WorldWideScience

Sample records for crystalline tio2 anatase

  1. Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis.

    Science.gov (United States)

    Li, Wei; Bai, Yang; Liu, Chang; Yang, Zhuhong; Feng, Xin; Lu, Xiaohua; van der Laak, Nicole K; Chan, Kwong-Yu

    2009-07-15

    In the absence of any doping and modification, the anatase-to-rutile phase transformation was inhibited at high temperatures giving rise to highly thermal stable and highly crystalline anatase TiO2 fibers. The initial formation of the TiO2(B) phase is found to be key in inhibiting this transformation. The intermediate structure of the TiO2 fiber comprises an inner anatase core with an outer TiO2(B) shell, which has a specific crystallographic orientation with respect to the anatase structure. During the calcination process from 300 to 800 degrees C, both the TiO2(B) shell and the bulk anatase crystal structure was preserved. At temperatures of 800-900 degrees C the TiO2(B)-to-anatase transformation was finished and a near-pure and thermally stable anatase fiber was obtained. This final product shows the same activity as a standard commercial photocatalyst Degussa P-25 when measured against unit mass, and 5 times the activity when measured with respect to the unit surface area. The anatase TiO2 fibers presented here have considerable interest as practical photocatalysts for water purification, as they can be easily recycled without a decrease in their photocatalytic activity and can be prepared at large scale and at low cost.

  2. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays

    Science.gov (United States)

    Zhang, Xiangyu; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin

    2016-05-01

    Well-ordered, one-dimensional silver-doped anatase TiO2 nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO2 nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  3. Anatase TiO2 nanotube powder film with high crystallinity for enhanced photocatalytic performance

    Science.gov (United States)

    Lin, Jia; Liu, Xiaolin; Zhu, Shu; Liu, Yongsheng; Chen, Xianfeng

    2015-03-01

    We report on the synthesis of TiO2 nanotube (NT) powders using anodic oxidation and ultrasonication. Compared to free-standing NT array films, the powder-type NTs can be easily fabricated in a cost-effective way. Particularly, without the substrate effect arising from underlying Ti metals, highly crystallized NT powders with intact tube structures and pure anatase phase can be obtained using high-temperature heat treatment. The application of NTs with different crystallinity for the photocatalytic decomposition of methylene blue (MB) was then demonstrated. The results showed that with increasing annealing temperature, the photocatalytic decomposition rate was gradually enhanced, and the NT powder electrode annealed at 650°C showed the highest photoactivity. Compared to typical NTs annealed at 450°C, the rate constant increased by 2.7-fold, although the surface area was 21% lower. These findings indicate that the better photocatalytic activity was due to the significantly improved crystallinity of anatase anodic NTs in powder form, resulting in a low density of crystalline defects. This simple and efficient approach is applicable for scaled-up water purification and other light utilization applications.

  4. Photocatalytic activity of magnetically anatase TiO2 with high crystallinity and stability for dyes degradation: Insights into the dual roles of SiO2 interlayer between TiO2 and CoFe2O4

    Science.gov (United States)

    Yang, Zewei; Shi, Yingying; Wang, Bing

    2017-03-01

    A novel magnetically separable photocatalyst comprising hollow TiO2-SiO2-CoFe2O4 (TSC) was prepared. In the TSC photocatalyst, an SiO2 interlayer between CoFe2O4 core and TiO2 shell is used to both weaken adverse influence of the magnetic core on photocatalysis and increase the temperature of the transition from anatase to rutile phase TiO2, thus increasing the anatase TiO2 crystallinity. Such an interlayer promotes photocatalytic activity by changing the competition between the injecting process and reacting process of the photogenerated carriers. The photocatalytic activity of TSC was determined for degradation of dye molecules in water under either UV or visible light. The photocatalytic reaction of cationic dyes was governed by rad OH radicals, while O2rad - was the main active species in the initial photoreaction of anionic dyes.

  5. Supercritical Propanol-Water Synthesis and Comprehensive Size Characterisation of Highly Crystalline anatase TiO 2 Nanoparticles

    Science.gov (United States)

    Hald, Peter; Becker, Jacob; Bremholm, Martin; Pedersen, Jan S.; Chevallier, Jacques; Iversen, Steen B.; Iversen, Bo B.

    2006-08-01

    Highly crystalline anatase TiO 2 nanoparticles have been synthesised in less than 1 min in a supercritical propanol-water mixture using a continuous flow reactor. The synthesis parameter space ( T, P, concentration) has been explored and the average particle size can be accurately controlled within 10-18 nm with narrow size distributions (2-3 nm). At subcritical conditions amorphous products are obtained, whereas a broad range of T and P in the supercritical regime gives 11-14 nm particles. At high temperature and pressure, the particles size increase to 18 nm. The nanoparticles have been extensively characterised with powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) with excellent agreement on size and size distribution parameters. The SAXS analysis suggests disk-shaped particles with diameters that are approximately double the height. For comparison, a series of conventional autoclave sol-gel syntheses have been carried out. These also produce phase-pure anatase nanoparticles, but with much broader size distributions and at much longer synthesis times (hours). The study demonstrates that synthesis in supercritical fluids is a very promising method for manipulating the size and size distribution of nanoparticles, thus removing one of the key limitations in many applications of nanomaterials.

  6. A floating macro/mesoporous crystalline anatase TiO2 ceramic with enhanced photocatalytic performance for recalcitrant wastewater degradation.

    Science.gov (United States)

    Xing, Zipeng; Zhou, Wei; Du, Fan; Qu, Yang; Tian, Guohui; Pan, Kai; Tian, Chungui; Fu, Honggang

    2014-01-14

    A macro/mesoporous anatase TiO2 ceramic floating photocatalyst has been successfully synthesized using highly thermally stable mesoporous TiO2 powder as a precursor, followed by a camphene-based freeze-casting process and high-temperature calcinations. The ceramics are characterized in detail by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption isotherms. The results indicate that the TiO2 ceramics present hierarchical macro/mesoporous structures, which maintain high porosity and high compressive strength at the optimal sintering temperature of 800 °C. The ordered mesoporous TiO2 network still possesses high thermal stability and inhibits the anatase-to-rutile phase transformation during calcinations. The obtained ceramics exhibit good adsorptive and photocatalytic activity for the degradation of octane and rhodamine B, and the total organic carbon removal ratio is up to 98.8% and 98.6% after photodegradation for 3 h, respectively. The roles of active species in the photocatalytic process are compared using different types of active species scavengers, and the degradation mechanism is also proposed. Furthermore, the ceramics are recyclable, and no clear changes are observed after ten cycles. In addition, the ceramics are also active in the photodegradation of phenol, thiobencarb, and atrazine. Therefore, these novel floating photocatalysts will have wide applications, including the removal of floating organic pollutants from the wastewater surfaces or the removal of soluble organic pollutants from wastewater.

  7. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.

    Science.gov (United States)

    Liao, Jin-Yun; Lei, Bing-Xin; Wang, Yu-Fen; Liu, Jun-Min; Su, Cheng-Yong; Kuang, Dai-Bin

    2011-01-24

    One-dimensional and quasi-one-dimensional semiconductor nanostructures are desirable for dye-sensitized solar cells (DSSCs), since they can provide direct pathways for the rapid collection of photogenerated electrons, which could improve the photovoltaic performance of the device. Quasi-1D single-crystalline anatase TiO(2) nanostructures have been successfully prepared on transparent, conductive fluorine-doped tin oxide (FTO) glass with a growth direction of [101] through a facile hydrothermal approach. The influences of the initial titanium n-butoxide (TBT) concentration, hydrothermal reaction temperature, and time on the length of quasi-1D anatase TiO(2) nanostructures and on the photovoltaic performance of DSSCs have been investigated in detail. A power conversion efficiency of 5.81% has been obtained based on the prepared TiO(2) nanostructure photoelectrode 6.7 μm thick and commercial N719 dye, with a short-circuit current density of 13.3 mA cm(-2) , an open-circuit voltage of 810 mV, and a fill factor of 0.54. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells.

    Science.gov (United States)

    Chung, Hyun Suk; Han, Gill Sang; Park, So Yeon; Shin, Hee-Won; Ahn, Tae Kyu; Jeong, Sohee; Cho, In Sun; Jung, Hyun Suk

    2015-05-20

    We report on the direct growth of anatase TiO2 nanorod arrays (A-NRs) on transparent conducting oxide (TCO) substrates that can be directly applied to various photovoltaic devices via a seed layer mediated epitaxial growth using a facile low-temperature hydrothermal method. We found that the crystallinity of the seed layer and the addition of an amine functional group play crucial roles in the A-NR growth process. The A-NRs exhibit a pure anatase phase with a high crystallinity and preferred growth orientation in the [001] direction. Importantly, for depleted heterojunction solar cells (TiO2/PbS), the A-NRs improve both electron transport and injection properties, thereby largely increasing the short-circuit current density and doubling their efficiency compared to TiO2 nanoparticle-based solar cells.

  9. Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite

    Science.gov (United States)

    Wahyuingsih, Sayekti; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya; Sulistiyono, Eko; Firdiyono, Florentinus

    2016-02-01

    Nanostructure anatase and rutile type TiO2 were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO2 and rutile TiO2 (high crystallinity) with the diameters of 20-100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO2 from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO2 from low cost material.

  10. Improved lithium storage properties of electrospun TiO2 with tunable morphology: from porous anatase to necklace rutile.

    Science.gov (United States)

    Yang, Yang; Wang, Haiying; Zhou, Qiwen; Kong, Mengqi; Ye, Haitao; Yang, Gang

    2013-11-07

    Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800 °C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO2 as an anode for lithium storage with improved electrode performance.

  11. Hydrogen donor in anatase TiO2

    Science.gov (United States)

    Lavrov, E. V.

    2016-01-01

    An IR absorption study of hydrogen-related defects in natural single-crystalline anatase TiO2 has been carried out. A complex with IR absorption lines at 3412 and 3417 cm-1 is shown to act as a donor with ionization energy of tens of meV. The two lines are identified as stretching local vibrational modes of the O-H bonds of the donor in the neutral and positive charge states, respectively. The defect is unstable against annealing at approximately 300 ∘C and a storage at room temperature on the time scale of a few weeks. These findings suggest that interstitial hydrogen is a plausible model of this defect.

  12. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  13. Determination of conduction and valence band electronic structure of anatase and rutile TiO2

    Indian Academy of Sciences (India)

    Jakub Szlachetko; Katarzyna Michalow-Mauke; Maarten Nachtegaal; Jacinto Sá

    2014-03-01

    Electronic structures of rutile and anatase polymorph of TiO2 were determined by resonant inelastic X-ray scattering measurements and FEFF9.0 calculations. Difference between crystalline structures led to shifts in the rutile Ti -band to lower energy with respect to anatase, i.e., decrease in band gap. Anatase possesses localized states located in the band gap where electrons can be trapped, which are almost absent in the rutile structure. This could well explain the reported longer lifetimes in anatase. It was revealed that HR-XAS is insufficient to study in-depth unoccupied states of investigated materials because it overlooks the shallow traps.

  14. Preparation and Photocatalytic Behaviors of Nanoporous Polyoxotungstate-Anatase TiO2 Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanoporous anatase TiO2 crystalline particles coupled with Keggin or Wells-Dawson unit, H3PW12O40/TiO2 or H6P2W18O62/TiO2, were prepared at a low temperature (200 ℃) using sol-gel method combined with hydrothermal treatment at programmed temperature. The as-prepared composites have uniform anatase phase, and they exhibit both micro-and mesoporosities with pore sizes of 0.6 and 4.0 nm, respectively, and their average size is lower than 10 nm. Photocatalytic tests show the composites exhibit relatively higher photocatalytic activities to decompose the organocholorine pesticide hexachlorobenzene(HCB) than anatase TiO2, the starting polyoxotungstates, and Eu2O3/TiO2 prepared by using sol-gel method, and this was attributed to (1) the synergistic effect of photoactive anatase TiO2 with the polyoxotungstate, and (2) the fascinating physical and chemical properties of the porous materials.

  15. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion.

    Science.gov (United States)

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-12-07

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.

  16. High-pressure polymorphs of anatase TiO2

    DEFF Research Database (Denmark)

    Arlt, T.; Bermejo, M.; Blanco, M. A.

    2000-01-01

    The equation of state of anatase TiO2 has been determined experimentally-using polycrystalline as well as single-crystal material-and compared with theoretical calculations using the ab initio perturbed ion model. The results are highly consistent, the zero-pressure bulk modulus being 179(2) GPa...

  17. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion

    Science.gov (United States)

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-11-01

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile

  18. Band alignment of rutile and anatase TiO2

    Science.gov (United States)

    Scanlon, David O.; Dunnill, Charles W.; Buckeridge, John; Shevlin, Stephen A.; Logsdail, Andrew J.; Woodley, Scott M.; Catlow, C. Richard A.; Powell, Michael. J.; Palgrave, Robert G.; Parkin, Ivan P.; Watson, Graeme W.; Keal, Thomas W.; Sherwood, Paul; Walsh, Aron; Sokol, Alexey A.

    2013-09-01

    The most widely used oxide for photocatalytic applications owing to its low cost and high activity is TiO2. The discovery of the photolysis of water on the surface of TiO2 in 1972 launched four decades of intensive research into the underlying chemical and physical processes involved. Despite much collected evidence, a thoroughly convincing explanation of why mixed-phase samples of anatase and rutile outperform the individual polymorphs has remained elusive. One long-standing controversy is the energetic alignment of the band edges of the rutile and anatase polymorphs of TiO2 (ref. ). We demonstrate, through a combination of state-of-the-art materials simulation techniques and X-ray photoemission experiments, that a type-II, staggered, band alignment of ~ 0.4 eV exists between anatase and rutile with anatase possessing the higher electron affinity, or work function. Our results help to explain the robust separation of photoexcited charge carriers between the two phases and highlight a route to improved photocatalysts.

  19. High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles

    Science.gov (United States)

    Ruu Siah, Wai; Lintang, Hendrik O.; Shamsuddin, Mustaffa; Yuliati, Leny

    2016-02-01

    Titanium dioxide (TiO2) is well-known as an active photocatalyst for degradation of various organic pollutants. Over the years, a wide range of TiO2 nanoparticles with different phase compositions, crystallinities, and surface areas have been developed. Due to the different methods and conditions used to synthesize these commercial TiO2 nanoparticles, the properties and photocatalytic performance would also be different from each other. In this study, the photocatalytic removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5- trichlorophenoxyacetic acid (2,4,5-T) was investigated on commercial Evonik P25, Evonik P90, Hombikat UV100 and Hombikat N100 TiO2 nanoparticles. Upon photocatalytic tests, it was found that overall, the photocatalytic activities of the P25 and the P90 were higher than the N100 and the UV100 for the removal of both 2,4-D and 2,4,5-T. The high activities of the P25 and the P90 could be attributed to their phase compositions, which are made up of a mixture of anatase and rutile phases of TiO2. Whereas, the UV100 and the N100 are made up of 100% anatase phase of TiO2. The synergistic effect of the anatase/rutile mixture was reported to slow down the recombination rate of photogenerated electron-hole pairs. Consequently, the photocatalytic activity was increased on these TiO2 nanoparticles.

  20. Formation of crystalline TiO2 by anodic oxidation of titanium

    Institute of Scientific and Technical Information of China (English)

    Zixue Su; Linjie Zhang; Feilong Jiang; Maochun Hongn

    2013-01-01

    Formation of crystalline TiO2 (anatase) films by anodic oxidation of titanium foils in ethylene glycol (EG) based electrolytes at room temperature has been investigated. By varying the anodizing parameters such as the amounts of water and NH4F added, applied voltage and anodization time, anodic TiO2 films with different crystalline structures were obtained. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) characterizations were employed to determine the morphologies and crystalline structures of as-prepared anodic TiO2 films. The results indicate that crystallization of anodic TiO2 films was generally facilitated by high fluoride concentration, high applied voltage and longer anodization time, and the formation of anodic TiO2 films with best crystallinity could only be achieved when optimized amounts of water were added.

  1. Surface hydroxyl groups direct cellular response on amorphous and anatase TiO2 nanodots.

    Science.gov (United States)

    Hong, Yi; Yu, Mengfei; Lin, Jun; Cheng, Kui; Weng, Wenjian; Wang, Huiming

    2014-11-01

    In this study, we investigated the differences between amorphous and anatase TiO2 at the biomolecular level which could explain differences in the osteoblast response on these surfaces. The number of surface hydroxyl groups in the TiOHT form on amorphous and anatase TiO2 was found to be the most important factor, resulting in adsorption of bovine serum albumin as a monolayer on amorphous TiO2 nanodots but as a multilayer on anatase TiO2 nanodots. The reason for this is that the presence of more TiOHT groups on amorphous TiO2 nanodots attracts more -NH3+ groups on BSA molecules, causing the conformation of surface-bound BSA molecules to differ from those adsorbed on anatase TiO2 nanodots. Fibronectin which is subsequently adsorbed on anatase TiO2 nanodots then retains a more active conformation for osteoblast adhesion and mineralization.

  2. Preparation and photocatalytic activity of bicrystal phase TiO2 nanotubes containing TiO2-B and anatase

    Science.gov (United States)

    Huang, Chuanxi; Zhu, Kerong; Qi, Mengyao; Zhuang, Yonglong; Cheng, Chao

    2012-06-01

    Bicrystal phase TiO2 nanotubes (NTS) containing monoclinic TiO2-B and anatase were prepared by the hydrothermal reaction of anatase nanoparticles with NaOH aqueous solution and a heat treatment. Their structure was characterized by XRD, TEM and Raman spectra. The results showed that the bicrystal phase TiO2 NTS were formed after calcining H2Ti4O9·H2O NTS at 573 K. The bicrystal phase TiO2 NTS exhibit significantly higher photocatalytic activity than the single phase anatase NTS and Dessuga P-25 nanoparticles in the degradation of Methyl Orange aqueous solution under ultraviolet light irradiation, which is attributed to the large surface and interface areas of the bicrystal phase TiO2 NTS.

  3. Anatase TiO2 sheet-assisted synthesis of Ti(3+) self-doped mixed phase TiO2 sheet with superior visible-light photocatalytic performance: Roles of anatase TiO2 sheet.

    Science.gov (United States)

    Zhang, Xiaojie; Zuo, Guoqing; Lu, Xin; Tang, Changqing; Cao, Shuo; Yu, Miao

    2017-03-15

    On the basis of measurements, such as field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, X-ray diffraction, electron paramagnetic resonance, photoluminescence spectra, and photocurrent measurements, the roles of anatase TiO2 sheet on synthesizing Ti(3+) self-doped mixed phase TiO2 nanosheets (doped TiO2 (A/R, TiO2 (A))) and on improving the performance for photocatalytic CO2 reduction were explored systematically. High surface area anatase TiO2 nanosheets (TiO2 (A)) as a substrate, structure directing agent, and inhibitor, mediated the synthesis of Ti(3+) self-doped mixed phase TiO2 nanosheets. Addition of TiO2 (A) significantly improved not only visible light absorption of doped TiO2 (A/R, TiO2 (A)), but also the efficiency of photo-excited charges separations due to the existence of interfacial regions of anatase-rutile TiO2 junctions. Finally, a possible mechanism for interfacial charge transfer at the anatase-rutile TiO2 interface and for photocatalytic CO2 reduction over Pt loaded doped TiO2 (A/R, TiO2 (A)) were proposed.

  4. Influence of anatase and rutile phase in TiO2 upon the photocatalytic degradation of methylene blue under solar irradiation in presence of activated carbon.

    Science.gov (United States)

    Matos, J; Montaña, R; Rivero, E; Escudero, A; Uzcategui, D

    2014-01-01

    The influence of activated carbon (AC) on the photocatalytic activity of different crystalline TiO2 phases was verified in the photocatalytic degradation of methylene blue under UV and solar irradiation. The results showed a volcano trend with a maximum photoactivity for the crystalline phase ratio of anatase:rutile equal to 80:20 both under UV or solar irradiation. By contrast, in presence of AC the photocatalytic activity of the binary materials of TiO2/AC followed an exponential trend, increasing as a function of the increase in anatase proportion in the TiO2 framework. The increase in the photoactivity of the binary material TiO2/AC relative to neat TiO2 was up to 22 and about 17 times higher under UV and visible irradiation, respectively. The present results suggest that AC interacts more efficiently with anatase phase than with rutile phase.

  5. Green Strategy to Single Crystalline Anatase TiO 2 Nanosheets with Dominant (001) Facets and Its Lithiation Study toward Sustainable Cobalt-Free Lithium Ion Full Battery

    KAUST Repository

    Ming, Hai

    2015-11-03

    A green hydrothermal strategy starting from the Ti powders was developed to synthesis a new kind of well dispersed anatase TiO nanosheets (TNSTs) with dominant (001) facets, successfully avoiding using the HF by choosing the safe substitutes of LiF powder. In contrast to traditional approaches targeting TiO with dominant crystal facets, the strategy presented herein is more convenient, environment friendly and available for industrial production. As a unique structured anode applied in lithium ion battery, the TNSTs could exhibit an extremely high capacity around 215 mAh g at the current density of 100 mA g and preserved capacity over 140 mAh g enduring 200 cycles at 400 mA g. As a further step toward commercialization, a model of lithiating TiO was built for the first time and analyzed by the electrochemical characterizations, and full batteries employing lithiated TNSTs as carbon-free anode versus spinel LiNiMnO (x = 0, 0.5) cathode were configured. The full batteries of TNSTs/LiMnO and TNSTs/LiNiMnO have the sustainable advantage of cost-effective and cobalt-free characteristics, and particularly they demonstrated high energy densities of 497 and 580 Wh kg (i.e., 276 and 341 Wh kg ) with stable capacity retentions of 95% and 99% respectively over 100 cycles. Besides the intriguing performance in batteries, the versatile synthetic strategy and unique characteristics of TNSTs may promise other attracting applications in the fields of photoreaction, electro-catalyst, electrochemistry, interfacial adsorption photovoltaic devices etc.

  6. Alignment of TiO2 (Anatase Crystal of Dye-Sensitized Solar Cells by External Magnetic Field

    Directory of Open Access Journals (Sweden)

    Na-Yeong Hong

    2013-01-01

    Full Text Available In this study, magnetic field (B was applied on TiO2 (anatase of dye-sensitized solar cell (DSC for alignment of crystal. Magnetic field was applied on TiO2 when deposited TiO2 on the fluorine tin oxide (FTO was dried at 373 K for crystalline orientation. And applying time of B was varied 0~25 min. Characteristics of the magnetic field applied TiO2 films were analyzed by X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, scanning electron microscopy (SEM, and electrochemical impedance spectroscopy (EIS. Current-voltage characteristics were also analyzed using solar simulator, and it was confirmed that the energy conversion efficiency of 41% was increased. Finally, it was identified that the magnetic field affected orientation of TiO2, resulting in the enhancement of the performance of the DSC.

  7. Dispersion and Structure Studies of Molybdenum Oxide on Anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    ZI Feng-lan; GUO Hong-you; WU Nian-zu; XIE Ya-ning; HU Tian-dou

    2004-01-01

    X-ray photoelectron spectroscopy(XPS) and extended X-ray absorption fine structure(EXAFS) were used to characterize the structure of the mixture of molybdenum oxide and anatase calcined at 723 K. The results indicate that molybdenum oxide can disperse onto the surface of anatase(TiO2) and the dispersion threshold is 11.2 mg in per gram of MoO3 or 4.8 Mo atoms/nm2 TiO2. When the content of MoO3 is below the dispersion threshold, MoO3 species is in highly dispersed state interacting strongly with TiO2 support and in discrete tetrahedral coordination, [MoO4], on the surface of TiO2. When the MoO3 loading is above this value, MoO3 exists in both dispersed phase and crystalline phase. MoO3 in dispersed phase is still a discrete [MoO4] tetrahedron; MoO3 in crystal phase is in octahedral coordination.

  8. Interaction between nanoparticulate anatase TiO2 and lactate dehydrogenase.

    Science.gov (United States)

    Duan, Yanmei; Li, Na; Liu, Chao; Liu, Huiting; Cui, Yaling; Wang, Han; Hong, Fashui

    2010-09-01

    In order to study the mechanisms underlying the effects of TiO(2) nanoparticles on lactate dehydrogenase (LDH, EC1.1.1.27), Institute of Cancer Research region mice were injected with nanoparticulate anatase TiO(2) (5 nm) of various doses into the abdominal cavity daily for 14 days. We then examined LDH activity in vivo and in vitro and direct evident for interaction between nanoparticulate anatase TiO(2) and LDH using spectral methods. The results showed that nanoparticulate anatase TiO(2) could significantly activate LDH in vivo and in vitro; the kinetics constant (Km) and Vmax were 0.006 microM and 1,149 unit mg(-1) protein min(-1), respectively, at a low concentration of nanoparticulate anatase TiO(2), and 3.45 and 0.031 microM and 221 unit mg(-1) protein min(-1), respectively, at a high concentration of nanoparticulate anatase TiO(2). By fluorescence spectral assays, the nanoparticulate anatase TiO(2) was determined to be directly bound to LDH, and the binding constants of the binding site were 1.77 x 10(8) L mol(-1) and 2.15 x 10(7) L mol(-1), respectively, and the binding distance between nanoparticulate anatase TiO(2) and the Trp residue of LDH was 4.18 nm, and nanoparticulate anatase TiO(2) induced the protein unfolding. It was concluded that the binding of nanoparticulate anatase TiO(2) altered LDH structure and function.

  9. Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells.

    Science.gov (United States)

    Gerloff, Kirsten; Fenoglio, Ivana; Carella, Emanuele; Kolling, Julia; Albrecht, Catrin; Boots, Agnes W; Förster, Irmgard; Schins, Roel P F

    2012-03-19

    Titanium dioxide has a long-standing use as a food additive. Micrometric powders are, e.g., applied as whiteners in confectionary or dairy products. Possible hazards of ingested nanometric TiO(2) particles for humans and the potential influence of varying specific surface area (SSA) are currently under discussion. Five TiO(2)-samples were analyzed for purity, crystallinity, primary particle size, SSA, ζ potential, and aggregation/agglomeration. Their potential to induce cytotoxicity, oxidative stress, and DNA damage was evaluated in human intestinal Caco-2 cells. Only anatase-rutile containing samples, in contrast to the pure anatase samples, induced significant LDH leakage or mild DNA damage (Fpg-comet assay). Evaluation of the metabolic competence of the cells (WST-1 assay) revealed a highly significant correlation between the SSA of the anatase samples and cytotoxicity. The anatase/rutile samples showed higher toxicity per unit surface area than the pure anatase powders. However, none of the samples affected cellular markers of oxidative stress. Our findings suggest that both SSA and crystallinity are critical determinants of TiO(2)-toxicity toward intestinal cells.

  10. Effect of Flame Conditions on Crystalline Structure of TiO2 in Liquid Flame Spraying

    Institute of Scientific and Technical Information of China (English)

    LI Chang-jiu; YANG Guan-jun; WANG Yu-yue

    2004-01-01

    Nanostructured TiO2 is a most promising functional ceramic owing to its potential utilization in photocatalytical, optical and electrical applications. Nanostructured TiO2 coating was deposited through thermal spraying with liquid feedstock. Two types of crystalline structures were present in the synthesized TiO2 coating including anatase phase and rutile phase.The effect of spray flame conditions on the crystalline structure was investigated in order to control the crystalline structure of the coating. The results showed that spray distance, flame power and precursor concentration in the liquid feedstock significantly influenced phase constitutions and grain size in the coating. Anatase phase was formed at spray distance from 150 to 250mm, while rutile phase was evidently observed in the coating deposited at 100 mm. The results suggested that anatase phase was firstly formed in the coating, and rutile phase resulted from the transformation of the deposited anatase phase. The phase transformation from anatase to rutile occurred through the annealing effect of spraying flame. The control of the phase formation can be realized through flame condition and spray distance.

  11. Effects of Li+ co-doping on properties of Eu3+ activated TiO2 anatase nanoparticles

    Science.gov (United States)

    Milićević, Bojana; Đorđević, Vesna; Vuković, Katarina; Dražić, Goran; Dramićanin, Miroslav D.

    2017-10-01

    Sol-gel technique for the synthesis of anatase TiO2 at 420 °C produces nanocrystals of 10-20 nm in size with Ti4+ in crystal volume and Ti3+ at terminal planes of the crystal. The study of Li+ co-doping effects on the structure, morphology, absorption, and luminescence of Eu3+ activated TiO2 anatase nanocrystals is presented. Pure anatase structure is achieved up to 9 at.% Li, with significant improvement in crystallinity of europium doped anatase TiO2. The Li+ co-doping reduces the unit cell volume of the crystal, induces the blue shift of the absorption edge, lengthens the lifetime of Eu3+5D0 excited state, and improves the Eu3+ emission intensity up to 37.5%. Judd-Ofelt analysis of Eu3+ emission showed enhancement of quantum efficiency from 66.4% to 98.7% when TiO2:Eu3+ was co-doped with 9 at.% of Li.

  12. Porous Anatase TiO2 Thin Films for NH3 Vapour Sensing

    Science.gov (United States)

    Ponnusamy, Dhivya; Madanagurusamy, Sridharan

    2015-12-01

    Anatase titanium dioxide (TiO2) thin films were deposited onto cleaned glass substrates by a direct current (DC) reactive magnetron sputtering technique for different deposition times from 10 min to 40 min, which resulted in films of different thicknesses. Characterization techniques, such as x-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM) were used to characterize the structural and morphological properties of the TiO2 thin films. XRD patterns showed the formation of (101) crystal anatase facets. The grain size values of the film increased with increased deposition time, and the films deposited at 40 min exhibited a porous structure. Anatase TiO2 thin films exhibited excellent sensing response, fast response and recovery time, as well as good stability and selectivity towards ammonia (NH3). The enhanced NH3 sensing behavior of anatase TiO2 films is attributed to the porous morphology and oxygen vacancies.

  13. TiO2-Based Nanomaterials for Gas Sensing-Influence of Anatase and Rutile Contributions.

    Science.gov (United States)

    Zakrzewska, K; Radecka, M

    2017-12-01

    The paper deals with application of three nanomaterial systems: undoped TiO2, chromium-doped TiO2:Cr and TiO2-SnO2 synthesized by flame spray synthesis (FSS) technique for hydrogen sensing. The emphasis is put on the role of anatase and rutile polymorphic forms of TiO2 in enhancing sensitivity towards reducing gases. Anatase-to-rutile transformation is achieved by annealing of undoped TiO2 in air at 700 °C, specific Cr doping and modification with SnO2. Undoped TiO2 and TiO2-SnO2 exhibit n-type behaviour and while TiO2: 5 at.% Cr is a p-type semiconductor. X-ray diffraction (XRD) has been applied to determine anatase-to-rutile weight ratio as well as anatase and rutile crystal size. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to characterize the structure and morphological parameters. Optical reflectometry enabled to find and compare the band gaps E g of anatase and rutile predominated compositions. Electrical properties, i.e. the electrical conductivity and values of constant phase element (CPE), have been established on the basis of impedance spectroscopy. Dynamic responses of the electrical resistance as a function of hydrogen concentration revealed that predominance of rutile in anatase/rutile mixture is beneficial for gas sensing. Partial transformation to rutile in all three material systems under study resulted in an increased sensitivity towards hydrogen. It is proposed that this effect can be explained in a similar way as in photocatalysis, i.e. by specific band alignment and electron transfer from rutile to anatase to facilitate oxygen preadsorption on the surface of anatase grains.

  14. Mobility enhanced photoactivity in sol-gel grown epitaxial anatase TiO2 films.

    Science.gov (United States)

    Jung, Hyun Suk; Lee, Jung-Kun; Lee, Jaegab; Kang, Bo Soo; Jia, Quanxi; Nastasi, Michael; Noh, Jun Hong; Cho, Chin-Moo; Yoon, Sung Hoon

    2008-03-18

    Epitaxial anatase thin films were grown on single-crystal LaAlO3 substrates by a sol-gel process. The epitaxial relationship between TiO2 and LaAlO3 was found to be [100]TiO2||[100]LaAlO3 and (001)TiO2||(001)LaAlO3 based on X-ray diffraction and a high-resolution transmission electron microscopy. The epitaxial anatase films show significantly improved photocatalytic properties, compared with polycrystalline anatase film on fused silica substrate. The increase in the photocatalytic activity of epitaxial anatase films is explained by enhanced charge carrier mobility, which is traced to the decreased grain boundary density in the epitaxial anatase film.

  15. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.

    Science.gov (United States)

    Cao, Fengren; Xiong, Jie; Wu, Fangli; Liu, Qiong; Shi, Zhiwei; Yu, Yanhao; Wang, Xudong; Li, Liang

    2016-05-18

    In a photoelectrochemical (PEC) cell for water splitting, the critical issue is charge separation and transport, which is usually completed by designing semiconductor heterojunctions. TiO2 anatase-rutile mixed junctions could largely improve photocatalytic properties, but impairs PEC water splitting performance. We designed and prepared two types of TiO2 heterostructures with the anatase thin film and rutile nanowire phases organized in different sequences. The two types of heterostructures were used as PEC photoanodes for water splitting and demonstrated completely opposite results. Rutile nanowires on anatase film demonstrated enhanced photocurrent density and onset potential, whereas strong negative performance was obtained from anatase film on rutile nanowire structures. The mechanism was investigated by photoresponse, light absorption and reflectance, and electrochemical impedance spectra. This work revealed the significant role of phase sequence in performance gain of anatase-rutile TiO2 heterostructured PEC photoanodes.

  16. Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting.

    Science.gov (United States)

    Yang, Jih-Sheng; Liao, Wen-Pin; Wu, Jih-Jen

    2013-08-14

    In this work, a three-dimensional (3D) hierarchical TiO2 nanostructured array is constructed on the basis of the considerations of morphology and interfacial energetics for photoelectrochemical water splitting. The photoelectrode is composed of a core-shell structure where the core portion is a rutile TiO2 nanodendrite (ND) array and the shell portion is rutile and anatase TiO2 nanoparticles (NPs) sequentially located on the surface. The TiO2 ND array provides a fast electron transport pathway due to its quasi-single-crystalline structure. The 3D configuration with NPs in the shell portion provides a larger surface area for more efficient photocharge separation without significantly sacrificing the electron collection efficiency. Moreover, anatase TiO2 NPs constructed on the surface of the ND/rutile TiO2 NP nanostructured array enhance charge separation and suppress charge recombination at the interfacial region due to the higher conduction band edge of anatase TiO2 compared to that of rutile TiO2. A photocurrent density and photoconversion efficiency of 2.08 mA cm(-2) at 1.23 V vs reversible hydrogen electrode (RHE) and 1.13% at 0.51 V vs RHE are, respectively, attained using the hierarchical TiO2 nanostructured array photoelectrochemical cell under illumination of AM 1.5G (100 mW cm(-2)).

  17. Low-Temperature Preparation and Properties of High Activity Anatase TiO2 Aqueous Sols

    Science.gov (United States)

    Liu, Qingju; Na, Wei; Zhu, Zhongqi; Zhang, Jin

    2011-06-01

    Anatase TiO2 aqueous sols were prepared below 70 °C by sol method. The influences of preparing conditions on the crystal structures and stability of the sols were investigated with X-ray diffraction (XRD) and Zeta potential. The photocatalytic activities of the anatase TiO2 aqueous sols were characterized by degradation of methyl orange and methylene blue under ultraviolet light, fluorescent light and sunlight. The sols demonstrate higher photocatalytic activity than that of Degussa P25-TiO2.

  18. Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity

    Science.gov (United States)

    Li, Ye; Qin, Zhenping; Guo, Hongxia; Yang, Hanxiao; Zhang, Guojun; Ji, Shulan; Zeng, Tingying

    2014-01-01

    In this work, the positively or negatively charged anatase TiO2 nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and poly(sodium4- styrenesulfonate) (PSS). X-ray diffraction (XRD) pattern and high-resolution transmission electron microscope (HRTEM) confirmed the anatase crystalline phase. The charges of the prepared TiO2, PEI-TiO2 and PSS-TiO2 nanoparticles were investigated by zeta potentials. The results showed that the zeta potentials of PEI-TiO2 nanoparticles can be tuned from +39.47 mV to +95.46 mV, and that of PSS-TiO2 nanoparticles can be adjusted from −56.63 mV to −119.32 mV. In comparison with TiO2, PSS-TiO2 exhibited dramatic adsorption and degradation of dye molecules, while the PEI modified TiO2 nanoparticles showed lower photocatalytic activity. The photocatalytic performances of these charged nanoparticles were elucidated by the results of UV-vis diffuse reflectance spectra (DRS) and the photoluminescence (PL) spectra, which indicated that the PSS-TiO2 nanoparticles showed a lower recombination rate of electron-hole pairs than TiO2 and PEI-TiO2. PMID:25506839

  19. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    OpenAIRE

    Ming-Jer Jeng; Yi-Lun Wung; Liann-Be Chang; Lee Chow

    2013-01-01

    The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films ...

  20. Excess electrons at anatase TiO2 surfaces and interfaces: insights from first principles simulations

    Science.gov (United States)

    Selçuk, Sencer; Selloni, Annabella

    2017-07-01

    TiO2 is an important technological material with widespread applications in photocatalysis, photovoltaics and self-cleaning surfaces. Excess electrons from intrinsic defects, dopants and photoexcitation play a key role in the properties of TiO2 that are relevant to its energy-related applications. The picture of excess and photoexcited electrons in TiO2 is based on the polaron model, where the electron forms a localized state that is stabilized by an accompanying lattice distortion. Here, we focus on excess and photoexcited electrons in anatase, the TiO2 polymorph most relevant to photocatalysis and solar energy conversion. For anatase, evidence of both small and large electron polarons has been reported in the literature. In addition, several studies have revealed a remarkable dependence of the photocatalytic activity of anatase on the crystal surface. After an overview of experimental studies, we briefly discuss recent progress in the theoretical description of polaronic states in TiO2, and finally present a more detailed account of our computational studies on the trapping and dynamics of excess electrons near the most common anatase surfaces and aqueous interfaces. The results of these studies provide a bridge between surface science experiments under vacuum conditions and observations of crystal-face-dependent photocatalysis on anatase, and support the idea that optimization of the ratio between different anatase facets can help enhance the photocatalytic activity of this material.

  1. Preparation of nanorod-like anatase TiO2 nanocrystals and their photovoltaic properties.

    Science.gov (United States)

    Zhang, Qinghong; Li, Shuang; Li, Yaogang; Wang, Hongzhi

    2011-12-01

    Anatase TiO2 nanocrystals with the high specific surface area were prepared by the hydrothermal treatment of anatase TiO2 sols at the temperature of 150 degrees C and above. When TiO2 sols with a lower content of TiO2 and at a relatively high pH value were hydrothermal treated, the dispersible and nanorod-like TiO2 nanocrystals were formed via the oriented attachment. The nanorod-like TiO2 nanocrystals with an aspect ratio of larger than 5 and a mean diameter of less than 7 nm were obtained in the absence of organic compounds. The as-prepared TiO2 nanocrystals were characterized with X-ray diffraction, transmission electron microscopy and BET surface area techniques. The TiO2 nanostructures were deposited on the FTO conductive glass as the anodic electrode for the dye-sensitized solar cells (DSSCs) and assembled into solar cells. The derived solar cells showed a conversion efficiency of 6.12% under 1 sun illumination of simulated sunlight and external quantum efficiency (EQE) of more than 60% at the wavelength of 550 nm. The DSSCs from the anatase nanorods has a higher open circuit voltage compared to the spherical nanocrystals.

  2. First principle study of the electronic structure of hafnium-doped anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    Li Lezhong; Yang Weiqing; DingYingchun; Zhu Xinghua

    2012-01-01

    Crystal structures and electronic structures of hafnium doping anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on the density functional theory within the generalized gradient approximation.The calculated results show that the lattice parameters a and c of Hf-doped anatase TiO2 are larger than those of intrinsic TiO2 under the same calculated condition.The calculated band structure and density of states show that the conduction band width of Hf-doped TiO2 is broadened which results in the band gap of Hf-doped being smaller than the band gap of TiO2.

  3. Preparation of {0 1 0}-faceted anatase TiO2 nanocuboids from peroxotitanium complex solution

    Science.gov (United States)

    Miao, Yigao; Gao, Jiacheng

    2012-12-01

    {0 1 0}-faceted anatase TiO2 nanocuboids have been fabricated by hydrothermal route using peroxotitanium complex solution as precursor. The effects of reaction time, the amount of urea and temperature on the formation of {0 1 0}-faceted anatase TiO2 were characterized by XRD, FESEM and TEM. The growth mechanism of nanocuboids was proposed that the nanocuboids were formed by the transition from H2Ti2O5·H2O phase to anatase TiO2 in the basic condition. The photocatalytic performance of the prepared samples was tested in the degradation of Rhodamine B and the anatase nanocuboids exhibited enhanced photocatalytic activity compared with the standard P25 powders.

  4. Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities.

    Science.gov (United States)

    Kandiel, Tarek A; Robben, Lars; Alkaim, Ayad; Bahnemann, Detlef

    2013-04-01

    Titanium dioxide nanoparticles consisting of pure anatase, anatase-rich, brookite-rich, and pure brookite modifications were synthesized and characterized by X-ray diffraction, field emission-scanning electron microscopy and nitrogen adsorption. The phase transformations among the three modifications of TiO2 (anatase, brookite, and rutile) and the photocatalytic activities of these nanoparticles were investigated by heat treatment over the temperature range from 400 to 800 °C and by the photooxidation of methanol, respectively. Direct transformation of anatase and brookite to rutile was observed, while in the case of the anatase-brookite mixture, anatase transforms firstly to brookite and then to rutile. The photocatalytic activity measurements indicate that brookite nanoparticles exhibit higher photocatalytic activities than anatase, and a comparable activity to that of the anatase-rich nanoparticles. The phase transformations and photocatalytic results are discussed regarding their dependence on crystallite size, surface area, and phase composition.

  5. Enhanced Photocatalytic Activity of Pure Anatase Tio2 and Pt-Tio2 Nanoparticles Synthesized by Green Microwave Assisted Route

    OpenAIRE

    Filippo, Emanuela; Carlucci, Claudia; Capodilupo,Agostina Lina; Perulli,Patrizia; Conciauro,Francesca; Corrente, Giuseppina Anna; Gigli, Giuseppe; Ciccarella, Giuseppe

    2015-01-01

    High-yield, rapid and facile synthesis of elongated pure anatase titania nanoparticles has been achieved through a nonaqueous microwave-based approach. The residual organics onto nanoparticles surfaces were completely removed through a new treatment under ozone flow, at room temperature in air. Such an ozone cleaning method revealed an effective inexpensive dry process of removing organic contaminants from nanoparticles surfaces. The TiO2 elongated nanoparticles having a length of 13.8 ±...

  6. Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Baofeng; Zhao, Fei; Du, Guodong; Porter, Spencer; Liu, Yong; Zhang, Peng; Cheng, Zhenxiang; Liu, Hua Kun; Huang, Zhenguo

    2016-06-29

    Pristine and boron-doped anatase TiO2 were prepared via a facile sol-gel method and the hydrothermal method for application as anode materials in sodium-ion batteries (SIBs). The sol-gel method leads to agglomerated TiO2, whereas the hydrothermal method is conducive to the formation of highly crystalline and discrete nanoparticles. The structure, morphology, and electrochemical properties were studied. The crystal size of TiO2 with boron doping is smaller than that of the nondoped crystals, which indicates that the addition of boron can inhibit the crystal growth. The electrochemical measurements demonstrated that the reversible capacity of the B-doped TiO2 is higher than that for the pristine sample. B-doping also effectively enhances the rate performance. The capacity of the B-doped TiO2 could reach 150 mAh/g at the high current rate of 2C and the capacity decay is only about 8 mAh/g over 400 cycles. The remarkable performance could be attributed to the lattice expansion resulting from B doping and the shortened Li(+) diffusion distance due to the nanosize. These results indicate that B-doped TiO2 can be a good candidate for SIBs.

  7. CdSe nanocrystal sensitized anatase TiO2 (001) tetragonal nanosheet-array films for photovoltaic application.

    Science.gov (United States)

    Feng, Shuanglong; Yang, Junyou; Liu, Ming; Liu, Yong

    2013-02-01

    CdSe nanocrystal sensitized TiO2 nanosheet array heterostructure films were fabricated by a two-step method. Firstly, a single crystalline anatase TiO2 tetragonal nanosheet-array film on a transparent conductive fluorine-doped tin oxide (FTO) substrate was successfully prepared by hydrothermal method. Then, CdSe nanocrystalline sensitizers were deposited on the TiO2 nanosheet array by CBD method. The products were characterized with XRD, SEM, TEM and UV-vis absorption spectroscopy. The effect of the CdSe nanocrystal deposition time and the length of the TiO2 sheet on the photovoltaic performance of the resulting CdSe/TiO2 nanosheet array electrodes were also investigated. In comparison with the non-sensitized TiO2 nanosheet array, the photocurrent of CdSe sensitized TiO2 nanosheet has a great enhancement, which gives some insight to the fundamental mechanism of the performance improvement.

  8. Nanostructured anatase TiO2 densified at high pressure as advanced visible light photocatalysts.

    Science.gov (United States)

    Carini, Giovanni; Parrino, Francesco; Palmisano, Giovanni; Scandura, Gabriele; Citro, Ilaria; Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano

    2015-09-26

    This study reports on characterization and photoactivity of nanostructured TiO2 samples, which have been permanently densified under high pressures, up to 2.1 GPa. Commercial Mirkat 211 anatase has been used as a benchmark sample, in order to investigate the effect of unidirectional high pressure on structural, optical and photocatalytic properties of TiO2. Vibrational Raman spectroscopy shows that the treatment does not cause transitions among the different crystalline phases of titanium dioxide. UV-vis diffuse reflectance spectra reveal that increasing pressure gives rise to a shift of the absorption onset towards higher wavelength enhancing the photoactivity under visible radiation. Samples are also photo-electrochemically characterized and tested in the gas phase with partial oxidation of ethanol to acetaldehyde under visible irradiation. Compaction up to 0.8 GPa depresses both the alcohol conversion and the aldehyde yield, while samples treated under higher pressures show enhanced characteristics of conversion compared to the pristine material. Moreover, promising results in the reduction of CO2 are also obtained under UV-visible radiation.

  9. Structural and optical properties of anatase TiO2 heteroepitaxial films prepared by MOCVD

    Science.gov (United States)

    Zhao, Wei; Feng, Xianjin; Xiao, Hongdi; Luan, Caina; Ma, Jin

    2016-11-01

    High-quality single-crystal anatase TiO2(a-TiO2) thin films have been obtained on SrTiO3 (STO) substrates using the metalorganic chemical vapor deposition (MOCVD) method. The optimal preparation process was explored. The lattice structure and epitaxial relationship were investigated by X-ray diffraction (XRD, both θ-2θ and Φ scans) and transmission electron microscopy (TEM). The results indicated that the film prepared at 550 °C with the Ti precursor molar flow rate of 4×10-7 mol/min had the best single crystalline quality, for which a clear epitaxial relationship of a-TiO2 (001)||STO (100) with a-TiO2 [100]||STO [001bar] could be inferred. The elemental composition and proportion were studied by the X-ray photoelectron spectroscopy (XPS) method, which proved the deposited film approximated stoichiometric TiO2. The samples showed high transparency of 70-80% in the visible range.

  10. Ethanol assisted synthesis of anatase nanobelts with improved crystallinity and photocatalytic activity

    Science.gov (United States)

    Ni, Binbin; Li, Feng; Li, Xiaoning; Fu, Zhengping; Zhu, Yanwu; Lu, Yalin

    2013-10-01

    A modified alkaline hydrothermal method via adding the ethanol treatment to the intermediates was developed to synthesize TiO2 nanobelts, in which the main phase is anatase. Compared with the previous reported TiO2 nanobelts obtained without the ethanol treatment, the new TiO2 nanobelts obtained through the ethanol assisted route are with much improved anatase crystallinity and a sharply reduced amount of TiO2-B phase, as well as a significantly higher photocatalytic activity that is even better than P25 for degrading Rhodamine-B under the ultraviolet light irradiation, which apparently correlates to the increased contents and crystallinity of anatase. The mechanism of ethanol treatment is also discussed based on the FTIR results.

  11. Preparation and crystalline phase of a TiO2 porous film by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; ZHANG Weiwei; TAO Haijun; WANG Ling

    2005-01-01

    Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and rutile. In addition, the forming mechanism of anatase and rutile TiO2 porous films was discussed.

  12. Synthesis and photocatalytic redox properties of anatase TiO2 single crystals

    Science.gov (United States)

    Dong, Yeshuo; Fei, Xuening; Liu, Zhifeng; Zhou, Yongzhu; Cao, Lingyun

    2017-02-01

    The anatase TiO2 single crystals were synthesized through a solvothermal route and their morphology and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Energy Dispersive X-ray Spectrometer (EDX). Characterization and photocatalytic activity experiments proposed that the simultaneous exposure of (001) and (101) facets could facilitate charge separation. While, due to the effect of surface substitution, the (001) facets were easier to be corroded with the increasing synthesis time. Moreover, the as-synthesized anatase TiO2 single crystals with (001) facets showed superior photocatalytic oxidation properties. Besides, the research on the plausible competitive mechanism of oxidation and reduction in the same reaction system suggested that the oxidation reaction was the predominant one with the increasing proportion of water on anatase TiO2 single crystals possessing the high reactivity of the (001) facets.

  13. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    Science.gov (United States)

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  14. TiO2 anatase with a bandgap in the visible region.

    Science.gov (United States)

    Dette, Christian; Pérez-Osorio, Miguel A; Kley, Christopher S; Punke, Paul; Patrick, Christopher E; Jacobson, Peter; Giustino, Feliciano; Jung, Soon Jung; Kern, Klaus

    2014-11-12

    TiO2 anatase plays a central role in energy and environmental research. A major bottleneck toward developing artificial photosynthesis with TiO2 is that it only absorbs ultraviolet light, owing to its large bandgap of 3.2 eV. If one could reduce the bandgap of anatase to the visible region, TiO2-based photocatalysis could become a competitive clean energy source. Here, using scanning tunneling microscopy and spectroscopy in conjunction with density functional theory calculations, we report the discovery of a highly reactive titanium-terminated anatase surface with a reduced bandgap of less than 2 eV, stretching into the red portion of the solar spectrum. By tuning the surface preparation conditions, we can reversibly switch between the standard anatase surface and the newly discovered low bandgap surface phase. The identification of a TiO2 anatase surface phase with a bandgap in the visible and high chemical reactivity has important implications for solar energy conversion, photocatalysis, and artificial photosynthesis.

  15. Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2.

    Science.gov (United States)

    Kim, Youngmin; Hwang, Hee Min; Wang, Luyang; Kim, Ikjoon; Yoon, Yeoheung; Lee, Hyoyoung

    2016-04-28

    A generation of reactive oxygen species (ROS) from TiO2 under solar light has been long sought since the ROS can disinfect organic pollutants. We found that newly developed crystalline/amorphous reduced TiO2 (rTiO2) that has low energy bandgap can effectively generate ROS under solar light and successfully remove a bloom of algae. The preparation of rTiO2 is a one-pot and mass productive solution-process reduction using lithium-ethylene diamine (Li-EDA) at room temperature. Interestingly only the rutile phase of TiO2 crystal was reduced, while the anatase phase even in case of both anatase/rutile phased TiO2 was not reduced. Only reduced TiO2 materials can generate ROS under solar light, which was confirmed by electron spin resonance. Among the three different types of Li-EDA treated TiO2 (anatase, rutile and both phased TiO2), the both phased rTiO2 showed the best performance to produce ROS. The generated ROS effectively removed the common green algae Chlamydomonas. This is the first report on algae degradation under solar light, proving the feasibility of commercially available products for disinfection.

  16. Direct formation of anatase TiO2 nanoparticles on carbon nanotubes by atomic layer deposition and their photocatalytic properties

    Science.gov (United States)

    Huang, Sheng-Hsin; Liao, Shih-Yun; Wang, Chih-Chieh; Kei, Chi-Chung; Gan, Jon-Yiew; Perng, Tsong-Pyng

    2016-10-01

    TiO2 with different morphology was deposited on acid-treated multi-walled carbon nanotubes (CNTs) by atomic layer deposition at 100 °C-300 °C to form a TiO2@CNT structure. The TiO2 fabricated at 100 °C was an amorphous film, but became crystalline anatase nanoparticles when fabricated at 200 °C and 300 °C. The saturation growth rates of TiO2 nanoparticles at 300 °C were about 1.5 and 0.4 Å/cycle for substrate-enhanced growth and linear growth processes, respectively. It was found that the rate constants for methylene blue degradation by the TiO2@CNT structure formed at 300 °C were more suitable to fit with second-order reaction. The size of 9 nm exhibited the best degradation efficiency, because of the high specific area and appropriate diffusion length for the electrons and holes.

  17. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Xie Yi

    2009-01-01

    Full Text Available Abstract A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs is presented. Anatase TiO2 nanoparticles (NPs with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  18. Hydrogenated Anatase TiO2 as Lithium-Ion Battery Anode: Size-Reactivity Correlation.

    Science.gov (United States)

    Zheng, Jing; Liu, Lei; Ji, Guangbin; Yang, Qifan; Zheng, Lirong; Zhang, Jing

    2016-08-10

    An improved hydrogenation strategy for controllable synthesis of oxygen-deficient anatase TiO2 (H-TiO2) is performed via adjusting the particle size of starting rectangular anatase TiO2 nanosheets from 90 to 30 nm. The morphology and structure characterizations obviously demonstrate that the starting materials of TiO2 nanosheets are transformed into nanoparticles with distinct size reduction; meanwhile, the concentration of oxygen vacancy is gradually increased with the decreasing particle size of starting TiO2. As a result, the Li-storage performance of H-TiO2 is not only much better than that of the pure TiO2 but also elevated stage by stage with the decreasing particle size of starting TiO2; especially the H-TiO2 with highest concentration of oxygen vacancy from smallest TiO2 nanosheets shows the best Li-storage performance with a stable discharge capacity 266 mAh g(-1) after 100 cycles at 1 C. Such excellent performance should be attributed to the joint action from oxygen vacancy and size effect, which promises significant enhancement of high electronic conductivity without weakening Li(+) diffusion via hydrogenation strategy.

  19. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.

    Science.gov (United States)

    Zhang, Jinfeng; Zhou, Peng; Liu, Jianjun; Yu, Jiaguo

    2014-10-14

    In general, anatase TiO2 exhibits higher photocatalytic activities than rutile TiO2. However, the reasons for the differences in photocatalytic activity between anatase and rutile are still being debated. In this work, the band structure, density of states, and effective mass of photogenerated charge carriers for anatase, rutile and brookite TiO2 are investigated by the first-principle density functional theory calculation. The results indicate that anatase appears to be an indirect band gap semiconductor, while rutile and brookite belong to the direct band gap semiconductor category. Indirect band gap anatase exhibits a longer lifetime of photoexcited electrons and holes than direct band gap rutile and brookite because the direct transitions of photogenerated electrons from the conduction band (CB) to valence band (VB) of anatase TiO2 is impossible. Furthermore, anatase has the lightest average effective mass of photogenerated electrons and holes as compared to rutile and brookite. The lightest effective mass suggests the fastest migration of photogenerated electrons and holes from the interior to surface of anatase TiO2 particle, thus resulting in the lowest recombination rate of photogenerated charge carriers within anatase TiO2. Therefore, it is not surprising that anatase usually shows a higher photocatalytic activity than rutile and brookite. This investigation will provide some new insight into understanding the difference of photocatalytic activity among anatase, rutile and brookite.

  20. Radially oriented mesoporous TiO2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices.

    Science.gov (United States)

    Liu, Yong; Che, Renchao; Chen, Gang; Fan, Jianwei; Sun, Zhenkun; Wu, Zhangxiong; Wang, Minghong; Li, Bin; Wei, Jing; Wei, Yong; Wang, Geng; Guan, Guozhen; Elzatahry, Ahmed A; Bagabas, Abdulaziz A; Al-Enizi, Abdullah M; Deng, Yonghui; Peng, Huisheng; Zhao, Dongyuan

    2015-05-01

    Highly crystalline mesoporous materials with oriented configurations are in demand for high-performance energy conversion devices. We report a simple evaporation-driven oriented assembly method to synthesize three-dimensional open mesoporous TiO2 microspheres with a diameter of ~800 nm, well-controlled radially oriented hexagonal mesochannels, and crystalline anatase walls. The mesoporous TiO2 spheres have a large accessible surface area (112 m(2)/g), a large pore volume (0.164 cm(3)/g), and highly single-crystal-like anatase walls with dominant (101) exposed facets, making them ideal for conducting mesoscopic photoanode films. Dye-sensitized solar cells (DSSCs) based on the mesoporous TiO2 microspheres and commercial dye N719 have a photoelectric conversion efficiency of up to 12.1%. This evaporation-driven approach can create opportunities for tailoring the orientation of inorganic building blocks in the assembly of various mesoporous materials.

  1. Highly Crystalline Nanoparticle Suspensions for Low-Temperature Processing of TiO2 Thin Films.

    Science.gov (United States)

    Watté, Jonathan; Lommens, Petra; Pollefeyt, Glenn; Meire, Mieke; De Buysser, Klaartje; Van Driessche, Isabel

    2016-05-25

    In this work, we present preparation and stabilization methods for highly crystalline TiO2 nanoparticle suspensions for the successful deposition of transparent, photocatalytically active TiO2 thin films toward the degradation of organic pollutants by a low temperature deposition method. A proof-of-concept is provided wherein stable, aqueous TiO2 suspensions are deposited on glass substrates. Even if the processing temperature is lowered to 150-200 °C, the subsequent heat treatment provides transparent and photocatalytically active titania thin layers. Because all precursor solutions are water-based, this method provides an energy-efficient, sustainable, and environmentally friendly synthesis route. The high load in crystalline titania particles obtained after microwave heating opens up the possibility to produce thin coatings by low temperature processing, as a conventional crystallization procedure is in this case superfluous. The impact of the precursor chemistry in Ti(4+)-peroxo solutions, containing imino-diacetic acid as a complexing ligand and different bases to promote complexation was studied as a function of pH, reaction time and temperature. The nanocrystal formation was followed in terms of colloidal stability, crystallinity and particle size. Combined data from Raman and infrared spectroscopy, confirmed that stable titanium precursors could be obtained at pH levels ranging from 2 to 11. A maximum amount of 50.7% crystallinity was achieved, which is one of the highest reported amounts of anatase nanoparticles that are suspendable in stable aqueous titania suspensions. Decoloring of methylene blue solutions by precipitated nanosized powders from the TiO2 suspensions proves their photocatalytic properties toward degradation of organic materials, a key requisite for further processing. This synthesis method proves that the deposition of highly crystalline anatase suspensions is a valid route for the production of photocatalytically active, transparent

  2. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes.

    Science.gov (United States)

    Wen, Yan; Liu, Bitao; Zeng, Wei; Wang, Yuhua

    2013-10-21

    Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail.

  3. The Acute Liver Injury in Mice Caused by Nano-Anatase TiO2

    Science.gov (United States)

    Ma, Linglan; Zhao, Jinfang; Wang, Jue; Liu, Jie; Duan, Yanmei; Liu, Huiting; Li, Na; Yan, Jingying; Ruan, Jie; Wang, Han; Hong, Fashui

    2009-11-01

    Although it is known that nano-TiO2 or other nanoparticles can induce liver toxicities, the mechanisms and the molecular pathogenesis are still unclear. In this study, nano-anatase TiO2 (5 nm) was injected into the abdominal cavity of ICR mice for consecutive 14 days, and the inflammatory responses of liver of mice was investigated. The results showed the obvious titanium accumulation in liver DNA, histopathological changes and hepatocytes apoptosis of mice liver, and the liver function damaged by higher doses nano-anatase TiO2. The real-time quantitative RT-PCR and ELISA analyses showed that nano-anatase TiO2 can significantly alter the mRNA and protein expressions of several inflammatory cytokines, including nucleic factor-κB, macrophage migration inhibitory factor, tumor necrosis factor-α, interleukin-6, interleukin-1β, cross-reaction protein, interleukin-4, and interleukin-10. Our results also implied that the inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity.

  4. Completely oriented anatase TiO2 nanoarrays: topotactic growth and orientation-related efficient photocatalysis

    Science.gov (United States)

    Yang, Jingling; Wu, Qili; He, Shiman; Yan, Jing; Shi, Jianying; Chen, Jian; Wu, Mingmei; Yang, Xianfeng

    2015-08-01

    A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001} facets on the anatase nanoarrays with super-hydrophilicity.A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001

  5. Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance.

    Science.gov (United States)

    Žerjav, Gregor; Arshad, Muhammad Shahid; Djinović, Petar; Junkar, Ita; Kovač, Janez; Zavašnik, Janez; Pintar, Albin

    2017-03-30

    The as-synthesized TiO2 nanorods a-TNR (amorphous TiO2 layer covering the crystalline anatase TiO2 core) and TNR (fully crystalline anatase TiO2) were decorated with reduced graphene oxide (rGO) to synthesize two series of TiO2 + rGO composites with different nominal loadings of GO (from 4 to 20 wt%). The structural, surface and electronic properties of the obtained TiO2 + rGO composites were analyzed and correlated to their performance in the photocatalytic oxidation of aqueous bisphenol A solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that charge separation in TiO2 + rGO composites is improved due to the perfect matching of TiO2 and rGO valence band maxima (VBM). Cyclic voltammetry (CV) experiments revealed that the peak-to-peak separations (ΔEp) are the lowest and the oxidation current densities are the highest for composites with a nominal 10 wt% GO content, meaning that it is much easier for the charge carriers to percolate through the solid, resulting in improved charge migration. Due to the high charge carrier mobility in rGO and perfect VBM matching between TiO2 and rGO, the electron-hole recombination in composites was suppressed, resulting in more electrons and holes being able to participate in the photocatalytic reaction. rGO amounts above 10 wt% decreased the photocatalytic activity; thus, it is critical to optimize its amount in the TiO2 + rGO composites for achieving the highest photocatalytic activity. BPA degradation rates correlated completely with the results of the CV measurements, which directly evidenced improved charge separation and migration as the crucial parameters governing photocatalysis.

  6. First-principles study on anatase TiO2 codoped with nitrogen and praseodymium

    Science.gov (United States)

    Gao, Pan; Wu, Jing; Liu, Qing-Ju; Zhou, Wen-Fang

    2010-08-01

    The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on density functional theory. Highly efficient visible-light-induced nitrogen or/and praseodymium doped anatase TiO2 nanocrystal photocatalyst were synthesized by a microwave chemical method. The calculated results show that the photocatalytic activity of TiO2 can be enhanced by N doping or Pr doping, and can be further enhanced by N+Pr codoping. The band gap change of the codoping TiO2 is more obvious than that of the single ion doping, which results in the red shift of the optical absorption edges. The results are of great significance for the understanding and further development of visible-light response high activity modified TiO2 photocatalyst. The photocatalytic activity of the samples for methyl blue degradation was investigated under the irradiation of fluorescent light. The experimental results show that the codoping TiO2 photocatalytic activity is obviously higher than that of the single ion doping. The experimental results accord with the calculated results.

  7. Methanol Conversion into Dimethyl Ether on the Anatase TiO2(001) Surface.

    Science.gov (United States)

    Xiong, Feng; Yu, Yan-Yan; Wu, Zongfang; Sun, Guanghui; Ding, Liangbing; Jin, Yuekang; Gong, Xue-Qing; Huang, Weixin

    2016-01-11

    Exploring reactions of methanol on TiO2 surfaces is of great importance in both C1 chemistry and photocatalysis. Reported herein is a combined experimental and theoretical calculation study of methanol adsorption and reaction on a mineral anatase TiO2(001)-(1×4) surface. The methanol-to-dimethyl ether (DME) reaction was unambiguously identified to occur by the dehydration coupling of methoxy species at the fourfold-coordinated Ti(4+) sites (Ti(4c)), and for the first time confirms the predicted higher reactivity of this facet compared to other reported TiO2 facets. Surface chemistry of methanol on the anatase TiO2(001)-(1×4) surface is seldom affected by co-chemisorbed water. These results not only greatly deepen the fundamental understanding of elementary surface reactions of methanol on TiO2 surfaces but also show that TiO2 with a high density of Ti(4c) sites is a potentially active and selective catalyst for the important methanol-to-DME reaction.

