗效果.%Guizhou Province has abundant geothermal resources for the development and utilization of geo-thermal resources to provide good condition .In the recent years ,with the economic development ,the geo-thermal resources have been of booming development .In this paper ,Guizhou Suiyang Crystal Spring for the study object ,and research the applicable value of Crystal Spring geological background formed from spring water ,water chemical characteristics ,physiotherapy effects analyzation . The results show that Crystal Spring water pH value of 7 .42 , water quality is neutral ,water chemical type is like SO2 -4 ・HCO3- —Ca2+ ,spring water contains large amounts of selenium ,strontium ,silicic acid ,fluorine ,lithium and other beneficial elements to human body ,Strontium w hich has reached the standard of natural mineral drinking water and therapeutic hot mineral water quality standard ,silicic acid mine water reach the name of physiotherapy mineral water .Crystal hot mineral spring is the type of bicarbonate Ca2+ ・Mg2+ complex high quality natural drinking water which combined physiotherapy effects .After clinical trials ,it has showed that Crystal spring water has a good therapeutic effect on gastrointestinal disease ,cardiovascular disease ,uric acid and gout ,neurodermatitis ,urinary stones ,diabetes

  7. Effects of supersaturation control strategies on hydroxyapatite (HAP) crystallization for phosphorus recovery from wastewater.

    Science.gov (United States)

    Dai, Hongliang; Lu, Xiwu; Peng, Yonghong; Yang, Zixuan; Zhsssu, Huaqing

    2017-02-01

    The HAP crystallization for phosphorus removal from wastewater contributes to an environmental friendly production due to the fact that it helps reduce or eliminate the water eutrophication as well as increases the recovery of mineral resources. However, the generated microcrystalline with poor settleability in high levels of supersaturation solution has a negative effect on the phosphorus recovery efficiency. To overcome the drawback, multiple reagent feed ports (four feed ports) and different recirculation ratio (1.0, 1.5, 2.0, 2.5, 3.0) were investigated to control the levels of supersaturation in an air-agitated reactor with calcite as seeds. Results showed that the approach of multiple reagent feed ports could improve the conversion ratio of orthophosphate, but it had a limited effect (∼3% improvement) on phosphorus recovery efficiency (deposition on the seeds). With the increase of the recirculation ratio, the recovery efficiency was increased gradually and reached an optimal value of 85.63% under the recirculation ratio of 2.5 and four feed ports. This is because the adopted strategies could reduce the level of supersaturation by diluting the concentration of the reagents and inhibit large numbers of microcrystalline coinstantaneous occurrence. Meanwhile, the crystallized products were detected and analyzed by scanning electron micrograph (SEM) with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD), which were proved to be HAP with a high purity. Collectively, these results demonstrated that supersaturation control using conventional approaches had a limited improvement on the phosphorus recovery efficiency in the form of HAP, and the new control strategies for supersaturation dispersion should be developed in the further study.

  8. Effect of fluid motion on the impact erosion by a micro-particle on quartz crystals

    Science.gov (United States)

    Cai, D. H.; Qi, H.; Wen, D. H.; Zhang, L.; Yuan, Q. L.; Chen, Z. Z.

    2016-08-01

    Abrasive slurry jet (ASJ) is a promising technology to process a variety of materials with advantages of high flexibility, no heat affected zone and high cutting efficiency. In this paper, the impressions generated on a quartz crystal specimen by the impacts of micro-particles laden in a water flow and the associated impact erosion mechanisms are presented and discussed in order to effectively and efficiently control the machining quality. Both brittle and ductile mode erosions coexist in the machining process due to the influence of the fluid motion on the trajectories of particles near the target surface. Large-scale craters produced by brittle conchoidal fractures associated with crashed zone, radial and lateral cracks, dominate the erosion process at large jet impact angles while small-scale craters involving micro-ploughing and micro-cutting are produced by the ductile mode erosion at small jet impact angles. The relation between the process parameters and the overall average volume of craters has also been quantitatively analyzed. A combination of small jet impact angle and abrasive particles and low water pressure is preferred for improving the surface quality after the ASJ machining process caused by the more formation of ductile mode induced craters on the target material, but it is at the sacrifice of the material removal rate as well.

  9. Effect of fluid motion on the impact erosion by a micro-particle on quartz crystals

    Directory of Open Access Journals (Sweden)

    D. H. Cai

    2016-08-01

    Full Text Available Abrasive slurry jet (ASJ is a promising technology to process a variety of materials with advantages of high flexibility, no heat affected zone and high cutting efficiency. In this paper, the impressions generated on a quartz crystal specimen by the impacts of micro-particles laden in a water flow and the associated impact erosion mechanisms are presented and discussed in order to effectively and efficiently control the machining quality. Both brittle and ductile mode erosions coexist in the machining process due to the influence of the fluid motion on the trajectories of particles near the target surface. Large-scale craters produced by brittle conchoidal fractures associated with crashed zone, radial and lateral cracks, dominate the erosion process at large jet impact angles while small-scale craters involving micro-ploughing and micro-cutting are produced by the ductile mode erosion at small jet impact angles. The relation between the process parameters and the overall average volume of craters has also been quantitatively analyzed. A combination of small jet impact angle and abrasive particles and low water pressure is preferred for improving the surface quality after the ASJ machining process caused by the more formation of ductile mode induced craters on the target material, but it is at the sacrifice of the material removal rate as well.

  10. Transient Crystallization of an Aromatic Polyetherimide: Effect of Annealing

    Science.gov (United States)

    1991-01-01

    on the annealing behavior of an aromatic polyetherimide ( Ultem 5001). Although crystallization from the melt did not occur, crystallinity was easily...in LARC-TPI. 10-’ 3 Ultem aromatic polyetherimide, first reported by Serfaty, 15 is an amorphous thermoplastic with the following structure for a...commercially available Ultem 1000. 0 0 0n Our studies have been carried out on Ultem 5001-based materials which is a new aro- matic polyetherimide with

  11. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    Science.gov (United States)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  12. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    Science.gov (United States)

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  13. Synthesis of zeolite from Italian coal fly ash: differences in crystallization temperature using seawater instead of distilled water.

    Science.gov (United States)

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2010-05-01

    In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 degrees C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 degrees C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 degrees C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.

  14. Effect of crystal packing on the structures of polymeric metallocenes.

    Science.gov (United States)

    Dinnebier, R E; van Smaalen, Sander; Olbrich, F; Carlson, S

    2005-02-21

    The pressure dependencies of the crystal structures of the polymeric metallocenes lithium cyclopentadienide (LiCp) and potassium cyclopentadienide (KCp) have been determined by synchrotron X-ray powder diffraction. The decrease of the volume of LiCp by 34% up to a pressure of p = 12.2 GPa and of KCp by 23% at p = 5.3 GPa as well as the bulk moduli of K = 7.7 GPa for LiCp and 4.9 GPa for KCp indicate a high compressibility for these compounds. The crystal structures of KCp have been determined up to p = 3.9 GPa. An increase of the bend angle is found from 45 degrees at p = 0 GPa up to 51 degrees at p = 3.9 GPa. This variation is completely explained by a model invoking attractive K+ Cp- interaction and repulsive nonbonded carbon-carbon interactions. It is proposed that the bend angle in the polymeric alkali metal metallocenes is the result of the optimization of the crystal packing.

  15. Therapeutic effects of sesame oil on monosodium urate crystal-induced acute inflammatory response in rats.

    Science.gov (United States)

    Hsu, Dur-Zong; Chen, Si-Jin; Chu, Pei-Yi; Liu, Ming-Yie

    2013-01-01

    Sesame oil has been used in traditional Taiwanese medicine to relieve the inflammatory pain in people with joint inflammation, toothache, scrapes, and cuts. However, scientific evidence related to the effectiveness or action mechanism of sesame oil on relief of pain and inflammation has not been examined experimentally. Here, we investigated the therapeutic effect of sesame oil on monosodium urate monohydrate (MSU) crystal-induced acute inflammatory response in rats. Air pouch, a pseudosynovial cavity, was established by injecting 24 mL of filtered sterile air subcutaneously in the backs of the rats. At day 0, inflammation in air pouch was induced by injecting MSU crystal (5 mg/rat, suspended in sterilized phosphate buffered saline, pH 7.4), while sesame oil (0, 1, 2, or 4 mL/kg, orally) was given 6 h after MSU crystal injection. Parameters in lavage and skin tissue from the air pouches were assessed 6 h after sesame oil was given. Sesame oil decreased MSU crystal-induced total cell counts, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels in lavage and pouch tissue. Sesame oil significantly decreased leukocyte and neutrophil counts in lavage compared with MSU crystal alone group. Sesame oil decreased activated mast cell counts in skin tissue in MSU crystal-treated rats. Sesame oil significantly decreased nuclear factor (NF)-κB activity and IL-4 level in isolated mast cells from rats treated with MSU crystal. Furthermore, sesame oil decreased lavage complement proteins C3a and C5a levels in MSU crystal-treated rats. In conclusion, sesame oil shows a potent therapeutic effect against MSU crystal-induced acute inflammatory response in rats.

  16. Solvent effect on tolbutamide crystallization induced by compressed CO 2 as antisolvent

    Science.gov (United States)

    Subra-Paternault, P.; Roy, C.; Vrel, D.; Vega-Gonzalez, A.; Domingo, C.

    2007-11-01

    The aim of this work is to investigate the crystallization of tolbutamide induced by the addition of compressed carbon dioxide, with a particular focus on the role of the liquor solvent on the product characteristics. Crystals morphology and sizes were documented by microscopy and laser diffraction, respectively; since tolbutamide exists in four polymorph forms, characterizations by powder X-rays diffraction, differential scanning calorimetry and Raman spectroscopy were carried out. When processed from acetone or ethyl acetate, the drug crystallizes as polyedres and in a crystal lattice typical of Form III. If ethanol is added to acetone, Form I appears in the powder and becomes predominant for a content of 29% (in mol) and above; at the same time, mean particles size decreases. However, ethanol improves the solubilization of tolbutamide in the formed CO 2-solvent mixture, and is thus not favourable to a good yield of production. Mixtures of acetone with poor solvents such as diethyl ether and water were tested out; both enable the recovery of a mixture of Forms I and III, but with no significant improvement in sizes or yields compared with pure acetone or acetone-ethanol mixtures. Finally, the comparison with crystals obtained by evaporation indicates that the solvent itself was the main cause of the crystal phase observed, rather than the supercritical treatment.

  17. Effect of Atmospheric Ions on Interfacial Water

    Directory of Open Access Journals (Sweden)

    Chien-Chang Kurt Kung

    2014-11-01

    Full Text Available The effect of atmospheric positivity on the electrical properties of interfacial water was explored. Interfacial, or exclusion zone (EZ water was created in the standard way, next to a sheet of Nafion placed horizontally at the bottom of a water-filled chamber. Positive atmospheric ions were created from a high voltage source placed above the chamber. Electrical potential distribution in the interfacial water was measured using microelectrodes. We found that beyond a threshold, the positive ions diminished the magnitude of the negative electrical potential in the interfacial water, sometimes even turning it to positive. Additionally, positive ions produced by an air conditioner were observed to generate similar effects; i.e., the electrical potential shifted in the positive direction but returned to negative when the air conditioner stopped blowing. Sometimes, the effect of the positive ions from the air conditioner was strong enough to destroy the structure of interfacial water by turning the potential decidedly positive. Thus, positive air ions can compromise interfacial water negativity and may explain the known negative impact of positive ions on health.

  18. Shear-induced topology changes in liquid crystals of the soybean lecithin/DDAB/water system.

    Science.gov (United States)

    Montalvo, Gemma; Valiente, Mercedes; Khan, Ali

    2007-10-09

    The viscoelastic behavior of the two different liquid crystalline lamellar phases and the liquid crystalline cubic phase of the mixed soybean lecithin/DDAB system in water was studied through rheology, with mechanical parameters studied as a function of composition. The swollen or diluted lamellar region is formed by vesicles, and its characteristic flow curve presents two-power law regions separated by a region where viscosity passes through a maximum. Yield stress and shear-dependent flow behavior were also observed. The microstructure suffers transformation under shear stress, and rheological response shifts from thixotropic to antithixotropic loops. Similar rheological behavior has been observed for samples in the collapsed or concentrated lamellar region, at the water-rich corner of the phase diagram. Vesicle formation may therefore occur by shearing the initial stacked and open bilayers. However, concentrated lamellar samples in the water-poor part of the phase diagram are less sensitive to shear effects and show plastic behavior and thixotropy. All lamellar samples manifest high elasticity. The dynamic responses of both lamellar topologies, i.e., vesicles and open bilayers, are comparable and exhibit an infinite relation time. The bicontinuous cubic, liquid crystalline phase is highly viscous. Its dynamic response cannot be modeled by a Maxwell model.

  19. Effects of increasing size and changing europium activator concentration in KCaI3 scintillator crystals

    Science.gov (United States)

    Lindsey, Adam C.; Zhuravleva, Mariya; Wu, Yuntao; Stand, Luis; Loyd, Matthew; Gokhale, Sasmit; Koschan, Merry; Melcher, Charles L.

    2016-09-01

    KCaI3:Eu crystals have been identified as very promising for use in spectroscopic detector applications related to nuclear nonproliferation and domestic security efforts. Initial studies have shown for small crystals a few mm3 in size with 3% europium dopant concentration, a high light yield of >70,000 ph/MeV and energy resolution of ≈3% at 662 keV is attainable which is comparable with the highest performance scintillators discovered. In this work, single crystals of KCaI3 with a range of Eu2+ doping between 0 and 5 at% substituting for Ca2+ were grown at 22 mm diameter and their performance for gamma-ray spectroscopy studied. Comparisons among crystals approximately Ø22 mm×22 mm (8.4 cm3 or ≈0.5 in3) provide a more accurate understanding of how scintillation performance changes with Eu doping and increased crystal size. KCaI3 in the undoped form is shown to be a highly efficient intrinsic scintillator with a defect-related emission at 404 nm which coexists with the Eu2+ 5d-4f emission in low dopant concentrations and is completely re-absorbed in more heavily doped crystals. For larger crystals, effects from self-absorption due to Eu activation become more evident by a near doubling of decay time for 0.5 in3 crystals as the activator is increased from 0.5 to 5.0 at% Eu. Comparisons of pulse-height spectra obtained for Ø22 mm×22 mm cylinders with varying Eu concentration suggests best performance is achieved using lower Eu additions closer to 0.5-1.0 at%. Using a modified crystal packaging featuring an offset reflector geometry, 0.5 in3 crystals of KCaI3:Eu can attain under 4% energy resolution at 662 keV.

  20. Pressure effects on Al89La6Ni5 amorphous alloy crystallization

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Zhou, T. J.

    2000-01-01

    The pressure effect on the crystallization of the Al89La6Ni5 amorphous alloy has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction using synchrotron radiation. The amorphous alloy crystallizes in two steps in the pressure range studied (0-4 GPa). The first......(s). The applied pressure strongly affects the crystallization processes of the amorphous alloy. Both temperatures first decrease with pressure in the pressure range of 0-1 GPa and then increase with pressure up to 4 GPa. The results are discussed with reference to competing processes between the thermodynamic...

  1. The effect of magnetic field on the shape of etch pits of paracetamol crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V.E. [Kemerovo State University, Novosibirsk (Russian Federation); Research and Educational Center, Novosibirsk State University (Russian Federation); Boldyrev, V.V.; Shakhtshneider, T.P. [Institute of Solid State Chemistry and Mechanochemistry, RAS, Novosibirsk (Russian Federation); Zakharov, Yu.A.; Krasheninin, V.I. [Kemerovo State University, Novosibirsk (Russian Federation); Ermakov, A.E. [Institute of Physics of Metals, Ural Branch of RAS, Ekaterinburg (Russian Federation)

    2002-04-01

    In the present study we investigate the effect of magnetic field on the shape of etch pits of the crystals of p-hydroxyacetanilide (paracetamol), which is widely used in pharmacy as antipyretic, antiphlogistic medicine. It was discovered that the magnetic field (H=0.5 T, {tau}=15 min) changes the morphology of etch pits and shifts dislocations in paracetamol crystal. Activation energy of the changes induced by the action of the magnetic field was determined to be 63 kJ/mol, which is comparable with the energy of hydrogen bonds in crystal lattice. (orig.)

  2. Drivers and Effects of Virtual Water Cycling

    Science.gov (United States)

    D'Odorico, P.

    2016-12-01

    The increasing global demand for farmland products by the growing and increasingly burgeoning human population is placing unprecedented pressure on the global agricultural system and its water resources. Many regions of the world that are not self-sufficient because of their chronic water scarcity or lack of suitable agricultural land strongly depend on the importation of agricultural commodities and associated embodied (or "virtual") water. International trade, however, may become unreliable when the supplies in the international food market are scarce. As a result, transboundary investments in agricultural land have become a priority for a number of governments and corporations that are trying to expand their agricultural production while securing good profits. This global "land rush" is often driven by the need for a secure access to water resources for agriculture. The globalization of water and land through trade and foreign land acquisitions is leading to a displacement of land use and a disconnection between human populations and the water resources they rely on. Despite the recognized importance of these phenomena in reshaping the patterns of water dependency through teleconnections between consumer behavior and production areas, their effect on global and regional food security, remains poorly quantified. New teleconnections are also emerging from the increasing water use for energy production. Competition in water use for food and energy security constitutes the core of an emerging debate that is generating new questions on the environmental, ethical, economic, and policy implications of human appropriation of water resources. This lecture will examine the ways societies virtually modify their access to water through trade and foreign land acquisitions to meet their growing food and energy needs.

  3. Effect of axial magnetic field on the shape of copper ribbon crystal grown by Czochralski method

    OpenAIRE

    Shen, Zhe; Zhong, Yunbo; Dong, Licheng; FAN, Lijun; Wang, Huai; Li, Chuanjun; Ren, Weili; Lei, Zuosheng; Ren, Zhongming

    2015-01-01

    International audience; During the process of growing ribbon crystal by Czochralski method, Turbulent convection in copper melt was effectively suppressed by applying an axial magnetic field (magnetic induction B≤57mT). The changes of thermal fluctuation and flow field were measured and modeled. With the magnetic field increased gradually (from 0 to 57mT), the shape of ribbon crystal became regularly wider. We concluded that the axial magnetic field could promote to form a suitable temperatur...

  4. Longitudinal and transverse pyroelectric effects in a chiral ferroelectric liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yablonskii, S. V., E-mail: yablonskii2005@yandex.ru; Bondarchuk, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Soto-Bustamante, E. A.; Romero-Hasler, P. N. [Universidad de Chile (Chile); Ozaki, M. [Osaka University, Department of Electronic Engineering, Faculty of Engineering (Japan); Yoshino, K. [Shimane Institute for Industrial Technology (Japan)

    2015-04-15

    In this study, we compare the results of experimental investigations of longitudinal and transverse pyroelectric effects in a chiral ferroelectric crystal. In a transverse geometry, we studied freely suspended liquid-crystal films. In both geometries, samples exhibited bistability, demonstrating stable pyroelectric signals of different polarities at zero voltage. It is shown that a bistable cell based on a freely suspended film requires 40 times less energy expenditures as compared to the conventional sandwich-type cell.

  5. Aharonov-Casher effect in exchange interactions in a Wigner crystal.

    Science.gov (United States)

    Tserkovnyak, Yaroslav; Kindermann, Markus

    2009-03-27

    We theoretically study the effects of spin-orbit coupling on spin exchange in a low-density Wigner crystal. In addition to the familiar antiferromagnetic Heisenberg exchange, we find general anisotropic interactions in spin space if the exchange paths allowed by the crystal structure form loops in real space. In particular, it is shown that the two-electron exchange interaction can acquire ferromagnetic character.

  6. The structure-directing effect of n-propylamine in the crystallization of open-framework aluminophosphates

    Institute of Scientific and Technical Information of China (English)

    LU HuiYing; YAN Yan; TONG XiaoQiang; YAN WenFu; YU JiHong; XU RuRen

    2014-01-01

    Using n-propylamine as a template,deioned water and secondary-butanol(butan-2-ol)as solvents,a three-dimensional(3D)open-framework aluminophosphate[C3NH10]·[HAl3P3O13](1)and a two-dimensional layered aluminophosphate[C3NH10]3·[Al3P4O16](2)were crystallized from the initial mixtures with compositions of Al2O3:2.4 P2O5:5.0 n-propylamine:100 H2O/butan-2-ol,respectively.They are characterized by X-ray powder diffraction(XRD),thermogravimetric(TG),and elemental(CHN)analyses and structurally determined by single-crystal X-ray diffraction analysis.Compound 1 crystallizes in the monoclinic space group P21/c with a=0.85831(13)nm,b=1.7677(3)nm,c=1.04353(12)nm,=123.887(9)°,and V=1.3143(3)nm3.Compound 2 crystallizes in the monoclinic space group P21/c with a=1.1313(2)nm,b=1.4874(3)nm,c=1.8020(6)nm,=125.07(2)°,and V=2.4817(11)nm3.The results show that the properties of solvent have a significant influence on the structure-directing effect of n-propylamine in the crystallization of the open-framework aluminophosphates.

