WorldWideScience

Sample records for crystalline silver azide

  1. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    Directory of Open Access Journals (Sweden)

    Aldo I. Ortega-Arizmendi

    2013-01-01

    Full Text Available A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields.

  2. Propagation of plasmons in designed single crystalline silver nanostructures

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lu, Ying-Wei; Huck, Alexander

    2012-01-01

    We demonstrate propagation of plasmons in single crystalline silver nanostructures fabricated using a combination of a bottom-up and a top-down approach. Silver nanoplates of thickness around 65 nm and a surface area of about 100 μm2 are made using a wet chemical method. Silver nanotips...

  3. Simple extraction-solvothermal synthesis of single-crystalline silver microplates

    Energy Technology Data Exchange (ETDEWEB)

    You, Ting; Sun, Sixiu; Song, Xinyu; Xu, Shuling [Department of Chemistry and Chemical Engineering, Shandong University (China)

    2009-08-15

    Single-crystalline silver microplates, with average edge length of about 1.5{mu}m and thickness of 100 nm, have been synthesized by a simple extraction-solvothermal method. Samples were characterized in detail by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and High-resolution transmission electron microscopy (HRTEM) technologies. Extractant primary amine N1923 can also act as reducing agent. It has been found that microstructure of the silver can be controlled by the n-octanol during the solvothermal treatment. Based on a series of experimental analysis, the possible formation mechanism of these microplates was discussed briefly. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Effect of Different Mediated Agents on Morphology and Crystallinity of Synthesized Silver Nanowires Prepared by Polyol Process

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Satoungar

    2016-01-01

    Full Text Available Synthesis and characterization of multiple crystalline silver nanowires (NWs with uniform diameters were carried out by using 1,2-propandiol and ethylene glycol (EG as comediated solvents and FeCl3 as mediated agent in the presence of poly(vinyl pyrrolidone (PVP. Experimental data and structural characterizations revealed that AgNWs have evolved from the multiple crystalline seeds initially generated by reduction of AgNO3 with EG and 1,2-propandiol followed by reducing Fe(III to Fe(II which in turn reacts with and removes adsorbed atomic oxygen from the surfaces of silver seeds. In addition, uniform silver nanowires were obtained by using FeCl2 and AlCl3 as mediated agents in EG solution. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM showed uniform nanowires in both diameter and length. UV-Vis spectra showed adsorption peaks confirming the formation of nanowires. X-ray diffraction (XRD patterns displayed the final product with high crystallinity and purity. In this study, a growth mechanism for forming AgNWs was proposed and a comparison between different mediated agents was carried out.

  5. Thermochemistry of organic azides revisited

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Algarra, Manuel; Esteves da Silva, Joaquim C.G.; Hierrezuelo, Jesús; López-Romero, Juan M.; Verevkin, Sergey P.

    2014-01-01

    Highlights: • Pure samples of 4-nitro-phenyl azide, 1-octyl- and 1-decyl-azides were prepared. • Vapour pressures, sublimation and vaporization enthalpies measured by transpiration. • Enthalpy of formation of 1-alkyl azides measured by combustion calorimetry. • Enthalpy of fusion of 4-nitro-phenyl azide measured by DSC. • Experimental gas enthalpies of formation were in agreement with calculated by G4. - Abstract: Highly pure samples of 4-nitro-phenyl azide, 1-octyl azide and 1 decyl-azide were prepared for thermochemical studies. Vapour pressures over the solid and the liquid sample of 4-nitro-phenyl azide have been determined by the transpiration method. The molar enthalpies of vaporization/sublimation for this compound were derived from the temperature dependencies of vapour pressures. The molar enthalpy of fusion of 4-nitro-phenyl azide was measured by DSC. The measured data set for 4-nitro-phenyl azide was successfully checked for internal consistency. Molar enthalpies of vaporization of 1-octyl azide and 1 decyl-azide were measured by transpiration. The molar enthalpies of formation of the liquid 1-octyl azide and 1 decyl-azides were derived from the combustion calorimetry. New experimental results for these organic azides have been used to derive their molar enthalpies of formation in the gas state and for comparison with results from quantum-chemical method G4

  6. Synthesis and structure of large single crystalline silver hexagonal microplates suitable for micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Lyutov, Dimitar L.; Genkov, Kaloyan V.; Zyapkov, Anton D.; Tsutsumanova, Gichka G.; Tzonev, Atanas N. [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria); Lyutov, Lyudmil G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Sofia, 1, J. Bouchier Blvd, Sofia (Bulgaria); Russev, Stoyan C., E-mail: scr@phys.uni-sofia.bg [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria)

    2014-01-15

    We report a simple one-step synthesis method of large single crystalline Ag (111) hexagonal microplates with sharp edges and a size of up to tens of microns. Single silver crystals were produced by reduction silver nitrate aqueous solution with 4-(methylamino)phenol sulfate. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and optical microscopy techniques were combined to characterize the crystals. It is shown that the microplates can be easily dispersed and transferred as single objects onto different substrates and subsequently used as a high quality plasmonic starting material for micromachining of future nanocomponents, using modern top-down techniques like focused-ion beam milling and gas injection deposition. - Highlights: • Synthesis of large Ag hexagonal microplates with high crystallinity. • It is shown and discussed the role of twinning for the anisotropic 2D growth. • The Ag plates are stable in water and can be dispersed onto different substrates. • Their positioning and subsequent micromachining with FIB/GIS is demonstrated. • Suitable starting material for future plasmonic nanocomponents.

  7. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    Science.gov (United States)

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  8. High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2015-01-01

    Roč. 627, March (2015), s. 326-332 ISSN 0921-5093 Institutional support: RVO:61389021 Keywords : Nano-crystalline material * Selective leaching * Silver * Spark plasma sintering * Strength Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.647, year: 2015 http://dx.doi.org/10.1016/j.msea.2015.01.014

  9. Mutagenic azide metabolite is azidoalanine

    International Nuclear Information System (INIS)

    Owais, W.M.; Rosichan, J.L.; Ronald, R.C.; Kleinhofs, A.; Nilan, R.A.

    1981-01-01

    Sodium axide produces high mutation rates in a number of species. Azide mutagenicity is mediated through a metabolite in barley and bacteria. Many studies showed that azide affects the L-cysteine biosynthesis pathway. Cell-free extracts of Salmonella typhimurium convert azide and O-acetylserine to the mutagenic metabolite. O-acetylserine sulfhydrylase was identified as the enzyme responsible for the metabolite biosynthesis. To confirm the conclusion that the azide metabolite is formed through the β-substitution pathway of L-cysteine, we radioactively labeled the azide metabolite using 14 C-labeled precursors. Moreover, the mutagenic azide metabolite was purified and identified as azidoalanine based on mass spectroscopy and elemental analysis. 26 refs., 3 figs., 1 tab

  10. Direct Functionalization of an Acid-Terminated Nanodiamond with Azide: Enabling Access to 4-Substituted-1,2,3-Triazole-Functionalized Particles.