  8. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    Science.gov (United States)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2017-03-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  9. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    Science.gov (United States)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2016-12-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  10. Specific Facets-Dominated Anatase TiO2: Fluorine-Mediated Synthesis and Photoactivity

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Dozzi

    2013-05-01

    Full Text Available Semiconductors crystal facet engineering has become an important strategy for properly tuning and optimizing both the physicochemical properties and the reactivity of photocatalysts. In this review, a concise survey of recent results obtained in the field of specific surface-oriented anatase TiO2 crystals preparation is presented. The attention is mainly focused on the fluorine-mediated hydrothermal and/or solvothermal processes employed for the synthesis and the assembly of anatase micro/nanostructures with dominant {001} facets. Their peculiar photocatalytic properties and potential applications are also presented, with a particular focus on photocatalysis-based environmental clean up and solar energy conversion applications. Finally, the most promising results obtained in the engineering of TiO2 anatase crystal facets obtained by employing alternative, possibly more environmentally friendly methods are critically compared.

  11. Hierarchical architectures TiO2: pollen-inducted synthesis, remarkable crystalline-phase stability, tunable size, and reused photo-catalysis.

    Science.gov (United States)

    Dou, Lingling; Gao, Lishuang; Yang, Xiaohui; Song, Xiuqin

    2012-02-15

    TiO(2) with hierarchical architectures, tunable crystalline phase and thermal stability is successfully fabricated on a large scale through a facile hydrolysis process of TiCl(4) combining with inducing of pollen. The structure of the as-prepared TiO(2) is characterized by X-ray diffraction, Raman spectroscopy, infrared spectra, and scanning electron microscopy. The experimental results indicate that different phases (anatase, rutile or mixed crystallite) of TiO(2) can be synthesized by controlling the experimental conditions. The pure phase of rutile or anatase can be obtained at 100°C, while the pure phase of anatase can be retained after being annealed at 900°C. The hierarchical structures TiO(2) are constitute through self-assembly of nanoparticles or nanorods TiO(2), which exhibit high and reused photo-catalytic properties for degradation of methylene blue.

  12. Low-temperature Preparation of Photocatalytic TiO2 Thin Films on Polymer Substrates by Direct Deposition from Anatase Sol

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Anatase TiO2 sol was synthesized under mild conditions (75C and ambient pressure) by hydrolysis of titaniumn-butoxide in abundant acidic aqueous solution and subsequent reflux to enhance crystallization. At room temperature and in ambient atmosphere, crystalline TiO2 thin films were deposited on polymethylmethacrylate (PMMA), SiO2-coated PMMA and SiO2-coated silicone rubber substrates from the as-prepared TiO2 sol by a dip-coating process. SiO2 layers prior to TiO2 thin films on polymer substrates could not only protect the substrates from the photocatalytic decomposition of the TiO2 thin films but also enhance the adhesion of the TiO2 thin films to the substrates. Field-emission type scanning electron microscope (FE-SEM) investigations revealed that the average particle sizes of the nanoparticles composing the TiO2 thin films were about 35~47 nm. The TiO2 thin films exhibited high photocatalytic activities in the degradation of reactive brilliant red dye X-3B in aqueous solution under aerated conditions. The preparation process of photocatalytic TiO2 thin films on the polymer substrates was quite simple and a low temperature route.

  13. Facile embedding of single vanadium atoms at the anatase TiO2(101) surface.

    Science.gov (United States)

    Koust, Stig; Arnarson, Logi; Moses, Poul G; Li, Zheshen; Beinik, Igor; Lauritsen, Jeppe V; Wendt, Stefan

    2017-04-05

    To understand the structure-reactivity relationships for mixed-metal oxide catalysts, well-defined systems are required. Mixtures of vanadia and titania (TiO2) are of particular interest for application in heterogeneous catalysis, with TiO2 often acting as the support. By utilizing high-resolution scanning tunneling microscopy, we studied the interaction of vanadium (V) with the anatase TiO2(101) surface in the sub-monolayer regime. At 80 K, metallic V nucleates into homogeneously distributed clusters onto the terraces with no preference for nucleation at the step edges. However, embedding of single V atoms into TiO2 occurs following annealing at room temperature. In conjunction with X-ray photoelectron spectroscopy data and density functional theory calculations, we propose that monomeric V atoms occupy positions of regular surface Ti sites, i.e., Ti atoms are substituted by V atoms.

  14. Mussel-Directed Synthesis of Nitrogen-Doped Anatase TiO2.

    Science.gov (United States)

    Xie, Jingjing; Xie, Hao; Su, Bao-Lian; Cheng, Yi-Bing; Du, Xiaodong; Zeng, Hui; Wang, Menghu; Wang, Weimin; Wang, Hao; Fu, Zhengyi

    2016-02-24

    Structure-forming processes leading to biominerals are well worth learning in pursuit of new synthetic techniques. Strategies that attempt to mimic nature in vitro cannot replace an entire complex natural organism, requiring ingenuity beyond chemists' hands. A "bioprocess-inspired synthesis" is demonstrated for fabrication of N-doped TiO2 materials at ambient temperature by direct implantation of precursor into living mussels. The amorphous precursor transforms into N-doped anatase TiO2 with a hierarchical nanostructure. Synthetic TiO2 exhibits high phase stability and enhanced visible-light photocatalytic activity as a result of modifications to its band gap during in vivo mineralization. Intracellular proteins were found to be involved in TiO2 mineralization. Our findings may inspire material production by new synthetic techniques, especially under environmentally benign conditions.

  15. Anatase TiO2/cellulose hybrid paper: Synthesis, characterizations, and photocatalytic activity for degradation of indigo carmine dye

    Science.gov (United States)

    Jiao, Yue; Wan, Caichao; Li, Jian

    We report a facile easy method to deposit anatase titania (TiO2) on cellulose paper. The anatase TiO2/cellulose paper (ATCP) was characterized by scanning electron microscopy, transmission electron microscope, energy dispersive X-ray spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. This hybrid paper with the anatase TiO2 content of around 13.86wt.% can serve as an eco-friendly flexible photocatalyst, which can rapidly degrade blue indigo carmine dye into a colorless solution within 30min under UV radiation. Moreover, compared to commercially available TiO2 P25 and anatase TiO2 powder, a faster decomposition rate of indigo carmine dye was acquired when using ATCP. These results suggest that this hybrid paper might be useful in the treatment of organic dye wastewater.

  16. The enhancement of ferromagnetism in Ta-doped anatase TiO2 system by iron co-doping

    Science.gov (United States)

    Muhammady, S.; Kurniawan, R.; Nurfani, E.; Sutjahja, I. M.; Winata, T.; Darma, Y.

    2016-11-01

    The ferromagnetic properties of Ta-doped and (Ta,Fe)-doped anatase TiO2 as diluted ferromagnetic materials has been studied within spin-polarized generalized gradient approximation (GGA) and GGA + U method. We observed a ferromagnetic properties in Ta- doped anatase TiO2, with a total magnetic moment of 1.00 μ B /supercell, which mainly arised due to Ti 3d and O 2p states upon Ef. Furthermore, the enhancement of ferromagnetism, mainly arising due to Fe 3d states, in (Ta,Fe)-doped anatase TiO2 was observed up to 5.00 μB /supercell, 5 times larger than that in Ta-doped TiO2. Our results confirmed the important role of Fe doping for the ferromagnetism enhancement in Ta-doped anatase TiO2.

  17. Sonocatalytic degradation of methyl orange in the presence of (nanometer and ordinary) anatase TiO2 powders

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; GUO Bao-dong; ZHANG Zhao-hong; ZHANG Xiang-dong; WU Jing; LI Hong

    2005-01-01

    The nanometer and ordinary anatase titanium dioxide(TiO2 ) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO2 powder were much better than that without TiO2, but the sonocatalytic activity of the nanometer anatase TiO2 particle was obviously higher than that of ordinary anatase TiO2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO2 powder was an advisable choice for non- or lowtransparent organic wastewaters.

  18. Efficient photodegradation of organic dye using anatase TiO2 plants as catalyst

    Science.gov (United States)

    Bahadur, Jitendra; Pal, Kaushik

    2017-08-01

    Anatase TiO2 hierarchical nanostructures with higher photocatalytic activity are of special importance in various applications. We have reported the synthesis of TiO2 as water chestnut plants like morphology via facile hydrothermal method, by using Titanium (IV) butoxide (TBOT) as a precursor solution. It is found that TiO2 nanoparticles work as seed and completely convert into water chestnut plants like structure or morphology, which are composed of crystallized anatase nanocrystals. X-ray diffraction spectra confirmed the presence of anatase phase of crystallized TiO2 plants (TPs). The average life time delay for generated charge carriers in TPs was calculated to be around 2.45 ns, which reflects slow recombination of charge carriers. The prepared TPs show excellent photocatalytic performance when applied in photo degradation of Rhodamine B organic dye. The unique features exhibited by TPs make them a promising candidate for vast potential applications in field such as solar cells, photocatalysis, supercapacitor, lithium ion batteries and some related fields. [Figure not available: see fulltext.

  19. Extraordinary Performance of Carbon‐Coated Anatase TiO2 as Sodium‐Ion Anode

    Science.gov (United States)

    Tahir, Muhammad Nawaz; Oschmann, Bernd; Buchholz, Daniel; Dou, Xinwei; Lieberwirth, Ingo; Panthöfer, Martin; Tremel, Wolfgang

    2015-01-01

    The synthesis of in situ polymer‐functionalized anatase TiO2 particles using an anchoring block copolymer with hydroxamate as coordinating species is reported, which yields nanoparticles (≈11 nm) in multigram scale. Thermal annealing converts the polymer brushes into a uniform and homogeneous carbon coating as proven by high resolution transmission electron microscopy and Raman spectroscopy. The strong impact of particle size as well as carbon coating on the electrochemical performance of anatase TiO2 is demonstrated. Downsizing the particles leads to higher reversible uptake/release of sodium cations per formula unit TiO2 (e.g., 0.72 eq. Na+ (11 nm) vs only 0.56 eq. Na+ (40 nm)) while the carbon coating improves rate performance. The combination of small particle size and homogeneous carbon coating allows for the excellent electrochemical performance of anatase TiO2 at high (134 mAh g−1 at 10 C (3.35 A g−1)) and low (≈227 mAh g−1 at 0.1 C) current rates, high cycling stability (full capacity retention between 2nd and 300th cycle at 1 C) and improved coulombic efficiency (≈99.8%). PMID:27134618

  20. Low-temperature electrodeposition approach leading to robust mesoscopic anatase TiO2 films.

    Science.gov (United States)

    Patra, Snehangshu; Andriamiadamanana, Christian; Tulodziecki, Michal; Davoisne, Carine; Taberna, Pierre-Louis; Sauvage, Frédéric

    2016-02-25

    Anatase TiO2, a wide bandgap semiconductor, likely the most worldwide studied inorganic material for many practical applications, offers unequal characteristics for applications in photocatalysis and sun energy conversion. However, the lack of controllable, cost-effective methods for scalable fabrication of homogeneous thin films of anatase TiO2 at low temperatures (ie. < 100 °C) renders up-to-date deposition processes unsuited to flexible plastic supports or to smart textile fibres, thus limiting these wearable and easy-to-integrate emerging technologies. Here, we present a very versatile template-free method for producing robust mesoporous films of nanocrystalline anatase TiO2 at temperatures of/or below 80 °C. The individual assembly of the mesoscopic particles forming ever-demonstrated high optical quality beads of TiO2 affords, with this simple methodology, efficient light capture and confinement into the photo-anode, which in flexible dye-sensitized solar cell technology translates into a remarkable power conversion efficiency of 7.2% under A.M.1.5G conditions.

  1. Completely oriented anatase TiO2 nanoarrays: topotactic growth and orientation-related efficient photocatalysis.

    Science.gov (United States)

    Yang, Jingling; Wu, Qili; He, Shiman; Yan, Jing; Shi, Jianying; Chen, Jian; Wu, Mingmei; Yang, Xianfeng

    2015-09-07

    A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001} facets on the anatase nanoarrays with super-hydrophilicity.

  2. The influence of metal interlayers on the structural and optical properties of nano-crystalline TiO 2 films

    KAUST Repository

    Yang, Yong

    2012-03-01

    TiO 2-M-TiO 2 (M = W, Co and Ag) multilayer films have been deposited on glass substrates using reactive magnetron sputtering, then annealed in air for 2 h at 500°C. The structure, surface morphology and optical properties of the films have been studied using X-ray diffraction, Raman spectroscopy, atomic force microscopy and UV-vis spectroscopy. The TiO 2-W-TiO 2 and TiO 2-Co-TiO 2 films showed crystalline phases, whereas the TiO 2-Ag-TiO 2 films remained in the amorphous state. The crystallization temperature for the TiO 2-M-TiO 2 films decreased significantly compared with pure TiO 2 film deposited on quartz. Detailed analysis of the Raman spectra suggested that the crystallization of TiO 2-M-TiO 2 films was associated with the large structural deformation imposed by the oxidation of intermediate metal layers. Moreover, the optical band gap of the films narrowed due to the appearance of impurity levels as the metal ions migrated into the TiO 2 matrix. These results indicate that the insertion of intermediate metal layers provides a feasible access to improve the structural and optical properties of anatase TiO 2 films, leading to promising applications in the field of photocatalysis. © 2011 Elsevier B.V. All rights reserved.

  3. Study of defect-induced ferromagnetism in hydrogenated anatase TiO2:Co

    Science.gov (United States)

    Singhal, R. K.; Samariya, Arvind; Kumar, Sudhish; Xing, Y. T.; Jain, D. C.; Dolia, S. N.; Deshpande, U. P.; Shripathi, T.; Saitovitch, Elisa B.

    2010-06-01

    Electronic and magnetic properties of Co-doped TiO2 polycrystalline pellets (Ti0.95Co0.05O2) have been investigated using x-ray diffraction, x-ray photoemission, magnetization, and resistance measurements. The as-synthesized and hydrogenated specimens crystallize in the anatase type tetragonal structure containing very small (˜4.4%) rutile phase. The dopant ions of Co are found to be divalent and well incorporated into TiO2 lattice, substituting the Ti site within the anatase phase, with no evidence of metallic Co or any other oxides of Co. The Co doping induces a weak ferromagnetic ordering in the diamagnetic TiO2 host matrix. Interestingly, when the Co-doped TiO2 is annealed in hydrogen atmosphere, it shows a giant enhancement in magnetization. However, an extended reheating in air causes this H-induced magnetization to vanish and the sample regains the as-prepared status. Our findings indicate that ferromagnetism originates from the doped matrix rather than any magnetic clusters and strongly correlated with oxygen vacancies in the doped TiO2. The induced ferromagnetic ordering is found to be a reversible process with regard to oxygen vacancy defects that could be induced or removed, respectively, upon introduction or removal of these defects.

  4. Growth of anatase and rutile phase TiO2 nanoparticles using pulsed laser ablation in liquid: Influence of surfactant addition and ablation time variation

    Science.gov (United States)

    Chaturvedi, Amita; Joshi, M. P.; Mondal, P.; Sinha, A. K.; Srivastava, A. K.

    2017-02-01

    Titanium dioxide (TiO2) nanoparticles were grown using nanosecond pulsed laser ablation of Ti target in DI water and in 0.001 M sodium dodecyl sulfate (SDS) surfactant aqueous solution. Growth was carried out with varying ablation times i. e. 30 min, 60 min and 90 min. The objective of our study was to investigate the influence of variations in liquid ambience conditions on the growth of the nanoparticles in a pulsed laser ablation in liquid (PLAL) process. Size, composition and optical properties of the grown TiO2 nanoparticles were investigated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption, photoluminescence (PL) spectroscopy and X-ray diffraction (XRD) studies. The obtained nanoparticles of TiO2 were found almost spherical in shape and polycrystalline in nature in both the liquid mediums i.e. DI water and aqueous solution of surfactant. Nanoparticles number density was also found to increase with increasing ablation time in both the liquid mediums. However crystalline phase of the grown TiO2 nanoparticles differs with the change in liquid ambience conditions. Selected area electron diffraction (SAED), PL and XRD studies suggest that DI water ambience is favorable for the growth of anatase phase TiO2 nanoparticles for all ablation times. While Surfactant added water ambience is favorable for the growth of rutile phase TiO2 nanoparticles but for shorter ablation times of 30 min and 60 min only, for longer ablation time of 90 min anatase phase was also observed along with the rutile phase TiO2 nanoparticles. The formation of anatase phase in DI water and rutile and anatase phase in aqueous solution of surfactant is explained on the basis of varying thermodynamic conditions with the two different liquid ambiences and different ablation times.

  5. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Damon Rafieian

    2015-09-01

    Full Text Available We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2, obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  6. Photocatalytic Activity Enhancement of Anatase TiO2 by Using TiO

    Directory of Open Access Journals (Sweden)

    Zhenrui Chen

    2014-01-01

    Full Text Available We employed high-energy ball-milling technique to fabricate TiO/TiO2 heterogeneous nanostructures. XRD proved the existence of TiO/TiO2 heterogeneous structures. SEM and HRTEM investigation evidenced that the mean particle size and mean grain size of the as-prepared samples are 23 nm and 13 nm, respectively. UV-Vis spectra exhibited that TiO has enhanced the visible light absorption of TiO2 and has changed the Eg of TiO2. UPS examination indicated that the electron work function (EWF of TiO is higher than that of TiO2. Photocatalytic degradation experiments revealed that an appropriate TiO content can enhance the photocatalytic activity of pure anatase TiO2. The best photocatalytic activity of TiO/TiO2 heterogeneous nanostructures is even better than that of Au-deposited TiO2 by keeping high degradation efficiency of 93%. The internal electrical field producing in TiO/TiO2 heterogeneous nanostructures was considered to be dominantly responsible for the enhanced photocatalytic activity. Therefore, the substitution of TiO with noble metal in TiO2 will be widely used in the future due to its low cost. This study also provides a clear direction of enhancing photocatalytic activity of TiO2: incorporating a guest compound into TiO2 with an appropriate content if the compound has much higher electron work function than that of TiO2.

  7. Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Rui; Wang, Chong M.; McCready, David E.; Droubay, Timothy C.; Chambers, Scott A.

    2007-03-15

    We have grown TiO2 anatase films with rutile nanocrystalline inclusions using molecular beam epitaxy under different growth conditions. This model system is important for investigating the role of rutile/anatase interfaces in heterogeneous photocatalysis. To control the film structure, we grew a pure anatase (001) layer at a slow rate and then increased the growth rate to drive the nucleation of rutile particles. Structure analysis indicates that the rutile phase has four preferred orientations in the anatase film.

  8. Preparation and tribological properties of stearic acid-modified hierarchical anatase TiO 2 microcrystals

    Science.gov (United States)

    Qian, Jianhua; Yin, Xiangyu; Wang, Ning; Liu, Lin; Xing, Jinjuan

    2012-01-01

    Hierarchical TiO2 microcrystals were synthesized through a facile solvothermal method. X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements were used to characterize the structure of the as-prepared samples. The results indicated that the synthesized hierarchical titania (TiO2) microspheres were composed of numerous anatase phase TiO2 particles. The as-prepared samples were chemically modified with stearic acid to improve their dispersion in oil. Fourier transmission infrared spectroscopy (FT-IR) and thermogravimetry analysis (TGA) were carried out to evaluate the characteristics of the modified TiO2 microcrystals. The tribological properties of the modified TiO2 microcrystals as additives of liquid paraffin were studied by a four-ball tester, and the results showed that they could significantly improve anti-wear performance, friction-reduction property and load-carrying capacity of liquid paraffin. These advantages make the modified TiO2 microcrystals promising for green lubricating oil additives.

  9. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2

    Science.gov (United States)

    Zanatta, A. R.

    2017-07-01

    Titanium-dioxide (TiO2) is a low-cost, chemically inert material that became the basis of many modern applications ranging from, for example, cosmetics to photovoltaics. TiO2 exists in three different crystal phases - Rutile, Anatase and, less commonly, Brookite - and, in most of the cases, the presence or relative amount of these phases are essential to decide the TiO2 final application and its related efficiency. Traditionally, X-ray diffraction has been chosen to study TiO2 and provides both the phases identification and the Rutile-to-Anatase ratio. Similar information can be achieved from Raman scattering spectroscopy that, additionally, is versatile and involves rather simple instrumentation. Motivated by these aspects this work took into account various TiO2 Rutile+Anatase powder mixtures and their corresponding Raman spectra. Essentially, the method described here was based upon the fact that the Rutile and Anatase crystal phases have distinctive phonon features, and therefore, the composition of the TiO2 mixtures can be readily assessed from their Raman spectra. The experimental results clearly demonstrate the suitability of Raman spectroscopy in estimating the concentration of Rutile or Anatase in TiO2 and is expected to influence the study of TiO2-related thin films, interfaces, systems with reduced dimensions, and devices like photocatalytic and solar cells.

  10. Structural study of TiO2 nanotube based to the (101) anatase surface

    Science.gov (United States)

    Dargouthi, Sarra; Minot, Christian; Tangour, Bahoueddine

    2017-02-01

    This work concerns six TiO2 (n,0) nanotubes specifically: (9,0) (10,0) (11,0) (12,0) (13,0) and (14,0). They are obtained by winding a film from the (101) anatase surface, this plane surface serving as a reference. We show that the rolling up is a destabilizing factor. Indeed, the winding provokes a rapprochement between two successive bridged oxygen atoms thus inducing repulsion between them. Structure of nanotubes leads to modulate the O-O distance from 2.845 Å to 4.541 Å whereas the unique value of the anatase is 3.809 Å. This modulation of the internuclear distance O-O may play a role in the reactivity of TiO2 process involving two neighboring oxygen and can allow the proper choice of the nanotube to be used in catalysis.

  11. Ab initio calculations of electronic structure of anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    Chen Qiang; Cao Hong-Hong

    2004-01-01

    This paper presents the results of the self-consistent calculations on the electronic structure of anatase phase of TiO2. The calculations were performed using the full potential-linearized augmented plane wave method (FP-LAPW)in the framework of the density functional theory (DFT) with the generalized gradient approximation (GGA). The fully optimized structure, obtained by minimizing the total energy and atomic forces, is in good agreement with experiment.We also calculated the band structure and the density of states. In particular, the calculated band structure prefers an indirect transition between wlence and conduction bands of anatase TiO2, which may be helpful for clarifying the ambiguity in other theoretical works.

  12. Photoanode based on chain-shaped anatase TiO2 nanorods for high-efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Rui, Yichuan; Li, Yaogang; Wang, Hongzhi; Zhang, Qinghong

    2012-10-01

    Anatase TiO(2) nanorods with large specific surface areas and high crystallinity have been synthesized by surfactant-free hydrothermal treatment of water-soluble peroxotitanium acid (PTA). X-ray diffraction and TEM analysis showed that all TiO(2) nanorods derived from PTA in different hydrothermal processes were in the anatase phase, and high aspect ratio TiO(2) nanorods with chain-shaped structures were formed at 150 °C for 24 h by oriented growth. The nanorods were fabricated as photoanodes for high-efficiency dye-sensitized solar cells (DSSCs). DSSCs fabricated from the chain-shaped TiO(2) nanorods gave a highest short-circuit current density of 14.8 mA cm(-2) and a maximum energy conversion efficiency of 7.28 %, as a result of the presence of far fewer surface defects and grain boundaries than are present in commercial P25 TiO(2) nanoparticles. Electrochemical impedance spectroscopy also confirmed that DSSCs based on the TiO(2) nanorods have enhanced electron transport properties and a long electron lifetime. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In-situ synthesized mesoporous TiO2-B/anatase microparticles:Improved anodes for lithium ion batteries☆

    Institute of Scientific and Technical Information of China (English)

    Wei Zhuang; Linghong Lu; Wei Li; Rong An; Xin Feng; Xinbing Wu; Yudan Zhu; Xiaohua Lu

    2015-01-01

    Mesoporous TiO2-B/anatase microparticles have been in-situ synthesized from K2Ti2O5 without template. The TiO2-B phase around the particle surface accelerates the diffusion of charges through the interface, while the anatase phase in the core maintains the capacity stability. The heterojunction interface between the main polymorph of anatase and the trace of TiO2-B exhibits promising lithium ion battery performance. This trace of 5%(by mass) TiO2-B determined by Raman spectra brings the first discharge capacity of this material to 247 mA·h·g−1, giving 20%improvement com-pared to the anatase counterpart. Stability testing at 1 C reveals that the capacity maintains at 171 mA·h·g−1, which is better than 162 mA·h·g−1 for single phase anatase or 159 mA·h·g−1 for TiO2-B. The mesoporous TiO2-B/anatase microparticles also show superior rate performance with 100 mA·h·g−1 at 40 C, increased by nearly 25%as compared to pure anatase. This opens a possibility of a general design route, which can be applied to other metal oxide electrode materials for rechargeable batteries and supercapacitors.

  14. Alternating voltage induced ordered anatase TiO2 nanopores: An electrochemical investigation of sodium storage

    Science.gov (United States)

    Li, Simin; Xie, Lingling; Hou, Hongshuai; Liao, Hanxiao; Huang, Zhaodong; Qiu, Xiaoqing; Ji, Xiaobo

    2016-12-01

    Anatase TiO2 nanopores are successfully prepared through alternating voltage induced electrochemical synthesis (AVIES) approach at room temperature. When utilizing TiO2 nanoporous materials as an anode for Na-ion battery, it delivers a reversible charge-discharge capacity of around 180 mA h g-1 at 0.2 C (67 mA g-1) after 200 cycles. Meanwhile, it also shows a good cycling performance and a high rate capability due to unique nanoporous structures, which promote electrolyte wetting and facilitate diffusion of Na+. Additionally, cyclic voltammetry demonstrate that the sodium-ion storage of as-prepared TiO2 is a cooperative control behavior of diffusion and capacitance, but mainly controlled by capacitive behavior, which further facilitates a rapid (de-)intercalation of Na+.

  15. Infrared study of laser synthesized anatase TiO2 nanopowders

    Science.gov (United States)

    Grujic-Brojcin, M.; Scepanovic, M. J.; Dohcevic-Mitrovic, Z. D.; Hinic, I.; Matovic, B.; Stanisic, G.; Popovic, Z. V.

    2005-05-01

    Nanosized titanium dioxide (TiO2) is synthesized by laser-induced pyrolysis using titanium isopropoxide as a liquid precursor. The specific surface area of as-produced nanopowders measured by the Brunauer-Emmett-Teller method (BET) varies from 84 to 110 m2 g-1. X-ray diffraction (XRD) and Raman scattering showed that the TiO2 nanocrystals had an anatase structure. The grain size of the nanoparticles was estimated from scanning electron microscopy, XRD and BET measurements. The reflection spectra of nanocrystalline TiO2 pressed pellets has been measured in the region between 80 and 1500 cm-1 by Fourier transform infrared spectroscopy. To interpret the experimental results, a model based on a generalized Bruggeman effective medium approximation of a dielectric function has been proposed. It is based on the polycrystalline character of TiO2 nanoparticles including island-structure and porosity of the nanopowders, along with the anatase single crystal dielectric functions. Thus, by comparing the results of calculated and experimental infrared (IR) spectra, the values of microscopic parameters of nanocrystalline powders can be deduced.

  16. First-principle Calculations of V/Fe Doped Anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    CAO Hong-hong; CHEN Qiang; WANG Tian-min

    2006-01-01

    The electronic structures of the titanium dioxide(TiO2) doped with V and Fe were analyzed by using first-principle calculations based on the density functional theory(DFT) with the full potential linearized augmented plane wave method (FP-LAPW). The fully optimized structure and the relaxation introduced by impurity were obtained by minimizing the total energy and atomic forces. The unit cell of the V-doped anatase TiO2 is smaller than that of the non-doped one, but for the Fe-doped one, the case is just the opposite. It is found that the apical Ti-O and impurity-O bond lengths of the V/Fe-doped anatase TiO2 are greater than those of the non-doped structure, but smaller for the equatorial bond length. Through the band structures and the density of states, the V-doped TiO2 is shown to be a kind of half-metal, while the Fe-doped TiO2 a kind of metal. The magnetic moments of the V/Fe-doped system are mainly generated by the dopants. The results may be helpful for us to understand the experimental outcome of this system.

  17. Rutile TiO2 nanowires on anatase TiO2 nanofibers: a branched heterostructured photocatalysts via interface-assisted fabrication approach.

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Shao, Changlu; Zhang, Yanli; Yang, Jikai; Sun, Panpan; Liu, Xueping; Liu, Hong; Liu, Yichun; Xie, Tengfeng; Wang, Dejun

    2011-11-01

    A water-dichloromethane interface-assisted hydrothermal method was employed to grow rutile TiO(2) nanowires (NWs) on electrospun anatase TiO(2) nanofibers (NFs), using highly reactive TiCl(4) as precursor. The water-dichloromethane interface inhibited the formation of rutile NWs in water phase, but promoted the selective radial growth of densely packed rutile NWs on anatase NFs to form a branched heterojunction. The density and length of rutile NWs could be readily controlled by varying reaction parameters. A formation mechanism for the branched heterojunction was proposed which involved (1) the entrapment of rutile precursor nanoparticles at water-dichloromethane interface, (2) the growth of rutile NWs on anatase NFs via Ostwald ripening through the scavengering of interface-entrapped rutile nanoparticles. The heterojunction formed at anatase NF and rutile NW enhanced the charge separation of both under ultraviolet excitation, as evidenced by photoluminescence and surface photovoltage spectra. The branched TiO(2) heterostructures showed higher photocatalytic activity in degradation of rodamine B dye solution than anatase NFs, and the mixture of anatase NFs, and P25 powders, which was discussed in terms of the synergistic effect of enhanced charge separation by anatase-rutile heterojunction, high activity of rutile NWs, and increased specific area of branched heterostructures.

  18. Preparation of Fluorine-Doped TiO2 Photocatalysts with Controlled Crystalline Structure

    Directory of Open Access Journals (Sweden)

    N. Todorova

    2008-01-01

    Full Text Available Nanocrystalline F-doped TiO2 powders were prepared by sol-gel route. The thermal behavior of the powders was recorded by DTA/TG technique. The crystalline phase of the fluorinated TiO2 powders was determined by X-ray diffraction technique. It was demonstrated that F-doping using CF3COOH favors the formation of rutile along with anatase phase even at low temperature. Moreover, the rutile's phase content increases with the increase of the quantity of the fluorine precursor in the starting solution. The surface area of the powders and the pore size distribution were studied by N2 adsorption-desorption using BET and BJH methods. X-ray photoelectron spectroscopy (XPS revealed that the fluorine is presented in the TiO2 powders mainly as metal fluoride in quantities ∼16 at %. The F-doped TiO2 showed a red-shift absorption in UV-vis region which was attributed to the increased content of rutile phase in the powders. The powders exhibited enhanced photocatalytic activity in decomposition of acetone.

  19. Ultrasonic Degradation of Methyl Orange in Presence of Y2O3 Doping Anatase TiO2 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Guo Baodong; Pan Zhijun; Liu Zhenrong; Wen Fuyu; Zhang Zhaohong

    2004-01-01

    Various affecting factors and degradation mechanism were studied on ultrasonic degradation of methyl orange adopting Y2O3 doping anatase TiO2 catalyst prepared in laboratory.In the experiment, the UV-VIS spectrophotometer was used to follow and inspect the degradation process of methyl orange.The results indicate that the ultrasonic degradation ratios of methyl orange in the presence of anatase TiO2 catalyst are much better than those without catalyst.Moreover, the catalytic performance of Y2O3 doping anatase TiO2 catalyst is obviously higher than that of anatase TiO2 catalyst without doping.The optimal conditions were adopted in this work and the degradation and COD elimination ratio of methyl orange got to98% and 99.0% in 90 min, respectively.

  20. An effective method for the preparation of high temperature stable anatase TiO2 photocatalysts

    Science.gov (United States)

    Fagan, Rachel; Synnott, Damian W.; McCormack, Declan E.; Pillai, Suresh C.

    2016-05-01

    An efficient, rapid and straightforward method for the preparation of nitrogen and fluorine (N, F) codoped high temperature stable anatase using a microwave pre-treatment is reported. Using a single source, ammonium fluoride (NH4F) for both nitrogen and fluorine, effective doping of the precursor titanium isopropoxide (TTIP) was possible. These samples were characterised for their structural and optical properties using X-ray diffraction (XRD), Fourier Transform IR (FTIR), Raman spectroscopy and UV-vis spectroscopy. In terms of the anatase to rutile transition enhancement using a novel microwave assisted technique, the sample prepared in a composition of 1:8 TiO2: NH4F at 1200 °C was seen to be most effective, having stable anatase present at 57.1% compared to undoped TiO2 being 100% rutile from 900 °C. This method involves the production of ammonium oxofluorotitanates (NH4TiOF3) at low temperatures. The inclusion of these intermediates greatly reduces the particle size growth and delays the anatase to rutile transition. The photocatalytic activity of these materials was studied by analysing the degradation of an organic dye, rhodamine 6G as a model system and the rate constant was calculated by pseudo-first-order kinetics. These results showed that the doped sample (0.0225 min-1) was three times more active than the undoped sample (0.0076 min-1) and over seven times faster than the commercial TiO2 photocatalyst standard Degussa P-25 calcined at 1200 °C (0.0030 min-1). The formation of intermediate compounds, oxofluorotitanates, was identified as the major reason for a delay in the anatase to rutile transition.

  1. Thermodynamically driven one-dimensional evolution of anatase TiO2 nanorods: one-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality.

    Science.gov (United States)

    Chen, Jiazang; Yang, Hong Bin; Miao, Jianwei; Wang, Hsin-Yi; Liu, Bin

    2014-10-29

    In photoelectrochemical cells, there exists a competition between transport of electrons through the porous semiconductor electrode toward the conducting substrate and back-reaction of electrons to recombine with oxidized species on the semiconductor-electrolyte interface, which determines the charge collection efficiency and is strongly influenced by the density and distribution of electronic states in band gap and architectures of the semiconductor electrodes. One-dimensional (1D) anatase TiO2 nanostructures are promising to improve charge transport in photoelectrochemical devices. However, the conventional preparation of 1D anatase nanostructures usually steps via a titanic acid intermediate (e.g., H2Ti3O7), which unavoidably introduces electronic defects into the host lattice, resulting in undesired shielding of the intrinsic role of dimensionality. Here, we manage to promote the 1D growth of anatase TiO2 nanostructures by adjusting the growth kinetics, which allows us to grow single-crystalline anatase TiO2 nanorods through a one-step hydrothermal reaction. The synthesized anatase nanorods possess a lower density of trap states and thus can simultaneously facilitate the diffusion-driven charge transport and suppress the electron recombination. Moreover, the electronically boundary free nanostructures significantly enhance the trap-free charge diffusion coefficient of the anatase nanorods, which enables the emergence of the intrinsic superiority of dimensionality. By virtue of these merits, the anatase nanorods synthesized in this work take obvious advantages over the conventional anatase counterparts in photoelectrochemical systems (e.g., dye-sensitized solar cells) by showing more efficient charge transport and collection and higher energy conversion efficiency.

  2. Hydrofluoric Acid Controlled TiO2 Phase Transformation from Rutile to Anatase at Room Temperature and Their Photocatalytic Performance.

    Science.gov (United States)

    Ge, Suxiang; Li, Dapeng; Jia, Gaoyang; Wang, Beibei; Yang, Zhen; Yang, Zongyang; Qiao, Hui; Zhang, Yange; Zheng, Zhi

    2015-09-01

    In this study, we first present rutile TiO2 superstructures could be successfully transformed into anatase TiO2 nanoparticles at room temperature by adjusting the amount of hydrofluoric acid (HF) used in aqueous solution. Photocatalytic experiments demonstrated that the as prepared anatase TiO2 exhibited better photocatalytic performance than that of rutile TiO2. We further studied the photocatalytic degradation of RhB on different TiO2 via active species trapping experiments and confirmed that the presence of surface F- on TiO2 was beneficial for the formation of *OH, which was thought to be mainly responsible for the enhancement of photocatalytic performance.

  3. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    Science.gov (United States)

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-06

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  4. C-doped mesoporous anatase TiO2 comprising 10nm crystallites.

    Science.gov (United States)

    Xie, Chong; Yang, Shenghui; Li, Beibei; Wang, Hongkong; Shi, Jian-Wen; Li, Guodong; Niu, Chunming

    2016-08-15

    We report a C-doped mesoporous anatase TiO2 with high surface area synthesized using multi-walled carbon nanotube (MWCNT) mat as a "rigid" template and carbon doping source. The characterization by SEM, HRTEM, X-ray diffraction and nitrogen adsorption revealed that TiO2 samples have a porous structure which are figuratively a inverse copy of MWCNT network and pore walls are formed by interconnected TiO2 nanoparticles with average diameter of ∼10nm. We found that annealing temperatures from 400 to 1000°C before MWCNT template removal had very limited effect on particle size (∼10nm), surface area (112-129m(2)/g) and total pore volume (0.74-0.85m(2)/g) of the samples through a significantly delayed phase transition from anatase to rutile started at 800°C, resulting in only ∼9.1% conversion at 1000°C. The pore size distribution is in mesopore range from 6 to 60nm peaked at ∼24nm. XPS analysis showed a relatively strong C1s peak at 288.4eV, indicating C doping at Ti sites, which is responsible for red shift of adsorption edge of UV-vis spectra and photocatalytic activity in visible-light region.

  5. Photocatalytic degradation of acridine dyes using anatase and rutile TiO2.

    Science.gov (United States)

    Zubieta, C E; Messina, P V; Schulz, P C

    2012-06-30

    The adsorption and photodegradation of acridine orange (AO) and acriflavine (AF) dyes on two mesoporous titania crystalline phases, anatase and rutile, were experimentally studied. Anatase and rutile were characterized by nitrogen adsorption, electron scanning and transmission microscopy, and X-ray diffraction. The adsorption capacity of rutile was higher than that of anatase, while the reverse is observed for photodegradation of both dyes. The adsorption of AF on both adsorbents was higher than that of AO, which was related with the smaller size of AF molecules compared with those of AO, therefore the access of AF to the adsorption sites is favored.

  6. Sonocatalytic damage of bovine serum albumin (BSA) in the presence of nanometer anatase titanium dioxide (TiO2).

    Science.gov (United States)

    Wang, Jun; Wu, Jing; Zhang, Zhaohong; Zhang, Xiangdong; Pan, Zhijun; Wang, Lei; Xu, Liang

    2006-01-01

    The nanometer anatase titanium dioxide (TiO2) (a kind of crystal type of TiO2) powder was adopted as the sonocatalyst for the damage of bovine serum albumin (BSA) used as a model protein by low-power ultrasound (US) (80 kHz, 80 W). The effects of several factors on the damage of BSA molecule were reviewed by means of ultraviolet destruction and circular dichroism spectra. It was found that the BSA molecule underwent destruction of the secondary structure and loss of the alpha-helical configuration to a certain extent under ultrasonic irradiation in the presence of nanometer anatase TiO2 powder and that the damage caused by US integrated with TiO2 was more serious than those by only US or only TiO2. Furthermore, the damage degree was aggravated with the increase of TiO2, added to saturation, and then it was slowly weakened with the excessive TiO2. When a suitable amount of acid or base was added into the BSA solution, the sonocatalytic damage was also aggravated. Because the functions of proteins are decided by their space configurations, the changes of the configurations might cause the forfeiture of their function, even the apoptosis or necrosis of cells. Perhaps, an effective method of killing cancer cells by sonocatalytic damage of protein molecules in the presence of nanometer anatase TiO2 could be obtained from these experimental results.

  7. First-principles study of atomic structure and electronic properties of Si and F doped anatase TiO2

    Directory of Open Access Journals (Sweden)

    Li Hongping

    2015-09-01

    Full Text Available Chemical doping represents one of the most effective ways in engineering electronic structures of anatase TiO2 for practical applications. Here, we investigate formation energies, geometrical structures, and electronic properties of Si-, F-doped and Si/F co-doped anatase TiO2 by using spin-polarized density functional theory calculation. We find that the co-doped TiO2 is thermodynamically more favorable than the Si- and F-doped TiO2- Structural analysis shows that atomic impurity varies crystal constants slightly. Moreover, all the three doped systems show a pronounced narrowing of band gap by 0.33 eV for the F-doped TiO2, 0.17 eV for the Si-doped TiO2, and 0.28 eV for the Si/F-co-doped TiO2, which could account for the experimentally observed redshift of optical absorption edge. Our calculations suggest that the Si/F-co-doping represents an effective way in tailoring electronic structure and optical properties of anatase TiO2.

  8. Anatase TiO2 Nanospindle/Activated Carbon (AC Composite Photocatalysts with Enhanced Activity in Removal of Organic Contaminant

    Directory of Open Access Journals (Sweden)

    Wuyi Zhou

    2012-01-01

    Full Text Available This paper embarks upon the three levels of analysis ranging from nanoscale materials synthesis to combination and functionality. Firstly, we have prepared anatase TiO2 nanospindles with an even length of about 200 nm and a central width of about 25 nm by hydrothermal synthesis method at 100°C for 6 h. Secondly, we have dispersed TiO2 nanospindles on the surface of activated carbon (AC and fabricated TiO2/AC composite via a dip-coating method. Thirdly, the TiO2/AC composite has been studied as the photocatalyst to remove the organic contaminants in the waste water and exhibits excellent degradation rate in comparison with pure anatase TiO2 nanospindles.

  9. Effect on Electron Structure and Magneto-Optic Property of Heavy W-Doped Anatase TiO2.

    Science.gov (United States)

    Hou, Qingyu; Zhao, Chunwang; Guo, Shaoqiang; Mao, Fei; Zhang, Yue

    2015-01-01

    The spin or nonspin state of electrons in W-doped anatase TiO2 is very difficult to judge experimentally because of characterization method limitations. Hence, the effect on the microscopic mechanism underlying the visible-light effect of W-doped anatase TiO2 through the consideration of electronic spin or no-spin states is still unknown. To solve this problem, we establish supercell models of W-doped anatase TiO2 at different concentrations, followed by geometry optimization and energy calculation based on the first-principle planewave norm conserving pseudo-potential method of the density functional theory. Calculation results showed that under the condition of nonspin the doping concentration of W becomes heavier, the formation energy becomes greater, and doping becomes more difficult. Meanwhile, the total energy increases, the covalent weakens and ionic bonds strengthens, the stability of the W-doped anatase TiO2 decreases, the band gap increases, and the blue-shift becomes more significant with the increase of W doping concentration. However, under the condition of spin, after the band gap correction by the GGA+U method, it is found that the semimetal diluted magnetic semiconductors can be formed by heavy W-doped anatase TiO2. Especially, a conduction electron polarizability of as high as near 100% has been found for the first time in high concentration W-doped anatase TiO2. It will be able to be a promising new type of dilute magnetic semiconductor. And the heavy W-doped anatase TiO2 make the band gap becomes narrower and absorption spectrum red-shift.

  10. Effect on Electron Structure and Magneto-Optic Property of Heavy W-Doped Anatase TiO2.

    Directory of Open Access Journals (Sweden)

    Qingyu Hou

    Full Text Available The spin or nonspin state of electrons in W-doped anatase TiO2 is very difficult to judge experimentally because of characterization method limitations. Hence, the effect on the microscopic mechanism underlying the visible-light effect of W-doped anatase TiO2 through the consideration of electronic spin or no-spin states is still unknown. To solve this problem, we establish supercell models of W-doped anatase TiO2 at different concentrations, followed by geometry optimization and energy calculation based on the first-principle planewave norm conserving pseudo-potential method of the density functional theory. Calculation results showed that under the condition of nonspin the doping concentration of W becomes heavier, the formation energy becomes greater, and doping becomes more difficult. Meanwhile, the total energy increases, the covalent weakens and ionic bonds strengthens, the stability of the W-doped anatase TiO2 decreases, the band gap increases, and the blue-shift becomes more significant with the increase of W doping concentration. However, under the condition of spin, after the band gap correction by the GGA+U method, it is found that the semimetal diluted magnetic semiconductors can be formed by heavy W-doped anatase TiO2. Especially, a conduction electron polarizability of as high as near 100% has been found for the first time in high concentration W-doped anatase TiO2. It will be able to be a promising new type of dilute magnetic semiconductor. And the heavy W-doped anatase TiO2 make the band gap becomes narrower and absorption spectrum red-shift.

  11. Molybdenum-Loaded Anatase TiO2 Nanoparticles With Enhanced Optoelectronics Properties

    Science.gov (United States)

    Bargougui, R.; Bouazizi, N.; Ammar, S.; Azzouz, A.

    2017-01-01

    The structural, optical and electrical properties of molybdenum nanoparticles (Mo-NPs)-loaded anatase TiO2 were investigated using x-ray diffraction, UV-Vis diffuse reflectance, and Fourier transform infrared and complex impedance spectroscopy. x-ray diffraction showed that Mo-NPs incorporation induced a decrease in particle size from 30 nm to 21 nm of TiO2 and TiO2-Mo, respectively, producing a slight structure expansion. Mo-NPs dispersion resulted in a slight decrease in the optical band gap energy from 3.85 eV to 3.51 eV. Slight shifts towards higher wavelengths were attributed to the change in the acceptor capacity level induced by Mo-NPs. In addition, the ac impedance studies show the effect of Mo-NPs incorporation that appeared to be responsible for conductance of enhancement. The conduction mechanism is based on space charge-limited current via deep levels with different energy positions in the band gap. The temperature dependence of electrical properties showed that both capacitance and conductance of TiO2-Mo samples increased with increasing temperature. At low frequency, the relaxation phenomenon is related to the surface effect. The results will be beneficial to further developing titanium dioxide photo-catalysts.

  12. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Simple way to make Anatase TiO2 films on FTO glass for promising solar cells

    OpenAIRE

    Raghavender, A. T.; Samantilleke, A. P.; Sá,Pedro; Almeida, B. G.; Vasilevskiy, Mikhail; Nguyen Hoa Hong

    2011-01-01

    TiO2 is a wide bandgap semiconductor material used as the photo anode in dye sensitized solar cells (DSSC). The fabrication of TiO2 on conductive glass substrates plays an important role in the solar cell efficiency, since the thickness of the TiO2 coating affects the transmission, photoconductive properties and the efficiency of solar cells. The uncorrected transmission in our fabricated films is as high as 80%, and the bandgap obtained is similar to that of bulk anatase TiO2, co...

  14. Anatase TiO2 Nanospindle/Activated Carbon (AC) Composite Photocatalysts with Enhanced Activity in Removal of Organic Contaminant

    OpenAIRE

    Wuyi Zhou; Peng Zhang; Weian Liu

    2012-01-01

    This paper embarks upon the three levels of analysis ranging from nanoscale materials synthesis to combination and functionality. Firstly, we have prepared anatase TiO2 nanospindles with an even length of about 200 nm and a central width of about 25 nm by hydrothermal synthesis method at 100°C for 6 h. Secondly, we have dispersed TiO2 nanospindles on the surface of activated carbon (AC) and fabricated TiO2/AC composite via a dip-coating method. Thirdly, the TiO2/AC composite has been studied ...

  15. Adsorption and reactions of O2 on anatase TiO2.

    Science.gov (United States)

    Li, Ye-Fei; Aschauer, Ulrich; Chen, Jia; Selloni, Annabella

    2014-11-18

    CONSPECTUS: The interaction of molecular oxygen with titanium dioxide (TiO2) surfaces plays a key role in many technologically important processes such as catalytic oxidation reactions, chemical sensing, and photocatalysis. While O2 interacts weakly with fully oxidized TiO2, excess electrons are often present in TiO2 samples. These excess electrons originate from intrinsic reducing defects (oxygen vacancies and titanium interstitials), doping, or photoexcitation and form polaronic Ti(3+) states in the band gap near the bottom of the conduction band. Oxygen adsorption involves the transfer of one or more of these excess electrons to an O2 molecule at the TiO2 surface. This results in an adsorbed superoxo (O2(-)) or peroxo (O2(2-)) species or in molecular dissociation and formation of two oxygen adatoms (2 × O(2-)). Oxygen adsorption is also the first step toward oxygen incorporation, a fundamental reaction that strongly affects the chemical properties and charge-carrier densities; for instance, it can transform the material from an n-type semiconductor to a poor electronic conductor. In this Account, we present an overview of recent theoretical work on O2 adsorption and reactions on the reduced anatase (101) surface. Anatase is the TiO2 polymorph that is generally considered most active in photocatalysis. Experiments on anatase powders have shown that the properties of photoexcited electrons are similar to those of excess electrons from reducing defects, and therefore, oxygen on reduced anatase is also a model system for studying the role of O2 in photocatalysis. Experimentally, the characteristic Ti(3+) defect states disappear after adsorption of molecular oxygen, which indicates that the excess electrons are indeed trapped by O2. Moreover, superoxide surface species associated with two different cation surface sites, possibly a regular cation site and a cation close to an anion vacancy, were identified by electron paramagnetic resonance spectroscopy. On the

  16. Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Šćepanović Maja J.

    2009-01-01

    Full Text Available Raman spectroscopy has been used for characterization of commercial nanosized TiO2 powder with declared grain size of 5 nm. The Raman spectra measured in Stokes and anti-Stokes regime confirm the anatase phase of TiO2 powder in temperature range 25-1173K. It is shown that phonon-confinement (due to small grain size and nonstoichiometry (caused by laser irradiation in vacuum have a great influence on blueshift and broadening of the main Eg Raman mode at low temperatures, while the influence of the strong anharmonic effect becomes dominant at higher temperatures. The phonon confinement effect decreases due to the crystallite growth at temperatures above 673K.

  17. Anatase-brookite mixed phase nano TiO2 catalyzed homolytic decomposition of ammonium nitrate.

    Science.gov (United States)

    Vargeese, Anuj A; Muralidharan, Krishnamurthi

    2011-09-15

    Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase-brookite mixed phase TiO(2) nanoparticles (~ 10 nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH(3) and H(2)O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO(2) changes the decomposition pathway and thereby the reactivity.

  18. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  19. Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure.

    Science.gov (United States)

    Clément, Laura; Hurel, Charlotte; Marmier, Nicolas

    2013-01-01

    With the rapid development of nanotechnology, there is an increasing risk of human and environmental exposure to nanotechnology-based materials. However, the data on the potential environmental effects of nanoparticles are scarce. The aim of this study is to assess the effect of particle size and crystal structure (anatase and rutile) of titanium dioxide on their toxicity. Thus, acute and chronic toxicity tests included a modified acute test (72 h) using daphnies and algae, rotifers and plants as model organisms. Gradient of toxicity varied with the tested biological organisms. Our results revealed that TiO(2) nanoparticles in anatase crystal structure are toxic in the entire set of tests conducted. However, at highconcentration, through their antimicrobial properties, they significantly promoted growth of roots. Because of its lipophilicity, the rutile crystalline structure of TiO(2) NPs form larger aggregates in aqueous medium; then they have less effect on biological organisms, and thus a lower toxicity than the anatase crystalline form of TiO(2). We also demonstrated that exposure duration, aggregation and concentrations are contributing factors in nanoparticles-mediated toxicity.

  20. Photocatalytic Studies of Anatase and Rutile phase TiO2 Nanocrystals Prepared via Solvothermal method

    Directory of Open Access Journals (Sweden)

    S.Perumal

    2015-08-01

    Full Text Available Nanocrystals of TiO2 photocatalyst have been synthesized by solvothermal method. The photocatalysts were characterized by XRD, UV–Vis spectroscopy and photocatalytic study. The analysis from X-ray diffraction revealed that the annealed product at 1000˚C shows crystal phase of rutile and all others are in anatase phase. FTIR spectra show the vibration of Ti-O bands around 650 cm-1 . UV-Vis spectra indicated the band gap value of annealed samples.

  1. Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films.

    Science.gov (United States)

    Mattsson, Andreas; Leideborg, Michael; Larsson, Karin; Westin, Gunnar; Osterlund, Lars

    2006-01-26

    Adsorption and solar light decomposition of acetone was studied on nanostructured anatase TiO2 and Nb-doped TiO2 films made by sol-gel methods (10 and 20 mol % NbO2.5). A detailed characterization of the film materials show that films contain only nanoparticles with the anatase modification with pentavalent Nb oxide dissolved into the anatase structure, which is interpreted as formation of substituted Nb=O clusters in the anatase lattice. The Nb-doped films displayed a slight yellow color and an enhanced the visible light absorption with a red-shift of the optical absorption edge from 394 nm for the pure TiO2 film to 411 nm for 20 mol % NbO2.5. In-situ Fourier transform infrared (FTIR) transmission spectroscopy shows that acetone adsorbs associatively with eta1-coordination to the surface cations on all films. On Nb-doped TiO2 films, the carbonyl bonding to the surface is stabilized, which is evidenced by a lowering of the nu(C=O) frequency by about 20 cm(-1) to 1672 cm(-1). Upon solar light illumination acetone is readily decomposed on TiO2, and stable surface coordinated intermediates are formed. The decomposition rate is an order of magnitude smaller on the Nb-doped films despite an enhanced visible light absorption in these materials. The quantum yield is determined to be 0.053, 0.004 and 0.002 for the pure, 10% Nb:TiO2, and 20%Nb:TiO2, respectively. Using an interplay between FTIR and DFT calculations we show that the key surface intermediates are bidentate bridged formate and carbonate, and H-bonded bicarbonate, respectively, whose concentration on the surface can be correlated with their heats of formation and bond strength to coordinatively unsaturated surface Ti and Nb atoms at the surface. The oxidation rate of these intermediates is substantially slower than the initial acetone decomposition rate, and limits the total oxidation rate at t>7 min on TiO2, while no decrease of the rate is observed on the Nb-doped films. The rate of degradation of key surface

  2. Band structure engineering of anatase TiO2 by metal-assisted P-O coupling.

    Science.gov (United States)

    Wang, Jiajun; Meng, Qiangqiang; Huang, Jing; Li, Qunxiang; Yang, Jinlong

    2014-05-07

    In this work, we demonstrate that the metal-assisted P-O coupling is an effective approach to improve the photoelectrochemical properties of TiO2. The (Sc + P) and (In + P) codoping effects on electronic structures and photocatalytic activities of anatase TiO2 are examined by performing hybrid density functional theory calculations. It is found that the coupling of P dopant with the second-nearest neighboring O atom assisted by acceptor metals (Sc/In) leads to the fully occupied and delocalized intermediate bands within the band gap of anatase TiO2, which is driven by the P-O antibonding states (π*). This metal-assisted P-O coupling can prevent the recombination of photogenerated electron-hole pairs and effectively reduce the band gap of TiO2. Moreover, the band edge alignments in (Sc + P) and (In + P) codoped anatase TiO2 are desirable for water-splitting. The calculated optical absorption curves indicate that (Sc + P) and (In + P) codoping in anatase TiO2 can also effectively enhance the visible light absorption.

  3. Association of anatase (TiO2) and microbes: unusual fossilization effect or a potential biosignature?

    Science.gov (United States)

    Glamoclija, Mihaela; Andrew Steele,; Marc Fries,; Juergen Schieber,; Voytek, Mary A.; Charles S. Cockell,

    2015-01-01

    We combined microbial paleontology and molecular biology methods to study the Eyreville B drill core from the 35.3-Ma-old Chesapeake Bay impact structure,Virginia, USA. The investigated sample is a pyrite vein collected from the 1353.81-1353.89 m depth interval, located within a section of biotite granite. The granite is a pre-impact rock that was disrupted by the impact event. A search for inorganic (mineral) biosignatures revealed the presence of micron-size rod morphologies of anatase (TiO2) embedded in chlorite coatings on pyrite grains. Neither the Acridine Orange microbial probe nor deoxyribonucleic acid (DNA) extraction followed by polymerase chain reaction (PCR) amplifi cation showed the presence of DNA or ribonucleic acid (RNA) at the location of anatase rods, implying the absence of viable cells in the investigated area. A Nile Red microbial probe revealed the presence of lipids in the rods. Because most of the lipids are resistant over geologic time spans, they are good biomarkers, and they are an indicator of biogenicity for these possibly 35-Ma-old microbial fossils. The mineral assemblage suggests that rod morphologies are associated with low-temperature (<100 °C) hydrothermal alteration that involved aqueous fl uids. The temporal constraints on the anatase fossils are still uncertain because pre-impact alteration of the granite and postimpact heating may have provided identical conditions for anatase precipitation and microbial preservation.

  4. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2

    Directory of Open Access Journals (Sweden)

    Rajesh J. Tayade et al

    2007-01-01

    Full Text Available Nanocrystalline TiO2 was synthesized by controlled hydrolysis of titanium tetraisopropoxide. The anatase phase was converted to rutile phase by thermal treatment at 1023 K for 11 h. The catalysts were characterized by X-ray diffraction (XRD, diffuse reflectance spectroscopy (DRS, Fourier-transform infrared absorption spectrophotometry (FT-IR and N2 adsorption (BET at 77 K. This study compare the photocatalytic activity of the anatase and rutile phases of nanocrystalline TiO2 for the degradation of acetophenone, nitrobenzene, methylene blue and malachite green present in aqueous solutions. The initial rate of degradation was calculated to compare the photocatalytic activity of anatase and rutile nanocrystalline TiO2 for the degradation of different substances under ultraviolet light irradiation. The higher photocatalytic activity was obtained in anatase phase TiO2 for the degradation of all substances as compared with rutile phase. It is concluded that the higher photocatalytic activity in anatase TiO2 is due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst.

  5. Preparation of Highly Crystalline TiO2 Nanostructures by Acid-assisted Hydrothermal Treatment of Hexagonal-structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide Nanoskeleton

    Directory of Open Access Journals (Sweden)

    Sakai Hideki

    2010-01-01

    Full Text Available Abstract Highly crystalline TiO2 nanostructures were prepared through a facile inorganic acid-assisted hydrothermal treatment of hexagonal-structured assemblies of nanocrystalline titiania templated by cetyltrimethylammonium bromide (Hex-ncTiO2/CTAB Nanoskeleton as starting materials. All samples were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The influence of hydrochloric acid concentration on the morphology, crystalline and the formation of the nanostructures were investigated. We found that the morphology and crystalline phase strongly depended on the hydrochloric acid concentrations. More importantly, crystalline phase was closely related to the morphology of TiO2 nanostructure. Nanoparticles were polycrystalline anatase phase, and aligned nanorods were single crystalline rutile phase. Possible formation mechanisms of TiO2 nanostructures with various crystalline phases and morphologies were proposed.

  6. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag.

    Science.gov (United States)

    Li, Yang; Liu, Lulu; Guo, Min; Zhang, Mei

    2016-09-01

    TiO2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag (Ti-bearing EAF slag) by using a simple acidolysis process. The effects of the pH of the HCl solution, liquid to solid ratio (RL/S, HCl solution to the residue ratio, mL/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO2 photocatalysts were systematically investigated. The results indicated that with decreasing pH in the HCl solution and increasing RL/S, the crystalline phase and micro-morphology of the obtained TiO2 nanostructures tended to transform from anatase type TiO2 with spherical nanoparticle structures to rutile type TiO2 with needle-like nanorod structures. The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO2. The growth mechanism of TiO2 from Ti-bearing EAF slag during the acidolysis process was also discussed. In addition, the influence of RL/S on the photocatalytic properties of the synthesized nanostructured TiO2 was studied. The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120min when the RL/S was controlled at 50:1.

  7. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties.

    Science.gov (United States)

    Mutuma, Bridget K; Shao, Godlisten N; Kim, Won Duck; Kim, Hee Taik

    2015-03-15

    TiO2 photocatalysts with a mixture of different TiO2 crystal polymorphs have customarily been synthesized hydrothermally at high temperatures using complicated and expensive equipment. In this study TiO2 nanoparticles with a mixture of TiO2 crystals were synthesized using a modified sol-gel method at low temperature. In order to form nanoparticles with different polymorphs a series of samples were obtained at pH 2, 4, 7 and 9. Raw samples were calcined at different temperatures ranging from 200 to 800°C to evaluate the effect of the calcination temperature on the physico-chemical properties of the samples. XRD results revealed that a mixture of anatase and brookite can be obtained in the as-synthesized samples and in those calcined up to 800°C depending on the pH used to obtain the final product. Indeed, a mixture of anatase brookite and rutile; or a sample with only rutile phase can be yielded through further calcination of the as-prepared samples at temperatures ⩾600°C due to phase transformation. The photocatalytic performance of the samples with a mixture of anatase-brookite; anatase-brookite-rutile; and anatase-rutile (Degussa P25 TiO2) was exquisitely investigated in the degradation of methylene blue solutions. The samples obtained at pH 2 and calcined at 200°C possessed the highest activity of all due to its superior properties. This study elucidates a facile method suitable for the synthesis of TiO2 with different mixtures of TiO2 polymorphs with desirable properties for various applications.

  8. Niobium doping induced morphological changes and enhanced photocatalytic performance of anatase TiO2

    Science.gov (United States)

    Wu, Ming-Chung; Lin, Ting-Han; Chih, Jyun-Sian; Hsiao, Kai-Chi; Wu, Po-Yeh

    2017-04-01

    In order to develop high-performance photocatalysts that are easy to produce even in industrial quantities, we developed a facile method of preparing niobium-doped titanium dioxide (Nb:TiO2) by hydrothermal synthesis and followed by thermal annealing treatment. Niobium-ion doping has been considered as an effective way to improve Nb:TiO2 performance for applications in photocatalysis. Niobium-ion doping of anatase TiO2 induced the morphological changes of Nb:TiO2. Morphological analysis shows sub-microscale fibers at doping concentration lower than 1.00 mol % and nanoscale rods at the doping concentration higher than 1.00 mol %. For the catalyzed photodegradation of methyl orange under visible light irradiation, 0.50 mol % Nb:TiO2 shows the highest activity among the synthesized Nb:TiO2 specimens. Also, for photocatalytic hydrogen generation, its photocatalytic activity is even higher than that of commercial TiO2-P25. In this study, we demonstrated the fabrication of a series of superior Nb:TiO2 specimens. It is a reasonable alternative to commercial TiO2 materials for various applications in the decomposition of organic dyes under visible light irradiation.

  9. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: a density functional theory study.

    Science.gov (United States)

    Zhao, Wenwen; Tian, Feng Hui; Wang, Xiaobin; Zhao, Linghuan; Wang, Yun; Fu, Aiping; Yuan, Shuping; Chu, Tianshu; Xia, Linhua; Yu, Jimmy C; Duan, Yunbo

    2014-09-15

    In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2(-)) trapping efficiently on the surface, with one of the surface Ti5c-O2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets.

  10. Cellulose Tailored Anatase TiO2 Nanospindles in Three-Dimensional Graphene Composites for High-Performance Supercapacitors.

    Science.gov (United States)

    Ding, Yangbin; Bai, Wei; Sun, Jinhua; Wu, Yu; Memon, Mushtaque A; Wang, Chao; Liu, Chengbin; Huang, Yong; Geng, Jianxin

    2016-05-18

    The morphologies of transition metal oxides have decisive impact on the performance of their applications. Here, we report a new and facile strategy for in situ preparation of anatase TiO2 nanospindles in three-dimensional reduced graphene oxide (RGO) structure (3D TiO2@RGO) using cellulose as both an intermediate agent eliminating the negative effect of graphene oxide (GO) on the growth of TiO2 crystals and as a structure-directing agent for the shape-controlled synthesis of TiO2 crystals. High-resolution transmission electron microscopy and X-ray diffractometer analysis indicated that the spindle shape of TiO2 crystals was formed through the restriction of the growth of high energy {010} facets due to preferential adsorption of cellulose on these facets. Because of the 3D structure of the composite, the large aspect ratio of the TiO2 nanospindles, and the exposed high-energy {010} facets of the TiO2 crystals, the 3D TiO2@RGO(Ce 1.7) exhibited excellent capacitive performance as an electrode material for supercapacitors, with a high specific capacitance (ca. 397 F g(-1)), a high energy density (55.7 Wh kg(-1)), and a high power density (1327 W kg(-1)) on the basis of the masses of RGO and TiO2. These levels of capacitive performance far exceed those of previously reported TiO2-based composites.

  11. Phosphorus-doped TiO2 catalysts with stable anatase-brookite biphase structure: synthesis and photocatalytic performance.

    Science.gov (United States)

    Feng, Huajun; Zhang, Min-Hong; Yu, Liya E

    2013-07-01

    Phosphorus-doped (P-doped) TiO2 catalysts with a stable anatase-brookite biphase structure were successfully synthesized by integrating ultrasonication with phosphorus doping and Pluronic P123 surfactant. The synthesized catalysts were characterized using X-ray diffraction, transmission electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared, and UV-visible diffuse reflectance spectra. Ultrasonication facilitates the appearance of brookite phase. Phosphorus doping was demonstrated an effective strategy to stabilize the anatase-brookite biphase structure and inhibits undesirable grain growth. Triblock copolymer Pluronic P123 used in the reaction facilitates the formation of catalyst particles with mesoporous structure and large surface area and prevents particles from agglomeration. The low band-gap of brookite phase enables the synthesized P-doped TiO2 catalysts outperform commercial P25 TiO2 and N-doped TiO2 in the degradation of methylene blue under both solar light and visible light irradiation.