  7. Thermal behaviour of strontium tartrate single crystals grown in gel

    Indian Academy of Sciences (India)

    M H Rahimkutty; K Rajendra Babu; K Sreedharan Pillai; M R Sudarsana Kumar; C M K Nair

    2001-04-01

    Thermal behaviour of strontium tartrate crystals grown with the aid of sodium metasilicate gel is investigated using thermogravimetry (TG) and differential thermal analysis (DTA). Effect of magnetic field and dopant (Pb)2+ on the crystal stability is also studied using thermal analysis. This study reveals that water molecules are locked up in the lattice with different strengths in the grown crystals.

  8. Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution.

    Science.gov (United States)

    Schram, Caitlin J; Beaudoin, Stephen P; Taylor, Lynne S

    2015-01-01

    Poor aqueous solubility is a major hindrance to oral delivery of many emerging drugs. Supersaturated drug solutions can improve passive absorption across the gastrointestinal tract membrane as long as crystallization can be inhibited, enhancing the delivery of such poorly soluble therapeutics. Polymers can inhibit crystallization and prolong supersaturation; therefore, it is desirable to understand the attributes which render a polymer effective. In this study, the conformation of a polymer adsorbed to a crystal surface and its impact on crystal growth inhibition were investigated. The crystal growth rate of a poorly soluble pharmaceutical compound, felodipine, was measured in the presence of hydroxypropyl methylcellulose acetate succinate (HPMCAS) at two different pH conditions: pH 3 and pH 6.8. HPMCAS was found to be a less effective growth rate inhibitor at pH 3, below its pKa. It was expected that the ionization state of HPMCAS would most likely influence its conformation at the solid-liquid interface. Further investigation with atomic force microscopy (AFM) revealed significant differences in the conformation of HPMCAS adsorbed to felodipine at the two pH conditions. At pH 3, HPMCAS formed coiled globules on the surface, whereas at pH 6.8, HPMCAS adsorbed more uniformly. Thus, it appeared that the reduced effectiveness of HPMCAS at pH 3 was directly related to its conformation. The globule formation leaves many felodipine growth sites open and available for growth units to attach, rendering the polymer less effective as a growth rate inhibitor.

  9. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  10. Confinement effects on the crystallization of poly(ethylene oxide) nanotubes.

    Science.gov (United States)

    Maiz, Jon; Martin, Jaime; Mijangos, Carmen

    2012-08-21

    In this work, we show the effects of nanoconfinement on the crystallization of poly(ethylene oxide) (PEO) nanotubes embedded in anodized aluminum oxide (AAO) templates. The morphological characteristics of the hollow 1D PEO nanostructures were evaluated by scanning electron microscopy (SEM). The crystallization of the PEO nanostructures and bulk was studied with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The crystallization of PEO nanotubes studied by DSC is strongly influenced by the confinement showing a strong reduction in the crystallization temperature of the polymer. X-ray diffraction (XRD) experiments confirmed the isothermal crystallization results obtained by DSC, and studies carried out at low temperatures showed the absence of crystallites oriented with the extended chains perpendicular to the pore wall within the PEO nanotubes, which has been shown to be the typical crystal orientation for one-dimensional polymer nanostructures. In contrast, only planes oriented 33, 45, and 90° with respect to the plane (120) are arranged parallel to the pore's main axis, indicating preferential crystal growth in the direction of the radial component. Calculations based on classical nucleation theory suggest that heterogeneous nucleation prevails in the bulk PEO whereas for the PEO nanotubes a surface nucleation mechanism is more consistent with the obtained results.

  11. Polarity Formation in Molecular Crystals as a Symmetry Breaking Effect

    Directory of Open Access Journals (Sweden)

    Luigi Cannavacciuolo

    2016-03-01

    Full Text Available The transition of molecular crystals into a polar state is modeled by a one-dimensional Ising Hamiltonian in multipole expansion and a suitable order parameter. Two symmetry breakings are necessary for the transition: the translational and the spin flip invariance—the former being broken by geometric constraints, the latter by the interaction of the first non-zero multipole with the next order multipole. Two different behaviors of the thermal average of the order parameter as a function of position are found. The free energy per lattice site converges to a finite value in the thermodynamic limit showing the consistency of the model in a macroscopic representation.

  12. Charge Penetration Effects in Rare-Earth Crystal Fields.

    Science.gov (United States)

    1982-06-01

    Interactions, 3. Three-Parameter Theory of Crystal Fields, Harry Diamond Laboratories HDL-TR-1673 (June 1975). 2R. M. Sternheimer , Phys. Rev., 84 (1951...R. M. Sternheimer , Phys. Rev., 84 (1951), 244. (3) R. E. Watson and A. J. Freeman, Phys. Rev., 135 (1964), A1209. (4) D. Sengupta and J. 0. Artman...A RARE-EARTH ION INTO THE CHARGE DI! THE RESULTS ARE CAST INTO A FORM REMINISCENT OF THE STERNHEIMER SHIELDING FA( A PRIME NM(R TO THE NTH POWER) TO

  13. Acousto-optic effect in a nematic liquid-crystal layer under the binary effect of sound and viscous waves

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, E. N., E-mail: kozhev@ssu.samara.ru [Samara State University (Russian Federation)

    2010-03-15

    The optical effect in a liquid crystal cell containing a homeotropic layer of nematic liquid crystal (NLC) is analyzed. An NLC layer, located between crossed polaroids and opaque in the absence of external effect, is cleared after irradiation by an ultrasonic beam with a sharp spatial boundary. This enlightenment is suggested to be caused by the reorientation of crystal molecules in the acoustic flows that arise under the binary effect of the layer compression in the irradiated region and the viscous waves propagating from the layer boundaries. The flows were calculated taking into account the stress caused by the velocity convection and crystal structure relaxation. An expression is derived for the cell transparency, and the relative role of the convection and relaxation processes in the effect is determined.

  14. Effect of flux on thermoluminescence in flux-grown BaFCl crystals. [X-and gamma-irradiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Babu, V.H. (Osmania Univ., Hyderabad (India). Dept. of Physics)

    1984-07-01

    BaFCl crystals have been grown using BaF/sub 2/ and BaCl/sub 2/ by flux technique. Glow curves, optical absorption, and TL emission spectra of X- or gamma irradiated crystals are studied. The results have been compared with those BaFCl crystals grown from NaF flux so as to study the effects of flux on these properties. It is found that crystals grown from BaF/sub 2/ flux are relatively purer. An additional TL glow peak at 460 K, an optical absorption band at 775 nm and TL emission band at 485 nm have been obtained in the presently grown crystals. The additional glow peak, optical absorption band have been attributed to F(F-bar) aggregate centers, whereas the 485 nm TL emission band to impurity centers.

  15. Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams

    Science.gov (United States)

    Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro

    2015-05-01

    In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.

  16. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La-Al-Cu(Ni) metallic glasses

    Science.gov (United States)

    Li, Peiyou

    2016-02-01

    The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La-Al-Cu(Ni) metallic glasses (MGs) was studied by differential scanning calorimetry (DSC). The experimental results have shown that the DSC curves obtained for the La-Al-Cu and La-Al-Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La-Al-Cu and La-Al-Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al-Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La-Al-Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La-Al-Cu(Ni) MGs.

  17. Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma

    Science.gov (United States)

    Murphy, J. Brendan

    2013-04-01

    The appinite suite of rocks offers a unique opportunity to study the effect of water on the generation, emplacement and crystallization history of mafic to felsic magma. The suite consists of a group of coeval plutonic and/or hypabyssal rocks, ranging from ultramafic to felsic in composition in which hornblende is the dominant mafic mineral, and typically occurs both as large prismatic phenocrysts and in the finer grained matrix. The suite is also characterized by abundant evidence for mixing and mingling between diverse magma types and variable degrees of contamination by host rock. Field observations corroborate experimental and theoretical studies that the hornblende stability field expands at the expense of olivine and pyroxene with increasing pH2O in the magma. Textures characteristic of appinites are consistent with rapid growth and with experimental evidence for the reduced viscosity of melts allowing efficient migration of ions to the sites of mineral growth. The appinite suite was originally defined in the Paleozoic Caledonide orogen in Scotland, where it occurs as a number of small shallow crustal bodies that were emplaced after the cessation of subduction and in the immediate aftermath of terrane collision and closure of the Iapetus Ocean. The mafic component is thought to have been triggered by asthenospheric upwelling following stab break-off, and magmas produced have both juvenile and sub-continental lithospheric mantle components. Its compositions have affinities with shoshonites. The felsic components include large batholiths that were probably derived by fractional crystallization. Other appinite suites share some, but not all of these characteristics. Appinite suites apparently range in age from Neo-Archean to Recent, and occur at all crustal levels, at depths of up to 40 km. In addition to shoshonites, appinite suites share some similar geochemical features with high-Mg andesites, sanukitoids and adakites. Some common tectonic traits include a

  18. Axion Crystals

    CERN Document Server

    Ozaki, Sho

    2016-01-01

    The low-energy effective theories for gapped insulators are classified by three parameters: permittivity $\\epsilon$, permeability $\\mu$, and theta angle $\\theta$. Crystals with periodic $\\epsilon$ are known as photonic crystals. We here study the band structure of photons in a new type of crystals with periodic $\\theta$ (modulo $2\\pi$) in space, which we call the axion crystals. We find that the axion crystals have a number of new properties that the usual photonic crystals do not possess, such as the helicity-dependent photonic band gaps and the nonrelativistic gapless dispersion relation at small momentum. We briefly discuss possible realizations of axion crystals in condensed matter systems as well as high-energy physics.

  19. The calming effect of oil on water

    Science.gov (United States)

    Behroozi, Peter; Cordray, Kimberly; Griffin, William; Behroozi, Feredoon

    2007-05-01

    The calming effect of oil on water has been known since ancient times. Benjamin Franklin was the first to investigate the effect, but the underlying mechanism for this striking phenomenon remains elusive. We used a miniature laser interferometer to measure the amplitude of surface waves to a resolution of ±5nm, making it possible to determine the effect of an oil monolayer on the attenuation of capillary waves and the surface dilational modulus of the monolayer. We present attenuation data on pure water, water covered by olive oil, water covered by a fatty acid, and a water-acetone mixture for comparison. From the attenuation data at frequencies between 251 and 551Hz, we conclude that the calming effect of oil on surface waves is principally due to the dissipation of wave energy caused by the Gibbs surface elasticity of the monolayer, with only a secondary contribution from the reduction in surface tension. Our data also indicate that the surface-dilational viscosity of the oil monolayer is negligible and plays an insignificant role in calming the waves.

  20. Enhanced thermal lens effect in gold nanoparticle-doped Lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, S.L.; Lenart, V.M., E-mail: sgomez@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Dept. de Fisica; Turchiello, R.T. [Universidade Federal Tecnologica do Parana (UFTPR), Ponta Grossa, PR (Brazil). Dept. de Fisica; Goya, G.F. [Department of Condensed Matter Physics, Aragon Institute of Nanoscience, Zaragoza (Spain)

    2015-10-01

    This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n{sub 2} increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)

  1. The ion capturing effect of 5° SiOx alignment films in liquid crystal devices

    Science.gov (United States)

    Huang, Yi; Bos, Philip J.; Bhowmik, Achintya

    2010-09-01

    We show that SiOx, deposited at 5° to the interior surface of a liquid crystal cell allows for a surprisingly substantial reduction in the ion concentration of liquid crystal devices. We have investigated this effect and found that this type of film, due to its surface morphology, captures ions from the liquid crystal material. Ion adsorption on 5° SiOx film obeys the Langmuir isotherm. Experimental results shown allow estimation of the ion capturing capacity of these films to be more than an order of 10 000/μm2. These types of materials are useful for new types of very low power liquid crystal devices such as e-books.

  2. The effect of sodium alginate on struvite crystallization in aqueous solution: A kinetics study

    Science.gov (United States)

    Wei, Lin; Hong, Tianqiu; Liu, Haibo; Chen, Tianhu

    2017-09-01

    As a representative of extracellular polymeric substances (EPS), the effect of sodium alginate (SA) crystallization kinetics of struvite, was investigated by constant composition technique under the conditions of 25 °C, pH 8.5, ion strength 0.1 mol L-1 NaCl. The results indicated that SA reduced the crystal growth rate of struvite significantly, attributed to the adsorption of SA and subsequently blocking of active growth sites onto the surface of struvite forming. Moreover, the adsorption followed Langmuir adsorption isotherm model, from which the affinity constant was calculated to be 63.6 × 104 L mol-1. Furthermore, SA in supersaturated solution affects the crystallization kinetics of struvite without changing its crystal growth mechanism. Additionally, SA can make the surface charge of struvite more negative, thus obviously reduce the settleability of struvite.

  3. The effect of linear imperfection in [001] direction on the thermal properties of silver crystal

    Directory of Open Access Journals (Sweden)

    J Davoodi

    2013-09-01

    Full Text Available  The aim of this investigation was to calculate the thermal properties of silver crystal in the presence of linear imperfection. The simulations were performed by molecular dynamics simulation technique in NPT as well as NVT ensemble based on quantum Sutton-Chen many body potential. The thermal properties including cohesive energy, melting temperature, isobaric heat capacity and thermal expansion of imperfect silver crystal were calculated and compared to those of the perfect crystal. Moreover, the quantities such as radial distribution function, order parameter and lindemann index were calculated in order to obtain information on crystal structure and disorder in atoms. All calculations were done both with liner imperfection in [001] direction and without imperfection at different temperature. The simulation results show that cohesive energy, linear thermal expansion coefficient increase and melting temperature, latent heat of fusion decrease with increasing linear imperfection. Also, the results show that linear imperfection has no effect on the heat capacity.

  4. A study of the solvent effect on the morphology of RDX crystal by molecular modeling method.

    Science.gov (United States)

    Chen, Gang; Xia, Mingzhu; Lei, Wu; Wang, Fengyun; Gong, Xuedong

    2013-12-01

    Molecular dynamics simulations have been performed to investigate the effect of acetone solvent on the crystal morphology of RDX. The results show that the growth morphology of RDX crystal in vacuum is dominated by the (111), (020), (200), (002), and (210) faces using the BFDH laws, and (111) face is morphologically the most important. The analysis of surface structures of RDX crystal indicates that (020) face is non-polar, while (210), (111), (002), and (200) faces are polar among which (210) face has the strongest polarity. The interaction between acetone solvent and each RDX crystal face is different, and the order of binding energy on these surfaces is (210) > (111) > (002) > (200) > (020). The analysis of interactions among RDX and acetone molecules reveal that the system nonbond interactions are primary strong van der Waals and electrostatic interactions containing π-hole interactions, the weak hydrogen bond interactions are also existent. The effect of acetone on the growth of RDX crystal can be evaluated by comparing the binding energies of RDX crystalline faces. It can be predicted that compared to that in vacuum, in the process of RDX crystallization from acetone, the morphological importance of (210) face is increased more and (111) face is not the most important among RDX polar surfaces, while the non-polar (020) face probably disappears. The experimentally obtained RDX morphology grown from acetone is in agreement with the theoretical prediction.

  5. Effects of acid precipitation on inland waters

    Energy Technology Data Exchange (ETDEWEB)

    Tollan, A.

    1981-01-01

    Atmospheric transport of sulfur compounds and other acidifying components has led to extensive regional acidification of water bodies in sensitive areas, both in Europe and North America. The regions affected by acidification are increasing in area at present. Lakes in these areas are now characterized by low pH, high contents of sulfate and high concentrations of several metals, notably aluminium, which is leached from the catchments under impact of acid precipitation. Acidification of inland waters has had major effects on life in rivers and lakes. Investigations have shown that all types of organisms in the freshwater ecosystem are affected by acidification, ecosystem structures are simplified, and the lakes probably become poorer in nutrients. A prominent feature of regional water acidification is the extensive loss of fish populations, caused primarily by reproductive failure. Physiological stress and fish kills are caused by toxic combinations of water acidity and high aluminium content.

  6. Additives effects on crystallization and morphology in a novel caustic aluminate solution decomposition process

    Institute of Scientific and Technical Information of China (English)

    Ying ZHANG; Sbili ZHENG; Yifei ZHANG; Hongbin XU; Yi ZHANG

    2009-01-01

    A novel process of caustic aluminate solution decomposition by alcohol medium was developed by the Institute of Process Engineering, Chinese Academy of Sciences in order to solve the problem of low decomposi-tion ratio in the traditional Bayer seeded hydrolysis process. In this research, effects of additives on the crystallization ratio, secondary particle size and morphol-ogy of aluminum hydroxide in the new process were studied to obtain high-quality products. On the basis of primary selection of additives, an orthogonal design L9(34)was used as a chemometric method to investigate the effects of additives. The studied parameters include the reaction style, quantity of additives, caustic soda concen-tration, as well as the combination manner. The crystal-lization ratios of sodium aluminate solution and crystal size of aluminum hydroxide, determined by ICP-OES, SEM and MLPSA (Malvern Laser Particle Size Analyzer), were used to evaluate the effects of the additives. The results showed that different combination manners could promote agglomeration or dispersion. An additive composed by Tween 80 and PEG 200 could promote agglomeration,while a spot of PEG species had a relatively strong dispersion effect. However, the additives had little effects on the crystallization ratios. According to the Raman spectra result, the added alcohol medium might serve as a kind of solvent.

  7. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    Science.gov (United States)

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future.

  8. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  9. Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin Hall effect

    Science.gov (United States)

    Göbel, Börge; Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2017-08-01

    Skyrmions are topologically nontrivial, magnetic quasiparticles that are characterized by a topological charge. A regular array of skyrmions, a skyrmion crystal (SkX), features the topological Hall effect (THE) of electrons, which, in turn, gives rise to the Hall effect of the skyrmions themselves. It is commonly believed that antiferromagnetic skyrmion crystals (AFM-SkXs) lack both effects. In this Rapid Communication, we present a generally applicable method to create stable AFM-SkXs by growing a two-sublattice SkX onto a collinear antiferromagnet. As an example we show that both types of skyrmion crystals, conventional and antiferromagnetic, exist in honeycomb lattices. While AFM-SkXs with equivalent lattice sites do not show a THE, they exhibit a topological spin Hall effect. On top of this, AFM-SkXs on inequivalent sublattices exhibit a nonzero THE, which may be utilized in spintronics devices. Our theoretical findings call for experimental realization.

  10. Effect of Heat Treatment on Crystallization of ND:YAG Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huashan; HUI Han; SU Chunhui; ZHANG Hongbo

    2007-01-01

    (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. The powders were characterized by TG-DTA, XRD, FT-IR, ICP and TEM, respectively. The grain sizes were calculated by the Scherrer's formula using the full width at half maximum (FWHM) of YAG (420) crystal plane diffraction lines. The study focused on crystallization of ceramics at different heat treatment temperatures. The experimental results show that crystallizing temperature of YAG is 850℃ and the intermediate crystal phase YAP, appearing during heat treatment, transforms to YAG cubic crystal phase at the temperature of 1 050 ℃.The particle size of the powders synthesized by LCS is nano-sized. With the temperature increasing, the mean grain sizes raise, the stand deviations keep almost at the value of 2.0 and the lattice parameters decrease. The grains mainly grow by grain boundary diffusion. The lattice parameter expansion is caused by an increase of the repulsive dipolar interactions on surfaces of crystallites.

  11. Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon

    Science.gov (United States)

    Drikis, Ivars; Plate, Matiss; Sennikovs, Juris; Virbulis, Janis

    2017-09-01

    Simulations of 3D anisotropic stress are carried out in and oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is 5-11% higher in crystals compared to crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the crystal has a higher azimuthal variation of stress along the triple point line ( 8%) than the crystal ( 2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.

  12. Analysis of acoustic emission effect accompanying metal crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Vorontsov, V B [Urals State University of Railway Transport (USURT), 66 Kolmogorov Street, Ekaterinburg, 620034 (Russian Federation); Katalnikov, V V [Ural State Technical University (USTU), 19 Mira St, Ekaterinburg, 620002 (Russian Federation)], E-mail: vorontsov@bgd.usart.ru, E-mail: vdeka@mail.ru

    2008-02-15

    The work is devoted to acoustic emission (AE) which occurs in the process of crystallization of metals and non-organic substances. The objective of the research is to obtain an AE signal from the interphase surface and carry out frequency analysis of the spectrum. The results of the research have shown that the signals generated have maximum amplitude in 21-27 kHz range with maximums at 21 and 24 kHz at v=0,8 cm/sec and at 21 and 23 kHz at v=1,43 cm/sec. To explain the results obtained the cluster model of melts was applied. Every AE signal corresponds to the advance of interphase surface by a step equal to 3 layers of clusters.