    Science.gov (United States)

    Kennedy, Zachary C; Barrett, Christopher A; Warner, Marvin G

    2017-03-21

    Azides on the periphery of nanodiamond materials (ND) are of great utility because they have been shown to undergo Cu-catalyzed and Cu-free cycloaddition reactions with structurally diverse alkynes, affording particles tailored for applications in biology and materials science. However, current methods employed to access ND featuring azide groups typically require either harsh pretreatment procedures or multiple synthesis steps and use surface linking groups that may be susceptible to undesirable cleavage. Here we demonstrate an alternative single-step approach to producing linker-free, azide-functionalized ND. Our method was applied to low-cost, detonation-derived ND powders where surface carbonyl groups undergo silver-mediated decarboxylation and radical substitution with azide. ND with directly grafted azide groups were then treated with a variety of aliphatic, aromatic, and fluorescent alkynes to afford 1-(ND)-4-substituted-1,2,3-triazole materials under standard copper-catalyzed cycloaddition conditions. Surface modification steps were verified by characteristic infrared absorptions and elemental analyses. High loadings of triazole surface groups (up to 0.85 mmol g -1 ) were obtained as determined from thermogravimetric analysis. The azidation procedure disclosed is envisioned to become a valuable initial transformation in numerous future applications of ND.

  11. Distance-dependent metal enhanced fluorescence by flowerlike silver nanostructures fabricated in liquid crystalline phase

    Science.gov (United States)

    Zhang, Ying; Yang, Chengliang; Zhang, Guiyang; Peng, Zenghui; Yao, Lishuang; Wang, Qidong; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li

    2017-10-01

    Flowerlike silver nanostructure substrates were fabricated in liquid crystalline phase and the distance dependent property of metal enhanced fluorescence for such substrate was studied for the first time. The distance between silver nanostructures and fluorophore was controlled by the well-established layer-by-layer (LbL) technique constructing alternate layers of poly (allylamine hydrochloride) (PAH) and poly (sodium 4-styrenesulfonate) (PSS). The Rhodamine 6G (R6G) molecules were electrostatically attached to the outmost negative charged PSS layer. The fluorescence enhancement factor of flowerlike nanostructure substrate increased firstly and then decreased with the distance increasing. The best enhanced fluorescence intensity of 71 fold was obtained at a distance of 5.2 nm from the surface of flowerlike silver nanostructure. The distance for best enhancement effect is an instructive parameter for the applications of such substrates and could be used in the practical MEF applications with the flowerlike nanostructure substrates fabricated in such way which is simple, controllable and cost-effective.

  12. Direct Functionalization of an Acid-Terminated Nanodiamond with Azide: Enabling Access to 4-Substituted-1,2,3-Triazole-Functionalized Particles

    International Nuclear Information System (INIS)

    Kennedy, Zachary C.; Barrett, Christopher A.; Warner, Marvin G.

    2017-01-01

    Azides on the periphery of nanodiamond materials (ND) are of great utility because they have been shown to undergo Cu-catalyzed and Cu-free cycloaddition reactions with structurally diverse alkynes, affording particles tailored for applications in biology and materials science. However, current methods employed to access ND featuring azide groups typically require either harsh pretreatment procedures or multiple synthesis steps and use surface linking groups that may be susceptible to undesirable cleavage. Here in this paper we demonstrate an alternative single-step approach to producing linker-free, azide-functionalized ND. Our method was applied to low-cost, detonation-derived ND powders where surface carbonyl groups undergo silver-mediated decarboxylation and radical substitution with azide. ND with directly grafted azide groups were then treated with a variety of aliphatic, aromatic, and fluorescent alkynes to afford 1-(ND)-4-substituted-1,2,3-triazole materials under standard copper-catalyzed cycloaddition conditions. Surface modification steps were verified by characteristic infrared absorptions and elemental analyses. High loadings of triazole surface groups (up to 0.85 mmol g –1 ) were obtained as determined from thermogravimetric analysis. The azidation procedure disclosed is envisioned to become a valuable initial transformation in numerous future applications of ND.

  13. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dexin; Zhang, Yan [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China); Bessho, Takeshi [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio [Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kang, Zhixin, E-mail: zxkang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China)

    2015-09-15

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method.

  14. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    International Nuclear Information System (INIS)

    Chen, Dexin; Zhang, Yan; Bessho, Takeshi; Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio; Kang, Zhixin

    2015-01-01

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method

  15. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  16. Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.

    Science.gov (United States)

    Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong

    2013-01-01

    We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.

  17. Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp.

    Directory of Open Access Journals (Sweden)

    Rasesh Y Parikh

    Full Text Available This study was performed to determine whether extracellular silver nanoparticles (AgNPs production is a genus-wide phenotype associated with all the members of genus Morganella, or only Morganella morganii RP-42 isolate is able to synthesize extracellular Ag nanoparticles. To undertake this study, all the available Morganella isolates were exposed to Ag+ ions, and the obtained nanoproducts were thoroughly analyzed using physico-chemical characterization tools such as transmission electron microscopy (TEM, UV-visible spectrophotometry (UV-vis, and X-ray diffraction (XRD analysis. It was identified that extracellular biosynthesis of crystalline silver nanoparticles is a unique biochemical character of all the members of genus Morganella, which was found independent of environmental changes. Significantly, the inability of other closely related members of the family Enterobacteriaceae towards AgNPs synthesis strongly suggests that AgNPs synthesis in the presence of Ag+ ions is a phenotypic character that is uniquely associated with genus Morganella.

  18. Versatile lanthanide-azide complexes with azide/carboxylate/hydroxy mixed bridged chain exhibiting magnetic and luminescent properties

    International Nuclear Information System (INIS)

    Wang Haichao; Xue Min; Guo Qian; Zhao Jiongpeng; Liu Fuchen; Ribas, Joan

    2012-01-01

    Two new lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb for 1 and Tb for 2, isonic=isonicotinate), were obtained in hydrothermal condition. X-ray diffraction analysis indicated the two complexes are isomorphic chain structure in which the Ln III ions are mixed bridged by the azide anions, hydroxyl anions and carboxylate groups of the isonicotinate ligands. Further studies indicated weak antiferromagnetic interactions between the Ln III ions in 1 and 2, and complex 2 exhibit green sensitized Luminescent character of Tb III ion. - Graphical abstract: Two new 1D lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb III for 1 and Tb III for 2, isonic=isonicotinate), were synthesized by hydrothermal reaction and exhibit interesting magnetism and fluorescence properties. Highlights: ► The research provided a new method for synthesizing lanthanide-azide complexes. ► The complexes have an interesting azide/hydroxyl/carboxylate mixed bridged1D chain structure. ► The antiferromagnetic coupling between the complexes and 2 displays green luminescence.