  12. The effect of blood protein adsorption on cellular uptake of anatase TiO2 nanoparticles.

    Science.gov (United States)

    Allouni, Zouhir E; Gjerdet, Nils R; Cimpan, Mihaela R; Høl, Paul J

    2015-01-01

    Protein adsorption onto nanoparticles (NPs) in biological fluids has emerged as an important factor when testing biological responses to NPs, as this may influence both uptake and subsequent toxicity. The aim of the present study was to quantify the adsorption of proteins onto TiO2 NPs and to test the influence on cellular uptake. The surface composition of the particles was characterized by thermal analysis and by X-ray photoelectron spectroscopy. The adsorption of three blood proteins, ie, human serum albumin (HSA), γ-globulins (Glbs), and fibrinogen (Fib), onto three types of anatase NPs of different sizes was quantified for each protein. The concentration of the adsorbed protein was measured by ultraviolet-visible spectrophotometry using the Bradford method. The degree of cellular uptake was quantified by inductivity coupled plasma mass spectroscopy, and visualized by an ultra-high resolution imaging system. The proteins were adsorbed onto all of the anatase NPs. The quantity adsorbed increased with time and was higher for the smaller particles. Fib and Glbs showed the highest affinity to TiO2 NPs, while the lowest was seen for HSA. The adsorption of proteins affected the surface charge and the hydrodynamic diameter of the NPs in cell culture medium. The degree of particle uptake was highest in protein-free medium and in the presence HSA, followed by culture medium supplemented with Glbs, and lowest in the presence of Fib. The results indicate that the uptake of anatase NPs by fibroblasts is influenced by the identity of the adsorbed protein.

  13. Electrospun anatase-phase TiO2 nanofibers with different morphological structures and specific surface areas.

    Science.gov (United States)

    He, Guangfei; Cai, Yibing; Zhao, Yong; Wang, Xiaoxu; Lai, Chuilin; Xi, Min; Zhu, Zhengtao; Fong, Hao

    2013-05-15

    Electrospun anatase-phase TiO2 nanofibers with desired morphological structure and relatively high specific surface area are expected to outperform other nanostructures (e.g., powder and film) of TiO2 for various applications (particularly dye-sensitized solar cell and photo-catalysis). In this study, systematic investigations were carried out to prepare and characterize electrospun anatase-phase TiO2 nanofibers with different morphological structures (e.g., solid, hollow/tubular, and porous) and specific surface areas. The TiO2 nanofibers were generally prepared via electrospinning of precursor nanofibers followed by pyrolysis at 500°C. For making hollow/tubular TiO2 nanofibers, the technique of co-axial electrospinning was utilized; while for making porous TiO2 nanofibers, the etching treatment in NaOH aqueous solution was adopted. The results indicated that the hollow/tubular TiO2 nanofibers (with diameters of ~300-500 nm and wall-thickness in the range from tens of nanometers to ~200 nm) had the BET specific surface area of ~27.3 m(2)/g, which was approximately twice as that of the solid TiO2 nanofibers (~15.2 m(2)/g) with diameters of ~200-300 nm and lengths of at least tens of microns. Porous TiO2 nanofibers made from the precursor of Al2O3/TiO2 composite nanofibers had the BET specific surface area of ~106.5 m(2)/g, whereas porous TiO2 nanofibers made from the precursor of ZnO/TiO2 composite nanofibers had the highest BET specific surface area of ~148.6 m(2)/g.

  14. Niobium-Doped (001)-Dominated Anatase TiO2 Nanosheets as Photoelectrode for Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Jiang, Lei; Sun, Lei; Yang, Dong; Zhang, Jian; Li, Ya-Juan; Zou, Kun; Deng, Wei-Qiao

    2017-03-13

    TiO2 nanocrystals with different reactive facets have attracted extensive interest since they were first synthesized. The anatase TiO2 nanocrystals with (001) or (100) dominate facets were considered to be excellent electrode materials to enhance the cell performance of dye-sensitized solar cells. However, which reactive facet presents the best surface for benefiting photovoltaic effect is still unknown. We report a systematic study of various anatase TiO2 surfaces interacting with N719 dye by means of density functional theory calculations in combination with microscopic techniques. The (001) surface interacting with N719 would have the lowest work function, leading to the best photovoltaic performances. To further increase the efficiency, Nb dopant was incorporated into the anatase TiO2 nanocrystals. Based on the theoretical prediction, we proposed and demonstrated novel Nb-doped (001)-dominated anatase TiO2 nanosheets as photoelectrode in a dye-sensitized solar cell to further enhance the open-circuit voltage. And a power conversion efficiency of 10% was achieved, which was 22% higher than that of the undoped device (P25 as an electrode).

  15. First-Principles Band Calculations on Electronic Structures of Ag-Doped Rutile and Anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    HOU Xing-Gang; LIU An-Dong; HUANG Mei-Dong; LIAO Bin; WU Xiao-Ling

    2009-01-01

    The electronic structures of Ag-doped rutile and anatase TiO2 are studied by first-principles band calculations based on density funetionai theory with the full-potentiai linearized-augraented-plane-wave method.New occupied bands ore found between the band gaps of both Ag-doped rutile and anatase TiO2.The formation of these new bands Capri be explained mainly by their orbitals of Ag 4d states mixed with Ti 3d states and are supposed to contribute to their visible light absorption.

  16. Quantum Monte Carlo study of the energetics of the rutile, anatase, brookite, and columbite TiO$_2$ polymorphs

    OpenAIRE

    Trail, John; Monserrat, Bartomeu; Ríos, Pablo López; Maezono, Ryo; Needs, Richard J.

    2016-01-01

    The relative energies of the low-pressure rutile, anatase, and brookite polymorphs and the high-pressure columbite polymorph of TiO$_2$ have been calculated as a function of temperature using the diffusion quantum Monte Carlo (DMC) method and density functional theory (DFT). The vibrational energies are found to be important on the scale of interest and significant quartic anharmonicity is found in the rutile phase. Static-lattice DFT calculations predict that anatase is lower in energy than ...

  17. A one-step thermal decomposition method to prepare anatase TiO2 nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    Science.gov (United States)

    Li, Wenting; Shang, Chunli; Li, Xue

    2015-12-01

    Anatase TiO2 nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO2 NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption analysis, UV-vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO2 NSs possess high surface area up to 378 m2 g-1. The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO2 NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO2 NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  18. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Directory of Open Access Journals (Sweden)

    María Laura Vera

    2015-01-01

    Full Text Available The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.

  19. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Science.gov (United States)

    Schvezov, Carlos Enrique; Ares, Alicia Esther

    2015-01-01

    The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment. PMID:25784939

  20. {116} faceted anatase single-crystalline nanosheet arrays: facile synthesis and enhanced electrochemical performances

    Science.gov (United States)

    Li, Feng; Li, Xiaoning; Peng, Ranran; Zhai, Xiaofang; Yang, Shangfeng; Fu, Zhengping; Lu, Yalin

    2014-10-01

    Single-crystalline anatase TiO2 nanosheet arrays were synthesized on a transparent conductive fluorine-doped tin oxide (FTO) substrate with a unique one-step alcohol-thermal process. The nanosheets were nearly vertically grown on the FTO substrate along their zone, and they were dominated by {116} facets. The as-fabricated {116} faceted single-crystalline anatase nanosheet arrays exhibit a much higher reduction capacity and a much better electrochemical reversibility than both {001} faceted anatase single-crystalline nanosheet arrays and P25 film. The results indicate a promising application potential for the new material in the photoelectrochemical field.Single-crystalline anatase TiO2 nanosheet arrays were synthesized on a transparent conductive fluorine-doped tin oxide (FTO) substrate with a unique one-step alcohol-thermal process. The nanosheets were nearly vertically grown on the FTO substrate along their zone, and they were dominated by {116} facets. The as-fabricated {116} faceted single-crystalline anatase nanosheet arrays exhibit a much higher reduction capacity and a much better electrochemical reversibility than both {001} faceted anatase single-crystalline nanosheet arrays and P25 film. The results indicate a promising application potential for the new material in the photoelectrochemical field. Electronic supplementary information (ESI) available: Photo of the large area STNA-116, FESEM images of STNA-001 and STNA-116 with a series of growth time, the enlarged XRD pattern, the simulated SAED pattern, the reflectance spectra, the cyclic voltammograms of P25 on the FTO substrate. See DOI: 10.1039/c4nr04248d

  1. Anatase (101)-like Structural Model Revealed for Metastable Rutile TiO2(011) Surface.

    Science.gov (United States)

    Xu, Meiling; Shao, Sen; Gao, Bo; Lv, Jian; Li, Quan; Wang, Yanchao; Wang, Hui; Zhang, Lijun; Ma, Yanming

    2017-03-08

    Titanium dioxide has been widely used as an efficient transition metal oxide photocatalyst. However, its photocatalytic activity is limited to the ultraviolet spectrum range due to the large bandgap beyond 3 eV. Efforts to reduce the bandgap to achieve a broader spectrum range of light absorption have been successfully attempted via the experimental synthesis of dopant-free metastable surface structures of rutile-type TiO2 (011) 2 × 1. This new surface phase possesses a reduced bandgap of ∼2.1 eV, showing great potential for an excellent photocatalyst covering a wide range of visible light. There is a need to establish the atomistic structure of this metastable surface to understand the physical cause for the bandgap reduction and to improve the future design of photocatalysts. Here, we report computational investigations in an effort to unravel this surface structure via swarm structure-searching simulations. The established structure adopts the anatase (101)-like structure model, where the topmost 2-fold O atoms form a quasi-hexagonal surface pattern and bond with the unsaturated 5-fold and 4-fold Ti atoms in the next layer. The predicted anatase (101)-like surface model can naturally explain the experimental observation of the STM images, the electronic bandgap, and the oxidation state of Ti(4+). Dangling bonds on the anatase (101)-like surface are abundant making it a superior photocatalyst. First-principles molecular dynamics simulations have supported the high photocatalytic activity by showing that water and formic acid molecules dissociate spontaneously on the anatase (101)-like surface.

  2. Investigation on the sonocatalytic degradation of acid red B in the presence of nanometer TiO2 catalysts and comparison of catalytic activities of anatase and rutile TiO2 powders.

    Science.gov (United States)

    Wang, Jun; Jiang, Yuefeng; Zhang, Zhaohong; Zhang, Xiangdong; Ma, Teng; Zhang, Guan; Zhao, Gang; Zhang, Peng; Li, Ying

    2007-07-01

    Here, the nanometer anatase and rutile titanium dioxide (TiO(2)) powders were introduced to act as the sonocatalysts during the ultrasonic degradation of azo dye-acid red B which was chosen as model compound. The ultrasound of low power was used as an irradiation source to induce TiO(2) particles performing catalytic activity. It was found that the processes of sonocatalytic degradation were different between nanometer anatase TiO(2) and nanometer rutile TiO(2). For nanometer anatase TiO(2) catalyst, the acid red B was mainly oxidated by the holes on the surface of nanometer anatase TiO(2) particles, so that the decolorization and degradation happened at the same time. For the nanometer rutile TiO(2) catalyst, the acid red B was mainly oxidated by the *OH radicals from the ultrasonic cavitation, so that the decolorization of azo bond takes place primarily, and then the degradation of naphthyl ring does. The intermediates of acid red B in the presence of nanometer anatase and rutile TiO(2) powders have been monitored by UV-vis spectra and high performance liquid chromatography (HPLC), respectively. All experiments indicated that the degradation effect of acid red B in the presence of nanometer anatase TiO(2) powder was obviously better than that in the presence of nanometer rutile TiO(2) powder. Hence, the method of sonocatalytic degradation for organic pollutants in the presence of nanometer anatase TiO(2) powder is expected to be promising as an advisable choice for the treatment of organic wastewaters in future.

  3. Microstructure evolution characteristics induced by oxygen vacancy generation in anatase TiO2 based resistive switching devices

    Science.gov (United States)

    Liu, Chen; Gao, Bin; Huang, Peng; Kang, Jinfeng

    2017-03-01

    In this work, first principle calculations are employed to study the microstructure characteristics of the anatase TiO2 resistive switching material associated with the generation of oxygen vacancy (V o) based nanofilaments during the switching process. The calculations indicate that both the magnéli phase Ti4O7 and V o-defect phase of anatase TiO2 may be formed with the generation of oxygen vacancies during the forming and SET processes. Based on the calculations, a new physical insight is proposed to clarify the microstructure evolution characteristics of the anatase TiO2 resistive switching material and the correlation with resistive switching behaviors. During the forming or SET process, the anatase TiO2 is first excited to a transition state with the generation of oxygen vacancies, then fully relaxes to a stable V o-defect state. This V o-defect state may either recover to the original state with the recombination of the oxygen vacancies, which causes the reversible resistive switching behavior, or further transform to a much more stable state—the magnéli phase Ti4O7, through a phase transition process with the generation of many more oxygen vacancies. The phase transition from V o- defective anatase phase to magnéli phase Ti4O7 causes the failure of the resistive switching due to the significantly reduced possibility of the reversible phase transition from the magnéli phase to the anatase phase, compared with the possibility of the recombination from the V o-defective anatase.

  4. Electronic hole localization in rutile and anatase TiO2 - Self-interaction correction in Delta-SCF DFT

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Jacobsen, Karsten Wedel; Rossmeisl, Jan

    2011-01-01

    processes within DFT. The correction removes the non-linearity of energy for fractional excitations. We show that the self-trapped and the delocalized hole states have comparable stability in rutile TiO2 whereas in anatase the former is favoured. The theoretical prediction of the adiabatic Potential Energy...

  5. Effect of Nano-anatase TiO2 on Spectral Characterization of Photosystem Ⅱ Particles from Spinach

    Institute of Scientific and Technical Information of China (English)

    HONG Fa-shui; YANG Ping; GAO Feng-qing; LIU Chao; ZHENG Lei; YANG Fan; ZHOU Juan

    2005-01-01

    The photosystem I (PS Ⅱ) particles were purified by means of nano-anatase TiO2 treatment of spinach and studied by spectroscopy. The results show that the electron transport and the oxygen-evolving rate of PS I are accelerated after it has been treated with nano-anatase TiO2; the UV-Vis absorption spectrum of PS I particles is increased; the red shift of fluorescence emission peak of PS I is 2 nm; the peak intensity is decreased; the PS Ⅱ signal I s of low temperature electron paramagnetic resonanace(EPR) spectrum is intensified under light, and the PS I circular dichroism(CD) spectrum is similar to that of control. It is suggested that nano-anatase TiO2 might bind to the PS I reaction center complex and intensify the function of the PS I electron donor, however, nano-anatase TiO2 treatment does not change the configuration of the PS Ⅱ reaction center complex.

  6. Combined ATR-FTIR and DFT Study of Cyclohexanone Adsorption on Hydrated TiO2 Anatase Surfaces

    NARCIS (Netherlands)

    Almeida, Ana Rita; Calatayud, Monica; Tielens, Frederik; Moulijn, Jacob A.; Mul, Guido

    2011-01-01

    The adsorption of cyclohexanone on different planes ((100), (101), and (001)) of anatase TiO2, with variable level of hydration, was evaluated by density functional theory (DFT) calculations. Surface hydration was found to affect the cyclohexanone adsorption enthalpy and the calculated infrared abso

  7. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    Science.gov (United States)

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  8. Electronic hole localization in rutile and anatase TiO2 - Self-interaction correction in Delta-SCF DFT

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Jacobsen, Karsten Wedel; Rossmeisl, Jan

    2011-01-01

    processes within DFT. The correction removes the non-linearity of energy for fractional excitations. We show that the self-trapped and the delocalized hole states have comparable stability in rutile TiO2 whereas in anatase the former is favoured. The theoretical prediction of the adiabatic Potential Energy...

  9. DFT-based Theoretical Calculation of Nb- and W-doped Anatase TiO2

    Science.gov (United States)

    Suenaga, Takahiro; Kamisaka, Hideyuki; Nakamura, Hisao; Yamashita, Koichi

    2010-03-01

    The structure and electronic states in the Nb-doped TiO2 (TNO) and W-doped TiO2 (TWO) in anatase phase were investigated from the first-principle using DFT-based band structure method. In addition to the cases where the dopant substituting a Ti atom, cells containing a dopant (MTi; M = Nb, W) and an oxygen vacancy (VO) were calculated in order to clarify the role of the oxygen vacancy in the system. Furthermore, cells containing two dopants and an oxygen vacancy (2MTi--VO), and cells with a dopant and two oxygen vacancies (MTi--2VO) were calculated. Energetically stable structures were found among the sampled 2WTi--VO and WTi--2VO cells, while the corresponding structures in TNO did not show any significant energy stabilization. Impurity states were found in the stable 2WTi--VO and WTi--2VO structures, and an approach of the two WTi atoms was observed in the former. The present results rationalize the lower electronic conductivity of TWO than that of TNO, and suggest possible formation of complex structures consisting of the WTi dopants and the oxygen vacancies.

  10. Surface Complexation at the TiO(2) (anatase)/Aqueous Solution Interface: Chemisorption of Catechol.

    Science.gov (United States)

    Rodríguez; Blesa; Regazzoni

    1996-01-15

    Catechol adsorbs at the TiO(2) (anatase)/aqueous solution interface forming inner-sphere surface complexes. The UV-visible differential reflectance spectrum of surface titanium-catecholate complexes presents a band centered at 420 nm which corresponds to the ligand to metal charge transfer transition within the surface complexes. At pH values below pK(a1), the surface excess of catechol is almost insensitive toward pH and presents a Langmuirian dependence with the concentration of uncomplexed catechol. The ratio Gamma(max):N(S) (N(S) being the measured density of available OH surface groups) indicates a prevailing 1 to 2 ligand exchange adsorption stoichiometry. In the range pH >/= pK(a1), the catechol surface excess decreases markedly with increasing pH. Formation of 1 to 1 surface complexes produces an excess of negative surface charge that is revealed by the shift of the iep to lower pH values. The reported data, which are supplemented with information on the charging behavior of TiO(2) suspended in indifferent electrolyte solutions, are interpreted in terms of the multi-site surface complexation model. In this model, two types of surface OH groups are considered: identical withTiOH(1/3-) and identical withOH(1/3+). Although both surface groups undergo protonation-deprotonation reactions, only identical withTiOH(1/3-) are prone to chemisorption.

  11. Density functional theory studies on the structural and physical properties of Cu-doped anatase TiO2(101) surface

    Science.gov (United States)

    Zhang, Wei; Yin, Jiu-Ren; Tang, Xian-Qiong; Zhang, Ping; Ding, Yan-Huai

    2017-01-01

    Structure and physical properties of anatase TiO2 (101) surface doped with copper have been studied by using density functional theory. Results show that Cu@Ti and Cu@O systems behave as p and n type semiconductors, respectively. Anatase TiO2 (101) surface exhibits a blue shift in optical absorption spectra compared with pure TiO2 bulk materials. Enhanced photocatalytic activity at wavelength around 400 nm could be contributed by the change in electronic structure.

  12. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation.

    Science.gov (United States)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-12-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  13. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells.

    Science.gov (United States)

    Yu, Jiaguo; Fan, Jiajie; Lv, Kangle

    2010-10-01

    Dye-sensitized solar cells (DSSCs) are fabricated based on anatase TiO(2) nanosheets (TiO(2)-NSs) with exposed {001} facets, which were obtained by a simple one-pot hydrothermal route using HF as a morphology controlling agent and Ti(OC(4)H(9))(4) as precursor. The prepared samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and N(2) adsorption-desorption isotherms. The photoelectric conversion performances of TiO(2)-NSs solar cells are also compared with TiO(2) nanoparticles (TiO(2)-NPs) and commercial-grade Degussa P25 TiO(2) nanoparticle (P25) solar cells at the same film thickness, and their photoelectric conversion efficiencies (η) are 4.56, 4.24 and 3.64%, respectively. The enhanced performance of the TiO(2)-NS solar cell is due to their good crystallization, high pore volume, large particle size and enhanced light scattering. The prepared TiO(2) nanosheet film electrode should also find wide-ranging potential applications in various fields including photocatalysis, catalysis, electrochemistry, separation, purification and so on.

  14. Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells

    Science.gov (United States)

    Yu, Jiaguo; Fan, Jiajie; Lv, Kangle

    2010-10-01

    Dye-sensitized solar cells (DSSCs) are fabricated based on anatase TiO2 nanosheets (TiO2-NSs) with exposed {001} facets, which were obtained by a simple one-pot hydrothermal route using HF as a morphology controlling agent and Ti(OC4H9)4 as precursor. The prepared samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and N2 adsorption-desorption isotherms. The photoelectric conversion performances of TiO2-NSs solar cells are also compared with TiO2 nanoparticles (TiO2-NPs) and commercial-grade Degussa P25 TiO2 nanoparticle (P25) solar cells at the same film thickness, and their photoelectric conversion efficiencies (η) are 4.56, 4.24 and 3.64%, respectively. The enhanced performance of the TiO2-NS solar cell is due to their good crystallization, high pore volume, large particle size and enhanced light scattering. The prepared TiO2 nanosheet film electrode should also find wide-ranging potential applications in various fields including photocatalysis, catalysis, electrochemistry, separation, purification and so on.

  15. Dissimilar anisotropy of electron versus hole bulk transport in anatase TiO2: Implications for photocatalysis

    Science.gov (United States)

    Kim, Donghun; Yeo, Byung Chul; Shin, Dongbin; Choi, Heechae; Kim, Seungchul; Park, Noejung; Han, Sang Soo

    2017-01-01

    Recent studies on crystal facet manipulation of anatase TiO2 in photocatalysis have revealed that reduction and oxidation reactions preferably occur on (100)/(101) and (001) facets, respectively; however, a fundamental understanding of their origin is lacking. Here, as a result of first-principles calculations, we suggest that a dissimilar trend in the anisotropy of electron vs hole bulk transport in anatase TiO2 can be a dominant underlying mechanism for the difference in photochemical activity. Photoexcited electrons and holes are driven to different facets, i.e., electrons on (100)/(101) and holes on (001), leading to the observed preference for either reduction or oxidation. This trend of electrons vs holes found in pure TiO2 applies even for cases where a variety of dopants or defects is introduced.

  16. Comparison between P25 and anatase-based TiO2 quasi-solid state dye sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    LUO Fen; WANG LiDuo; QIU Yong

    2008-01-01

    Pure anatase TiO2 films have been made via hydration of titanium isopropoxide using a sol-gel tech-nique, while mixed TiO2 films which contained both anatase and rutile TiO2 were made from commercial P25 powder. Quasi-solid state dye-sensitized solar cells were fabricated with these two kinds of mesoporous films and a comparison study was carried out. The result showed that the open-circuit photovoltages (Voc) for both kinds of cells were essentially the same, whereas the short-circuit photo-currents (Isc) of the anatase-based cells were about 33% higher than that of the P25-based cells. The highest photocurrent intensity of the anatase-based cell was 6.12 mA/cm2 and that of the P25-based cell was 4.60 mA/cm2. Under an illumination with the light intensity of 30 mW/cm2, the corresponding en-ergy conversion efficiencywas measured to be 7.07% and 6.89% for anatase-based cells and P25-based cells, respectively.

  17. Uniform Gold Nanoparticles Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar Light Photocatalytic Reactions.

    Science.gov (United States)

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-09

    The {001}-faceted anatase TiO2 micro/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO2 nanostructures but their practical applications still require improved energy conversion efficiency under solar light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar light photocatalytic performance of the synthesized TiO2 nanosheets can be significantly improved by decorating with vapor-phase deposited uniformly-distributed plasmonic gold nanoparticles. The fabricated Au-TiO2 hybrid system shows an eight-fold solar light photocatalysis enhancement factor in photo-degrading Rhodamine B, a high photocurrent density of 300 μA cm-2 under the illumination of AM 1.5G, and 100% recyclability under consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem type separation and transition of plasmon-induced hot electrons from Au nanoparticles to {001} facet of anatase TiO2, and then to neighboring {101} facet is responsible to the enhanced solar light photochemical performance of the hybrid system. The Au-TiO2 nanosheet system well addresses the problems of limited solar-light response of anatase TiO2 and fast recombination of photo-generated electron-hole pairs, representing a promising high-performance recyclable solar light responded system for practical photocatalytic reactions.

  18. Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study.

    Science.gov (United States)

    Wagemaker, M; van de Krol, R; Kentgens, A P; van Well, A A; Mulder, F M

    2001-11-21

    7Li magic angle spinning solid-state nuclear magnetic resonance is applied to investigate the lithium local environment and lithium ion mobility in tetragonal anatase TiO(2) and orthorhombic lithium titanate Li(0.6)TiO(2). Upon lithium insertion, an increasing fraction of the material changes its crystallographic structure from anatase TiO(2) to lithium titanate Li(0.6)TiO(2). Phase separation occurs, and as a result, the Li-rich lithium titanate phase is coexisting with the Li-poor TiO(2) phase containing only small Li amounts approximately equal to 0.01. In both the anatase and the lithium titanate lattice, Li is found to be hopping over the available sites with activation energies of 0.2 and 0.09 eV, respectively. This leads to rapid microscopic diffusion rates at room temperature (D(micr) = 4.7 x 10(-12) cm(2)s(-1) in anatase and D(micr) = 1.3 x 10(-11) cm(2)s(-1) in lithium titanate). However, macroscopic intercalation data show activation energies of approximately 0.5 eV and smaller diffusion coefficients. We suggest that the diffusion through the phase boundary is determining the activation energy of the overall diffusion and the overall diffusion rate itself. The chemical shift of lithium in anatase is independent of temperature up to approximately 250 K but decreases at higher temperatures, reflecting a change in the 3d conduction electron densities. The Li mobility becomes prominent from this same temperature showing that such electronic effects possibly facilitate the mobility.

  19. Effect of anatase TiO2 nanoparticles on the growth of RSC-364 rat synovial cell.

    Science.gov (United States)

    Wang, Jiangxue; Ma, Jiawei; Dong, Linmeng; Hou, Ying; Jia, Xiaoling; Niu, Xufeng; Fan, Yubo

    2013-06-01

    Nanoscale materials (such as TiO2, hydroxyapatite nanoparticles) have gained much concern in the coating of implants for cell adhesion and growth to improve the osteoconductivity. However, due to attrition and corrosion, the wear particles would be generated from the joint in living organism, and influence the physiological function of synovial membranes in joint cavity. In this study, the potential cytotoxicity of anatase TiO2 nanoparticles (TiO2 NPs) on rat synovial cell line 364 (RSC-364) was investigated. After treatment with different concentrations of TiO2 NPs (0, 3, 30, 300 microg/ml), the viability of RSC-364 cells were decreased in a dose-dependent manner. TiO2 NPs exposure could disrupt the integrity of cell plasma membrane, leading to the increased leakage of lactate dehydrogenase (LDH) into the culture medium. TiO2 NPs were uptaken by RSC-364 cells. The ultrastructure of RSC-364 cells was changed such as nuclear shrinkage and mitochondrial swelling. The reactive oxygen species (ROS) was over-produced especially in the cells exposed to 30 and 300 microg/ml TiO2 NPs. The activities of endogeneous antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were significantly decreased. The increased lipid peroxidation product (malondialdehyde, MDA) suggests the oxidative damage in cells. The flow cytometry detected that the cell cycle was blocked in G0/G1 phase, inhibiting the cell proliferation. These preliminary results indicate the oxidative stress injury and cytotoxicity of anatase TiO2 NPs on rat synovial cells. The reasonable and safe application of nanomaterials in artificial implants needs further study.

  20. The Character of Photo-electrochemistry of Palladium Implanted TiO2 Nano-crystalline Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new electrode was prepared by using Pd implanted into nano-crystalline TiO2 and the character of photo-electrochemistry of implanted electrodes was investigated. The energy band structure of nano-crystalline TiO2 has not changed after implantation with Pd. The photo-current (iph) of palladium implanted TiO2 nano-crystalline electrode is larger than that of pure TiO2 nano-crystalline electrode.

  1. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Blanca Cervantes

    2016-07-01

    Full Text Available Cytotoxicity of titanium dioxide (TiO2 thin films on Chinese hamster ovary (CHO-K1 cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C toward the anatase to rutile phase transformation. The root-mean-square (RMS surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm. Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science.

  2. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.

    Science.gov (United States)

    Li, Gonghu; Richter, Christiaan P; Milot, Rebecca L; Cai, Lawrence; Schmuttenmaer, Charles A; Crabtree, Robert H; Brudvig, Gary W; Batista, Victor S

    2009-12-01

    A synergistic effect between anatase and rutile TiO2 is known, in which the addition of rutile can remarkably enhance the photocatalytic activity of anatase in the degradation of organic contaminants. In this study, mixed-phase TiO2 nanocomposites consisting of anatase and rutile nanoparticles (NPs) were prepared for use as photoanodes in dye-sensitized solar cells (DSSCs) and were characterized by using UV-vis spectroscopy, powder X-ray diffraction and scanning electron microscopy. The addition of 10-15% rutile significantly improved light harvesting and the overall solar conversion efficiency of anatase NPs in DSSCs. The underlying mechanism for the synergistic effect in DSSCs is now explored by using time-resolved terahertz spectroscopy. It is clearly demonstrated that photo-excited electrons injected into the rutile NPs can migrate to the conduction band of anatase NPs, enhancing the photocurrent and efficiency. Interfacial electron transfer from rutile to anatase, similar to that in heterogeneous photocatalysis, is proposed to account for the synergistic effect in DSSCs. Our results further suggest that the synergistic effect can be used to explain the beneficial effect of TiCl4 treatment on DSSC efficiency.

  3. Effect of substrate materials on rutile crystalline orientation in plasma-sprayed TiO2 coatings

    Institute of Scientific and Technical Information of China (English)

    YANG Guan-jun; LI Chang-jiu; WANG Yu-yue

    2004-01-01

    TiO2 coatings are of technical importance owing to their promising applications to photocatalytical, electrical, optical and tribological coatings. Thermal spraying process has been widely used to deposit both metallic and nonmetallic coatings. During thermal spraying, spray particle at fully or partially melted condition is projected to a substrate and subsequently flattens, rapidly cools and solidifies. Therefore, a coating in lamellar structure is usually formed as a quenched microstructure. TiO2 coatings were deposited on different substrates through plasma spraying with fused-crushed powder in rutile phase as feedstock to reveal the crystalline orientation in the coatings. XRD results show that the coatings consist of rutile phase with a fraction of anatase phase, and the rutile phase presents a preferable crystalline orientation along [101] direction. It is found that the orientation factors of rutile phase in the thin coatings are significantly influenced by substrate materials. The thick coatings yield the same orientation factors of 0.22 to 0.23 on all substrates in spite of substrate materials. It is considered that the thermal properties of substrate materials are the dominant factors for the preferable crystalline orientation in rutile phase within plasmasprayed TiO2 coating.

  4. Preparation of anatase TiO2 thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells

    Science.gov (United States)

    Noh, Hongche; Oh, Seong-Geun; Im, Seung Soon

    2015-04-01

    To prepare the anatase TiO2 thin films on ITO glass, amorphous TiO2 colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO2 colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO2 film (for device A). For other TiO2 films, amorphous TiO2 colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO2 colloidal solution. This anatase TiO2 colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO2 colloidal solution was about 1.0 nm and that of anatase TiO2 colloidal solution was 10 nm. The thickness of TiO2 films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO2 films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO2 films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO2 films as a buffer layer at low temperature on plastic substrate by roll-to roll process.

  5. Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy

    Science.gov (United States)

    Das, C.; Richter, M.; Tallarida, M.; Schmeisser, D.

    2016-07-01

    The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2 ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs.

  6. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation.

    Science.gov (United States)

    Tsukamoto, Daijiro; Shiraishi, Yasuhiro; Sugano, Yoshitsune; Ichikawa, Satoshi; Tanaka, Shunsuke; Hirai, Takayuki

    2012-04-11

    Visible-light irradiation (λ > 450 nm) of gold nanoparticles loaded on a mixture of anatase/rutile TiO(2) particles (Degussa, P25) promotes efficient aerobic oxidation at room temperature. The photocatalytic activity critically depends on the catalyst architecture: Au particles with anatase/rutile TiO(2) particles behave as the active sites for reaction. This photocatalysis is promoted via plasmon activation of the Au particles by visible light followed by consecutive electron transfer in the Au/rutile/anatase contact site. The activated Au particles transfer their conduction electrons to rutile and then to adjacent anatase TiO(2). This catalyzes the oxidation of substrates by the positively charged Au particles along with reduction of O(2) by the conduction band electrons on the surface of anatase TiO(2). This plasmonic photocatalysis is successfully promoted by sunlight exposure and enables efficient and selective aerobic oxidation of alcohols at ambient temperature.

  7. Synthesis, Characterization, and Photocatalysis of Well-Dispersible Phase-Pure Anatase TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiuzhen Wei

    2013-01-01

    Full Text Available High-purity anatase TiO2 nanoparticles were prepared using an improved sol-hydrothermal method. The as-prepared sample was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, Brunauer-Emmett-Teller (BET, and UV-vis diffuse reflectance spectra. TEM results showed that the average particle size of all TiO2 particles was calculated to be (10 ± 1 nm. The XRD analysis indicated that the present sample was fully crystallized and appeared to be highly phase-pure anatase. The BET analysis showed that the as-prepared sample had a very large specific surface area of 186.25 m2/g. The photocatalytic performance of TiO2 nanoparticles was evaluated by photocatalytic degradation of X-3B and X-BR solutions. The degradation results revealed that the as-prepared TiO2 showed slightly higher photocatalytic activities than P25. Whereas, the as-synthesized TiO2 can settle down and be separated easily after the photocatalytic reaction finishes.

  8. Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries

    Science.gov (United States)

    Shi, Xiaodong; Zhang, Zhian; Du, Ke; Lai, Yanqing; Fang, Jing; Li, Jie

    2016-10-01

    In this paper, we propose a facile strategy to synthesize the porous structure TiO2@C composites through a two-step method, in which the precursor of MIL-125(Ti) was firstly prepared by solvent thermal method and then calcined under inert atmosphere. When employed as anodes for Na ion batteries, TiO2@C composites can exhibit a superior cyclability with a reversible sodium storage capacity of 148 mAh g-1 at the current density 0.5 A g-1 after 500 cycles and an excellent rate performance with a capacity of 88.9 mAh g-1 even the current reached to 2.5 A g-1 due to the dispersion of anatase TiO2 throughout amorphous carbon matrix and the synergistic effect between the anatase TiO2 nanocrystals and carbon matrix, which can availably enhance the electric conductivity and alleviate the volumetric variation of TiO2 during the insertion/extraction process of Na+.

  9. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces

    Science.gov (United States)

    Selcuk, Sencer; Selloni, Annabella

    2016-10-01

    Excess electrons from intrinsic defects, dopants and photoexcitation play a key role in many of the properties of TiO2. Understanding their behaviour is important for improving the performance of TiO2 in energy-related applications. We focus on anatase, the TiO2 polymorph most relevant in photocatalysis and solar energy conversion. Using first-principles simulations, we investigate the states and dynamics of excess electrons from different donors near the most common anatase (101) and (001) surfaces and aqueous interfaces. We find that the behaviour of excess electrons depends strongly on the exposed anatase surface, the environment and the character of the electron donor. Whereas no electron trapping is observed on the (101) surface in vacuo, an excess electron at the aqueous (101) interface can trigger water dissociation and become trapped into a stable surface Ti3+-bridging OH complex. By contrast, electrons avoid the (001) surface, indicating that oxidation reactions are favoured on this surface. Our results provide a bridge between surface science experiments and observations of crystal-face-dependent photocatalysis on anatase, and support the idea that optimization of the ratio between {101} and {001} facets could provide a way to enhance the photocatalytic activity of this material.

  10. Efficient, Green Non-aqueous Microwave-assisted Synthesis of Anatase TiO2 and Pt Loaded TiO2 Nanorods with High Photocatalytic Performance

    OpenAIRE

    Emanuela Filippo; Agostina Lina Capodilupo; Claudia Carlucci; Patrizia Perulli; Francesca Conciauro; Giuseppina Anna Corrente; Barbara Federica Scremin; Giuseppe Gigli; Giuseppe Ciccarella

    2015-01-01

    A high-yield synthesis of pure anatase titania nanorods has been achieved through a nonaqueous microwave-based approach. The residual organics on nanoparticles surfaces were completely removed under ozone flow at room temperature in air. The TiO2 nanorods, with average lengths of 27.6 ± 5.8 nm and average diameters of 3.2 ± 0.4 nm, were characterized by powder X-Ray diffraction, transmission electron microscopy, selected area diffraction, BET surface area analysis and FT-IR spectroscopy. The ...

  11. Photo-induced degradation of Ru(Ⅱ) complex absorbed on anatase TiO2 thin film electrode

    Institute of Scientific and Technical Information of China (English)

    WANG DeLiang; WANG GuangLong; ZHAO JianHua; CHEN Bo

    2007-01-01

    Photo-induced degradation of a monolayer of Ru(II) complex absorbed on anatase TiO2 thin film was studied by using resonant micro-Raman spectroscopy. Under intense light radiation of a laser and in the absence of a reducing agent, the dye decomposed quickly. When the dye-sensitized TiO2 thin film electrode was covered by a reducing agent, namely the Ⅰ-/Ⅰ-3 redox couple, the photo-induced decomposing rate was slowed by a factor of ~106. In both cases, the dye decomposed with time under an exponential law.

  12. The effect of Ta dopant on the electronic and optical properties of anatase TiO2: a first-principles study

    Science.gov (United States)

    Muhammady, Shibghatullah; Nurfani, Eka; Kurniawan, Robi; Magdalena Sutjahja, Inge; Winata, Toto; Darma, Yudi

    2017-02-01

    We study the electronic and optical properties of pure and Ta-doped anatase TiO2 structures using a plane-wave-based first-principles calculation. The pure anatase TiO2 has an indirect band gap of 2.76 eV, while the Ta-doped anatase TiO2 is a metal. Zero-energy dielectric constants of 4.02 and 3.48 were found for E || a and E || c, respectively, in the pure anatase TiO2. Based on the calculated imaginary parts of the dielectric function (ε 2), the pure anatase TiO2 has anisotropic interband transition edges of 2.75 eV and 3.55 eV for E || a and E || c respectively, which show an optical dichroism. The Ta-doped anatase TiO2 is found to have metallic behaviour, which is clearly observable through the significantly high electronic absorption in ε 2 at the zero energy level. However, the Ta-doped TiO2 also shows anisotropic interband transition edges of 2.55 eV and 3.45 eV for E || a and E || c, respectively, based on ε 2. Based on these results, Ta dopant plays an important role for the semiconductor-to-metallic transformation in anatase TiO2. At the same time, Ta dopant also promotes the red-shift of the interband transition edges and enhances the dichroism. This study presents the significant modification in the optical properties of anatase TiO2 due to the presence of Ta dopant based on the dielectric functions.

  13. The Photocatalytic Reduction of Hexavalent Chromium by Controllable Mesoporous Anatase TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vorrada Loryuenyong

    2014-01-01

    Full Text Available Titania (TiO2 nanoparticles with periodical mesopore size (up to 150 Å have successfully been synthesized by sol-gel template method, using titanium(IV tetraisopropoxide as a starting precursor and isopropanol as a solvent. Different quantities of activated carbon (0%, 5%, and 10% by weight were used as templates to control the porosity and particle size of titania nanoparticles. The templates were completely removed during the calcination in air at 500°C for 3 hr. The results showed that the specific surface area of titania is increased with increasing activated carbon content. The optical bandgap of synthesized titania exhibits a blue shift by 0.3–0.6 eV when compared to the reported value for the bulk anatase and rutile phases. The photocatalytic activity of porous titania is determined with its reduction efficiency of hexavalent chromium (Cr6+. The reduction efficiency is optimized under ultraviolet illumination.

  14. Nano-Anatase TiO2 for High Performance Optical Humidity Sensing on Chip

    Directory of Open Access Journals (Sweden)

    Mahdiar Ghadiry

    2015-12-01

    Full Text Available An on-chip optical humidity sensor using Nano-anatase TiO2 coating is presented here. The coating material was prepared so that the result is in solution form, making the fabrication process quick and simple. Then, the solution was effortlessly spin-coated on an SU8 straight channel waveguide. Investigating the sensitivity and performance (response time of the device revealed a great linearity in the wide range (35% to 98% of relative humidity (RH. In addition, a variation of more than 14 dB in transmitted optical power was observed, with a response time of only ~0.7 s. The effect of coating concentration and UV treatment was examined on the performance and repeatability of the sensor. Interesting observations were found, and the attributed mechanisms were described. In addition, the proposed sensor was extensively compared with other state-of-the-art proposed counterparts from the literature and remarkable advantages were found. Since a high sensitivity of ~0.21 dB/%RH and high dynamic performances were demonstrated, this sensor is proposed for use in biomedical applications.

  15. Investigation of curcumin as sensitizer for anatase TiO2 nanoparticles in photodegradation of of phenazopyridine with visible light

    Directory of Open Access Journals (Sweden)

    ZYOUD Ahed H.

    2014-11-01

    Full Text Available This work describes a photodegradation catalyst, for water organic contaminants in visible light, based on curcumin (a natural dye sensitized TiO2 (anatase nanoparticles. Phenazopyridine (a pharmaceutically active gradient was used as a contaminant. A 400 nm, and shorter, cut of filter was used to confirm only visible light was used in photodegradation process with no UV radiation. The catalyst system was characterized by electronic absorption spectroscopy and XRD. The particle size forthe catalyst nanaprticles was calculated using Scherrer equation and found to be ~45 nm in average. Different reaction parameters were studied, such as effect of contaminant concentration, amount of loaded catalyst, and pH value on the photodegradation rate. Turn number (T.N. and quantum yield (Q.Y. values were calculated for comparative assessment of the catalyst effeciency. The results show the ability of curcumin dyes to sensitize TiO2 anatase nanoparticles in photodegradation phenazopyridine under visible radiation.

  16. Investigation of curcumin as sensitizer for anatase TiO2 nanoparticles in photodegradation of of phenazopyridine with visible light

    OpenAIRE

    ZYOUD Ahed H.; Hilal, Hikmat S.

    2014-01-01

    This work describes a photodegradation catalyst, for water organic contaminants in visible light, based on curcumin (a natural dye) sensitized TiO2 (anatase) nanoparticles. Phenazopyridine (a pharmaceutically active gradient) was used as a contaminant. A 400 nm, and shorter, cut of filter was used to confirm only visible light was used in photodegradation process with no UV radiation. The catalyst system was characterized by electronic absorption spectroscopy and XRD. The particle...

  17. Enhanced electrorheological performance and antisedimentation property of mesoporous anatase TiO2 shell prepared by hydrothermal process

    Science.gov (United States)

    Wang, Jiahui; Chen, Guowei; Yin, Jianbo; Luo, Chunrong; Zhao, Xiaopeng

    2017-03-01

    Mesoporous anatase TiO2 hollow microspheres (MTHMs) with a high surface area (231.1 m2 g‑1) were synthesized by sol-gel template-assisted approach and hydrothermal process. The materials possessed a uniform diameter of about 620 nm and a mesoporous shell with thickness of about 180 nm. The microspheres were used as dispersing materials for electrorheological (ER) fluids, which exhibited better ER performance and antisedimentation property than common anatase TiO2 hollow microspheres and ordinary anatase TiO2 particles. The yield stress of the MTHM-based ER fluid (30.0 vol%) was approximately 7.8 kPa under an electric field of 3 kV mm‑1, and the sedimentation ratio was maintained above 78% after 250 h. The good ER activity of the MTHM-based ER fluid was mainly attributed to the high surface effect provided by mesoporous and hollow structure of the MTHMs, leading to a high interfacial polarization under the action of an external electric field. The mesoporous and hollow structure also improved the antisedimentation property of the suspensions by lowering the density of microspheres.

  18. Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2.

    Science.gov (United States)

    Navas, Javier; Sánchez-Coronilla, Antonio; Aguilar, Teresa; Hernández, Norge C; de los Santos, Desireé M; Sánchez-Márquez, Jesús; Zorrilla, David; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Martín-Calleja, Joaquín

    2014-02-28

    A good correlation was obtained between the electronic properties of Cu-doped anatase TiO2 by virtue of both physical chemistry characterization and theoretical calculations. Pure and Cu-doped TiO2 were synthesized. The composition, structural and electronic properties, and the band gap energy were obtained using several techniques. The method of synthesis used produces Cu-doped anatase TiO2, and XRD, XPS and Raman spectroscopy indicate that Cu atoms are incorporated in the structure by substitution of Ti atoms, generating a distortion of the structure and oxygen vacancies. In turn, the band gap energy of the synthesized samples decrease drastically with the Cu doping. Moreover, periodic density functional theory (DFT-periodic) calculations were carried out both to model the experimentally observed doped structures and to understand theoretically the experimental structures obtained, the formation of oxygen vacancies and the values of the band gap energy. From the analysis of density of states (DOS), projected density of states (PDOS) and the electron localization function (ELF) a decrease in the band gap is predicted upon increasing the Cu doping. Thus, the inclusion of Cu in the anatase structure implies a covalent character in the Cu-O interaction, which involves the appearance of new states in the valence band maximum with a narrowing in the band gap.

  19. Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior

    Science.gov (United States)

    Araújo, M. M.; Silva, L. K. R.; Sczancoski, J. C.; Orlandi, M. O.; Longo, E.; Santos, A. G. D.; Sá, J. L. S.; Santos, R. S.; Luz, G. E.; Cavalcante, L. S.

    2016-12-01

    In this paper, a new synthesis method was proposed to obtain anatase titanium oxide (TiO2) nanocrystals anchored into SBA-15 molecular sieve, as a matrix assigned by the in-situ anchoring (ISA) method. Pure SBA-15 and modified with TiO2 nanocrystals at different Si/Ti molar ratios (R = 75, 50, and 25) were structurally characterized by X-ray diffraction (XRD), Micro-Raman and Fourier Transform infrared (FTIR) spectroscopies. Specific surface area, pore volume and average pore diameter were estimated using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Morphological aspects of these samples were observed by means of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. XRD patterns, Micro-Raman and FT-IR spectra indicate the TiO2 nanocrystals crystallized in a tetragonal structure anchored into the SBA-15 mesopores. BET and BJH methods prove a large amount of TiO2 nanocrystals were anchored inside of SBA-15 mesopores due to increase in surface area and average pore size of SBA-15 matrix. FE-SEM and TEM images showed the pure SBA-15 has an elongated hexagon-shaped microstructure, and an average size of 7.34 nm for 2D hexagonal mesopores. Moreover, ISA method was able to avoid blocking of mesopores, in addition promotes a significant increasing the impregnation rate of anatase TiO2 nanocrystals in SBA-15 matrix. A growth mechanism was proposed in order to explain the stages involved in the formation of TiO2-SBA mesoporous. UV-vis spectra revealed a dependence of the optical band gap energy (Egap) with the decreasing of Si/Ti molar ratios.

  20. The Effect of Ce-N Codoping on the Electronic Structure and Optical Property of Anatase TiO2: a First-Principles Study

    Science.gov (United States)

    Mao, Fei; Hou, Qingyu; Zhao, Chunwang; Guo, Shaoqiang; Zhang, Yue

    2014-01-01

    Based on the first-principles plane wave ultra-soft pseudo potential (USP) method of density function theory pure N and Ce doped and Ce-N codoping anatase TiO2 supercell models were established, respectively, and calculated their energy in this paper. The calculated results show that the three doping systems compared to the pure anatase TiO2 band gap narrowed which results in red-shift of the optical absorption edges and Ce-N codoped anatase TiO2 have the most obvious visible effect. Meanwhile, synergy is very effective for the separation of electron-hole pairs and the electrons have a better lifespan. Research found that the trend of the donor's movements at the shallow level of Ce-N codoped anatase TiO2 is not obvious. This is due to its very thick shell, resulting in shielding effect of the outer layer of the Ce-4f.

  1. Preparation of TiO2 anatase nanocrystals by TiCl4 hydrolysis with additive H2SO4.

    Directory of Open Access Journals (Sweden)

    Wenbing Li

    Full Text Available A new methodology was developed to synthesize uniform titania anatase nanocrystals by the hydrolysis of titanium chloride in sulfuric acid aqueous solutions at 0-90°C. The samples were characterized by Raman spectroscopy, UV-visible spectroscopy, transmission electron microscopy (TEM, electron diffraction (ED, and an Energy dispersive X-ray spectroscopy (EDS. The effects of the reaction temperature, mole ratio of SO(4(2- to Ti(4+, and the calcinations temperature on the particle size and crystal phase were investigated. Depending on the acidity, the hydrolysis temperature, and the calcination temperature, rhombic anatase nanocrystals sizes in the range of 10 nm to 50 nm were obtained. In the additive of sulfuric acid, Raman spectra and electron diffraction confirmed that the nanoparticles are composed of anatase TiO(2. No other titania phases, such as rutile or brookite, were detected.

  2. Dye-sensitized solar cells based on anatase TiO 2 hollow spheres/carbon nanotube composite films

    Science.gov (United States)

    Yu, Jiaguo; Fan, Jiajie; Cheng, Bei

    Dye-sensitized solar cells (DSSCs) based on anatase TiO 2 hollow spheres (TiO2HS)/multi-walled carbon nanotubes (CNT) nanocomposite films are prepared by a directly mechanical mixing and doctor blade method. The prepared samples are characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-vis absorption spectroscopy and N 2 adsorption-desorption isotherms. The photoelectric conversion performances of the DSSCs based on TiO2HS/CNT composite film electrodes are also compared with commercial-grade Degussa P25 TiO 2 nanoparticles (P25)/CNT composite solar cells at the same film thickness. The results indicate that the photoelectric conversion efficiencies (η) of the TiO2HS/CNT composite DSSCs are dependent on CNT loading in the electrodes. A small amount of CNT clearly enhances DSSC efficiency, while excessive CNT loading significantly lowers their performance. The former is because CNT enhance the transport of electrons from the films to FTO substrates. The latter is due to high CNT loading shielding the visible light from being adsorbed by dyes.

  3. First-principles study on codoping effect to enhance photocatalytic activity of anatase TiO2

    Science.gov (United States)

    Bai, Yujie; Zhang, Qinfang; Zheng, Fubao; Yang, Yun; Meng, Qiangqiang; Zhu, Lei; Wang, Baolin

    2017-03-01

    Codopant is an effective approach to modify the bandgap and band edge positions of transition metal oxide. Here, the electronic structures as well as the optical properties of pristine, mono-doped (N/P/Sb) and codoped (Sb, N/P) anatase TiO2 have been systematically investigated based on density functional theory calculations. It is found that mono-doped TiO2 exhibits either unoccupied or partially occupied intermediate state within the energy gap, which promotes the recombination of electron-hole pairs. However, the presence of (Sb, N/P) codopant not only effectively reduces the width of bandgap by introducing delocalized occupied intermediate states, but also adjusts the band edge alignment to enhance the hydrogen evolution activity of TiO2. Moreover, the optical absorption spectrum for (Sb, N/P) codoped TiO2, which is favored under oxygen-rich condition, demonstrates the improvement of its visible light absorption. These findings will promote the potential application of (Sb, N/P) codoped TiO2 photocatalysis for water splitting under visible light irradiation.

  4. Morphology and crystallinity control of ultrathin TiO2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition

    Science.gov (United States)

    Guerra-Nuñez, Carlos; Zhang, Yucheng; Li, Meng; Chawla, Vipin; Erni, Rolf; Michler, Johann; Park, Hyung Gyu; Utke, Ivo

    2015-06-01

    Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the chemically inert CNTs and appropriate control of the morphology of the TiO2 layer have not been achieved so far. Here, we report a new strategy to obtain ultrathin TiO2 coatings deposited by ``Temperature-step'' Atomic Layer Deposition (TS-ALD) with complete surface coverage of non-functionalized multiwall carbon nanotubes (MWCNTs) and controlled morphology and crystallinity of the TiO2 film. This strategy consists of adjusting the temperature during the ALD deposition to obtain the desired morphology. Complete coverage of long non-functionalized MWCNTs with conformal anatase layers was obtained by using a low temperature of 60 °C during the nucleation stage followed by an increase to 220 °C during the growth stage. This resulted in a continuous and amorphous TiO2 layer, covered with a conformal anatase coating. Starting with the deposition at 220 °C and reducing to 60 °C resulted in sporadic crystal grains at the CNT/TiO2 interface covered with an amorphous TiO2 layer. The results were accomplished through an extensive study of nucleation and growth of titanium oxide films on MWCNTs, of which a detailed characterization is presented in this work.Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the

  5. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces.

    Science.gov (United States)

    Thomas, Andrew G; Syres, Karen L

    2012-06-07

    The interaction of organic molecules with titanium dioxide surfaces has been the subject of many studies over the last few decades. Numerous surface science techniques have been utilised to understand the often complex nature of these systems. The reasons for studying these systems are hugely diverse given that titanium dioxide has many technological and medical applications. Although surface science experiments investigating the adsorption of organic molecules on titanium dioxide surfaces is not a new area of research, the field continues to change and evolve as new potential applications are discovered and new techniques to study the systems are developed. This tutorial review aims to update previous reviews on the subject. It describes experimental and theoretical work on the adsorption of carboxylic acids, dye molecules, amino acids, alcohols, catechols and nitrogen containing compounds on single crystal TiO(2) surfaces.

  6. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-01

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications. PMID:28102314

  7. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure.

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-19

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti(3+) interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.

  8. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-01

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.

  9. Morphological effects of Au13 clusters on the adsorption of CO2 over anatase TiO2(101)

    Science.gov (United States)

    Liu, Li; Liu, Zhongbo; Sun, Honggang; Zhao, Xian

    2017-03-01

    Density functional theory was employed to investigate the interaction between CO2 and anatase TiO2(101) surface in the presence of Au13 clusters. Two Au13 clusters (icosahedral and cuboctahedral) were used to identify correlations among activity, structural stability, and morphology of supported Au13 clusters on the TiO2(101) surface. The effects of oxygen vacancy were also studied. A strong morphological effect of Au13 clusters on the adsorption and activation of CO2 over anatase TiO2 (101) has been identified. The structural dynamic fluxionality of Au13 clusters, i.e., its adaptability toward the adsorbed CO2, plays an important role in the bonding and activation of CO2. The flexibility of the icosahedral Au13 cluster allows it to readjust so as to enable the maximum orbital overlap between the Au13 clusters and CO2, making the stabilization of CO2 feasible. In contrast, the cuboctahedral Au13 cluster tends to maintain its own structure even after CO2 adsorption, resulting in weaker CO2 binding strength. The presence of oxygen vacancy was found to introduce additional adsorption sites, and CO2 adsorption on defective TiO2(101) surface can be substantially modified by the presence of the cuboctahedral Au13 cluster. In addition, we find that the interfacial site is the preferred adsorption site for CO2 adsorption and activation on the Au13/TiO2(101) surface. These findings shed light on the importance of cluster dynamics during catalytic reaction and provide key guidelines for engineering more efficient metal-oxide interfaces in catalysis.

  10. Effect of sodium on photovoltaic properties of dye-sensitized solar cells assembled with anatase TiO2 nanosheets with exposed {001} facets.

    Science.gov (United States)

    Wu, Xia; Lu, Gaoqing Max; Wang, Lianzhou

    2013-02-01

    Anatase TiO(2) nanosheets with exposed reactive {001} facets were prepared in the presence of HF. The photovoltaic properties of NaOH-washed anatase TiO(2) nanosheets with exposed {001} facets were investigated by assembling the TiO(2) as photoanodes in dye-sensitized solar cells (DSSCs). A decreased overall efficiency and increased recombination rate was observed in comparison with the H(2)O-washed counterpart by both dark current scan and open-circuit voltage decay scan, and XPS confirmed that the deleterious effect of sodium ions is responsible for this reduced efficiency in DSSCs.

  11. Hunting for the elusive shallow traps in TiO2 anatase.

    Science.gov (United States)

    Antila, Liisa J; Santomauro, Fabio G; Hammarström, Leif; Fernandes, Daniel L A; Sá, Jacinto

    2015-07-11

    Understanding electron mobility on TiO2 is crucial because of its applications in photocatalysis and solar cells. This work shows that shallow traps believed to be involved in electron migration in TiO2 conduction band are formed upon band gap excitation, i.e., are not pre-existing states. The shallow traps in TiO2 results from large polarons and are not restricted to surface.

  12. Effects of V heavy doping on the magnetic and optical properties in anatase TiO2

    Science.gov (United States)

    Hou, Qingyu; Zhao, Chunwang; Qu, Lingfeng

    2017-01-01

    A half-metal diluted magnetic semiconductor (DMS) can be formed in heavy V-doped TiO2. Contradictory experimental results in the literature have reported about the absorption spectra blueshift and redshift results in heavy V-doped TiO2. This study aims to reveal the mechanism of half-metal DMS in heavy V-doped TiO2 and solve the problem of absorption spectra blueshift and redshift in the doping system. In this study, models of the unit cells of pure anatase TiO2 and two V heavy-doped supercells of Ti0.96875V0.03125O2 and Ti0.9375V0.0625O2 were constructed based on density functional theory, which uses the first-principles plane-wave ultrasoft pseudopotential method. All models were obtained through geometry optimization. Local density approximation (LDA) + U was used to calculate the band structure, density of states (DOS), orbital charge and absorption spectrum of the doping system. The calculated results under the condition of electron spin showed that in the heavy doping concentration range, the volume of supercells increases, the total energy and formation energy decrease and the stability of the supercells increases as V doping concentration increases. Furthermore, the interaction of p-p states is weaker than that of p-d states, which results in the valence band maximum shifting toward the low-energy region, and also the optical bandgap becomes narrower as well as the redshift and intensity of the absorption spectrum become more notable. Noticeably, the hybrid coupling effect of Ti-3d and V-3d states becomes stronger, and the magnetic moment increases. The Fermi levels of spin-up band structure within the conduction band, which form the n-type degenerate semiconductors, and the Fermi levels of spin-down band structure within the bandgap indicate that the doping system has semiconductor features. Therefore, V-doped anatase TiO2 is an extremely promising DMS because of its high electron polarizability of nearly 100%. The calculation results are consistent with

  13. Emerging giant resonant exciton induced by Ta substitution in anatase TiO2: A tunable correlation effect

    Science.gov (United States)

    Yong, Z.; Trevisanutto, P. E.; Chiodo, L.; Santoso, I.; Barman, A. R.; Asmara, T. C.; Dhar, S.; Kotlov, A.; Terentjevs, A.; Della Sala, F.; Olevano, V.; Rübhausen, M.; Venkatesan, T.; Rusydi, A.

    2016-05-01

    Titanium dioxide (TiO2) has rich physical properties with potential implications for both fundamental physics and new applications. To date, the main focus of applied research is to tune its optical properties, which is usually done via doping and/or nanoengineering. However, understanding the role of d electrons in materials and possible functionalization of d -electron properties are still major challenges. Herewith, within a combination of an innovative experimental technique, high-energy optical conductivity, and state-of-the-art ab initio electronic structure calculations, we report an emerging, novel resonant exciton in the deep ultraviolet region of the optical response. The resonant exciton evolves upon low-concentration Ta substitution in anatase TiO2 films. It is surprisingly robust and related to strong electron-electron and electron-hole interactions. The d - and f -orbital localization, due to Ta substitution, plays an unexpected role, activating strong electronic correlations and dominating the optical response under photoexcitation. Our results shed light on a new optical phenomenon in anatase TiO2 films and on the possibility of tuning electronic properties by Ta substitution.

  14. Computational Study of the Adsorption of Dimethyl Methylphosphonate (DMMP) on the (0 1 0) Surface of Anatase TiO2 With and Without Faceting

    Science.gov (United States)

    2010-02-02

    Computational study of the adsorption of dimethyl methylphosphonate (DMMP) on the (0 1 0) surface of anatase TiO2 with and without faceting V.M...DMMP) on the (0 1 0) surface of anatase TiO2, which is isostructural with the (1 0 0), has been studied using density functional theory and two...also close to those found elsewhere for the rutile (1 1 0) and anatase (1 0 1) surfaces. A possible first step in the dissociative adsorption of DMMP

  15. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    Science.gov (United States)

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size.

  16. Effect of Yb2O3 Additive on Transformation Behavior of Anatase for TiO2/( O' + β' )-Sialon Multi phase Ceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    TiO2/(O' + β')-Sialon multiphase ceramics were prepared with nano Ti O2 (anatase) powder and (O' + β')-Sialon powder as raw materials. Effect of Yb2O3 additive on transformation behavior of anatase for TiO2/(O' + β')-Sialon multi phase ceramic was investigated and its influence mechanism was discussed. XRD was employed for the analysis of phase composition and lattice parameters. The results show that even though Yb2O3 has no obvious influence on starting temperature of phase transformation, it significantly accelerates the transformation process, which displays a weakened effect with more Yb2O3 addition. There exist two forms of the added Yb2O3: some enters TiO2 lattice and the other deposits on the surface of TiO2. The function of Yb2O3 on phase transformation of anatase can be attributed to the coaction of active and negative influence mechanisms as follows: some Ybn+ enter TiO2 lattice and replace Ti4+ , as well as the redox reaction between Yb3 + and TiO2, which promote the transformation, whereas other Yb2O3 deposits on the surface of TiO2, and TiO-Yb bond is formed by the coaction of Yb3 + and TiO2, which inhibit the process.

  17. Particle concentration effect in adsorption/desorption of Zn(II) on anatase type nano TiO2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Adsorption/desorption in a new Zn(II)-TiO2 adsorption system was investigated at different particle concentrations (Cp). TEM, SEM and XRD analyses revealed that the TiO2 particles were an aggregation of nano-sized (approximately 10 nm) pure anatase-type TiO2. Adsorption experiments were carried out with particle concentrations of 100, 400 and 1000 mg/L, and their adsorption isotherms were found to decline successively, showing an obvious Cp effect. Desorption experiments indicated that adsorption in this system was irreversible, and the irreversibility increased with increasing Cp. These phenomena could be explained by the MEA (metastable equilibrium adsorption) theory and the Cp effect could be modeled well with an MEA-Freundlich-type Cp effect isotherm equation. This study may help understand environmental behavior of contaminants on ultrafine natural particles.

  18. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Science.gov (United States)

    Sasani, Alireza; Baktash, Ardeshir; Mirabbaszadeh, Kavoos; Khoshnevisan, Bahram

    2016-10-01

    In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO2 anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO2 surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase JSC of the surface while slightly decreasing VOC compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  19. Room-temperature synthesis of single-phase anatase TiO2 by aging and its self-cleaning properties.

    Science.gov (United States)

    Qi, Kaihong; Xin, John H

    2010-12-01

    A facile process to synthesize single-phase anatase titanium dioxide nanocrystallites at room temperature was presented. The process included a sol-gel reaction in an aqueous media followed by aging at room temperature. The anatase TiO2 was characterized using XRD, TEM and SEM. The cotton fabrics-coated by the anatase nanocrystallites possessed significant photocatalytic self-cleaning properties as demonstrated by their ability to decompose a colorant and degrade red wine and coffee stains, which was equivalent to that of prepared by heating or hydrothermal methods described previously. The anatase TiO2-coated cotton substrate also showed a high UPF rating of 50+, which means excellent UV protection to human wearers. The study of the adhesion between the anatase TiO2 and the cotton substrate showed that even after 20 times of repeated launderings, the-coated substrate was still capable of decomposing stains, which indicated its photocatalytic power, though this was reduced compared to that before laundering. The tensile strength results of the anatase TiO2-coated cotton fabrics indicate that the anatase TiO2 will not damage the cotton substrate even after 20 h of continuous UV irradiation. The method of preparing single-phase anatase TiO2 revealed in this study not only eliminates the need for high temperature processing, which means energy saving, but also broadens its applications to poor acid-resistant and low thermal stability materials such as many of the biomaterials and cellulosic materials.

  20. Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: Influence of synthesis method, crystalline structure, size and additive.