  13. Spin injection effect in thin Bi2212 single crystal

    Science.gov (United States)

    Murata, Kenichiro; Otaka, Kazuto; Yamaki, Kazuhiro; Irie, Akinobu

    2017-07-01

    The influence of spin-injection on the in-plane transport properties of thin Bi2Sr2CaCu2Oy (BSCCO) single crystal has been investigated. The in-plane transport measurements without and with spin injection were carried out at 77 K by four terminal method. The in-plane critical current was strongly reduced by injecting the current from Co/Au electrodes formed on the BSCCO bridge with 50 mm wide and 450 nm thick. Furthermore, it was observed that magnetic field dependence of the magnetoresistance shows a hysteresis loop. These results indicate that the in-plane superconductive transport property is affected by the spin-injection related to the magnetization of Co.

  14. Electroosmotically enabled Electrorheological Effects in a Planar Nematic Crystal Flow

    CERN Document Server

    Dhar, Jayabrata; Chakraborty, Suman

    2016-01-01

    Study of electrokinetics of nematic liquid crystals (LCs) with dissolved impurities hold utmost importance in understanding director distribution characteristics and modified flow rheology. However, no concrete theory for the non-uniform potential and ionic species distribution, due to an induced electrical double layer (EDL) at the LC-substrate interface, derived from fundamental principles have been put forward in this regard. In this work, we have developed coupled governing equations from fundamental free energy considerations for the potential distribution and the director configuration of the nematic LC within the induced electrical double layer which is generated due to certain physico-chemical interactions at the LC-substrate interface. With these considerations, an electroosmotically-enabled nematodynamics for a particular LC, namely, MBBA, with strong planar anchoring at the boundaries is studied. We obtained multiple solution for director configuration, which is an integral characteristics of nemat...

  15. Defect formation energy in pyrochlore: the effect of crystal size

    Science.gov (United States)

    Wang, Jianwei; Ewing, Rodney C.; Becker, Udo

    2014-09-01

    Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.

  16. EFFECT OF N,N,N',N'-TETRAALKYL TEREPHTHALAMIDE ON NON-ISOTHERMAL CRYSTALLIZATION KINETICS OF POLYPROPYLENE

    Institute of Scientific and Technical Information of China (English)

    Bao-qing Shentu; Ji-peng Li; Zhi-xue Weng

    2006-01-01

    The effect of N,N,N',N'-tetraalkyl terephthalamide (TATA) on the non-isothermal crystallization and melting characteristics of polypropylene (PP) was studied. The addition of TATA can lead to the formation of β-crystal PP. With the increase in TATA concentration the degree of crystallinity for β-crystal PP increased significantly, and that for α-crystal PP decreased, which indicated that TATA effectively induced the formation of β-crystal PP. WAXD also revealed the existence of β-crystal PP after the introduction of TATA into PP. PP containing TATA crystallized at a temperature range of 5-10℃ higher than that of pure PP, and the half-crystallization time (t1/2) and Avrami exponent (n) of PP at the same cooling rate were decreased by the addition of TATA, indicating that TATA influenced the crystallization rate and crystallization growth mode of PP. The rate constant of crystallization of PP containing TATA (Zc) was larger than that of pure PP, which further indicated that the crystallization of PP was accelerated by the addition of TATA.

  17. Protein Crystallization

    Science.gov (United States)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  18. Effects of water management on crop yield

    NARCIS (Netherlands)

    Hack-ten Broeke, M.J.D.; Bartholomeus, R.; Kroes, J.G.; Dam, van J.C.; Bakel, van J.

    2015-01-01

    A new instrument for the quantification of agricultural crop yield reduction due to too wet, too dry or too salty conditions: what kind of instrument should that be? And could such an instrument be usable for the calculation of effects of climate scenarios? WaterVision Agriculture should be the answ

  19. Effects of thermal water on skin regeneration.

    Science.gov (United States)

    Faga, Angela; Nicoletti, Giovanni; Gregotti, Cesarina; Finotti, Valentina; Nitto, Agnese; Gioglio, Luciana

    2012-05-01

    An experimental study was carried out in an animal (New Zealand white rabbit) wound model to evaluate any effects of a hypotonic, bicarbonate-calcium-magnesium mineral water (Comano thermal water) on skin regeneration, comparing the healing rate of split-thickness skin graft donor sites treated with the thermal water wet dressing versus a standard petrolatum gauze dressing versus a saline solution wet dressing. The study was performed in two steps; an overall of 22 animals were enrolled in the study. The wound healing progress was evaluated both by the surgeons and by the histologists. Sixty-four punch biopsies were examined in all. The histological samples were examined after staining with haematoxylin and eosin, Masson's and orcein staining and under a transmission electron microscope. The data were statistically analysed. The Comano thermal water proved to improve skin regeneration, not only by increasing keratinocyte proliferation and migration but also favourably modulating the regenerated collagen and elastic fibres in the dermis. We propose that the results of the topical treatment with the thermal water could be due to the favourable combination of a local wet environment with an anti-inflammatory action and that the regenerative properties of Comano thermal water observed in rabbits could also be applied for human use.

  20. OBSERVATION OF PHOTOREFRACTIVE EFFECT OF KNbO3 CRYSTAL ATμW ILLUMINATION

    Institute of Scientific and Technical Information of China (English)

    LI QI; XIA ZONG-HUANG; LU XI-TING; WANG FENG; GONG QI-HUANG; SHEN DE-ZHONG

    2000-01-01

    The photorefractive effects of the as-grown and proton-implanted KNbO3 crystals were studied by two-wave mixing at 62.2 μW/cm2 illumination.At this pump power level,the as-grown crystal showed little photorefractive effect,while the proton-implanted crystal showed an obvious effect.Furthermore,there seemed to exist two photorefractive gratings with response times of 22.54 and 1596.30s,at 62.2μW/cm2 pump power level,in the proton-implanted sample.This phenomenon has been attributed to the influence of proton-implantation.

  1. Radiation electromagnetic effect in germanium crystals under high-energy. cap alpha. -particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    Results of experimental investigation into radiation electromagnetic effect (REM) in samples of germanium crystals under approximately 40 MeV ..cap alpha..-particle irradiation in a cyclotron are presented. A high level of excitation, volumetric character of generation of non-equilibrium carriers and formation of defects as well as the form of their spatial distribution are shown to result in some peculiarities of the EMF of the REM effect on the particle flux, fluence and sample parameters. Agreement of theoretical calculations, conducted with account of specificity of ..cap alpha..-particle interaction with a crystal, and experimental data is obtained. It is revealed that the REM effect can be applied in obtaining data on spatial distribution of non-equilibrium carrier concentrations along the particle trajectory in the crystal.

  2. Radiation-electromagnetic effect in germanium crystals irradiated with high-energy. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    An experimental investigation was made of the radiation-electromagnetic effect in germanium crystals irradiated in a cyclotron with ..cap alpha.. particles of energies up to 40 MeV. The high excitation rate, the bulk nature of generation of nonequilibrium carriers and defects, and their spatial distributions gave rise to several special features in the dependence of the emf due to the radiation-electromagnetic effect on the particle flux, fluence, and parameters of samples. Theoretical calculations carried out allowing for the specific nature of the interaction of ..cap alpha.. particles with crystals agreed well with the experimental results. The radiation-electromagnetic effect could be used to obtain information on the nature of the spatial distribution of the density of nonequilibrium carriers along the trajectory of a particle in a crystal.

  3. Effect calcusol to reduce the calcium crystal retention in kidney epithelial cells model of nephrolothiasis

    Directory of Open Access Journals (Sweden)

    Ahmad Soni

    2014-12-01

    Full Text Available Kidney stones is a disease that characterized by a disturbance in the bladder. The main constituent of kidney stones namely Calcium Oxalate Monohydrate (COM crystals. The presence of a COM crystal adhesion to renal tubular cells, will initiate the internalization which will further lead to the formation of crystals retention in the kidney. In Indonesia, there are many herbal products are considered able to cope the complaints due to the kidney stone disease. One of the herbal product is Calcusol „¢, which is the main constituent of those herbal product was the leaf extract of tempuyung. This study observed the effectiveness of Calcusol „¢ in reducing crystals retention that was formed in kidney epithelial cells model of nephrolithiasis. The result showed that Calcusol „¢ is able to reduce the average number of calcium crystals retention in the renal epithelial cells. It indicate that Calcusol „¢ has the ability to reduce crystals retention that already formed in renal epithelial cells. Furthermore, the results of this study are expected to be one of the considerations for further research on the potential of overcoming Calcusol „¢ in kidney stone disease

  4. Effect of extract of Phyllanthus niruri on crystal deposition in experimental urolithiasis.

    Science.gov (United States)

    Barros, Marcio E; Lima, Roberta; Mercuri, Lucildes P; Matos, Jivaldo R; Schor, Nestor; Boim, Mirian A

    2006-12-01

    Phyllanthus niruri (Pn) is a plant that has been shown to interfere in the growth and aggregation of calcium oxalate (CaOx) crystals. In the present study we evaluated the effect of Pn on the preformed calculus induced by introduction of a CaOx seed into the bladder of male Wistar rats. Pn treatment (5 mg/ rat/day) was initiated immediately or 30 days after CaOx seeding and thus in the presence of a preformed calculus. Animals were sacrificed 50 or 70 days after surgery. The resulting calculi were weighed and analyzed by X-ray diffraction, stereomicroscopy and scanning electronic microscopy. Precocious Pn treatment reduced the number (75%, P struvite crystals over the CaOx seed and Pn did not change the crystalline composition of the calculi. This suggests that Pn interfered with the arrangement of the precipitating crystals, probably by modifying the crystal-crystal and/or crystal-matrix interactions. Results suggest that Pn may have a therapeutic potential, since it was able to modify the shape and texture of calculi to a smoother and probably more fragile form, which could contribute to elimination and/or dissolution of calculi.

  5. EFFECT OF CROSSLINK DENSITY ON THE HIGH PRESSURE CRYSTALLIZATION OF UHMWPE

    Science.gov (United States)

    Oral, Ebru; Beckos, Christine Godleski; Ghali, Bassem W.; Lozynsky, Andrew J.; Muratoglu, Orhun K.

    2010-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is a bearing surface material for total joint implants. It is radiation cross-linked for high wear resistance and is melted or treated with vitamin E for oxidative stability. We investigated high pressure crystallization (HPC) of irradiated UHMWPE as an alternative method to improve the mechanical strength while stabilizing the residual free radicals from radiation crosslinking. HPC of uncross-linked UHMWPE has resulted in the formation of extended chain crystals and increased crystallinity, leading to improved strength. We hypothesized that increased cross-link density would hinder crystallization during HPC due to decreased chain mobility. Therefore, we investigated the crystalline structure and tensile mechanical properties of high pressure crystallized 25-, 65- and 100-kGy irradiated UHMWPE. We also determined free radical content and wear. The strength of 25- and 65-kGy irradiated UHMWPEs was improved by HPC with increased crystallinity and crystal size. 100-kGy irradiated UHMWPE did not show improved strength, supporting our hypothesis that decreased chain mobility would hinder crystal formation and strength improvement. None of the HPC irradiated UHMWPEs contained detectable free radicals and their wear properties were maintained, suggesting oxidative and mechanical stability in the long term. Therefore, HPC can be used effectively for imparting oxidative stability while strength improvement can be achieved for irradiated UHMWPE with low to moderate crosslink density. PMID:19213055

  6. Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification.

    Science.gov (United States)

    Armstrong, D J; Alford, W J; Raymond, T D; Smith, A V

    1996-04-20

    Absolute magnitudes of the effective nonlinearity, deff, were measured for seven KTP and six BBO crystals. The d(eff), were derived from the parametric gain of an 800-nm signal wave in the sample crystals when they were pumped by the frequency-doubled, spatially filtered light from an injectionseeded, Q-switched Nd:YAG laser. The KTP crystals, all type II phase matched with propagation in the X-Z plane, had d(eff) values ranging from 1.97 to 3.50 pm/V. Measurements of gain as a function of phase velocity mismatch indicate that two of the KTP crystals clearly contain multiple ferroelectric domains. For five type I phase-matched BBO crystals, d(eff) ranged from 1.76 to 1.83 pm/V, and a single type II phase-matched BBO crystal had a d(eff) of 1.56 pm/V. The uncertainty in our measurements of d(eff) values is ±5% for KTP and ±10% for BBO.

  7. Effect of high pressure microfluidization on the crystallization behavior of palm stearin - palm olein blends.

    Science.gov (United States)

    Han, Lijuan; Li, Lin; Li, Bing; Zhao, Lei; Liu, Guoqin; Liu, Xinqi; Wang, Xuede

    2014-04-24

    Moderate and high microfluidization pressures (60 and 120 MPa) and different treatment times (once and twice) were used to investigate the effect of high-pressure microfluidization (HPM) treatment on the crystallization behavior and physical properties of binary mixtures of palm stearin (PS) and palm olein (PO). The polarized light microscopy (PLM), texture analyzer, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were applied to analyze the changes in crystal network structure, hardness, polymorphism and thermal property of the control and treated blends. PLM results showed that HPM caused significant reductions in maximum crystal diameter in all treated blends, and thus led to changes in the crystal network structure, and finally caused higher hardness in than the control blends. The XRD study demonstrated that HPM altered crystalline polymorphism. The HPM-treated blends showed a predominance of the more stable β' form, which is of more interest for food applications, while the control blend had more α- and β-form. This result was further confirmed by DSC observations. These changes in crystallization behavior indicated that HPM treatment was more likely to modify the crystallization processes and nucleation mechanisms.

  8. Effect of High Pressure Microfluidization on the Crystallization Behavior of Palm Stearin — Palm Olein Blends

    Directory of Open Access Journals (Sweden)

    Lijuan Han

    2014-04-01

    Full Text Available Moderate and high microfluidization pressures (60 and 120 MPa and different treatment times (once and twice were used to investigate the effect of high-pressure microfluidization (HPM treatment on the crystallization behavior and physical properties of binary mixtures of palm stearin (PS and palm olein (PO. The polarized light microscopy (PLM, texture analyzer, X-ray diffraction (XRD and differential scanning calorimetry (DSC techniques were applied to analyze the changes in crystal network structure, hardness, polymorphism and thermal property of the control and treated blends. PLM results showed that HPM caused significant reductions in maximum crystal diameter in all treated blends, and thus led to changes in the crystal network structure, and finally caused higher hardness in than the control blends. The XRD study demonstrated that HPM altered crystalline polymorphism. The HPM-treated blends showed a predominance of the more stable β' form, which is of more interest for food applications, while the control blend had more α- and β-form. This result was further confirmed by DSC observations. These changes in crystallization behavior indicated that HPM treatment was more likely to modify the crystallization processes and nucleation mechanisms.

  9. Effects of cyclic structure inhibitors on the morphology and growth of tetrahydrofuran hydrate crystals

    Science.gov (United States)

    Li, Sijia; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2013-08-01

    Morphology and growth of hydrate crystals with cyclic structure inhibitors at a hydrate-liquid interface were directly observed through a microscopic manipulating apparatus. Tetrahydrofuran (THF) hydrate was employed as an objective. The effects of four kind of cyclic structure inhibitors, polyvinylpyrrolidone (PVP), poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine) (PVPP), poly(2-vinyl pyridine-co-N-vinylcaprolactam) (PVPC) and poly(N-vinylcaprolactam) (PVCap), were investigated. Morphological patterns between each hydrate crystal growth from hydrate-liquid interface into droplet were found differ significantly. Lamellar structure growth of hydrate crystal was observed without inhibitor, while with PVP was featheriness-like, PVPP was like long dendritic crystal, PVPC was Mimosa pudica leaf-like and PVCap was like weeds. The growth rate of hydrate crystal without inhibitor was 0.00498 mm3/s, while with PVPP, PVPC and PVCap, were 0.00339 mm3/s, 0.00350 mm3/s, 0.00386 mm3/s and 0.00426 mm3/s, respectively. Cyclic structure inhibitors can decrease the growth rate, degree of reduction in growth rate of hydrate crystals decrease with the increase of cylinder number.

  10. Effects of quasi-periodicity on defect modes of photonic crystals

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiao-ming; CHEN Xian-feng; JIANG Mei-ping; CHAO Xiao-gang; SHI Du-fang

    2006-01-01

    In this letter,the effects of Bragg-mirror quasi-periodicity on the shifts and quality factor in defect modes of photonic crystals are studied by using the transfer matrix method.Furthermore the influence of the quasi-periodicity on electric field enhancement effect inside the defect layer is studied,which is similar to that on the quality factor.

  11. Effective index approximations of photonic crystal slabs: a 2-to-1-D assessment

    NARCIS (Netherlands)

    Hammer, Manfred; Ivanova, Olena V.

    2009-01-01

    The optical properties of slab-like photonic crystals are often discussed on the basis of effective index (EI) approximations, where a 2-D effective refractive index profile replaces the actual 3-D structure. Our aim is to assess this approximation by analogous steps that reduce finite 2-D waveguide

  12. Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator

    Institute of Scientific and Technical Information of China (English)

    YAO Ai-Yun; HOU Wei; LI Hui-Qing; BI Yong; LIN Xue-Chun; GENG Ai-Cong; KONG Yu-Peng; CUI Da-Fu; XU Zu-Yan

    2005-01-01

    @@ We report a new way, i.e. double-end-pumping, to extend the stability range of a laser resonator, in advantage of making the thermal loading be effectively divided between the ends of the laser crystal to reduce the thermal effect, thus to extend the stability range.

  13. Effect of X-radiation on single crystals of gallium and indium monoselenides

    Energy Technology Data Exchange (ETDEWEB)

    Akopyan, R.A.; Zhuravlev, V.M. (Moskovskij Inst. Ehlektronnoj Tekhniki (USSR))

    1983-06-01

    InSe and GaSe monocrystals doped with lead reveal considerable sensitivity to 0.1-0.5 A x radiation. The relation well describing the effect of x radiation on these single crystals is proposed. The prevailing mechanism of the effect is photoelectric absorption on k shells of component atoms.

  14. Crystal Structure of Calcium Silicate Perovskite Synthesized under Water Saturated Conditions at Mantle Related Pressure-Temperature

    Science.gov (United States)

    Chen, H.; Shim, S. H. D.; Leinenweber, K. D.; Meng, Y.; Prakapenka, V.

    2014-12-01

    Perovskite-structured CaSiO3 (Ca-Pv) is the third most abundant mineral in the lower mantle. However, its crystal structure is still under debate and the solubility of H2O in Ca-Pv is not well constrained. We have conducted in situ X-ray diffraction measurements on Ca-Pv under H2O saturated conditions in the laser-heated diamond-anvil cell at the GSECARS and HPCAT sectors of the Advanced Photon Source. Glass starting materials were mixed with platinum powder (10 wt%) for laser coupling and internal pressure scale. Cold compressed foils of the mixtures were loaded in the diamond-anvil cell together with Ne or water. The X-ray diffraction patterns of the Ca-Pv sample synthesized in a Ne medium are consistent with a cubic perovskite structure at both 300 K and high temperatures up to 2,400 K at 50 GPa. No clear peak splittings were observed within the resolution of the angle-dispersive powder diffraction technique. However, in the experiments with water, clear splitting of the 200 diffraction line appears during heating to temperatures over 2000 K and remain after temperature quench at 32 GPa. The peak splittings were clearly observed at high temperatures to 2400 K, which is close to the melting point of water at the pressure. The different structural behaviors of Ca-Pv depending on media (Ne and water) may suggest that OH might enter into the crystal structure of nominally anhydrous Ca-Pv phase at high pressure and high temperature.

  15. Effect of Crystal Growth Direction on Domain Structure of Mn-Doped (Na,K)NbO3 Crystal

    Science.gov (United States)

    Tsuchida, Kohei; Kakimoto, Ken-ichi; Kagomiya, Isao

    2013-09-01

    Single crystals of (Na0.55K0.45)(Nb0.995Mn0.005)O3 have been grown by a floating zone method in N2 and decompression atmosphere to avoid alkaline metal volatilization on the SrTiO3 material base. The variation of their ferroelectric domain structure and the chemical composition of the grown crystal in the growth direction were evaluated. In the crystal grown in N2 atmosphere, the Na and K are not distributed homogeneously. In addition, the phase transition temperature TC and TO-T showed different values between the grown crystal and raw material. By using laser scanning confocal microscope, the domain structures of the grown crystal revealed random patterns in the initial growth stage and lamellar patterns in the progressing crystal growth. In decompression atmosphere, the TC and TO-T values of the grown crystal were similar to those of the raw material and the domain structures showed a constant domain size. The electrical property of the crystal became stable and the domain structure was easily switched against applied electrical field because the oriented lamellar domain was created during cooling of the crystal.