  19. Antibacterial activity of single crystalline silver-doped anatase TiO{sub 2} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangyu, E-mail: zhangxiangyu@tyut.edu.cn; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin, E-mail: tangbin@tyut.edu.cn

    2016-05-30

    Graphical abstract: The silver-doped TiO{sub 2} nanowire arrays on titanium foil substrate were synthesized via a two-step process. It includes: deposition of AgTi films on titanium foil by magnetron sputtering; preparation of AgNW arrays on AgTi films via alkali (NaOH) hydrothermal treatment and ion-exchange with HCl, followed by calcinations. - Highlights: • Ag-doped TiO{sub 2} nanowire arrays have been prepared by a duplex-treatment. • The duplex-treatment consisted of magnetron sputtering and hydrothermal growth. • Ag-doped nanowire arrays show excellent antibacterial activity against E. coli. - Abstract: Well-ordered, one-dimensional silver-doped anatase TiO{sub 2} nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO{sub 2} nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  20. Sodium Azide

    Science.gov (United States)

    ... Exposure to a large amount of sodium azide by any route may cause these other health effects as well: Convulsions Low blood pressure Loss of consciousness Lung injury Respiratory failure leading to death Slow heart rate ...

  1. Alkaline azide mutagenicity in cowpea

    Energy Technology Data Exchange (ETDEWEB)

    Mahna, S K; Bhargava, Anubha; Mohan, Lalit [Cytogenetics and Mycology Laboratory, Department of Botany, Government College, Ajmer (India)

    1990-07-01

    Sodium azide is known as a potent mutagen in cereals and legumes. It is very effective in acidic medium in barley. Here an attempt is made to measure the effectiveness of sodium azide in alkaline medium (pH 7.4) on cowpea (Vigna unguiculata (L.) Walp., variety FS-68). Seeds pre-soaked in distilled water for 5 hours were treated with different concentrations (10{sup -6}, 10{sup -5}, 10{sup -4} and 10{sup -3}M) of sodium azide (NaN{sub 3}) for 4 hours at 28{+-} 2 deg. C. Bottles were intermittently shaken, then the seeds were thoroughly washed in running tap water and subsequently planted in pots. The treatment caused significant biological damage such as reduction in seed germination, length of root and shoot, number of nodules and pods per plant and morphological leaf variations. Morphological, as well as chlorophyll mutants, were detected in M{sub 2}.

  2. Alkaline azide mutagenicity in cowpea

    International Nuclear Information System (INIS)

    Mahna, S.K.; Bhargava, Anubha; Mohan, Lalit

    1990-01-01

    Sodium azide is known as a potent mutagen in cereals and legumes. It is very effective in acidic medium in barley. Here an attempt is made to measure the effectiveness of sodium azide in alkaline medium (pH 7.4) on cowpea (Vigna unguiculata (L.) Walp., variety FS-68). Seeds pre-soaked in distilled water for 5 hours were treated with different concentrations (10 -6 , 10 -5 , 10 -4 and 10 -3 M) of sodium azide (NaN 3 ) for 4 hours at 28± 2 deg. C. Bottles were intermittently shaken, then the seeds were thoroughly washed in running tap water and subsequently planted in pots. The treatment caused significant biological damage such as reduction in seed germination, length of root and shoot, number of nodules and pods per plant and morphological leaf variations. Morphological, as well as chlorophyll mutants, were detected in M 2

  3. Oriented crystalline monolayers and bilayers of 2 x 2 silver(1) grid architectures at the air-solution interface: Their assembly and crystal structure elucidation

    DEFF Research Database (Denmark)

    Weissbuch, J.; Baxter, P.N.W.; Kuzmenko, I.

    2000-01-01

    Oriented crystalline monolayers, similar to 14 Angstrom thick, of a 2 x 2 Ag+ grid complex, self-assembled at the air-solution interface starting from an water-insoluble ligand 3,6-bis[2-(6-phenylpyridine)]pyridazine spread on silver-ion-containing solutions,were examined by grazing-incidence X...

  4. Rhodium/Silver-Cocatalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles with Vinyl Azides: Divergent Synthesis of Pyrroles and 2 H-Pyrazines.

    Science.gov (United States)

    Zhang, Lin; Sun, Ge; Bi, Xihe

    2016-11-07

    The first cyclization reaction between vinyl azides and N-sulfonyl-1,2,3-triazoles is reported. A Rh/Ag binary metal catalyst system proved to be necessary for the successful cyclization. By varying the structure of vinyl azides, such reaction allows the divergent synthesis of pyrroles and 2H-pyrazines. The cyclization reactions feature a broad substrate scope, good functional group tolerance, high reaction efficiency, and good to high product yields. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  6. Controlling hazardous chemicals in microreactors: Synthesis with iodine azide

    Directory of Open Access Journals (Sweden)

    Johan C. Brandt

    2009-06-01

    Full Text Available Aromatic aldehydes have been converted into the corresponding carbamoyl azides using iodine azide. These reactions have been performed safely under continuous flow reaction conditions in microreactors.

  7. Determination of insoluble azides by thermometric titrimetry.

    Science.gov (United States)

    Chagas, A P; Godinho, O E; Costa, J L

    1977-09-01

    A method for determination of azide, based on the thermometric titration of this anion with hydrochloric acid, is described. Although this reaction has a large enthalpy change (DeltaH = -3.6 kcal/ mole), sulphate is added as an endothermic thermometric indicator to improve the end-point. The application of the method to the analysis of insoluble azides has been studied.

  8. Azide- and alkyne-derivatised α-amino acids

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Pedersen, D.S.

    2012-01-01

    With the emergence of the copper-catalysed Huisgen cycloaddition the use of azide- and alkyne-derivatised α-amino acids has found widespread use within most chemistry disciplines. Despite a growing interest in these building blocks researchers are struggling to identify the best way for their syn......With the emergence of the copper-catalysed Huisgen cycloaddition the use of azide- and alkyne-derivatised α-amino acids has found widespread use within most chemistry disciplines. Despite a growing interest in these building blocks researchers are struggling to identify the best way...... for their synthesis. In this review we have compiled available methods for synthesising optically active azide- and alkyne-derivatised α-amino acids that can be prepared from readily available α-amino acids. We highlight a number of commonly overlooked problems associated with existing methods and direct attention...... to unexplored possibilities. Azide- and alkyne-derivatised α-amino acids are finding widespread use within most chemistry disciplines. However, it is far from clear what the best way for the synthesis of these useful building blocks is. Herein we show the available methods for synthesis of optically active...