    Science.gov (United States)

    Katsumiti, Alberto; Berhanu, Deborah; Howard, Kieren T; Arostegui, Inmaculada; Oron, Miriam; Reip, Paul; Valsami-Jones, Eugenia; Cajaraville, Miren P

    2015-01-01

    Increasing the production and applications of TiO2 nanoparticles (NPs) has led to grow concerns about the consequences for the environment. In this study, we investigated the effects of a set of TiO2 NPs on the viability of mussel hemocytes and gill cells using neutral red and thiazolyl tetrazolium bromide assays. For this, we compared the cytotoxicity of TiO2 NPs (0.1-100 mg Ti/L) produced by different techniques: rutile NPs (60 nm) produced by milling and containing disodium laureth sulfosuccinate (DSLS), rutile NPs (10, 40 and 60 nm) produced by wet chemistry and anatase/rutile NPs (∼100 nm) produced by plasma synthesis. The commercially available P25 anatase/rutile NPs (10-20 nm) were also tested. Exposures were performed in parallel with their respective bulk forms and the cytotoxicity of the additive DSLS was also tested. Z potential values in distilled water indicated different stabilities depending on the NP type and all NPs tested formed agglomerates/aggregates in cell culture media. In general, TiO2 NPs showed a relatively low and dose-dependent toxicity for both cell models with the two assays tested. NPs produced by milling showed the highest effects, probably due to the toxicity of DSLS. Size-dependent toxicity was found for NPs produced by wet chemistry (10 nm > 40 nm and 60 nm). All TiO2 NPs tested were more toxic than bulk forms excepting for plasma produced ones, which were the least toxic TiO2 tested. The mixture bulk anatase/rutile TiO2 was more toxic than bulk rutile TiO2. In conclusion, the toxicity of TiO2 NPs varied with the mode of synthesis, crystalline structure and size of NPs and can also be influenced by the presence of additives in the suspensions.

  1. Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells

    Science.gov (United States)

    Wang, Guanxi; Zhu, Xunjin; Yu, Jiaguo

    2015-03-01

    Derived from a hollow TiO2 nanoparticle (HNP) as underlayer and a TiO2 spindle (SP) as light scattering overlayer, a new bilayer single-crystalline photoanode (HNP/SP) is fabricated for dye-sensitized solar cell (DSSC) application. The prepared bilayer TiO2 photoanode and two comparative HNP/HNP and SP/SP ones are fully characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-vis absorption spectroscopy and N2 adsorption-desorption isotherms. An overall photoelectric conversion efficiency of 8.65% has been achieved for HNP/SP DSSC, which is 25% higher than that of HNP/HNP DSSC, and also far superior to that of SP/SP or conventional P25 DSSC. The improved photovoltaic performance of HNP/SP DSSC is attributed to the synergic effects, i.e. the single-crystalline bilayer structure favoring for rapid interfacial electron transport, the relatively large specific surface area of HNP for effective dye adsorption, and the 1D geometry of single-crystalline TiO2 spindles for direct electron transport pathway and strong light scattering effect.

  2. A General Method for Preparing Anatase TiO2 Treelike-Nanoarrays on Various Metal Wires for Fiber Dye-Sensitized Solar Cells

    Science.gov (United States)

    Chu, Liang; Li, Luying; Su, Jun; Tu, Fanfan; Liu, Nishuang; Gao, Yihua

    2014-03-01

    Anatase TiO2 tree-like nanoarrays were prepared on various metal wires (Ti, W, Ni, etc.) through one-step facile hydrothermal reaction. The anatase TiO2 tree-like nanoarrays consist of long TiO2 nanowire trunks with direct charge transport channels, and a large number of short TiO2 nanorod branches with large surface areas. Fiber dye-sensitized solar cells (FDSSCs) based on the anatase TiO2 tree-like nanoarrays deposited on Ti wires can achieve outstanding power conversion efficiency (PCE) of 6.32%, while FDSSCs on W wires have lower PCE of 3.24% due to the formation of WO3 layer, which might enhance recombination of charges. When the substrate is changed to a Nicole oxide wire, a novel p-n heterojunction can be obtained. This universal method is simple, facile, and low cost for preparing anatase TiO2 treelike-nanoarrays on various metal wires, which may find potential applications in fabrication of optoelectronic devices.

  3. TiO2 single crystalline nanorod compact layer for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency exceeding 17%

    Science.gov (United States)

    He, Xin; Wu, Jihuai; Tu, Yongguang; Xie, Yiming; Dong, Jia; Jia, Jinbiao; Wei, Yuelin; Lan, Zhang

    2016-11-01

    A TiO2 compact layer is crucial to a high-performance perovskite solar cell (PSC). Interestingly, there is a severe paucity of research on using one-dimensional nanostructure to fabricate the compact layer. In this study, anatase TiO2 single-crystalline nanorods (NRs) with a length of 30 ± 10 nm and a diameter of 4 ± 1 nm are synthesized via a one-pot solvothermal approach. A pinhole-free and thickness-controllable compact layer on PSC is fabricated by spin-coating the TiO2 nanorods on transparent conductive oxide substrate. Thanks to good electronic transport channel and less defects and interfaces, one-dimensional TiO2 NRs, with longer electron lifetime, shorter transport time and higher charge collection efficiency than TiO2 quantum dots (QDs) and TiO2 nanoparticles (NPs), can improve the photovoltaic performance of the PSC based on TiO2-NR compact layer. As a result, the PSC based on TiO2 NRs shows the best photovoltaic performance with a power conversion efficiency of 17.58%, which is enhanced by a factor of 1.16 and 1.30 respectively compared with the PSCs based on TiO2-QDs and TiO2-NPs.

  4. Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries.

    Science.gov (United States)

    Uberuaga, Blas P; Bai, Xian-Ming

    2011-11-02

    The direct consequence of irradiation on a material is the creation of point defects-typically interstitials and vacancies, and their aggregates-but it is the ultimate fate of these defects that determines the material's radiation tolerance. Thus, understanding how defects migrate and interact with sinks, such as grain boundaries, is crucial for predicting the evolution of the material. We examine defect properties in two polymorphs of TiO(2)-rutile and anatase-to determine how these materials might respond differently to irradiation. Using molecular statics and temperature accelerated dynamics, we focus on two issues: how point defects interact with a representative grain boundary and how they migrate in the bulk phase. We find that grain boundaries in both polymorphs are strong sinks for all point defects, though somewhat stronger in rutile than anatase. Further, the defect kinetics are very different in the two polymorphs, with interstitial species diffusing quickly in rutile while oxygen defects-both interstitials and vacancies-are fast diffusers in anatase. These results allow us to speculate on how grain boundaries will modify the radiation tolerance of these materials. In particular, grain boundaries in rutile will lead to a space charge layer at the boundary and a vacancy-rich damage structure, while in anatase the damage structure would likely be more stoichiometric, but with larger defects consisting primarily of Ti ions.

  5. Electronic structures of anatase (TiO2)1-x(TaON)x solid solutions: a first-principles study.

    Science.gov (United States)

    Dang, Wenqiang; Chen, Hungru; Umezawa, Naoto; Zhang, Junying

    2015-07-21

    Sensitizing wide band gap photo-functional materials under visible-light irradiation is an important task for efficient solar energy conversion. Although nitrogen doping into anatase TiO2 has been extensively studied for this purpose, it is hard to increase the nitrogen content in anatase TiO2 because of the aliovalent nitrogen substituted for oxygen, leading to the formation of secondary phases or defects that hamper the migration of photoexcited charge carriers. In this paper, electronic structures of (TiO2)1-x(TaON)x (0 ≤ x ≤ 1) solid solutions, in which the stoichiometry is satisfied with the co-substitution of Ti for Ta along with O for N, are investigated within the anatase crystal structure using first-principles calculations. Our computational results show that the solid solutions have substantially narrower band gaps than TiO2, without introducing any localized energy states in the forbidden gap. In addition, in comparison with the pristine TiO2, the solid solution has a direct band gap when the content of TaON exceeds 0.25, which is advantageous to light absorption. The valence band maximum (VBM) of the solid solutions, which is mainly composed of N 2p states hybridized with O 2p, Ti 3d or Ta 5d orbitals, is higher in energy than that of pristine anatase TiO2 consisting of non-bonding O 2p states. On the other hand, incorporating TaON into TiO2 causes the formation of d-d bonding states through π interactions and substantially lowers the conduction band minimum (CBM) because of the shortened distance between some metal atoms. As a result, the anatase (TiO2)1-x(TaON)x is expected to become a promising visible-light absorber. In addition, some atomic configurations are found to possess exceptionally narrow band gaps.

  6. Novel assembly and electrochemical properties of anatase TiO2-graphene aerogel 3D hybrids as lithium-ion battery anodes

    Science.gov (United States)

    Zhang, Jingjie; Zhou, Yizhuo; Zheng, Guangping; Huang, Qiuying; Zheng, Xiucheng; Liu, Pu; Zhang, Jianmin; Guan, Xinxin

    2016-10-01

    TiO2-graphene aerogel (TiO2-GA) 3D hybrids were directly assembled via a one-pot hydrothermal process followed by freeze-drying without using any structure-directing agent. The hybrids with a hierarchical structure exhibited large surface area (SBET = 283.6 m2 g-1) and high pore volume (Vp = 0.278 cm3 g-1), in which the ultradispersed TiO2 nanoparticles were in a single crystal phase of anatase. When used as the anodes for lithium ion battery, the TiO2-GA hybrids exhibited higher reversible capacity, more stable cycling performance and better rate-capability than TiO2 ascribed to the unique 3D nanoporous structure and the synergistic interaction of GA and TiO2.

  7. (THE ANTIBACTERIAL ACTIVITY OF VANADIUM- AND CHROMIUM DOPED TiO2-ANATASE

    Directory of Open Access Journals (Sweden)

    Hari Sutrisno

    2016-09-01

    Full Text Available Samples of vanadium- and -chromium doped TiO2-anatas have been conducted antibacterial activity against the bacteria Escherichia coli (E. Coli. The minimum kill concentration (MBC against the bacteria of E. Coli is determined by liquid dilution method. The antibacterial activity test of 0; 2.3; 3.3; 4.9% wt. vanadium doped TiO2-anatas and 0; 1.1; 3.9; 4.4% wt. chromium doped TiO2-anatas have been performed against bacteria of E. Coli in the absence of light (dark. The test results indicate that the presence of 3.3 and 4.9 in %wt. vanadium-TiO2-anatas are able to inhibit the growth of bacteria E. Coli, contrary all chromium doped TiO2-anatas are not able to inhibit the growth of bacteria of E. Coli.

  8. Effect of Crystallinity on Electrochemical Insertion/Extraction of Li in Transition Metal Oxides Part II: TiO2, V2O5 and MoOs

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Electrochemical irtsertion/extraction of Li on cathode materials of anatase type TiO2, quasilayered structure V2O5 and layered structure MoO3 was measured on samples of which structures were well characterized and showed a wide range of crystallinity. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materials on electrochemical Li insertion/extraction performance was discussed.These three transition metal oxides were classified as one group on the basis of whether the crystallirfity of these oxides affects to the performance or not; LiMn2O4 and LiCo0.5Ni0.5O2belongs to the former group and TiO2, V2O5 and MoO3 to the latter.

  9. Size-Tunable Olive-Like Anatase TiO2 Coated with Carbon as Superior Anode for Sodium-Ion Batteries.

    Science.gov (United States)

    Chen, Jun; Zhang, Yan; Zou, Guoqiang; Huang, Zhaodong; Li, Simin; Liao, Hanxiao; Wang, Jufeng; Hou, Hongshuai; Ji, Xiaobo

    2016-10-01

    Olive-shaped anatase TiO2 with tunable sizes in nanoscale are designed employing polyvinyl alcohol (PVA) as structure directing agents to exert dramatic impacts on structure shaping and size manipulation. Notably, the introduced PVA simultaneously serves as carbon sources, bringing about a homogenous carbon layer with intimate coupling interfaces for boosted electronic conductivity. Constructed from tiny crystalline grains, the uniformly dispersed carbon-coated TiO2 nano-olives (TOC) possess subtle loose structure internally for prompt Na(+) transportations. When utilized for sodium-ion storage, the size effects are increasingly significant at high charge-discharge rates, leading to the much superior rate performances of TOC with the smallest size. Bestowed by the improved Na(+) adsorption and diffusion kinetics together with the promoted electron transfer, it delivers a high specific capacity of 267 mAh g(-1) at 0.1 C (33.6 mA g(-1) ) and sustains 110 mAh g(-1) at a rather high rate of 20 C. Even after cycled at 10 C over 1000 cycles, a considerable capacity of 125 mAh g(-1) with a retention of 94.6% is still obtained, highlighting its marvelous long-term cyclability and high-rate capabilities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Porous (001)-faceted anatase TiO2 nanorice thin film for efficient dye-sensitized solar cell

    Science.gov (United States)

    Shah, Athar Ali; Umar, Akrajas Ali; Mat Salleh, Muhamad

    2016-01-01

    Anatase TiO2 structures with nanorice-like morphology and high exposure of (001) facet has been successfully synthesized on an ITO surface using ammonium Hexafluoro Titanate and Hexamethylenetetramine as precursor and capping agent, respectively, under a microwave-assisted liquid-phase deposition method. These anatase TiO2 nanoparticles were prepared within five minutes of reaction time by utilizing an inverter microwave system at a normal atmospheric pressure. The morphology and the size (approximately from 6 to 70 nm) of these nanostructures can be controlled. Homogenous, porous, 5.64 ± 0.002 μm thick layer of spongy-nanorice with facets (101) and (001) was grown on ITO substrate and used as a photo-anode in a dye-sensitized solar cell (DSSC). This solar cell device has emerged out with 4.05 ± 0.10% power conversion efficiency (PCE) and 72% of incident photon-to-current efficiency (IPCE) under AM1.5 G illumination.

  11. Porous (001-faceted anatase TiO2 nanorice thin film for efficient dye-sensitized solar cell

    Directory of Open Access Journals (Sweden)

    Shah Athar Ali

    2016-01-01

    Full Text Available Anatase TiO2 structures with nanorice-like morphology and high exposure of (001 facet has been successfully synthesized on an ITO surface using ammonium Hexafluoro Titanate and Hexamethylenetetramine as precursor and capping agent, respectively, under a microwave-assisted liquid-phase deposition method. These anatase TiO2 nanoparticles were prepared within five minutes of reaction time by utilizing an inverter microwave system at a normal atmospheric pressure. The morphology and the size (approximately from 6 to 70 nm of these nanostructures can be controlled. Homogenous, porous, 5.64 ± 0.002 μm thick layer of spongy-nanorice with facets (101 and (001 was grown on ITO substrate and used as a photo-anode in a dye-sensitized solar cell (DSSC. This solar cell device has emerged out with 4.05 ± 0.10% power conversion efficiency (PCE and 72% of incident photon-to-current efficiency (IPCE under AM1.5 G illumination.

  12. Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries

    Science.gov (United States)

    Yeo, Yeolmae; Jung, Ji-Won; Park, Kyusung; Kim, Il-Doo

    2015-09-01

    Anatase TiO2 has been suggested as a potential sodium anode material, but the low electrical conductivity of TiO2 often limits the rate capability, resulting in poor electrochemical properties. To address this limitation, we propose graphene-wrapped anatase TiO2 nanofibers (rGO@TiO2 NFs) through an effective wrapping of reduced graphene oxide (rGO) sheets on electrospun TiO2 NFs. To provide strong electrostatic interaction between the graphene oxide (GO) sheets and the TiO2 NFs, poly(allylamine hydrochloride) (PAH) was used to induce a positively charged TiO2 surface by the immobilization of the -NH3+ group and to promote bonding with the negatively charged carboxylic acid (-COO-) and hydroxyl (-O-) groups on the GO. A sodium anode electrode using rGO@TiO2 NFs exhibited a significantly improved initial capacity of 217 mAh g-1, high capacity retention (85% after 200 cycles at 0.2C), and a high average Coulombic efficiency (99.7% from the second cycle to the 200th cycle), even at a 5C rate, compared to those of pristine TiO2 NFs. The improved electrochemical performances stem from highly conductive properties of the reduced GO which is effectively anchored to the TiO2 NFs.

  13. Improving photoelectrochemical activity of dye sensitized solar cell by a bilayered electrode with an overlayer of mesoporous anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    Jun Jiang; Jian Zhang; Feng Gu; Wei Shao; Chunzhong Li; Mengkai Lu

    2011-01-01

    For better performance of dye sensitized solar cells (DSSCs), a bilayer structured electrode was constructed by employing a mesoporous anatase TiO2 overlayer above a commercial P25 TiO2 nanoparticles underlayer. The mesoporous anatase TiO2, prepared through a facile surfactant-assisted sol-gel process,possessed large pore size and well inter-connected network structure, both beneficial for dye adsorption and electron transfer. The dye adsorption capability of the mesoporous TiO2 was nearly twice that of the P25 counterpart. In the electrode, the mesoporous TiO2 film enhanced both dye adsorption and lightharvest, to increase photocurrent (Jsc) from 12.32 to 14.78 mA/cm2. Compared to the single P25 TiO2 film,the synergy of the mesoporous TiO2 and the P25 TiO2 nanoparticle films in the electrode resulted in a 24% improvement in light-to-electricity conversion efficiency (η). This bilayered electrode provides an alternative approach for further developing a photovoltaic device with better cell performance.

  14. Direct Observation of Charge Separation on Anatase TiO2 Crystals with Selectively Etched {001} Facets.

    Science.gov (United States)

    Liu, Xiaogang; Dong, Guojun; Li, Shaopeng; Lu, Gongxuan; Bi, Yingpu

    2016-03-09

    Synchronous illumination X-ray photoelectron spectroscopy (SIXPS) was employed for the first time to directly identify the photogenerated charge separation and transfer on anatase TiO2 single-crystals with selectively etched {001} facets. More specifically, for the TiO2 crystals with intact {001} and {101} facets, most of photogenerated charge carriers rapidly recombined, and no evident electron-hole separation was detected. With selectively etching on {001} facets, high efficient charge separation via hole transfer to titanium and electron to oxygen was clearly observed. However, when the {001} facets were completely etched into a hollow structure, the recombination for photogenerated electron-hole pairs would dominate again. These demonstrations clearly reveal that the appropriate corrosion on {001} facets could facilitate more efficient electron-hole separation and transfer. As expected, the optimized TiO2 microcrystals with etched {001} facets could achieve a hydrogen generation rate of 74.3 μmol/h/g, which is nearly 7 times higher than the intact-TiO2 crystals.

  15. The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method

    Science.gov (United States)

    Taherniya, Atefeh; Raoufi, Davood

    2016-12-01

    In this paper, we report on titanium dioxide (TiO2) thin films deposited by an electron beam evaporation method on quartz glass substrates (15 × 15 × 2 mm3 in size), followed by post-annealing at 300 °C to 600 °C for an annealing time of up to 2 h. The substrate temperature during the film deposition was kept at 150 °C. The effect of post-growth thermal annealing on the structural and optical properties of TiO2 thin films were systematically studied as a function of annealing temperature. We found that the as-deposited TiO2 films are amorphous in structure, while the films started to crystallize into the anatase phase when annealed at temperatures ≥450 °C. An increase in annealing temperature results in a decrease of transmittance percentage and also in optical band gap energy. The refractive indices of the films were evaluated from the measured transmittance spectra using the envelope method. An increase in the refractive index with an increase of annealing temperature was observed.

  16. Optimization of macropore evolution towards high photocatalytic activity enhancement in meso/macro porous Anatase TiO2

    Science.gov (United States)

    Nair, Radhika V.; Gayathri, P. K.; Siva Gummaluri, Venkata; Vijayan, C.

    2017-01-01

    We report on an optimization strategy for macro pore evolution leading to the design of highly photocatalytic 3D hierarchical meso/macroporous TiO2 via much simpler, faster and cost effective synthesis scheme. Meso/macro porous TiO2 is an excellent candidate material for photocatalytic applications owing to the availability of internal surfaces as active sites for redox reactions. The current research scenario focuses on the design of highly efficient photocatalytic systems as well as rapid, facile and cost effective methods of synthesis and optimization of parameters. The present report is on the gradual evolution of macropores in anatase TiO2 by the effective control of pH of the solvent, reaction time, temperature, solvent ratio and reactant concentration via a facile hydrothermal method in this regard. 3D hierarchical macroporous structures are obtained at pH 7 within a comparatively short reaction time of 5 h and demonstrated to be highly photocatalytic (with rate constant four times that of P25 nanoparticles) through photodegradation of Rhodamine B dye.

  17. Preparation of anatase TiO2 with assistance of surfactant OP-10 and its electrochemical properties as an anode material for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    YI Jin; TAN Chunlin; LI Weishan; LEI Jianfei; HAO Liansheng

    2010-01-01

    With the assistance of nonionic surfactant(OP-10)and surface-selective surfactant(CH3COOH),anatase TiO2 was prepared as an anode material for lithium ion batteries.The morphology,the crystal structure,and the electrochemical properties of the prepared anatase TiO2 were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),electrochemical impedance spectroscopy(EIS),and galvanostatic charge and discharge test.The result shows that the prepared anatase TiO2 has high discharge capacity and good cyclic stability.The maximum discharge capacity is 313 mAh·g-1,and there is no significant capacity decay from the second cycle.

  18. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets.

    Science.gov (United States)

    Liu, Porun; Wang, Yun; Zhang, Haimin; An, Taicheng; Yang, Huagui; Tang, Zhiyong; Cai, Weiping; Zhao, Huijun

    2012-12-07

    For the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage. The findings reveal that the HF-VPH reaction environment is unique and differs remarkably from that of liquid-phase hydrothermal processes. The uniqueness of the HF-VPH conditions can be readily used to effectively control the nanostructure growth.

  19. Fabrication of pure and Ag-doped TiO2 nanorods and study of the lattice strain and the activation energy of the crystalline phases

    Science.gov (United States)

    Riazian, Mehran; Rad, Shima Daliri; Azinabadi, Reza Ramezani

    2013-02-01

    TiO2 nanorods can be used as dye-sensitized solar cells and as various sensors and photocatalysts. These nanorods are synthesized by using a thermal corrosion process in a NaOH solution at 200 °C with TiO2 powder as a source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases and the synthesis of TiO2 nanorods by using the sol-gel method and alkaline corrosion to incorporate silver and silver-oxide dopants are reported. The morphologies and the crystalline structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), tunneling electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The obtained results show an aggregation structure at high calcining temperatures with spherical particles and with Ti-O-Ti, Ti-O and Ag-O bonds. The effects of the chemical composition and the calcining temperature on the surface topography, lattice strain and phase crystallization are studied. The activation energy (E) of nanoparticle formation in a pure state during thermal treatment is calculated.

  20. Diffusivity and Mobility of Adsorbed Water Layers at TiO2 Rutile and Anatase Interfaces

    Directory of Open Access Journals (Sweden)

    Niall J. English

    2015-12-01

    Full Text Available Molecular-dynamics simulations have been carried out to study diffusion of water molecules adsorbed to anatase-(101 and rutile-(110 interfaces at room temperature (300 K. The mean squared displacement (MSD of the adsorbed water layers were determined to estimate self-diffusivity therein, and the mobility of these various layers was gauged in terms of the “swopping” of water molecules between them. Diffusivity was substantially higher within the adsorbed monolayer at the anatase-(101 surface, whilst the anatase-(101 surface’s more open access facilitates easier contact of adsorbed water molecules with those beyond the first layer, increasing the level of dynamical inter-layer exchange and mobility of the various layers. It is hypothesised that enhanced ease of access of water to the anatase-(101 surface helps to rationalise experimental observations of its comparatively greater photo-activity.

  1. Photocatalytic Activity Enhancement of Anatase TiO2 by Using TiO

    OpenAIRE

    Zhenrui Chen; Wei Zhong; Zhutian Liang; Weiqian Li; Guannan He; Yinzhen Wang; Wei Li; Yuandong Xie; Qinyu He

    2014-01-01

    We employed high-energy ball-milling technique to fabricate TiO/TiO2 heterogeneous nanostructures. XRD proved the existence of TiO/TiO2 heterogeneous structures. SEM and HRTEM investigation evidenced that the mean particle size and mean grain size of the as-prepared samples are 23 nm and 13 nm, respectively. UV-Vis spectra exhibited that TiO has enhanced the visible light absorption of TiO2 and has changed the Eg of TiO2. UPS examination indicated that the electron work function (EWF) of TiO ...

  2. Electronic and optical properties study on Fesbnd B co-doped anatase TiO2

    Science.gov (United States)

    Li, Xuechao; Shi, Jianhao; Chen, Hao; Wan, Rundong; Leng, Chongyan; Lei, Ying

    2016-09-01

    We investigate the density of states and optical properties for Fe, 2B and (Fe, 2B) doped TiO2 with DFT calculations. The calculated results reveal mono-doping introduces midgap states which are half-occupied and easy to become the recombination centers of charge carriers, thus inhibiting the enhancement of photocatalystic activity. The coupling of 2p-3d states in the (Fe, 2B) compensated co-doped TiO2 makes gap states couple with the valence bands edge, thus greatly causing the band gap narrowing and higher visible light absorption. Moreover, the gap states cannot become recombination centers of the photoexcited carriers, thus promoting the separation of electron-hole pairs, prolonging the lifetime of carriers. The analysis of electron density indicates more electrons from Fe transfer to adjacent B, realizing the charge compensation and forming a stronger Fesbnd B bond. Therefore, the (Fe, 2B) compensated co-doped TiO2 exhibits the higher visible-light photocatalystic activity than those of pure and solely doped TiO2.

  3. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NARCIS (Netherlands)

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to an

  4. Facile synthesis of carbon-mediated porous nanocrystallite anatase TiO2 for improved sodium insertion capabilities as an anode for sodium-ion batteries

    Science.gov (United States)

    Wu, Feng; Luo, Rui; Xie, Man; Li, Li; Zhang, Xiaoxiao; Zhao, Luzi; Zhou, Jiahui; Wang, KangKang; Chen, Renjie

    2017-09-01

    Porous carbon-mediated nanocrystallite anatase TiO2 composites are synthesized successfully via a simple dilatory hydrolysis-calcination method. The structural and morphological characterizations reveal that carbon-mediated TiO2 with a carbon content of 9.9 wt % (C2-TiO2) shows a combination of mesoporous and macroporous structures with a pore volume of 0.20 cm3 g-1 and surface area of 40.3 m2 g-1. Notably, C2-TiO2 delivered enhanced electrochemical performances of a high charge capacity of 259 mA h g-1 at 0.1 C and a high rate performance of 110 mA h g-1 after 150 cycles, even at 1 C. A significant decrease is also observed in the electrochemical impedance of the carbon-mediated samples, which explains superior electrochemical performance. Compared with the bare anatase TiO2 (B-TiO2), improved sodium storage capabilities of carbon-mediated samples are attributed to the participation of carbon to form a symbiotic structure with TiO2, which not only increases pore volume of the samples but serves as highly conductive network to provide a Na+ diffusion path during the insertion/de-insertion of sodium ions. All of these encouraging results suggest that carbon-mediated TiO2 has a great potential for improving sodium insertion capabilities with a facile and low-cost synthesis process.

  5. Where Do Photogenerated Holes Go in Anatase:Rutile TiO2? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime.

    Science.gov (United States)

    Kafizas, Andreas; Wang, Xiuli; Pendlebury, Stephanie R; Barnes, Piers; Ling, Min; Sotelo-Vazquez, Carlos; Quesada-Cabrera, Raul; Li, Can; Parkin, Ivan P; Durrant, James R

    2016-02-11

    Anatase:rutile TiO2 junctions are often shown to be more photocatalytically active than anatase or rutile alone, but the underlying cause of this improvement is not fully understood. Herein, we employ transient absorption spectroscopy to study hole transfer across the anatase:rutile heterojunction in films as a function of phase composition. By exploiting the different signatures in the photoinduced absorption of trapped charges in anatase and rutile, we were able to separately track the yield and lifetime of holes in anatase and rutile sites within phase composites. Photogenerated holes transfer from rutile to anatase on submicrosecond time scales. This hole transfer can significantly increase the anatase hole yield, with a 20:80 anatase:rutile composite showing a 5-fold increase in anatase holes observed from the microsecond. Hole transfer does not result in an increase in charge-carrier lifetime, where an intermediate recombination dynamic between that of pure anatase (t1/2 ≈ 0.5 ms) and rutile (t1/2 ≈ 20 ms) is found in the anatase:rutile junction (t1/2 ≈ 4 ms). Irrespective of what the formal band energy alignment may be, we demonstrate the importance of trap-state energetics for determining the direction of photogenerated charge separation across heterojunctions and how transient absorption spectroscopy, a method that can specifically track the migration of trapped charges, is a useful tool for understanding this behavior.

  6. Photodegradation of sugarcane vinasse: evaluation of the effect of vinasse pre-treatment and the crystalline phase of TiO2

    Directory of Open Access Journals (Sweden)

    Renata Padilha de Souza

    2016-04-01

    Full Text Available In this work, photocatalysis was employed in the treatment of vinasse using TiO2 and UV light. The parameters investigated were: TiO2 phases (anatase and rutile and vinasse pre-treatments (coagulation/flocculation and dilution. The TiO2 catalysts employed were: Kronos without thermal treatment (100% anatase, calcined at 1000°C (33.5% anatase and immobilized on glass slides (100% anatase; and P25 Degussa without thermal treatment (86.6% anatase. The results showed that natural coagulant removed about 50, 85 and 97% of COD, color and turbidity, respectively. However, pre-treatment followed by photocatalysis with TiO2 87% anatase removed 67% of COD within 48h of irradiation. Bioassays with Artemia salina confirmed the efficacy of the methodology. The treatments reduced the toxicity of vinasse by up to 10 times.

  7. DFT study with inclusion of the Grimme potential on anatase TiO2: structure, electronic, and vibrational analyses.

    Science.gov (United States)

    Albuquerque, Anderson R; Garzim, Marcos L; Santos, Iêda M G dos; Longo, Valeria; Longo, Elson; Sambrano, Julio R

    2012-11-29

    Periodic DFT/B3LYP calculations for TiO(2) anatase bulk were carried out including semiempirical dispersive interactions (DFT-D2) to pure Khon-Sham DFT energy. From this standard methodology, van der Waals (vdW) radii were optimized to 1.4214 Å for titanium and 1.3420 Å for oxygen centers in order to achieve a better structural description. The results from this approach (here named DFT/B3LYP-D*) showed a better description for lattice constants, vibrational IR and Raman, energy band gaps, and bulk modulus than default DFT/B3LYP and DFT/B3LYP-D. The dispersion correction showed more reliable results and was necessary to achieve a good agreement with reported single crystal results, without new formalism or additional computational cost.

  8. Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films

    Directory of Open Access Journals (Sweden)

    M. Stiller

    2016-12-01

    Full Text Available The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.

  9. Acetylene hydrogenation on anatase TiO2(101) supported Pd4 cluster: oxygen deficiency effect.

    Science.gov (United States)

    Yang, Jie; Cao, Li-Xin; Wang, Gui-Chang

    2012-07-01

    Acetylene hydrogenation on both the perfect and oxygen defective anatase TiO(2)(101) surfaces supported Pd(4) cluster has been studied using density functional theory calculations with a Hubbard U correction (DFT + U). The adsorbed Pd(4) cluster on the perfect surface prefers to form a tetrahedral structure, while it likely moves to the oxygen defective site to form a distorted tetrahedral structure by removing a bridging oxygen atom. For the defective surface, it exhibits a stronger ability to capture Pd(4) cluster as charge transfer is significantly performed due to the oxygen deficiency. Moreover, it is found that the oxygen defective surface shows higher activity for acetylene hydrogenation, and the possible reason may lie in the weaker adsorption strength between the Pd cluster and the adsorbed molecules on the defective surface as compared to the case on the perfect surface.

  10. Oxidative trends of TiO2—hole trapping at anatase and rutile surfaces

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Laursen, Anders B.; Jacobsen, Karsten Wedel;

    2012-01-01

    position is dependent on the type of surface termination. Such variations in hole state energies can lead to differences in photocatalytic activity among rutile and anatase surface facets. We find that the calculated hole state energies correlate with photo-deposition and photo-etching rates. We...

  11. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro.

    Science.gov (United States)

    Dehkourdi, Elahe Hashemi; Mosavi, Mousa

    2013-11-01

    Nano priming is a new method for the increase of seedling vigor and improvement of germination percentage and seedling growth. The experiments to evaluate the effect of different concentrations of nano-anatase on germination parameters of parsley as a completely randomized design with five replications were performed in a tissue culture laboratory of the Department of Horticulture, Shahid Chamran University of Ahvaz. In addition, nano-anatase at four concentrations (10, 20, 30, and 40 mg/ml) was added to the Murashige and Skoog medium. At the end of the experiment, the percentage of germination, germination rate index, root and shoot length, fresh weight of seedlings, vigor index, and chlorophyll content were evaluated. The results showed that an increase in the concentration of nano-anatase caused a significant increase in the percentage of germination, germination rate index, root and shoot length, fresh weight, vigor index, and chlorophyll content of seedlings. The best concentration of nano-anatase was 30 mg/ml.

  12. Optimisation of anatase TiO2 thin film growth on LaAlO3(0 0 1) using pulsed laser deposition

    Science.gov (United States)

    Krupski, K.; Sanchez, A. M.; Krupski, A.; McConville, C. F.

    2016-12-01

    Optimisation of epitaxial anatase TiO2 thin films grown on LaAlO3(0 0 1) substrates was performed using ultra-high vacuum based pulsed laser deposition (PLD) and studied by in-situ reflection high-energy electron diffraction (RHEED). In addition, ex-situ X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM) were performed to characterise the bulk properties of these thin films. The deposited TiO2 thin film is demonstrated to have anatase phase and bonded directly to the LaAlO3(0 0 1) substrate. In a separate ultra-high vacuum system low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) measurements were performed and a well-ordered two-domain (1 × 4) and (4 × 1) reconstruction of anatase surface was observed. Analysis of the STM measurements indicates the coexistence of atomic steps of both 2.5 Å and 5.0 Å, confirming the existence of two TiO2 domains. The atomic resolution STEM images reveal that the TiO2/LaAlO3 interface to be terminated with LaO layer and that the anatase-TiO2 reconstruction was found to be stable during the film growth.

  13. Chemisorption of CH2O on N-doped TiO2 anatase nanoparticle as modified nanostructure media: A DFT study

    Science.gov (United States)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin; Ebrahimzadeh, Alireza Rastkar

    2016-12-01

    The structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of formaldehyde molecule have been investigated using the density functional theory computations. Given the need to better understand the behavior of the adsorbed CH2O molecule on the anatase nanoparticle, we report results of density functional theory studies of the N-doped nanoparticles, as well as complex systems consisting of the CH2O molecule bound to a TiO2 nanoparticle. N-doped nanoparticle was obtained by substitution of nitrogen atom of TiO2 instead of oxygen atom. Adsorptions of the CH2O molecule on the dangling oxygen atom, twofold coordinated oxygen atom and doped nitrogen atom sites of the pristine and N-doped anatase nanoparticles were investigated. The results presented include structural parameters such as adsorption energies, bond lengths and bond angles and electronic properties such as density of states, spin distribution densities and molecular orbitals. It was found that the adsorption of the CH2O molecule on the dangling oxygen of considered N-doped TiO2 anatase nanoparticles is energetically more favorable than the adsorption on the undoped ones. It means a more stable configuration compared to the undoped nanoparticle adsorption, but not as stable as the CH2O adsorption on the doped nitrogen site of N-doped nanoparticles.

  14. Electronic hole transfer in rutile and anatase TiO2: Effect of a delocalization error in the density functional theory on the charge transfer barrier height

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Rossmeisl, Jan; Jacobsen, Karsten Wedel

    2011-01-01

    where charge localization is strongly coupled to lattice distortion. As an example we calculate the adiabatic PES for the hole transfer process in rutile and anatase TiO2. (Semi) local DFT leads to qualitatively wrong, barrierless curves. Removal of the nonlinearity improves the PES shape and allows us...

  15. Correlation of the depletion layer with the Helmholtz layer in the anatase TiO2-H2O interface via molecular dynamics simulations.

    Science.gov (United States)

    Sang, Lixia; Zhang, Yudong; Wang, Jun; Zhao, Yangbo; Chen, Yi-Tung

    2016-06-01

    Molecular dynamics simulations have been conducted to study the interaction between anatase TiO2(001), (100), and (101) surfaces and water at room temperature. The dynamic interfacial structure and properties of water on anatase TiO2 surfaces are obtained by analyzing the water density, the diffusion coefficient of water, the surface charge distribution, electric fields and the electrostatic potential distribution. The simulation results have revealed that a highly-ordered water layer structure can be formed near to the anatase TiO2 surface and have also given the Helmholtz layer width and potential drop at the water-TiO2 interface. By correlating the Helmholtz layer with the depletion layer, the depletion layer widths of three surfaces (001), (100), and (101) have been calculated as 474 Å, 237 Å and 99 Å, respectively. The resulting order of the photoelectrochemical activity of the anatase TiO2 surfaces is (001) > (100) > (101), which is consistent with the experimental results. This study may provide a useful correlation of the depletion layer with the Helmholtz layer based on simulations results for the prediction of the behavior and the control of photon-energy conversion devices.

  16. Electronic Structures of S/C-Doped TiO2 Anatase (101 Surface: First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Qili Chen

    2014-01-01

    Full Text Available The electronic structures of sulfur (S or carbon (C-doped TiO2 anatase (101 surfaces have been investigated by density functional theory (DFT plane-wave pseudopotential method. The general gradient approximation (GGA + U (Hubbard coefficient method has been adopted to describe the exchange-correlation effects. All the possible doping situations, including S/C dopants at lattice oxygen (O sites (anion doping, S/C dopants at titanium (Ti sites (cation doping, and the coexisting of anion and cation doping, were studied. By comparing the formation energies, it was found that the complex of anion and cation doping configuration forms easily in the most range of O chemical potential for both S and C doping. The calculated density of states for various S/C doping systems shows that the synergistic effects of S impurities at lattice O and Ti sites lead a sharp band gap narrowing of 1.35 eV for S-doped system comparing with the pure TiO2 system.

  17. Influence of cerium ions on the anatase-rutile phase transition of TiO2 prepared by sol-gel auto-igniting synthesis

    Institute of Scientific and Technical Information of China (English)

    YAN Qingzhi; SU Xintai; ZHOU Yanping; GE Changchun

    2005-01-01

    The anatase-rutile phase transformation of TiO2 doped cerium up to 5 mol% was studied by X-ray diffraction and X-ray photoelectron spectroscopy. The samples were prepared by sol-gel auto-igniting synthesis process from a TiO(NO3)2-Ce(NO3)2-NH4NO3-citric acid complex compound system. The combusted amorphous powders were calcined at different temperatures. Significant structural changes were observed during the various stages of the phase transformation.It was concluded that at low dopant contents, cerium ions were incorporated into the TiO2 structure, and the anatase phase was stabilized; but at larger amounts, part of the dopant was segregated on the surface of TiO2 and the rutile formation was accelerated at elevated calcination temperature.

  18. Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2-CNT catalysts.

    Science.gov (United States)

    Zhang, Kan; Zhang, Feng Jun; Chen, Ming Liang; Oh, Won Chun

    2011-05-01

    Anatase TiO(2)-CNT catalysts with high specific surface areas were prepared by depositing TiO(2) particles on the surface of carbon nanotubes (CNTs) using a modified sol-gel technique. These catalysts prepared with different amounts of CNTs were characterized by nitrogen adsorption, Fourier Transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray (EDX) and ultraviolet-visible (UV-Vis) spectroscopy. The catalytic activity of the anatase TiO(2)-CNT catalysts was assessed by examining the degradation of methylene blue (MB) from model aqueous solutions as a probe reaction under visible light and ultrasonic irradiation. The synergistic effect of the greater surface area and catalytic activities of the composite catalysts was examined in terms of the strong adsorption ability and interphase interaction by comparing the different amounts and roles of CNTs in the catalysts.

  19. Atomic Layer Deposition of p-Type Epitaxial Thin Films of Undoped and N-Doped Anatase TiO2.

    Science.gov (United States)

    Vasu, K; Sreedhara, M B; Ghatak, J; Rao, C N R

    2016-03-01

    Employing atomic layer deposition, we have grown p-type epitaxial undoped and N-doped anatase TiO2(001) thin films on c-axis Al2O3 substrate. From X-ray diffraction and transmission electron microscopy studies, crystallographic relationships between the film and the substrate are found to be (001)TiO2//(0001)Al2O3 and [1̅10]TiO2//[011̅0]Al2O3. N-doping in TiO2 thin films enhances the hole concentration and mobility. The optical band gap of anatase TiO2 (3.23 eV) decreases to 3.07 eV upon N-doping. The epitaxial films exhibit room-temperature ferromagnetism and photoresponse. A TiO2-based homojunction diode was fabricated with rectification from the p-n junction formed between N-doped p-TiO2 and n-TiO2.

  20. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    Science.gov (United States)

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  1. Synergistic effect of nanocavities in anatase TiO2 nanobelts for photocatalytic degradation of methyl orange dye in aqueous solution.

    Science.gov (United States)

    Praveen Kumar, D; Lakshmana Reddy, N; Karthikeyan, M; Chinnaiah, N; Bramhaiah, V; Durga Kumari, V; Shankar, M V

    2016-09-01

    Nanocavities are empty voids exposed on the surface of one dimensional TiO2 nanostructured material. Often, they exhibited beneficial optical and electrical properties that leads to efficient photocatalytic reactions. This study reports formation of nanocavities on anatase TiO2 nanobelts (TNB) through dehydroxylation of surface hydroxyl groups during calcination process (350-600°C). The morphological and crystal structure analysis of TNB-500, -550 and -600 displayed the nanobelts shape with high density of nano-size cavities and increase in average diameter with calcination temperature. The SAED patterns confirm the anatase TiO2 phase. The enhanced light absorption properties of biphasic anatase/TiO2-B and anatase TiO2 than H2Ti3O7 are attributed to transformation of crystal structure upon calcination process. The catalytic activity was evaluated for degradation of methyl orange dye in aqueous solution under solar light irradiation. The reaction variables such as calcination temperature, amount of catalyst and pH of the methyl orange dye solution were studied and discussed in detail. Under optimal experimental conditions TNB-550 photocatalyst displayed highest degradation performance about 8 folds higher than H2Ti3O7. The high performance is explained as due to synergistic properties of one dimensional anatase TiO2 with high density of nanocavities leading to one dimensional transfer of electrons and high absorption co-efficient in UV-A spectrum are suitable for efficient red-ox reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Screened coulomb hybrid DFT study on electronic structure and optical properties of anionic and cationic Te-doped anatase TiO2

    KAUST Repository

    Harb, Moussab

    2013-06-27

    The origin of the enhanced visible-light optical absorption in Te-doped bulk anatase TiO2 is investigated in the framework of DFT and DFPT within HSE06 in order to ensure accurate electronic structure and optical transition predictions. Various oxidation states of Te species are considered based on their structural location in bulk TiO2. In fact, TiO (2-x)Tex (with isolated Te2- species at Te-Te distance of 8.28 Å), TiO2Tex (with isolated TeO 2- species at Te-Te distance of 8.28 Å), TiO2Te 2x (with two concomitant TeO2- species at Te-Te distance of 4.11 Å), and Ti(1-2x)O2Te2x (with two neighboring Te4+ species at nearest-neighbor Te-Te distance of 3.05 Å) show improved optical absorption responses in the visible range similarly as it is experimentally observed in Te-doped TiO2 powders. The optical absorption edges of TiO(2-x)Tex, TiO 2Tex, and TiO2Te2x are found to be red-shifted by 400 nm compared with undoped TiO2 whereas that of Ti(1-2x)O2Te2x is red-shifted by 150 nm. On the basis of calculated valence and conduction band edge positions of Te-doped TiO2, only TiO(2-x)Tex and Ti (1-2x)O2Te2x show suitable potentials for overall water splitting under visible-light irradiation. The electronic structure analysis revealed narrower band gaps of 1.12 and 1.17 eV with respect to undoped TiO2, respectively, resulting from the appearance of new occupied electronic states in the gap of TiO2. A delocalized nature of the gap states is found to be much more pronounced in TiO (2-x)Tex than that with Ti(1-2x)O 2Te2x due to the important contribution of numerous O 2p orbitals together with Te 5p orbitals. © 2013 American Chemical Society.

  3. Gel–sol synthesis and aging effect on highly crystalline anatase nanopowder

    Indian Academy of Sciences (India)

    Sharif Shahini; Masoud Askari; S K Sadrnezhaad

    2011-10-01

    Highly crystalline TiO2 anatase nanoparticles were synthesized via gel–sol method by using titanium isopropoxide and triethanolamine. The products were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric/differential thermal analysis and nitrogen gas absorption methods. The particle size ranged from 7 to 24 nm having specific surface area of 64 to 220 m2/g. Selective Ti(OH)4 gel specifications and hydrothermal test conditions resulted in thermodynamically-stable phase-formation. Aging at 130°C for 4 h resulted in particle size of 7 nm; while at 130 and 160°C for 12 h resulted in 12 and 21 nm, respectively.

  4. Synthesis and photocatalytic properties of Palladium-loaded three dimensional flower-like anatase TiO2 with dominant {001} facets.

    Science.gov (United States)

    Bai, Xue; Lv, Lingling; Zhang, Xiaoyuan; Hua, Zulin

    2016-04-01

    Palladium-loaded (Pd-loaded) anatase TiO2 with dominant {001} facets used as photocatalysts was prepared by a two-step process. Three dimensional flower-like structures of anatase TiO2 with exposed {001} facets were synthesized by solvothermal method, and then Pd nanoparticles were photodeposited onto the {101} surface of TiO2 by UV reduction. The resulting Pd/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectra. Characterization results indicated that the flower-like structures of anatase TiO2 were assembled by two dimensional nanosheets with a thickness of approximately 10nm and a length of approximately 1.0μm. The Pd/TiO2 nanocomposites with improved visible-light-harvesting capability, high charge-hole mobility, and low electron-hole recombination exhibited improved photocatalytic performance in degrading bisphenol A. This study provided new insights into the fabrication and practical application of high-performance photocatalysts in degrading organic pollutants.

  5. 銳鈦型TiO2性能研究 II.銳鈦型TiO2的光化學活性封閉及表徵%Studies on the Properties of Anatase TiO2 II.The Encapsulation and Characterization of Photochemical Activity of Anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    高丕英; 溫占秀; 方圖南; 於遵巨集; 古巨集晨

    1999-01-01

      In this paper,the hydrothermal surface modification with silica was applied to encapsulate the surface photochemiacl activity of anatase TiO2. The reducing reaction of Cr2O72- was used to evaluate the integraty of the encapsulation layer. Some factors,e.g., TiO2 slurry solid concentration,temperature and pH,as well as reaction time which dominate the encapsulation, were studied too.

  6. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging.

    Science.gov (United States)

    Lee, Kee Eun; Gomez, Mario A; Elouatik, Samir; Demopoulos, George P

    2010-06-15

    Vibrational spectroscopic studies of N719 dye-adsorbed TiO(2) films have been carried out by using SERRS, ATR-FTIR, and confocal Raman imaging. The high wavenumber region (3000-4000 cm(-1)) of dye adsorbed TiO(2) is analyzed via Raman and IR spectroscopy to investigate the role of surface hydroxyl groups in the anchoring mode. As a complementary technique, confocal Raman imaging is employed to study the distribution features of key dye groups (COO-, bipyridine, and C=O) on the anatase surface. Sensitized TiO(2) films made from two different nanocrystalline anatase powders are investigated: a commercial one (Dyesol) and our synthetic variety produced through aqueous synthesis. It is proposed the binding of the N719 dye to TiO(2) to occur through two neighboring carboxylic acid/carboxylate groups via a combination of bidentate-bridging and H-bonding involving a donating group from the N719 (and/or Ti-OH) units and acceptor from the Ti-OH (and/or N719) groups. The Raman imaging distribution of COO(-)(sym) on TiO(2) was used to show the covalent bonding, while the distribution of C=O mode was applied to observe the electrostatically bonded groups.

  7. Fabrication of phase and morphology controlled pure rutile and rutile/anatase TiO2 nanostructures in functional ionic liquid/water

    Science.gov (United States)

    Shahi, Satwant Kaur; Kaur, Navneet; Singh, Vasundhara

    2016-01-01

    In this paper, pure rutile and anatase-rutile TiO2 nanoparticles have been successfully synthesised via a green route by hydrolysis of titanium tetrachloride with room temperature acidic ionic liquid 3-methyl-1-(3-sulfonylpropyl) imidazolium trifluoromethanesulfonate [HO3S(CH2)3MIM][CF3SO3] in aqueous medium. The influence of pH of the solution by varying molar ratio of substrate and ionic liquid has been investigated in both sol⿿gel and hydrothermal synthesis of TiO2 with significant variation in phase, phase composition (ratio of rutile to anatase) and morphology as indicated by various structural analysis such as XRD, TEM, BET, Raman and UV⿿vis absorption spectroscopy. The results indicate formation of a bunch of aligned thin flaky nano-rods of TiO2 which look like nano-flowers with a crystal size of 3⿿5 nm by sol⿿gel method, while in case of hydrothermal method well-defined rutile solid nanorods of TiO2 were formed with variable length in the range of 120⿿170 nm and 20⿿24 nm in width. The photocatalytic activity of the prepared TiO2 samples has been determined by the photodegradation of methyl orange dye (20 ppm) under UV light. Best photocatalytic activity was exhibited by sample S-2 prepared via sol⿿gel method.

  8. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    Science.gov (United States)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  9. Rose Bengal sensitized bilayered photoanode of nano-crystalline TiO2-CeO2 for dye-sensitized solar cell application

    Science.gov (United States)

    Sayyed, Suhail A. A. R.; Beedri, Niyamat I.; Kadam, Vishal S.; Pathan, Habib M.

    2016-08-01

    The present work deals with the study of TiO2-CeO2 bilayered photoanode with low-cost Rose Bengal (RB) dye as sensitizer for dye-sensitized solar cell application. The recombination reactions are reduced in bilayered TiO2-CeO2 photoanode as compared to the single-layered CeO2 photoanode. Once the electrons get transferred from lowest unoccupied molecular orbital level of RB dye to the conduction band (CB) of TiO2, then the possibilities of recombination of electrons with oxidized dye molecules or oxidized redox couple are reduced. This is because the CB position of CeO2 is higher than that of TiO2, which blocks the path of electrons. The electrochemical impedance spectroscopy (EIS) analysis shows negative shift in frequency for bilayered TiO2-CeO2 photoanode as compared to CeO2 photoanode. Hence, in bilayered photoanode lifetime of electrons is more than in single-layered photoanode, confirming reduction in recombination reactions. The X-ray diffraction patterns confirm both anatase TiO2 and CeO2 with crystalline size using Scherrer formula as 24 and 10 nm, respectively. The scanning electron microscopy images of photoanode show the porous structure useful for dye adsorption. The presence of Ti and Ce is confirmed by electron diffraction studies. The band gap values for TiO2 and CeO2 were calculated as 3.20 and 3.11 eV, respectively, using diffused reflectance spectroscopy. The bilayered TiO2-CeO2 photoanode showed open-circuit voltage ( V OC) ~500 mV and short-circuit photocurrent density ( J SC) ~0.29 mA/cm2 with fill factor (FF) ~62.17 %. There is increase in V OC and J SC values by 66.67 and 38.10 %, respectively, compared to RB-sensitized CeO2 photoanode.

  10. Probing the charge recombination in rGO decorated mixed phase (anatase-rutile) TiO2 multi-leg nanotubes

    Science.gov (United States)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2016-11-01

    Recombination of photo-generated charges is one of the most significant challenges in designing efficient photo-anode for photo electrochemical water oxidation. In the case of TiO2, mixed phase (anatase-rutile) junctions often shown to be more effective in suppressing electron-hole recombination compared to a single (anatase or rutile) phase. Here, we report the study of bulk and surface recombination process in TiO2 multi-leg nanotube (MLNTs) anatase-rutile (A-R) junctions decorated with reduced graphene oxide (rGO) layers, through an analysis of the photo-current and impedance characteristics. To quantify the charge transport/transfer process involved in these junctions, holes arriving at the interface of semiconductor/electrolyte were collected by adding H2O2 to the electrolyte. This enabled us to interpret the bulk and surface recombination process involved in anatase/rutile/rGO junctions for photo-electrochemical water oxidation. We correlated this quantification to the electrochemical impedance spectroscopy (EIS) measurements, and showed that in anatase/rutile junction the increase in PEC performance was due to suppression in electron-hole recombination rate at the surface states that effectively enhances the hole transfer rate to the electrolyte. On the other hand, in rGO wrapped A-R MLNTs junction it was due to both phenomenon i.e decrease in bulk recombination rate as well as increase in hole transfer rate to the electrolyte at the semiconductor/electrolyte interface.

  11. Synthesis of [111]- and {010}-faceted anatase TiO2 nanocrystals from tri-titanate nanosheets and their photocatalytic and DSSC performances.

    Science.gov (United States)

    Chen, Changdong; Ikeuchi, Yasushi; Xu, Linfeng; Sewvandi, Galhenage A; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Wen, Puhong; Feng, Qi

    2015-05-07

    [111]- and {010}-faceted anatase nanocrystals with controllable crystal size and morphology were synthesized from tri-titanate H2Ti3O7 nanosheets by hydrothermal reaction. The nanostructures and the formation reaction mechanism of the obtained TiO2 nanocrystals were investigated using XRD, FE-SEM, and TEM. Furthermore, the photocatalytic and dye-sensitized solar cell (DSSC) performances of the synthesized anatase nanocrystals were also characterized. Two types of reactions occur in the formation process of the anatase nanocrystals. One is an in situ topochemical conversion reaction of the layered titanate structure to an anatase structure, and another is the dissolution-deposition reaction on the particle surface, which splits the formed nanosheet-like particles into small TiO2 nanocrystals. The surface photocatalytic activity and the DSSC performance of the anatase nanocrystals are dependent on the crystal facet exposed on the particle surface, which increases in the order of non-facet DSSC performance, which is enhanced in the order of non-facet < [111]-facet < {010}-facet.

  12. Effect Of Non-metal Elements (C, N, S) As Anionic Dopants On Electronic Structure Of Tio2-Anatase By Density-Functional Theory Approach

    OpenAIRE

    Hari Sutrisno

    2016-01-01

    This article is a theoritical approach to calculate the electronic structure of undoped- and non-metal anions doped-TiO2-anatase. The objective of the research is to calculate abinitio the band structure and the density of states (DOS) of undoped-, C-, N-, and S-doped TiO2-anatase. Kohn-Sham equations are performed with the density functional theory (DFT) using the local density approximation (LDA) for exchange-correlation functional. The first-principle calculations were done using supercell...

  13. Formation of TiO2 photoanodes by simultaneous electrophoretic deposition of anatase and rutile particles for photoassisted electrolytic copper ions removal

    Directory of Open Access Journals (Sweden)

    Yeimmy Y. Peralta-Ruiz

    2012-01-01

    Full Text Available The influence of Anatasa/Rutile ratio on TiO2 films, grown by electrophoretic deposition was studied in the photoassisted electrolytic copper ions removal from cyanide solutions. The proper dispersant dosage allowing the simultaneous electrophoretic deposition of Anatase and Rutile was chosen based on electrokinetic measurements; evidenced by the XRD spectra of the formed films. The evaluation of films photoassisted electrolytic copper ion removal showeds that it is possible to enhance the activity of Anatase films by adding some Rutile exploiting the synergetic interaction between these two materials, achieve by its proper deposition.

  14. Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application

    Science.gov (United States)

    Shoaib, Anwer; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng

    2017-02-01

    In view of the growing concern about energy management issues, sodium ion batteries (SIBs) as cheap and environmentally friendly devices have increasingly received wide research attentions. The high current rate and long cycle-life of SIBs are considered as two key parameters determining its potential for practical applications. In this work, the rigid single-crystalline anatase TiO2 nanosheets (NSs) with a thickness of ∼4 nm has been firstly prepared, based on which a stable nanostructured network consisting of ultrathin anatase TiO2 NSs homogeneously anchored on graphene through chemical bonding (TiO2 NSs-G) has fabricated by hydrothermal process and subsequent calcination treatment. The morphology, crystallization, chemical compositions and the intimate maximum contact between TiO2 NSs and graphene are confirmed by TEM, SEM, XRD, XPS and Raman characterizations. The results of electrochemical performance tests indicated that the TiO2 NSs-G hybrid network could be consider as a promising anode material for SIBs, in assessment of its remarkably high current rate and long cycle-life aside from the improved specific capacity, rate capability and cycle stability.

  15. Mechanisms of Visible Light Photocatalysis in N-Doped Anatase TiO2 with Oxygen Vacancies from GGA+U Calculations

    Directory of Open Access Journals (Sweden)

    Hsuan-Chung Wu

    2013-01-01

    Full Text Available We have systematically studied the photocatalytic mechanisms of nitrogen doping in anatase TiO2 using first-principles calculations based on density functional theory, employing Hubbard U (8.47 eV on-site correction. The impurity formation energy, charge density, and electronic structure properties of TiO2 supercells containing substitutional nitrogen, interstitial nitrogen, or oxygen vacancies were evaluated to clarify the mechanisms under visible light. According to the formation energy, a substitutional N atom is better formed than an interstitial N atom, and the formation of an oxygen vacancy in N-doped TiO2 is easier than that in pure TiO2. The calculated results have shown that a significant band gap narrowing may only occur in heavy nitrogen doping. With light nitrogen doping, the photocatalysis under visible light relies on N-isolated impurity states. Oxygen vacancies existence in N-doped TiO2 can improve the photocatalysis in visible light because of a band gap narrowing and n-type donor states. These findings provide a reasonable explanation of the mechanisms of visible light photocatalysis in N-doped TiO2.

  16. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes

    Science.gov (United States)

    Ding, Jianning; Li, Yan; Hu, Hongwei; Bai, Li; Zhang, Shuai; Yuan, Ningyi

    2013-01-01

    High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm-2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies.

  17. Soft-Templated Self-Assembly of Mesoporous Anatase TiO2/Carbon Composite Nanospheres for High-Performance Lithium Ion Batteries.

    Science.gov (United States)

    Wu, Ruofei; Shen, Shuiyun; Xia, Guofeng; Zhu, Fengjuan; Lastoskie, Christian; Zhang, Junliang

    2016-08-10

    Mesoporous anatase TiO2/carbon composite nanospheres (designated as meso-ATCCNs) were successfully synthesized via a facile soft-templated self-assembly followed by thermal treatment. Structural and morphological analyses reveal that the as-synthesized meso-ATCCNs are composed of primary TiO2 nanoparticles (∼5 nm), combined with in situ deposited carbon either on the surface or between the primary TiO2 nanoparticles. When cycled in an extended voltage window from 0.01 to 3.0 V, meso-ATCCNs exhibit excellent rate capabilities (413.7, 289.7, and 206.8 mAh g(-1) at 200, 1000, and 3000 mA g(-1), respectively) as well as stable cyclability (90% capacity retention over 500 cycles at 1000 mA g(-1)). Compared with both mesoporous TiO2 nanospheres and bulk TiO2, the superior electrochemical performance of the meso-ATCCNs electrode could be ascribed to a synergetic effect induced by hierarchical structure that includes uniform TiO2 nanoparticles, the presence of hydrothermal carbon derived from phenolic resols, a high surface area, and open mesoporosity.

  18. Shape-dependence of the thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2

    Science.gov (United States)

    Bennett, David A.; Cargnello, Matteo; Diroll, Benjamin T.; Murray, Christopher B.; Vohs, John M.

    2016-12-01

    Structure-activity relationships and the influence of particle size and shape on the partial- and photo-oxidation of methanol on nanocrystalline anatase TiO2 were investigated using temperature-programmed desorption. The study employed two distinct nanoparticle morphologies: truncated bipyramids exposing primarily {101} facets, and flatter platelets exposing primarily {001} surfaces, whose nominal sizes ranged from 10 to 25 nm. The platelets were found to be more active for thermally-driven reactions, such as coupling of methoxide groups to produce dimethyl ether, and deoxygenation to produce methane. A dependence of the reactivity of {001} facets for the coupling of methoxide groups to produce dimethyl ether on facet size was also observed. In contrast to the thermally-driven reactions, the bipyramidal nanoparticles were observed to be more active for a range of photochemical reactions, including oxidation and coupling to produce methyl formate, and photo-decomposition of surface methoxide species. This study also shows how well-defined nanocrystals can be used to help bridge the materials gap between studies of single crystal model catalysts and their high surface area industrial analogs.

  19. A DFT study on the interaction of Co with an anatase TiO2 (001)-(1×4) surface

    Institute of Scientific and Technical Information of China (English)

    Zhijun Zuo; Wei Huang; Peide Han; Zhihong Li; Jian Huang

    2009-01-01

    The substitution/adsorption structures of Co on an anatase TiO2 (001)-(1×4) surface are investigated using the DFT/local density approximation (LDA) method.Theoretical calculation shows that the Co ion prefers to be adsorbed on the surface of anatase TiO2.The density of states (DOS) analysis finds that the Co 3d is located mainly in the energy gap region.The Co 3d partial density of states (PDOS) indicates that there is a substantial degree of hybridization between O 2s and Co 3d in valence band (VB) regions in the substitution models.The conclusion is that the mode of substitution is more active when the catalyst is a higher-energy surface.

  20. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; Jong, de M.P.; Wiel, van der W.G.; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3/Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 (1.4 at. % Co). Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  1. High-temperature superconductivity in single-unit-cell FeSe films on anatase TiO2(001)

    OpenAIRE

    Ding, Hao; Lv, Yan-Feng; Zhao, Kun; Wang, Wen-Lin; Wang, Lili; Song, Can-Li; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2016-01-01

    We report on the observation of high-temperature ($T_\\textrm{c}$) superconductivity and magnetic vortices in single-unit-cell FeSe films on anatase TiO$_2$(001) substrate by using scanning tunneling microscopy. A systematic study and engineering of interfacial properties has clarified the essential roles of substrate in realizing the high-$T_\\textrm{c}$ superconductivity, probably via interface-induced electron-phonon coupling enhancement and charge transfer. By visualizing and tuning the oxy...

  2. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3 /Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 1.4 at. % Co. Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  3. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    Science.gov (United States)

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature.

  4. Adsorption of croconate dyes on TiO2 anatase (101) surface: A periodic DFT study to understand the binding of diketo groups

    Indian Academy of Sciences (India)

    Avinash L Puyad; Ch Ramesh Kumar; K Bhanuprakash

    2012-01-01

    The adsorption of model croconate dyes on the stoichiometric TiO2 anatase (101) surface has been studied by means of periodic density functional calculations to understand the adsorption of the diketo (-COCO-) groups. Past experimental and theoretical results have shown the strong binding ability of the acid group (-COOH) to the TiO2 surface but here the theoretical studies predicts the binding strength of the diketo group to be also significant and comparable with that of the -COOH group. This may cause a competitive binding between the keto groups and the acid groups on the TiO2 surface in the case of croconate dyes and cause a reduction in the efficiency of the DSSC.

  5. Research on the Electrochemical Performance of Rutile and Anatase Composite TiO2 Nanotube Arrays in Lithium-Ion Batteries.

    Science.gov (United States)

    Wei, Jiang; Liu, Jian-Xiong; Wu, Zheng-Yu; Zhan, Zhao-Lin; Shi, Jin; Xu, Kun

    2015-07-01

    Titanium dioxide is considered as an ideal anode material for lithium-ion batteries. It has many different polymorphs such as anatase and rutile, etc. Both nano-scale rutile and anatase exhibit large potential in accommodating Li ions. Although the electrochemical performance of the rutile or anatase has been studied very well, their combined effect in lithium battery is still unclear at present. In our work, a kind of rutile and anatase composite TiO2 nanotube arrays was synthesized by two steps: anodization and heat treatment. The characteristics of the composite arrays were examined by XRD, SEM, and TEM. The first discharge capacity and charge capacity at 0.1 C (1C = 335 mA h g(-1)) of the composite is about 230 mA h g(-1), and 210 mA h g(-1), which are higher than pure anatase of 180 mA h g(-1) and 173 mA h g(-1). The composite remain about 80% of its initial capacities (185 mA h g(-1)) after 100 cycles. Two anodic peaks around 1.8 V and 2.2 V can be found in the composite in the cyclic voltammetry curves, while there is only one anodic peak in anatase. The separation of anodic and cathodic peak potentials of composite is less than that of anantase, indicating a better charge/discharge reversibility. The electrochemical impedance spectrum test shows the resistance of the composite is larger than that of pure anatase due to that the composite have more grain boundaries. The higher specific capacities of composite arrays may ascribe to the rutile's larger amount of lithium ions insertion and the defects facilitate lithium ions migration. Our work demonstrates that a better electrochemical performance of TiO2 can be achieved by synthesizing the composite material.