  16. Molecular Weight and Crystallization Temperature Effects on Poly(ethylene terephthalate (PET Homopolymers, an Isothermal Crystallization Analysis

    Directory of Open Access Journals (Sweden)

    Leonardo A. Baldenegro-Perez

    2014-02-01

    Full Text Available The isothermal crystallization of poly(ethylene terephthalate (PET homopolymers with different molecular weight was studied in a wide temperature range (140–230 °C using different experimental techniques. Three different morphological regions, labeled r1, r2 and r3, were distinguished as a function of crystallization temperature (Tc. In r1 (low Tc crystallized samples were characterized by a low crystalline degree with a small spherulite texture containing thin crystals. In r2 (intermediate Tc samples showed medium size spherulites composed of two distinct crystalline families (thin and thick crystals. In this temperature range, the crystallization exhibited a maximum value and it was associated with a high content of secondary crystals. In r3 (high Tc, samples presented considerable amorphous zones and regions consisting of oversized spherulites containing only thick crystals. Time-resolved wide-angle X-ray diffraction measurements, using synchrotron radiation, indicated a rapid evolution of the crystalline degree within the second region, in contrast with the quite slow evolution observed in the third region. On the other hand, by small-angle X-ray scattering (SAXS and time-resolved SAXS experiment, it was found that the long period (L as well as the lamellar thickness (lc increase as a function of Tc, corroborating the formation of the thickest crystals in the third region. From all these observations, a morphological model was proposed for each region.

  17. Effect of crystal shape on neutron rocking curves of perfect single crystals designed for ultra-small-angle scattering experiments

    Science.gov (United States)

    Freund, A. K.; Rehm, C.

    2014-07-01

    The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorption taking into account the reflection from the rear face of a plane-parallel crystal reflecting in Bragg geometry. The former is preferable because it yields narrower rocking curves. To prevent the neutrons to "see" the rear face, grooves were machined into the backside of perfect Si test crystals for single reflection and filled with neutron absorbing material. These samples were examined at the S18 instrument of the Institut Laue-Langevin. Unexpectedly the crystals with empty slots showed an increase of the rocking curve width. When filling the slots with an absorber the widths decreased, but without reaching that of the Darwin curve. Understanding the results and achieving a successful crystal design call for the development of a theory that permits to describe neutron diffraction from crystals with a structured back face.

  18. Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on Polymethoxyflavone crystallization.

    Science.gov (United States)

    Li, Yan; Zheng, Jinkai; Xiao, Hang; McClements, David Julian

    2012-06-01

    Polymethoxyflavones (PMFs) extracted from citrus peel exhibit potent anti-cancer activity, but are highly hydrophobic molecules with poor solubility in both water and oil at ambient and body temperature, which limits their bioavailability. The possibility of encapsulating PMFs within nanoemulsion-based delivery systems to facilitate their application in nutraceutical and pharmaceutical products was investigated. The influence of oil type (corn oil, MCT, orange oil), emulsifier type (β-lactoglobulin, lyso-lecithin, Tween, and DTAB), and neutral cosolvents (glycerol and ethanol) on the formation and stability of PMF-loaded nanoemulsions was examined. Nanoemulsions (r emulsifier types, except DTAB. Lipid droplet charge could be altered from highly cationic (DTAB), to near neutral (Tween), to highly anionic (β-lactoglobulin, lyso-lecithin) by varying emulsifier type. PMF crystals formed in all nanoemulsions after preparation, which had a tendency to sediment during storage. The size, morphology, and aggregation of PMF crystals depended on preparation method, emulsifier type, oil type, and cosolvent addition. These results have important implications for the development of delivery systems for bioactive components that have poor oil and water solubility at application temperatures.

  19. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System

    Directory of Open Access Journals (Sweden)

    H.W. Goh

    2015-07-01

    Full Text Available Polyethylene terephthalate (PET bottle is one of the common plastic wastes existed in the municipal solid waste in Malaysia. One alternative to solve the abundant of PET wastes is chemical recycling of the wastes to produce a value added product. This technology not only can decrease the PET wastes in landfill sites but also can produce many useful recycled PET products. Bis(2-hydroxyethyl terephthalate (BHET obtained from glycolysis reaction of PET waste was purified using crystallization process. The hot distilled water was added to glycolysis product followed by cooling and filtration to extract BHET in white solid form from the product. The effect of three operating conditions namely crystallization time, crystallization temperatures and amount of distilled water used to the yield of crystallization process were investigated. The purity of crystallization products were analyzed using HPLC and DSC. The optimum conditions of 3 hours crystallization time, 2 °C crystallization temperature and 5:1 mass ratio of distilled water used to glycolize solid gave the highest yield and purity of the crystallization process. © 2015 BCREC UNDIP. All rights reservedReceived: 12nd August 2014; Revised: 4th February 2015; Accepted: 5th February 2015How to Cite: Goh, H.W., Salmiaton, A., Abdullah, N., Idris, A. (2015. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 143-154. (doi:10.9767/bcrec.10.2.7195.143-154 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7195.143-154  

  20. Effect of repeated cycled crystallization on digestibility and molecular structure of glutinous Bora rice starch.

    Science.gov (United States)

    Borah, Pallab Kumar; Deka, Sankar Chandra; Duary, Raj Kumar

    2017-05-15

    The effects of repeated cycled crystallization on the digestibility and molecular structure of glutinous Bora rice starch were investigated. Temperature cycle 4/45°C; cycle duration 5d; time interval of cycles 24h; and starch to water ratio 1:2 were found to be optimum for SDS (slow digestible starch) product development. The SDS content increased from 18.01±2.11% to 82.81±2.34%. An increase in the resistance to digestion, crystallinity, molecular weight, polydispersity and molecular order was observed in the optimal SDS product. Notably, the FT-IR peak at 947cm(-1) and XRD peaks at 2θ≈13° and 20° in the optimal SDS product indicated the formation of V-type complexes even without the presence of co-polymers. Birefringence studies showed a loss of typical Maltese cross in the SDS product and revealed a reorientation of crystalline structures within starch granules, suggestive of imperfect crystallite development.

  1. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian;

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state, are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to ...... of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora....

  2. Effect of internal radiation on the diameter instability observed during the Czochralski growth of Cr4+, Nd3+: YAG crystal

    Science.gov (United States)

    Faiez, Reza; Rezaei, Yazdan

    2016-12-01

    In this paper, the growth process and the absorption spectra properties of the Cr4+, Nd3+:YAG crystal are reported. The crystal diameter instability, which occurred just beneath the shoulder, is associated with a nearly sharp change in the crystal color. The effect is described in terms of the internal radiative heat transport through the semitransparent garnet crystal which is highly sensitive to the optical properties of the dopant ions. The color gradient along the crystal is assigned to the charge compensation mechanism almost failed at around the shoulder stage of the process, and the instability is mainly attributed to a significant decrease in the radiative heat transfer within the crystal. The effect of radiative heat transfer, within the crystal and the melt, on the crystallization front shape is numerically investigated to simulate the observed instability. Due to the large segregation coefficient of chromium ions, increasing in the optical thickness of the crystal corresponds to a decrease in that of the melt. It is shown that, both of these variations of optical properties result in a significant decrease in the convexity of the crystal-melt interface. The effect of impurity deposition on the crystal surface was found to lower the critical Reynolds number at which the interface inversion occurs.

  3. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahlam, M.A., E-mail: omaymn771@yahoo.com [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Ravishankar, M.N. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Vijayan, N. [Materials Characterization Division, National Physical Laboratory, New Delhi 110 012 (India); Govindaraj, G. [Department of Physics, Pondicherry University, Pondicherry 605 014 (India); Siddaramaiah [Department of Polymer and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570 006 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India)

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number H{sub V} and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  4. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    Science.gov (United States)

    Ahlam, M. A.; Ravishankar, M. N.; Vijayan, N.; Govindaraj, G.; Siddaramaiah; Gnana Prakash, A. P.

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number HV and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  5. Effect of high-intensity ultrasound and cooling rate on the crystallization behavior of beeswax in edible oils.

    Science.gov (United States)

    Jana, Sarbojeet; Martini, Silvana

    2014-10-15

    The objective of this study was to evaluate the effect of wax concentration (0.5 and 1%), cooling rate (0.1, 1, and 10 °C/min), and high-intensity ultrasound (HIU) on the crystallization behavior of beeswax (BW) in six different edible oils. Samples were crystallized at 25 °C with and without HIU. Crystal sizes and morphologies and melting profiles were measured by microscopy and differential scanning calorimetry, respectively, after 7 days of incubation. Higher wax concentrations resulted in faster crystallization and more turbidity. Phase separation was observed due to crystals' sedimentation when samples were crystallized at slow cooling rates. Results showed that HIU induced the crystallization of 0.5% BW samples and delayed phase separation in sunflower, olive, soybean, and corn oils. Similar effects were observed in 1% samples where HIU delayed phase separation in canola, soybean, olive, and safflower oils.

  6. Temperature effect on lactose crystallization, maillard reactions, and lipid oxidation in whole milk powder.

    Science.gov (United States)

    Thomsen, Marianne K; Lauridsen, Lene; Skibsted, Leif H; Risbo, Jens

    2005-09-07

    Whole milk powder with an initial water content of 4.4% (w/w) and a water activity of 0.23 stored in hermetically sealed vials for up to 147 days below (37 and 45 degrees C) and above (55 degrees C) the glass transition temperature (T(g) determined to have the value 48 degrees C) showed a strong temperature dependence for quality deterioration corresponding to energies of activation close to 200 kJ/mol for most deteriorative processes. The glass transition was found not to cause any deviation from Arrhenius temperature dependence. Lactose crystallization, which occurred as a gradual process as monitored by isothermal calorimetry, is concluded to liberate bound water (a(w) increase to 0.46) with a modest time delay (approximately 2 days at 55 degrees C) and with concomitant surface browning as evidenced by an increasing Hunter b-value. Browning and formation of bound hydroxymethyl-furfural determined by HPLC seem to be coupled, while formation of another Maillard reaction product, furosine, occurred gradually and was initiated prior to crystallization. Initiation of lipid oxidation, as detected by lipid-derived radicals (high g-value ESR spectra), and progression of lipid oxidation, as detected by headspace GC, seem not to be affected by lactose crystallization and browning, and no indication of browning products acting as antioxidants could be determined.

  7. Desorption of Water from Distinct Step Types on a Curved Silver Crystal

    Directory of Open Access Journals (Sweden)

    Jakrapan Janlamool

    2014-07-01

    Full Text Available We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111 × (100] via (111 to [5(111 × (110]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a “two state” desorption model.

  8. Protective effects of boron and vitamin E on ethylene glycol-induced renal crystal calcium deposition in rat.

    Science.gov (United States)

    Bahadoran, H; Naghii, M R; Mofid, M; Asadi, M H; Ahmadi, K; Sarveazad, A

    2016-10-01

    Kidney stone disease is a common form of renal disease. Antioxidants, such as vitamin E (Vit E) and boron, are substances that reduce the damage caused by oxidation. Adult male rats were divided into 5 groups (n=6). In group 1, rats received standard food and water for 28 days (control group); in group 2, standard rodent food and water with 0.75% ethylene glycol/d (dissolved in drinking water) (EG Group); in group 3, similar to group 2, with 3 mg of boron/d (dissolved in water) (EG+B Group); in group 4, similar to group 2, with 200 IU of vitamin E injected intraperitoneally on the first day and the 14th day, (EG+Vit E Group); in group 5, mix of groups 3 and 4, respectively (EG+B+Vit E Group). Kidney sections showed that crystals in the EG group increased significantly in comparison with the control group. Crystal calcium deposition score in groups of EG+B (160), EG+Vit E, and EG+B+Vit E showed a significant decrease compared to EG group. Measurement of the renal tubules area and renal tubular epithelial histological score showed the highest significant dilation in the EG group. Tubular dilation in the EG+B+Vit E group decreased compared to the EG+B and EG+Vit E groups. Efficient effect of boron and Vit E supplements, separately and in combination, has a complimentary effect in protection against the formation of kidney stones, probably by decreasing oxidative stress.

  9. Band gap characterization and slow light effects in periodic and quasiperiodic one dimensional photonic crystal

    Science.gov (United States)

    Zaghdoudi, J.; Kuszelewicz, R.; Kanzari, M.; Rezig, B.

    2008-04-01

    Slow light offers many opportunities for photonic devices by increasing the effective interaction length of imposed refractive index changes. The slow wave effect in photonic crystals is based on their unique dispersive properties and thus entirely dielectric in nature. In this work we demonstrate an interesting opportunity to decrease drastically the group velocity of light in one-dimensional photonic crystals constructed form materials with large dielectric constant without dispersion). We use numerical analysis to study the photonic properties of periodic (Bragg mirror) and quasiperiodic one dimensional photonic crystals realized to engineer slow light effects. Various geometries of the photonic pattern have been characterized and their photonic band-gap structure analyzed. Indeed, one dimensional quasi periodic photonic multilayer structure based on Fibonacci, Thue-Morse, and Cantor sequences were studied. Quasiperiodic structures have a rich and highly fragmented reflectivity spectrum with many sharp resonant peaks that could be exploited in a microcavity system. A comparison of group velocity through periodic and quasiperiodic photonic crystals was discussed in the context of slow light propagation. The velocity control of pulses in materials is one of the promising applications of photonic crystals. The material systems used for the numerical analysis are TiO II/SiO II and Te/SiO II which have a refractive index contrast of approximately 1.59 and 3.17 respectively. The proposed structures were modelled using the Transfer Matrix Method.

  10. Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Organic single crystals hold great promise for the development of organic semiconductor materials,because they could reveal the intrinsic electronic properties of these materials,providing high-performance electronic devices and probing the structureproperty relationships.This article reviews the preparation methods for organic single crystals or crystalline micro/nanostructures,including vapor phase growth methods and solution-processed methods,and summarizes a few methods employed in the fabrication of field-effect transistors along with dozens of examples concerning both small molecules and polymers with high field-effect performance.

  11. Memory effect of polymer dispersed liquid crystal by hybridization with nanoclay

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available The electro-optical performances of polymer dispersed liquid crystal (PDLC were investigated in the presence of organically modified clays. With the addition and increasing amount of modified clay, driving voltage and memory effect, viz. transparent state of the film after the electricity is off simultaneously increased due most likely to the increased viscosity. Among the two types of modifier, 4-(4-aminophenyl benzonitrile having greater chemical affinity with LC than hexylamine, gave finer dispersion of clay in liquid crystal, greater viscosity, larger driving voltage and response time, and greater memory effect.

  12. Study of the peak effect phenomenon in single crystals of 2H-NbSe2

    Indian Academy of Sciences (India)

    C V Tomy; D Pal; S S Banerjee; S Ramakrishnan; A K Grover; S Bhattacharya; M Higgins; G Balakrishnan; McK Paul

    2002-05-01

    The weakly pinned single crystals of the hexagonal 2H-NbSe2 compound have emerged as prototypes for determining and characterizing the phase boundaries of the possible order–disorder transformations in the vortex matter. We present here a status report based on the ac and dc magnetization measurements of the peak effect phenomenon in three crystals of 2H-NbSe2, in which the critical current densities vary over two orders of magnitude. We sketch the generic vortex phase diagram of a weakly pinned superconductor, which also utilizes theoretical proposals. We also establish the connection between the metastability effects and pinning.

  13. Effect of Vacuum Annealing on Superconductivity in Fe(Se,Te) Single Crystals

    OpenAIRE

    Komiya, Seiki; Hanawa, Masafumi; Tsukada, Ichiro; Maeda, Atsutaka

    2013-01-01

    The effect of vacuum annealing on superconductivity is investigated in Fe(Se,Te) single crystals. It is found that superconductivity is not enhanced by annealing under high vacuum (~ 10^(-3) Pa) or by annealing in a sealed evacuated quartz tube. In a moderate vacuum atmosphere (~ 1 Pa), iron oxide layers are found to show up on sample surfaces, which would draw excess Fe out of the crystal. Thus, it is suggested that remanent oxygen effectively works to remove excess Fe from the matrix of Fe(...

  14. Robust photonic differentiator employing slow light effect in photonic crystal waveguide

    DEFF Research Database (Denmark)

    Yan, Siqi; Cheng, Ziwei; Frandsen, Lars Hagedorn

    2017-01-01

    A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated.......A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated....

  15. The effect of complexing agent on the crystallization of ZnO nanoparticles

    Indian Academy of Sciences (India)

    S A Ketabi; A S Kazemi; M M Bagheri-Mohagheghi

    2011-10-01

    In this work, some structural and optical properties of the zinc oxide (ZnO) nanoparticles were studied. The highly crystalline ZnO nanoparticles were produced by the hydrothermal and sol–gel methods. The analyses of the XRD patterns, STEM images and UV spectroscopy showed that the size of the nanoparticles prepared by oxalic acid was smaller than the ones by urea. The properties of oxalic acid and urea were also investigated to determine the most effective crystallization process of ZnO nanoparticles. It has been shown that pH, decomposition temperature and activity coefficient of the complexing agent have certain effects on crystallization process.

  16. Effective-Field Theory on High Spin Systems with Biaxial Crystal Field

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; GUO An-Bang; LI Xin; WANG Xi-Kun; BAI Bao-Dong

    2006-01-01

    Based on the effective-field theory with self-spin correlations and the differential operator technique,physical properties of the spin-2 system with biaxial crystal field on the simple cubic, body-centered cubic, as well as faced-centered lattice have been studied. The influences of the external longitudinal magnetic field on the magnetization,internal energy, specific heat, and susceptibility have been discussed in detail. The phenomenon that the magnetization in the ground state shows quantum effects produced by the biaxial transverse crystal field has been found.

  17. Some effects of ice crystals on the FSSP measurements in mixed phase clouds

    Directory of Open Access Journals (Sweden)

    G. Febvre

    2012-10-01

    Full Text Available In this paper, we show that in mixed phase clouds, the presence of ice crystals may induce wrong FSSP 100 measurements interpretation especially in terms of particle size and subsequent bulk parameters. The presence of ice crystals is generally revealed by a bimodal feature of the particle size distribution (PSD. The combined measurements of the FSSP-100 and the Polar Nephelometer give a coherent description of the effect of the ice crystals on the FSSP-100 response. The FSSP-100 particle size distributions are characterized by a bimodal shape with a second mode peaked between 25 and 35 μm related to ice crystals. This feature is observed with the FSSP-100 at airspeed up to 200 m s−1 and with the FSSP-300 series. In order to assess the size calibration for clouds of ice crystals the response of the FSSP-100 probe has been numerically simulated using a light scattering model of randomly oriented hexagonal ice particles and assuming both smooth and rough crystal surfaces. The results suggest that the second mode, measured between 25 μm and 35 μm, does not necessarily represent true size responses but corresponds to bigger aspherical ice particles. According to simulation results, the sizing understatement would be neglected in the rough case but would be significant with the smooth case. Qualitatively, the Polar Nephelometer phase function suggests that the rough case is the more suitable to describe real crystals. Quantitatively, however, it is difficult to conclude. A review is made to explore different hypotheses explaining the occurrence of the second mode. However, previous cloud in situ measurements suggest that the FSSP-100 secondary mode, peaked in the range 25–35 μm, is likely to be due to the shattering of large ice crystals on the probe inlet. This finding is supported by the rather good relationship between the concentration of particles larger than 20 μm (hypothesized to be ice shattered-fragments measured by the

  18. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    Science.gov (United States)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  19. Formation of infinite 2D water layers in a crystal host

    Institute of Scientific and Technical Information of China (English)

    Cai Hua Zhou; Li Jun Zhou; Long Tang; Yao Yu Wang

    2009-01-01

    A self-assembled, (H2O)38 cluster stabilized by a mono-nuclear copper(Ⅱ) complex 1 namely {[Cu(phen)2(CO3)].7H2O} is characterized by X-ray diffraction studies. The adjacent (H2O)38 clusters connect together resulting in an infinite 2D water layer structure. The water morphology is stable at room temperature, but upon thermal decomposition, the water loss is irreversible.

  20. Effects of crystallization and bubble nucleation on the seismic properties of magmas

    Science.gov (United States)

    Tripoli, Barbara Andrea; Cordonnier, Benoit; Zappone, Alba; Ulmer, Peter

    2016-02-01

    Seismic tomography of potentially hazardous volcanoes is a prime tool to assess the location and dimensions of magmatic reservoirs. Seismic velocities are strongly affected by processes occurring within the conduit or in the magma chamber, such as crystallization and bubble exsolution. However, the limited number of constrained measurements does not allow yet to link seismic tomography and the textural state of a particular volcanic system. In this study, we investigated a chemically simplified melt in the system CaO-Na2O-Al2O3-SiO2-H2O-CO2, which undergoes plagioclase crystallization and bubble exsolution. A Paterson-type internally heated gas pressure apparatus was employed to measure ultrasonic velocities at a constant pressure of 250 MPa and at temperature from 850 to 700°C. Magmatic processes such as crystallization, bubble nucleation, and coalescence have been recognized throughout the measurements of seismic velocities in the laboratory. Compression and shear wave velocities increase nonlinearly during crystallization. At a crystal fraction exceeding 0.45, the formation of a crystal network favors the propagation of seismic waves through magmatic liquids. However, bubble nucleation induced by crystallization leads to an increase of magma compressibility resulting in a lowering of the wave propagation velocities. These two processes occur simultaneously and have a competing influence on the seismic properties of magmas. In addition, as already observed by previous authors, when the bubble fraction is less than 0.10, the decrease in seismic velocities is more pronounced than for higher bubble fractions. The effect of bubble coalescence on elastic properties is thus lower than the effect of bubble nucleation.