  9. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhang

    2016-12-01

    Full Text Available This work represents our initial effort in identifying azide/alkyne pairs for optimal reactivity in copper-catalyzed azide-alkyne cycloaddition (CuAAC reactions. In previous works, we have identified chelating azides, in particular 2-picolyl azide, as “privileged” azide substrates with high CuAAC reactivity. In the current work, two types of alkynes are shown to undergo rapid CuAAC reactions under both copper(II- (via an induction period and copper(I-catalyzed conditions. The first type of the alkynes bears relatively acidic ethynyl C-H bonds, while the second type contains an N-(triazolylmethylpropargylic moiety that produces a self-accelerating effect. The rankings of reactivity under both copper(II- and copper(I-catalyzed conditions are provided. The observations on how other reaction parameters such as accelerating ligand, reducing agent, or identity of azide alter the relative reactivity of alkynes are described and, to the best of our ability, explained.

  10. Polarographic studies about indium (III) behaviour in aqueous media of sodium azide

    International Nuclear Information System (INIS)

    Tokoro, R.

    1988-01-01

    The present study shows some polarographic behavior of indium (III) in azide media that is close those observed in a thiocyanate solution. The presence of azide ligand decreases the overpotential in the discharge of indium whose catalytic character can be explained by formation of an azide bridge between electrode and indium (III) increasing the speed of electron transfer. The discharge of indium in azide media is diffusion controlled. As the azide concentration is increased the half wave potential displaces in the cathodic direction. This displacement is due to complex formation. The number of electrons, n, involved in the total process was estimates by the reversible polarographic equation to be 2,7. The potentiostatic coulometry of indium in azide/hydrazoic acid buffer showed a catalytic process where the chemistry regeneration was performed by reaction of hydrazoic acid and indium amalgam. The electrochemistry evidence was the constancy of current as the electrolysis proceeded. The chemistry aspect was the presence of ammonium cation in electrolysed solution. The catalytic process with chemistry regeneration and the formation of a bridge by azide could explain the higher value of current in azide media compared to perchlorate solution. (author) [pt

  11. AZIDE-ALKYNE CLICK POLYMERIZATION: AN UPDATE

    Institute of Scientific and Technical Information of China (English)

    Hong-kun Li; Jing-zhi Sun; An-jun Qin; Ben Zhong Tang

    2012-01-01

    The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field.This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles (PTAs) with linear and hyperbranched structures.The Cu(Ⅰ)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.

  12. Surviving a massive sodium azide poisoning with toxic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    P. Overtchouk

    2015-01-01

    Full Text Available Sodium azide poisoning is rare (~50 case reports but can be quickly fatal. A systematic review reported the fatal dose in humans to be over 10 mg/kg1. A 69 year-old female was admitted to our hospital for voluntary sodium azide poisoning. She ingested a massive dose of a soup spoon (15 g of pure sodium azide powder with intention to commit suicide without any co-intoxication. Within minutes, she felt nauseous and had several vomiting. She was immediately brought to the hospital.

  13. Mutagenic effects of sodium azide and γ-irradiation in Pisum

    International Nuclear Information System (INIS)

    Sander, C.; Muehlbauer, F.J.

    1977-01-01

    Sodium azide was an effective mutagen in Pisum when used at a concentration of 10 -3 M and at pH 3. Effects on dry, sound seeds of 'Juneau' so treated for 3 or 4 hr and for 3 hr in the presence of oxygen were compared with responses to 5, 10 and 20 kR of γ-rays for evaluating relative effectiveness in producing mutants. Leaf aberrations were observed on γ-irradiated plants but not on azide-treated plants, an indication that azide did not cause chromosome damage. At the treatment levels used, sodium azide was as effective in total yield of mutants but produced fewer stunted and variously deformed plants than γ-rays. (author)

  14. An enzymatic method for determination of azide and cyanide in aqueous phase.

    Science.gov (United States)

    Wan, Nan-Wei; Liu, Zhi-Qiang; Xue, Feng; Zheng, Yu-Guo

    2015-11-20

    A halohydrin dehalogenase (HHDH-PL) from Parvibaculum lavamentivorans DS-1 was characterized and applied to determine azide and cyanide in the water. In this methodology, HHDH-PL catalysed azide and cyanide to react with butylene oxide and form corresponding β-substituted alcohols 1-azidobutan-2-ol (ABO) and 3-hydroxypentanenitrile (HPN) that could be quantitatively detected by gas chromatograph. The detection calibration curves for azide (R(2)=0.997) and cyanide (R(2)=0.995) were linear and the lower limits of detection for azide and cyanide were 0.1 and 0.3mM, respectively. Several other nucleophiles were identified having no effect on the analysis of azide and cyanide, excepting nitrite which influenced the detection of cyanide. This was the first report of a biological method to determine the inorganic azide and cyanide by converting them to the measurable organics. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Application of CTLM method combining interfacial structure characterization to investigate contact formation of silver paste metallization on crystalline silicon solar cells

    Science.gov (United States)

    Xiong, Shenghu; Yuan, Xiao; Tong, Hua; Yang, Yunxia; Liu, Cui; Ye, Xiaojun; Li, Yongsheng; Wang, Xianhao; Luo, Lan

    2018-04-01

    Circular transmission line model (CTLM) measurements were applied to study the contact formation mechanism of the silver paste metallization on n-type emitter of crystalline silicon solar cells. The electrical performance parameters ρc,Rsk , and Lt , which are related to the physical and chemical states of the multiphase materials at the interface, were extracted from the CTLM measurements, and were found to be sensitive to sintering temperature. As the temperature increased from 585 °C to 780 °C, initially the ρc value decreased rapidly, then flattened out and increased slightly. The order of resistivity magnitude was restricted by the SiNx passivation layer in the early sintering stages, and relied on the carrier tunneling probability affected by the precipitated silver crystallites or colloids, emitter doping concentration and molten glass layer. Based on the calculations that the sheet resistance underneath the electrode was reduced form 110 Ω / □ to 0.186 Ω / □ , it could be inferred that there was formation of a highly conductive layer of silver crystallites and colloids contained glass on the emitter. The transfer length Lt exhibited a U-shaped variation along with the temperature, reflecting the variation of the interfacial electrical properties. Overall, this article shows that the CTLM method can become a new powerful tool for researchers to meet the challenges of silver paste metallization innovation for manufacturing high-efficiency silicon solar cells.

  16. Effect of sodium azide addition and aging storage on casein micelle size

    Science.gov (United States)

    Sinaga, H.; Deeth, H.; Bhandari, B.