  6. Fabrikasi Dye Sensitized Solar Cell (DSSC Berdasarkan Fraksi Volume TiO2 Anatase-Rutile dengan Garcinia mangostana dan Rhoeo Spathacea sebagai Dye Fotosensitizer

    Directory of Open Access Journals (Sweden)

    Sustia Agustini

    2013-09-01

    Full Text Available Sejak pertama kali dikembangkan, usaha untuk meningkatkan efisiensi Dye Sensitized Solar Cell (DSSC terus dilakukan. Mulai dari pemilihan bahan pewarna, jenis semikonduktor yang digunakan, desain counter elektroda, struktur sandwich atau yang lainnya. Anatase dan rutile adalah fase dari TiO2 yang sering digunakan untuk fabrikasi DSSC. Penelitian ini menggunakan kulit manggis dan Rhoeo spathacea yang diekstrak menggunakan ethanol sebagai pewarna alami yang mengandung antosianin. Pewarna tersebut dikarakterisasi menggunakan UV-Vis dan FTIR, dan menunjukkan absorpsi pada panjang gelombang 392 nm untuk kulit manggis dan 413 nm untuk Rhoeo spathacea. TiO2 disintesis menggunakan metode co-precipitation. Ukuran partikel yang dihasilkan adalah 11 nm untuk anatase and 54,5 nm untuk rutile dengan menggunakan persamaan Scherrer. DSSC difabrikasi dengan variasi fraksi volume TiO2 anatase dan rutile. DSSC diuji dibawah cahaya matahari dengan daya sebesar 17 mW/cm2. Kurva arus-tegangan (I-V DSSC yang dihasilkan fraksi volume 75%:25% memperlihatkan hasil terbaik dibanding yang lain. Efisiensi tertinggi adalah 0.037% dan 0.013% dihasilkan oleh DSSC dengan pewarna alami dari kulit manggis dan Rhoeo spathacea.

  7. Effect of Tb2O3 additive on structure of anatase and photocatalytic activity of TiO2/(O'+β')-Sialon multi-phase ceramics

    Institute of Scientific and Technical Information of China (English)

    YANG Jian; PAN Limei; XUE Xiangxin; WANG Mei; QIU Tai

    2009-01-01

    Effect of rare earth oxide Tb2O3 additive on transformation behavior and grain growth of anatase and photocatalytic activity for TiO2/(O'+β')-Sialon multi-phase ceramic was investigated and the mechanism was discussed. X-ray diffractometer (XRD) was employed for the analysis of phase composition, grain size and lattice parameters of anatase. Photocatalyfic activity of the composites was investigated through its photocatalytic degradation to methylene blue (MB) solution. The results showed that Tb2O3 significantly inhibited the transfor-marion process, which displayed an appreciably intensified effect with increasing Tb203 content. It could be attributed to the coaction of the active and passive influence mechanisms. For Tb3+ entering TiO2 lattice, replacing Ti4+ accelerated the transformation, whereas the lattice distortion caused by it was unfavorable for the process. On the other hand, the redox reaction between Tb3+ and TiO2 as well as the Tb2O3 deposited on the surface of TiO2 inhibited the transformation. The addition of Tb2O3 effectively restrained the grain growth of TiO2 and the effect became significant with the increase of its content. With the increase of Tb2O3 addition, the photocatalytic activity of the catalysts in-creased and then dropped after reaching the maximum at about 2%. The action mechanism of Tb2O3 could be attributed to its optical proper-ties and its effect on phase transformation, grain growth and crystal structure of TiO2.

  8. Interaction of Photoactive[Fe(CN)6]4-with TiO2 Anatase(101) Surface:A Periodic Density Functional Theory Study

    Institute of Scientific and Technical Information of China (English)

    XU Ying; CHEN Wen-Kai; CAO Mei-Juan; LIU Shu-Hong; LI Jun-Qian

    2007-01-01

    The plane-wave pseudopotential function method, based on density-functional theory, has been used to calculate the adsorption, electronic band structures, orbitals and optical absorption spectrum of [Fe(CN)6]4- on TiO2 anatase(101) surface. Our calculations reveal that the surface-modified anatase system has large adsorption energy and a much narrower band gap.[Fe(CN)6]4- adsorption on the (101) surface could lead to a large red shift of the anatase optical absorption threshold, which extends into a visible region significantly. The calculated results are in agreement with the experiment and other theoretical studies reasonably. It is very important for the understanding and further development ofphotovoltaic materials that are active under visible light.

  9. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-10-05

    We investigated CdSe-sensitized TiO(2) solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO(2) gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO(2) nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( panels. XRD together with SAED analysis highlight that the deposit of CdSe is exclusively constituted of the hexagonal polymorph. In addition, hierarchical growth has also been shown, starting from the formation of a TiO(2)-CdSe core-shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO(2) and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions-100 mW cm(-2) in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V(oc ) = 485 mV, J(sc ) = 4.26 mA cm (-2), ff=0.37).

  10. Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO 2 from First-Principles Calculations

    KAUST Repository

    Harb, M.

    2011-10-06

    Extension of the absorption properties of TiO2 photocatalytic materials to the visible part of the solar spectrum is of major importance for energy and cleaning up applications. We carry out a systematic study of the N-doped anatase TiO2 material using spin-polarized density functional theory (DFT) and the range-separated hybrid HSE06 functional. The thermodynamic stability of competitive N-doped TiO2 structural configurations is studied as a function of the oxygen chemical potential and of various chemical doping agents: N2, (N2 + H2), NH3, N2H4. We show that the diamagnetic TiO (2-3x)N2x system corresponding to a separated substitutional N species (with 2-4% N impurities) and formation of one-half concentration of O vacancies (1-2 atom %) is an optimal configuration thermodynamically favored by NH3, N2H4, and (N2 + H2) chemical doping agents presenting a dual nitrating-reducing character. The simulated UV-vis absorption spectra using the perturbation theory (DFPT) approach demonstrates unambiguously that the diamagnetic TiO(2-3x)N2x system exhibits the enhanced optical absorption in N-doped TiO2 under visible-light irradiation. Electronic analysis further reveals a band gap narrowing of 0.6 eV induced by delocalized impurity states located at the top of the valence band of TiO 2. A fruitful comparison with experimental data is furnished. © 2011 American Chemical Society.

  11. Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO2-B and Anatase Dual-Phase Nanowires.

    Science.gov (United States)

    Li, Kaikai; Li, Baohua; Wu, Junxiong; Kang, Feiyu; Kim, Jang-Kyo; Zhang, Tong-Yi

    2017-10-06

    Ideal lithium-ion batteries (LIBs) should possess a high power density, be charged extremely fast (e.g., 100C), and have a long service life. To achieve them all, all battery components, including anodes, cathodes, and electrolytes should have excellent structural and functional characteristics. The present work reports ultrafast-charging and long-life LIB anodes made from TiO2-B/anatase dual-phase nanowires. The dual-phase nanowires are fabricated with anatase TiO2 nanoparticles through a facile and cost-effective hydrothermal process, which can be easily scaled up for mass production. The anodes exhibit remarkable electrochemical performance with reversible capacities of ∼225, 172, and 140 mAh g(-1) at current rates of 1C, 10C, and 60C, respectively. They deliver exceptional capacity retention of not less than 126 and 93 mAh g(-1) after 1000 cycles at 60C and 100C, respectively, potentially worthwhile for high-power applications. These values are among the best when the high-rate capabilities are compared with the literature data for similar TiO2-based anodes. The Ragone plot confirms both the exceptionally high energy and power densities of the devices prepared using the dual-phase nanowires. The electrochemical tests and operando Raman spectra present fast electrochemical kinetics for both Li(+) and electron transports in the TiO2 dual-phase nanowires than in anatase nanoparticles due to the excellent Li(+) diffusion coefficient and electronic conductivity of nanowires.

  12. Influence of the oxygen concentration on the formation of crystalline phases of TiO2 during the low-pressure arc-discharge plasma synthesis

    Science.gov (United States)

    Ushakov, A. V.; Karpov, I. V.; Lepeshev, A. A.

    2016-02-01

    The synthesis of titanium dioxide (TiO2) nanoparticles with different percentage of anatase and rutile phases is investigated. The synthesis is performed by controlling the oxygen percentage in the gas mixture in the plasmachemical evaporation-condensation process employing a low-pressure arc discharge. In all our experiments, the pressure in the plasmachemical reactor and the average size of particles remain constant and are 60 Pa and 6 nm, respectively. The crystal structure of synthesized TiO2 is studied using X-ray diffraction; the morphology of the particles is analyzed employing transmission electron microscopy. Using X-ray phase analysis, it is established that the concentration of the TiO2 anatase phase decreases upon a decrease in the oxygen concentration in the gas mixture. It is shown that the TiO2 anatase phase is more efficient for photocatalytic decomposition of methylene blue than the rutile phase.

  13. New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles.

    Science.gov (United States)

    Yu, Jiaguo; Zhou, Peng; Li, Qin

    2013-08-07

    The geometry structures, formation energies and electronic properties of the B-, C- and B/C-doped anatase TiO2 were investigated by the density functional theory (DFT) calculations of first-principles. The results indicated that the visible-light absorption and photocatalytic activities of the B-, C- and B/C-doped anatase TiO2 were not only influenced by the energy gaps (Eg) and the distributions of impurity states, but also affected by the locations of Fermi levels (EF) and the energies of the edges of band gaps (Ev for the top of valence bands and Ec for the bottom of conduction bands). However, the above four factors changed with the doped models of TiO2. The impurity states in the band gaps reduced the maximum energy gaps in the band gaps, which is responsible for the absorption of visible light. The Fermi levels at the bottom of conduction bands indicated the existence of Ti(3+) ions, which enhanced the separation rates of photogenerated electrons and holes. Further, the energies of the edges of band gaps, determining the dominant types of oxidants (O2(-), hole, ˙OH) in the photocatalytic degradation, were discussed. Moreover, the stability of the doped TiO2 depended on its growth conditions (O-rich or Ti-rich environment). The O-rich growth condition is beneficial to the substitutional B and C atoms to Ti atoms, while the Ti-rich growth condition is favorable to the other doped TiO2 including the most stable co-doped TiO2 with the interstitial B atom and the substitutional C atom to O atom. In addition, our results also showed that the B/C-doped TiO2 inherited the partial electronic properties of single-doped TiO2, but also exhibited many new electronic properties, implying that the electronic properties of co-doped systems are not a mechanical mixture of those of both single-doped systems.

  14. Lithium ion intercalation in partially crystalline TiO 2 electrodeposited on platinum from aqueous solution of titanium(IV) oxalate complexes

    Science.gov (United States)

    Dziewoński, Paweł Marek; Grzeszczuk, Maria

    Starting from the aqueous solution of titanium(IV) oxalate complexes and controlling electrochemical conditions using a cyclic voltammetry (CV) method, the thin layers of TiO 2 on platinum were obtained, which after additional heat treatment, at 450 °C, were still of amorphous nature. The amorphous state of the samples, containing an admixture of crystalline anatase, was confirmed by Raman spectroscopy and by a variety of electrochemical techniques. The new electrochemical procedure allows preparing the oxide with different morphologies. By the comparison with the peroxotitanium route, the oxalate precursor method offers the possibility of the synthesis of amorphous TiO 2 at higher temperatures that is the essential key for the cycling stability of the oxide if one is used as an anode material in lithium ion batteries. The results from cycling voltammetry revealed that electrodeposited TiO 2 reversibly and fast intercalates lithium ions due to its high internal surface area. Therefore, the nanostructural morphology facilitates lithium ion intercalation which was monitored and confirmed in all electrochemical testing. The specific capacity of the TiO 2 approaches the value of 145 mAh g -1 at 8 C-rate in the best case. From the electrochemical impedance spectroscopy (EIS) measurements in connection with SEM investigations, it was concluded that Li + diffusion is the finite space process and its rate is depending on the size of the crystallites building the oxide films. Evaluated values of the D-coefficients are of the order of 10 -14 cm 2 s -1.

  15. Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles

    Science.gov (United States)

    Mattsson, Andreas; Lejon, Christian; Bakardjieva, Snejana; Štengl, Vaclav; Österlund, Lars

    2013-03-01

    We report on the characterization, phase stability, surface chemical and photocatalytic properties of Zr and Y co-doped anatase TiO2 nanoparticles prepared by homogenous hydrolysis methods using urea as precipitating agent. The materials were analyzed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, BET isotherm and BJH pore size distribution measurements. It is shown that Y and Zr ions replace Ti ions in the anatase TiO2 structures up to a critical total dopant concentration of approximately 13 wt%. The co-doped particles show increased phase stability compared to pure anatase TiO2 nanoparticles. The anatase to rutile phase transformation is shown to be preceded by cation segregation and dissolution with concomitant precipitation of Y2Ti2-xZrxO7 and ZrTiO4. Co-doping modifies the optical absorption edge with a resulting attenuation of the Urbach tail. The band gap is slightly blue-shifted at high doping concentrations, and red shifted at lower doping concentrations. Formic acid adsorption was used as a probe molecule to investigate surface chemical properties and adsorbate structures. It was found that the relative abundance of monodentate formate compared to bidentate coordinated formate decreases with increasing doping concentration. This is attributed to an increased surface acidity with increasing dopant concentration. Photodegradation of formic acid occurred on all samples. With mode-resolved in situ FTIR spectroscopy it is shown that the rate of photodegradation of monodentate formate species are higher than for bidentate formate species. Thus our results show that the trend of decreasing photo-degradation rate with increasing dopant concentration can be explained by the adsorbate structure, which is controlled by the acidity of the surface.

  16. Influence of TiO2 Mineralizer on the Crystalline Structure of Cordierite Synthesized from Aluminum Slag

    Institute of Scientific and Technical Information of China (English)

    RUAN Yu-Zhong; WU Ren-Ping; YU Yan

    2005-01-01

    By adding small amount of TiO2, aluminum slag could be used to synthesize cor- dierite.α-Al2O3, TiO2 and dehydrated talc could generate solid solution to accelerate the solid-state reaction to form cordierite.The experimental results show that the content of cordierite increases with the increase of TiO2 added.3.0% of TiO2 is determined to be the best amount, because all crystalline substances are converted into cordierite at this content.Philips X'pert plus software analysis shows that when the content of TiO2 is from 0 to 1.0%, cordierite has the same hexagonal structure as the single crystal and the lattice parameters change slightly; when the content of TiO2 is from 1.0 to 2.0%, the cordierite still keeps hexagonal structure but the lattice parameters change greatly; when the content of TiO2 is from 2.0 to 3.5%, the cordierite is converted from hexagonal into rhombic and the lattice parameters change accordingly.

  17. (0 0 1) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation

    Science.gov (United States)

    Zhou, Xun; Shi, Tiejun; Wu, Jing; Zhou, Haiou

    2013-12-01

    Reduced graphene oxide (RGO) and TiO2 nanotube (TNT) with (0 0 1) facet-exposed anatase phase are covalently bonded together to synthesize TNT hybrid RGO (RGO-TNT) through consecutive process such as hydrothermal reaction, HCl washing, lyophilization and heat treatment with graphene oxide (GO), TiO2 powder and high concentration NaOH solution as the starting materials. The TNT with the diameter between 10 and 20 nm characterized by high resolution transmission electron microscopy (HRTEM) is in anatase phase proven by X-ray diffraction (XRD) and HRTEM. Additionally, the more active (0 0 1) facet is exposed identified by HRTEM. More significantly, TNT is bridged to RGO by Csbnd Ti bond by the measurement of X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) spectra has testified that RGO in RGO-TNT can transfer and accept photoelectrons from TNT. The photocatalytic activity of RGO-TNT for degrading methylene blue (MB) is enhanced by contrast with pure TNT, and changeable by adjusting the mass ratios of GO to TiO2 powder. Simultaneously, lyophilization is benefit for maintaining the high active surface area of RGO-TNT, which is deeply in relationship with a higher photocatalytic activity. After four running cycles of photocatalytic degradation, RGO-TNT has shown a high stability and perfect reproducibility.

  18. Synthesis of mesoporous anatase TiO2 nanotubes by a hydrothermal treatment and their use in solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Seo, Min-Kang; Park, Soo-Jin

    2011-05-01

    Mesoporous anatase TiO2 nanotubes (NTs) with the diameter of about 7 12 nm and the length of several hundred nanometers were synthesized by a hydrothermal method on commercial TiO2 particles in NaOH followed by HCI washing. The samples were characterized by X-ray diffraction (XRD), transmitting electron microscopy (TEM), and Brunauer-Emmet-Teller (BET) measurements. The hydrothermal treatment temperature at 130 degrees C was shown to affect not only the extent of particle-to-sheet conversion, and thus the resulting structures of the NTs, but also the anatase-to-rutile transformation. The surface area of the NTs was 200 m2g(-1). This value was much higher in comparison to TiO2 nanoparticles of 50 m2g(-1). It was also found that the NT photoelectrodes had a pronounced impact on the performance of solar cells as compared to nanoparticle ones. This was probably due to lead to a significantly higher specific dye loading and, for certain hydrothermal treatments, resulting in a doubling of the solar cell efficiency (in our case from 2.84% to 4.03% of AM 1.5 conditions).

  19. Acoustic vibrations of amorphous and crystalline ZrO2-TiO2 nanoparticles

    Science.gov (United States)

    Ivanda, M.; Car, D.; Mikac, L.; Ristić, D.; Đerek, V.; Đerđ, I.; Štefanić, G.; Musić, S.

    2014-09-01

    Acoustic vibrational modes of ZrO2-TiO2 nanoparticles (ZT) have been observed and analyzed by means of low-frequency Raman spectroscopy (LFRS). The low-frequency Raman peak has been observed in the spectra of amorphous as well as of crystalline ZT nanoparticles. The results obtained by the LFRS have been compared to the results obtained by high-resolution transmission electron microscopy (HRTEM). After the method has been tested, the LFRS has been used to investigate the influence of the amount of dopant (Ti4+) and the annealing temperature on size distributions of the ZT nanoparticles. The observed reduction of the particles' growth-rate with Ti doping was ascribed with increase of defects in nanoparticles. Also, a discontinuity in the particles' growth-rate at the temperatures between 500 °C and 600 °C was observed. It is at these temperatures that the phase transition from amorphous to nanocrystalline phase occurs.

  20. Probing the charge recombination in rGO decorated mixed phase (anatase-rutile TiO2 multi-leg nanotubes

    Directory of Open Access Journals (Sweden)

    Y. Rambabu

    2016-11-01

    Full Text Available Recombination of photo-generated charges is one of the most significant challenges in designing efficient photo-anode for photo electrochemical water oxidation. In the case of TiO2, mixed phase (anatase-rutile junctions often shown to be more effective in suppressing electron-hole recombination compared to a single (anatase or rutile phase. Here, we report the study of bulk and surface recombination process in TiO2 multi-leg nanotube (MLNTs anatase-rutile (A-R junctions decorated with reduced graphene oxide (rGO layers, through an analysis of the photo-current and impedance characteristics. To quantify the charge transport/transfer process involved in these junctions, holes arriving at the interface of semiconductor/electrolyte were collected by adding H2O2 to the electrolyte. This enabled us to interpret the bulk and surface recombination process involved in anatase/rutile/rGO junctions for photo-electrochemical water oxidation. We correlated this quantification to the electrochemical impedance spectroscopy (EIS measurements, and showed that in anatase/rutile junction the increase in PEC performance was due to suppression in electron-hole recombination rate at the surface states that effectively enhances the hole transfer rate to the electrolyte. On the other hand, in rGO wrapped A-R MLNTs junction it was due to both phenomenon i.e decrease in bulk recombination rate as well as increase in hole transfer rate to the electrolyte at the semiconductor/electrolyte interface.

  1. New insights into the origin of visible-light photocatalytic activity in Se-modified anatase TiO2 from screened coulomb hybrid DFT calculations

    KAUST Repository

    Harb, Moussab

    2013-12-05

    We report a systematic study on the optoelectronic properties of Se-modified anatase TiO2 investigated by DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 formalism to guarantee accurate band gap and electronic excitation predictions. Various selenium species at substitutional sites for O or Ti, at interstitial sites, as well as at mixed substitutional/interstitial sites are studied. Among the explored structures, Ti(1-2x)O2Se2x (containing Se4+ species), TiO(2-x)Sex (containing Se2- species), and TiO(2-x)Se2x (containing Se2 2- species) reveal significant enhanced visible-light optical absorption spectra with new absorption features appearing at 500, 600, and 690 nm, respectively. Our calculated spectra are found to be in good agreement with those obtained in available experimental works. The band gap narrowing in these materials originates from incorporation of newly occupied electronic levels within 0.5-1.5 eV above the original valence band of TiO 2, leading to new narrowed band gaps of 2.5, 2.0, and 1.8 eV respectively. Our calculations also reveal suitable band positions of Ti (1-2x)O2Se2x and TiO(2-x)Se x for overall water splitting, whereas TiO(2-x)Se 2x shows an unsuitable valence band position for the oxygen evolution reaction. In contrast, the localized electronic character of the new occupied states on the Se 4p orbitals and only on the O 2p orbitals linked to the Se species makes the holes mobility limited in this material and the recombination rate of charge carriers greatly increased in the bulk. © 2013 American Chemical Society.

  2. Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO2 Nanoparticles by Hydrothermal Treatment.

    Science.gov (United States)

    Ide, Yusuke; Inami, Nozomu; Hattori, Hideya; Saito, Kanji; Sohmiya, Minoru; Tsunoji, Nao; Komaguchi, Kenji; Sano, Tsuneji; Bando, Yoshio; Golberg, Dmitri; Sugahara, Yoshiyuki

    2016-03-01

    Although tremendous effort has been directed to synthesizing advanced TiO2 , it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase-rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2 , which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2 , inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective.

  3. Neodymium-Doped TiO2 with Anatase and Brookite Two Phases: Mechanism for Photocatalytic Activity Enhancement under Visible Light and the Role of Electron

    Directory of Open Access Journals (Sweden)

    Douga Nassoko

    2012-01-01

    Full Text Available Titanium dioxide (TiO2 doped with neodymium (Nd, one rare earth element, has been synthesized by a sol-gel method for the photocatalytic degradation of rhodamine-B under visible light. The prepared samples are characterized by X-ray diffractometer, Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller measurement. The results indicate that the prepared samples have anatase and brookite phases. Additionally, Nd as Nd3+ may enter into the lattice of TiO2 and the presence of Nd3+ substantially enhances the photocatalytic activity of TiO2 under visible light. In order to further explore the mechanism of photocatalytic degradation of organic pollutant, photoluminescence spectrometer and scavenger addition method have been employed. It is found that hydroxide radicals produced by Nd-doped TiO2 under visible light are one of reactive species for Rh-B degradation and photogenerated electrons are mainly responsible for the formation of the reactive species.

  4. Photocatalytic degradation of phenanthrene on soft surfaces in the presence of nanometer anatase TiO2 under UV-light

    Institute of Scientific and Technical Information of China (English)

    Jiali Gu; Dianbo Dong; Lingxue Kong; Yong Zheng; Xiaojun Li

    2012-01-01

    The effect of nanometer anatasc TiO2 was investigated on the photocatalytic degradation of phcnanthrene on soil surfaces under a variety of conditions.After being spiked with phenanthrene,soil samples loaded with different amounts of TiO2 (0 wt.%,1 wt.%,2wt.%,3 wt.%,and 4 wt.%) were exposed to UV-light irradiation for 25 hr.The results indicated that the photocatalytic degradation of phenanthrene followed the pseudo first-order kinetics.TiO2 significantly accelerated the degradation of phenanthrene with the half-life reduced from 45.90 to 31.36 hr for TiO2 loading of 0 wt.% and 4 wt.%,respectively.In addition,the effects of H2O2,light intensity and humie acid on the degradation of phenanthrene were investigated.The degradation of phenanthrene increased with the concentration of H2O2,light intensity and the concentration of humic acids.It has been demonstrated that the photocatalytic method in the presence of nanometer anatase TiO2 was a very promising technology for the treatments of soil polluted with organic substances in the future.

  5. High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO 2 anatase and water soluble binder carboxymethyl cellulose

    Science.gov (United States)

    Mancini, M.; Nobili, F.; Tossici, R.; Wohlfahrt-Mehrens, M.; Marassi, R.

    The challenge of producing lithium-ion batteries meeting performance requirements and low environmental impact is strictly related to the choice of materials as well as to the manufacturing processes. Most electrodes are currently prepared using poly(vinilydene fluoride) (PVDF) as binder. This fluorinated polymer is expensive and requires the use of a volatile and toxic organic solvent such as N-methyl-pyrrolidone (NMP) in the processing. Water soluble sodium carboxymethyl cellulose (CMC) can be a suitable substitute for PVDF as binder for both anodes and cathodes eliminating the necessity of NMP and thus decreasing the cost and the environmental impact of battery production. In this work, CMC has been successfully used to prepare efficient and stable anatase TiO 2 anodes by optimizing the electrode manufacturing process in terms of composition and compression. The stability and the high rate performances of the TiO 2/CMC are described and compared with those of TiO 2/PVDF electrodes. The compatibility of the TiO 2/CMC with a LiFePO 4 cathode in a full-cell is also reported.

  6. Visible-light photocatalytic properties of Mo-C codoped anatase TiO2 films prepared by magnetron sputtering

    Science.gov (United States)

    Zhe-Peng, Zhang; Biao, Yu; Hai-Bo, Fan; Xin-Liang, Zheng; He-Bao, Yao

    2015-12-01

    A range of different contents of Mo-C codoped TiO2 films were sputtered by using home-made Mo-C codoped TiO2 targets, which were sintered by mixing the Mo2C and TiO2 powder with different mole ratio. We found that the Mo and C ions were successfully incorporated into the lattice of TiO2 films. As a result, the band gap of TiO2 was reduced and the visible-light photocatalytic property was enhanced. The photocatalytic performance of Mo-C codoped TiO2 films was strictly relevant with the band gap and there was a best codoping concentration of 0.01% for the TiO2 film, which processed the smallest band gap and the best photocatalytic property. If the codoping concentration increased, the photocatalytic performance decreased dramatically. Our results suggest that sputtering technique is a convenient method to prepare Mo-C codoped TiO2 films with tunable doping content and high photocatalytic performance.

  7. A new preparation of doped photocatalytic TiO2 anatase nanoparticles: a preliminary study for the removal of pollutants in confined museum areas

    Science.gov (United States)

    Greco, Enrico; Ciliberto, Enrico; Cirino, Antonio M. E.; Capitani, Donatella; Di Tullio, Valeria

    2016-05-01

    The use of nanotechnology in conservation is a relatively new concept. Usually, classical cleanup methods take into account the use of other chemicals: On the one hand they help the environment destroying pollutants, but on the other hand they often become new pollutants. Among the new oxidation methods called advanced oxidation processes, heterogeneous photocatalysis has appeared an emerging technology with several economic and environmental advantages. A new sol-gel method of synthesis of TiO2 anatase is reported in this work using lithium and cobalt (II) salts. The activation energy of the doped photocatalyst was analyzed by solid-state UV-Vis spectrophotometer. The mobility of Li ions on TiO2 NPs surface was studied by 7Li MAS NMR spectroscopy. Use of doped nanotitania is suggested from authors for the removal of pollutants in confined areas containing goods that must be preserved from decomposition and aging phenomena.

  8. Coupling of Nanocrystalline Anatase TiO2 to Porous Nanosized LaFeO3 for Efficient Visible-Light Photocatalytic Degradation of Pollutants

    Directory of Open Access Journals (Sweden)

    Muhammad Humayun

    2016-01-01

    Full Text Available In this work we have successfully fabricated nanocrystalline anatase TiO2/perovskite-type porous nanosized LaFeO3 (T/P-LFO nanocomposites using a simple wet chemical method. It is clearly demonstrated by means of atmosphere-controlled steady-state surface photovoltage spectroscopy (SPS responses, photoluminescence spectra, and fluorescence spectra related to the formed OH− radical amount that the photogenerated charge carriers in the resultant T/P-LFO nanocomposites with a proper mole ratio percentage of TiO2 display much higher separation in comparison to the P-LFO alone. This is highly responsible for the improved visible-light activities of T/P-LFO nanocomposites for photocatalytic degradation of gas-phase acetaldehyde and liquid-phase phenol. This work will provide a feasible route to synthesize visible-light responsive nano-photocatalysts for efficient solar energy utilization.

  9. Effect of Electronegativity and Charge Balance on the Visible-Light-Responsive Photocatalytic Activity of Nonmetal Doped Anatase TiO2

    Directory of Open Access Journals (Sweden)

    Jibao Lu

    2012-01-01

    Full Text Available The origin of visible light absorption and photocatalytic activity of nonmetal doped anatase TiO2 were investigated in details in this work based on density functional theory calculations. Our results indicate that the electronegativity is of great significance in the band structures, which determines the relative positions of impurity states induced by the doping species, and further influences the optical absorption and photocatalytic activities of doped TiO2. The effect of charge balance on the electronic structure was also discussed, and it was found that the charge-balance structures may be more efficient for visible light photocatalytic activities. In addition, the edge positions of conduction band and valence band, which determine the ability of a semiconductor to transfer photoexcited electrons to species adsorbed on its surface, were predicted as well. The results may provide a reference to further experimental studies.

  10. Substrate Biasing during Plasma-Assisted ALD for Crystalline Phase-Control of TiO(2) Thin Films

    NARCIS (Netherlands)

    Profijt, H. B.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    Substrate biasing has been implemented in a remote plasma atomic layer deposition (ALD) reactor, enabling control of the ion energy up to 260 eV. For TiO(2) films deposited from Ti(Cp(Me))(NMe(2))(3) and O(2) plasma it is demonstrated that the crystalline phase can be tailored by tuning the ion ener

  11. Doping anatase TIO_{2} with group V-b and VI-b transition metal atoms : a hybrid functional first-principles study

    OpenAIRE

    Matsubara, Masahiko; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2017-01-01

    Abstract: We investigate the role of transition metal atoms of group V-b (V, Nb, and Ta) and VI-b (Cr, Mo, and W) as n- or p-type dopants in anatase TiO2 using thermodynamic principles and density functional theory with the HeydScuseriaErnzerhof HSE06 hybrid functional. The HSE06 functional provides a realistic value for the band gap, which ensures a correct classification of dopants as shallow or deep donors or acceptors. Defect formation energies and thermodynamic transition levels are calc...

  12. Photocatalytic antibacterial performance of Sn(4+)-doped TiO(2) thin films on glass substrate.

    Science.gov (United States)

    Sayilkan, Funda; Asiltürk, Meltem; Kiraz, Nadir; Burunkaya, Esin; Arpaç, Ertuğrul; Sayilkan, Hikmet

    2009-03-15

    Pure anatase, nanosized and Sn(4+) ion doped titanium dioxide (TiO(2)) particulates (TiO(2)-Sn(4+)) were synthesized by hydrothermal process. TiO(2)-Sn(4+) was used to coat glass surfaces to investigate the photocatalytic antibacterial effect of Sn(4+) doping to TiO(2) against gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus). Relationship between solid ratio of TiO(2)-Sn(4+) in coatings and antibacterial activity was reported. The particulates and the films were characterized using particle size analyzer, zeta potential analyzer, Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), SEM, AAS and UV/VIS/NIR techniques. The results showed that TiO(2)-Sn(4+) is fully anatase crystalline form and easily dispersed in water. Increasing the solid ratio of TiO(2)-Sn(4+) from 10 to 50% in the coating solution increased antibacterial effect.

  13. Green synthesis of anatase TiO(2) nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity.

    Science.gov (United States)

    Roy, Nitish; Park, Yohan; Sohn, Youngku; Leung, Kam Tong; Pradhan, Debabrata

    2014-10-08

    The exposed facets of a crystal are known to be one of the key factors to its physical, chemical and electronic properties. Herein, we demonstrate the role of amines on the controlled synthesis of TiO2 nanocrystals (NCs) with diverse shapes and different exposed facets. The chemical, physical and electronic properties of the as-synthesized TiO2 NCs were evaluated and their photoredox activity was tested. It was found that the intrinsic photoredox activity of TiO2 NCs can be enhanced by controlling the chemical environment of the surface, i.e.; through morphology evolution. In particular, the rod shape TiO2 NCs with ∼25% of {101} and ∼75% of {100}/{010} exposed facets show 3.7 and 3.1 times higher photocatalytic activity than that of commercial Degussa P25 TiO2 toward the degradation of methyl orange and methylene blue, respectively. The higher activity of the rod shape TiO2 NCs is ascribed to the facetsphilic nature of the photogenerated carriers within the NCs. The photocatalytic activity of TiO2 NCs are found to be in the order of {101}+{100}/{010} (nanorods) > {101}+{001}+{100}/{010} (nanocuboids and nanocapsules) > {101} (nanoellipsoids) > {001} (nanosheets) providing the direct evidence of exposed facets-depended photocatalytic activity.

  14. Enhanced dye-sensitized solar cells performance using anatase TiO2 mesocrystals with the Wulff construction of nearly 100% exposed {101} facets as effective light scattering layer.

    Science.gov (United States)

    Zhou, Yu; Wang, Xinyu; Wang, Hai; Song, Yeping; Fang, Liang; Ye, Naiqing; Wang, Linjiang

    2014-03-28

    Anatase TiO2 mesocrystals with a Wulff construction of nearly 100% exposed {101} facets were successfully synthesized by a facile, green solvothermal method. Their morphology, and crystal structure are characterized by powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Accordingly, a possible growth mechanism of anatase TiO2 mesocrystals is elucidated in this work. The as-prepared single anatase TiO2 mesocrystal's mean center diameter is about 500 nm, and the length is about 1 μm. They exhibit high light adsorbance, high reflectance and low transmittance in the visible region due to the unique nearly 100% exposed {101} facets. When utilized as the scattering layer in dye-sensitized solar cells (DSSCs), such mesocrystals effectively enhanced light harvesting and led to an increase of the photocurrent of the DSSCs. As a result, by using an anatase TiO2 mesocrystal film as a scattering overlayer of a compact commercial P25 TiO2 nanoparticle film, the double layered DSSCs show a power conversion efficiency of 7.23%, indicating a great improvement compared to the DSSCs based on a P25 film (5.39%) and anatase TiO2 mesocrystal films, respectively. The synergetic effect of P25 and the mesocrystals as well as the latters unique feature of a Wulff construction of nearly 100% exposed (101) facets are probably responsible for the enhanced photoelectrical performance. In particular, we explore the possibility of the low surface area and exposed {101} facets as an efficient light scattering layer of DSSCs. Our work suggests that anatase TiO2 mesocrystals with the Wulff construction is a promising candidate as a superior scattering material for high-performance DSSCs.

  15. Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2-SiO2 nanocomposites to various organic contaminants.

    Science.gov (United States)

    Dong, Weiyang; Sun, Yaojun; Ma, Qingwei; Zhu, Li; Hua, Weiming; Lu, Xinchun; Zhuang, Guoshun; Zhang, Shicheng; Guo, Zhigang; Zhao, Dongyuan

    2012-08-30

    Ordered 2-D hexagonal mesoporous TiO(2)-SiO(2) nanocomposites consisted of anatase TiO(2) nanocrystals and amorphous SiO(2) nanoparticles, with large mesochannels and high specific surface areas, have been extensively and detailedly evaluated using various cationic dyes (methylene blue, safranin O, crystal violet, brilliant green, basic fuchsin and rhodamine-6G), anionic dyes (acid fuchsin, orange II, reactive brilliant red X3B and acid red 1) and microcystin-LR. We use mesoporous 80TiO(2)-20SiO(2)-900 for the degradation of cationic dyes and MC-LR, due to the dominant adsorption of SiOH groups and synergistic role of coupled adsorption and photocatalytic oxidation. For anionic dyes, due to the adsorption results predominantly from TiOH groups, our strategy realizes the enhanced photocatalytic oxidation by strong surface acids and larger available specific surface area. Based on this, we prepared 90TiO(2)-10SiO(2)-700 to degrade them. The results show that our samples exhibit excellent degradation activities to all the contaminants, which are much higher than that of P25 photocatalyst. The dyes are not only decolorized promptly but degraded readily as well. It is strongly indicated that our mesoporous nanocomposites are considerably stable and reusable. These results demonstrate that our mesoporous TiO(2)-SiO(2) nanocomposites present extensive and promising application in the fast and highly efficient degradation of various organic pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Characteristics of dye-sensitized solar cell with TiO2 anode under UV irradiation

    Science.gov (United States)

    Lee, Ming-Kwei; Hsiao, Chih-Chen; Weng, Hao-Wei

    2016-03-01

    The anatase phase crystalline quality of commercial TiO2 (P25) nanoparticle sintered in air and N2 is improved. Compared DSSC with air-sintered TiO2 anode, DSSC with N2-sintered TiO2 anode has better performance mainly from high optical absorption efficiency. Under UV irradiation, organic contaminants adsorbed on TiO2 are dissociated by the photocatalysis, and the dye adsorption is enhanced. The DSSC performance with UV-treated/N2-sintered TiO2 anode is further improved.

  17. Synthesis and chemical modifications of in-situ grown anatase TiO2 microspheres with isotropically exposed {0 0 1} facets for superhydrophobic and self-cleaning properties

    Science.gov (United States)

    Hu, Wanbiao; Yu, Yuanlie; Chen, Hua; Lau, Kenny; Craig, Vincent; Brink, Frank; Withers, Ray L.; Liu, Yun

    2015-12-01

    Excellent and robust hydrophobic materials generally benefit from specifically exposed surfaces i.e. always the low-energy surfaces, and well-defined micro/nano-structures that are achieved through advanced facilities and complicated process with a high cost. We hereof demonstrate that the superhydrophobicity and further self-cleaning properties are also attainable based on high-energy crystalline facets by an appropriate chemical modification. Specifically, anatase TiO2 microspheres were large-scale synthesized to exhibit isotropically exposed high-energy {0 0 1} facets through optimizing the HF/H2O2/H2O ratio during hydrothermal processes. The formation of the microspheres was uncovered to be an in-situ ;growth-cum-assembly; grown mechanism. Such high-energy {0 0 1} facets facilitate the strong coupling between the resultant TiO2 microspheres and the modifier (2,2,3,3,4,4,5,5-octafluoro-1-pentanol) because the {0 0 1} facets offer abundant active sites for chemical bonding, showing great merits for superhydrophobicity (with water contact angle of 154 ± 2°, 6 μl droplets), and further stably surface self-cleaning i.e. easily removing surface contamination (e.g. Al2O3 powders). This integrated strategy represents a milestone in design and fabrication of delicate composites with high-energy surfaces for specific functions and properties.

  18. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation

    Directory of Open Access Journals (Sweden)

    Jin-Gang Ma

    2015-08-01

    Full Text Available Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  19. TiO2 anatase's bulk and (001) surface, structural and electronic properties: A DFT study on the importance of Hubbard and van der Waals contributions

    Science.gov (United States)

    Araujo-Lopez, Eduard; Varilla, Luis Alcala; Seriani, Nicola; Montoya, Javier A.

    2016-11-01

    Theoretical ab initio studies done so far on the structural properties of the titanium dioxide anatase (001) surface, have not reported simultaneously the complete set of cell and interatomic parameters for this system or its bulk. Here we present a complete report of these quantities within a spin polarized Density Functional Theory calculation, including also the Hubbard term and the van der Waals dispersion contribution. We show that within this approach it is possible to find a description of TiO2 anatase using DFT, that correlates better with experimental results than most theoretical studies reported previously. This good level of agreement has an advantage with respect to other very accurate studies which have performed computationally expensive calculations involving hybrid functionals, in that our method tends to be faster while also including the van der Waals dispersion contributions in addition to the treatment of correlations. The observed high-quality description of a system like TiO2 within this approach is important and encouraging; specially because it treats properly a d-shell element that is possibly going to have, for many applications of interest, long-range interaction with molecules, e.g. in studies of photocatalysis, where one needs all the relevant physics of the system to be included. We support this claim with an example of the effects that long-range interactions have on a CO2 molecule at the (001) surface.

  20. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  1. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells

    Science.gov (United States)

    Gu, Jiuwang; Khan, Javid; Chai, Zhisheng; Yuan, Yufei; Yu, Xiang; Liu, Pengyi; Wu, Mingmei; Mai, Wenjie

    2016-01-01

    Large surface area, sufficient light-harvesting and superior electron transport property are the major factors for an ideal photoanode of dye-sensitized solar cells (DSSCs), which requires rational design of the nanoarchitectures and smart integration of state-of-the-art technologies. In this work, a 3D anatase TiO2 architecture consisting of vertically aligned 1D hierarchical TiO2 nanotubes (NTs) with ultra-dense branches (HTNTs, bottom layer) and 0D hollow TiO2 microspheres with rough surface (HTS, top layer) is first successfully constructed on transparent conductive fluorine-doped tin oxide glass through a series of facile processes. When used as photoanodes, the DSSCs achieve a very large short-current density of 19.46 mA cm-2 and a high overall power conversion efficiency of 8.38%. The remarkable photovoltaic performance is predominantly ascribed to the enhanced charge transport capacity of the NTs (function as the electron highway), the large surface area of the branches (act as the electron branch lines), the pronounced light harvesting efficiency of the HTS (serve as the light scattering centers), and the engineered intimate interfaces between all of them (minimize the recombination effect). Our work demonstrates a possibility of fabricating superior photoanodes for high-performance DSSCs by rational design of nanoarchitectures and smart integration of multi-functional components.

  2. A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells

    Directory of Open Access Journals (Sweden)

    Chen Eric Y

    2012-01-01

    Full Text Available Abstract Background Histamine released from mast cells, through complex interactions involving the binding of IgE to FcεRI receptors and the subsequent intracellular Ca2+ signaling, can mediate many allergic/inflammatory responses. The possibility of titanium dioxide nanoparticles (TiO2 NPs, a nanomaterial pervasively used in nanotechnology and pharmaceutical industries, to directly induce histamine secretion without prior allergen sensitization has remained uncertain. Results TiO2 NP exposure increased both histamine secretion and cytosolic Ca2+ concentration ([Ca2+]C in a dose dependent manner in rat RBL-2H3 mast cells. The increase in intracellular Ca2+ levels resulted primarily from an extracellular Ca2+ influx via membrane L-type Ca2+ channels. Unspecific Ca2+ entry via TiO2 NP-instigated membrane disruption was demonstrated with the intracellular leakage of a fluorescent calcein dye. Oxidative stress induced by TiO2 NPs also contributed to cytosolic Ca2+ signaling. The PLC-IP3-IP3 receptor pathways and endoplasmic reticulum (ER were responsible for the sustained elevation of [Ca2+]C and histamine secretion. Conclusion Our data suggests that systemic circulation of NPs may prompt histamine release at different locales causing abnormal inflammatory diseases. This study provides a novel mechanistic link between environmental TiO2 NP exposure and allergen-independent histamine release that can exacerbate manifestations of multiple allergic responses.

  3. A Long-Lived Mononuclear Cyclopentadienyl Ruthenium Complex Grafted onto Anatase TiO2 for Efficient CO2 Photoreduction.

    Science.gov (United States)

    Huang, Haowei; Lin, Jinjin; Zhu, Gangbei; Weng, Yuxiang; Wang, Xuxu; Fu, Xianzhi; Long, Jinlin

    2016-07-11

    This work shows a novel artificial donor-catalyst-acceptor triad photosystem based on a mononuclear C5 H5 -RuH complex oxo-bridged TiO2 hybrid for efficient CO2 photoreduction. An impressive quantum efficiency of 0.56 % for CH4 under visible-light irradiation was achieved over the triad photocatalyst, in which TiO2 and C5 H5 -RuH serve as the electron collector and CO2 -reduction site and the photon-harvester and water-oxidation site, respectively. The fast electron injection from the excited Ru(2+) cation to TiO2 in ca. 0.5 ps and the slow backward charge recombination in half-life of ca. 9.8 μs result in a long-lived D(+) -C-A(-) charge-separated state responsible for the solar-fuel production.

  4. Ab initio study on the band structure of P-doped anatase TiO2%磷掺杂锐钛矿二氧化钛能带结构的从头计算研究

    Institute of Scientific and Technical Information of China (English)

    王丽丽; 李阳; 刘颖; 刘跃

    2012-01-01

    The microstructures of pure and P-doped anatase TiO2 were optimized by ab initio method. Evidences for the possibility of studying band structures and density states using the density functional theory (DFT) with super cell model of P-doped anatase TiO2 were investigated. The results obtained by the calculations on the P-doped anatase TiO2 are significant for analyzing the mechanism of photo-catalysis of TiO2 and for improving catalytic activity of anatase TiO2.%用密度泛函方法优化了锐钛矿二氧化钛及其磷掺杂锐钛矿二氧化钛的晶体结构.研究揭示了用超胞模型研究未掺杂和P掺杂锐钛矿TiO2能带结构和态密度的可行性.计算结果对于提高TiO2光催化活性有意义.

  5. A method for adjusting nitrogen doping amount in anatase TiO2 single crystals with well-faceted shape and micron size

    Science.gov (United States)

    Shen, Shaishai; Niu, Jinan; Shen, Shitai; Zhou, Lu; Chen, Hui; Zhang, Shenghui; Ling, Yihan; Liu, Zhangsheng; Feng, Peizhong; Ou, Xuemei; Qiang, Yinghuai

    2017-08-01

    A new approach was developed to adjust N doping amount in anatase single crystals with well-faceted shape and micron size, using a novel liquid dopant from the chemical recycling of the wasted supernatant solution in our previous experiments. The dependence of microstructure and property evolution on N doping amount was investigated systematically. The results show that all prepared N-doped samples are pure anatase with the morphology of truncated octahedral bipyramid including both {001} and {110} reactive facets. With the increase of N doping, the single crystals become angular and the thickness decreases, the aggregation of crystals increases, the photo-absorption capacity in visible region is enhanced and the absorption band edge is gradually red-shifted. The photocatalytic efficiency of the samples for the degradation of methylene blue (MB) or phenol under visible light irradiation gradually increases, but when the volume of dopant increases to 2 ml, the photoactivity of TiO2 decreases. The optimal volume of N dopant is 1 ml and A(6:1) shows the highest photodegradation rate. The effective N doping of wasted supernatant is mainly due to the previously formation of Ti-N linkage, and hence a N doping mechanism is proposed. This work provides a new opportunity for in-situ modification of anatase single crystals with well-faceted shape and micron size, and hence, a basis for development of some advanced materials, for example porous single crystals.

  6. Release of Phosphorous Impurity from TiO2 Anatase and Rutile Nanoparticles in Aquatic Environments and Its Implications

    Science.gov (United States)

    Phosphorus-bearing materials as an additive have been popularly used in nanomaterial synthesis and the residual phosphorus within the nanoparticles (NPs) can be of an environmental concern. For instance, phosphorus within pristine commercial TiO2 NPs greatly influences the surfac...

  7. Silicon Impurity Release and Surface Transformation of TiO2 Anatase and Rutile Nanoparticles in Water Environments

    Science.gov (United States)

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...

  8. Effects of TiO2 structures in dye-sensitized solar cell.

    Science.gov (United States)

    Kim, Bok-Min; Rho, Seon-Gyun; Kang, Choon-Hyoung

    2011-02-01

    In this work, the effects of crystalline structure of the TiO2, which is incorporated in fabrication of the n-type electrode, on the DSSC performance were investigated in terms of the energy conversion efficiency. In this effort, TiO2 nanoparticle pastes with varying contents of rutile and anatase structures were prepared by using the ethanol mixing method. The most efficient photo-electro-chemical performance was achieved for the DSSC fabricated with the TiO2 paste in which the anatase form of the nanocrystal extends to 90%.

  9. Effect of the specific surface area on thermodynamic and kinetic properties of nanoparticle anatase TiO2 in lithium-ion batteries

    Science.gov (United States)

    Madej, Edyta; Klink, Stefan; Schuhmann, Wolfgang; Ventosa, Edgar; La Mantia, Fabio

    2015-11-01

    Anatase TiO2 nanoparticles with a specific surface area of 100 m2 g-1 and 300 m2 g-1 have been investigated as negative insertion electrode material for lithium-ion batteries. Galvanostatic intermittent titration (GITT) and electrochemical impedance spectroscopy (EIS) were used to investigate the effect of the specific surface area on the performance of the material. GITT was performed at C/10 rate, followed by an EIS measurement after each relaxation step. Separation of kinetic and thermodynamic contributions to the overpotential of the phase transformation on Li+ (de-)insertion allowed revealing a dependency of both terms on the specific surface area. The material with higher surface area undergoes intrinsic transformation during the initial cycles affecting the thermodynamics of (de-)insertion while the sample with lower surface area shows large and asymmetric kinetic hindrances. For the material with 15 nm particles, Li+ de-insertion appears to have a higher resistance than lithium insertion.

  10. Tailoring the electronic structure of anatase TiO2(001) surface through W and N codoping: a DFT calculation

    Science.gov (United States)

    Li, Zongbao; Wang, Xia; Xing, Xiaobo; Wang, Ying

    2017-02-01

    Using density functional theory, we calculated the geometries, band structures and densities of states of W-doped, N-doped, and W/N-codoped anatase TiO4 (001) and (101) surfaces, as well as while the formation energies, based on the overall reaction energy diagram. The calculated results reveal that, on the two surfaces, the absorption of W atoms are more stable than that of N atoms while a larger energy barrier blocks the transfer of W atoms from the surfaces to the body. For TiO2(001), the W-doping and the N/W-codoping lead to a visible lattice distortion while the recombination of photo-generated electron-holes pairs is reduced. A comprehensive analysis of the electronic structures show that the band-gap narrows and a new W-N bond appears, which obviously enhance the photocatalytic activity.

  11. High-Temperature Superconductivity in Single-Unit-Cell FeSe Films on Anatase TiO_{2}(001).

    Science.gov (United States)

    Ding, Hao; Lv, Yan-Feng; Zhao, Kun; Wang, Wen-Lin; Wang, Lili; Song, Can-Li; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2016-08-05

    We report on the observation of high-temperature (T_{c}) superconductivity and magnetic vortices in single-unit-cell FeSe films on anatase TiO_{2}(001) substrate by using scanning tunneling microscopy. A systematic study and engineering of interfacial properties has clarified the essential roles of substrate in realizing the high-T_{c} superconductivity, probably via interface-induced electron-phonon coupling enhancement and charge transfer. By visualizing and tuning the oxygen vacancies at the interface, we find their very limited effect on the superconductivity, which excludes interfacial oxygen vacancies as the primary source for charge transfer between the substrate and FeSe films. Our findings have placed severe constraints on any microscopic model for the high-T_{c} superconductivity in FeSe-related heterostructures.

  12. Central role of TiO2 anatase grain boundaries on resistivity of CaCu3Ti4O12-based materials probed by Raman spectroscopy

    Science.gov (United States)

    De Almeida-Didry, Sonia; Autret, Cécile; Honstettre, Christophe; Lucas, Anthony; Zaghrioui, Mustapha; Pacreau, François; Gervais, François

    2016-11-01

    This study focuses on characterization and control of grain boundaries to enhance the properties of CaCu3Ti4O12 (CCTO) ceramics capacitors for industrial applications. A novel factor deals with TiO2 anatase revealed by Raman scattering in grain boundaries, found as a dominant parameter of largest sample resistivity, consistent with higher grain boundary resistivity and higher breakdown voltage. Four selected samples of CCTO-based compositions showing very different properties in terms of permittivity ranging from 1000 to 684 000 measured at 1 kHz, capacitance of grain boundaries ranging from 8 10-10 to 4.5 10-7 F cm-1, grain boundary resistivity ranging from 193 to 30,000,000 Ω cm and sample resistivity extending from 450 to 1011 Ω cm. The relationship between permittivity weighted by grain size and capacitance of grain boundaries confirms the internal barrier layer capacitance model over 5 orders of magnitude.

  13. A periodic density functional theory investigation of tetrazole derivatives adsorbed on anatase TiO2 surface applied in dye-sensitized solar cell

    Science.gov (United States)

    Karami, Marzieh; Beni, Ali Reza Salimi; Hosseinzadeh, Behzad

    2017-10-01

    In the current investigation, four different additives namely 2H-tetrazole (2HTz), 2H-tetrazole-5-amine (5ATz), 2H-tetrazole-5-thiol (5TTz) and 4-tert-butylpyridine (TBP) are utilized to examine the interaction of these additives with anatase TiO2 (101), (100) and (001) surfaces under vacuum condition. In addition, analyses of adsorption mode and electronic structure using a periodic density functional theory method is performed to find the interaction of acetonitrile solvent. The obtained results revealed that these four additives are adsorbed into the sorbent surface as the following order of (100) open-circuit photovoltage of dye-sensitized solar cells. Besides, the obtained results demonstrated that although addition of the acetonitrile solvent leads to a reduction in adsorption energy, it improves the shift trend of Fermi energy except for 2HTz and 5TTz-TiO2 (001) systems.

  14. The effects of copper doping on photocatalytic activity at (101) planes of anatase TiO2: A theoretical study

    Science.gov (United States)

    Assadi, M. Hussein N.; Hanaor, Dorian A. H.

    2016-11-01

    Copper dopants are varyingly reported to enhance photocatalytic activity at titanium dioxide surfaces through uncertain mechanisms. In order to interpret how copper doping might alter the performance of titanium dioxide photocatalysts in aqueous media we applied density functional theory methods to simulate surface units of doped anatase (101) planes. By including van der Waals interactions, we consider the energetics of adsorbed water at anatase surfaces in pristine and copper doped systems. Simulation results indicate that copper dopant at anatase (101) surfaces is most stable in a 2+ oxidation state and a disperse configuration, suggesting the formation of secondary CuO phases is energetically unfavourable. In agreement with previous reports, water at the studied surface is predicted to exhibit molecular adsorption with this tendency slightly enhanced by copper. Results imply that the enhancement of photoactivity at anatase surfaces through Cu doping is more likely to arise from electronic interactions mediated by charge transfer and inter-bandgap states increasing photoexcitation and extending surface-hole lifetimes rather than through the increased density of adsorbed hydroxyl groups.

  15. Meso-structured coatings of TiO2-anatase obtained by EISA method with photovoltaic activity; Recubrimientos meso-estructurados de TiO2-anatasa obtenido por el metodo EISA con actividad fotovoltaica

    Energy Technology Data Exchange (ETDEWEB)

    Arconada, N.; Castro, Y.; Duran, A.

    2010-07-01

    This paper reports the preparation of mesoporous and meso-structured TiO2-anatase thin films using the sol-gel route combining with the evaporation induced self-assembly method (EISA). Titania sols were prepared from TiCl4 using different no-ionic pore generating agents: Pluronic F127, Brij58 and Triton X100. The films were deposited by dipping and then characterised was performed by Fourier Transform Infrared Spectroscopy, Low angle and Graxing X-Ray Diffraction and Transmission Electronic Microscopy to analyse the crystallization of the inorganic network and the direction order of the meso-structured porosity. Spectral Ellipsometry studies were performed to obtain the absorption-desorption isotherms and to determine pore size distribution, pore volume and specific surface area and exposed surface area of the films. The photocatalytic activity was studied through the degradation of methyl orange in aqueous solution (c= 3mg/L) under ultraviolet-visible light exposure. Thickness, refraction index and contact angles change with the type of substrate used to deposit the films. Higher thickness and low refraction index and contact angle were obtained onto glass-slides substrate. The best photocatalytic activity was obtained for the 0.005 F127 at RH 20-70% and 0.3 Triton at RH 50%, which correspond with lowest pore size and highest Sexp. The TiO2 films obtained with 0.005 F127 at RH 20 and 20-70% and Brij58 at RH 50% show a perfect meso-structured order. (Author).

  16. Morphology-controlled cactus-like branched anatase TiO2 arrays with high light-harvesting efficiency for dye-sensitized solar cells

    Science.gov (United States)

    Wu, Wu-Qiang; Rao, Hua-Shang; Feng, Hao-Lin; Guo, Xin-Dong; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-08-01

    The present work establishes a facile process for one-step hydrothermal growth of vertically aligned anatase cactus-like branched TiO2 (CBT) arrays on a transparent conducting oxide (TCO) substrate. Various CBT morphologies are obtained by adjusting the potassium titanium oxide oxalate (PTO) reactant concentration (from 0.05 M to 0.15 M) and this yields a morphologically-controllable branched TiO2 arrays geometry. The CBT arrays consist of a vertically oriented nanowire (NW) or nanosheet (NS) stem and a host of short nanorod (NR) branches. The hierarchical CBT arrays demonstrate their excellent candidatures as photoanodes, which are capable of exhibiting high light-harvesting efficiency in dye-sensitized solar cells (DSSCs). Consequently, DSSCs based on 7 μm long optimized CBT arrays (0.05 M PTO), which are assembled with high density and high aspect-ratio NR branches, exhibit an impressive power conversion efficiency of 6.43% under AM 1.5G one sun illumination. The high performance can be attributed to the prominent light-harvesting efficiency, resulting from larger surface area and superior light-scattering capability.

  17. Anionic or Cationic S-Doping in Bulk Anatase TiO 2 : Insights on Optical Absorption from First Principles Calculations

    KAUST Repository

    Harb, Moussab

    2013-05-02

    Using first principles calculations, we investigate the structural, electronic, optical, and energetic properties of S-doped anatase TiO2 bulk systems. To ensure accurate band gap predictions, we use the HSE06 exchange correlation functional, and the absorption spectra are obtained with density functional perturbation (DFPT) theory by employing HSE06. Various oxidation states (anionic and cationic) of sulfur are considered depending on the location in bulk TiO2: in interstitial position or in substitution for either oxygen or titanium atoms. Among the explored structures, two anionic and one cationic configurations induce an improved optical absorption response in the visible region as observed experimentally. Moreover, we undertake a thermodynamic analysis as a function of the chemical potential of oxygen and considering three relevant sulfur chemical doping agents (S 2, H2S, and thiourea). It highlights that cationic configurations (S4+ and S6+) are strongly stabilized in a wide range of oxygen chemical potential (including standard conditions), whereas anionic species are stabilized only at very low chemical potential of oxygen. The metastable cationic Ti(1-2x)O2S2x system involving the presence of S4+ species in substitution for Ti 4+, with the formation of SO2 units, should offer the best compromise between the thermodynamic conditions and the expected optical properties. © 2013 American Chemical Society.

  18. Comparative density functional theory and density functional tight binding study of arginine and arginine-rich cell penetrating peptide TAT adsorption on anatase TiO2.

    Science.gov (United States)

    Li, Wenxuan; Kotsis, Konstantinos; Manzhos, Sergei

    2016-07-20

    We present a comparative density functional theory (DFT) and density functional tight binding (DFTB) study of geometries and electronic structures of arginine (Arg), arginine adsorbed on the anatase (101) surface of titania in several adsorption configurations, and of an arginine-rich cell penetrating peptide TAT and its adsorption on the surface of TiO2. Two DFTB parameterizations are considered, tiorg-0-1/mio-1-1 and matsci-0-3. While there is good agreement in the structures and relative energies of Arg and peptide conformers between DFT and DFTB, both adsorption geometries and energies are noticeably different for Arg adsorbed on TiO2. The tiorg-0-1/mio-1-1 parameterization performs better than matsci-0-3. We relate this difference to the difference in electronic structures resulting from the two methods (DFT and DFTB) and specifically to the band alignment between the molecule and the oxide. We show that the band alignment of TAT and TiO2 modeled with DFTB is qualitatively correct but that with DFT using the PBE functional is not. This is specific to the modeling of large molecules where the HOMO is close to the conduction band of the oxide. We therefore report a case where the approximate DFT-based method - DFTB (with which the correct band structure can be effectively obtained) - performs better than the DFT itself with a functional approximation feasible for the modeling of large bio-inorganic interfaces, i.e. GGA (as opposed to hybrid functionals which are impractical at such a scale). Our results highlight the utility of the DFTB method for the modeling of bioinorganic interfaces not only from the CPU cost perspective but also from the accuracy point of view.

  19. Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals.

    Science.gov (United States)

    Labat, Frédéric; Baranek, Philippe; Domain, Christophe; Minot, Christian; Adamo, Carlo

    2007-04-21

    The two polymorphs of TiO2, rutile and anatase, have been investigated at the ab initio level using different Hamiltonians with all-electron Gaussian and projector augmented plane wave basis sets. Their equilibrium lattice parameters, relative stabilities, binding energies, and band structures have been evaluated. The calculations have been performed at the Hartree-Fock, density functional theory (DFT), and hybrid (B3LYP and PBE0) levels. As regards DFT, the local density and generalized gradient (PBE) approximations have been used. Our results show an excellent agreement with the experimental band structures and binding energies for the B3LYP and PBE0 functionals, while the best structural descriptions are obtained at the PBE0 level. However, no matter which Hamiltonian and method are used, anatase is found more stable than rutile, in contrast with recent experimental reports, although the relative stabilities of the two phases are very close to each other. Nevertheless, based on the overall results, the hybrid PBE0 functional appears as a good compromise to obtain an accurate description of both structural and electronic properties of solids.

  20. Interaction between Human Serum Albumin and Different Anatase TiO2 Nanoparticles: A Nano-bio Interface Study

    Directory of Open Access Journals (Sweden)

    Viviana Vergaro

    2015-10-01

    was different for the diverse range of nanocrystals tested. Surface roughness measurements showed that on some of the nanocrystals, HSA were arranged in a more globular manner. A lower protein affinity was found for nanocrys‐ tals that had a smaller primary particle size, which may correspond to their higher biocompatibility. This nano-bio interface research aimed to study the HSA protein-TiO2 anatase nanocrystals under conditions similar to those for in vitro and in vivo toxicity analyses.

  1. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Energy Technology Data Exchange (ETDEWEB)

    Sasani, Alireza [Department of Science, Karaj Islamic Azad University, Karaj, Alborz, P.O. Box 31485-313 (Iran, Islamic Republic of); Baktash, Ardeshir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Mirabbaszadeh, Kavoos, E-mail: mirabbas@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, P. O. Box 15875-4413 (Iran, Islamic Republic of); Khoshnevisan, Bahram [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO{sub 2} anatase surface (101) is studied. • Effect of Mg defect to the TiO{sub 2} anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO{sub 2} anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO{sub 2} anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO{sub 2} surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J{sub SC} of the surface while slightly decreasing V{sub OC} compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  2. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

    Science.gov (United States)

    Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho

    2016-06-28

    An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.

  3. Electronic and optical properties of anatase and rutile TiO_2:Nb%锐钛矿相和金红石相TiO_2:Nb的光电性能研究

    Institute of Scientific and Technical Information of China (English)

    章瑞铄; 刘涌; 滕繁; 宋晨路; 韩高荣

    2012-01-01

    采用基于密度泛函理论的第一性原理计算了锐钛矿相和金红石相TiO_2:Nb的晶体结构、电子结构和光学性质.结果表明,在相等的摩尔掺杂浓度下(6.25%),锐钛矿相TiO_2:Nb的导带底电子有效质量小于金红石相TiO_2:Nb,且前者室温载流子浓度是后者的两倍左右,即具有更大的施主杂质电离率,从而解释了锐钛矿相TiO_2:Nb比金红石相TiO_2:Nb具有更优异电学性能的实验现象.光学计算也表明锐钛矿相在可见光区有更大的透过率,从而在理论上解释了锐铁矿相TiO_2:Nb比金红石相'riO_2:Nb更适于做透明导电材料的原因.计算结果与实验数据能较好符合.%First-principles calculations based on the density functional theory are used to study the crystal structure,electronic and optical properties of Nb doped anatase and rutile TiO_2.The calculated results reveal that anatase TiO_2:Nb has a smaller effective mass and carriers nearly twice lager than those of rutile TiO_2:Nb under the same doping concentration.And anatase TiO_2:Nb also exhibits a greater room-temperature ionization of donors.Besides,the calculated optical properties indicate that anatase TiO_2:Nb has a more excellent transparency than rutile TiO_2:Nb.All the results suggest that anatase TiO_2:Nb is more applicable to transparent conductive oxides.The calculated results consist well with the available experimental results.

  4. Tuning the Photocatalytic Activity of Anatase TiO2 Thin Films by Modifying the Preferred <001> Grain Orientation with Reactive DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    B. Stefanov

    2014-08-01

    Full Text Available Anatase TiO2 thin films were deposited by DC reactive magnetron sputtering on glass substrates at 20 mTorr pressure in a flow of an Ar and O2 gas mixture. The O2 partial pressure (PO2 was varied from 0.65 mTorr to 1.3 mTorr to obtain two sets of films with different stoichiometry. The structure and morphology of the films were characterized by secondary electron microscopy, atomic force microscopy, and grazing-angle X-ray diffraction complemented by Rietveld refinement. The as-deposited films were amorphous. Post-annealing in air for 1 h at 500 °C resulted in polycrystalline anatase film structures with mean grain size of 24.2 nm (PO2 = 0.65 mTorr and 22.1 nm (PO2 = 1.3 mTorr, respectively. The films sputtered at higher O2 pressure showed a preferential orientation in the <001> direction, which was associated with particle surfaces exposing highly reactive {001} facets. Films sputtered at lower O2 pressure exhibited no, or very little, preferential grain orientation, and were associated with random distribution of particles exposing mainly the thermodynamically favorable {101} surfaces. Photocatalytic degradation measurements using methylene blue dye showed that <001> oriented films exhibited approximately 30% higher reactivity. The measured intensity dependence of the degradation rate revealed that the UV-independent rate constant was 64% higher for the <001> oriented film compared to randomly oriented films. The reaction order was also found to be higher for <001> films compared to randomly oriented films, suggesting that the <001> oriented film exposes more reactive surface sites.