  1. EFFECTS OF CONVECTIVE FLUID MOTION UPON OXIDE CRYSTAL GROWTH IN HIGH TEMPERATURE SOLUTION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ For understanding of the influence of convective flow on crystal growth, space high temperature in situ observation instrument (SHITISOI) is dedicated to visualize and record the whole growth process of oxide crystals in high temperature up to 1000°C. Model experiments using transparent liquids such as KNbO3 and a mix ture of Li2B4O7+KNbO3 were chosen to investigate effects on ground and in space.On the earth, an investigation of growth kinetics of KNbO3 crystal related to two different states of convection: diffusive-advective flow and diffusive-convective flow,has been performed. The per unit length of a step e is calculated from the exper imental data for two different states of convection. Analyses of these data show the effect of buoyancy convection is to enhance the sharpness of the interface. The growth of KNbO3 crystals from solution of KNbO3+Li2B4O7 was investigated in space. The streamlines of the steady thermocapillary convection in Li2B4O7 solvent was observed. Due to thermocapillary convection, KNbO3 crystal grains grew and filled the whole solution homogeneously. Earth-based quenching experiments are de signed in order to study polyhedral instability of KNbO3 crystal, which is controlled by diffusion mechanism limitation. In all cases, when the crystal was nucleated near air/solution surface, it lost its polyhedral stability and varied from polyhedrons to dedrites. The thickness of diffusion mechanism limitation layer is about 60μm.

  2. Effect of water droplet in solvent sublation

    Institute of Scientific and Technical Information of China (English)

    Peng Yu Bi; Hui Ru Dong; Nan Nan Wang

    2008-01-01

    Aqueous phase layer around bubble and water droplet are two additional processes in solvent sublation. In the dynamic processof mass transfer, they are always neglected, but they are very important in the investigation of thermodynamic equilibrium. In thispaper, the effect of water droplet in solvent sublation was discussed in detail, and the previous mathematical model of solventsubaltion was improved. Matlab 6.5 was used to simulate the process of water droplets, and the comparison between the previoushypothesis and the improvement in this paper showed the superiority, especially in the investigation of thermodynamic equilibrium.Moreover, the separation and concentration of the complex compound dithizone-Co(Ⅱ) from aqueous phase to n-octanol by solventsublation also proved the improved mathematical model was reasonable.2008 Hui Ru Dong. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  3. Shape memory effects in [001] Ni55Fe18Ga27 single crystal

    Science.gov (United States)

    Belyaev, S.; Resnina, N.; Nikolaev, V.; Timashov, R.; Gazizullina, A.; Sibirev, A.; Averkin, A.; Krymov, V.

    2017-09-01

    Shape memory effects in Ni55Fe18Ga27 single crystal grown along the [001] direction by the Czochralski method was studied. It was found that deformation of [001] single crystal in the martensite state was realised via reorientation of 10 M martensite and stress-induced transformations: 10 M → 14 M → L10. On unloading, the reverse L10 → 14 M → 10 M transformations occurred and a large unelastic strain recovered. On heating, the oriented 10 M martensite transformed to the L21 austenite phase and the shape memory effect was observed. An increase in preliminary strain resulted in an increase in the shape memory effect value to 4.6%. The [001] Ni55Fe18Ga27 alloy single crystal demonstrated transformation plasticity and shape memory effects on cooling and heating under stress however, an increase in stress decreased the values of these effects. This was caused by stress-induced martensite appearing in the sample during loading in the austenite state, which decreased the volume of the austenite phase that could undergo the martensitic transformation on cooling. The [001] Ni55Fe18Ga27 alloy single crystal demonstrated a two-way shape memory effect and its value depended on the residual strain in a non-monotonic way and the maximum recoverable strain was 0.7%.

  4. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene

    DEFF Research Database (Denmark)

    Li, Jingqing; Guan, Peipei; Zhang, Yao;

    2014-01-01

    Different melt pre-shear conditions were applied to isotactic poly-1-butene (iP-1-B) and the effect on the crystallization behaviors and the crystalline structure transitions of iP-1-B were investigated. The polarized optical microscope observations during isothermal crystallization process...... crystalline structures. With the melt pre-shear rate increasing, the lattice spaces of the crystallites decreased and the long period, L, and the amorphous layer thickness, La, along the equator direction increased slightly, but L and La along the meridian direction was not affected by melt pre-shear flow....... Though the orientated crystalline structures existed in the iP-1-B samples, no accelerating effect on crystal transition from II to I was found. Importantly, the final crystalline structures of iP-1-B in form I was found tunable under different melt pre-shear conditions, even though...

  5. Effect of dopant nanoparticles on reorientation process in polymer-dispersed liquid crystals

    Science.gov (United States)

    Zobov, K. V.; Zharkova, G. M.; Syzrantsev, V. V.

    2016-01-01

    The analysis of the experimental data of the nanoscale powders application for doping polymer-dispersed liquid crystals (PDLC) was represented in this work. A model based on the separation of the liquid crystals reorientation process on the surface mode and the volume mode was proposed and tested. In the research the wide-spread model mixture PDLC were used. But alumina nanoparticles were the distinctive ones obtained by electron beam evaporation. The proposed model allowed to conclude that the nanoparticles localization at the surface of the droplets (as in the Pickering emulsion) lead to the variation of the connection force between the liquid crystals and the polymer. The effect of nanoparticles resulted in an acceleration of the reorientation process near the surface when the control field is turned on and in a deceleration when it is turned off. The effect for the different size particles was confirmed.

  6. Effect of rhenium doping on various physical properties of single crystals of MoSe2

    Institute of Scientific and Technical Information of China (English)

    MihirM. Vora; Aditya M. Vora

    2012-01-01

    Effect of rhenium doping is examined in single crystals of MoSe2 viz.MoRe0.005Se1.995,MoRe0.001Se1.999 and Mo0.995Re0.005Se2,which is grown by using the direct vapor transport (DVT) technique.The grown crystals are structurally characterized by X-ray diffraction,by determining their lattice parameters a and c,and X-ray density.Also,the Hall effect and thermoelectric power (TEP) measurements show that the single crystals exhibit a p-type semiconducting nature.The direct and indirect band gap measurements are also undertaken on these semiconducting materials.

  7. Effects of Tx-100-SDS on crystal growth of calcium carbonate in reverse microemulsion solution

    Institute of Scientific and Technical Information of China (English)

    TANG Yu; DU BiYing; LI LinGang; YANG Jun; ZHANG YuanMing

    2007-01-01

    Syntheses of CaCO3 crystals in reverse microemulsion solutions containing 1-(1,1,3,3-tetramethylbutyl)-4-hydroxypolyethoxybenzene (Tx-100), sodium dodecyl sulfate (SDS) and their equimolar mixture were carried out at room temperature respectively. The crystal phase of CaCO3 is changed from calcite at low concentrations to vaterite at high concentrations of SDS and Tx-100. From rods at low concentration to olivary spheres at high concentration, SDS can influence the morphology of CaCO3 significantly, while almost no such effect for Tx-100. Hollow spheres, olivary spheres and even two fused olivary spheres of CaCO3 were produced at different concentrations of Tx-100-SDS, and the variation of crystal phase is opposite to that in the presence of SDS or Tx-100 alone. The effects of interaction of SDS with Tx-100 on morphology and crystal phase of CaCO3 were discussed. It was estimated to put forward that the formation of hollow CaCO3 crystals was caused by the collaborating actions of SDS template and TX-100 inhibition.

  8. Patterning technology for solution-processed organic crystal field-effect transistors

    Science.gov (United States)

    Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito

    2014-04-01

    Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recent development in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed.

  9. Patterning technology for solution-processed organic crystal field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yun Li

    2014-04-01

    Full Text Available Organic field-effect transistors (OFETs are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recent development in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed.

  10. Hydrothermal growth of nanometer- to micrometer-size anatase single crystals with exposed (001) facets and their ability to assist photodegradation of rhodamine B in water.

    Science.gov (United States)

    Wu, Jin-Ming; Tang, Mei-Lan

    2011-06-15

    Anatase single crystals with exposed (001) facets have been the focus of many researches in recent years. This paper reports the hydrothermal synthesis of (001)-exposed anatase single crystals through reactions of Ti plates in aqueous HF solutions with mass concentrations of 0.15-0.80%, in an autoclave at 180°C for 2-12h. The size of the achieved anatase single crystals varied from 0.4 to 13.6 μm, exposing 15-49% (001) facets. The crystal size and the (001) fraction increased with increasing HF concentrations. For a prolonged reaction time, anatase crystals with larger sizes and reduced fractions of (001) facets were achieved. The activity of the anatase crystals to assist photodegradation of rhodamine B in water increased with decreasing sizes and increasing fractions of (001) facets. Selective erosion of the anatase single crystals along the high-energy (001) facets was noted, for the first time, which resulted in cone-shaped walls with a thickness ranging from several to hundreds of nanometers. The selective erosion contributed to the photocatalytic activity of the (001)-exposed anatase single crystals.

  11. Crystal balls into the future: are global circulation and water balance models ready?

    Science.gov (United States)

    Fekete, Balázs M.; Pisacane, Giovanna; Wisser, Dominik

    2016-10-01

    Variabilities and changes due to natural and anthropogenic causes in the water cycle always presented a challenge for water management planning. Practitioners traditionally coped with variabilities in the hydrological processes by assuming stationarity in the probability distributions and attempted to address non-stationarity by revising this probabilistic properties via continued hydro-climatological observations. Recently, this practice was questioned and more reliance on Global Circulation Models was put forward as an alternative for water management plannig. This paper takes a brief assessment of the state of Global Circulation Models (GCM) and their applications by presenting case studies over Global, European and African domains accompanied by literature examples. Our paper demonstrates core deficiencies in GCM based water resources assessments and articulates the need for improved Earth system monitoring that is essential not only for water managers, but to aid the improvements of GCMs in the future.

  12. Influence of microgravity on protein crystal structures

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Structural determination and comparison of microgravity and ground grown protein crystals have been carried out in order to investigate the effect of microgravity on the structure of protein crystals. Following the structural studies on the hen egg-white lysozyme cystals grown in space and on the ground, the same kind of comparative studies was performed with acidic phospholipase A2 crystals grown in different gravities. Based on the results obtained so far, a conclusion could be made that microgravity might not be strong enough to change the conformation of polypeptide chain of proteins, but it may improve the bound waters' structure, and this might be an important factor for microgravity to improve the protein crystal quality. In addition, the difference in the improvement between the two kinds of protein crystals may imply that the degree of improvement of a protein crystal in microgravity may be related to the solvent content in the protein crystal.

  13. Effect of L-cysteine on optical, thermal and mechanical properties of ADP crystal for NLO application

    Science.gov (United States)

    Shaikh, R. N.; Shirsat, M. D.; Koinkar, P. M.; Hussaini, S. S.

    2015-06-01

    The ammonium dihydrogen phosphate (ADP) crystal doped with amino acid L-cysteine (LC) was grown by a slow evaporation technique. The grown crystal was transparent in the entire visible region, which is an essential requirement for a nonlinear crystal. The LC doping enhances the optical band gap of ADP (5.35 eV). The TG/DTA analysis of LC doped ADP crystal confirms the optimum thermal stability of grown crystal. The enhancement in the mechanical stability after LC doping was confirmed by Vicker's microhardness test. The LC doping showed significant impact on dielectric properties (dielectric constant and dielectric loss) of grown crystal. The third order nonlinear behavior of LC doped ADP crystal was investigated using a Z-scan technique at 632.8 nm and effective nonlinear optical parameters were evaluated.

  14. Evaluation of the effects of 3D diffusion, crystal geometry, and initial conditions on retrieved time-scales from Fe-Mg zoning in natural oriented orthopyroxene crystals

    Science.gov (United States)

    Krimer, Daniel; Costa, Fidel

    2017-01-01

    Volcano petrologists and geochemists increasingly use time-scale determinations of magmatic processes from modeling the chemical zoning patterns in crystals. Most determinations are done using one-dimensional traverses across a two-dimensional crystal section. However, crystals are three-dimensional objects with complex shapes, and diffusion and re-equilibration occurs in multiple dimensions. Given that we can mainly study the crystals in two-dimensional petrographic thin sections, the determined time-scales could be in error if multiple dimensional and geometrical effects are not identified and accounted for. Here we report the results of a numerical study where we investigate the role of multiple dimensions, geometry, and initial conditions of Fe-Mg diffusion in an orthopyroxene crystal with the view towards proper determinations of time scales from modeling natural crystals. We found that merging diffusion fronts (i.e. diffusion from multiple directions) causes 'additional' diffusion that has the greatest influence close to the crystal's corners (i.e. where two crystal faces meet), and with longer times the affected area widens. We also found that the one-dimensional traverses that can lead to the most accurate calculated time-scales from natural crystals are along the b- crystallographic axis on the ab-plane when model inputs (concentration and zoning geometry) are taken as measured (rather than inferred from other observations). More specifically, accurate time-scales are obtained if the compositional traverses are highly symmetrical and contain a concentration plateau measured through the crystal center. On the other hand, for two-dimensional models the ab- and ac-planes are better suited if the initial (pre-diffusion) concentration and zoning geometry inputs are known or can be estimated, although these are a priory unknown, and thus, may be difficult to use in practical terms. We also found that under certain conditions, a combined one-dimensional and two

  15. The Recreational Water Cycle: From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectants and Precursors and Implications for Exposure and Toxicity

    Science.gov (United States)

    The current study investigates the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, complete water pathway samples (untreated source waters ->fi...

  16. Preparation and laser modulation investigation of quadratic electro-optical crystal Cu:KTN with gradient refractivity effect

    Science.gov (United States)

    Wang, Xuping; Liu, Bing; Yang, Yuguo; Zhang, Yuanyuan; Lv, Xianshun; Wei, Lei; Xu, Jianhua; Ma, Ling; Wang, Jiyang

    2017-06-01

    Copper doped KTN crystals with different doping concentrations were grown by the Czochralski method. The XRD patterns show that all of the crystals are in cubic phase at room temperature. The influences of the CuO doping concentrations on dielectric properties of the crystals were measured. Cu: KTN crystals exhibited color changes depending on the doping concentrations. It was found that the inhomogeneous composition property can be used to form gradient refractivity effect in the case of ion doping. The refractive index gradient reaches 33×10-3/mm for the grown Cu: KTNN crystals. Base on the interaction between the quadratic electro-optic effect and the gradient refractivity effect, the deflection and the intensity of a Cu: KTa0.62Nb0.38O3 sample were modulated in different orientations of the crystal. The deflection efficiency and the half-wave voltage of the modulation are 45 mrad/kV and 75 V, respectively.

  17. Discovery of Crystallized Water Ice in a Silhouette Disk in the M43 Region

    CERN Document Server

    Terada, Hiroshi

    2012-01-01

    We present the 1.9--4.2um spectra of the five bright (L<11.2) young stars associated with silhouette disks with moderate to high inclination angle of 39--80deg in the M42 and M43 regions. The water ice absorption is seen toward d121-1925 and d216-0939, while the spectra of d182-316, d183-405, and d218-354 show no water ice feature around 3.1um within the detection limits. By comparing the water ice features toward nearby stars, we find that the water ice absorption toward d121-1925 and d216-0939 most likely originates from the foreground material and the surrounding disk, respectively. The angle of the disk inclination is found to be mainly responsible for the difference of the optical depth of the water ice among the five young stars. Our results suggest that there is a critical inclination angle between 65deg and 75deg for the circumstellar disk where the water ice absorption becomes strong. The average density at the disk surface of d216-0939 was found to be 6.38x10^(-18) g cm^(-3). The water ice absorp...

  18. In-Situ Crystallization of a Lithium Disilicate Glass--Effect of Pressure on Crystal Growth Rate

    Science.gov (United States)

    Fuss, T.; Ray, C. S.; Lesher, C. E.; Day, D. E.

    2006-01-01

    Crystallization of a Li2O.2SiO2 (LS2) glass subjected to a uniform hydrostatic pressure of 4.5 GPa and 6 GPa was investigated up to a temperature of 750 C. The density of the compressed glass is about 2% greater at 4.5 GPa than at 1 atm and, depending upon the processing temperature, up to 10% greater at 6 GPa. Crystal growth rates investigated as a function of temperature and pressure show that lithium disilicate crystal growth is an order of magnitude slower at 4.5 GPa than 1 atm resulting in a shift of +45 C (plus or minus 10 C) in the growth rate curve at high pressure compared to 1 atm condition. At 6 GPa lithium disilicate crystallization is suppressed entirely, while a new high pressure lithium metasilicate crystallizes at temperatures 95 C (plus or minus 10 C) higher than those reported for lithium disilicate crystallization at 1 atm. The decrease in crystal growth rate with increasing pressure for lithium disilicate glass up to 750 C is related to an increase in viscosity with pressure associated with fundamental changes in glass structure accommodating densification.

  19. Effect of water regime on poplar cultivation

    Directory of Open Access Journals (Sweden)

    Letić Ljubomir

    2006-01-01

    Full Text Available The effect of water regime on the growth and development of plantations of hydrologically conditioned species, poplars was researched in the alluvial plain of the river Tamiš. The investigations were carried out during the period 2000-2003 on the area of FA "Opovo", KO Sakule, and the study results elucidate the very complex relationships between the hydrological conditions of the site and the growth and increment of the study poplar plantations, cl. I-214. .

  20. Effect of Bending on the Electrical Characteristics of Flexible Organic Single Crystal-based Field-effect Transistors.

    Science.gov (United States)

    Ho, Man-Tzu; Tao, Yu-Tai

    2016-11-07

    The charge transport in an organic semiconductor depends highly on the molecular packing in the crystal, which influences the electronic coupling immensely. However, in soft electronics, in which organic semiconductors play a critical role, the devices will be bent or folded repeatedly. The effect of bending on the crystal packing and thus the charge transport is crucial to the performance of the device. In this manuscript, we describe the protocol to bend a single crystal of 5,7,12,16-tetrachloro-6,13-diazapentacene (TCDAP) in the field-effect transistor configuration and to obtain reproducible I-V characteristics upon bending the crystal. The results show that bending a field-effect transistor prepared on a flexible substrate results in nearly reversible yet opposite trends in charge mobility, depending on the bending direction. The mobility increases when the device is bent toward the top gate/dielectric layer (upward, compressive state) and decreases when bent toward the crystal/substrate side (downward, tensile state). The effect of bending curvature was also observed, with greater mobility change resulting from higher bending curvature. It is suggested that the intermolecular π-π distance changes upon bending, thereby influencing the electronic coupling and the subsequent carrier transport ability.

  1. Crystal orientation effects on the piezoelectric field of strained zinc-blende quantum-well structures

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten; Lassen, Benny

    2008-01-01

    A three-layered zinc-blende quantum-well structure is analyzed subject to both static and dynamic conditions for different crystal growth directions taking into account piezoelectric effects and lattice mismatch. It is found that the strain component Szz in the quantum-well region strongly depend...

  2. Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors

    NARCIS (Netherlands)

    De Boer, R.W.I.; Stassen, A.F.; Craciun, M.F.; Mulder, C.L.; Molinari, A.; Rogge, S.; Morpurgo, A.F.

    2005-01-01

    We report the observation of ambipolar transport in field-effect transistors fabricated on single crystals of copper- and iron-phthalocyanine, using gold as a high work-function metal for the fabrication of source and drain electrodes. In these devices, the room-temperature mobility of holes reaches

  3. Multi-Periodic Photonic Hyper-Crystals: Volume Plasmon Polaritons and the Purcell Effect

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Iorsh, I. V.; Orlov, A. A.;

    2014-01-01

    We theoretically demonstrate superior degree of control over volume plasmon polariton propagation and the Purcell effect in multi-period (4-layer unit cell) plasmonic multilayers, which can be viewed as multiscale hyperbolic metamaterials or multi-periodic photonic hyper-crystals. © 2014 OSA....

  4. Reproducible low contact resistance in rubrene single-crystal field-effect transistors with nickel electrodes

    NARCIS (Netherlands)

    Hulea, I.N.; Russo, S.; Molinari, A.; Morpurgo, A.F.

    2006-01-01

    We have investigated the contact resistance of rubrene single-crystal field-effect transistors (FETs) with nickel electrodes by performing scaling experiments on devices with channel length ranging from 200 nm up to 300 μm. We find that the contact resistance can be as low as 100 Ω cm with narrowly

  5. CRYSTAL-FIELD AND TRANSVERSE-FIELD EFFECTS OF THE SPIN-ONE ISING MODEL

    Institute of Scientific and Technical Information of China (English)

    宋为基; 杨传章

    1993-01-01

    A mean-field approximation (MFA) is used to treat the crystal-field and transverse-field effects of the spin-1 Ising modle in the presence of longitudinal field. In spite of its simplicity, this scheme still gives the satisfied results.

  6. Bias-dependent contact resistance in rubrene single-crystal field-effect transistors

    NARCIS (Netherlands)

    Molinari, A.; Gutiérrez, I.; Hulea, I.N.; Russo, S.; Morpurgo, A.F.