    2018-02-01

    Casein micelles affected most of milk properties, therefore the use sodium azide as milk preservation is not expected to alter milk properties during storage, including the casein micelle size. The aim of this study was to analyse casein micelle size after the addition of sodium azide during storage. The experiment was performed as a complete block randomised design with three replications. The addition of 0.02-0.10% Na-azide do not lead to any noticeable differences in average casein size at the same day and show similar trend after 14 day-storage. At concentration of 0.02% sodium azide (Na-azide), the size of pasteurised milk did not change up to 12 days, while the size of raw skim milk slightly increased by ageing time at day 5. The treated concentration did not affect the size distribution, except for milk with 0.02% Na-azide which had narrower distribution compared to other treated and control milk. The finding from this study suggests that the role of Na-azide in this experiments during storage at 4°C is only for preventing the microbial growth.

  17. Fabrication of silver nanowires via a β-cyclodextrin-derived soft template

    Directory of Open Access Journals (Sweden)

    C. Y. Liu

    2018-07-01

    Full Text Available Supramolecular β-cyclodextrin (β-CD was used as a soft template for the fabrication of long silver nanowires. A novel design using self-assembled β-CD for the reduction of silver ions was studied. The concentrations of iron chloride, silver nitrate, and the template were controlling factors for the growth of the silver nanowires. Iron chloride was used to accelerate and facilitate the formation of the silver nanowires and inhibit oxidative etching. However, an excessive concentration of Fe+3 resulted in etching of the silver nanostructures. Furthermore, the silver concentration was another controlling factor. The length of the silver nanowires increased as the concentration of silver cations increased. Nevertheless, an excess concentration of silver cations formed various silver crystalline structures. In this study, the optimal ratio between iron chloride and silver nitrate was determined to be 1:13.3. A maximum length of 20 µm was achieved using a concentration of 0.23 M for the soft template. Moreover, the junction of two growing silver nanowires was observed, forming a long fused nanowire, and some significant boundaries were observed. The observed results were further confirmed using scanning electron microscopy (SEM and transmission electron microscopy (TEM analyses. X-ray diffraction (XRD and energy dispersive spectrometer (EDS analyses were used to indicate the presence of silver and the formation of crystalline materials.

  18. Contribution to the study of the structure of silver krypton solid solutions

    International Nuclear Information System (INIS)

    Levy, V.; Tullairet, J.; Delaplace, J.; Antolin-Baudier, J.; Adda, Y.

    1964-01-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [fr

  19. Taming tosyl azide: the development of a scalable continuous diazo transfer process.

    Science.gov (United States)

    Deadman, Benjamin J; O'Mahony, Rosella M; Lynch, Denis; Crowley, Daniel C; Collins, Stuart G; Maguire, Anita R

    2016-04-07

    Heat and shock sensitive tosyl azide was generated and used on demand in a telescoped diazo transfer process. Small quantities of tosyl azide were accessed in a 'one pot' batch procedure using shelf stable, readily available reagents. For large scale diazo transfer reactions tosyl azide was generated and used in a telescoped flow process, to mitigate the risks associated with handling potentially explosive reagents on scale. The in situ formed tosyl azide was used to rapidly perform diazo transfer to a range of acceptors, including β-ketoesters, β-ketoamides, malonate esters and β-ketosulfones. An effective in-line quench of sulfonyl azides was also developed, whereby a sacrificial acceptor molecule ensured complete consumption of any residual hazardous diazo transfer reagent. The telescoped diazo transfer process with in-line quenching was used to safely prepare over 21 g of an α-diazocarbonyl in >98% purity without any column chromatography.

  20. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand

    International Nuclear Information System (INIS)

    Andrew, Daniel; Hager, Lowell; Manoj, Kelath Murali

    2011-01-01

    Highlights: ► Azide is a well known heme–enzyme active site ligand and inhibitor. ► Herein, azide is reported to enhance a set of heme–enzyme mediated reactions. ► This effect is disconnected from native enzyme–azide binding. ► Azide could enhance heme–enzyme reactions via a newly proposed mechanism. ► Azide contained in reagents could impact reaction outcomes in redox biochemistry. -- Abstract: Azide is a well-known inhibitor of heme–enzymes. Herein, we report the counter-intuitive observation that at some concentration regimes, incorporation of azide in the reaction medium enhances chloroperoxidase (CPO, a heme–enzyme) mediated one-electron abstractions from several substrates. A diffusible azidyl radical based mechanism is proposed for explaining the phenomenon. Further, it is projected that the finding could have significant impact on routine in situ or in vitro biochemistry studies involving heme–enzyme systems and azide.

  2. Ultrafast Infrared and UV-vis Studies of the Photochemistry of Methoxycarbonylphenyl Azides in Solution

    OpenAIRE

    Xue, Jiadan; Luk, Hoi Ling; Eswaran, S. V.; Hadad, Christopher M.; Platz, Matthew S.

    2012-01-01

    The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a) and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitre...

  3. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  4. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    International Nuclear Information System (INIS)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes

    2016-01-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  5. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes, E-mail: rayssasouza.net@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil)

    2016-07-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  6. Applications of Azide-Based Bioorthogonal Click Chemistry in Glycobiology

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2013-06-01

    Full Text Available Click chemistry is a powerful chemical reaction with excellent bioorthogonality features: biocompatible, rapid and highly specific in biological environments. For glycobiology, bioorthogonal click chemistry has created a new method for glycan non-invasive imaging in living systems, selective metabolic engineering, and offered an elite chemical handle for biological manipulation and glycomics studies. Especially the [3 + 2] dipolar cycloadditions of azides with strained alkynes and the Staudinger ligation of azides and triarylphosphines have been widely used among the extant click reactions. This review focuses on the azide-based bioorthogonal click chemistry, describing the characteristics and development of these reactions, introducing some recent applications in glycobiology research, especially in glycan metabolic engineering, including glycan non-invasive imaging, glycomics studies and viral surface manipulation for drug discovery as well as other applications like activity-based protein profiling and carbohydrate microarrays.

  7. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    International Nuclear Information System (INIS)

    Garza-Navarro, Marco; Torres-Castro, Alejandro; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-01

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  8. Single-step azide introduction in proteins via an aqueous diazo transfer

    NARCIS (Netherlands)

    van Dongen, S.F.M.; Teeuwen, R.L.M.; Nallani, M.; van Berkel, S.S.; Cornelissen, J.J.L.M.; Nolte, R.J.M.; van Hest, J.C.M.