  5. Atomic Layer Deposition TiO2 Films and TiO2/SiNx Stacks Applied for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Zu-Po Yang

    2016-08-01

    Full Text Available Titanium oxide (TiO2 films and TiO2/SiNx stacks have potential in surface passivation, anti-reflection coatings and carrier-selective contact layers for crystalline Si solar cells. A Si wafer, deposited with 8-nm-thick TiO2 film by atomic layer deposition, has a surface recombination velocity as low as 14.93 cm/s at the injection level of 1.0 × 1015 cm−3. However, the performance of silicon surface passivation of the deposited TiO2 film declines as its thickness increases, probably because of the stress effects, phase transformation, atomic hydrogen and thermal stability of amorphous TiO2 films. For the characterization of 66-nm-thick TiO2 film, the results of transmission electron microscopy show that the anatase TiO2 crystallinity forms close to the surface of the Si. Secondary ion mass spectrometry shows the atomic hydrogen at the interface of TiO2 and Si which serves for chemical passivation. The crystal size of anatase TiO2 and the homogeneity of TiO2 film can be deduced by the measurements of Raman spectroscopy and spectroscopic ellipsometry, respectively. For the passivating contacts of solar cells, in addition, a stack composed of 8-nm-thick TiO2 film and a plasma-enhanced chemical-vapor-deposited 72-nm-thick SiNx layer has been investigated. From the results of the measurement of the reflectivity and effective carrier lifetime, TiO2/SiNx stacks on Si wafers perform with low reflectivity and some degree of surface passivation for the Si wafer.

  6. Unexpected observation of spatially separated Kondo scattering and ferromagnetism in Ta alloyed anatase TiO2 thin films.

    Science.gov (United States)

    Sarkar, T P; Gopinadhan, K; Motapothula, M; Saha, S; Huang, Z; Dhar, S; Patra, A; Lu, W M; Telesio, F; Pallecchi, I; Ariando; Marré, D; Venkatesan, T

    2015-08-12

    We report the observation of spatially separated Kondo scattering and ferromagnetism in anatase Ta0.06Ti0.94O2 thin films as a function of thickness (10-200 nm). The Kondo behavior observed in thicker films is suppressed on decreasing thickness and vanishes below ~25 nm. In 200 nm film, transport data could be fitted to a renormalization group theory for Kondo scattering though the carrier density in this system is lower by two orders of magnitude, the magnetic entity concentration is larger by a similar magnitude and there is strong electronic correlation compared to a conventional system such as Cu with magnetic impurities. However, ferromagnetism is observed at all thicknesses with magnetic moment per unit thickness decreasing beyond 10 nm film thickness. The simultaneous presence of Kondo and ferromagnetism is explained by the spatial variation of defects from the interface to surface which results in a dominantly ferromagnetic region closer to substrate-film interface while the Kondo scattering is dominant near the surface and decreasing towards the interface. This material system enables us to study the effect of neighboring presence of two competing magnetic phenomena and the possibility for tuning them.

  7. Effects of adsorbed F, OH, and Cl ions on formaldehyde adsorption performance and mechanism of anatase TiO2 nanosheets with exposed {001} facets.

    Science.gov (United States)

    Zhou, Peng; Zhu, Xiaofeng; Yu, Jiaguo; Xiao, Wei

    2013-08-28

    Formaldehyde (HCHO), as the main indoor air pollutant, is highly needed to be removed by adsorption or catalytic oxidation from the indoor air. Herein, the F(-), OH(-), and Cl(-)-modified anatase TiO2 nanosheets (TNS) with exposed {001} facets were prepared by a simple hydrothermal and post-treatment method, and their HCHO adsorption performance and mechanism were investigated by the experimental analysis and theoretical simulations. Our results indicated that the adsorbed F(-), OH(-), and Cl(-) ions all could weaken the interaction between the HCHO and TNS surface, leading to the serious reduction of HCHO adsorption performance of TNS. However, different from F(-) and Cl(-) ions, OH(-) ion could induce the dissociative adsorption of HCHO by capturing one H atom from HCHO, resulting in the formation of one formyl group and one H2O-like group. This greatly reduced the total energy of the HCHO adsorption system. Thus, the adsorbed OH(-) ions could provide the additional active centers for HCHO adsorption. As a result, the NaOH-treated TNS showed the best HCHO adsorption performance mainly because its surface F(-) was replaced by OH(-). This study will provide new insight into the design and fabrication of high performance adsorbents for removing indoor HCHO and, also, will enhance the understanding of the HCHO adsorption mechanism.

  8. Role of molar concentration in structural, optical and gas sensing performance of anatase phase TiO2 nanofilms: automated nebulizer spray pyrolysis (ANSP) technique

    Science.gov (United States)

    Gopala Krishnan, V.; Elango, P.; Ganesan, V.

    2017-07-01

    TiO2 nanofilms were deposited on a glass substrate at 500 °C using automated nebulizer spray pyrolysis. The anatase polycrystalline structure with increased grain size and variations of surfactant planes ( T c) were influenced by molar concentration on XRD study. AFM study shows the average roughness values were increased with increase in molar concentration. A granular domain like microstructure with crack and void-free particle was examined by FESEM. The maximum transmittance 95.5% (529.6 nm) for x = 0.05 M/L, further increment of molar concentration showed the decremented transmittance with red shift absorption edge and the calculated band gap values ( E g = 3.53-3.20 eV) also noted. The gas sensing performances of films were studied with respect to various gas sensing parameters and the ammonia (NH3) gas showed better sensing response ( S max = 89%) at 150 °C for 300 ppm gas concentration against other gases (C2H6O, CH4O, C3H8O and C3H6O).

  9. Anatase TiO2 pillar-nanoparticle composite fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Guoliang; Pan, Kai; Zhou, Wei; Qu, Yang; Pan, Qingjing; Jiang, Baojiang; Tian, Guohui; Wang, Guofeng; Xie, Ying; Dong, Youzhen; Miao, Xiaohuan; Tian, Chungui

    2012-11-07

    The anatase TiO(2) pillar (PL)-TiO(2) nanoparticle (NP) composite is fabricated via layer-by-layer assembly. The composition of the nanostructures (i.e. the pillar-to-nanoparticle ratio) can be conveniently tuned by controlling the experimental conditions of the layer-by-layer assembly. It has been used to fabricate photoelectrodes for high-efficiency dye-sensitized solar cells (DSSCs), which combine the advantages of the rapid electron transport in PLs with the high surface area of NPs. It was found that, with optimum preparation conditions, DSSCs with the composite photoelectrode show a better photoelectrical conversion efficiency (8.06%) than those with either the naked PL photoelectrode or the mechanically mixed PL-NP photoelectrode. This is explained by the photoelectron injection drive force and the interfacial electron transport of the DSSCs, which are quantitatively characterized using the surface photovoltage spectra and electrochemical impedance spectroscopy measurements. It is evident that the DSSC with the optimal PL/NP ratio displays the largest photoelectron injection drive force and the fastest interfacial electron transfer.

  10. Photocatalytic Degradation of Dicofol and Pyrethrum with Boric and Cerous Co-doped TiO2 under Light Irradiation

    Institute of Scientific and Technical Information of China (English)

    GONG Lifen; ZOU Jing; ZENG Jinbin; CHEN Wenfeng; CHEN Xi; WANG Xiaoru

    2009-01-01

    Boric and cerous co-doped nano titanium dioxide (B/Ce co-doped TiO2) was synthesized using a sol-gel tech-nique, which involved the hydrolyzation of tetrabutyl titanate with the addition of boric acid and cerous nitrate. The B/Ce co-doped TiO2 was employed for the photocatalytic degradation of dicofol, cyfluthrin and fenvalerate under light irradiation. XRD, TEM, Fr-IR and UV-Vis DRS methods were used to characterize the crystalline structure. Experimental results showed that only the anatase signal phase was found for B/Ce co-doped TiO2, but multiplicate phases, including anatase, rutile and less brookite phases, were identified both in the pure TiO2 nanoparticles and Ce-doped TiO2 nanoparticles. The band gap value of B/Ce co-doped nano TiO2 was narrower than that of undoped nano TiO2. Compared to undoped TiO2, a stronger absorption in the range of 420 to 850 nm was found for B/Ce co-doped nano TiO2, which presented a higher photocatalytic activity in the degradation of dicofol, cyfluthrin and fenvalerate than both Ce doped nano TiO2 and pure nano TiO2 under the same light irradiation.

  11. Properties of TiO2 Thin Films Prepared by Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With rapid progressive application of TiO2 thin films, magnetron sputtering becomes a very interesting method to prepare such multi-functional thin films. This paper focuses on influences of various deposition processes and deposition rate on the structures and properties of TiO2 thin films. Anatase, rutile or amorphous TiO2 films with various crystalline structures and different photocatalytic, optical and electrical properties can be produced by varying sputtering gases, substrate temperature, annealing process, deposition rate and the characteristics of magnetron sputtering. This may in turn affect the functions of TiO2 films in many applications. Furthermore, TiO2-based composites films can overcome many limitations and improve the properties of TiO2 films.

  12. Optical Properties of Spin-Coated TiO2 Antireflection Films on Textured Single-Crystalline Silicon Substrates

    Directory of Open Access Journals (Sweden)

    Ryosuke Watanabe

    2015-01-01

    Full Text Available Antireflection coating (ARC prepared by a wet process is beneficial for low cost fabrication of photovoltaic cells. In this study, we investigated optical properties and morphologies of spin-coated TiO2 ARCs on alkaline textured single-crystalline silicon wafers. Reflectance spectra of the spin-coated ARCs on alkaline textured silicon wafers exhibit no interferences and low reflectance values in the entire visible range. We modeled the structures of the spin-coated films for ray tracing numerical calculation and compared numerically calculated reflectance spectra with the experimental results. This is the first report to clarify the novel optical properties experimentally and theoretically. Optical properties of the spin-coated ARCs without interference are due to the fractional nonuniformity of the thickness of the spin-coated ARCs that cancels out the interference of the incident light.

  13. Low Temperature Coating of Anatase Thin Films on Silica Glass Fibers by Liquid Phase Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Shun; LIU Jiachen; FENG Tiecheng

    2007-01-01

    Uniform crystalline TiO2 thin films were coated on silica glass fibers by liquid phase deposition from aqueous solution of ammonium hexafluorotitanate at low temperature. TiO2 thin films and nanopowders were prepared by adding H3BO3 into (NH4)2TiF6 solution supersaturated with anatase nano-crystalline TiO2 at 40 ℃. The effects of the deposition conditions on the surface morphology, section morphology, thickness of the deposited TiO2 thin films were investigated. The results indicate that the growth rate and particle size of the thin films were controlled by both the deposition conditions and the amount of anatase nano-crystalline TiO2.

  14. Extruded expanded polystyrene sheets coated by TiO2 as new photocatalytic materials for foodstuffs packaging

    Science.gov (United States)

    Loddo, V.; Marcì, G.; Palmisano, G.; Yurdakal, S.; Brazzoli, M.; Garavaglia, L.; Palmisano, L.

    2012-11-01

    Nanostructured, photoactive anatase TiO2 sol prepared under very mild conditions using titanium tetraisopropoxide as the precursor is used to functionalise extruded expanded polystyrene (XPS) sheets by spray-coating resulting in stable and active materials functionalised by TiO2 nanoparticles. Photocatalytic tests of these sheets performed in a batch reactor in gas-solid system under UV irradiation show their successful activity in degrading probe molecules (2-propanol, trimethylamine and ethene). Raman spectra ensure the deposition of TiO2 as crystalline anatase phase on the polymer surface. The presence of TiO2 with respect to polymer surface can be observed in SEM images coupled to EDAX mapping allowing to monitor the surface morphology and the distribution of TiO2 particles. Finally thermoforming of these sheets in industrial standard equipment leads to useful containers for foodstuffs.

  15. Photocatalytic activity enhancing for TiO2 photocatalyst by doping with La

    Institute of Scientific and Technical Information of China (English)

    WEN Chen; DENG Hua; TIAN Jun-ying; ZHANG Ji-mei

    2006-01-01

    La doped nanocrystalline TiO2 photocatalyst was developed by sol-gel method. The prepared La-TiO2 photocatalysts with anatase phases were characterized by X-ray diffractometry (XRD),UV-Vis absorption spectroscopy,and photoluminescence spectra (PL). The photocatalytic activity was evaluated by the photocatalytic degradation of phenol in solution under sunlight irradiation. The results show that the crystallinity of anatase is improved by La doping. Moreover,La not only suppresses phase transition from anatase to rutile but also exhibits an absorption in the λ≥ 400 nm range. The photocatalytic activity of La-doped TiO2 photocatalysts exceeds that of pure TiO2 photocatalyst prepared by the same method when the molar ratio of La to Ti is kept at 0.3%.

  16. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Fuchang Peng

    2017-02-01

    Full Text Available Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB. The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure.

  17. Photocatalytic activity of porous TiO2 films prepared by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; WANG Tao; WANG Ling

    2007-01-01

    Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate.The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.

  18. Grain Size and Photocatalytic Activity of Nanometer TiO2 Thin Films Prepared by the Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness, crystalline phase, grain size, surface hydroxyl amount and so on were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer (UV-VIS). The photocatalytic activity of TiO2 thin films was evaluated for the photocatalytic decolorization of aqueous methyl orange. The effects of film thickness on the crystalline phase, grain size, transmittance and photocatalytic activity of nanometer TiO2 thin films were discussed.

  19. Characterization and photocatalytic activity for methylene blue degradation of iron-deposited TiO2 photocatalyst

    Institute of Scientific and Technical Information of China (English)

    徐悦华; 王良焱; 黄琮; 李新军; 李芳柏; 郑少健; 张琦

    2003-01-01

    Iron-deposited TiO2 was prepared by photo-reducing ferric ions. The photocatalytic activity of methylene blue degradation was enhanced after TiO2 was deposited with iron, and the optimum n(Fe)/n(Ti) is 0.25%. TiO2 and iron-deposited TiO2 are anatase and rutile, and anatase is the dominant crystalline phase. In all samples, the XRD patterns indicate that there are no characteristic peaks of iron to be detected. XPS confirms that Fe3+and Fe2+ are present on the surface of 0.5% iron-deposited TiO2, however they are not susceptible to XRD detection. The thermodynamics analysis shows that the alternative possibility of reduction from the Fe3+/Fe2+ couple seems plausible, but Fe2+ can not be reduced to Fe. The fluorescence intensity weakens after iron is deposited on TiO2, because iron deposited traps photo-generated electrons and holes. The fluorescence intensity order of TiO2 and iron-deposited TiO2, from strong to weak, is in good agreement with that of photocatalytic reactiveness TiO2 and iron-deposited TiO2, from low to high.

  20. Fe­S共掺杂锐钛矿相TiO2的第一性原理研究%First­principles study on Fe­S co­doped anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    吴国浩; 郑树凯; 刘磊

    2013-01-01

      利用基于密度泛函理论的第一性原理平面波超软赝势方法对未掺杂、Fe和S单掺杂及Fe­S共掺杂锐钛矿相TiO2的电子结构进行计算,分析Fe、S单掺杂及Fe­S共掺杂对锐钛矿相TiO2的晶体结构、能带、态密度和光吸收性质的影响。结果表明,掺杂后 TiO2的晶格发生畸变,原子间键长的变化使晶格发生膨胀;掺杂后 TiO2的禁带宽度减小,并在禁带中引入杂质能级,导致TiO2的吸收带边红移;与Fe和S单掺杂相比,Fe­S共掺杂锐钛矿相TiO2的吸收带边红移程度更大。%The electronic structures of Fe­doped, S­doped and Fe­S co­doped anatase TiO2 were calculated by the first­principles plane wave ultra­soft pseudo­potential method based on the density functional theory (DFT). The effects of doping on crystal structures, energy bands, density of states (DOS) and optical properties were analyzed. The results show that, after doping the lattices of TiO2 are distorted by the doping and the bond length change of atoms leads to the lattice expansion. The impurity levels in the band gap and the decrease of the forbidden band width lead to the red­shift of absorption band edge in anatase TiO2. Fe­S co­doped anatase TiO2 shows a stronger red­shift in the absorption band edge than the single Fe­doped and single S doped samples in the optical spectra.

  1. The Photocatalytic Activity and Compact Layer Characteristics of TiO2 Films Prepared Using Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    H. C. Chang

    2014-01-01

    Full Text Available TiO2 compact layers are used in dye-sensitized solar cells (DSSCs to prevent charge recombination between the electrolyte and the transparent conductive substrate (indium tin oxide, ITO; fluorine-doped tin oxide, FTO. Thin TiO2 compact layers are deposited onto ITO/glass by means of radio frequency (rf magnetron sputtering, using deposition parameters that ensure greater photocatalytic activity and increased DSSC conversion efficiency. The photoinduced decomposition of methylene blue (MB and the photoinduced hydrophilicity of the TiO2 thin films are also investigated. The photocatalytic performance characteristics for the deposition of TiO2 films are improved by using the Grey-Taguchi method. The average transmittance in the visible region exceeds 85% for all samples. The XRD patterns of the TiO2 films, for sol-gel with spin coating of porous TiO2/TiO2 compact/ITO/glass, show a good crystalline structure. In contrast, without the TiO2 compact layer (only porous TiO2, the peak intensity of the anatase (101 plane in the XRD patterns for the TiO2 film has a lower value, which demonstrates inferior crystalline quality. With a TiO2 compact layer to prevent charge recombination, a higher short-circuit current density is obtained. The DSSC with the FTO/glass and Pt counter electrode demonstrates the energy conversion efficiency increased.

  2. Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying

    Directory of Open Access Journals (Sweden)

    Rebah Moussaoui

    2017-09-01

    Full Text Available Nanocrystalline powders of TiO2 xerogel and aerogel were prepared by using acid-modified sol–gel approach. For TiO2 aerogel material (TA, the solvent was high temperature supercritically extracted at 300 °C and 100 bars. However, the TiO2 xerogel material (TX was dried at 200 °C and ambient pressure. The effects of the drying processes on the crystalline structure, phase transformation and grain growth were determined by Raman spectroscopy, SAED and X-ray diffraction (XRD analyses using Rietveld refinement method. The TiO2 aerogel was composed of anatase crystalline structure. The TiO2 xerogel material was composed of anatase, brookite and small amount of amorphous phase with anatase as dominant phase. The TX sample still contains a relatively high concentration of carbon than that of TA, indicating the amorphous character of TiO2 xerogel. These materials were applied as catalyst for the degradation of indigo carmine in aqueous medium. Photo-degradation ability of TA and TX was compared to the TiO2 commercial Degussa P25. The photo-catalytic results showed that the degradation efficiency was in the order TA > P25 > TX. The photo-degradation of indigo carmine followed pseudo first order reaction kinetics.

  3. Ti(3+) Self-Doped Blue TiO2(B) Single-Crystalline Nanorods for Efficient Solar-Driven Photocatalytic Performance.

    Science.gov (United States)

    Zhang, Yan; Xing, Zipeng; Liu, Xuefeng; Li, Zhenzi; Wu, Xiaoyan; Jiang, Jiaojiao; Li, Meng; Zhu, Qi; Zhou, Wei

    2016-10-12

    Ti(3+) self-doped blue TiO2(B) single-crystalline nanorods (b-TR) are fabricated via a simple sol-gelation method, cooperated with hydro-thermal treatment and subsequent in situ treatment method, and afterward annealed at 350 °C in Ar. The structures are characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (UV-vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The prepared b-TR with narrow band gap possesses single-crystalline TiO2(B) phase, Ti(3+) self-doping, and one-dimensional (1D) rodlike nanostructure. In addition, the improved photocatalytic performance is studied by decomposition of Rhodamine B (RhB) and hydrogen evolution. The degradation rate of RhB by Ti(3+) self-doped blue TiO2(B) single-crystalline nanorods is ∼6.9- and 2.1-times higher compared with the rates of titanium dioxide nanoparticles and pristine TiO2(B) nanorods under visible light illumination, respectively. The hydrogen evolution rate of b-TR is 26.6 times higher compared with that of titanium dioxide nanoparticles under AM 1.5 irradiation. The enhanced photocatalytic performances arise from the synergetic action of the special TiO2(B) phase, Ti(3+) self-doping, and the 1D rod-shaped single-crystalline nanostructure, favoring the visible light utilization and the separation and transportation of photogenerated charge carriers.

  4. Double-Shelled TiO2 Hollow Spheres Assembled with TiO2 Nanosheets.

    Science.gov (United States)

    Zhang, Chao; Zhou, Yuming; Zhang, Yiwei; Zhao, Shuo; Fang, Jiasheng; Sheng, Xiaoli; Zhang, Tao; Zhang, Hongxing

    2017-02-08

    High-quality double-shelled TiO2 hollow spheres (DHS-Ti) assembled with TiO2 nanosheets have been synthesized for the first time through a simple hydrothermal treatment of sSiO2 @TiO2 (TiO2 -coated solid SiO2 spheres). The double-shelled structure shows a high BET surface area up to 417.6 m(2)  g(-1) . Anatase DHS-Ti of high crystallinity can be obtained without structural collapse by calcination treatment. The effects of cetyl trimethylammonium bromide (CTAB) concentration, pH, and hydrothermal reaction temperature have also been investigated with a series of contrast experiments. A formation mechanism involving the in situ growth of amorphous TiO2 nanosheets followed by the redeposition of dissolved silica species is proposed. Lastly, the DHS-Ti forming strategy can be extended as a general strategy to fabricate various morphological hollow nanostructures and double-shelled Pt nanocatalysts by rationally selecting functional sSiO2 nanoparticles as core materials. This work could open up a new strategy for controllable synthesis of complex hollow structures and other functional materials.

  5. Crystalline anatase-rich titanium can reduce adherence of oral streptococci.

    Science.gov (United States)

    Dorkhan, Marjan; Hall, Jan; Uvdal, Per; Sandell, Anders; Svensäter, Gunnel; Davies, Julia R

    2014-01-01

    Dental implant abutments that emerge through the mucosa are rapidly covered with a salivary protein pellicle to which bacteria bind, initiating biofilm formation. In this study, adherence of early colonizing streptococci, Streptococcus gordonii, Streptococcus oralis, Streptococcus mitis and Streptococcus sanguinis to two saliva-coated anodically oxidized surfaces was compared with that on commercially pure titanium (CpTi). Near edge X-ray absorption (NEXAFS) showed crystalline anatase was more pronounced on the anodically oxidized surfaces than on the CpTi. As revealed by fluorescence microscopy, a four-species mixture, as well as individual bacterial species, exhibited lower adherence after 2 h to the saliva-coated, anatase-rich surfaces than to CpTi. Since wettability did not differ between the saliva-coated surfaces, differences in the concentration and/or configuration of salivary proteins on the anatase-rich surfaces may explain the reduced bacterial binding effect. Anatase-rich surfaces could thus contribute to reduced overall biofilm formation on dental implant abutments through diminished adherence of early colonizers.

  6. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment.

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-27

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  7. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable ‘brick-and-mortar’ nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  8. Photocatalytic Activity of Toluene under UV-LED Light with TiO2 Thin Films

    OpenAIRE

    Thammasak Rojviroon; Apirat Laobuthee; Sanya Sirivithayapakorn

    2012-01-01

    Titanium dioxide (TiO2) and ferric-doped TiO2 (Fe-TiO2) thin films were synthesized on the surface of 304 stainless steel sheets using a simplified sol-gel preparation method. The Fe-TiO2 thin films were prepared with weight-to-volume ratios of /TiO2 of 0.3%, 0.5%, and 0.7%, respectively. The crystalline phase structures of the prepared TiO2 and Fe-TiO2 thin films were entirely anatase. The measured optical band gaps of the TiO2, 0.3% Fe-TiO2, 0.5% Fe-TiO2, and 0.7% Fe-TiO2 thin films were 3....

  9. Fabrication and characterization of uniform TiO2 nanotube arrays by sol–gel template method

    Indian Academy of Sciences (India)

    T Maiyalagan; B Viswanathan; U V Varadaraju

    2006-12-01

    TiO2 nanotubes have been synthesized by sol–gel template method using alumina membrane. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, UV absorption spectrum and X-ray diffraction techniques have been used to investigate the structure, morphology and optical properties of TiO2 nanotubes. SEM image showed that TiO2 nanotubes obtained were ordered and uniform. The diameter and length of the nanotubes were decided by the pore size and thickness of alumina template. Raman and XRD measurements confirmed the crystallinity and anatase phase of the TiO2 nanotubes. The optical absorption measurement of TiO2 nanotubes exhibits a blue shift with respect to that of the bulk TiO2 owing to the quantum size effect.

  10. Extremely enhanced photovoltaic properties of dye-sensitized solar cells by sintering mesoporous TiO2 photoanodes with crystalline titania chelated by acetic acid

    Science.gov (United States)

    Liu, Bo-Tau; Chou, Ya-Hui; Liu, Jin-Yan

    2016-04-01

    The study presents a significant improvement on the performance of dye-sensitized solar cells (DSSCs) through incorporating the crystalline titania chelated by acetic acid (TAc) into the mesoporous TiO2 photoanodes. The effects of TAc on the blocking layer, mesoporous TiO2 layer, and post-treatment have been investigated. The TAc blocking layer displays compact construction, revealing superior response time and resistance to suppress dark current compared to the blocking layer made from titanium(IV) isopropoxide (TTIP). The power conversion efficiency of DSSCs with the TAc treatment can reach as high as 10.49%, which is much higher than that of pristine DSSCs (5.67%) and that of DSSCs treated by TTIP (7.86%). We find that the TAc incorporation can lead to the decrease of charge transfer resistance and the increase of dye adsorption. The result may be attributed to the fact that the TAc possesses high crystallinity, exposed (101) planes, and acid groups chelated on surface, which are favorable for dye attachment and strong bonding at the FTO/TiO2 and the TiO2/TiO2 interfaces, These improvements result in the remarkable increase of photocurrent and thereby that of power conversion efficiency.

  11. Energy Storage: Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries (Small 26/2016).

    Science.gov (United States)

    Wu, Ying; Liu, Xiaowu; Yang, Zhenzhong; Gu, Lin; Yu, Yan

    2016-07-01

    On page 3522, Y. Yu and co-workers fabricate nitrogen-doped ordered mesoporous TiO2 nanofibers (denoted as N-MTO) by electrospinning and subsequent nitridation treatment. Nitrogen atoms are successfully doped into the TiO2 lattice, accompanied by the formation of Ti(3+) and oxygen vacancies, contributing to the improvement of electronic conductivity of TiO2 . When used as an anode for a sodium-ion battery, the N-MTO demonstrates excellent rate capability and superior long cycling performance.

  12. Foam-structured Activated Carbon-ceramic as TiO2 Supports for Photocatalytic Degradation of Phenol

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-min

    2013-01-01

    An activated foam-structured carbon-ceramic(AFCC) was prepared and investigated as TiO2 support for the photocatalytic degradation of phenol.AFCC and TiO2/AFCC catalysts were characterized by N2 adsorptiondesorption and X-ray diffraction(XRD).The effects of AFCC on the photocatalytic activity and the crystallinity of TiO2 were studied.The results show that the crystallinity and anatase/rutile ratio of TiO2 loaded on AFCC could be significantly influenced by the calcination temperature.The degradation rate of phenol benefited from the synergistic effects of the adsorption of activated carbon(AC) and the photocatalysis of TiO2,which suggests that a high surface area of AC is essential to achieve high degradation rates and efficiencies.It was found that the larger mean cell size of AFCC increased the light transmission within the foam.

  13. Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films.

    Science.gov (United States)

    Zhang, Jinzhong; Chen, Xiangui; Shen, Yude; Li, Yawei; Hu, Zhigao; Chu, Junhao

    2011-07-28

    Iron (Fe)-doped (0 to 4%) TiO(2) nano-crystalline (nc) films with the grain size of about 25 nm have been deposited on n-type Si (100) substrates by a facile nonhydrolytic sol-gel processing. X-ray diffraction measurements prove that the films are polycrystalline and present the pure anatase phase. X-ray photoelectron spectroscopy spectra indicate that the chemical valent state of Fe element is +3 and the Fe(3+) ions replace the Ti(4+) sites. The Fe dopant effects on the surface morphology, microstructure, and dielectric functions of the nc-Fe/TiO(2) films have been studied by atomic force microscope, ultraviolet Raman scattering and spectroscopic ellipsometry. With increasing Fe composition, the intensity of Raman-active mode B(1g) increases, while that of the A(1g) phonon mode decreases. The dielectric functions have been uniquely extracted by fitting ellipsometric spectra with the Adachi's dielectric function model and a four-phase layered model. It is found that the real part of dielectric functions in the transparent region and the optical band gap slightly decrease with the Fe composition due to the introduction of acceptor level Fe t(2g). Finally, the composition and temperature dependence of the surface and lattice defects in the Fe/TiO(2) films have been investigated by photoluminescence spectra in detail. At room temperature, the emission intensities decrease with increasing Fe compositions since the Fe incorporation could prolong the radiative lifetime and/or shorten the non-radiative lifetime. By analyzing the low temperature photoluminescence spectra, the intensities and positions of five emission peaks and shoulder structure can be unambiguously assigned. The phenomena could be reasonably explained by the physical mechanisms such as oxygen vacancies, localized excitons, self-trapped excitons, and indirect transitions, which are strongly related to the electronic band structure perturbed by the Fe doping.

  14. 乙烯在纳米催化剂InVO4-TiO2上的可见光降解%Degradation of Ethylene on Nano-crystalline InVO4-TiO2 under Visible Light Iradiation

    Institute of Scientific and Technical Information of China (English)

    肖光参; 鲁文升; 李旦振; 付贤智; 王绪绪

    2005-01-01

    The InVO4-TiO2 nano-crystalline photocatalyst was prepared by sol-gel method and characterized by DRS, FFIR, Raman and XRD. The photocatalytic activities of the prepared sample were investigated by photocatalytic degradation of ethylene in the gaseous phase under visible light irradiation (3.>450 nm). The results indicate that both of pure TiO2 and InVO4 or their simple mixture show no photocatalytic activities for degradation of ethylene under visible light irradiation. However, as-synthesized InVO4-TiO2 catalyzes the degradation of ethylene into CO2 under visible light irradiation. In addition, the interaction between InVO4 and TiO2 results in some structural distortion to all the crystal forms of TiO2 in as-synthesized catalyst InVO4-TiO2.

  15. Mixed phases of TiO2 nanopowders prepared by laser pyrolysis

    Science.gov (United States)

    Dumitrache, Florian V.; Alexandrescu, Rodica; Morjan, Ion G.; Sandu, Ion C.; Soare, Iuliana; Voicu, Ion N.; Fleaca, Claudiu T.; Ploscaru, Mihaela I.; Savoiu, M.; Vasile, Eugen; Ciupina, Victor

    2004-10-01

    TiO2 nano powder was prepared by laser pyrolysis of gas phase reactants. TiCl4 (vapor) was used as titanium precursor. The crystalline structures and morphologies of the powder have been analyzed by transmission electron microscopy (TEM), selected area electron diffraction (SAD) and Raman spectrometry. The different characterization techniques suggest that a nano-crystalline mixture of anatase and rutile is obtained.

  16. LATTICE DEFORMATION AND PHASE TRANSFORMATION FROM NANO-SCALE ANATASE TO NANO-SCALE RUTILE TiO2 PREPARED BY A SOL-GEL TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    Yanqun Shao; Dian Tang; Jinghua Sun; Yekun Lee; Weihao Xiong

    2004-01-01

    Nano-scale rutile phase was transformed from nano-scale anatase upon heating, which was prepared by a sol-gel technique. The XRD data corresponding to the anatase and rutile phases were analyzed and the grain sizes of as-derived phases were calculated by Sherrer equation. The lattice parameters of the as-derived anatase and rutile unit cells were calculated and compared with those of standard lattice parameters on PDF cards. It was shown that the smaller the grain sizes, the larger the lattice deformation. The lattice parameter a has the negative deviation from the standard and the lattice parameter c has the positive deviation for both phases. The particles sizes had preferential influence on the longer parameter between the lattice parameters of a and c. With increasing temperatures, the lattice parameters of a and c in both phases approached to the equilibrium state. The larger lattice deformation facilitated the nucleation process, which lowered the transformation temperature. During the transformation from nano-scale anatase to rutile, besides the mechanism involving retention of the {112} pseudo-close-packed planes of oxygen in anatase as the{100} pseudo-close-packed planes in rutile, the new phase occurred by relaxation of lattice deformation and adjustment of the atomic sites in parent phase. The orientation relationships were suggested to be anatase {101}//rutile {101} and anatase //rutile, and the habit plane was anatase (101),

  17. Relationship between Synthesis Conditions and Photocatalytic Activity of Nanocrystalline TiO2

    Directory of Open Access Journals (Sweden)

    Yosep Han

    2012-01-01

    Full Text Available The degradation efficiency of methylene blue by TiO2 nanoparticles, which were synthesized under different synthesis conditions (i.e., molar ratio of water and titanium tetraisopropoxide (TTIP, pH, and calcination temperature in a sol-gel process, was systematically investigated. The results showed that increasing the molar ratio of water and TTIP led to the enhanced photocatalytic activity of TiO2 nanoparticles, which were likely attributed to the increased specific surface area of TiO2 nanoparticles synthesized with high molar ratio. The results were supported by the relative increase in the size of interaggregated pores of the aggregated TiO2 nanoparticles. The best photocatalytic activity of TiO2 nanoparticles was observed at acidic synthesis conditions; however, the results were not consistent with physical properties for the crystallinity and the crystallite size of TiO2 nanoparticles but rather explained by the presence of abundant hydroxyl groups and water molecules existing on the surface of TiO2 under acidic synthesis environments. Furthermore, methylene blue degradation experiments revealed that the photocatalytic activity of TiO2 nanoparticles was maximized at the calcination temperature of 700°C. The trend was likely due to the combined effect of the anatase crystallinity which showed the highest value at 700°C and the crystallite size/specific surface area which did not excessively increase up to 700°C.

  18. Unusual Changes in Electronic Band-Edge Energies of the Nanostructured Transparent n-Type Semiconductor Zr-Doped Anatase TiO2 (Ti1-xZrxO2; x < 0.3).

    Science.gov (United States)

    Mieritz, Daniel G; Renaud, Adèle; Seo, Dong-Kyun

    2016-07-05

    By the establishment of highly controllable synthetic routes, electronic band-edge energies of the n-type transparent semiconductor Zr-doped anatase TiO2 have been studied holistically for the first time up to 30 atom % Zr, employing powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen gas sorption measurements, UV/vis spectroscopies, and Mott-Schottky measurements. The materials were produced through a sol-gel synthetic procedure that ensures good compositional homogeneity of the materials, while introducing nanoporosity in the structure, by achieving a mild calcination condition. Vegard's law was discovered among the homogeneous samples, and correlations were established between the chemical compositions and optical and electronic properties of the materials. Up to 20% Zr doping, the optical energy gap increases to 3.29 eV (vs 3.19 eV for TiO2), and the absolute conduction band-edge energy increases to -3.90 eV (vs -4.14 eV). The energy changes of the conduction band edge are more drastic than what is expected from the average electronegativities of the compounds, which may be due to the unnatural coordination environment around Zr in the anatase phase.

  19. THE EFFECT OF DIFFERENT POLYMORPHS TiO2 RAW MATERIALS ON THE DIELECTRIC PROPERTIES AND MICROSTRUCTURE IN CaCu3Ti4O12 CERAMICS

    Directory of Open Access Journals (Sweden)

    Hao W.

    2013-09-01

    Full Text Available CaCu3Ti4O12 ceramics with different polymorphs of TiO2 as starting materials were prepared by the conventional solid-state reaction technique. Their crystalline structure, microstructure and dielectric properties were systematically investigated. It has been found that all of the ceramic specimens prepared in the present study have a good polycrystalline structure, and no secondary phase is been found by XRD. However, large differences in dielectric properties and microstructure are observed in them: 1 the characteristic frequency of dielectric relaxation around 1 MHz in the CCTO ceramics prepared with rutile TiO2 is much lower than that in those ceramics prepared with anatase TiO2; 2 no matter dielectric properties or microstructure, the CCTO ceramics prepared with rutile TiO2 are more sensitive to the sintering temperature than those ceramics prepared with anatase TiO2.

  20. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes

    Science.gov (United States)

    Nazari, M.; Golestani-Fard, F.; Bayati, R.; Eftekhari-Yekta, B.

    2015-04-01

    In this work, TiO2 and WO3-grafted TiO2 nanotubes were grown via anodizing of titanium substrates in tungstate containing electrolytes. The samples were characterized in detail by XRD, XPS, SEM, EDX, and UV-Vis spectrophotometry techniques. Besides, photocatalytic characteristics were evaluated through measuring the degradation rate of 4-chlorophenol to establish a correlation between structure and photochemical properties. We were able to control morphology and growth mode of nanotubes from a tubular to a worm-like structure by changing the electrolyte composition. The samples possessed an anatase-rutile matrix where the anatase/rutile ratio was found to increase with the concentration of tungstate in the electrolyte. We attributed this observation to change in electrical conductivity of the electrolyte and the heat generated on the substrates. It was unambiguously revealed that a composite of WO3 and TiO2 forms and, in parallel, tungsten is doped into the crystalline lattice of TiO2. The maximum photocatalytic reaction rate constant for TiO2 and WO3-TiO2 samples was determined to be 0.0131 and 0.0174 min-1 respectively. The grafting TiO2 nanotubes with WO3 enhances the photocatalytic activity mainly due to the hindrance of charge carrier recombination and the formation of a more acidic surface. We established a correlation between structure, stoichiometry, and photocatalytic characteristics of nanotubes.

  1. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances

    Science.gov (United States)

    Demirci, Selim; Dikici, Tuncay; Yurddaskal, Metin; Gultekin, Serdar; Toparli, Mustafa; Celik, Erdal

    2016-12-01

    In this study, undoped and silver (Ag) doped titanium dioxide (TiO2) films were successfully synthesized by sol-gel spin coating technique on the Si substrates. Photocatalytic activities of the TiO2 films with different Ag content were investigated for the degradation of methylene blue (MB) under UV light irradiation. The crystal phase structure, surface morphology, chemical and optical properties of Ag-doped TiO2 films were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis spectrophotometer, and FTIR spectrophotometer. The results showed that the Ag-doped TiO2 films calcined at 500 °C had the crystalline anatase phases and the surface morphologies with some cracks. Ag substitution into TiO2 matrix enhanced the photocatalytic activity of TiO2 films under UV light irradiation as compared to the undoped TiO2 film. Furthermore, the results indicated that the 0.7% Ag doped TiO2 film exhibited a superior photocatalytic activity than that of undoped and other Ag-doped TiO2 films. This study demonstrated the potential of an application of Ag doped films to efficiently treat dissolved organic contaminants in water.

  2. Enhanced Visible-Light Photocatalytic Performance of Nanosized Anatase TiO2 Doped with CdS Quantum Dots for Cancer-Cell Treatment

    Directory of Open Access Journals (Sweden)

    Kangqiang Huang

    2012-01-01

    Full Text Available CdS quantum-dots-(QDs-doped TiO2 nanocomposites were successfully synthesized using the sol-gel technique and characterized by SEM, TEM, XRD, EDS, UV-Vis, and FS. They were then used as a new “photosensitizer” based on photodynamic therapy (PDT for cancer-cell treatment. The photocatalytic activities of CdS-TiO2 on leukemia tumors were investigated by using Cell Counting Kit-8 (CCK-8 assay. The ultrastructural morphology of treated cells was also studied by AFM. The experimental results indicated that an obvious inhibition of tumor growth would be observed in groups treated with CdS-TiO2 nanocomposites, and the PDT efficiency in the presence of CdS-doped TiO2 was significantly higher than that of TiO2, revealing that the photocatalytic activities of TiO2 could be effectively enhanced by the modification of CdS QDs. Additionally, CdS- TiO2 can exhibit a very high photodynamic efficiency of 80.5% at a final concentration of 200 μg/mL under visible-light irradiation. CdS-TiO2 nanocomposites in this case were regarded as a promising application for cancer-cell treatment.

  3. Improving the Photocatalytic Activity of Modified Anatase TiO2 with Different Concentrations of Aluminum under Visible Light: Mechanistic Survey.

    Science.gov (United States)

    Afshar, Shahrara; Pordel, Shabnam; Tahmouresilerd, Babak; Azad, Alireza

    2016-11-01

    Visible light-driven Al-doped TiO2 with different aluminum contents (2, 5 and 10 mol%) were synthesized via a facile sol-gel method. Fourier transform infrared (FTIR), UV-visible diffuse reflectance, energy dispersive X-ray (EDX) spectroscopy as well as X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM) methods were used for the characterization of the obtained nanoparticles. The photocatalytic performance of the samples was evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. The yield of the degradation RhB was estimated to be 71%, 89%, 65% and 56%, for the bare TiO2 , 2%, 5% and 10% Al-doped TiO2 , respectively. It was found that 2 mol% of Al-doped TiO2 shows the best photocatalytic performance. In low concentration of dopant, separation of photogenerated electron-hole pairs promoted, and subsequently, the degradation efficiency increased. It was proposed that the degradation of RhB by 2 mol% Al-doped TiO2 photocatalyst follows both N-deethylation and chromophore cleavage mechanisms, while the N-deethylation still predominated over cleavage of dye chromophore structure. The key role of hydroxyl radicals in RhB degradation was verified by the effects of scavengers. In addition, the photocatalyst can be reused for three runs without any significant loss of its catalytic activity.

  4. Synthesis of Pt-Loaded Self-Interspersed Anatase TiO2 with a Large Fraction of (001) Facets for Efficient Photocatalytic Nitrobenzene Degradation.

    Science.gov (United States)

    Wang, Wei-Kang; Chen, Jie-Jie; Li, Wen-Wei; Pei, Dan-Ni; Zhang, Xing; Yu, Han-Qing

    2015-09-16

    TiO2 is capable of directly utilizing solar energy for sustainable energy harvest and water purification. Facet-dependent performance of TiO2 has attracted enormous interests due to its tunable photocatalytic activity toward photoredox transformations, but information about the noble-metal-loaded TiO2 for its facet-dependent photocatalytic performance, especially in pollutant degradation systems, is limited. In this work, inspired by our previous theoretical calculations about the roles of the crystal surface in Pt-loaded TiO2 in its enhanced photocatalytic capacity, TiO2 nanocrystals with interspersed polyhedron nanostructures and coexposed (001) and (101) surfaces as a support of Pt nanoparticles are prepared in a simple and relatively green route. Also, their performance for photocatalytic degradation of nitrobenzene (NB), a model organic pollutant, is explored. The experimental results demonstrate that the NB photodegradation and photoconversion efficiencies are significantly enhanced by uniformly loading Pt nanoparticles on the crystal surfaces, but the Pt nanoparticles deposited on only the (101) surface have no contribution to the improved NB photodegradation. Furthermore, the liquid chromatography mass spectrometry results also show that NB photodegradation tends to proceed on the (001) surface of Pt/TiO2 for the generation of nitrophenol intermediates through the photooxidation pathway. This work provides a new route to design and construct advanced photocatalysts toward pollutant photoredox conversions and deepens our fundamental understanding about crystal surface engineering.

  5. Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes.

    Science.gov (United States)

    Rong, Yaoguang; Ku, Zhiliang; Mei, Anyi; Liu, Tongfa; Xu, Mi; Ko, Songguk; Li, Xiong; Han, Hongwei

    2014-06-19

    A hole-conductor-free fully printable mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cell was developed with TiO2 nanosheets containing high levels of exposed (001) facets. The solar cell embodiment employed a double layer of mesoporous TiO2 and ZrO2 as a scaffold infiltrated by perovskite as a light harvester. No hole conductor or Au reflector was employed. Instead, the back contact was simply a printable carbon layer. The perovskite was infiltrated from solution through the porous carbon layer. The high reactivity of (001) facets in TiO2 nanosheets improved the interfacial properties between the perovskite and the electron collector. As a result, photoelectric conversion efficiency of up to 10.64% was obtained with the hole-conductor-free fully printable mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cell. The advantages of fully printable technology and the use of low-cost carbon-materials-based counter electrode and hole-conductor-free structure provide this design a promising prospect to approach low-cost photovoltaic devices.

  6. First-Principles Study of Adsorption of Dimethyl Methylphosphonate on the TiO2 Anatase (001) Surface: Formation of a Stable Titanyl (Ti=O) Site

    Science.gov (United States)

    2011-03-10

    Anatase (001) Surface: Formation of a Stable Titanyl (TidO) Site V. M. Bermudez Electronics Science and Technology Division, Naval Research Laboratory...bond at a 5-fold-coordinated Ti5c site. Figure 1 shows a model 25 for the corresponding structure on anatase (101) and also identifies the T5c, Ti6c...the UHV experimental data, computational results for DMMP on OH-free rutile (110) and anatase (101) and (100) surfaces24,25 find that dissociation is

  7. First-principles study of N/Cu co-dop ed anatase TiO2%N/Cu共掺杂锐钛矿型TiO2第一性原理研究∗

    Institute of Scientific and Technical Information of China (English)

    杨军; 苗仁德; 章曦

    2015-01-01

    基于密度泛函理论的第一性原理平面波超软赝势法,采用局域自旋密度近似加Hubbard U值方法研究了纯锐钛矿型TiO2, N, Cu单掺杂TiO2及N/Cu共掺杂TiO2的晶体结构、电子结构和光学性质。研究结果表明,掺杂后晶格发生相应畸变,晶格常数变大。 N和Cu的掺杂在TiO2禁带中引入杂质能级,禁带宽度发生相应改变。对于N掺杂TiO2禁带宽度减小较弱,而Cu掺杂和N/Cu共掺TiO2禁带宽度显著降低,导致吸收光谱明显红移,光学催化性增强,有利于实际应用。%Using the first-principles plane-wave ultra-soft pseudo-potential method based on the density functional theory, the structures, electronic-structures and optical properties of pure anatase TiO2, N (Cu) doped TiO2, and N/Cu co-doped TiO2 crystal are studied by the local-spin density approximation plus Hubbard U method. It is shown that the lattice constants become larger because of the lattice distortion caused by doping. Impurity levels in the band gap of TiO2 are introduced by N and Cu doping, and the forbidden band width is correspondingly changed. For N doped TiO2, the reduction of the band gap is weak, while the N/Cu co-doped TiO2 band gap decreases remarkably. It leads to a red shift of visible absorption spectrum and enhances optical catalysis. The effect is useful for the practical application of photo-catalytic.

  8. Preparation of Crystalline Sn-Doped TiO2 and Its Application in Visible-Light Photocatalysis

    Directory of Open Access Journals (Sweden)

    Zhou Xiufeng

    2011-01-01

    Full Text Available Sn-doped TiO2 nanoparticles were prepared by the vapor transport method of water molecules and characterized by XRD and XPS analyses. The TEM images indicated that as-prepared samples were highly dispersed nanoparticles with a small and uniform size below 20 nm, as it would effectively control the rate of hydrolysis of Ti4+ by adjusting the flow speed of water vapor. Meanwhile, the photocatalytic properties of Sn-doped TiO2 were tested, and the results showed that doping an appropriate amount of Tin would improve the photocatalytic activity of TiO2 by enhancing the separation rate of photogenerated electrons and holes on the surface of TiO2. In addition, the calcination temperature and Tin content had an important influence on the photocatalytic activity of TiO2. When the mix ratio of Sn:Ti reached 1%, and the nano-Sn-TiO2 sample was calcined at 400oC, it showed the best photocatalytic activity.

  9. LiF-doped mesoporous TiO2 as the photoanode of highly efficient dye-sensitized solar cells

    Science.gov (United States)

    Neo, Chin Yong; Ouyang, Jianyong

    2013-11-01

    This paper reports the doping of nanocrystalline TiO2 with LiF by mechanical grinding and subsequent sintering and the application of LiF-doped TiO2 as the photoanode of highly efficient dye-sensitized solar cells (DSCs). The fluoride ions can dope into the TiO2 matrix as revealed by X-ray photoelectron spectroscopy (XPS). The LiF-doped TiO2 samples are characterized by scanning electron microscopy (SEM), tunneling electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible absorption spectroscopy. Doping of TiO2 with a small amount of LiF can improve the photovoltaic performance of DSCs. At the optimal LiF loading of 0.53 wt% in TiO2, the power conversion efficiency (PCE) of DSCs is enhanced from 7.74% to 8.24% under simulated AM1.5 illumination. The effect of the LiF doping on the photovoltaic performance of DSCs is investigated by electrochemical impedance spectroscopy (EIS) and incident photon conversion efficiency (IPCE) measurements. The improvement in the photovoltaic efficiency is attributed to the facilitation of the electron transport through the TiO2 electrode as a result of the increase in the anatase crystallinity induced by the LiF doping. The enhanced anatase crystallinity also causes a decrease in the charge recombination.

  10. Dynamics of charge at water-to-semiconductor interface: Case study of wet [0 0 1] anatase TiO2 nanowire

    Science.gov (United States)

    Huang, Shuping; Balasanthiran, Choumini; Tretiak, Sergei; Hoefelmeyer, James D.; Kilina, Svetlana V.; Kilin, Dmitri S.

    2016-12-01

    The behavior of water molecules on the surfaces of the TiO2 nanowire grown in [0 0 1] direction has been investigated by combining theoretical calculations and experiments. Calculated UV-visible absorption spectra reproduce the main features of the experimental spectra. Computations predict that a photoexcitation followed by a sequence of relaxation events results in photoluminescence across the gap. TiO2 nanowires in vacuum and aqueous environment exhibit different dynamics of photo-excited charge carriers. In water, computed relaxation of electrons (holes) is approximately 2 (4) times faster compared with vacuum environment. Faster relaxation of holes vs. electrons and specific spatial localization of holes result to formation of long lived charge transfer excitation with positive charge at the surface of the nanowire. Comparison of relaxation process in TiO2/water interfaces focusing on different surfaces and nanostructures has potential in identifying structural characteristics of TiO2 materials important for efficient photo-electrochemical water splitting.

  11. 蒸汽处理钛酸制备锐钛矿相TiO2纳米晶体的光催化性能%Photocatalytic Properties of Anatase TiO2 Nanocrystal Prepared by Steam Treatment

    Institute of Scientific and Technical Information of China (English)

    董国义; 高琳洁; 王颖; 刘清波; 李志强; 韦志仁

    2011-01-01

    Sodium titanate fibers with lengths over 10 fun and widths of 10-100 nm were synthesized via hydrothermal method using anatase TiO2 as titanium source and NaOH as mineralizer, the products were characterized by transmission electron microscopy ( TEM ) and X-ray diffraction ( XRD ). Using steam hydrothermal method to further treat sodium titanate nanofibers which was washed by HC1, anatase TiO2 nanofibers with character of self-organizing were synthesized. Their degradation performance of methylene blue under 1 kW ultraviolet lamp and long-term stability was investigated. Photocatalytic experiments indicated that the obtained anatase TiO2 nanofibers are highly active for methylene blue, and these nanocrystal catalysts could be easily recycled without decreasing of the photocatalytic activity.%采用水热法,以锐钛矿相TiO2为原料,10 mol/L NaOH溶液作为矿化剂,合成了钛酸钠纤维.用XRD和TEM对产物进行了表征,观察到纤维长度超过10 μm,宽度为10~100 nm.酸洗后对其进行二次蒸汽处理,得到了具有自组织趋势的锐钛矿相纳米TiO2晶体纤维.以1 kW紫外灯为光源,分析了合成的锐钛矿相TiO2纳米晶体的光催化降解亚甲基蓝性能及其长期稳定性.结果表明:合成的锐钛矿相TiO2纳米晶体对亚甲基蓝的光降解活性很高,纳米晶体易回收,且循环使用光催化活性没有发生衰减.

  12. W-N共掺杂锐钛矿相TiO2的第一性原理计算%First Principle Calculation of W-N Co-doped Anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    郑树凯; 吴国浩; 刘磊; 王芳

    2013-01-01

    The band structure,electronic density of states and absorption spectrum of W-N co-doped anatase TiO2 were calculated using first principle based on the density functional theory.The results indicate that W-N co-doping does not change the band gap of anatase TiO2,while N 2p doping energy level is incorporated into the band gap above the valence band maximum,and its Fermi energy level is located at the conduction band.W 5d orbital provides contributions to the bottom edge of valence band and conduction band,whereas N 2p contributes its orbital to the upper edge of valence band maximum and the isolated doping energy level located in the band gap.W-N co-doping enhances the absorption ability of anatase TiO2 in the wave length range from 340 to 800 nm.%利用基于密度泛函理论的第一性原理方法对W-N共掺杂锐钛矿相TiO2的能带结构、电子态密度及吸收光谱进行计算.结果表明,W-N共掺杂未改变锐钛矿相TiO2的禁带宽度,仅在TiO2价带顶附近引入N的2p杂质能级,并且掺杂系统的费米能级处于导带之内;W的5d轨道主要对TiO2的价带底下边沿和导带有贡献,N的2p轨道主要对TiO2的价带顶上边沿和禁带内的孤立能级有贡献;W-N共掺杂增强了锐钛矿相TiO2在340~800 nm波长范围内的光吸收能力.

  13. Preparation and Analysis of Nano-Crystallite Anatase Phase TiO2 Thin Films%纳米锐钛矿型TiO2薄膜的制备及分析

    Institute of Scientific and Technical Information of China (English)

    辛荣生; 林钰; 蔡彬; 胡斌

    2011-01-01

    采用反应磁控溅射法在玻璃衬底上制备锐钛矿相TiO2薄膜,研究了工艺条件中的氧氩流量比对薄膜润湿角的影响以及溅射气压对薄膜微观结构的影响.对不同氧氩流量比(分别为1/40,1/20,1/10和1/5)时制备的TiO2薄膜进行润湿角测量,润湿角照片显明:氧氩比1/5时薄膜润湿角可减小到8°左右,即提高氧氩比能增强TiO2薄膜的自洁净性能.X射线衍射(XRD)分析表明:当溅射气压降到1.0 Pa时,可以得到锐钛矿型TiO2薄膜晶体,0.5Pa时的XRD图衍射峰更为明显.用分光光度计测量了TiO2薄膜的紫外吸收光谱.由光谱曲线上光吸收阈值与半导体带隙之间的关系计算出了TiO2薄膜的禁带宽度为3.42 eV,表明TiO2薄膜的吸收边出现了一定的蓝移.根据 XRD图谱计算TiO2薄膜的晶粒尺寸,得到的薄膜晶粒尺寸在十几纳米左右,由此说明了TiO2薄膜吸收边发生蓝移的原因;按照锐钛矿相TiO2薄膜XRD图25.3°衍射峰对应的(101)晶面,由Bragg方程计算出其晶面间距为0.3521 nm.表明TiO2薄膜晶体发生了一定的晶格畸变.%The anatase phase TiO2 thin films were prepared on the glass substrates by DC reactive magnetron sputtenng method.The influence of technological condition, such as the O2/Ar flow ratio, on contact angle of the filma and the sputtering pressure on the microstructure of the films, was studied respectively.The contact angle of TiO2 films prepared in different O2/Ar flow ratio ( 1/40 , 1/20,1/10 and 1/5 ) were measured respectively.The contact angle photograph showed that the film contact angle could be reduced to 8° or so when the O2/Ar ratio was 1/5 , this meant that the self-clean property of TiO2 films could be enhanced by increasing O2/Ar ratio.Analysis of X-ray diffraction ( XRD) ahowed that the crystal of anatase phase TiO2 films could be obtained when the sputtering pressure was decreased to 1.0 Pa, the diffraction peak of XRD apectrum was more prominent when the

  14. Use of co-spray pyrolysis for synthesizing nitrogen-doped TiO2 films

    Indian Academy of Sciences (India)

    Nho Pham Van; Pham Hoang Ngan

    2013-10-01

    Nitrogen-doped nanocrystalline TiO2 is well known as the most promising photocatalyst. Despite many years after discovery, seeking of efficient method to prepare TiO2 doped with nitrogen still attracts a lot of attention. In this paper, we present the result of using co-spray pyrolysis to synthesize nitrogen-doped TiO2 films from TiCl4 and NH4NO3. The grown films were subjected to XRD, SEM, photocatalysis, absorption spectra and visible-light photovoltaic investigations. All the deposited films were of nanosized polycrystal, high crystallinity, pure anatase and porosity. Specific characteristics involved nitrogen doping such as enhanced photocatalytic activity, bandgap narrowing, visible light responsibility and typical correlation of the photoactivity with nitrogen concentration were all exhibited. Obtained results proved that high photoactive nitrogen-doped TiO2 films can be synthesized by co-spray pyrolysis.

  15. Effect of Microstructure on Electrorheological Property for Pure TiO2 Particle Material

    Institute of Scientific and Technical Information of China (English)

    Yanli SHANG; Shuzhen MA; Junran LI; Mingxiu LI; Juan WANG; Shaohua ZHANG

    2006-01-01

    Pure titanium dioxide (TiO2) particle materials were prepared by hydrolyzing titanium tetrachloride (TiCl4).The microstructures of these materials were determined by X-ray diffraction (XRD), accelerated surface area and porosimetry apparatus (BET), and transmission electron microscopy (TEM). The TiO2 materials obtained by calcinations under different temperatures distinctly revealed different microstructures in crystal structure type, surface area, pore size, pore volume and grain size. The relationship between the microstructure of the TiO2 materials and their electrorheological (ER) activity was investigated. Anatase titania particles have better ER performance than rutile titania particles. Amorphous TiO2 materials display higher ER activity than the crystalline titania materials. A large pore volume can be more advantageous in improving the ER effect of a particle material.

  16. Effect of construction of TiO2 nanotubes on platelet behaviors: Structure-property relationships.

    Science.gov (United States)

    Huang, Qiaoling; Yang, Yun; Zheng, Dajiang; Song, Ran; Zhang, Yanmei; Jiang, Pinliang; Vogler, Erwin A; Lin, Changjian

    2017-03-15

    Blood compatibility of TiO2 nanotubes (TNTs) has been assessed in rabbit platelet-rich plasma (PRP), which combines activation of both blood plasma coagulation and platelets. We find that (i) amorphous TiO2 nanotubes (TNTs) with relatively larger outer diameters led to reduced platelet adhesion/activation, (ii) TNTs with relatively smaller outer diameters in a predominately rutile phase also inhibited platelet adhesion and activation, and (iii) a pervasive fibrin network formed on larger outer diameter TNTs in a predominately anatase phase. Thus, this study suggests that combined effect of crystalline phase and surface chemistry controls blood-contact behavior of TNTs. A more comprehensive mechanism is proposed for understanding hemocompatibility of TiO2 which might prove helpful as a guide to prospective design of TiO2-based biomaterials.

  17. 锐钛矿相TiO2纳米纤维制备与摩擦学性能%Preparation of Anatase TiO2 Nanofiber and Its Tribological Properties as Additive in Liquid Paraffin

    Institute of Scientific and Technical Information of China (English)

    刘琳; 阴翔宇; 张月; 钱建华

    2013-01-01

    Anatase TiO2 nanofiber was prepared via an available alkaline hydrothermal method and surface modified. The obtained products were characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM) measurements and Fourier transform infrared spectroscopy (FT-IR). The as-prepared TiO2 nanofiber could be well dispersed in liquid paraffin, and its tribological properties as additive were evaluated with a four-ball tester. The results showed that the as-prepared TiO2 nanofiber exhibited good performance in anti-wear and friction-reduction, load-carrying capacity, and extreme pressure properties. When addition amount of the as-prepared TiO2 nanofiber was 1.5% of mass fraction in liquid paraffin, the best anti-friction wear reducing and bearing capacity enhancing were obtained, which made the TiO2 nanofiber promising for green lubricating oil additives.%采用简便且可重复性较好的碱熔法制备锐钛矿相TiO2,采用简便的表面修饰技术对其进行表面改性,得到TiO2纳米纤维,并采用XRD、SEM和FT-IR方法对其进行表征.利用四球摩擦试验机考察其作为油品润滑添加剂的摩擦学性能.结果表明,所合成的TiO2纳米纤维为锐钛矿相结构,结晶度和纯度较高,而且在油品中具有良好的分散性;TiO2纳米纤维具有良好的抗磨减摩性能,并能够很好地提高油品承载能力,当其加入量为1.5%(质量分数)时,抗磨减摩以及提高承载能力的效果最好.这些特性使得锐钛矿相TiO2纳米纤维有望在未来成为绿色润滑油添加剂.

  18. Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation

    Science.gov (United States)

    Ali, T.; Tripathi, P.; Azam, Ameer; Raza, Waseem; Ahmed, Arham S.; Ahmed, Ateeq; Muneer, M.

    2017-01-01

    The present work focuses on the synthesis, characterization and photocatalytic activity of a nanosized Fe-doped TiO2 photocatalyst. The samples were synthesized by the sol–gel method and characterized by using techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), UV–visible spectroscopy, photoluminescence (PL) spectroscopy, Raman spectroscopy and Fourier-transform infrared (FTIR). The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and show a tetragonal anatase phase of TiO2. The Raman spectroscopy also confirmed the formation of an anatase phase structure in both pure and Fe-doped TiO2 nanoparticles (NPs). The UV–visible and PL spectra illustrated the red shift in Fe-doped TiO2 NPs. The FTIR spectra indicated the vibrational band of the Ti–O lattice. The photocatalytic experimental results demonstrate that Fe-doped TiO2 NPs effectively degrade MB under visible-light illumination. Interestingly, the prepared TiO2 NPs with a dopant concentration of 3.0 mole% showed the maximum photocatalytic activity under investigation.

  19. Structure and high photocatalytic activity of (N, Ta)-doped TiO2 nanoparticles

    Science.gov (United States)

    Le, N. T. H.; Thanh, T. D.; Pham, V.-T.; Phan, T. L.; Lam, V. D.; Manh, D. H.; Anh, T. X.; Le, T. K. C.; Thammajak, N.; Hong, L. V.; Yu, S. C.

    2016-10-01

    A hydrothermal method was used to prepare three nano-crystalline samples of TiO2 (S1), N-doped TiO2 (S2), and (N, Ta)-codoped TiO2 (S3) with average crystallite sizes (D) of 13-25 nm. X-ray diffraction studies confirmed a single phase of the samples with a tetragonal/anatase structure. A slight increase in the lattice parameters was observed when N and/or Ta dopants were doped into the TiO2 host lattice. Detailed analyses of extended X-ray absorption spectra indicated that N- and/or Ta-doping into TiO2 nanoparticles influenced the co-ordination number and radial distance (R) of Ti ions in the anatase structure. Concerning their absorption spectra, (N, Ta)-doping narrowed the band gap (Eg) of TiO2 from 3.03 eV for S1 through 2.94 eV for S2 to 2.85 eV for S3. Such results revealed the applicability of these nanoparticles in the photocatalytic field working in the ultraviolet (UV)-visible region. Among these, photocatalytic activity of S3 was the strongest. By using S3 as a catalyst powder, the degradation efficiency of methylene blue solution was about 99% and 93% after irradiation of UV-visible light for 75 min and visible-light for 180 min, respectively.

  20. Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

    Directory of Open Access Journals (Sweden)

    Kah Hon Leong

    2015-02-01

    Full Text Available Freely assembled palladium nanoparticles (Pd NPs on titania (TiO2 nano photocatalysts were successfully synthesized through a photodeposition method using natural sunlight. This synthesized heterogeneous photocatalyst (Pd/TiO2 was characterized through field emission scanning electron microscopy (FESEM, high resolution transmission electron microscopy (HRTEM, X-ray diffraction (XRD, BET surface area, UV–vis diffuse reflectance spectra (UV-DRS, Raman and photoluminescence (PL analyses. The simple and smart synthesis anchored well the deposition with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs. Apparently, the photocatalytic activity of the prepared photocatalysts was evaluated by degrading the endocrine disrupting compound (EDC amoxicillin (AMX excited under an artificial visible light source. In the preliminary run, almost complete degradation (97.5% was achieved in 5 h with 0.5 wt % Pd loading and the degradation followed pseudo-first-order kinetics. The reusability trend proved the photostability of the prepared photocatalysts. Hence, the study provides a new insight about the modification of TiO2 with noble metals in order to enhance the absorption in the visible-light region for superior photocatalytic performance.