    2007-01-01

    The authors report a systematic study of the bias-dependent contact resistance in rubrene single-crystal field-effect transistors with Ni, Co, Cu, Au, and Pt electrodes. They show that the reproducibility in the values of contact resistance strongly depends on the metal, ranging from a factor of 2 f

  7. Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors

    NARCIS (Netherlands)

    De Boer, R.W.I.; Stassen, A.F.; Craciun, M.F.; Mulder, C.L.; Molinari, A.; Rogge, S.; Morpurgo, A.F.

    2005-01-01

    We report the observation of ambipolar transport in field-effect transistors fabricated on single crystals of copper- and iron-phthalocyanine, using gold as a high work-function metal for the fabrication of source and drain electrodes. In these devices, the room-temperature mobility of holes reaches

  8. The effect of RDX crystal defect structure on mechanical response of a polymer-bonded explosive

    NARCIS (Netherlands)

    Bouma, R.H.B.; Heijden, A.E.D.M. van der

    2016-01-01

    An explosive composition, derived from AFX-757, was systematically varied by using three different qualities of Class I RDX. The effect of internal defect structure of the RDX crystal on the shock sensitivity of a polymer bonded explosive is generally accepted (Doherty and Watt, 2008). Here the

  9. Purcell effect of GaAs quantum dots by photonic crystal microcavities

    Institute of Scientific and Technical Information of China (English)

    Kazuaki Sakoda; Takashi Kuroda; Naoki Ikeda; Takaaki Mano; Yoshimasa Sugimoto; Tetsuyuki Ochiai; Keiji Kuroda; Shunsuke Ohkouchi; Nobuyuki Koguchi; Kiyoshi Asakawa

    2009-01-01

    We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy.The Purcell effect of exciton emission of the quantum dots is confirmed by the micro photoluminescence measurement.The resonance wavelengths,widths,and polarization are consistent with numerical simulation results.

  10. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides

    NARCIS (Netherlands)

    Engelen, R.J.P.; Engelen, R.J.P.; Sugimoto, Y.; Watanabe, Y.; Korterik, Jeroen P.; Ikeda, N.; van Hulst, N.F.; Asakawa, K.; Kuipers, L.

    2006-01-01

    We have studied the dispersion of ultrafast pulses in a photonic crystal waveguide as a function of optical frequency, in both experiment and theory. With phase-sensitive and time-resolved near-field microscopy, the light was probed inside the waveguide in a non-invasive manner. The effect of

  11. Effect of ultrasonic impact treatment on the mechanical properties of titanium nickelide single crystal

    Science.gov (United States)

    Surikova, N. S.; Narkevich, N. A.; Surikov, N. Yu.; Vlasov, I. V.; Ovchinnikov, S. V.; Mironov, Yu. P.; Gritsenko, B. P.

    2016-10-01

    Optical and transmission electron microscopy, X-ray diffraction analysis, nanoindentation, measurements of wear, and mechanical uniaxial tensile tests have been used to study the effect of ultrasonic impact surface treatment on the fine structure and the mechanical properties of the surface layers and the deformation behavior of TiNi(Fe, Mo) bulk single crystal samples.

  12. Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Skab, Ihor; Vasylkiv, Yurij; Smaga, Ihor; Vlokh, Rostyslav [Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv (Ukraine)

    2011-10-15

    In the present work we have demonstrated a possibility for operation by orbital angular momentum (OAM) of optical beams via the Pockels effect in solid-crystalline materials. Based on the analysis of an optical Fresnel ellipsoid perturbed by a conically shaped electric field, we have shown that the point groups of crystals convenient for the conversion of spin angular momentum (SAM) to OAM should contain a threefold symmetry axis or a sixfold inversion axis. The results of our experimental studies and theoretical simulations of the SAM-to-OAM conversion efficiency carried out for LiNbO{sub 3} crystals agree well with each other.

  13. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Directory of Open Access Journals (Sweden)

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  14. Giant Flexoelectro-optic Effect with Liquid Crystal Dimer CB7CB

    Science.gov (United States)

    Varanytsia, Andrii; Chien, Liang-Chy

    2017-01-01

    We demonstrate a giant flexoelectro-optic behavior of liquid crystal dimer CB7CB. Flexoelectric properties of CB7CB experimentally characterized by measured angle of an in-plane rotation of helical axis (HA) in polymer stabilized uniform lying helix cholesteric liquid crystal. The 45° rotation of HA providing full intensity modulation of transmitted through a pair of crossed polarizers light, is achieved with 4.5 V/μm with a sub-millisecond electro-optic switching time. Reported properties enable application of CB7CB in applications of the flexoelectric effect in fast switching photonic and electro-optic devices. PMID:28117429

  15. Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals

    CERN Document Server

    Skab, Ihor; Smaga, Ihor; Vlokh, Rostyslav

    2011-01-01

    In the present work we have demonstrated a possibility for real-time operation by orbital an-gular momentum (OAM) of optical beams via Pockels effect in solid crystalline materials. Basing on the analysis of optical Fresnel ellipsoid perturbed by conically shaped electric field, we have shown that the point groups of crystals convenient for the conversion of spin angular momentum (SAM) to OAM should contain a three-fold symmetry axis or a six-fold inversion axis. The results of our experimental studies and theoretical simulations of the SAM-to-OAM conversion efficiency carried out for LiNbO3 crystals agree well with each other.

  16. Temperature-induced crystallization and compactibility of spray dried composite particles composed of amorphous lactose and various types of water-soluble polymer.

    Science.gov (United States)

    Takeuchi, H; Yasuji, T; Yamamoto, H; Kawashima, Y

    2000-04-01

    The purpose of this study was to investigate the temperature-induced crystallization and the compactibility of the composite particles containing amorphous lactose and various types of polymers. The composite particles were prepared by spray-drying an aqueous solution of lactose and various types of gel forming water-soluble polymers at various formulating ratios. The stabilizing effect of hydroxypropylcellulose (HPC) and polyvinyl pyrrolidone (PVP) on amorphous lactose in the composite particles was smaller than that of sodium alginate in comparing at the same formulating ratios. The difference in the stability of amorphous lactose in the composite particles was attributed to the difference in the glass transition temperature (Tg) of the composite particles caused by the polymers formulated. The tensile strength of compacted spray-dried composite particles containing the polymers was higher than commercial lactose for direct tabletting (DCL21). The tensile strength of the composite particles was increased with an increase in water content in the particles. The difference in compactibility of the composite particles containing the different amount of polymer and water could be explained by the difference in Tg of the particles.

  17. Effects of Soybean Oil Modified Cellulose Fibril and Organosilane Modified Cellulose Fibril on Crystallization of Polypropylene

    Directory of Open Access Journals (Sweden)

    Sarit Thanomchat

    2015-01-01

    Full Text Available Soybean oil modified cellulose fibril (Oil-g-CF and organosilane modified cellulose fibril (Silane-g-CF were prepared using maleinized soybean oil and hexadecyltrimethoxysilane, respectively. Thus obtained modified cellulose fibril was added to polypropylene by a simple melt mixing on a hotplate. PP/modified CF composites with 4.0 wt% filler content were prepared. The composites were subject to a polarized optical microscope to investigate particle dispersion, supramolecular morphology, and crystallization behavior. It was found that Silane-g-CF exhibited smaller particle sizes with better particle distribution when compared to Oil-g-CF. In addition, the etched composite samples unveiled an increase in a number of spherulite crystals as well as a decrease in the spherulite size. The nonisothermal crystallization study of composites revealed that both Oil-g-CF and Silane-g-CF were capable of nucleating PP by facilitating faster crystallization process and raising the number of spherulites. The DSC results indicated that Silane-g-CF was able to perform a more effective nucleation than Oil-g-CF, judged by a higher crystallization temperature. Moreover, PP composites containing Oil-g-CF and Silane-g-CF had higher crystallinity by 7% and 10%, for the first and the latter, respectively, when compared to neat PP.

  18. Effect of compatibilization and reprocessing on the isothermal crystallization kinetics of polypropylene/wood flour composites

    Directory of Open Access Journals (Sweden)

    Arieny Rodrigues

    2013-01-01

    Full Text Available Numerous studies have focused on polymer mixtures aimed at the potential applications of these materials. This work analyzed the effect of polymer reprocessing and the type and concentration of compatibilizer on the isothermal crystallization kinetics of polypropylene/wood flour composites. The composites, which were polypropylene grafted with acrylic acid (PP-g-AA and maleic anhydride (PP-g-MA, were processed in a twin screw extruder with and without compatibilizer. Reprocessed polypropylene reached complete crystallization in less time than the composites with virgin polypropylene. The addition of wood flour to the composites did not change the kinetics significantly compared to that of the pure polymers, but the compatibilizers did, particularly PP-g-AA. The nucleation exponent (n and crystallization rate (K were calculated from Avrami plots. The values of n ranged from 2 to 3, indicating instantaneous to sporadic nucleation. The crystallization half-time of reprocessed polypropylene was shorter than that of virgin polypropylene and of the compositions containing PP-g-AA compatibilizer. The activation energy of crystallization and the equilibrium melting temperature were calculated, respectively, from Arrhenius and Hoffman-Weeks plots. Both of these parameters showed lower values in the composites, particularly in the ones containing compatibilizers.

  19. Effects of emulsifier addition on the crystallization and melting behavior of palm olein and coconut oil.

    Science.gov (United States)

    Maruyama, Jessica Mayumi; Soares, Fabiana Andreia Schafer De Martini; D'Agostinho, Natalia Roque; Gonçalves, Maria Inês Almeida; Gioielli, Luiz Antonio; da Silva, Roberta Claro

    2014-03-12

    Two commercial emulsifiers (EM1 and EM2), containing predominantly monoacylglycerols (MAGs), were added in proportiond of 1.0 and 3.0% (w/w) to coconut oil and palm olein. EM1 consisted of approximately 90% MAGs, whereas EM2 consisted of approximately 50% MAGs. The crystallization behavior of these systems was evaluated by differential scanning calorimetry (DSC) and microscopy under polarized light. On the basis of DSC results, it was clear that the addition of EM2 accelerated the crystallization of coconut oil and delayed the crystallization of palm olein. In both oils EM2 addition led to the formation of smaller spherulites, and these effects improved the possibilities for using these fats as ingredients. In coconut oil the spherulites were maintained even at higher temperatures (20 °C). The addition of EM1 to coconut oil changed the crystallization pattern. In palm olein, the addition of 3.0% (w/w) of this emulsifier altered the pattern of crystallization of this fat.

  20. The effect of CuII ions in L-asparagine single crystals

    Science.gov (United States)

    Santana, Ricardo C.; Gontijo, Henrique O.; Menezes, Arthur F.; Martins, José A.; Carvalho, Jesiel F.

    2016-11-01

    We report the synthesis, crystal growth, and spectroscopic characterization of L-asparagine monohydrate (LAM) single crystals doped with CuII. The crystals were successfully grown by slow cooling from a supersaturated aqueous solution up to size of 16×12×2 mm3;the effect of copper impurities in the crystals morphology was discussed. Electron Paramagnetic Resonance (EPR) was used to calculate the g and hyperfine coupling (A) tensors of the CuII ions (g1=2.044, g2=2.105, g3=2.383and A1≈0, A2=35, A3=108 Gauss). The EPR spectra for certain orientations of the magnetic field suggest that CuII ions are coordinated to two 14N atoms. Correlating the EPR and optical absorption results, the crystal field and the CuII orbital bond parameters were calculated. The results indicate that the paramagnetic center occupies interstitial rhombic distorted site and the ground orbital state for the unpaired electron is the d(x2-y2).

  1. Self-Assembly of Lyotropic Chromonic Liquid Crystal Sunset Yellow and Effects of Ionic Additives

    Energy Technology Data Exchange (ETDEWEB)

    Park, Heung-Shik; Kang, Shin-Woong; Tortora, Luana; Nastishin, Yuriy; Finotello, Daniele; Kumar, Satyendra; Lavrentovich, Oleg D. (NSF); (Institute of Physical Optics, Ukraine); (Kent)

    2008-12-22

    Lyotropic chromonic liquid crystals (LCLCs) are formed by molecules with ionic groups at the periphery that associate into stacks through noncovalent self-assembly while in water. The very existence of the nematic (N) phase in the typical LCLC, the dye Sunset Yellow (SSY) is a puzzle, as the correlation length associated with the stacking, as measured in the X-ray experiments, is too short to explain the orientational order by the Onsager model. We propose that the aggregates can be more complex than simple rods and contain 'stacking faults' such as junctions with a shift of neighboring molecules, 3-fold junctions, etc. We study how ionic additives, such as salts of different valency and pH-altering agents, alter the N phase of SSY purified by recrystallization. The additives induce two general trends: (a) stabilization of the N phase, caused by the mono and divalent salts (such as NaCl), and evidenced by the increase of the N-to-I transition temperature and the correlation length; (b) suppression of the N phase manifested in the decrease of the N-to-I transition temperature and in separation of the N phase into a more densely packed N phase or the columnar (C) phase, coexisting with a less condensed I phase. The scenario (b) can be triggered by simply increasing pH (adding NaOH). The effects produced by tetravalent spermine fall mostly into the category (b), but the detail depends on whether this additive is in its salt form or a free base form. The base form causes changes through changes in pH and possible excluded volume effects whereas the salt form might disrupt the structure of SSY aggregates.

  2. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities

    Energy Technology Data Exchange (ETDEWEB)

    Alpeggiani, Filippo, E-mail: filippo.alpeggiani01@ateneopv.it; Andreani, Lucio Claudio; Gerace, Dario [Department of Physics and CNISM, University of Pavia, Via Bassi 6, 27100 Pavia (Italy)

    2015-12-28

    We introduce a confinement mechanism in photonic crystal slab cavities, which relies on the superposition of two incommensurate one-dimensional lattices in a line-defect waveguide. It is shown that the resulting photonic profile realizes an effective quasi-periodic bichromatic potential for the electromagnetic field confinement yielding extremely high quality (Q) factor nanocavities, while simultaneously keeping the mode volume close to the diffraction limit. We apply these concepts to pillar- and hole-based photonic crystal slab cavities, respectively, and a Q-factor improvement by over an order of magnitude is shown over existing designs, especially in pillar-based structures. Thanks to the generality and easy adaptation of such confinement mechanism to a broad class of cavity designs and photonic lattices, this work opens interesting routes for applications where enhanced light–matter interaction in photonic crystal structures is required.

  3. The effect of incident angle of pumping light on Cholesteric Liquid Crystal tunable laser wavelength

    CERN Document Server

    Yin, Xiangbao

    2014-01-01

    One notable feature of dye doped cholesteric liquid crystal is the variation of pitch and refractive index as the incidence angle of the pumping light shifts. Based on this feature, this paper studies the effects of pumping light's incidence angle on emission properties of the dye doped cholesteric liquid crystal tunable laser. First, we investigated the relationship among the concentration of chiral reagent, the incidence angle of the pumping light, and the pitch of liquid-crystal display (LCD); then we made a tunable-wavelength laser and pumped the prepared sample with 532nm laser outputted from the Nd: YAG multi-frequency pulse laser. As the incident angle of the pumping light shifts between 20 {\\deg} ~ 90 {\\deg}, the tuning range of the wavelength emitted by the laser reaches 10.73nm, ranging between 647.38nm and 658.11nm.

  4. ARTICLES: Orientation in Nematic Liquid Crystals Doped with Orange Dyes and Effect of Carbon Nanoparticles

    Science.gov (United States)

    Alicilar, Ahmet; Akkurt, Fatih; Kaya, Nihan

    2010-06-01

    Some properties of nematic liquid crystal E7 doped with two disperse orange dyes used together and effect of addition of carbon nanoparticles (single walled carbon nanotube or fullerene C60) on them were studied. Two dyes (disperse orange 11 and 13) having high solubility and order parameter were used as co-dopants. A notable increase in order parameter was obtained comparing to that of liquid crystal doped with single dye. When carbon nanoparticles were used as dopant, a decrease in order parameter was observed at low temperatures while it increased at high temperatures. When applied voltage changed, the order parameter abruptly increased in its threshold value and saturated in higher voltages as expected. An appreciable change in textures was not observed with addition of dopants. This addition gave rise to an increase in nematic-isotropic phase transition temperatures compared with that of pure liquid crystal.

  5. Nonlinear continuous-wave optical propagation in nematic liquid crystals: Interplay between reorientational and thermal effects

    Science.gov (United States)

    Alberucci, Alessandro; Laudyn, Urszula A.; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A.; Assanto, Gaetano

    2017-07-01

    We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.

  6. Clausius-Mossotti Lorentz-Lorenz relations and retardation effects for two-dimensional crystals

    CERN Document Server

    Dell'Anna, Luca

    2016-01-01

    The macroscopic surface electric susceptibility determines the linear optical properties of an insulating single-layer two-dimensional atomic crystal, and can be expressed in terms of the microscopic polarizability of the atoms. We compute the local electric field acting on a single atom, both for the static and the dynamic case, as the superposition of the external applied electric field and the fields generated by the induced dipoles in the crystal. We find that, in the dynamic case, retardation effects dephase the local electric field with respect to the incident one. This explains why the Fresnel coefficients of a single-layer two-dimensional atomic crystal are intrinsically complex quantities, even when a null macroscopic surface conductivity is assumed.

  7. Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC for Eco-Friendly Paper

    Directory of Open Access Journals (Sweden)

    Hwan Kim

    2009-11-01

    Full Text Available Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C of limestone in precipitated calcium carbonate (PCC from the lime-soda process (Ca(OH2-NaOH-Na2CO3. Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture.

  8. Effect of UV Laser Conditioning on the Structure of KDP Crystal

    Directory of Open Access Journals (Sweden)

    Decheng Guo

    2014-01-01

    Full Text Available Multiparametric raster scanning experiments for KDP crystals are carried out to study the laser conditioning efficiency as a function of laser fluence, fluence step, and pulse sequence by using ultraviolet (UV laser irradiation with pulse duration of approximately 7 ns. It indicates that damage resistance of KDP can be enhanced after conditioning process. And laser conditioning efficiency depends on the maximal fluence which is below the damage threshold. Raman spectra and photothermal absorption have also been studied on KDP crystals before and after multiparametric laser conditioning. Photothermal absorption data reveal that absorbance of conditioned KDP crystal decreases with the increase of laser fluence and the damage threshold of low absorption area is higher. Raman analysis reveals that the effectiveness of laser conditioning relies mainly on the individual mode of PO4 molecule.

  9. Degassing-induced crystallization of basaltic magma and effects on lava rheology

    Science.gov (United States)

    Lipman, P.W.; Banks, N.G.; Rhodes, J.M.

    1985-01-01

    During the north-east rift eruption of Mauna Loa volcano, Hawaii, on 25 March-14 April 1984 (Fig. 1), microphenocryst contents of erupted lava increased from 0.5 to 30% without concurrent change in either bulk magma composition or eruption temperature (1,140 ?? 3 ??C). The crystallization of the microphenocrysts is interpreted here as being due to undercooling of the magma 20-30 ??C below its liquidas; the undercooling probably resulted from separation and release of volatiles as the magma migrated 12 km from the primary summit reservoir to the eruption site on the north-east rift zone. Such crystallization of magma during an eruption has not been documented previously. The undercooling and crystallization increased the effective viscosity of the magma, leading to decreased eruption rates and stagnation of the lava flow. ?? 1985 Nature Publishing Group.

  10. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    Science.gov (United States)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  11. The crystal change and "excess heat" produced by long time electrolysis of heavy water with titanium cathode

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the theory given in the paper[1], the long time electrolysis experiment with titanium cathode in heavy water (D2O) were done for many times by using the open-loop multi-parameters electrolysis calorimetry system, which is established by us. The specialty is that the cathode is titanium rod and the anode is platinum wire. The early experiment result[3] is still repeated in our recent experiment. The obvious "excess heat" phenomenon can take place only when the electrolysis last more than ten days and amount of "excess heat" increased with the electrolysis time. The "excess heat" can also be obtained from the "boiling to dry" experiment. In the recent experiment, we obtain the results that the amount of "excess heat" is about 3.6 times the input energy, the "excess heat" power is 76.5 W, and the "excess heat" power density is 121.7 W/cm3. After the electrolysis, the crystal structure of the Ti cathode was measured with x-ray diffraction apparatus. We found that the crystal structure of Ti cathode was changed to face-centered cubic structure of TiD2 from its hexagonal structure. This result is in agreement with the Gou's theory mentioned in reference[1].

  12. Vocational Self-Concept Crystallization as a Mediator of the Relationship between Career Self-Management and Job Decision Effectiveness

    Science.gov (United States)

    Weng, Qingxiong; McElroy, James C.

    2010-01-01

    This article examines the influence of career self-management and vocational self-concept crystallization on job decision effectiveness and how vocational self-concept crystallization mediates the relationship between career self-management and job decision effectiveness. Six hundred and eleven Chinese employees participated in the research. Using…

  13. Vocational Self-Concept Crystallization as a Mediator of the Relationship between Career Self-Management and Job Decision Effectiveness

    Science.gov (United States)

    Weng, Qingxiong; McElroy, James C.