    The controlled introduction of azides in proteins provides targetable handles for selective protein manipulation. We present here an efficient diazo transfer protocol that can be applied in an aqueous solution, leading to the facile introduction of azides in the side chains of lysine residues and at

  9. Single-Step Azide Introduction in Proteins via an Aqueous Diazo Transfer

    NARCIS (Netherlands)

    van Dongen, Stijn; Teeuwen, R.L.M.; Nallani, Madhavan; van Berkel, S.S; Cornelissen, Jeroen Johannes Lambertus Maria; Nolte, Roeland; van Hest, Jan

    2009-01-01

    The controlled introduction of azides in proteins provides targetable handles for selective protein manipulation. We present here an efficient diazo transfer protocol that can be applied in an aqueous solution, leading to the facile introduction of azides in the side chains of lysine residues and at

  10. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  11. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings.

    Science.gov (United States)

    Jiang, Li-Ping; Xu, Shu; Zhu, Jian-Min; Zhang, Jian-Rong; Zhu, Jun-Jie; Chen, Hong-Yuan

    2004-09-20

    A simple sonochemical route was developed for the crystal growth of uniform silver nanoplates and ringlike gold nanocrystals in a N,N-dimethylformamide solution. The platelike structures were generated from the selective growth on different crystal planes in the presence of poly(vinylpyrrolidone) and the ultrasonic-assisted Ostwald ripening processes. The silver nanoplates in solution served as the templates for the synthesis of ringlike gold crystals via a displacement reaction. Both the silver nanoplates and gold nanorings were highly oriented single crystals with (111) planes as the basal planes. Copyright 2004 American Chemical Society

  12. Conversion of Azides into Diazo Compounds in Water

    Science.gov (United States)

    Chou, Ho-Hsuan; Raines, Ronald T.

    2013-01-01

    Diazo compounds are in widespread use in synthetic organic chemistry, but have untapped potential in chemical biology. We report on the design and optimization of a phosphinoester that mediates the efficient conversion of azides into diazo compounds in phosphate buffer at neutral pH and room temperature. High yields are maintained in the presence of common nucleophilic or electrophilic functional groups, and reaction progress can be monitored by colorimetry. As azido groups are easy to install and maintain in biopolymers or their ligands, this new mode of azide reactivity could have substantial utility in chemical biology. PMID:24053717

  13. Effect of silver nanoparticles' generation routes on the morphology, oxygen, and water transport properties of starch nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Cheviron, Perrine; Gouanvé, Fabrice, E-mail: fabrice.gouanve@univ-lyon1.fr; Espuche, Eliane, E-mail: eliane.espuche@univ-lyon1.fr [Université de Lyon (France)

    2015-09-15

    A strategy involving the preparation of silver nanoparticles in a biodegradable polymer stemming from an ex situ or an in situ method using a green chemistry process is reported. The influence of the reducing agent concentration and the silver nanoparticles' generation route were investigated on the structure, the morphology, and the properties of the nanocomposite films. Two distinct silver nanoparticle populations in size were highlighted from the ex situ route (diameter around 5 nm for the first one and from 20 to 50 nm for the second one), whereas one population was highlighted from the in situ route (around 10 nm). No modification on the crystalline structure of the starch matrix was observed in presence of silver. Crystalline silver nanoparticles were obtained only from the in situ generation route. The decrease of the water sorption and the improvement of water and oxygen barrier properties were found to be not dependent on the reducing agent concentration but mainly on the crystalline structure of the silver nanoparticles associated to the presence of strong interface between the silver nanoparticles and the starch polymer matrix.

  14. Sodium Azide Associated Acute Hyperkalemia in a Swine Model of Sodium Azide Toxicity

    Science.gov (United States)

    2017-06-16

    Sodium Azide Toxicity presented at/published to SURF , San Antonio, TX, 16 June 2017 in accordance with MDWI 41-108, has been approved and assigned local...Surgical Center (WHASC) internship and residency programs. 3. Please know that if you are a Graduate Health Sciences Education student and your... waves on electrocardiogram and continued acidosis (lactate mean 6.7 mmo/L). Statistics: Repeated measures ANOVA was used to determine statistically

  15. Effects of mutagen application of sodium azide and gamma radiation in rice seeds

    International Nuclear Information System (INIS)

    Guimaraes, E.P.

    1980-01-01

    Effects of mutagen application of sodium azide and gamma radiation in rice seeds. Upland rice seeds, variety Dourado Precoce, were treated with gamma-rays and sodium azide(SA). Biological effects of these treatments were studied in the M 1 and M 2 generations. Survival number, seedling height, plant fertility and chlorophyill mutation frequencies based on mutations per 100 M 1 panicles and mutants per 100 M 2 seedlings were analysed. Among these characters, plant fertility was the most sensitive for mutagen treatments, and higher doses of gamma-rays or higher concentrations of sodium azide reduced significantly fertility of M 1 plants. The same effect as increase of concentration of sodium azide was observed when the acidity of buffer solution was increased, or when seeds were pre-treated in distilled water. The maximum chlorophyll mutation frequencies were obtained in sodium azide treatments: 40.74% in the M 1 panicles and 10.67% in the M 2 seedlings, in comparison with the maximum frequenies in gamma-irradiation of 10.39% in the M 1 panicles and 1.73% in the M 2 seedlings. (Author) [pt

  16. Effectiveness of sodium azide alone compared to sodium azide in combination with methyl nitrosurea for rice mutagenesis

    Science.gov (United States)

    Rice seeds of the temperate japonica cultivar Kitaake were mutagenized with sodium azide alone and in combination with methyl nitrosourea. Using the reduced representation sequencing method Restriction Enzyme Sequence Comparative Analysis (RESCAN), the mutation densities, types and local sequence co...

  17. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    Science.gov (United States)

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Reaction of Tris(cyclopentadienyl)uranium compounds with amines, azides, and related ligands

    International Nuclear Information System (INIS)

    Rosen, R.K.

    1989-12-01

    The trivalent uranium compound, (MeC 5 H 4 ) 3 U(thf), serves as a one- or two-electron reducing agent towards azides, RN 3 . These reactions produce either the uranium(IV) azide, (MeC 5 H 4 ) 3 UN 3 , or uranium(V) imides, (MeC 5 H 4 ) 3 UNR. The role of steric and electronic effects upon this reaction has been investigated using several series of azides. For Me 3 XN 3 , the imides are produced when X = C or Si, both products are formed when X = Ge, and the azide is produced when X = Sn. For Ph 3 XN 3 , the azide is produced when X = C or Sn. For Ph 3-x CH 3 N 3 , the imide is produced when x = 2 and both compounds are produced when x = 1. For substituted phenylazides, RC 6 H 4 N 3 , only the imides are produced. The magnetic properties of uranium diimides, [(MeC 5 H 4 ) 3 U] 2 (μ-NRN), were investigated. Several uranium(III) amines, (MeC 5 H 4 ) 3 U(NH 2 R), were produced from (MeC 5 H 4 ) 3 U(thf) and RNH 2 , and NH 3 was found to be a better ligand towards (MeC 5 H 4 ) 3 U than is PMe 3