  1. The Influence of Annealing Temperature on the Structure and Properties of TiO2 Films Prepared by Sputtering

    Institute of Scientific and Technical Information of China (English)

    LIU Baoshun; ZHAO Xiujian; ZHAO Qingnan

    2006-01-01

    The TiO2 films were prepared on slides by dc reactive magnetron sputtering, then the samples were annealed at 300 ℃,350 ℃,400 ℃,450 ℃,500 ℃ and 550 ℃,respectively. X-ray diffraction (XRD) was used to obtain the TiO2 film crystalline structure; X-ray photoelectron spectroscopy (XPS) was used to study the film surface stoichiometries; surface morphologies were studied by scanning electron microscopy (SEM); the contact angle was tested to indicate the TiO2 film wettability; and the photocatalytic activity testing was conducted to evaluate the photocatalysis properties. The photocatalytic activity and contact angle testing results were correlated with the crystallinity, surface morphologies and surface *OH concentration of TiO2 films. The samples with a higher polycrystalline anatase structure, rough surface and high *OH concentration displayed a better photoinduced hydrophilicity and a stronger photocatalysis.

  2. Synergistic manipulation of micro-nanostructures and composition: anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores for photovoltaic and photocatalytic applications.

    Science.gov (United States)

    Zhu, Qing; Qian, Jieshu; Pan, Hao; Tu, Luo; Zhou, Xingfu

    2011-09-30

    The construction of nanocrystals with controllable composition and desirable micro-nanostructures is a well-known challenge. A combination of favorable composition and optimized micro-nanostructures can enhance the performance of a material significantly. Using TiO(2) as an example, we demonstrate here a facile approach to prepare anatase/rutile mixed-phase TiO(2) hollow micro-nanospheres with hierarchical mesopores. Our strategy relies on polymer-assisted assembly of ∼ 5 nm nano-building blocks into three-dimensional hierarchical hollow micro-nanospheres in a mixed alcohol-water solution. This superior micro-nanostructure endows the sample with hierarchical mesopores and a high surface area of 106 m(2) g(-1). We also show that, due to the synergetic effects of the mixed-phase composition and the micro-nanostructures, the sample exhibited significantly improved photovoltaic performance and similar photocatalytic performance compared with the commercial Degussa P25. These results suggested that our sample has great potential for future photovoltaic and photocatalytic applications.

  3. Effect of TiO2 Doping by Zn on Crystalline Phase and Photocatalytic Activity%Zn掺杂对 TiO2晶相及光催化性能的影响

    Institute of Scientific and Technical Information of China (English)

    徐向军; 邢晓轲; 卫世乾

    2015-01-01

    采用改进的溶胶-凝胶法制备ZnO-TiO2复合催化剂,通过X射线衍射( XRD)、紫外-可见漫反射( UV-Vis DRS)对其微晶结构和光吸收性能进行表征.以甲基橙作为模拟降解物,结果表明,改变水和乙醇的含量以控制溶胶向凝胶陈化的时间影响ZnO-TiO2的催化活性.当n( Zn)∶n( Ti)为3∶15、煅烧温度为500℃时产物催化效率最好,紫外光照5 h,降解率为96.4%.XRD结果显示,ZnO-TiO2主要以锐钛矿相 TiO2和立方Zn2 TiO4晶相存在,且Zn2 TiO4晶相在n( Zn)∶n( Ti)≥3∶15时才会出现.紫外-可见漫反射吸收光谱显示,相比单纯TiO2,ZnO-TiO2吸收边蓝移.%ZnO-TiO2 composite catalyst was prepared by modified sol-gel method.The microcrystalline structure and light absorption performance of ZnO-TiO2 were identified by XRD and UV-Vis DRS, respectively.With methyl or-ange( MO) as the degradation product, the result showed that the photocatalytic activity of ZnO-TiO2 was affected by the conversion time from sol to gel controlled by changing the content of water and ethanol.when the ratio of n( Zn)∶n( Ti) was 3∶15 and calcination temperature was 500 ℃, the degradation of MO was up to 96.4%under UV irradia-tion for 5 h.The XRD results confirmed ZnO-TiO2 appeared mostly anatase TiO2 and cubic Zn2 TiO4 phases, and the cubic Zn2 TiO4 phase was observed only when n( Zn)∶n( Ti)≥3∶15.Compared with the pure TiO2 , the characteristic absorption threshold of ZnO-TiO2 appeared slight blue shift.

  4. Study of TiO2 nanoparticle phase alteration and its catalytic effect on the chemoselective -sulphonylation of amines and urazoles

    Indian Academy of Sciences (India)

    Davood Azarifar; Fatemeh Soleimanei; Babak Jaleh

    2013-07-01

    Anatase and rutile are the two major crystalline phases of TiO2. Heat treatment can change crystal structure and physical properties of TiO2 nanoparticles. The effect of particles size on anatase-rutile phase transformation has been studied for the -sulphonylation of amines and urazoles both under the conventional and ultrasound irradiation conditions. The main advantages allocated to this method are chemoselectivity, reduced reaction times, high yield, non-solvent green conditions and easy procedure. The catalyst can be easily recovered simply by filtration and reused with no significant loss in its reactivity.

  5. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.

    Science.gov (United States)

    Yu, Hua; Pan, Jian; Bai, Yang; Zong, Xu; Li, Xinyong; Wang, Lianzhou

    2013-09-27

    One-dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye-sensitized solar cells (DSSCs) due to their superior electron-transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three-dimensional (3D) rutile-nanorod-based network structure directly grown on fluorine-doped tin oxide (FTO) substrates was developed by using a facile two-step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head-caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light-harvesting efficiency was increased due to an enhanced light-scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open-circuit voltage decay (OCVD) analyses confirmed that the electron-recombiantion rate was reduced on formation of the nanorod-based 3D network for fast electron transport. As a resut, a light-to-electricity conversion efficiency of 6.31% was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2 .

  6. Low temperature synthesis of hierarchical TiO2 nanostructures for high performance perovskite solar cells by pulsed laser deposition.

    Science.gov (United States)

    Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-10-21

    A promising way to advance perovskite solar cells is to improve the quality of the electron transport material -e.g., titanium dioxide (TiO2) - in a direction that increases electron transport and extraction. Although dense TiO2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskites. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO2 nanoparticles into TiO2 hierarchical architectures exhibiting an anatase crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ∼14%. Our approach demonstrates a way to grow high aspect-ratio TiO2 nanostructures for improved interfacial contact between TiO2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. Compared to previous pulsed laser deposition-synthesized TiO2 mesoporous crystalline networks that needed post-thermal annealing at 500 °C to form mesoporous crystalline networks, our relatively low temperature (300 °C) TiO2 processing method may promote reduced energy-consumption during device fabrication, as well as enable compatibility with flexible polymer substrates such as polyimide.

  7. Computational Study of the Adsorption of Dimethyl Methylphosphonate (DMMP) on the (010) Surface of Anatase TiO2 With and Without Faceting

    Science.gov (United States)

    2009-12-05

    unfa- ceted surface via a Ti5c---O bond to a methoxy O atom. At the RHF level used in geometry opti- mization the resulting structure was less stable...of the unfa- ceted anatase (010) surfacea atomb this workc ref. 37d ref. 22e Ti5c 0.02; -0.15 0.04; -0.14 0.02; -0.16 O|| 0.02; +0.18 0.04; +0.18

  8. TiO2-assisted degradation of a perfluorinated surfactant in aqueous solutions treated by gliding arc discharge.

    Science.gov (United States)

    Marouf-Khelifa, Kheira; Abdelmalek, Fatiha; Khelifa, Amine; Addou, Ahmed

    2008-02-01

    The plasma-chemical degradation of Forafac 1110, a perfluorinated non-ionic surfactant, in aqueous solutions was investigated using TiO2 catalysts. The considered plasma was the gliding arc in humid air, which results from an electric discharge at atmospheric pressure and quasi-ambient temperature. Two titanium dioxide powders were used and their synergistic effects on the Forafac degradation were compared. The results were discussed through the evolution of the pH, the conductivity, the fluoride ions concentration released in solutions, the surfactant concentration remaining after treatment and the chemical oxygen demand (COD) measurement. The combination of the plasma-chemical treatment with heterogeneous catalysis through the use of TiO2 accelerated the Forafac degradation, since only 60 min was sufficient to remove 96% instead of 360 min needed in the absence of TiO2. The use of anatase and rutile under the trade-name of Rhodia TiO2 and Merck TiO2, respectively, led to different results, because Rhodia TiO2 has proven to be more efficient. It would seem that the crystalline phase as well as the crystallite size, explain the efficiency of anatase. The advantage of the plasma-catalysis is due to the fact that there is a significant production of the OH* radicals not only generated by the gliding arc discharge but also by TiO2.

  9. First-principles study of the electronic and optical properties of the (Y, N)-codoped anatase TiO2 photocatalyst

    Institute of Scientific and Technical Information of China (English)

    Lin Yan-Ming; Jiang Zhen-Yi; Hu Xiao-Yun; Zhang Xiao-Dong; Fan Jun; Miao Hui; Shang Yi-Bo

    2012-01-01

    First-principles plane-wave pseudopotential calculations are performed to study the geometrical structures,formation energies,and electronic and optical properties of Y-doped,N-doped,and (Y,N)-codoped TiO2.The calculated results show that Y and N codoping leads to lattice distortion,easier separation of photogenerated electron-hole pairs and band gap narrowing. The optical absorption spectra indicate that an obvious red-shift occurs upon Y and N codoping,which enhances visible-light photocatalytic activity.

  10. Photocatalytic Activity of Nanosized TiO2 Enhanced by co-doping with Fe3+ and Nd3+ Ions

    Institute of Scientific and Technical Information of China (English)

    Fu Pingfeng; Zhao Zhuo; Wang Jingxin

    2007-01-01

    In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.

  11. High open voltage and superior light-harvesting dye-sensitized solar cells fabricated by flower-like hierarchical TiO2 composed with highly crystalline nanosheets

    Science.gov (United States)

    Que, Ya-Ping; Weng, Jian; Hu, Lin-Hua; Wu, Ji-Huai; Dai, Song-Yuan

    2016-03-01

    The morphology, microstructure and crystallography of titanium dioxide (TiO2) have great effect on the photoelectric performance of dye-sensitized solar cells (DSSCs). Herein, flower-like 3D TiO2 microstructures based on well-defined high-crystalline nanosheets are synthesized through a facile hydrothermal method. Especially, morphological evolution process and mechanism of this hierarchical structure are investigated. Due to the highly crystalline nature and smaller surface area of these nanosheets, the corresponding device shows an extremely high open-current voltage up to 0.84 V, which results from the less electron recombination. When applied as a scattering layer on top of the nanoparticle layer, the power conversion efficiency (PCE) can be significantly improved and give birth to a PCE value of 9.6%, which is 24.6% higher than that of an analogous device using nanoparticles (NP) (7.7%). As reflected by diffusion reflection spectra, intensity of the modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) and electrochemical impedance spectra (EIS), this hierarchical structure can not only enhance light harvesting, but also reduce electron recombination, facilitate electron transport and improve electron collection efficiency.

  12. Removal of cationic Rhodamine-B dye using nano-titania with anatase crystalline structure and kinetic analysis of the photocatalytic reaction

    Science.gov (United States)

    Zhang, Dongfang

    2013-01-01

    Heterogeneous photocatalytic removal of Rhodamine-B (RhB) dye from liquid phase was done using anatase-phase nanocrystalline TiO2 synthesized via a modified sol-gel process. The anatase-phase nanocrystalline TiO2 was characterized using various analytical techniques including XRD, UV-vis DRS, PL, and FTIR to investigate its phase composition and structure, nanocrystalline size, band gap energy, photoluminescence and surface properties of the prepared systems. The photocatalytic discoloration efficiency of anatase-phase nanocrystalline titania was investigated by monitoring the decomposition of RhB dye as target compounds in an aqueous solution. The results showed that the as-prepared anatase-phase nanocrystalline TiO2 was excellent for degradation of RhB molecule, and the crystallite size, excitonic PL and surface hydroxyl content have intimate relationship with the decomposition efficiency of RhB. The reaction mechanism was proposed and the results demonstrate that the role of direct photolysis on RhB dye degradation can be neglected. Meanwhile, the Langmuir-Hinshelwood kinetic model describes the photodecay date of RhB in consistent with a first order powder law and thus photocatalytic oxidation reaction followed a pseudo-first-order kinetics.

  13. Comparison of Oxidative Stresses Mediated by Different Crystalline Forms and Surface Modification of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Karim Samy El-Said

    2015-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2. Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.

  14. Effect of Postdeposition Heat Treatment on the Crystallinity, Size, and Photocatalytic Activity of TiO2 Nanoparticles Produced via Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2010-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles were produced using chemical vapour deposition (CVD at different deposition temperatures (300–700°C. All the samples were heat treated at their respective deposition temperatures and at a fixed temperature of 400°C. A scanning electron microscope (SEM, a transmission electron microscope (TEM, and X-ray diffraction (XRD were used to characterize the nanoparticles in terms of size and crystallinity. The photocatalytic activity was investigated via degradation of methylene blue under UV light. The effects of post deposition heat treatment are discussed in terms of crystallinity, nanoparticle size as well as photocatalytic activity. Crystallinity was found to have a much larger impact on photocatalytic activity compared to nanoparticle size. Samples having a higher degree of crystallinity were more photocatalytically active despite being relatively larger in size. Surprisingly, the photocatalytic activity of the samples reduced when heat treated at temperatures lower than the deposition temperature despite showing an improvement in crystallinity.

  15. Fe-doped TiO 2 thin films

    Science.gov (United States)

    Mardare, Diana; Nica, Valentin; Teodorescu, Cristian-Mihail; Macovei, Dan

    2007-09-01

    The reactive sputtering technique was used to obtain undoped and Fe-doped TiO 2 thin films deposited on glass substrates. At 250 °C substrate temperature, undoped TiO 2 films crystallize in a mixed rutile/anatase phase, while Fe-doped films exhibit the rutile phase only. Presence of Fe 3+ ions into the TiO 2 lattice is suggested by the intensity variation of forbidden 1s → 3d transitions between the Ti and Fe K-edges. Ti K-edge EXAFS data are assessed to a mixture of the two kinds of surroundings, a rutile-like crystalline phase, identified also by X-ray diffraction, and a nanosized or amorphous anatase-like surrounding. The local atomic order about Fe atoms is quite different and could be related also to an amorphous phase. The Swanepoel method is used to obtain the dispersion of the refractive index below the interband absorption edge. The dispersion energy, the single-oscillator energy and the coordination number of the Ti atoms are evaluated using the single-oscillator model (Wemple-DiDomenico).

  16. Controlling surface defects and photophysics in TiO2 nanoparticles.

    Science.gov (United States)

    Llansola-Portoles, Manuel J; Bergkamp, Jesse J; Finkelstein-Shapiro, Daniel; Sherman, Benjamin D; Kodis, Gerdenis; Dimitrijevic, Nada M; Gust, Devens; Moore, Thomas A; Moore, Ana L

    2014-11-13

    Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect structures may help explain reactivity and overall materials performance in a wide range of applications. In this work we address the solubility problem and surface defects control on TiO2 nanoparticles. We report the synthesis and characterization of ∼4 nm TiO2 anatase spherical nanoparticles that are soluble and stable in a wide range of organic solvents and water. By controlling the temperature during the synthesis, we are able to tailor the density of defect states on the surface of the TiO2 nanoparticles without affecting parameters such as size, shape, core crystallinity, and solubility. The morphology of both kinds of nanoparticles was determined by TEM. EPR experiments were used to characterize the surface defects, and transient absorption measurements demonstrate the influence of the TiO2 defect states on photoinduced electron transfer dynamics.

  17. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles.

    Science.gov (United States)

    Lin, Chan; Song, Yang; Cao, Lixin; Chen, Shaowei

    2013-06-07

    A unique nanocomposite C-TiO2 was prepared by the growth of TiO2 on carbon nanoparticles using a simple hydrothermal procedure. Transmission electron microscopic (TEM) measurements showed that the nanocomposites exhibited an average core diameter of approximately 5 nm with a rather well-defined lattice space (0.4 nm) that was somewhat larger than that (0.38 nm) of the (100) crystalline planes of anatase TiO2. This lattice expansion was accounted for by the formation of surface defect dipoles of the nanosized TiO2 particles. X-ray photoelectron spectroscopic (XPS) measurements suggested that partial charge transfer occurred from carbon nanoparticles to TiO2 by the interfacial Ti-O-C linkages, which led to effective diminishment of the C-TiO2 photoluminescence as compared to that of pure TiO2 or carbon nanoparticles, suggesting intimate electronic interactions between the carbon and TiO2 components in the nanocomposites. Such unique characteristics were then exploited for the effective photocatalytic degradation of organic pollutants, as exemplified by methylene blue, by C-TiO2 under UV photoirradiation. Experimental measurements showed that the photocatalytic activity of C-TiO2 nanocomposites was about twice that of TiO2 alone, whereas little activity was observed with carbon nanoparticles. This was attributed to the electron-accepting sites on the carbon nanoparticles that facilitated interfacial charge separation.

  18. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp

    Energy Technology Data Exchange (ETDEWEB)

    Iswarya, V.; Bhuvaneshwari, M.; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri [Centre for Nanobiotechnology, VIT University, Vellore (India); Chandrasekaran, Prathna Thanjavur [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Bhalerao, Gopalkrishna M.; Chakravarty, Sujoy [UGC-DAE CSR, Kalpakkam Node, Kokilamedu (India); Raichur, Ashok M. [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore (India); Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com [Centre for Nanobiotechnology, VIT University, Vellore (India)

    2015-04-15

    Highlights: • Toxicity of two crystalline phases of titania NPs on freshwater microalgae studied. • (Anatase, Rutile) mixture showed additive and antagonistic effect on microalgae. • Rutile had more colloidal stability than anatase and binary mixtures. • ROS generation varied with the crystallinity of the NPs. • Ultrastructural damages observed in TEM images. - Abstract: In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 ± 35.01 nm, 555.74 ± 19.93 nm, and 1620.24 ± 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary

  19. Structural analysis of TiO2 and TiO2-Ag thin films and their antibacterial behaviors

    Science.gov (United States)

    Hsieh, J. H.; Yu, R. B.; Chang, Y. K.; Li, C.

    2012-01-01

    TiO2 (rutile and anatase) thin films was first prepared using reactive sputtering, in an Ar+O2 plasma. In the 2nd stage of the experiment, various amounts (3, 7, and 10 at. %) of Ag was doped into the rutile film in order to form TiO2-Ag thin films. These films were annealed for one hour in Ar atmosphere, at 300, 400, and 500 °C. The films' structures were then examined using X-ray diffractometry. FESEM (field-emission scaning electron microscopy) was used to investigate the surface emergence of Ag particles. As for the examination of optical band gaps and absorption of these films, UV-Vis-NIR photometer was used. The results show that, in as-deposited condition, the addition of Ag might disrupt the growth of crystalline structure and cause the formation of amorphous films. After annealing, it is found that the structure tends to become anatase phase which is a metastable phase between amorphous titanium oxide and rutile. More importantly, the absorption of the Ag-doped films would be enhanced in the visible-light range. Some of the enhancement is clearly due to plasmon resonance effect. The Ag-doped samples have shown some antibacterial effect in dark. When irradiated with light, the samples show a synergistic behavior combining the bactericidal effect of Ag ions and photocatalytic effect of TiO2.

  20. Photocatalytic Degradation of Dichlorvos in Visible Light by Mg2+-TiO2 Nanocatalyst

    Directory of Open Access Journals (Sweden)

    T. Siva Rao

    2012-01-01

    Full Text Available Photocatalytic activity of TiO2 was studied by doping with magnesium (Mg2+-TiO2 with varying magnesium weight percentages ranging from 0.75–1.5 wt%. The doped and undoped samples were synthesized by sol-gel method and characterized by X-ray diffraction (XRD, N2 adsorption-desorption (BET, X-ray photoelectron spectroscopy (XPS, UV-visible diffuse reflectance spectroscopy (DRS, and scanning electron microscopy (SEM. The XRD data has shown that anatase crystalline phase in Mg2+-TiO2 catalysts, indicating that Mg2+ ions did not influence the crystal patterns of TiO2. The presence of magnesium ions in TiO2 matrix has been determined by XPS spectra. DRS spectra showed that there is a significant absorption shift towards the visible region for doped TiO2. The SEM images and BET results showed that doped catalyst has smaller particle size and highest surface area than undoped TiO2. The photocatalytic efficiency of the synthesized catalysts was investigated by the photocatalytic degradation of aqueous dichlorvos (DDVP under visible light irradiation, and it was found that the Mg2+-doped catalysts have better catalytic activity than undoped TiO2. This can be attributed that there is a more efficient electron-hole creation in Mg2+-TiO2 in visible light, contrary to undoped TiO2 which can be excited only in UV irradiation. The effect of dopant concentration, pH of solution, dosage of catalysts, and initial pesticide concentration has been studied.

  1. Fabrication of Nanostructured TiO2 Using a Solvothermal Reaction for Lithium-ion Batteries

    Directory of Open Access Journals (Sweden)

    Jicai Liang

    2016-03-01

    Full Text Available Nanostructured TiO2 was successfully synthesized via a facile one-pot solvothermal reaction followed by calcina‐ tion. Hydrolysis and polycondensation of titanium butox‐ ide (Ti(OR4 were performed in the presence of sodium dodecylbenzenesulfonate (SDBS. The morphologies, crystallinity and compositions of obtained samples were identified by the methods of X-ray diffraction (XRD, Brunauer–Emmett–Teller (BET and transmission electron microscopy (TEM. It was found that the nanostructured TiO2 with an average diameter of 10±5 nm had the crystal type of anatase. A good specific surface was also obtained by the standard multipoint BET method (119.2 m2/g. As the anode materials for the lithium-ion batteries (LIBs, the anatase phase TiO2 demonstrated a relatively high gravi‐ metric specific capacity of 264.8 mAh g-1. The reversible capacity of TiO2 remained 196.4 mAh g-1 at a rate of 0.2 ̊C after 100 cycles. It indicated that this kind of TiO2 possessed a good electrochemical performance.

  2. Solvothermal Synthesis of Hierarchical TiO2 Microstructures with High Crystallinity and Superior Light Scattering for High-Performance Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Li, Zhao-Qian; Mo, Li-E; Chen, Wang-Chao; Shi, Xiao-Qiang; Wang, Ning; Hu, Lin-Hua; Hayat, Tasawar; Alsaedi, Ahmed; Dai, Song-Yuan

    2017-09-20

    In this article, hierarchical TiO2 microstructures (HM-TiO2) were synthesized by a simple solvothermal method adopting tetra-n-butyl titanate as the titanium source in a mixed solvent composed of N,N-dimethylformamide and acetic acid. Due to the high crystallinity and superior light-scattering ability, the resultant HM-TiO2 are advantageous as photoanodes for dye-sensitized solar cells. When assembled to the entire photovoltaic device with C101 dye as a sensitizer, the pure HM-TiO2-based solar cells showed an ultrahigh photovoltage up to 0.853 V. Finally, by employing the as-obtained HM-TiO2 as the scattering layer and optimizing the architecture of dye-sensitized solar cells, both higher photovoltage and incident photon-to-electron conversion efficiency value were harvested with respect to TiO2 nanoparticles-based dye-sensitized solar cells, resulting in a high power conversion efficiency of 9.79%. This work provides a promising strategy to develop photoanode materials with outstanding photoelectric conversion performance.

  3. One-step synthesis of vertically aligned anatase thornbush-like TiO2 nanowire arrays on transparent conducting oxides for solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Roh, Dong Kyu; Chi, Won Seok; Ahn, Sung Hoon; Jeon, Harim; Kim, Jong Hak

    2013-08-01

    Herein, we report a facile synthesis of high-density anatase-phase vertically aligned thornbush-like TiO2 nanowires (TBWs) on transparent conducting oxide glasses. Morphologically controllable TBW arrays of 9 μm in length are generated through a one-step hydrothermal reaction at 200 °C over 11 h using potassium titanium oxide oxalate dehydrate, diethylene glycol (DEG), and water. The TBWs consist of a large number of nanoplates or nanorods, as confirmed by SEM and TEM imaging. The morphologies of TBWs are controllable by adjusting DEG/water ratios. TBW diameters gradually decrease from 600 (TBW600) to 400 (TBW400) to 200 nm (TBW200) and morphologies change from nanoplates to nanorods with an increase in DEG content. TBWs are utilized as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs) and solid-state DSSCs (ssDSSCs). The energy-conversion efficiency of qssDSSCs is in the order: TBW200 (5.2%)>TBW400 (4.5%)>TBW600 (3.4%). These results can be attributed to the different surface areas, light-scattering effects, and charge transport rates, as confirmed by dye-loading measurements, reflectance spectroscopy, and incident photon-to-electron conversion efficiency and intensity-modulated photovoltage spectroscopy/intensity-modulated photocurrent spectroscopy analyses. TBW200 is further treated with a graft-copolymer-directed organized mesoporous TiO2 to increase the surface area and interconnectivity of TBWs. As a result, the energy-conversion efficiency of the ssDSSC increases to 6.7% at 100 mW cm(-2) , which is among the highest values for N719-dye-based ssDSSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A DFT study of the acid-base properties of anatase TiO2 and tetragonal ZrO2 by adsorption of CO and CO2 probe molecules

    Science.gov (United States)

    Chen, Hsin-Yi Tiffany; Tosoni, Sergio; Pacchioni, Gianfranco

    2016-10-01

    We have performed a comparative study of the acid-base characteristics of the surfaces of anatase TiO2 and tetragonal ZrO2. To this end we performed DFT + U calculations on CO and CO2 probe molecules adsorbed both on terraces and steps of the two oxides. For titania, CO adsorption results in a moderate adsorption energy (about - 0.3 eV) and in a positive shift of the Csbnd O stretching frequency (about + 40 cm- 1), typical of Lewis acid sites, with no clear difference in the acidity between terraces or steps. For zirconia we found a similar CO binding energy as for titania, and a CO vibrational shift that depends on the location of the Zr cation: negligible on terraces, similar to TiO2 on steps. We conclude that the acidic properties are similar in the two oxide surfaces. Things are different for CO2 adsorption. On titania the interaction is weak and surface carbonates compete with physisorbed CO2, indicating a weak basic character. On the contrary, on zirconia three types of stable carbonates have been identified. Their vibrational frequencies are consistent with IR measurements reported in the literature. The most stable species forms on steps of the t-ZrO2 surface and consists of a CO32 - unit which lies flat on the surface with the O atoms pointing towards three Zr ions. The species forms spontaneously by extraction of a lattice oxygen by an incoming CO2 molecule. The different reactivity points towards a much more pronounced basic character of zirconia compared to titania, at least if measured by CO2 adsorption.

  5. Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity

    Science.gov (United States)

    2012-01-01

    In a mixed solvent of water and ethanol, polystyrene/titanium dioxide (PSt/TiO2) composite particles of core-shell structure were prepared by hydrolysis of tetrabutyl titanate in the presence of cationic PSt particles or anionic PSt particles surface-treated using γ-aminopropyl triethoxysilane. Hollow TiO2 particles were obtained through calcination of the PSt/TiO2 core-shell particles to burn off the PSt core or through dissolution of the core by tetrahydrofuran (THF). An alternative process constituted of preheating the PSt/TiO2 particles at 200°C to allow partial crystallization followed by calcination or PSt dissolution by THF. The outcome TiO2 particles thus prepared were examined by TEM, and hollow TiO2 particles were observed. The crystalline phase structure and phase transformation were characterized, which revealed that preheating before the removal of the PSt core was useful to achieve the desired hollow TiO2 particles, and the calcination process was beneficial to the formation of anatase and rutile structures. The tests of TiO2 particles as catalyst in the photodegradation of Rhodamine B demonstrated that a much higher catalytic activity was observed with the TiO2 hollow particles prepared through calcination combined with preheating. PMID:23176612

  6. Mesoporous anatase TiO2 nanorods as thermally robust anode materials for Li-ion batteries: detailed insight into the formation mechanism.

    Science.gov (United States)

    Seisenbaeva, Gulaim A; Nedelec, Jean-Marie; Daniel, Geoffrey; Tiseanu, Carmen; Parvulescu, Vasile; Pol, Vilas G; Abrego, Luis; Kessler, Vadim G

    2013-12-16

    Uniformly mesoporous and thermally robust anatase nanorods were produced with quantitative yield by a simple and efficient one-step approach. The mechanism of this process was revealed by insertion of Eu(3+) cations from the reaction medium as luminescent probes. The obtained structure displays an unusually high porosity, an active surface area of about 300 m(2) g(-1) and a specific capacity of 167 mA h g(-1) at a C/3 rate, making it attractive as an anode electrode for Li-ion batteries. An additional attractive feature is its remarkable thermal stability; heating to 400 °C results in a decrease in the active surface area to a still relatively high value of 110 m(2) g(-1) with conservation of open mesoporosity. Thermal treatment at 800 °C or higher, however, causes transformation into a non-porous rutile monolith, as commonly observed with nanoscale titania.

  7. Pulsed supercritical synthesis of anatase TiO2 nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction

    Science.gov (United States)

    Eltzholtz, Jakob Rostgaard; Tyrsted, Christoffer; Jensen, Kirsten Marie Ørnsbjerg; Bremholm, Martin; Christensen, Mogens; Becker-Christensen, Jacob; Iversen, Bo Brummerstedt

    2013-02-01

    A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania nanoparticles were synthesized in a 50/50 mixture of water and isopropanol near and above the critical point of water (P = 250 bar, T = 300, 350, 400, 450, 500 and 550 °C). The evolution of the reaction product was followed by sequentially recording PXRD patterns with a time resolution of less than two seconds. The crystallite size of titania is found to depend on both temperature and residence time, and increasing either parameter leads to larger crystallites. A simple adjustment of either temperature or residence time provides a direct method for gram scale production of anatase nanoparticles of average crystallite sizes between 7 and 35 nm, thus giving the option of synthesizing tailor-made nanoparticles. Modeling of the in situ growth curves using an Avrami growth model gave an activation energy of 66(19) kJ mol-1 for the initial crystallization. The in situ PXRD data also provide direct information about the size dependent macrostrain in the nanoparticles and with decreasing crystallite size the unit cell contracts, especially along the c-direction. This agrees well with previous ex situ results obtained for hydrothermal synthesis of titania nanoparticles.A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania

  8. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  9. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  10. Characterization and activity of visible-light-driven TiO 2 photocatalyst codoped with nitrogen and cerium

    Science.gov (United States)

    Liu, Chao; Tang, Xinhu; Mo, Cehui; Qiang, Zhimin

    2008-04-01

    Nitrogen and cerium codoped TiO 2 photocatalysts were prepared by a modified sol-gel process with doping precursors of cerium nitrate and urea, and characterized by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray photoelectron spectra (XPS) and ultraviolet-visible light diffuse reflectance spectra (UV-vis DRS). Results indicate that anatase TiO 2 is the dominant crystalline type in as-prepared samples, and CeO 2 crystallites appear as the doping ratio of Ce/Ti reaches to 3.0 at%. The TiO 2 starts to transform from amorphous phase to anatase at 987.1 K during calcination, according to the TG-DSC curves. The XPS show that three major metal ions of Ce 3+, Ce 4+, Ti 4+ and one minor metal ion of Ti 3+ coexist on the surface. The codoped TiO 2 exhibits significant absorption within the range of 400-500 nm compared to the non-doped and only nitrogen-doped TiO 2. The enhanced photocatalytic activity of the codoped TiO 2 is demonstrated through degradation of methyl orange under visible light irradiation.

  11. Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films

    Science.gov (United States)

    Mohanty, P.; Mishra, N. C.; Choudhary, R. J.; Banerjee, A.; Shripathi, T.; Lalla, N. P.; Annapoorni, S.; Rath, Chandana

    2012-08-01

    TiO2 and Co-doped TiO2 (CTO) thin films deposited at various oxygen partial pressures by pulsed laser deposition exhibit room temperature ferromagnetism (RTFM) independent of their phase. Films deposited at 0.1 mTorr oxygen partial pressure show a complete rutile phase confirmed from glancing angle x-ray diffraction and Raman spectroscopy. At the highest oxygen partial pressure, i.e. 300 mTorr, although the TiO2 film shows a complete anatase phase, a small peak corresponding to the rutile phase along with the anatase phase is identified in the case of CTO film. An increase in O to Ti/(Ti+Co) ratio with increase in oxygen partial pressure is observed from Rutherford backscattering spectroscopy. It is revealed from x-ray photoelectron spectroscopy (XPS) that oxygen vacancies are found to be higher in the CTO film than TiO2, while the valency of cobalt remains in the +2 state. Therefore, the CTO film deposited at 300 mTorr does not show a complete anatase phase unlike the TiO2 film deposited at the same partial pressure. We conclude that RTFM in both films is not due to impurities/contaminants, as confirmed from XPS depth profiling and cross-sectional transmission electron microscopy (TEM), but due to oxygen vacancies. The magnitude of moment, however, depends not only on the phase of TiO2 but also on the crystallinity of the films.

  12. TiO2晶型与光催化活性关系的研究%Studies on the Relationship Between the Crystal Form of TiO2 and Its Photocatalyzing Degradation Efficiency

    Institute of Scientific and Technical Information of China (English)

    高伟; 吴凤清; 罗臻; 富菊霞; 王德军; 徐宝琨

    2001-01-01

    A series of studies were carried out to investigate the effect of crystal forms of TiO2 on the activities in the photocatalyzing degradation of aqueous methyl orange. It is shown that the rutile could hardly catalyze the degradation of the methyl orange and anatase is more effective for catalyzing the degradation than rutile. Moreover, the activities of mixed-crystalline forms of TiO2 vary with the change of the values of A/R, the best of which is 9∶1. Some characterizations with XRD, XPS and SPS were performed and explanations to the phenomena that exist in photodegradation are given out.

  13. Exceptional performance of a high voltage spinel LiNi0.5Mn1.5O4 cathode in all one dimensional architectures with an anatase TiO2 anode by electrospinning

    Science.gov (United States)

    Arun, Nagasubramanian; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Shubha, Nageswaran; Ling, Wong Chui; Ramakrishna, Seeram; Madhavi, Srinivasan

    2014-07-01

    We report for the first time the synthesis and extraordinary performance of a high voltage spinel LiNi0.5Mn1.5O4 fiber cathode in all one dimensional (1D) architecture. Structural and morphological features are analyzed by various characterization techniques. Li-insertion/extraction properties are evaluated in a half-cell assembly (Li/LiNi0.5Mn1.5O4) and subsequently in full-cell configuration with an anatase TiO2 fiber anode. In both half- and full-cell assemblies, gelled polyvinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) is used as the separator-cum-electrolyte. All the one dimensional components used for fabricating Li-ion cells are prepared by a simple and scalable electrospinning technique. The full-cell, LiNi0.5Mn1.5O4/gelled PVdF-HFP/TiO2 delivered the reversible capacity of ~102 mA h g-1 at 0.1 C rate with an operating potential of ~2.8 V. Excellent rate capability and stable cycling profiles are noted for such a full-cell assembly with a capacity retention of ~86% after 400 cycles.

  14. Photocatalytic thin films containing TiO2:N nanopowders obtained by the layer-by-layer self-assembling method

    Science.gov (United States)

    Rojas-Blanco, L.; Urzúa, M. D.; Ramírez-Bon, R.; Espinoza Beltrán, F. J.

    2012-01-01

    In this work, TiO2-N powders were synthesized by high-energy ball milling, using commercial titanium dioxide (TiO2) in the anatase phase and urea to introduce nitrogen into TiO2 in order to enhance their photocatalytic properties in the visible spectral region. Several samples were prepared by milling a mixture of TiO2-urea during 2, 4, 8, 12 and 24 h and characterized by spectroscopic and analytical techniques. X-ray diffraction (XRD) results showed the coexistence of anatase and high-pressure srilankite TiO2 crystalline phases in the samples. Scanning electron microscopy (SEM) revealed that the grain size of the powder samples decreases to 200 nm at 24 h milling time. UV-Vis diffuse reflectance spectroscopic data showed a clear red-shift in the onset of light absorption from 387 to 469 nm as consequence of nitrogen doping in the samples. The photocatalytic activity of the TiO2-N samples was evaluated by methylene blue degradation under visible light irradiation. It was found that TiO2-N samples had higher photocatalytic activity than undoped TiO2 samples, which could be assigned to the effect of introducing N atoms and XPS results confirm it. Using polyethylenimine (PEI), transparent thin films of TiO2-N nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 15 min.

  15. Crystalline silicon photovoltaics via low-temperature TiO 2/Si and PEDOT/Si heterojunctions

    Science.gov (United States)

    Nagamatsu, Ken Alfred

    The most important goals in developing solar cell technology are to achieve high power conversion efficiencies and lower costs of manufacturing. Solar cells based on crystalline silicon currently dominate the market because they can achieve high efficiency. However, conventional p-n junction solar cells require high-temperature diffusions of dopants, and conventional heterojunction cells based on amorphous silicon require plasma-enhanced deposition, both of which can add manufacturing costs. This dissertation investigates an alternative approach, which is to form crystalline-silicon-based solar cells using heterojunctions with materials that are easily deposited at low temperatures and without plasma enhancement, such as organic semiconductors and metal oxides. We demonstrate a heterojunction between the organic polymer, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT), and crystalline silicon, which acts as a hole-selective contact and an alternative to a diffused p-n junction. We also present the use of a heterojunction between titanium dioxide and crystalline silicon as a passivating electron-selective contact. The Si/TiO2 heterojunction is demonstrated for the first time as a back-surface field in a crystalline silicon solar cell, and is incorporated into a PEDOT/Si device. The resulting PEDOT/Si/TiO2 solar cell represents an alternative to conventional silicon solar cells that rely on thermally-diffused junctions or plasma-deposited heterojunctions. Finally, we investigate the merits of using conductive networks of silver nanowires to enhance the photovoltaic performance of PEDOT/Si solar cells. The investigation of these materials and devices contributes to the growing body of work regarding crystalline silicon solar cells made with selective contacts.

  16. Antibacterial activity of single crystalline silver-doped anatase TiO{sub 2} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangyu, E-mail: zhangxiangyu@tyut.edu.cn; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin, E-mail: tangbin@tyut.edu.cn

    2016-05-30

    Graphical abstract: The silver-doped TiO{sub 2} nanowire arrays on titanium foil substrate were synthesized via a two-step process. It includes: deposition of AgTi films on titanium foil by magnetron sputtering; preparation of AgNW arrays on AgTi films via alkali (NaOH) hydrothermal treatment and ion-exchange with HCl, followed by calcinations. - Highlights: • Ag-doped TiO{sub 2} nanowire arrays have been prepared by a duplex-treatment. • The duplex-treatment consisted of magnetron sputtering and hydrothermal growth. • Ag-doped nanowire arrays show excellent antibacterial activity against E. coli. - Abstract: Well-ordered, one-dimensional silver-doped anatase TiO{sub 2} nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO{sub 2} nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  17. Electrodeposition of photocatalytic TiO2 film on surface of alumina prepared by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-yu; CHEN Tie-qun

    2004-01-01

    A new electrochemical method to prepare photocatalytic TiO2 thin film was developed, by which the TiO2 was electrodeposited on surface of alumina by AC electrolysis in solution consisting of K2 [TiO(C2O4 )2] and C2H2O4. The deposited TiO2 thin film was primarily characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and energy dispersive spectrum (EDS) methods. The photocatalytic properties of this film were also studied by the photocatalytic degradation of methyl orange. The results show that the TiO2 film electrodeposited by this method is mainly in amorphous and with a little crystalline component mixed anatase and rutile. The surface of the alumina prepared by anodic oxidation is porous and the TiO2 electrodeposited on it is scattered and incompact. TiO2 thin film fixed on the surface of alumina shows photocatalytic activity to the degradation of methyl orange.

  18. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    Directory of Open Access Journals (Sweden)

    Sorachon Yoriya

    2016-09-01

    Full Text Available Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times.

  19. Preparation and Fluorescence Properties of TiO2∶Eu Nano-Materials

    Institute of Scientific and Technical Information of China (English)

    陈野; 蔡伟民; 于英宁; 崔丹; 孙晓君

    2003-01-01

    A series of europium-doped titanium dioxide (TiO2) fluorescent nano-materials prepared by sol-gel method is presented. The phase structure and crystalline sizes of TiO2∶Eu, which is doped with different europium content and then heat-treated at different temperature, were investigated by XRD,TG,DTA and TEM. The results show that europium could be introduced into TiO2 under high temperature and it can suppress the structural phase transition from anatase to rutile and the crystal growth of TiO2 in TiO2∶Eu nano-materials. The fluorescence spectra were examined by fluorescence spectrophotometer, and the results show that the fluorescence intensity is the strongest when europium content is 2.68%(mole fraction) and the heat-treated temperature is 700 ℃. From the measurement results of the fluorescence lifetimes, it can be seen that the fluorescence lifetime could be prolonged when europium is incorporated in TiO2.

  20. Controlled synthesis of hierarchical TiO2 nanoparticles on glass fibres and their photocatalytic performance.

    Science.gov (United States)

    Chen, Lin; Yang, Sudong; Mäder, Edith; Ma, Peng-Cheng

    2014-09-07

    This paper reports the synthesis of novel photocatalysts consisting of TiO2 nanoparticles and glass fibres (GF) using a two-step process. The method involves the hydrolysis of titanium tetrachloride in the presence of GF and a following hydrothermal process under alkaline conditions. Various techniques are employed to characterize the morphology, structure and crystallinity of TiO2 on the fibre surface. The results show that depending on the experiment setups, TiO2 nanoparticles exhibit spherical or flake-like morphology, forming characteristic hierarchical structures along with flexible GF. Flake-like TiO2/GF exhibits much enhanced photocatalytic activity thanks to the large surface area and the hetero-junction of anatase and TiO2-B phases observed in its structure. An interesting observation is that the alkali treatment of GF leads to the formation of porous structures on the fibre surface, facilitating the adsorption-concentration-promoted photocatalytic process. The removal ratio of the organic dye by employing TiO2/GF remains more than 80% after six cyclic runs, showing the reusability of photocatalysts in real application. The novelty of this work lies in the synergy arising from materials with unique morphologies, structures and availabilities as well as capabilities in separating photogenerated electron-hole pairs, which have not been specifically considered previously in photocatalytic semiconductors.

  1. In situ synthesis and hydrothermal crystallization of nanoanatase TiO2 -SiO2 coating on aramid fabric (HTiSiAF) for UV protection.

    Science.gov (United States)

    Deng, Hui; Zhang, Hongda

    2015-10-01

    TiO2 -SiO2 thin film was prepared by sol-gel method and coated on the aramid fabric to prepare functional textiles. The aramid fabric was dipped and withdrawn in TiO2 -SiO2 gel and hydrothermal crystallization at 80(°) C, then its UV protection functionality was evaluated. The crystalline phase and the surface morphology of TiO2 -SiO2 thin film were characterized using SEM, XRD, and AFM respectively. SEM showed hydrothermal crystallization led to a homogeneous dispersion of anatase nonocrystal in TiO2 -SiO2 film, and XRD suggested the mean particle size of the formed anatase TiO2 was less than 30 nm. AFM indicated that hydrothermal treatment enhanced the crystallization of TiO2 . UV protection analysis suggested that the hydrothermally treated coated textile had a better screening property in comparison with TiO2 -SiO2 gel and native aramid fabric.

  2. Acid-assisted hydrothermal synthesis of nanocrystalline TiO2 from titanate nanotubes: influence of acids on the photodegradation of gaseous toluene.

    Science.gov (United States)

    Chen, Kunyang; Zhu, Lizhong; Yang, Kun

    2015-01-01

    In order to efficiently remove volatile organic compounds (VOCs) from indoor air, one-dimensional titanate nanotubes (TiNTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases, shapes and sizes. The influences of various acids such as CH3COOH, HNO3, HCl, HF and H2SO4 used in the treatment were separately compared to optimize the performance of the TiO2 nanocrystals. Compared with the strong and corrosive inorganic acids, CH3COOH was not only safer and more environmentally friendly, but also more efficient in promoting the photocatalytic activity of the obtained TiO2. It was observed that the anatase TiO2 synthesized in 15 mol/L CH3COOH solution exhibited the highest photodegradation rate of gaseous toluene (94%), exceeding that of P25 (44%) by a factor of more than two. The improved photocatalytic activity was attributed to the small crystallite size and surface modification by CH3COOH. The influence of relative humidity (20%-80%) on the performance of TiO2 nanocrystals was also studied. The anatase TiO2 synthesized in 15 mol/L CH3COOH solution was more tolerant to moisture than the other TiO2 nanocrystals and P25. Copyright © 2014. Published by Elsevier B.V.

  3. High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage.

    Science.gov (United States)

    Wang, Hsin-Yi; Chen, Jiazang; Hy, Sunny; Yu, Linghui; Xu, Zhichuan; Liu, Bin

    2014-12-21

    Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m(2) g(-1) were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity.

  4. Study on the Phase Transformation Behavior of Nanosized Amorphous TiO2

    Institute of Scientific and Technical Information of China (English)

    Huaqing XIE; Tonggeng XI; Qinghong ZHANG; Qingren WU

    2003-01-01

    Nanosized amorphous TiO2 powders with a specific surface area of 501 m2.g-1 were prepared by hydrolysis. Aftercalcined at 400℃ for 2 h, the prepared amorphous TiO2 powders were fully transformed into anatase crystallitesthe samples of nanosized amorphous TiO2 mixed with microsized anatase, nanosized anatase, or nanosized α-Al2O3respectively. Effects of sample packing, anatase addition, or α-Al2O3 addition on the crystallization behavior ofnanosized amorphous TiO2 were analyzed.

  5. 锐钛矿型TiO2薄膜的低温制备及其光催化性能研究%Low-temperature preparation and photocatalytic performance of anatase TiO2 thin films

    Institute of Scientific and Technical Information of China (English)

    李勇; 艾凡荣; 闫洪

    2012-01-01

    Nano-TiO2 thin films were prepared at low temperature by an improved sol-gel method and dip-coating technique. The phase and crystal structure, surface morphology and optical absorption properties of the prepared TiO2 films were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM) and ultraviolet-visible spectrometer (UV-Vis), respectively. The photocatalytic activity of the TiO2 films was evaluated through degrading the methylene blue solution under UV radiation. The results show that the Nano-TiO2 thin films prepared at low temperature possess an anatase structure and a uniform dense surface, and show a strong UV absorption. With the Nano-TiO2 films as the photocatalyst, 67.4% of the methylene blue solution is degraded after exposure to UV radiation for 48 h.%采用改进的sol-gel法及浸渍-提拉工艺在低温条件下制备了纳米TiO2薄膜.利用X射线衍射仪(XRD)、傅里叶变换红外光谱仪( FTIR)、扫描电镜(SEM)及紫外-可见光光谱仪(UV-Vis)对所制TiO2薄膜的物相结构、表面形貌以及光吸收特性进行了表征,并利用紫外光照降解亚甲基蓝溶液的方法考察了TiO2薄膜的光催化活性.结果表明:低温制备的纳米TiO2薄膜为锐钛矿结构,表面均匀致密,且对紫外光表现出较强的吸收特性.在紫外光照射48 h后,该TiO2薄膜对亚甲基蓝溶液的降解率为67.4%.

  6. Efficient dye-sensitised solar cell based on uniform In-doped TiO2 spherical particles

    Science.gov (United States)

    Bakhshayesh, A. M.; Farajisafiloo, N.

    2015-07-01

    A facile deposition of uniform photoanode electrodes by a novel anatase-stabilised gel for dye-sensitised solar cells (DSCs) applications is reported. Highly crystalline anatase-TiO2 phase is stabilised by indium nitrate at 500 °C. The electrodes are composed of uniform spherical particles with diameter around 3 µm, containing small nanoparticles with the average grain size of 40 nm, deposited by dip-coating method. X-ray photoelectron spectroscopy reveals that 6 at.% In3+ was incorporated into titania crystal lattice and stabilised anatase phase by limiting the transformation from anatase to rutile phase. UV-Visible spectra show that the stabilised film has lower band gap energy than that of undoped TiO2, extending the absorption of TiO2 into visible region. Electrochemical impedance spectroscopy demonstrates that the anatase-stabilised DSC enjoys less recombination and internal resistances, improving the photovoltaic performance of the cell. The anatase-stabilised DSC has higher power conversion efficiency of 7.48 % than that of unstabilised cell (6.37 %).

  7. PHOTOCATALYTIC DEGRADATION OF RHODAMINE B ON ANATASE TiO2 WITH {001 } FACETS%{001}面TiO2光催化降解罗丹明B的研究

    Institute of Scientific and Technical Information of China (English)

    冯氏云; 全凤; 胡芸; 韦朝海

    2013-01-01

    A series of anatase TiO2 nanosheets with exposed {001 } facets were synthesized by a hydrothermal method using tetrabutyl titanate as a titanium source and HF solution as the solvent.The photocatalytic activities of the samples were evaluated by rhodamine B degradation.The influences of different reaction temperature、pH and catalyst dosage on the photocatalytic activity were investigated.TiO2 with exposed {001 } facets had good anatase crystal structure and showed strong adsorption for UV light.When the reaction temperature was 180 ℃,the pH of solution was 2,and the catalyst dosage was 1 g/T,the sample showed the highest photocatalytic activity for the degradation of rhodamine B,which could reach 100% under UV irradiation for 20 min.%以钛酸四丁酯为钛源、HF为形貌控制剂,采用水热法在不同反应温度条件下制备纳米片状{001}面TiO2,并以罗丹明B的光催化降解为模型反应,考察了不同反应温度对{001}面TiO2形貌结构的影响,研究了反应温度、pH及催化剂投加量对光催化活性的影响.结果表明,所有{001}面TiO2均具有良好的锐钛矿相衍射峰,并且在紫外光区域具有明显的光吸收;当反应温度为180℃、溶液pH为2、投加量为1g/L时,样品对罗丹明B光催化降解活性最高,紫外光照射20 min后罗丹明B降解率可达100%.

  8. SELF-CLEANING GLASS BASED ON ACID-TREATED TiO2 FILMS WITH PALMITIC ACID AS MODEL POLLUTANT

    Directory of Open Access Journals (Sweden)

    Nurul Hidayat Aprilita

    2010-06-01

    Full Text Available Preparation and characterization of self-cleaning glass based on acid-treated TiO2 films as well as evaluation on their self-cleaning properties have been carried out. Palmitic acid photodegradation was used as model pollutant. Acid-treated TiO2 powders were deposited on glass surface by using spraying technique. The XRD results showed that acid-treated TiO2 film exhibited decreased anatase crystalline size. The corresponding SEM images showed porous surface morphology. Layer densification was observed as the film thickness increased. TiO2 photocatalytic activity increased as the length of UV radiation increased. Best results were obtained at experimental condition of 35 hours UV radiation time. It is also observed that the thickness of TiO2 layers influenced the efficiency of palmitic acid photodegradation. The film with 1.661 µm thick TiO2 layers and 6.933 mg weight (0.7164 mg/cm2 could degrade 97.54 % mg palmitic acid/cm2 thin film.   Keywords: TiO2 films, acid treatment, self-cleaning glass

  9. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  10. Microsphere assembly of TiO2 mesoporous nanosheets with highly exposed (101) facets and application in a light-trapping quasi-solid-state dye-sensitized solar cell

    Science.gov (United States)

    Tao, Xiyun; Ruan, Peng; Zhang, Xiang; Sun, Hongxia; Zhou, Xingfu

    2015-02-01

    The morphology of nano-titania has a significant effect on the photoelectric properties of dye-sensitized solar cells. In this study, microsphere assembly of a TiO2 mesoporous nanosheet constructed by nanocuboids was conducted via a simple hydrothermal process. The XRD pattern indicated that the hierarchical mesoporous microspheres are anatase phase with decreased (004) peaks. Raman spectrum shows enhanced Eg peaks at 143 and 638 cm-1 caused by the symmetric stretching vibration of O-Ti-O of the (101) crystalline facet in anatase TiO2. FESEM and TEM images show that well monodispersed TiO2 microspheres with a diameter of 2 μm are assembled by TiO2 mesoporous nanosheets with exposed (101) facets. The oriented attachment of TiO2 nanocuboids along the (101) direction leads to the formation of mesoporous titania nanosheets. The UV-Vis spectrum shows that the mesoporous TiO2 nanosheets have high scattering ability and light absorption by dye. Quasi-solid-state dye-sensitized solar cells that incorporate these microspheres into the top scattering layers exhibit a prominent improvement in the power conversion efficiency of 7.51%, which shows a 45.8% increase in the overall conversion efficiency when compared with the spine hierarchical TiO2 microspheres (5.15%). There is the potential application for microsphere assembly of mesoporous TiO2 nanosheets in quasi-solid-state dye-sensitized solar cells with excellent stability.

  11. TiO2 and Fe2O3 films for photoelectrochemical water splitting.

    Science.gov (United States)

    Krysa, Josef; Zlamal, Martin; Kment, Stepan; Brunclikova, Michaela; Hubicka, Zdenek

    2015-01-09

    Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS) and judged on the basis of physical properties such as crystalline structure and surface topography and functional properties such as simulated photoelectrochemical (PEC) water splitting conditions. It was revealed that the HiPIMS method already provides crystalline structures of anatase TiO2 and hematite Fe2O3 during the deposition, whereas to finalize the sol-gel route the as-deposited films must always be annealed to obtain the crystalline phase. Regarding the PEC activity, both TiO2 films show similar photocurrent density, but only when illuminated by UV light. A different situation was observed for hematite films where plasmatic films showed a tenfold enhancement of the stable photocurrent density over the sol-gel hematite films for both UV and visible irradiation. The superior properties of plasmatic film could be explained by ability to address some of the hematite drawbacks by deposition of very thin films (25 nm) consisting of small densely packed particles and by doping with Sn.

  12. TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting

    Directory of Open Access Journals (Sweden)

    Josef Krysa

    2015-01-01

    Full Text Available Titanium oxide (TiO2 and iron oxide (α-Fe2O3 hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS and judged on the basis of physical properties such as crystalline structure and surface topography and functional properties such as simulated photoelectrochemical (PEC water splitting conditions. It was revealed that the HiPIMS method already provides crystalline structures of anatase TiO2 and hematite Fe2O3 during the deposition, whereas to finalize the sol-gel route the as-deposited films must always be annealed to obtain the crystalline phase. Regarding the PEC activity, both TiO2 films show similar photocurrent density, but only when illuminated by UV light. A different situation was observed for hematite films where plasmatic films showed a tenfold enhancement of the stable photocurrent density over the sol-gel hematite films for both UV and visible irradiation. The superior properties of plasmatic films could be explained by ability to address some of the hematite drawbacks by the deposition of very thin films (25 nm consisting of small densely packed particles and by doping with Sn.

  13. Growth of TiO2 with thermal and plasma enhanced atomic layer deposition.

    Science.gov (United States)

    Tallarida, Massimo; Friedrich, Daniel; Städter, Matthias; Michling, Marcel; Schmeisser, Dieter

    2011-09-01

    We show a comparative study of the TiO2 ALD with TTIP and either O2 or O2-plasma on Si/SiO2 substrates. In particular we compare the surface morphology and crystalline phase by means of Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS) for different O2-plasma procedures upon changing the time between cycles and the N2-purging pressure. The AFM images show that already these parameters may induce structural changes in the TiO2 films grown by ALD, with the formation of crystallites with average lateral width varying between 15 and 80 nm. By means of XAS we also found that the crystallites have mixed anatase and rutile crystalline phases and that smaller crystallites have a greater rutile component than the larger ones.

  14. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp.

    Science.gov (United States)

    Iswarya, V; Bhuvaneshwari, M; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri; Chandrasekaran, Prathna Thanjavur; Bhalerao, Gopalkrishna M; Chakravarty, Sujoy; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2015-04-01

    In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6h, the sizes of anatase (1mg/L), rutile NPs (1mg/L), and binary mixture (1, 1mg/L) were 948.83±35.01nm, 555.74±19.93nm, and 1620.24±237.87nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem.

  15. Rare earth ion modified TiO2 sols for photocatalysis application under visible light excitation

    Institute of Scientific and Technical Information of China (English)

    XIE Yibing; YUAN Chunwei

    2004-01-01

    TiO2 sols modified by rare earth (RE) ions (Ce4+, Eu3+, or Nd3+) were prepared by coprecipitation-peptization method. The photocatalysis activity was studied by investigating the photodegradation effects of active brilliant red dye X-3B. It is found that TiO2 sols modified by Ce4+, Eu3+, or Nd3+ have the anatase crystalline structure, which are prepared at 70°C. All REn+-TiO2 sol samples have uniform nanoparticles with similar morphology, which are homogenously distributed in aqueous colloidal systems. The particle sizes are 10, 8, and 12 nm for Nd3+-TiO2, Eu3+-TiO2, and Ce4+-TiO2, respectively.The character of ultrafine and positive charge sol particles contributes to the good adsorption of X-3B dye molecule on the surface of titania (about 30% X-3B adsorption amount). Experimental results exhibit that REn+-TiO2 sol photocatalysts have the capability to photodegrade X-3B under visible light irradiation. Nd3+-TiO2 and Eu3+-TiO2 show higher photocatalytic activity than Cea+-TiO2, which is due to the difference of standard redox potential of REn+/RE(n-1)+. REn+-TiO2 sols demonstrate more excellent interfacial adsorption and photodegradation effects to X-3B than P25 TiO2 crystallites. Moreover, the degradation mechanism of X-3B is proposed as dye photosensitization and electron scavenging by rare earth ions.

  16. Photocatalytic degradation of acetaminophen in modified TiO2 under visible irradiation.

    Science.gov (United States)

    Dalida, Maria Lourdes P; Amer, Kristine Marfe S; Su, Chia-Chi; Lu, Ming-Chun

    2014-01-01

    This study investigated the photocatalytic degradation of acetaminophen (ACT) in synthetic titanium dioxide (TiO2) solution under a visible light (λ >440 nm). The TiO2 photocatalyst used in this study was synthesized via sol-gel method and doped with potassium aluminum sulfate (KAl(SO4)2) and sodium aluminate (NaAlO2). The influence of some parameters on the degradation of acetaminophen was examined, such as initial pH, photocatalyst dosage, and initial ACT concentration. The optimal operational conditions were also determined. Results showed that synthetic TiO2 catalysts presented mainly as anatase phase and no rutile phase was observed. The results of photocatalytic degradation showed that LED alone degraded negligible amount of ACT but with the presence of TiO2/KAl(SO4)2, 95% removal of 0.10-mM acetaminophen in 540-min irradiation time was achieved. The synthetic TiO2/KAl(SO4)2 presented better photocatalytic degradation of acetaminophen than commercially available Degussa P-25. The weak crystallinity of synthesized TiO2/NaAlO2 photocatalyst showed low photocatalytic degradation than TiO2/KAl(SO4)2. The optimal operational conditions were obtained in pH 6.9 with a dose of 1.0 g/L TiO2/KAl(SO4)2 at 30 °C. Kinetic study illustrated that photocatalytic degradation of acetaminophen fits well in the pseudo-first order model. Competitive reactions from intermediates affected the degradation rate of ACT, and were more obvious as the initial ACT concentration increased.

  17. Self-organized TiO2 nanotube arrays in the photocatalytic degradation of methylene blue under UV light irradiation

    Science.gov (United States)

    Chung, Eun Hyuk; Baek, Seong Rim; Yu, Seong Mi; Kim, Jong Pil; Hong, Tae Eun; Kim, Hyun Gyu; Bae, Jong-Seong; Jeong, Euh Duck; Khan, F. Nawaz; Jung, Ok-sang

    2015-04-01

    Nanostructured titanium dioxide (NTiO2) is known to possess efficient photocatalytic activity and to have diverse applications in many fields due to its chemical stability, high surface area/volume ratio, high transmittance, and high refractive index in the visible and the near-ultraviolet regions. These facts prompted us to develop TiO2 nanotube (TiO2 NT) arrays through electrochemical anodic oxidation involving different electrolytes comprised of phosphoric acid — hydrofluoric acid aqueous systems by varying the voltage and the time. The annealing temperature of the nanotubes, TiO2 NTs, were varied to modify the surface morphology and were characterized by using X-ray diffraction and scanning electron microscopy. Scanning electron microscopy and X-ray diffraction results showed that the samples had uniform morphologies and good crystalline structures of the anatase phase at lower annealing temperatures and of the rutile phase at higher annealing temperatures. A secondary-ion mass-spectrometry analysis was used to investigate the surface atoms and to conduct a depth profile analysis of the TiO2 NTs. The efficiency of the photocatalytic activity of the TiO2 NT arrays in degrading methylene blue (MB) was investigated under UV-Vis light irradiation. The maximum photocatalytic activity was achieved for the samples with lower annealing temperatures due to their being in the anatase phase and having a higher surface area and a smaller crystal size, which play important roles in the degradation of organic pollutants.

  18. Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures

    Science.gov (United States)

    Mahajan, V. K.; Misra, M.; Raja, K. S.; Mohapatra, S. K.

    2008-06-01

    The effect of crystallization and surface chemistry of nanotubular titanium dioxide (TiO2) in connection with the photoelectrochemical process is reported in this investigation. TiO2 nanotubular arrays were synthesized by a simple anodization process in an acidified fluoride electrolyte at room temperature. The TiO2 nanotubes were amorphous in as-anodized condition; their transformation to crystalline phases was a function of annealing temperature and gaseous environment. The anatase phase was observed predominantly after annealing in non-oxidizing atmospheres, whereas annealing in an oxygen environment showed a mixture of anatase and rutile phases. X-ray photoelectron spectroscopy was used to determine the chemical environment of the surface, which revealed the presence of phosphate, oxygen vacancies and pentacoordinated Ti in hydrogen annealed samples. Diffuse reflectance photospectrometry of non-oxygen annealed samples showed long absorption tails extending in the visible region. The photoelectrochemical response of the TiO2 nanotubes annealed in different conditions was investigated. Photoelectrochemical performance under simulated solar light was improved by annealing the nanotubular TiO2 samples in non-oxidizing environment.

  19. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.

    Science.gov (United States)

    Zhang, Haimin; Liu, Porun; Liu, Xiaolu; Zhang, Shanqing; Yao, Xiangdong; An, Taicheng; Amal, Rose; Zhao, Huijun

    2010-07-06

    This work reports a facile approach to fabricate a perpendicularly aligned and highly ordered TiO(2) nanorod/nanotube (NR/NT) adjacent film by directly anodizing a modified titanium foil. The titanium foil substrate was modified with a layer of crystalline TiO(2) film via a hydrothermal process in 0.05 M (NH(4))(2)S(2)O(8). The resultant NR/NT architecture consists of a highly ordered nanorod top layer that directly adjoins to a highly ordered nanotube array bottom layer. The thickness of the top nanorod layer was approximately 90 nm with average nanorod diameter of 22 nm after 20 min of anodization. The thickness of the bottom nanotube array layer was found to be ca. 250 nm after 20 min of anodization, having an average outer and inner tubular diameters of 120 and 80 nm, respectively. A broad implication of the method is that a simple modification to the substrate surface can lead to new forms of nanostructures. For as-anodized NR/NT samples, XRD analysis reveals that the nanorods are of anatase TiO(2) crystalline form while the nanotubes are amorphous. Anatase TiO(2) crystalline form of NR/NT film with high crystallinity can be obtained by thermally treating the as-anodized sample at 450 degrees C for 2 h in air. The resultant NR/NT film was used as a photoanode for photoactivity evaluation. Comparing with a nanotube array photoanode prepared by direct anodization of unmodified titanium foil, the NR/NT photoanode exhibits a unique feature of selective photocatalytic oxidation toward organics, which makes it very attractive to photocatalytic degradation of organic pollutants, sensing, and other applications.

  20. Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces

    Science.gov (United States)

    Bhosle, Sachin M.; Friedrich, Craig R.

    2017-10-01

    The amorphous to anatase transformation of anodized nanotubular titania surfaces has been studied by x-ray diffraction and transmission electron microscopy (TEM). A more rapid heat treatment for conversion of amorphous to crystalline anatase favorable for orthopedic implant applications was demonstrated. Nanotube titania surfaces were fabricated by electrochemical anodization of Ti6Al4V in an electrolyte containing 0.2 wt% NH4F, 60% ethylene glycol and 40% deionized water. The resulting surfaces were systematically heat treated in air with isochronal and isothermal experiments to study the temperature and time dependent transformation respectively. Energy dispersive spectroscopy shows that the anatase phase transformation of TiO2 in the as-anodized amorphous nanotube layer can be achieved in as little as 5 min at 350 °C in contrast to reports of higher temperature and much longer time. Crystallinity analysis at different temperatures and times yield transformation rate coefficients and activation energy for crystalline anatase coalescence. TEM confirms the (101) TiO2 presence within the nanotubes. These results confirm that for applications where amorphous titania nanotube surfaces are converted to crystalline anatase, a 5 min production flow-through heating process could be used instead of a 3 h batch process, reducing time, cost, and complexity.