    2010-01-01

    This article examines the influence of career self-management and vocational self-concept crystallization on job decision effectiveness and how vocational self-concept crystallization mediates the relationship between career self-management and job decision effectiveness. Six hundred and eleven Chinese employees participated in the research. Using…

  14. Effects of rotation on crystal settling in a terrestrial magma ocean: Spherical shell model

    Science.gov (United States)

    Maas, C.; Hansen, U.

    2015-12-01

    Like Moon or Mars, Earth experienced one or several deep magma ocean periods of globalextent in a later stage of its accretion. The crystallization of these magma oceans is of keyimportance for the chemical structure of Earth, the mantle evolution and the onset of platetectonics. Due to the fast rotation of early Earth and the small magma viscosity, rotationprobably had a profound effect on differentiation processes. For example, Matyska et al.[1994] propose that the distribution of heterogeneities like the two large low shear velocityprovinces (LLSVP) at the core mantle boundary is influenced by rotational dynamicsof early Earth. Further Garnero and McNamara [2008] suggest that the LLSVPs arevery long-living anomalies, probably reaching back to the time of differentiation andsolidification of Earth. However, nearly all previous studies neglect the effects of rotation.In our previous work using a Cartesian model, a strong influence of rotation as well asof latitude on the differentiation processes in an early magma ocean was revealed. Weshowed that crystal settling in an early stage of magma ocean crystallization cruciallydepends on latitude as well as on rotational strength and crystal density.In order to overcome the restrictions as to the geometry of the Cartesian model, we arecurrently developing a spherical model to simulate crystal settling in a rotating sphericalshell. This model will allow us not only to investigate crystal settling at the poles andthe equator, but also at latitudes in-between these regions, as well as the migration ofcrystals between poles and equator. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle.Science, 320(5876):626-628, 2008.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transferon the formation of megaplumes in the lower mantle. Earth and Planetary ScienceLetters, 125(1):255-266, 1994.

  15. Leaf cuticular wax amount and crystal morphology regulate post-harvest water loss in mulberry (Morus species).

    Science.gov (United States)

    Mamrutha, H M; Mogili, T; Jhansi Lakshmi, K; Rama, N; Kosma, Dylan; Udaya Kumar, M; Jenks, Matthew A; Nataraja, Karaba N

    2010-08-01

    Mulberry leaves are the sole source of food for silkworms (Bombyx mori), and moisture content of the detached leaves fed to silkworms determines silkworm growth and cocoon yield. Since leaf dehydration in commercial sericulture is a serious problem, development of new methods that minimize post-harvest water loss are greatly needed. In the present study, variability in moisture retention capacity (MRC, measured as leaf relative water content after one to 5 h of air-drying) was examined by screening 290 diverse mulberry accessions and the relationship between MRC and leaf surface (cuticular) wax amount was determined. Leaf MRC varied significantly among accessions, and was found to correlate strongly with leaf wax amount. Scanning electron microscopic analysis indicated that leaves having crystalline surface waxes of increased facet size and density were associated with high MRC accessions. Leaf MRC at 5 h after harvest was not related to other parameters such as specific leaf weight, and stomatal frequency and index. This study suggests that mulberry accessions having elevated leaf surface wax amount and crystal size and density exhibit reduced leaf post-harvest water loss, and could provide the foundation for selective breeding of improved cultivars. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  16. Validation and Determination of Ice Water Content - Radar Reflectivity Relationships during CRYSTAL-FACE: Flight Requirements for Future Comparisons

    Science.gov (United States)

    Sayres, D. S.; Smith, J. B.; Pittman, J. V.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Fridland, A. M.; Ackerman, A. S.

    2007-01-01

    In order for clouds to be more accurately represented in global circulation models (GCM), there is need for improved understanding of the properties of ice such as the total water in ice clouds, called ice water content (IWC), ice particle sizes and their shapes. Improved representation of clouds in models will enable GCMs to better predict for example, how changes in emissions of pollutants affect cloud formation and evolution, upper tropospheric water vapor, and the radiative budget of the atmosphere that is crucial for climate change studies. An extensive cloud measurement campaign called CRYSTAL-FACE was conducted during Summer 2002 using instrumented aircraft and a variety of instruments to measure properties of ice clouds. This paper deals with the measurement of IWC using the Harvard water vapor and total water instruments on the NASA WB-57 high-altitude aircraft. The IWC is measured directly by these instruments at the altitude of the WB-57, and it is compared with remote measurements from the Goddard Cloud Radar System (CRS) on the NASA ER-2. CRS measures vertical profiles of radar reflectivity from which IWC can be estimated at the WB-57 altitude. The IWC measurements obtained from the Harvard instruments and CRS were found to be within 20-30% of each other. Part of this difference was attributed to errors associated with comparing two measurements that are not collocated in time an space since both aircraft were not in identical locations. This study provides some credibility to the Harvard and CRS-derived IWC measurements that are in general difficult to validate except through consistency checks using different measurement approaches.

  17. Effect of polyglycerol esters additive on palm oil crystallization using focused beam reflectance measurement and differential scanning calorimetry.

    Science.gov (United States)

    Saw, M H; Hishamuddin, E; Chong, C L; Yeoh, C B; Lim, W H

    2017-01-01

    The effect of 0.1-0.7% (w/w) of polyglycerol esters (PGEmix-8) on palm oil crystallization was studied using focused beam reflectance measurement (FBRM) to analyze the in-line changes of crystal size distribution during the crystallization. FBRM results show that 0.1-0.5% (w/w) of PGEmix-8 did not significantly affect nucleation but slightly retarded crystal growth. The use of 0.7% (w/w) additive showed greater heterogeneous nucleation compared to those with lower dosages of additive. Crystal growth was also greatly reduced when using 0.7% (w/w) dosage. The morphological study indicated that the palm oil crystals were smaller and more even in size than when more additive was added. Isothermal crystallization studies using differential scanning calorimetry (DSC) showed increased inhibitory effects on palm oil crystal growth with increasing concentration of PGEmix-8. These results imply that PGEmix-8 is a nucleation enhancing and crystal growth retarding additive in palm oil crystallization at 0.7% (w/w) dosage. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Algorithms for GPU-based molecular dynamics simulations of complex fluids: Applications to water, mixtures, and liquid crystals.

    Science.gov (United States)

    Kazachenko, Sergey; Giovinazzo, Mark; Hall, Kyle Wm; Cann, Natalie M

    2015-09-15

    A custom code for molecular dynamics simulations has been designed to run on CUDA-enabled NVIDIA graphics processing units (GPUs). The double-precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse-grained and atomistic models, holonomic constraints, Nosé-Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard-Jones and Gay-Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n-hexane/2-propanol mixture; and a liquid crystal mesogen, 2-(4-butyloxyphenyl)-5-octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33-119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69-287 fold improvement and three GPUs yield a 101-377 fold speedup.

  19. EELS and electron diffraction studies on possible bonaccordite crystals in pressurized water reactor fuel CRUD and in oxide films of alloy 600 material

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiaxin [Studsvik Nuclear AB, Nykoping (Sweden); Lindberg, Fredrik [Swerea KIMAB AB, Kista (Sweden); Wells, Daniel [Electric Power Research Institute, Charlotte (United States); Bengysson, Bernt [Ringhals AB, Ringhalsverket, Varobacka (Sweden)

    2017-06-15

    Experimental verification of boron species in fuel CRUD (Chalk River Unidentified Deposit) would provide essential and important information about the root cause of CRUD-induced power shifts (CIPS). To date, only bonaccordite and elemental boron were reported to exist in fuel CRUD in CIPS-troubled pressurized water reactor (PWR) cores and lithium tetraborate to exist in simulated PWR fuel CRUD from some autoclave tests. We have reevaluated previous analysis of similar threadlike crystals along with examining some similar threadlike crystals from CRUD samples collected from a PWR cycle that had no indications of CIPS. These threadlike crystals have a typical [Ni]/[Fe] atomic ratio of ⁓2 and similar crystal morphology as the one (bonaccordite) reported previously. In addition to electron diffraction study, we have applied electron energy loss spectroscopy to determine boron content in such a crystal and found a good agreement with that of bonaccordite. Surprisingly, such crystals seem to appear also on corroded surfaces of Alloy 600 that was exposed to simulated PWR primary water with a dissolved hydrogen level of 5 mL H{sub 2}/kg H{sub 2}O, but absent when exposed under 75 mL H{sub 2}/kg H{sub 2}O condition. It remains to be verified as to what extent and in which chemical environment this phase would be formed in PWR primary systems.

  20. EELS and electron diffraction studies on possible bonaccordite crystals in pressurized water reactor fuel CRUD and in oxide films of alloy 600 material

    Directory of Open Access Journals (Sweden)

    Jiaxin Chen

    2017-06-01

    Full Text Available Experimental verification of boron species in fuel CRUD (Chalk River Unidentified Deposit would provide essential and important information about the root cause of CRUD-induced power shifts (CIPS. To date, only bonaccordite and elemental boron were reported to exist in fuel CRUD in CIPS-troubled pressurized water reactor (PWR cores and lithium tetraborate to exist in simulated PWR fuel CRUD from some autoclave tests. We have reevaluated previous analysis of similar threadlike crystals along with examining some similar threadlike crystals from CRUD samples collected from a PWR cycle that had no indications of CIPS. These threadlike crystals have a typical [Ni]/[Fe] atomic ratio of ∼2 and similar crystal morphology as the one (bonaccordite reported previously. In addition to electron diffraction study, we have applied electron energy loss spectroscopy to determine boron content in such a crystal and found a good agreement with that of bonaccordite. Surprisingly, such crystals seem to appear also on corroded surfaces of Alloy 600 that was exposed to simulated PWR primary water with a dissolved hydrogen level of 5 mL H2/kg H2O, but absent when exposed under 75 mL H2/kg H2O condition. It remains to be verified as to what extent and in which chemical environment this phase would be formed in PWR primary systems.

  1. Two types of radicals in whole milk powder. Effect of lactose crystallization, lipid oxidation, and browning reactions.

    Science.gov (United States)

    Thomsen, Marianne K; Lauridsen, Lene; Skibsted, Leif H; Risbo, Jens

    2005-03-09

    Whole milk powder was stored in closed vials at 60 degrees C to induce crystallization of lactose within a short time scale. After an induction period of 3-4 days simultaneous crystallization of lactose, increase of water activity, formation of browning products, and increase of radical content took place. Radicals detected before lactose crystallization were characterized by a narrow ESR spectrum (g = 2.006) and could be depleted by removal of oxygen and therefore were assigned to oxidation processes. Late-stage radicals present after crystallization of lactose gave much wider spectra (g = 2.0048) and were independent of oxygen availability and assigned to late-stage Maillard reaction products. The study indicates that the processes of lactose crystallization, browning, and formation of radical species (g = 2.0048) are strongly coupled, while lipid oxidation is less dependent on the other processes.

  2. On the effect of added impurity on crystal purity of urea in an oscillatory baffled crystallizer and a stirred tank crystallizer

    Science.gov (United States)

    McLachlan, Hannah; Ni, Xiong-Wei

    2016-05-01

    Previous work has indicated that crystals produced in oscillatory baffled crystallisers (OBC) from a relatively 'pure' starting environment gave statistically higher purities than that in stirred tank crystallisers (STC) under comparable conditions. In this work, a known amount of biuret (the impurity) was added to the 'pure' urea system and the results show that the OBC still produced higher purity crystals than the STC, although these purity values were statistically lower than from the 'pure' environment in both vessels. By evaluating crystallisation rates of both urea and biuret, we noticed that these rates are higher in the STC than in the OBC, which would have led to small crystals in the former vessel. The CSD data however gave the opposite result where the CSD is wider with more, large crystals in the STC than in the OBC, in particular in the presence of added impurity. These larger crystals are likely formed due to agglomeration coupled with incorporation of impurity, which leads to a lower purity.

  3. Effect of water intake on sweat output

    Directory of Open Access Journals (Sweden)

    K. V. Mani

    1961-07-01

    Full Text Available The effect of drinking volumes of water in excess of normal requirement at a given time on sweat output was studied under two conditions of body activity namely marching and standing, and two conditions of exposure namely sun and shade. It was found that (1drinking large volumes of water causes a significant and appreciable increase in sweat output, of the order of 0.8 gm/kg/hr; and (2 this increase is very nearly the same under all the conditions studied. It is suggested that changes in tonicity of the plasma may be the main cause for this phenomenon. It is also pointed out that this increased sweat output is not a loss to the body.

  4. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    DEFF Research Database (Denmark)

    Rygaard, Martin

    2011-01-01

    economic assessment of water quality effects, production costs and environmental costs (water abstraction and CO2-emissions). Considered water quality issues include: health (dental caries, cardiovascular diseases, eczema), corrosion (lifetime of appliances, pipes), consumption of soap, and bottled water......While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water...... and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response relationships a range of effects from different drinking water qualities is merged into a holistic...

  5. Investigation of the Crystallization Kinetics of Zn(Met)(AcO)2·H2O in Mixed Solution of Water and Acetone by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    REN,Yi-Xia(任宜霞); GAO,Sheng-Li(高胜利); CHEN,San-Ping(陈三平); JIAO,Bao-Juan(焦宝娟); HU,Rong-Zu(胡荣祖); SHI,Qi-Zhen(史启祯)

    2004-01-01

    The crystal growth process of Zn(Met)(AcO)2·H2O from the mixed solution of water and acetone has been investigated using a Calvet microcalorimeter. The heat produced and the rate of heat production during the crystal growth process at 298.15, 301.15, 304.15, 307.15 and 310.15 K have been measured. On the basis of experimental and calculated results, the thermodynamics parameters (the apparent activation enthalpy, the activation entropy, and the activation free energy), the rate constant and the kinetic parameters (the activation energy, the pre-exponential factor) during the crystal growth process have been obtained. The results show that the crystal growth proceeds in accordance with the Burton-Cabrera-Frank dislocation theory.

  6. Effect of non-uniform magnetic field on crystal growth by floating-Zone method in microgravity

    Institute of Scientific and Technical Information of China (English)

    LI; Kai(

    2001-01-01

    [1]Markov, E. V., Antropov, V. Yu, Biryukov, V. M. et al., Space materials for microelectronics, in Proceedings of the Joint Xth European and VIth Russian Symposium on Physical Sciences in Microgravity, St. Petersburg, Russia (eds. Av-duyevsky, V. S., Polezhaev, V. I.), Moscow: RAS, 1997, Vol. 2, 11-20.[2]Croll, A., Dold, P., Benz, K. W., Segregation in Si floating-zone crystals grown under microgravity and in a magnetic field, J. Crystal Growth, 1994, 137: 95-101.[3]Leon de, N., Guldberg, J., Sailing, J. , Growth of homogeneous high resistivity FZ silicon crystals under magnetic field bias, J. Crystal Growth, 1981, 55: 406-408.[4]Robertson, D. G., O' connor Jr., D. J., Magnetic field effects on float-zone Si crystal growth: strong axial fields, J. Crystal Growth, 1986, 76: 111-122.[5]Series, R. W., Hurle, D. T. J., The use of magnetic field in semiconductor crystal growth, J. Crystal Growth, 1991, 113:305-328.[6]Lan, C. W. , Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror fur-nace, J. Crystal Growth, 1996, 169: 269-278.[7]Li, K., Hu, W. R. , Numerical simulation of magnetic field design for damping thermocapillary convection in a floating half zone, J. Crystal Growth, 2001, 222: 677-684.[8]Li. K., Hu, W. R., Magnetic design for crystal growth, 3rd International Workshop on Modeling in Crystal Growth, New York, USA, 2000, to be published in J. Crystal Growth.[9]Patankar, S. V., Advanced Computational Heat Transfer and Fluid Flow, Graduate Student Course 8352 of Mechanical Engi-neering Department at Univ. of Minnesota, USA.

  7. Effects of Convective Solute and Impurity Transport in Protein Crystal Growth

    Science.gov (United States)

    Vekilov, Peter G.; Thomas, Bill R.; Rosenberger, Franz

    1998-01-01

    High-resolution optical interferometry was used to investigate the effects of forced solution convection on the crystal growth kinetics of the model protein lysozyme. Most experiments were conducted with 99.99% pure protein solutions. To study impurity effects, approx. 1% of lysozyme dimer (covalently bound) was added in some cases. We show that the unsteady kinetics, corresponding to bunching of growth steps, can be characterized by the Fourier components of time traces of the growth rate. Specific Fourier spectra are uniquely determined by the solution conditions (composition, temperature, and flow rate) and the growth layer source activity. We found that the average step velocity and growth rate increase by approx. I0% with increasing flow rate, as a result of the enhanced solute supply to the interface. More importantly, faster convective transport results in lower fluctuation amplitudes. This observation supports our rationale for system-dependent effects of transport on the structural perfection of protein crystals. We also found that solution flow rates greater than 500 microns/s result in stronger fluctuations while the average growth rate is decreased. This can lead to growth cessation at low supersaturations. With the intentionally contaminated solutions, these undesirable phenomena occurred at about half the flow rates required in pure solutions. Thus, we conclude that they are due to enhanced convective supply of impurities that are incorporated into the crystal during growth. Furthermore, we found that the impurity effects are reduced at higher crystal growth rates. Since the exposure time of terraces is inversely proportional to the growth rate, this observation suggests that the increased kinetics instability results from impurity adsorption on the interface. Finally, we provide evidence relating earlier observations of "slow protein crystal growth kinetics" to step bunch formation in response to nonsteady step generation.

  8. Interfacial effects in electromagnetic coupling within piezoelectric phononic crystals

    Institute of Scientific and Technical Information of China (English)

    F. J. Sabina; A. B. Movchan

    2009-01-01

    In this paper, we discuss waves in piezoelectric periodic composite, with the emphasis on the connection between the electromechanical coupling and the effects of dispersion of Bloch-Floquet waves. A particular attention is given to structures containing interfaces between dissimi-lar media and localization of the electrical fields near such interfaces.

  9. GREEN'S FUNCTION AND EFFECTIVE ELASTIC STIFFNESS TENSOR FOR ARBITRARY AGGREGATES OF CUBIC CRYSTALS

    Institute of Scientific and Technical Information of China (English)

    HuangMojia; ZhengChaomei

    2004-01-01

    A closed but approximate formula of Green's function for an arbitrary aggregate of cubic crystallites is given to derive the effective elastic stiffness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and five texture coefficients,accounts for the effects of the orientation distribution function (ODF) up to terms linear in the texture coefficients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy.Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe's formula and Synge's contour integral through numerical integration. As an application of Green's function, we briefly describe the procedure of deriving the effective elastic stiffness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the finite element method and our effective elastic stiffness tensor is made by an example.

  10. Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap

    Institute of Scientific and Technical Information of China (English)

    Guo Ji-Yong; Chen Hong; Li Hong-Qiang; Zhang Ye-Wen

    2008-01-01

    We take a finite dielectric photonic crystal as a homogeneous slab and have extracted the effective parameters. Our systematic study shows that the effective permittivity or permeability of dielectric photonic crystal is negative within a band gap region. This means that the band gap might act as ε-negative materials (ENMs) with ε0, or μ-negative materials (MNMs) with ε>0 and μ<0. Moreover the effective parameters sensitively rely on size, surface termination, symmetry, etc. The effective parameters can be used to design full transmission tunnelling modes and amplify evanescent wave. Several cases are studied and the results show that dielectric photonic band gap can indeed mimic a single negative material (ENM or MNM) under some restrictions.

  11. Peak Effect Evolution In Successive Proton Irradiated YBa2Cu3O7-d Single Crystals

    Science.gov (United States)

    Tobos, Valentina; Paulius, L. M.; Petrean, A. M.; Olsson, R. J.; Kwok, W.-K.; Ferguson, S.; Crabtree, G. W.

    2000-03-01

    We report on the effects of point-like disorder on the pinning properties of an untwinned, single crystal of YBa2Cu3O7-d. We use magnetic hysteresis measurements in order to determine the critical current density for temperatures ranging from 10 K to 80 K in fields up to 7 T. Measurements were performed on a high quality, detwinned, single crystal of YBa2Cu3O7-d that displays a first order vortex melting transition. The sample was cleaved in two parts. One half was used for electrical transport measurements, and the other for magnetization measurements, making it possible to compare between the effects of irradiation induced defects on the critical current density in two different ranges of temperatures. We discuss the effects of the irradiation on the magnetization, critical current density, the peak effect, and vortex phase diagram. This work was supported by National Scince Foundation grant DMR-97-03732 and DMR-96-24047.

  12. The effect of crystal-plastic deformation on Ti concentration in quartz

    Science.gov (United States)

    Nachlas, W. O.; Hirth, G.; Whitney, D. L.; Teyssier, C. P.