  19. A general method for synthesis continuous silver nanoshells on dielectric colloids

    International Nuclear Information System (INIS)

    Chen Dong; Liu Huiyu; Liu Jianshu; Ren Xianglin; Meng Xianwei; Wu Wei; Tang Fangqiong

    2008-01-01

    A method for the controlled synthesis of silver nanoshells on various dielectric colloids, such as silica and polystyrene is presented in this study. The complexation of triethanolamine and silver ions is applied here to moderate the availability of the silver ions in the reaction solution, which directly affect the coating process. The morphologies of the particles were studied with transmission electron microscopy and their crystallinity and chemical composition were confirmed by X-ray and electron diffraction. The synthesis conditions were investigated and experimental results show that compact silver shells with easily controlled thickness can be deposited on dielectric cores by this method

  20. Microstructural and Z-scan measurement of silver nanoparticles

    International Nuclear Information System (INIS)

    Sivakami, R.; Dhanuskodi, S.

    2015-01-01

    Graphical abstract: - Highlights: • Novel Ag nanoparticles were prepared by hydrothermal method. • The modified forms of W-H analysis of Ag nanoparticles are reported first time. • Nonlinear optical (NLO) properties of Ag nanoflowers are reported and high nonlinearity was obtained. - Abstract: Silver nanoflowers were synthesized by the hydrothermal route. Formation of Ag nanoparticles is confirmed from the UV–vis spectrum where the surface plasmon absorption maxima are observed at 415–454 nm. FE-SEM and TEM images revealed the formation of silver nanoflowers and the flower-like silver nanostructures are estimated using transmission electron microscopy. XRD confirms that the synthesized silver is highly crystalline with face centered cubic structure. The X-ray line broadening is studied by the modified forms of Williamson–Hall analysis. The Z-scan results reveal that the flower-like silver nanostructures exhibit the nonlinear susceptilibility as 1.14 × 10 −5 esu

  1. Thiophene-2-carbonyl azide

    Directory of Open Access Journals (Sweden)

    Michael Findlater

    2013-08-01

    Full Text Available The title compound, C5H3N3OS, is almost planar (r.m.s. deviation for the ten non-H atoms = 0.018 Å and forms an extended layer structure in the (100 plane, held together via hydrogen-bonding interactions between adjacent molecules. Of particular note is the occurrence of RC—H...N−=N+=NR interactions between an aromatic C—H group and an azide moiety which, in conjunction with a complementary C—H...O=C interaction, forms a nine-membered ring.

  2. Reaction of Tris(cyclopentadienyl)uranium compounds with amines, azides, and related ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, R.K.

    1989-12-01

    The trivalent uranium compound, (MeC{sub 5}H{sub 4}){sub 3}U(thf), serves as a one- or two-electron reducing agent towards azides, RN{sub 3}. These reactions produce either the uranium(IV) azide, (MeC{sub 5}H{sub 4}){sub 3}UN{sub 3}, or uranium(V) imides, (MeC{sub 5}H{sub 4}){sub 3}UNR. The role of steric and electronic effects upon this reaction has been investigated using several series of azides. For Me{sub 3}XN{sub 3}, the imides are produced when X = C or Si, both products are formed when X = Ge, and the azide is produced when X = Sn. For Ph{sub 3}XN{sub 3}, the azide is produced when X = C or Sn. For Ph{sub 3-x}CH{sub 3}N{sub 3}, the imide is produced when x = 2 and both compounds are produced when x = 1. For substituted phenylazides, RC{sub 6}H{sub 4}N{sub 3}, only the imides are produced. The magnetic properties of uranium diimides, ((MeC{sub 5}H{sub 4}){sub 3}U){sub 2}({mu}-NRN), were investigated. Several uranium(III) amines, (MeC{sub 5}H{sub 4}){sub 3}U(NH{sub 2}R), were produced from (MeC{sub 5}H{sub 4}){sub 3}U(thf) and RNH{sub 2}, and NH{sub 3} was found to be a better ligand towards (MeC{sub 5}H{sub 4}){sub 3}U than is PMe{sub 3}.

  3. Sequential One-Pot Ruthenium-Catalyzed Azide−Alkyne Cycloaddition from Primary Alkyl Halides and Sodium Azide

    KAUST Repository

    Johansson, Johan R.

    2011-04-01

    An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh 3) 2] and the alkyne yielded the desired cycloaddition product after further microwave irradiation. © 2011 American Chemical Society.

  4. Improved metal-adhesive polymers from copper(I)-catalyzed azide-alkyne cycloaddition.

    Science.gov (United States)

    Accurso, Adrian A; Delaney, Mac; O'Brien, Jeff; Kim, Hyonny; Iovine, Peter M; Díaz Díaz, David; Finn, M G

    2014-08-18

    Electrically conductive adhesive polymers offer many potential advantages relative to Sn-Pb solders, including reduced toxicity, low cost, low processing temperatures, and the ability to make application-specific formulations. Polymers generated from the copper(I)-catalyzed cycloaddition (CuAAC) reaction between multivalent azides and alkynes have previously been identified as strong metal-binding adhesives. Herein we demonstrate that the performance of these materials can be remarkably improved by the incorporation of a flexibility-inducing difunctionalized component and a tertiary amine additive in optimized concentrations. The best formulations were identified by means of rapid adhesion testing of a library of potential candidates by using a custom-built instrument and validated in an American Society for Testing and Materials (ASTM)-standard lap-shear test. Characteristic phase transitions were identified by differential scanning calorimetry (DSC) for adhesives with and without the additives as a function of curing temperature. The incorporation of flexible components was found to more than double the strength of the adhesive. Moreover, the adhesive was made electrically conductive by the inclusion of 20 wt% silver-coated copper flakes and further improved in this regard by the incorporation of multiwalled carbon nanotubes in the formulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis of positron labeled photoactive compounds: 18F labeled aryl azides for positron labeling of biochemical molecules

    International Nuclear Information System (INIS)

    Hashizume, Kazunari; Hashimoto, Naota; Miyake, Yoshihiro

    1995-01-01

    The authors have prepared various [ 18 F] fluorine labeled aryl azides as a novel photoactive compounds suitable for positron labeling of biochemical molecules. The introduction of fluorine substituents to aryl azides can be expected to have dramatic effects on their nature and reactivity toward photolysis. Positron labeled reagents for labeling proteins or peptides have recently attracted considerable attention due to their wide applicability in biochemistry and positron emission tomography (PET). Various labeled azide compounds are often used in biochemistry for radiolabeling biological molecules by photolysis, but there have been no reports on the preparation or use of fluorine-18 labeled azides. The authors now report a novel synthesis of 18 F-labeled aryl azides which will have wide application in the biochemistry and nuclear medicine as a means for 18 F-fluorine labeling for proteins, peptides, and nucleic acids. 2 tabs

  6. Efficiency and effectiveness of gamma rays and sodium azide in Sesbania cannabina Poir

    International Nuclear Information System (INIS)

    Kumar, G.; Srivastava, N.