  1. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles

    Science.gov (United States)

    Lin, Chan; Song, Yang; Cao, Lixin; Chen, Shaowei

    2013-05-01

    A unique nanocomposite C-TiO2 was prepared by the growth of TiO2 on carbon nanoparticles using a simple hydrothermal procedure. Transmission electron microscopic (TEM) measurements showed that the nanocomposites exhibited an average core diameter of approximately 5 nm with a rather well-defined lattice space (0.4 nm) that was somewhat larger than that (0.38 nm) of the (100) crystalline planes of anatase TiO2. This lattice expansion was accounted for by the formation of surface defect dipoles of the nanosized TiO2 particles. X-ray photoelectron spectroscopic (XPS) measurements suggested that partial charge transfer occurred from carbon nanoparticles to TiO2 by the interfacial Ti-O-C linkages, which led to effective diminishment of the C-TiO2 photoluminescence as compared to that of pure TiO2 or carbon nanoparticles, suggesting intimate electronic interactions between the carbon and TiO2 components in the nanocomposites. Such unique characteristics were then exploited for the effective photocatalytic degradation of organic pollutants, as exemplified by methylene blue, by C-TiO2 under UV photoirradiation. Experimental measurements showed that the photocatalytic activity of C-TiO2 nanocomposites was about twice that of TiO2 alone, whereas little activity was observed with carbon nanoparticles. This was attributed to the electron-accepting sites on the carbon nanoparticles that facilitated interfacial charge separation.A unique nanocomposite C-TiO2 was prepared by the growth of TiO2 on carbon nanoparticles using a simple hydrothermal procedure. Transmission electron microscopic (TEM) measurements showed that the nanocomposites exhibited an average core diameter of approximately 5 nm with a rather well-defined lattice space (0.4 nm) that was somewhat larger than that (0.38 nm) of the (100) crystalline planes of anatase TiO2. This lattice expansion was accounted for by the formation of surface defect dipoles of the nanosized TiO2 particles. X-ray photoelectron

  2. One-Step Nonaqueous Synthesis of Pure Phase TiO2 Nanocrystals from TiCl4 in Butanol and Their Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Tieping Cao

    2011-01-01

    Full Text Available Pure phase TiO2 nanomaterials were synthesized by an autoclaving treatment of TiCl4 with butanol as a single alcohol source. It was found that the control of molar ratio of TiCl4 to butanol played an important role in determining the TiO2 crystal phase and morphology. A high molar ratio of TiCl4 to butanol favored the formation of anatase nanoparticles, whereas rutile nanorods were selectively obtained at a low molar ratio of TiCl4 to butanol. Evaluation of the photocatalytic activity of the synthesized TiO2 was performed in terms of decomposition of organic dye rhodamine B under ultraviolet irradiation. It turned out that the as-synthesized TiO2 crystallites possessed higher photocatalytic activities toward bleaching rhodamine B than Degussa P25, benefiting from theirhigh surface area, small crystal size as well as high crystallinity.

  3. A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A

    Science.gov (United States)

    Jackson, J.C.; Horton, J.W.; Chou, I.-Ming; Belkin, H.E.

    2006-01-01

    A shock-induced polymorph (TiO2II) of anatase and rutile has been identified in breccias from the late Eocene Chesapeake Bay impact structure. The breccia samples are from a recent, partially cored test hole in the central uplift at Cape Charles, Virginia. The drill cores from 744 to 823 m depth consist of suevitic crystalline-clast breccia and brecciated cataclastic gneiss in which the TiO2 phases anatase and rutile are common accessory minerals. Electron-microprobe imaging and laser Raman spectroscopy of TiO2 crystals, and powder X-ray diffraction (XRD) of mineral concentrates, confirm that a high-pressure, ??-PbO2 structured polymorph of TiO2 (TiO2II) coexists with anatase and rutile in matrix-hosted crystals and in inclusions within chlorite. Raman spectra of this polymorph include strong bands at wavenumbers (cm-1) 175, 281, 315, 342, 356, 425, 531, 571, and 604; they appear with anatase bands at 397, 515, and 634 cm-1, and rutile bands at 441 and 608 cm-1. XRD patterns reveal 12 lines from the polymorph that do not significantly interfere with those of anatase or rutile, and are consistent with the TiO2II that was first reported to occur naturally as a shock-induced phase in rutile from the Ries crater in Germany. The recognition here of a second natural shock-induced occurrence of TiO2II suggests that its presence in rocks that have not been subjected to ultrahigh-pressure regional metamorphism can be a diagnostic indicator for confirmation of suspected impact structures.

  4. Low-temperature synthesis and characterization of TiO2 and TiO2-ZrO2 photocatalytically active thin films.

    Science.gov (United States)

    Maver, Ksenija; Stangar, Urska Lavrencic; Cernigoj, Urh; Gross, Silvia; Cerc Korosec, Romana

    2009-05-01

    Transparent TiO(2) and TiO(2)-ZrO(2) (molar ratio Zr/Ti = 0.1) thin films were produced by low-temperature sol-gel processing from nanocrystalline aqueous based solutions. The structural features and compositions of the films treated at room temperature, 100 degrees C and 500 degrees C were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and thermal analysis. Addition of zirconia increased specific surface area (140-230 m(2) g(-1)) and hindered the growth of anatase crystallites, exhibiting a constant size of 6-7 nm in the whole temperature range. These significant changes with respect to pure TiO(2) in anatase crystalline form did not result in significantly and systematically different photocatalytic activity, which was evaluated in terms of aqueous pollutant degradation (azo-dye in water) and self-cleaning ability (fatty contaminant deposit). The films treated at only 100 degrees C showed excellent photocatalytic activity towards azo-dye degradation. Contact angle measurements of aged and contaminated surfaces revealed a fast or sharp hydrophilicity gain under UVA illumination. Accordingly, the results of this study confirmed the potential application of advantageous low-temperature films in water treatment as well as for self-cleaning surfaces.

  5. Multiscale anode materials in lithium ion batteries by combining micro- with nanoparticles: design of mesoporous TiO2 microfibers@nitrogen doped carbon composites.

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Primc, Darinka; Niederberger, Markus

    2015-09-07

    TiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating. Herein, we report a template-assisted synthesis of micron sized TiO2 fibers consisting of a mesoporous network of anatase nanoparticles of about 7.5 nm and coated by N doped carbon. In a first step, an amorphous layer of TiO2 was deposited on cobalt silicate nanobelts and subsequently transformed into crystalline anatase nanoparticles by hydrothermal treatment. The N doped carbon coating was realized by in situ polymerization of dopamine on the crystalline TiO2 followed by annealing under N2. After removal of the template, we obtained the final mesoporous TiO2 fibers@N doped carbon composite. Electrochemical tests revealed that the composite electrode exhibited excellent electrochemical properties in terms of specific capacity, rate performance and long term stability.

  6. Structural and Electrical Properties of TiO2 Thin Film Derived from Sol-gel Method using Titanium (IV Butoxide

    Directory of Open Access Journals (Sweden)

    Isrihetty Senain

    2010-12-01

    Full Text Available Fabrication of titanium dioxide (TiO2 thin film on microscope glass using sol-gel method has been studied intensively. The starting materials were titanium (IV butoxide, ethanol, acetic acid, triton x-100, hydrochloric acid and deionized water. The materials were mixed together to form the sols. Then, the heat and ageing treatment was applied to form stable sols. The sols were then spin coated on the glass substrate to form the homogenous and transparent TiO2 thin film. The TiO2 thin film was coated at several layers using specific conditions. To evaluate the performance of thin film, the crystallinity of the thin film was determined by using the x-ray diffractometer  (XRD. The change on the surface morphology was observed using atomic force microscope (AFM. The electrical property of the thin film was determined by doing the current-voltage (I-V analysis on the thin film. It has been successfully shown that the anatase crystalline phase was observed when the TiO2 thin film was heated at 500°C. The roughness and the crystalline phase of TiO2 thin film changed drastically with the growth conditions. Finally, the effect of film preparation to the film resistivity also showed a critical aspect where we should take into account during the preparation of TiO2 thin film.

  7. Investigation of DC magnetron-sputtered TiO2 coatings: Effect of coating thickness, structure, and morphology on photocatalytic activity

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Shabadi, Rajashekhara; Galca, Aurelian Catalin

    2014-01-01

    The photocatalytic performance of magnetron-sputtered titanium dioxide (TiO2) coatings of different thickness in anatase crystalline structure deposited on aluminium 1050 alloy substrates was investigated using a combination of photo-electrochemistry, methylene blue decomposition, and microscopic...... that the TiO2 grains grow in dipyramidal columns having a linear increase in surface area with increased coating thickness. The refractive index values indicate also an evolutionary growth. The refractive index values obtained for the thin coatings on aluminium substrate were well below the values reported...

  8. Facile one step synthesis of novel TiO2 nanocoral by sol-gel method using Aloe vera plant extract

    Science.gov (United States)

    Venkatesh, K. S.; Krishnamoorthi, S. R.; Palani, N. S.; Thirumal, V.; Jose, Sujin P.; Wang, Fu-Ming; Ilangovan, R.

    2015-05-01

    Titanium oxide (TiO2) nanoparticles (NPs) were synthesized by sol gel method using Aloe vera plant extract as a biological capping agent and a cauliflower-nanocoral morphology was observed in this technique. The assynthesized TiO2 nanopowder was calcined at a range of temperatures (300-600 °C) for 1 h. The influence of A. vera plant extract on the thermal, structural and morphological properties of TiO2 nanopowder was evaluated. Thermogravimetric analysis/differential thermal analysis was employed to study the thermal properties of the assynthesized TiO2 nanopowder. The crystallinity, phase transformation and the crystallite size of the calcined samples were studied by X-ray diffraction technique. XRD result confirmed the presence of TiO2 with anatase phase. FT Raman spectra showed the Raman active modes pertaining to the TiO2 anatase phase and Raman band shift was also observed with respect to particle size variation. The different functional group vibrations of as dried pure A. vera plant extract were compared with the mixture of TiO2 and A. vera plant extract by FT-IR analysis. The scanning electron microscopy images apparently showed the formation of spherical shaped NPs and also it demonstrated the effect of A. vera plant extract on the reduction of particles size. The surface area of the TiO2 NPs was measured through Brunauer-Emmett-Teller analysis. Transmission electron microscopy images ascertained that the spherical shaped TiO2 NPs were formed with cauliflower-nanocoral morphology decorated with nanopolyps with the size range between 15 and 30 nm.

  9. Preparation, characterization and visible light photocatalytic activity of silver, nitrogen co-doped TiO2 photocatalyst

    Science.gov (United States)

    Khan, Matiullah; Ramin Gul, Sahar; Li, Jing; Cao, Wenbin; Mamalis, Athanasios G.

    2015-06-01

    TiO2 photocatalyst codoped with Silver (Ag) and Nitrogen (N) with different Ag doping concentrations is successfully synthesized by hydrothermal method. The as-synthesized samples are characterized through x-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-vis. absorption spectra and x-ray photoelectron spectroscopy (XPS). The photocatalytic response is evaluated by the photodegradation of methylene blue under visible light irradiations. All synthesized samples are composed of pure anatase phase with good crystallinity. The absorption edge of codoped TiO2 is shifted towards visible light region. X-ray photoelectron spectroscopy confirmed the existence of silver and nitrogen in the codoped samples. All the codoped samples demonstrated improved photocatalytic activity compared to pure TiO2. Among the different codoped samples, the one with silver doping concentration of 4 at. % exhibited the highest photoactivity.

  10. Photochemistry on TiO2: Mechanisms Behind the Surface Chemistry

    Science.gov (United States)

    2009-01-21

    ation in air causes water droplets to wet the TiO2 film surface, resulting in a lowering of the contact angle over time. The anatase TiO2 film was...have shown that under these conditions, the contact angle decreases slowly during interrupted irradiation periods, as shown in Fig. 9. Both anatase

  11. Fabrication and Photocatalytic Characteristics of TiO2 Films on Silicon Substrates

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-long; WANG Fu; ZUO Liang; YI Gu-chul; CHOI Wong-yong

    2005-01-01

    Silicon (111) and Silicon (100) have been employed for fabrication of TiO2 films by metal organic chemical vapor deposition (MOCVD). Titanium (Ⅳ) isopropoxide (Ti[O(C3H7)4]) was used as a precursor. The as-deposited TiO2 films have been characterized with Field emission scanning electron microscopy(FE-SEM), X ray diffraction (XRD) and atomic force microscopy (AFM). The photocatalytic properties were investigated by decomposition of aqueous orange Ⅱ. The crystalline and structural properties of TiO2 film had crucial influences on the photodegradation efficiency. For MOCVD in-situ deposited films on Si substrates, the photoactivities varied following a shape of "M": At lower (350 ℃) middle (500 ℃) and higher (800 ℃) temperature of deposition, relative lower photodegradation activities have been observed. At 400 ℃ and 700 ℃ of deposition, relative higher efficiencies of degradation have been obtained, because one predominant crystallite orientation could be obtained as deposition at those two temperatures, especially a single anatase crystalline TiO2 film could be obtained at 700 ℃ growth.

  12. Alternative structure of TiO2 with higher energy valence band edge

    Science.gov (United States)

    Coh, Sinisa; Yu, Peter Y.; Aoki, Yuta; Saito, Susumu; Louie, Steven G.; Cohen, Marvin L.

    2017-02-01

    We propose an alternative structure of TiO2 anatase that has a higher energy oxygen p -like valence band maximum than pristine TiO2 anatase and thus has a much better alignment with the water splitting levels. This alternative structure is unique when considering a large subspace of possible structural distortions of TiO2 anatase. We propose two routes towards this state and argue that one of them might have been realized in the recently discovered so-called black TiO2.

  13. Photocatalytic Property of TiO2 Films Deposited by Pulsed DC Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    Wenjie ZHANG; Shenglong ZHU; Ying LI; Fuhui WANG

    2004-01-01

    TiO2 thin films were prepared by DC magnetron sputtering with the oxygen flow rate higher than the threshold. The film deposited for 5 h was of anatase phase with a preferred orientation along the direction, but the films deposited for 2 and 3 h were amorphous. The transmittance and photocatalytic activity of the TiO2 films increased constantly with increasing film thickness. When the annealing temperature was lower than 700℃, only anatase grew in the TiO2 film. TiO2 phase changed from anatase to rutile when the annealing temperature was above 800℃. The photocatalytic activity decreased with increasing annealing temperature.

  14. Rapid (∼10 min) synthesis of single-crystalline, nanorice TiO2 mesoparticles with a high photovoltaic efficiency of above 8%.

    Science.gov (United States)

    Parmar, K P S; Ramasamy, Easwaramoorthi; Lee, Jinwoo; Lee, Jae Sung

    2011-08-14

    A novel rapid (∼10 min) microwave-hydrothermal synthesis is demonstrated for nanorice TiO(2) mesoparticles as an anode of a dye-sensitized solar cell with an excellent photovoltaic efficiency of above 8%.

  15. Synthesis of Cu Loaded TiO2 Nanoparticles for the Improved Photocatalytic Degradation of Rhodamine B

    Science.gov (United States)

    Kavitha, V.; Ramesh, P. S.; Geetha, D.

    2016-10-01

    Copper doped Titanium dioxide TiO2 nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide and copper sulfate as precursors. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), UV-Visible spectroscopy (UV-Vis), Photoluminesce spectroscopy (PL) and atomic force microscopy (AFM). XRD analysis confirms the formation of anatase titanium dioxide and average particle size was 35nm. Cu- TiO2 exhibits a shift in the absorption edge toward visible spectrum. The rate of recombination and transfer behavior of the photoexcited electron-hole pairs in the semiconductors was recorded by photoluminescence. From SEM spherical shaped nanoparticles was observed. Comparing with pure TiO2 nanoparticles, Cu doped TiO2 photocatalyst exhibited enhanced photocatalytic activity under natural sunlight irradiation in the decomposition of rhodamine B aqueous solution. The maximum 97% of degradation efficiency of Rhodamine B was observed at 0.6% Cu-TiO2 within 180min. The photocatalytic efficiency of Rhodamine B of Cu doped TiO2 nanoparticle was higher than the pure TiO2, which could be attributed to the small crystallinity intense light absorption in Sunlight and narrow bandgap energy of Copper.

  16. Bacteria Adherence Properties of Nitrogen-Doped TiO2 Coatings by Plasma Surface Alloying Technique

    Science.gov (United States)

    Wang, Hefeng; Tang, Bin; Li, Xiuyan; Fan, Ailan

    Titanium nitride coatings on 316L stainless steel (S. S) were obtained by plasma surface alloying technique. Nitrogen-doped titanium dioxide (TiO2-xNx) was synthesized by oxidative annealing the resulted TiNx coatings in air. The reference TiO2 samples were also prepared by oxidation of sputtered Ti coatings. The as-prepared coatings were characterized by X-ray diffraction, glow discharge optical emission spectrometer (GDOES), scanning electron microscopy, X-ray hotoelectron spectroscopy and UV-Vis spectrophotometry, respectively. The bacteria adherence property of the TiO2-xNx coatings on stainless steel on the oral bacteria Streptococcus Mutans was investigated and compared with that of stainless steel by fluorescence microscopy. The mechanism of the bacteria adherence was discussed. The results show that the TiO2-xNx coatings are composed of anatase crystalline structure. SEM measurement indicates a rough surface morphology with three-dimensional homogenous protuberances after annealing treatment. Optical properties reveal an extended tailing of the absorption edge toward the visible region due to nitrogen presence. The band gap of the N-doped sample is reduced from 2.29 eV to 1.90 eV compared with the pure TiO2 one. Because of the different roughness and microstructure, the TiO2-xNx coatings inhibit the bacteria adherence.

  17. Surface Hydrophilicity and Antifungal Properties of TiO2 Films Coated on a Co-Cr Substrate.

    Science.gov (United States)

    Huang, Lijuan; Jing, Shuanglin; Zhuo, Ou; Meng, Xiangfeng; Wang, Xizhang

    2017-01-01

    The purpose of this study was to deposit a thin layer of TiO2 on a Co-Cr substrate, serving as a deactivation film protecting the metallic fitting surface. The crystalline structure and surface morphology of the film were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). A scratch tester was used to examine the adhesion strength between the TiO2 film and the Co-Cr substrate. The water contact angles and antifungal efficacy against C. albicans of the TiO2-deposited Co-Cr samples were investigated and further compared with those of uncoated Co-Cr substrates. The results indicated that a pure anatase microstructure and dense and smooth surface texture as well as strong binding to the underlying metallic surface were obtained. The originally hydrophobic Co-Cr alloy surface turned hydrophilic after TiO2 film coating. Most importantly, the TiO2-coated surface showed a superior antifungal capability under UV-irradiation compared to those without TiO2 coating. This work contains meaningful results for the development of a new metallic framework coating with improved hydrophilicity and antifungal properties.

  18. Surface Hydrophilicity and Antifungal Properties of TiO2 Films Coated on a Co-Cr Substrate

    Directory of Open Access Journals (Sweden)

    Lijuan Huang

    2017-01-01

    Full Text Available The purpose of this study was to deposit a thin layer of TiO2 on a Co-Cr substrate, serving as a deactivation film protecting the metallic fitting surface. The crystalline structure and surface morphology of the film were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. A scratch tester was used to examine the adhesion strength between the TiO2 film and the Co-Cr substrate. The water contact angles and antifungal efficacy against C. albicans of the TiO2-deposited Co-Cr samples were investigated and further compared with those of uncoated Co-Cr substrates. The results indicated that a pure anatase microstructure and dense and smooth surface texture as well as strong binding to the underlying metallic surface were obtained. The originally hydrophobic Co-Cr alloy surface turned hydrophilic after TiO2 film coating. Most importantly, the TiO2-coated surface showed a superior antifungal capability under UV-irradiation compared to those without TiO2 coating. This work contains meaningful results for the development of a new metallic framework coating with improved hydrophilicity and antifungal properties.

  19. High Efficiency Dye-Sensitized Solar Cells Based on the Anatase TiO2 Sols%基于锐钛矿相二氧化钛溶胶的高效染料敏化太阳能电池

    Institute of Scientific and Technical Information of China (English)

    郝艳明; 石国英; 钱迪峰; 张青红

    2011-01-01

    用稀硝酸或双氧水对TiO2沉淀进行处理,分别得到锐钛矿相TiO2溶胶及过氧钛酸溶液,两者经水热处理后通过“定向附着”得到比表面积均大于100m2/g的TiO2纳米棒溶胶,制成染料敏化太阳能电池后,电池的开路电压得到提高.溶胶在导电玻璃上形成致密阻挡层,也能渗入到Degussa P25为原料经刮涂法制备的光阳极内,消除其中的大孔与缺陷.溶胶修饰的电极经过烧结、组装电池后,AM1.5模拟太阳光照下电池的光电转化效率由4.15%提高到5.63%.%TiO2 precipitates were treated with dilute HNO3 solution or H2O2 solution, anatase TiO2 sols and peroxotitanium acid (PTA) solution were obtained, respectively. Both anatase TiO2 sols and PTA solution were subjected to further hydrothermal treatment, and TiO2 nanorod sols with a specific surface area of more than 100m2/g were formed via the oriented attachment mechanism. The anatase nanorods were used to fabricate dye-sensitized solar cells (DSSCs), and cells with a higher open-circuit voltage were observed. The anatase nanorod sols were also used to make compact layers over FTO conductive glass, and infiltrated into porous TiO2 layers using Degussa P25 titania as raw material by doctor-blade technique to elimination large pores and defects in DSSCs anodes. The sols treated anodes were sintered and assembled into DSSCs, and the photoelectric conversion efficiency of resulted DSSCs increased from 4.15% to 5.63% under AM1.5 simulated solar irradiation.

  20. Micro-porous TiO2 thin films grown on surface of Ti substrate

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-hong; QIN Wei; JIANG Zhao-hua; HU Xin-guo; Li Qing-fen

    2004-01-01

    Microporous titanium dioxide thin films have been grown on titanium plates by the micro-plasma oxidation method with different current densities (4, 6, 10 and 14 A/dm2). X-ray diffraction, scanning electronic microscopy and UV-Vis spectrophotometry were used to characterize the films. It is found that the films grown are microporous and consist of crystalline titanium dioxide. The micropore size and the content of anatase and rutile TiO2 phase increase with the applied voltage. The relatively higher degradation efficiency for rhodamine B is obtained in the film produced with a current density of 10 A/dm2.

  1. Multifunctional Roles of TiO 2 Nanoparticles for Architecture of Complex Core−Shells and Hollow Spheres of SiO 2 −TiO 2 −Polyaniline System

    KAUST Repository

    Wang, Dan Ping

    2009-10-27

    Nanoparticles are often used as seeds to grow one-dimensional nanomaterials or as core materials to prepare core-shell nanostructures. On the other hand, the presynthesized inorganic nanoparticles can also be used as starting building blocks to prepare inorganic-polymer nanocomposites. In this work, we explore the roles of metal-oxide nanoparticles (anatase TiO2) in the area of constructional synthesis of highly complex core-shell and hollow sphere nanostructures comprising SiO2, TiO2, and polyaniline (PAN). In particular, multifunctional roles of oleate-surfactant-protected TiO2 nanoparticles have been revealed in this study: they provide starting sites for polymerization of aniline on the surface of SiO2 mesospheres; they land on the inner surface of polyaniline shell to form a secondary material phase; they work as initial crystalline seeds for homogeneous growth of interior TiO2 shell; and they serve as primary nanobuilding blocks to form exterior TiO2 shell on the polyaniline via self-assembly. With the assistance of the TiO2 nanoparticles, a total of six complex core-shell and hollow sphere nanocomposites (SiO 2/TiO2, SiO2/TiO2/PAN, SiO 2/TiO2/PAN/TiO2, TiO2/PAN, TiO 2/PAN/TiO2, and TiO2/TiO2) have been made in this work through controlled self-assembly, templating growth, polymerization, and homogeneous seeded growth. Applicability of these nanostructures in photocatalytic applications has also been demonstrated by our preliminary investigations. The easy separation of used catalysts after reaction seems to be advantageous because of relatively large external diameters of the lightweight nanocomposites. © 2009 American Chemical Society.

  2. Structural Characteristics of TiO2 Ceramic Coating by Micro-Plasma Oxidation

    Institute of Scientific and Technical Information of China (English)

    GAO Yu-zhou; ZHANG Hui-chen; WANG Liang; YAN Li

    2004-01-01

    TiO2 ceramic coatings with thickness of 20 μm were formed on the surface of pure titanium by micro-plasma oxidation. Their micro-structures were investigated by by using X-ray diffraction and their surface images were detected by using scan electronic microscope. There were three kinds of TiO2 coatings, pure anatase type TiO2 phase, mixed phases consisted of rutile type TiO2 phase and anatase type TiO2 phase, pure rutile type TiO2 phase. The coating surface with the pure anatase type TiO2 phase is rough, while the coating surface with the pure rutile type TiO2phase is smooth. The upper coating surface with the mixed type TiO2 phases is anatase type TiO2 structure and the subsurface of the TiO2 coating is rutile type TiO2structure.

  3. Influence of coating material on laser damage threshold of TiO2 films

    Institute of Scientific and Technical Information of China (English)

    Jianke Yao; Zhengxiu Fan; Hongbo He; Jianda Shao

    2007-01-01

    @@ The optical property, structure, surface properties (roughness and defect density) and laser-induced damage threshold (LIDT) of TiO2 films deposited by electronic beam (EB) evaporation of TiO2 (rutile), TiO2 (anatase) and TiO2 + Ta2O5 composite materials are comparatively studied. All films show the polycrystalline anatase TiO2 structure. The loose sintering state and phase transformation during evaporating TiO2 anatase slice lead to the high surface defect density, roughness and extinction coefficient, and low LIDT of films. The TiO2 + Ta2O5 composite films have the lowest extinction coefficient and the highest LIDT among all samples investigated. Guidance of selecting materials for high LIDT laser mirrors is given.OCIS codes: 310.3840, 140.3330.

  4. High Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods

    Directory of Open Access Journals (Sweden)

    F. Mohammadpour

    2015-01-01

    Full Text Available In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and in the second one a commercial TiO2 nanoparticle paste is used as connector material. In order to investigate the effect of annealing temperature on the crystallinity of the photoanodes, they were annealed in temperatures from 350 to 650°C. All of the annealed photoanodes show high crystallinty and pure anatase phase in both cases. However nanoprticles with large diameter about 500nm and no homogeneity of dispersion of them at the first method leads to week interconnection between membranes and FTO glasses but good interconnection at the second method leads to high power conversion efficiency of 6.13% under 1 sun illumination without any extra treatment.

  5. Theory studies on electronic structure and optical properties of N-Al co-doped anatase TiO2%N-Al共掺杂TiO2电子结构及光学性质的理论研究

    Institute of Scientific and Technical Information of China (English)

    荆涛; 张苹; 阚伟; 田景芝; 邓启刚

    2015-01-01

    应用基于密度泛函理论的第一性原理平面波超软赝势方法研究N和Al单掺杂和共掺杂锐钛矿相TiO2的电子结构、能带结构、态密度及光学性质。结果表明,掺杂后TiO2的晶格常数、原子间的键长、晶胞体积都发生了不同程度的变化;单掺杂和共掺杂均使得禁带宽度减小,而且位于价带和导带之间的杂质能级能够捕获由价带跃迁至导带的电子,减少光生载流子的复合率,提高TiO2的光催化性能;与单掺杂相比,共掺杂能级分裂较明显,吸收光谱红移幅度更大。%The electronic structures of N-doped, Al-doped and N-Al co-doped anatase TiO2 were investigated by the first-principles plane wave ultra-soft pseudo-potential method based on the density functional theory (DFT). The crystal structures, energy bands, density of states (DOS) and optical properties were analyzed. The results indicate that the lattices, cell volumes of TiO2 and bond length of atoms of TiO2 after doping have different degrees of change. The band gap of single doped samples is narrowed as the same as the N-Al co-doped TiO2. Also the impurity energy levels appear near the Fermi level,which can reduce the recombination rates of photoexcited carriers, so, the photo catalysis efficiency of TiO2 is improved. The N-Al co-doped anatase TiO2 shows a stronger red-shift in the absorption edge than the single doped samples, and its energy level splitting is more obvious.

  6. Morphology control studies of TiO2 microstructures via surfactant-assisted hydrothermal process for dye-sensitized solar cell applications

    Science.gov (United States)

    Lekphet, Woranan; Ke, Tsai-Chyuan; Su, Chaochin; Kathirvel, Sasipriya; Sireesha, Pedaballi; Akula, Suri Babu; Li, Wen-Ren

    2016-09-01

    The controlled morphological TiO2 particles have gained great importance in a wide variety of applications due to their promising physico-chemical properties. In this study, TiO2 microstructures with various shapes to utilize as scattering layer in dye-sensitized solar cell (DSSC) applications were successfully synthesized via different hydrothermal conditions. The effects of the versatile preparation parameters including the amount of titania precursor and surfactant, the addition of ethanol/water, and the hydrothermal process temperature and time on the TiO2 morphology were investigated. The structural and morphological analysis clearly shown that the preparation conditions played crucial roles in the morphology, particle size, and crystalline phase of the TiO2 microparticles. Different kinds of shapes such as rice- (∼1.10 μm (l) and ∼0.41 μm (w)), star- (∼3.60 μm) and flower-like (3.75 μm) TiO2 morphological structures were obtained. The morphology and size of the TiO2 particles were mainly governed by the concentrations of titanium tetraisopropoxide (TTIP) precursor, amounts of tetramethylammonium hydroxide (TMAH) surfactant and hydrothermal temperatures and durations. The as-prepared rice-shaped TiO2 was composed of mixed anatase and brookite binary phases, whereas the star- and flower-shaped TiO2 microstructures were consisted of ternary anatase, rutile, and brookite crystalline TiO2 phases. The three different rice-, star-, and flower-shaped TiO2 microstructures were employed as scattering layers for photoanodes in DSSCs. Among them, the star-like TiO2 photoanode based DSSC exhibited the highest power conversion efficiency of 9.56%, which was also better than those of the devices fabricated without scattering layer (a-TiO2, 8.38%) and with commercial P25 as scattering layer (a-TiO2/P25-TiO2, 8.52%) at the same film thickness of ∼14 μm.

  7. Synthesis, Characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 Nanoparticles

    Science.gov (United States)

    Ivanov, S.; Barylyak, A.; Besaha, K.; Bund, A.; Bobitski, Y.; Wojnarowska-Nowak, R.; Yaremchuk, I.; Kus-Liśkiewicz, M.

    2016-03-01

    One-step TiO2 nanoparticle synthesis based on the interaction between thiourea and metatitanic acid is applied for sulfur and carbon anatase codoping. The synthesis of the doped TiO2 has been monitored by means of differential thermal analysis and thermogravimetric analysis (DTA-TG), which allows determining the optimal thermal conditions for the process. Electron microscopy showed micrometer-sized (5-15 μm) randomly distributed crystal aggregates, consisting of many 15-40-nm TiO2 nanoparticles. The obtained phase composition and chemical states of the doping elements are analyzed by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared (IR) and Raman spectroscopies, and electron paramagnetic resonance (EPR). XRD displays in both samples (doped and pristine) the existence of only one crystalline phase—the tetragonal modification of TiO2—anatase. Further data assessment by means of Rietveld refinement allowed detection of a slight c lattice parameter and volume increase related to incorporation of the doping elements. XPS demonstrated the presence of carbon and sulfur as doping elements in the material. It was confirmed that carbon is in elemental form and also present in oxygen-containing compounds, which are adsorbed on the particle surface. The binding energy for sulfur electron core shell corresponds to the established data for sulfate compounds, where sulfur is in 6+ oxidation state. The synthesized S- and C-codoped TiO2 showed excellent photocatalytic performance during the degradation of organic dyes (rhodamine B, methylene blue), gas-phase oxidation of ethanol under visible light, and photocatalytic hydrogen generation from ethanol under ultraviolet light.

  8. On the Crystal Structural Control of Sputtered TiO2 Thin Films.

    Science.gov (United States)

    Jia, Junjun; Yamamoto, Haruka; Okajima, Toshihiro; Shigesato, Yuzo

    2016-12-01

    In this study, we focused on the origin on the selective deposition of rutile and anatase TiO2 thin films during the sputtering process. The observation on microstructural evolution of the TiO2 films by transmission electron microscopy revealed the coexistence of rutile and anatase TiO2 phases in the initial stage under the preferential growth conditions for the anatase TiO2; the observations further revealed that the anatase phase gradually dominated the crystal structure with increasing film thickness. These results suggest that the bombardment during the sputtering deposition did not obviously affect the TiO2 crystal structure, and this was also confirmed by off-axis magnetron sputtering experiments. We also investigated the mechanism of the effect of Sn impurity doping on the crystal structure using first-principles calculations. It is found that the formation energy of Sn-doped rutile TiO2 is lower than that of Sn-doped anatase TiO2; this suggests that the Sn-doped TiO2 favours the rutile phase. These results offer a guideline for the utilization of selective deposition of rutile and anatase TiO2 thin films in various industrial applications.

  9. On the Crystal Structural Control of Sputtered TiO2 Thin Films

    Science.gov (United States)

    Jia, Junjun; Yamamoto, Haruka; Okajima, Toshihiro; Shigesato, Yuzo

    2016-07-01

    In this study, we focused on the origin on the selective deposition of rutile and anatase TiO2 thin films during the sputtering process. The observation on microstructural evolution of the TiO2 films by transmission electron microscopy revealed the coexistence of rutile and anatase TiO2 phases in the initial stage under the preferential growth conditions for the anatase TiO2; the observations further revealed that the anatase phase gradually dominated the crystal structure with increasing film thickness. These results suggest that the bombardment during the sputtering deposition did not obviously affect the TiO2 crystal structure, and this was also confirmed by off-axis magnetron sputtering experiments. We also investigated the mechanism of the effect of Sn impurity doping on the crystal structure using first-principles calculations. It is found that the formation energy of Sn-doped rutile TiO2 is lower than that of Sn-doped anatase TiO2; this suggests that the Sn-doped TiO2 favours the rutile phase. These results offer a guideline for the utilization of selective deposition of rutile and anatase TiO2 thin films in various industrial applications.

  10. Formation behavior of anodic TiO2 nanotubes influoride containing electrolytes

    Institute of Scientific and Technical Information of China (English)

    Byung-Gwan LEE; Jin-Wook CHOI; Seong-Eun LEE; Yong-Soo JEONG; Han-Jun OH; Choong-Soo CHI

    2009-01-01

    TiO2 nanotube layers can be formed with titanium in the electrolytes containing fluoride by electrochemical method. The role of fluoride ion, the crystallinity of the anodic oxide, and the chemical state were investigated. The results show the anodic film is composed of oxide and a little amount of hydroxide. The presence of F- ions leads to chemical dissolution of Ti oxide layer and prevents hydroxide precipitation. Consequently, chemical dissolution rate increases with increasing the fluoride content in the range of 0-2% (in mass fraction) because F- ions in electrolyte attack the interface and allow the ions of the electrolyte to easily penetrate into the interface. The as-anodized TiO2 nanotubes exhibit an amorphous structure. Thermally treated nanotubes are composed of mixtures of the anatase and rutile phases.

  11. Structure and Surface Characterization of Nanostructured Tio2 Coatings Deposited Via HVOF Thermal Spray Processes

    Directory of Open Access Journals (Sweden)

    Maryamossadat Bozorgtabar

    2015-01-01

    Full Text Available Titanium dioxide coatings were deposited by high velocity oxy-fuel spraying (HVOF with the use of agglomerated P25/20 nano-powder and different spraying parameters (e.g. fuel/flow ratio to determine their influence on the microstructure, crystalline structure and surface feature of the coatings. The microstructure of as-sprayed TiO2 coatings was characterized by scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction (XRD. Surface features were investigated by Fourier transform infrared (FT-IR and X-ray photoelectron spectroscopy (XPS. The results showed that the fuel and oxygen flow ratio have an important influence on the microstructure, anatase content, surface chemical state and surface feature of the TiO2 coatings

  12. Preparation of TiO2/Ti mesh photoelectrode and properties

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An innovative photoelectrode, TiO2/Ti mesh electrode, was prepared by anodisation. In anodisation, 0.5 mol/L H2SO4 was sued as electrolytic solution, the current had been constantly 1A from the beginning of the oxidation until reaching a designed voltage. Results showed that the photocatalytic activity of electrode was better when the designed voltage was 160V. The morphology and the crystalline texture of the TiO2 film on mesh electrode were examined by scanning electronic microscopy and Raman spectroscopy respectively. The examination results indicated that the structure and properties of the film depended on anodisation rate, and the anatase was the dominant component under the controlled experimental conditions. Degradation of Rhodamine B in photocatalytic (PC) and photoelectrocatalytic (PEC) reaction was investigated.

  13. Photoelectric properties of TiO2-ZrO2 thin films prepared by sol-gel method.

    Science.gov (United States)

    Zhang, Haifeng; Ruan, Shengping; Feng, Caihui; Xu, Baokun; Chen, Weiyou; Dong, Wei

    2011-11-01

    Acidic sols of TiO2, ZrO2 and Ti-Zr mixed oxide precursors were prepared. The sols were then smeared on quartz substrate and annealed at 650 degrees C for 2 hour to form polycrystalline oxide films. XRD, SEM, UV-visible absorption spectra and XPS were carried out to characterize the films. It was found that the crystalline phase of pure titania is an anatase and pure zirconia is a tetragonal. The binary oxides show the anatase phase at the molar ratio of Ti:Zr = 2.73:1, which means that solid solution was formed. The absorption edge of the TiO2-ZrO2 binary oxides showed obvious blue shift as the Zr ratio increased. The results obtained indicate that the band gap of the binary oxides could be adjusted from 3.2 eV (TiO2) to 7.8 eV (ZrO2) by varying the molar ratio of Ti and Zr. Au interdigitated electrodes were produced by planar technology and MSM (metal-semiconductor-metal) structure UV detector based on TiO2-ZrO2 binary oxides was fabricated. Obvious photoelectric response was observed.

  14. Investigation of E. coli bacteria inactivation by photocatalytic activity of TiO2 coated expanded polystyrene foam

    Science.gov (United States)

    Varnagiris, S.; Sakalauskaite, S.; Tuckute, S.; Lelis, M.; Daugelavicius, R.; Milcius, D.

    2017-03-01

    Photocatalytic properties of anatase and other TiO2 polymorphs are widely researched and applied in practical application. In current study TiO2 films on the plasma pre-treated expanded polystyrene (EPS) foam were deposited using magnetron sputtering technique. Main properties of the films were characterised using combination of XRD, XPS and SEM techniques. Photocatalytic properties of the observed crystalline anatase phase were tested by investigating bleaching of the methylene blue (MB) aqueous solution and by testing Escherichia coli (E. coli) viability after incubation under UV-B irradiation. E. coli viability experiments indicated that there are two mechanisms of E. coli bacteria inactivation. UV irradiation alone causes rapid damage to the outer membrane of E. coli bacteria. The second mechanism of E. coli inactivation is invoked only with synergistic combination of TiO2 and UV. Acting as photocatalyst TiO2 generates active radicals who initiate the chain peroxidation of organic molecules and within 45 min reduce E. coli bacteria viability by nearly 90%.

  15. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique

    Science.gov (United States)

    Mugundan, S.; Rajamannan, B.; Viruthagiri, G.; Shanmugam, N.; Gobi, R.; Praveen, P.

    2015-04-01

    TiO2 nanoparticles doped with different concentrations of cobalt (4, 8, 12 and 16 %) were synthesized by sol-gel method at room temperature with appropriate reactants. In general, TiO2 can exist in anatase, rutile, and brookite phases. In this present study, we used titanium tetra iso propoxide and 2-propanol as a common starting materials and the obtained products were calcined at 500 °C and 800 °C to get anatase and rutile phases, respectively. The crystalline sizes of the doped and undoped TiO2 nanoparticles were observed with X-ray diffraction (XRD) analysis. The functional groups of the samples were identified by Fourier transform infrared spectroscopy (FTIR). From UV-VIS diffuse reflectance spectra (DRS), the band gap energy and excitation wavelength of doped and undoped TiO2 nanoparticles were identified. The defect oriented emissions were seen from photoluminescence (PL) study. The spherical uniform size distribution of particles and elements present in the samples was determined using two different techniques viz., scanning electron microscopy (SEM) with energy-dispersive spectrometer (EDX) and transmission electron microscope (TEM) with selected area electron diffraction (SAED) pattern. The second harmonic generation (SHG) efficiency was also found and the obtained result was compared with potassium di hydrogen phosphate (KDP).

  16. Effects of calcination treatment on the morphology, crystallinity, and photoelectric properties of all-solid-state dye-sensitized solar cells assembled by TiO2 nanorod arrays.

    Science.gov (United States)

    Sun, Xianmiao; Sun, Qiong; Li, Yang; Sui, Lina; Dong, Lifeng

    2013-11-14

    TiO2 has been extensively investigated due to its unique photoelectric properties. In this study, oriented single-crystal rutile TiO2 nanorod arrays were synthesized and then calcined at different temperatures in the atmosphere. The morphology and crystalline characterization indicated that the length of TiO2 nanorods increased rapidly and the nanorods became aggregated and fragile after calcination, yet the sintering treatment seemed to have almost no effect on the crystallinity. To obtain the all-solid-state, dye-sensitized solar cells (DSSCs), a newly reported solid inorganic semiconductor, CsSnI2.95F0.05, was employed as the electrolyte, and the Pt deposited on the conductive side of the fluorine-doped tin oxide (FTO) glass substrate was used as the counter-electrode. The effects of the calcination treatment on the photoelectric properties of the solar cells, including external quantum efficiency (EQE), open circuit voltage (V(OC)), short-circuit current (J(SC)), and photoelectric conversion efficiency (η), were investigated under the illumination of a solar simulator. As a result, all of the EQE, V(OC), J(SC), and η values of the cells first increased and then declined with the increase of calcination temperatures, and the highest η of 2.81% was obtained by the cell assembled with its TiO2 electrode sintered at 450 °C for 3 h, a value almost 2.5 times that of the non-sintered sample (1.1%).

  17. Toxicity assessment of anatase and rutile titanium dioxide nanoparticles: The role of degradation in different pH conditions and light exposure.

    Science.gov (United States)

    De Matteis, Valeria; Cascione, Mariafrancesca; Brunetti, Virgilio; Toma, Chiara Cristina; Rinaldi, Rosaria

    2016-12-01

    Titanium dioxide nanoparticles (TiO2NPs), in the two crystalline forms, rutile and anatase, have been widely used in many industrial fields, especially in cosmetics. Therefore, a lot of details about their safety issues have been discussed by the scientific community. Many studies have led to a general agreement about TiO2NPs toxicity, in particular for anatase form, but no mechanism details have been proved yet. In this study, data confirm the different toxic potential of rutile and anatase TiO2NPs in two cell lines up to 5nM nanoparticles concentration. Moreover, we evaluated the role of titanium ions released by TiO2NPs in different conditions, at pH=4.5 (the typical lysosomal compartment pH) and at pH=5.5 (the skin physiological pH) in conditions of darkness and light, to mimic the dermal exposure of cosmetics. Anatase nanoparticles were proner to degradation both in the acidic conditions and at skin pH. Our study demonstrates that pH and sunlight are dominant factors to induce oxidative stress, TiO2NPs degradation and toxicity effects.

  18. High-Efficiency Solid-State Dye-Sensitized Solar Cells: Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO 2 Nanowires

    KAUST Repository

    Tétreault, Nicolas

    2010-12-28

    Herein, we present a novel morphology for solid-state dye-sensitized solar cells based on the simple and straightforward self-assembly of nanorods into a 3D fibrous network of fused single-crystalline anatase nanowires. This architecture offers a high roughness factor, significant light scattering, and up to several orders of magnitude faster electron transport to reach a near-record-breaking conversion efficiency of 4.9%. © 2010 American Chemical Society.

  19. High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires.

    Science.gov (United States)

    Tétreault, Nicolas; Horváth, Endre; Moehl, Thomas; Brillet, Jérémie; Smajda, Rita; Bungener, Stéphane; Cai, Ning; Wang, Peng; Zakeeruddin, Shaik M; Forró, László; Magrez, Arnaud; Grätzel, Michael

    2010-12-28

    Herein, we present a novel morphology for solid-state dye-sensitized solar cells based on the simple and straightforward self-assembly of nanorods into a 3D fibrous network of fused single-crystalline anatase nanowires. This architecture offers a high roughness factor, significant light scattering, and up to several orders of magnitude faster electron transport to reach a near-record-breaking conversion efficiency of 4.9%.

  20. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas; Riisager, Anders;

    2011-01-01

    Highly active nanoparticle SCR deNO(x) catalysts composed of amorphous vanadia on crystalline anatase have been prepared by a sol-gel, co-precipitation method using decomposable crystallization seeds. The catalysts were characterized by means of XRPD, TEM/SEM, FT-IR, nitrogen physisorption and NH(3......)-TPD. Due to the high-surface area anatase particles, loading of 20 wt% vanadia could be obtained without exceeding monolayer coverage of V(2)O(5). This resulted in unprecedented high deNO(x) SCR activity corresponding to a factor of two compared to an industrial reference and to other V(2)O(5)/TiO(2...

  1. High Pressure Raman Spectroscopy Of TiO2 Thin Films

    Science.gov (United States)

    Hess, Nancy J.; Exarhos, Gregory J.

    1989-07-01

    The pressure dependences of the Raman active modes in submicrometer films of the anatase and rutile crystalline phases of TiO2 have been determined at pressures approaching 90 Kbar. Films investigated have been prepared by reactive sputter deposition and sol-gel techniques. Band frequency shifts as a function of applied pressure for the rutile phase are in agreement with measurements from single crystal samples. However, sol-gel films (anatase) exhibit larger frequency shifts than powder or single crystal samples, and do not undergo the expected pressure-induced phase transformation to the Ti02-II phase. This anomalous pressure response is discussed in terms of the complex film microstructure evaluated from TEM cross-sectional measurements.

  2. Green synthesis of highly crystalline and visible-light sensitive C-, N- and S- codoped with Ag TiO2 nanocatalyst

    Science.gov (United States)

    Titanium dioxide (TiO2) has been a focus of attention as chemically stable, relatively nontoxic, inexpensive and highly efficient photocatalyst applicable for a wide array of uses. However, main disadvantage that severely limits its wider use is the large band gap, 3.0 eV and 3.2...

  3. Green synthesis of highly crystalline and visible-light sensitive C-, N- and S- codoped with Ag TiO2 nanocatalyst

    Science.gov (United States)

    Titanium dioxide (TiO2) has been a focus of attention as chemically stable, relatively nontoxic, inexpensive and highly efficient photocatalyst applicable for a wide array of uses. However, main disadvantage that severely limits its wider use is the large band gap, 3.0 eV and 3.2...

  4. Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO₂ solar photocatalyst using Mn(II) as 'anatase phase purifier'.

    Science.gov (United States)

    Ullattil, Sanjay Gopal; Periyat, Pradeepan

    2015-12-07

    Green and rapid microwave syntheses of 'yellow oxygen rich' (YAT-150) and 'black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn(2+) into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (∼5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination.

  5. TiO2/WO3 photoactive bilayers in the UV-Vis light region

    Science.gov (United States)

    Vasilaki, E.; Vernardou, D.; Kenanakis, G.; Vamvakaki, M.; Katsarakis, N.

    2017-04-01

    In this work, photoactive bilayered films consisting of anatase TiO2 and monoclinic WO3 were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO3 precursor solution, when deposited as an overlying layer on TiO2 by two annealing steps ( 76% methylene blue decolorization in 300 min of irradiation versus 59% in the case of a bare TiO2 film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO2 films with WO3 acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination.

  6. Facile decoration of TiO2 nanoparticles on graphene for solar degradation of organic dye

    Science.gov (United States)

    Salem, Shiva; Salem, Amin; Rezaei, Mostafa

    2016-11-01

    The reduced graphene oxide is interesting material for the synthesis of TiO2-based photocatalyst. In the present investigation, blackberry fruit, which contains high levels of anthocyanins and other phenolic compounds, was employed as a reducing agent mainly due to its high antioxidant capacity. The nano-crystalline TiO2 was decorated on different amounts of graphene oxide with sol-gel method and then the photocatalytic activity for degradation of cationic dye was evaluated by UV spectroscopy to achieve the optimum content of graphene oxide. The decoration of anatase nanoparticles on prepared reduced graphene oxide was investigated by X-ray diffraction, scanning and transmission electron microscopy techniques. The new composite gives significantly higher activity when is compared to the compositions fabricated by graphene oxide. The compact layer provides a large TiO2-graphene contact area and reduces the electron recombination. The decoration of TiO2 nanoparticles, 5-10 nm, on the graphene oxide reduced by blackberry juice further improves the dye removal. The results imply that the nanoparticle decoration is the key strategy to increase the degradation capacity.

  7. N,Fe,La三掺杂锐钛矿型TiO2能带调节的理论与实验研究∗%Theoretical and exp erimental studies on N, Fe, La co-doped anatase TiO2 band adjustment

    Institute of Scientific and Technical Information of China (English)

    王庆宝; 张仲; 徐锡金; 吕英波; 张芹

    2015-01-01

    采用基于密度泛函理论(DFT)的平面波超软赝势方法(PWPP),利用Material studio计算N, Fe, La三种元素掺杂引起的锐钛矿TiO2晶体结构、能带结构和态密度变化.并通过溶胶-凝胶法制得锐钛矿型本征TiO2, N, Fe共掺杂TiO2和N, Fe, La共掺杂TiO2;用X射线衍射和扫描电镜表征结构;紫外-可见分光光度计检测TiO2对甲基橙的降解效率变化.计算结果表明,由于N, Fe, La三掺杂TiO2的晶格体积、键长等发生变化,导致晶体对称性下降,光生电子-空穴对有效分离,同时在导带底和价带顶形成杂质能级, TiO2禁带宽度由1.78 eV变为1.35 eV,减小25%,光吸收带边红移,态密度数增加,电子跃迁概率提升,光催化能力增加.实验结果表明:离子掺杂使颗粒变小,粒径大小:本征TiO2>N/Fe_TiO2>N/Fe/La_TiO2,并测得N/Fe/La_TiO2发光峰425 nm,能隙减小,光催化能力比N/Fe_TiO2强,增强原因是杂质能级和电子态数量增加引起.%Based on the plane wave method (PWPP) of densiy functional theory (DFT) we model the N, Fe, La three elements co-doped anatase TiO2 crystal structure and calculate its band structure and density of states with Material Studio. By the sol-gel method, the intrinsic anatase TiO2 and the anatase TiO2 with N, Fe, La three elements co-doping are prepared and investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results indicate that the changes of the N, Fe, La co-doped TiO2 lattice volume and its bond length will result in a decline of the crystal symmetry and the effective separation of the electron-hole pair. Impurity level appearing at the bottom of the conduction band and at the top of valence band leads to the decrease of the TiO2 forbidden band width(1.78 eV to 1.35 eV, reduced by 25%), the red shift of light absorption edge, the increase of density of states as well as, the improve ment of electron transition probability and the photocatalytic efficiency of TiO2. Ion

  8. Preparation of perpendicular oriented TiO2 films via hydrothermal method: phase selection and growth control

    Science.gov (United States)

    Gao, Yun; Guo, Meilan; Xia, Xiaohong; Shao, Guosheng

    2013-03-01

    Either rutile or anatase vertical orientated TiO2 array films were synthesized successfully on FTO (F: SnO2) substrate via hydrothermal method through controlling the concentration of Cl- and SO42- . The density of nanorods can be adjusted by varying the volume ratio of ethanol/water, and the degree of orientation and crystallinity of TiO2 nanofilms were enhanced with increasing dosage of ethanol. Meanwhile, completely dense anatase films with [004] oriented growth appear within a very narrow concentration window when adding sulfuric acid into precursor. Besides, other alcohols such as methanol, n-propanol and n-butyl were also used as solvent to examine the role of alcohol type during hydrothermal process for both two phase films. The growth rate and degree of perpendicular orientation declined as the alkyl length of solvents increases. Hydrogen sensing characteristics of dense films of both rutile and anatase phases showed that there was a remarkable improvement of sensitivity response over reported data. It was found that rutile films have higher sensitivity while anatase films have faster response. This work is supported by Ministry of Education of China (211108) and Science and Technology of Wuhan (2010CDA024, 201110821251).

  9. Photocatalytic Activity of Toluene under UV-LED Light with TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Thammasak Rojviroon

    2012-01-01

    Full Text Available Titanium dioxide (TiO2 and ferric-doped TiO2 (Fe-TiO2 thin films were synthesized on the surface of 304 stainless steel sheets using a simplified sol-gel preparation method. The Fe-TiO2 thin films were prepared with weight-to-volume ratios of /TiO2 of 0.3%, 0.5%, and 0.7%, respectively. The crystalline phase structures of the prepared TiO2 and Fe-TiO2 thin films were entirely anatase. The measured optical band gaps of the TiO2, 0.3% Fe-TiO2, 0.5% Fe-TiO2, and 0.7% Fe-TiO2 thin films were 3.27, 3.28, 3.22, and 2.82 eV, respectively. The grain sizes and other physical properties of the prepared thin films were also reported. The kinetics of the photocatalytic processes under a UV-LED light source could be explained by the Langmuir-Hinshelwood kinetic model with the specific rates of , , , and  , for TiO2, 0.3% Fe-TiO2, 0.5% Fe-TiO2, and 0.7% Fe-TiO2, respectively. An increase in dopant concentration could enhance the photocatalytic activity of toluene decomposition as a result of lower optical band gaps, smaller grain size, and higher surface area.

  10. Influence of catalyst on structural and morphological properties of TiO2 nanostructured films prepared by sol-gel on glass

    Institute of Scientific and Technical Information of China (English)

    Mehdi Alzamani; Ali Shokuhfar; Ebrahim Eghdam; Sadegh Mastali

    2013-01-01

    Transparent TiO2 thin films have been prepared by the sol-gel method using titanium alkoxides as precursors. Thin films were deposited on glass supports by the dip-coating technique. The TiO2 layer acts as a self-cleaning coating generated from its photocatalysis and photoinduced superhydrophilicity. The crystalline structure of TiO2 films was dominantly identified as the anatase phase, consisted of uniform spherical particles of about 14-50 nm in size, which strongly depends upon catalyst-type and heat treatment temperature. Increasing heat treating temperature can lead to an increase in crystalline size. The results indicated that the sample S.S (sample derived from sol containing sulfuric acid as catalyst) exhibits superhydrophilic nature and better photocatalytic activity, which can be attributed to its higher anatase content and lower crystalline size. Morphological studies, carried out using Atomic Force Microscopy (AFM), confirm the presence of crystalline phase with such a grain size and low surface roughness. Thus, the applied films exhibiting high photocatalytic activity, superhydrophilic behavior, and low surface roughness can be used as an efficient self-cleaning coating on glass and other optical applications.

  11. Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida

    Science.gov (United States)

    Angelov, O.; Stoyanova, D.; Ivanova, I.

    2016-10-01

    Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.

  12. Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents

    Science.gov (United States)

    López-Muñoz, María-José; Arencibia, Amaya; Cerro, Luis; Pascual, Raquel; Melgar, Álvaro

    2016-03-01

    Titania and titanate nanotubes were evaluated as adsorbents for the removal of Hg(II) from aqueous solution. Commercial titanium dioxide (TiO2-P25, Evonik), a synthesized anatase sample obtained by the sol-gel method (TiO2-SG) and titanate nanotubes (TNT) prepared via hydrothermal treatment were compared. Mercury adsorption was analysed by kinetic and equilibrium experiments, studying the influence of pH and the type of adsorbents. The kinetics of Hg(II) adsorption on titania and titanate nanotubes could be well described by the pseudo-second order model. It was found that the process is generally fast with small differences between adsorbents, which cannot be explained by their dissimilarities in textural properties. Equilibrium isotherm data were best fitted with the Sips isotherm model. The maximum adsorption capacities of Hg(II) were achieved with titanate nanotubes sample, whereas between both titania samples, TiO2-SG exhibited the highest mercury uptake. For all adsorbents, adsorption capacities were enhanced as pH was increased, achieving at pH 10 Hg(II) adsorption capacities of 100, 121, and 140 mg g-1 for TiO2-P25, TiO2-SG, and TNT, respectively. Differences between samples were discussed in terms of their crystalline phase composition and chemical nature of both, mercury species and surface active sites.

  13. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts

    Science.gov (United States)

    Sun, Zhiming; Hu, Zhibo; Yan, Yang; Zheng, Shuilin

    2014-09-01

    TiO2/purified diatomite composite materials were prepared through a modified hydrolysis-deposition method under low temperature using titanium tetrachloride as precursor combined with a calcination crystallization process. The microstructure and crystalline phases of the obtained composites prepared under different preparation conditions were characterized by high resolution scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The photocatalytic performance of TiO2/purified diatomite composites was evaluated by Rhodamine B as the target pollutant under UV irradiation, and the optimum preparation conditions of composites were obtained. The TiO2 crystal form in composites prepared under optimum conditions was anatase, the grain size of which was 34.12 nm. The relationships between structure and property of composite materials were analyzed and discussed. It is indicated that the TiO2 nanoparticles uniformly dispersed on the surface of diatoms, and the photocatalytic performance of the composite materials was mainly determined by the dispersity and grain size of loaded TiO2 nanoparticles.

  14. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents

    Science.gov (United States)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.

    2016-07-01

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  15. Preparation of transparent TiO2 nanocrystalline film for UV sensor

    Institute of Scientific and Technical Information of China (English)

    FU Yao; GAO Wanghe

    2006-01-01

    The nanocrystalline TiO2 film electrodes were prepared by sol-gel method at different calcining temperatures, which had characteristics of different film thickness, uniform transparency, as well as high photoelectric and mechanical stability. Photoelectric measurements show that calcining temperature and film thickness could remarkably influence the photoelectric properties of the electrodes. The film calcined at 450℃ is anatase phase with high crystallinity and strong photoelectric activity, and shows the largest photocurrent. When the temperature is lower than 450℃, the film has weaker crystallinity because of a large number of defects in the film,and this is not favorable for the transport of the photogenerated carriers. And at a temperature higher than 450℃, the photocurrent of the electrode is decreased due to anatase-rutile phase transition in the film. The increase in film thickness is favorable to the enhancement of ultraviolet light (UV) absorption amount, which would improve the photoelectric activity of the film. But, excessive thickness will increase the recombination rate of the electron-hole pairs, and result in a reduction in electrode's photoelectric activity. In addition, the response sensitivity and stability of the photocurrent produced in the electrode are related to bias potential. At a potential of 0.4 V, the electrode shows a saturated photocurrent of 30.8 μA and a response time of ~1 s, suggesting that the prepared TiO2 film electrode can be used for making UV sensors.

  16. Thermo-selective TmxTi1-xO2-x/2 nanoparticles: from Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application

    Science.gov (United States)

    Navas, Javier; Sánchez-Coronilla, Antonio; Aguilar, Teresa; de Los Santos, Desireé M.; Hernández, Norge C.; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2014-10-01

    This is an experimental and theoretical study of thulium doped TiO2 nanoparticles. From an experimental perspective, a method was used to synthesize thulium-doped TiO2 nanoparticles in which Tm3+ replaces Ti4+ in the lattice, which to our knowledge has neither been reported nor studied theoretically so far. Different proportions of anatase and rutile phases were obtained at different annealing temperatures, and XRD and Raman spectroscopy also revealed the presence of a pyrochlore phase (Tm2Ti2O7) at 1173 K. Thus, the structure of the Tm-doped nanoparticles was thermally-controlled. Furthermore, XPS showed the presence of Tm3+ in the samples synthesized, which produces oxygen vacancies to maintain the local neutrality in the lattice. The presence of Tm3+ in the samples led to changes in the UV-Vis absorption spectra, so they showed photoluminescence properties and new states in the band gap, which produce a new lower energy electronic transition than the main TiO2 one. Periodic DFT calculations were performed to understand the experimentally produced structures. The production of oxygen vacancies was analysed and the changes generated in the structure were fully detailed. The DOS and PDOS analyses confirmed the experimental results obtained using UV-Vis spectroscopy, and showed that the new electronic states in the band gap are due to interactions of the f state of Tm and the p state of O. Likewise, the charge study and the ELF analysis indicate that when Tm is introduced into the TiO2 structure, the Ti-O bond around the oxygen vacancy is strengthened. Finally, an example of a photocatalytic application was developed to show the high efficiency of the samples due to the heterojunction in the interfaces of the phases in the samples, which improved the charge separation and the good charge carrier mobility due to the presence of the pyrochlore phase, as was also shown theoretically.This is an experimental and theoretical study of thulium doped TiO2 nanoparticles. From

  17. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells.

    Science.gov (United States)

    Zhou, Zheng-ji; Fan, Jun-qi; Wang, Xia; Zhou, Wen-hui; Du, Zu-liang; Wu, Si-xin

    2011-11-01

    One-dimensional semiconductor nanostructures grown directly onto transparent conducting oxide substrates with a high internal surface area are most desirable for high-efficiency dye-sensitized solar cells (DSSCs). Herein, we present a multicycle hydrothermal synthesis process to produce vertically aligned, single crystal rutile TiO(2) nanowires with different lengths between 1 and 8 μm for application as the working electrode in DSSCs. Optimum performance was obtained with a TiO(2) nanowire length of 2.0 μm, which may be ascribed to a smaller nanowire diameter with a high internal surface area and better optical transmittance with an increase in the incident light intensity on the N719 dye; as well as a firm connection at the FTO/TiO(2) nanowire interface.

  18. CoFe2O4-TiO2 Hybrid Nanomaterials: Synthesis Approaches Based on the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Arturo Adrián Rodríguez-Rodríguez

    2017-01-01

    Full Text Available CoFe2O4 nanoparticles decorated and wrapped with TiO2 nanoparticles have been prepared by mixing well-dispersed CoFe2O4 with amorphous TiO2 (impregnation approach and growing amorphous TiO2 over the magnetic core (seed approach, respectively, followed by thermal treatment to achieve TiO2 crystallinity. Synthesis strategies were based on the oil-in-water microemulsion reaction method. Thermally treated nanomaterials were characterized in terms of structure, morphology, and composition, to confirm hybrid nanoparticles formation and relate with the synthesis approaches; textural, optical, and magnetic properties were evaluated. X-ray diffraction revealed coexistence of cubic spinel-type CoFe2O4 and tetragonal anatase TiO2. Electron microscopy images depicted crystalline nanoparticles (sizes below 25 nm, with homogeneous Ti distribution for the hybrid nanoparticles synthesized by seed approach. EDX microanalysis and ICP-AES corroborated established chemical composition. XPS evidenced chemical states, as well as TiO2 predominance over CoFe2O4 surface. According to BET measurements, the hybrid nanoparticles were mesoporous. UV-Vis spectroscopy showed optical response along the UV-visible light region. Magnetic properties suggested the breaking order of magnetic domains due to modification with TiO2, especially for mediated seed approach sample. The properties of the obtained hybrid nanoparticles were different in comparison with its individual components. The results highlight the usefulness of designed microemulsion approaches for the straightforward synthesis of CoFe2O4-TiO2 nanostructured hybrids.

  19. Enhanced efficiency of dye-sensitized solar cells with novel synthesized TiO2.

    Science.gov (United States)

    Ju, Ki-Young; Cho, Jung-Min; Cho, Sung-June; Yun, Je-Jung; Mun, Soo-San; Han, Eun-Mi

    2010-05-01

    An anatase TiO2 and three kinds of novel TiO2 nanoparticles were prepared by a hydrothermal method for dye-sensitized solar cells (DSSCs), which were obtained by mixing NaOH (10 M), KOH (14 M) and LiOH (10 M) solution with an anatase TiO2 powder, respectively. The TiO2 working electrodes of DSSCs were prepared and the photoelectric properties of the cells were characterized. The influence of different poly(ethylene glycol) contents in TiO2 films with and without HNO3 treatment on the electron transfer in DSSCs were investigated. It is found that the DSSC with HNO3 (0.002 mol/l)-treated film containing 16.7 wt% PEG shows the higher power conversion efficiency of 6.0%, which was mainly depended on the degrees of TiO2 pore size and uniformity of TiO2 films.

  20. Decolorization of Methylene Blue with TiO2 Sol via UV Irradiation Photocatalytic Degradation

    OpenAIRE

    2010-01-01

    TiO2 sol was prepared for the degradation of methylene blue (MB) solution under ultraviolet (UV) irradiation. The absorption spectra of MB indicated that the maximum wavelength, 663 nm, almost kept the same. The performance of 92.3% for color removal was reached after 160 min. The particle size of TiO2 sol was about 22.5 nm. X-ray diffraction showed that TiO2 consisted of a single anatase phase. The small size and anatase phase probably resulted in high photocatalytic activity of TiO2 sol. Th...