    2013-12-01

    Quartz is a dominant phase controlling crustal rheology and strain localization, and the sensitivity of its recrystallization mechanisms to variations in temperature, pressure, and fluid activity make evaluation of these parameters crucial to reconstructing the deformation history of quartz-bearing rocks in the lithosphere. The advent of Ti in quartz thermobarometry provides a technique with potentially powerful applications for understanding the conditions at which rocks deform plastically in the crust. However, it is unclear how ductile deformation, specifically dislocation creep, affects Ti substitution in quartz and whether the Ti concentration in quartz accurately records the conditions at which quartz recrystallized. This study addresses these questions through a series of high P-T rock deformation experiments on precisely synthesized Ti-doped quartz aggregates to investigate the influence of strain and dynamic recrystallization on the concentration of Ti in quartz. Laboratory rock deformation experiments provide an ideal opportunity to study Ti solubility in deformed quartz because they allow for recrystallization to occur in a controlled environment; deformation experiments are conducted under isothermal and isobaric conditions at constant strain rate for increasing intervals of time to isolate the effect of strain on Ti chemistry of quartz. This study employs a novel doping synthesis method to produce a quartz aggregate consisting of a large population of quartz crystals doped with a precise Ti concentration where each individual crystal has a uniform dopant distribution. Deformation of a homogeneous starting material enables simulation of a retrograde solubility path, in which a sample with an initially high, uniform concentration is modified during deformation at conditions where the solubility is substantially lower. This enables observations to be made of the mechanisms responsible for mobilizing Ti through diffusion and exsolution to adjust to the

  13. Ni-Mn-Ga Single Crystal Exhibiting Multiple Magnetic Shape Memory Effects

    Science.gov (United States)

    Heczko, Oleg; Veřtát, Petr; Vronka, Marek; Kopecky, Vít; Perevertov, Oleksiy

    2016-09-01

    Both magnetically induced phase transformation and magnetically induced reorientation (MIR) effects were observed in one Ni50Mn28Ga22 single crystal sample by direct measurement of the magnetic field-induced strain. We investigated various twinning microstructures ranged from single twin interface to fine twinning and crossing twins to evaluate what controls the apparent twinning stress crucial for MIR. The main challenges for the applications of these effects are outlined.

  14. The Effect of the Chirality on the Fluctuation of Liquid Crystal

    Science.gov (United States)

    Fatriansyah, Jaka Fajar; Yusuf, Yusril

    2016-10-01

    We investigate the dynamical properties of normal fluctuation modes in chiral phase liquid crystal on the basis of hydrodynamics Ericksen-Leslie theory. We examine the effect of chiral coefficient on dynamic relaxation eigenfrequencies and the scattering intensity. We find that the chiral coefficient only affects slow fluctuation modes, while it does not affect the fast fluctuation modes. This effect of chirality depends on the magnitude of the wave number vector components.

  15. Microhardness Indentation Size Effect in Flux-grown Crystals of Rare Earth Aluminates

    Institute of Scientific and Technical Information of China (English)

    Jianghong GONG; Zhenduo GUAN

    2001-01-01

    The previously reported results of microhardness measurements on flux-grown crystals of rare earth aluminates were re-examined in this paper to explore the applicability of the proportional specimen resistance (PSR) model to describe the indentation size effect. It was found that the PSR model is insufficient for describing the experimental data and a modified form of this model was proposed based on the consideration of the effect of surface stress state on hardness testing.

  16. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging.

    Science.gov (United States)

    Lei, Cheng; Zhang, Luqing; Yang, Kun; Zhu, Lizhong; Lin, Daohui

    2016-11-01

    With the increasing environmental application and discharge of iron-based nanoparticles (NPs), a comprehensive understanding of their fate and ecotoxicological effect in the aquatic environment is very urgent. In this study, toxicities of 4 zero-valent iron NPs (nZVI) of different sizes, 2 Fe2O3 NPs of different crystal phases, and 1 type of Fe3O4 NPs to a green alga (Chlorella pyrenoidosa) were investigated, with a focus on the effects of particle size, crystal phase, oxidation state, and environmental aging. Results show that the algal growth inhibition of nZVI increased significantly with decreasing particle size; with similar particle sizes (20-30 nm), the algal growth inhibition decreased with oxidation of the NPs with an order of nZVI > Fe3O4 NPs > Fe2O3 NPs, and α-Fe2O3 NPs presented significantly higher toxicity than γ-Fe2O3 NPs. The NP-induced oxidative stress was the main toxic mechanism, which could explain the difference in algal toxicity of the NPs. The NP-cell heteroagglomeration and physical interactions also contributed to the nanotoxicity, whereas the effect of NP dissolution was negligible. The aging in distilled water and 3 surface water samples for 3 months increased surface oxidation of the iron-based NPs especially nZVI, which decreased the toxicity to algae. These findings will be helpful for the understanding of the fate and toxicity of iron-based NPs in the aquatic environment.

  17. Effect of additive on synthesis of MnZn ferrite nanocrystal by hydrothermal crystallization

    Institute of Scientific and Technical Information of China (English)

    桑商斌; 古映莹; 黄可龙

    2003-01-01

    The effect of additive RCOONa on the formation of MnZn ferrite homogeneous coprecipitation precursor was studied in this paper. The action of additive in the MnZn ferrite hydrothermal crystallization process was investigated according to crystal field theory and crystal growth unit theory. And the growth unit formation process was presented and its structure was illustrated. The results show that the precursor of MnZn ferrite is a colloidal mixture composed of Zn(OH)2, Fe(OH)2, Mn(OH)2, MnO(OH) , MnO2 @ xH2O and so on, and dissolves in solution in the form of hydroxyl coordination tetrahedron and octahedron such as Zn(OH)2-4,Fe(OH)2-4 , Fe(OH)4-6 ,Fe(OH)-4 , Fe(OH)3-6 ,Mn(OH)2-4 ,Mn(OH)3-6 etc. , and the growth unit is formed by combination of the coordination polyhedra subsequently in the hydrothermal precess. The additive is beneficial to the formation of homogeneous precursor and has dispersive effect on the aggregation of the crystal growth unit by forming associate with hydrogen bond,which is beneficial to the synthesis of the pure product with a tiny size and a narrow size distribution.

  18. Effect of carboxymethylcellulose on potassium bitartrate crystallization on model solution and white wine

    Science.gov (United States)

    Bajul, Audrey; Gerbaud, Vincent; Teychene, Sébastien; Devatine, Audrey; Bajul, Gilles

    2017-08-01

    Instability in bottled wines refer to tartaric salts crystallization such as potassium bitartrate (KHT). It is not desirable as consumers see the settled salts as an evidence of a poor quality control. In some cases, it causes excessive gushing in sparkling wine. We investigate the effect of two oenological carboxymethylcellulose (CMC) for KHT inhibition in a model solution of white wine by studying the impact of some properties of CMC such as the degree of polymerization, the degree of substitution, and the apparent dissociation constant determined by potentiometric titration. Polyelectrolyte adsorption is used for determining the surface and total charge and for providing information about the availability of CMC charged groups for interacting with KHT crystal faces. The inhibitory efficiency of CMC on model solution is evaluated by measuring the induction time with the help of conductimetric methods. Crystals growth with and without CMC are studied by observation with MEB and by thermal analysis using DSC. The results confirm the effectiveness of CMC as an inhibitor of KHT crystallization in a model solution. The main hypothesis of the mechanism lies in the interaction of dissociated anionic carboxymethyl groups along the cellulose backbone with positively charged layers on KHT faces like the {0 1 0} face. Key factors such as pH, CMC chain length and total charge are discusses.

  19. Experimental study of strong nonlinear-optics effects in liquid crystals

    Science.gov (United States)

    Darbin, S. D.; Arakelyan, S. M.; Cheung, M. M.; Shen, Y. R.

    1984-07-01

    Nonlinear optical effects that arise in nematic liquid crystals as a result of a change in the index of refraction induced by a laser field are considered. Since the resultant nonlinearity is extremely high, the approximation of perturbation theory cannot be used in calculations. However, the change in refractive index results mainly in phase advance as waves propagate through a thin film of liquid crystal, while the change of intensity is significant. Moreover, if there is no change in polarization of the pumping field, calculations are relatively simple. An investigation is made of the propagation of a cross sectionally bounded laser beam through a homeotropically oriented liquid crystal, giving rise to spatial phase modulation of emission. When the intensity of the laser beam exceeds a certain value, a system of aberation rings is observed in the output radiation. Effects of dynamic self-diffraction accompanying degenerate four-wave mixing when a change in refractive index is induced in a homeotropic liquid crystal film, and optical bistability in a nonlinear Fabry-Perot optical cavity, as well as generation of a self-oscillatory state in such a resonator are discussed.

  20. Spreading of partially crystallized oil droplets on an air/water interface

    NARCIS (Netherlands)

    Hotrum, N.E.; Cohen Stuart, M.A.; Vliet, van T.; Aken, van G.A.

    2004-01-01

    The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for ß-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and

  1. Development of a vacuum crystallizer for the concentration of industrial waste water

    NARCIS (Netherlands)

    Roos, A.C.; Verschuur, R.-J.; Schreurs, B.; Scholz, R.; Jansens, P.J.

    2002-01-01

    Freeze concentration has proven to be a viable technology for the concentration of hazardous industrial waste waters before incineration. Owing to the relatively high investment cost of the technology, its applicability has been limited until now. This paper investigates the feasibility of a vacuum

  2. Development of a Vacuum Crystallizer for the Freeze Concentration of Industrial Waste Water

    NARCIS (Netherlands)

    Roos, A.C.; Verschuur, R.-J.; Schreurs, B.; Scholz, R.; Jansens, P.J.

    2003-01-01

    Freeze concentration has proven to be a viable technology for the concentration of hazardous industrial waste waters before incineration. Owing to the relatively high investment cost of the technology, its applicability has been limited until now. This paper investigates the feasibility of a vacuum

  3. Spreading of partially crystallized oil droplets on an air/water interface

    NARCIS (Netherlands)

    Hotrum, N.E.; Cohen Stuart, M.A.; Vliet, van T.; Aken, van G.A.

    2004-01-01

    The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for ß-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and sunflow

  4. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution

    Science.gov (United States)

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-04-01

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals.

  5. Quality improvement of CdMnTe:In single crystals by an effective post-growth annealing

    Science.gov (United States)

    Yu, Pengfei; Xu, Yadong; Luan, Lijun; Du, Yuanyuan; Zheng, Jiahong; Li, Hui; Jie, Wanqi

    2016-10-01

    In this paper, an effective annealing method in which CdMnTe:In (CMT:In) single crystals were coated with CMT powders of the same composition was used to improve the crystal quality of CMT:In crystals. The results indicated that the density of Te inclusions decreased as the annealing time increased. The resistivity and IR transmittance of annealed CMT:In crystals were enhanced obviously. The resistivity of 120 h annealed crystal increased even two orders of magnitude. The reduction of full-width at-half-maximum (FWHM) and the increase of the intensity of X-ray rocking curve indicated an improvement of the crystal quality. PL measurements also showed the crystal quality improved after annealing. No characteristic peak of 241Am γ-ray could be observed in the detector fabricated with as-grown crystal. Remarkably, for the detector fabricated with annealed crystals, the peak of 241Am γ-ray appeared. And the energy resolution and μτ value were improved as the annealing time increased. Specially, 120 h annealed CMT:In crystal with 10.11% energy resolution and 1.20×10-3 cm2/V μτ value has the best detector performance.

  6. Effects of Blowing Ratio Measured by Liquid Crystal on Heat Transfer Characteristics of Trailing Edge Cutback

    Institute of Scientific and Technical Information of China (English)

    Yuan Hepeng; Zhu Huiren; Kong Manzhao

    2008-01-01

    This article deals with the effects of a blowing ratio measured with narrowbend liquid crystal in transonic experiments on the heat transfer characteristics of trailing edge cutback. The experimental results are compared end contrasted in terms of available data for tra-ditional experiments with thermocouples. It is concluded that the blowing ratio exerts rather significant effects on film cooling effec-tiveness distribution of the rib center line. As the blowing ratio decreases, similar to the cooling effectiveness distribution curve of the slot center line, that of the rib center line makes a clockwise rotation about the end. When the blowing ratio increases, the regular film cooling effectiveness curve of the surface becomes rather smooth. On the whole measuring surface, the most intensive heat transfer oc-curs at the extended borderline of the slot end the rib, neither at the rib center line nor at the slot center line. The experimental results of cooling effectiveness measured with thermocouples are lower than those with liquid crystal. In addition, the transient experiments using narrowband liquid crystal can eliminate the higher errors of Nusselt numbers in measurements with thermocouples at the slot outlet.

  7. Investigation of Water Hammer Effect Through Pipeline System

    OpenAIRE

    Tan Wee Choon; Lim Kheng Aik; Lim Eng Aik; Teoh Thean Hin

    2012-01-01

    This paper we study the condition where the water hammer effect is occurs in pipe line. Water hammer can cause the pipe to break if the pressure is high enough. The experiment will be set-up to investigate the water hammer effect in order to avoid the water hammer effect happen. The prevention of water hammer effect will be propose and prove the prevention method is successfully reduce the water hammer effect. The prevention method using is installing the bypass pipe with non-return valve. Th...

  8. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism

    Science.gov (United States)

    Lupi, Laura; Peters, Baron; Molinero, Valeria

    2016-12-01

    According to Classical Nucleation Theory (CNT), the transition from liquid to crystal occurs in a single activated step with a transition state controlled by the size of the crystal embryo. This picture has been challenged in the last two decades by several reports of two-step crystallization processes in which the liquid first produces pre-ordered or dense domains, within which the crystal nucleates in a second step. Pre-ordering preceding crystal nucleation has been recently reported in simulations of ice crystallization, raising the question of whether the mechanism of ice nucleation involves two steps. In this paper, we investigate the heterogeneous nucleation of ice on carbon surfaces. We use molecular simulations with efficient coarse-grained models combined with rare event sampling methods and free energy calculations to elucidate the role of pre-ordering of liquid water at the carbon surface in the reaction coordinate for heterogeneous nucleation. We find that ice nucleation proceeds through a classical mechanism, with a single barrier between liquid and crystal. The reaction coordinate that determines the crossing of the nucleation barrier is the size of the crystal nucleus, as predicted by CNT. Wetting of the critical ice nuclei within pre-ordered domains decreases the nucleation barrier, increasing the nucleation rates. The preferential pathway for crystallization involves the early creation of pre-ordered domains that are the birthplace of the ice crystallites but do not represent a minimum in the free energy pathway from liquid to ice. We conclude that a preferential pathway through an intermediate-order precursor does not necessarily result in a two-step mechanism.

  9. Vortex lattice mobility and effective pinning potentials in the peak effect region in YBCO crystals

    Indian Academy of Sciences (India)

    G Pasquini; V Bekeris

    2006-01-01

    The peak effect (PE) in the critical current density in both low and high temperature superconductors has been the subject of a large amount of experimental and theoretical work in the last few/several years. In the case of YBCO, crucial discussions describing a dynamic or a static picture are not settled. In that region of field and temperature the mobility of the vortex lattice (VL) is found to be dependent on the dynamical history. Recently we reported evidence that the VL reorganizes and accesses to robust VL configurations (VLCs) with different effective pinning potential wells arising in response to different system histories. One of the keys to understand the nature of the PE is to investigate the VL behavior in the vicinity of the various VLCs in the region of the PE. The stability of these VLCs was investigated and it was found that they have distinct characteristic relaxation times, which may be related to elastic or plastic creep processes. In this paper we review some of these results and propose a scenario to describe the PE in YBCO crystals.

  10. Validation of a Compact Isokinetic Total Water Content Probe for Wind Tunnel Characterization at NASA Glenn Icing Research Tunnel and at NRC Ice Crystal Tunnel

    Science.gov (United States)

    Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.

    2017-01-01

    A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.

  11. Lamellar liquid crystal polymerization of sodium oleate/oleic acid/octadiene/water system

    Institute of Scientific and Technical Information of China (English)

    GUO, Rong; FU, Qing-Hong

    2000-01-01

    In the lamellar liquid crystallization (LLC) phase of NaOL/OLA/H2O system, the small angle X-ray diffraction measurements show that the oleic acid is solubilized in the oil layer at first and then into the ampliphile layer. The octadiene added is also located partly in the oil layer and partly in the amphiphile layer in the LLC. With the addition of octadiene as cross-linking agent, the LLC phase of NaOL/OLA/H2O system was polymerized under the initiation of AIBN with the protection of pure nitrogen at 60℃. Most of the double bond absorption of the monomers in IR spectra disappeared after polymerization. The polymerization takes place not only in the middle of the amphiphile layer between the double bonds of NaOL or OLA and those of octadiene, but also in the oil layer of LLC between the double bonds of OLA and those of octadiene. Interlayer spacing measurements on the copolymer proved d values decreased by about 1 ~ 2 nm compared with those of the corresponding system before the polymerization,indicating a disruption of the ordered structure by the polymerization. The copolymer still has superior surface activity with the critical micellar concentration (CMC) decreased almost to the half of the value for the system before the polymerization.

  12. Spin-Hall effect and circular birefringence of a uniaxial crystal plate

    CERN Document Server

    Bliokh, K Y; Prajapati, C; Puentes, G; Viswanathan, N K; Nori, F

    2016-01-01

    The linear birefringence of uniaxial crystal plates is known since the 17th century. Here we demonstrate, both theoretically and experimentally, a fine lateral circular birefringence of such crystal plates. We show that this effect is a novel example of the spin-Hall effect of light, i.e., a transverse spin-dependent shift of the paraxial light beam transmitted through the plate. The well-known linear birefringence and the new circular birefringence form an interesting analogy with the Goos-Hanchen and Imbert-Fedorov beam shifts that appear in the light reflection at a dielectric interface. We report the experimental observation of the effect in a remarkably simple system of a tilted half-wave plate and polarizers using polarimetric and quantum-weak-measurement techniques for the beam-shift measurements.

  13. Effect of annealing and cobalt content on relaxation and crystallization behavior of zirconium based bulk metallic glasses

    Science.gov (United States)

    Dong, Yue; Wunderlich, Rainer; Fecht, Hans-Jörg

    2017-08-01

    The effects of annealing and cobalt content on relaxation and the crystallization process of Zr64Ni10Al7Cu19 bulk metallic glasses were investigated. β-relaxation occurs during annealing, leading to increased endotherm before crystallization. α-relaxation during high temperature annealing (higher than Tg) affects the crystallization process. The introduction of cobalt leads to an inhomogeneous amorphous structure and two-step crystallization due to the positive mixing enthalpy between cobalt and copper. Non-affine thermal strain arising from low temperature annealing of heterogeneous structure leads to a reduced endotherm phenomenon during relaxation on the DSC curves and a reduction in hardness.

  14. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers.

    Science.gov (United States)

    Lu, Di; Baek, David J; Hong, Seung Sae; Kourkoutis, Lena F; Hikita, Yasuyuki; Hwang, Harold Y

    2016-12-01

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  15. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers

    Science.gov (United States)

    Lu, Di; Baek, David J.; Hong, Seung Sae; Kourkoutis, Lena F.; Hikita, Yasuyuki; Hwang, Harold Y.

    2016-12-01

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  16. Synthesis of Freestanding Single-crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-soluble Layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Di; Baek, David J.; Hong, Seung Sae; Kourkoutis, Lena F.; Hikita, Yasuyuki; Hwang, Harold Y.

    2016-08-22

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr3Al2O6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr3Al2O6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  17. On Spectral Invariance of Single Scattering Albedo for Water Droplets and Ice Crystals at Weakly Absorbing Wavelengths

    Science.gov (United States)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2012-01-01

    The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

  18. Water quality and surfactant effects on the water repellency of a sandy soil

    Science.gov (United States)

    Differences in irrigation water quality may affect the water repellency of soils treated or untreated with surfactants. Using simulated irrigations, we evaluated water quality and surfactant application rate effects upon the water repellency of a Quincy sand (Xeric Torripsamment). We used a split ...

  19. Antisolvent crystallization of NaCl using the minute-bubble technique - Effects of different antisolvent types

    Science.gov (United States)

    Wada, Yoshinari; Matsumoto, Masakazu; Onoe, Kaoru

    2016-08-01

    To develop a crystallization technique that enables the control of the crystal size distribution, antisolvent crystallization of sodium chloride (NaCl) under a continuous supply of N2 minute-bubbles was performed. The effects of the additive volume ratio of ethanol (EtOH) on the molar yield and size distribution of the NaCl crystals and the effects of the antisolvent type on crystallization phenomena of NaCl were examined. The initial concentration of NaCl in the saturated solution was set at 5.54 mol/l, and EtOH was added as an antisolvent to the saturated NaCl solution, where the added volume ratio of EtOH was in the range of 5 to 50 vol% (as EtOH/NaCl system). As a comparison, the antisolvent crystallization phenomenon of NaCl in a MeOH/NaCl system was also investigated. N2 minute-bubbles with an average bubble size of 40 μm were continuously supplied to the NaCl supersaturated solution using a self-supporting bubble generator, and NaCl was crystallized. Consequently, the production enhancement and crystal size minimization of NaCl were caused by the residence of minute-bubbles because of the acceleration of nucleation and the inhibition of crystal coalescence. Moreover, the results indicated that the enhancement effect of NaCl crystal production and the minimizing effect of average crystal size depended on the additive volume and the type of alcohol as antisolvent.

  20. Effects of shear flow on phase nucleation and crystallization

    Science.gov (United States)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.