    2013-01-01

    Mutagenic effectiveness and efficiency is an important factor for the selection of a mutagen for a mutation breeding program. Mutagenic effectiveness is a measure of the frequency of mutations induced by a unit mutagen dose, while mutagenic efficiency is a measure of the proportion of mutations in relation to undesirable changes such as lethality, sterility, meiotic aberrations etc. The present study envisages the mutagenic effectiveness and efficiency of individual and combined treatments of chemical and physical mutagens i.e. sodium azide (individual), gamma rays (individual) and sodium azide + gamma ray (combined). For the individual treatment of sodium azide, the seeds of the Sesbania cannabina variety ND-1 were treated with 0.5% solution of sodium azide (SA) for four different time durations, i.e. 3, 5, 7, and 9 h, and for the individual treatment of gamma rays, dry and healthy seeds were treated with 20, 40, 60, and 80 Kr doses of gamma rays. For the combined treatment, the seeds were exposed to four different doses of gamma rays (20, 40, 60, and 80 Kr) and after irradiation seeds were treated with 0.5% solution of sodium azide for 3 h. After treatment, seeds subjected to individual and combined treatment were sown in randomized block design to raise the M 1 generation and a study was conducted on germination percentage, survival percentage, pollen fertility percentage, and chromosomal aberrations at different doses of the individual and combined treatments. (author)

  7. Environmental Friendly Azide-Alkyne Cycloaddition Reaction of Azides, Alkynes, and Organic Halides or Epoxides in Water: Efficient "Click" Synthesis of 1,2,3-Triazole Derivatives by Cu Catalyst

    Institute of Scientific and Technical Information of China (English)

    刘建明; 刘慕文; 岳园园; 姚美焕; 卓克垒

    2012-01-01

    An efficient click synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, epoxides, terminal alkynes, and sodium azides in the presence of copper salts and relative benzimidazole salts have been developed. This procedure eliminates the need to handle potentially organic azides, which are generated in situ. A broad spec- trum of substrates can participate in the process effectively to produce the desired products in good yields.

  8. Ionic conduction in sodium azide under high pressure: Experimental and theoretical approaches

    Science.gov (United States)

    Wang, Qinglin; Ma, Yanzhang; Sang, Dandan; Wang, Xiaoli; Liu, Cailong; Hu, Haiquan; Wang, Wenjun; Zhang, Bingyuan; Fan, Quli; Han, Yonghao; Gao, Chunxiao

    2018-04-01

    Alkali metal azides can be used as starting materials for the synthesis of polymeric nitrogen, a potential material of high energy density. In this letter, we report the ionic transport behavior in sodium azide under high pressure by in situ impedance spectroscopy and density functional theory calculations. The ionic transportation consists of ion transfer and Warburg diffusion processes. The ionic migration channels and barrier energy were given for the high-pressure phases. The enhanced ionic conductivity of the γ phase with pressure is because of the formation of space charge regions in the grain boundaries. This ionic conduction and grain boundary effect in NaN3 under pressures could shed light on the better understanding of the conduction mechanism of alkali azides and open up an area of research for polymeric nitrogen in these compounds and other high-energy-density polynitrides.

  9. Effects of sodium azide on the abundance of prokaryotes and viruses in marine samples.

    Directory of Open Access Journals (Sweden)

    Christian Winter

    Full Text Available Flow cytometry is set to become the standard method for enumerating prokaryotes and viruses in marine samples. However, the samples need to be flash-frozen in liquid nitrogen directly after aldehyde fixation. Because liquid nitrogen may not always be available, we tested the potential of sodium azide as a preservative for prokaryotes and viruses in marine samples as a possible alternative. For that we conducted incubation experiments with untreated and sodium azide treated marine water samples at 4°C and room temperature. The data indicate that sodium azide cannot be used to maintain marine samples used for the enumeration of prokaryotes and viruses.

  10. Observations on the development of the crystalline bacterial biofilms that encrust and block Foley catheters.

    Science.gov (United States)

    Stickler, D J; Morgan, S D

    2008-08-01

    The care of many patients undergoing long-term bladder catheterisation is complicated when the flow of urine through the catheter is blocked by encrustation. The problem results from infection by urease-producing bacteria, especially Proteus mirabilis, and the subsequent formation of crystalline biofilms on the catheter. The aim of this study was to discover how P. mirabilis initiates the development of these crystalline biofilms. The early stages in the formation of the biofilms were observed on a range of Foley catheters in a laboratory model of the catheterised bladder. Scanning electron micrographs revealed that when all-silicone, silicone-coated latex, hydrogel-coated latex, hydrogel/silver-coated latex and nitrofurazone silicone catheters were inserted into bladder models containing P. mirabilis and alkaline urine, their surfaces were rapidly coated with a microcrystalline foundation layer. X-ray microanalysis showed that this material was composed of calcium phosphate. Bacterial colonisation of the foundation layer followed and by 18h the catheters were encrusted by densely populated crystalline P. mirabilis biofilms. These observations have important implications for the development of encrustation-resistant catheters. In the case of silver catheters for example, bacterial cells can attach to the crystalline foundation layer and continue to grow, protected from contact with the underlying silver. If antimicrobials are to be incorporated into catheters to prevent encrustation, it is important that they diffuse into the urine and prevent the rise in pH that triggers crystal formation.

  11. Polarografic study about the complex formation between indium (III) and sodium azide, in aqueous media

    International Nuclear Information System (INIS)

    Tokoro, R.; Bertotti, M.

    1988-01-01

    The present work is a branch of the main work concerned with the complex formation between several metal cations and azide ligand in aqueous media. The polarographic behavior of indium in azide system showed the tendency of complexation. Using polarographic method to determine the half potential of indium at each analytical concentration afforded experimental data to evaluate the constants. The azide concentrations was modified from 1 m to 100 m , the ionic strength held at 2,0 M with sodium perchlorate, indium concentration 7.892 x 10 -4 M, and temperature kept constant at 25,0 0 C. (author) [pt

  12. Sodium azide mutagenesis in wheat: Mutants with golden glumes

    International Nuclear Information System (INIS)

    Siddiqui, K.A.; Jafri, K.A.; Arain, M.A.

    1989-01-01

    In bread wheat, Triticum aestivum L. (2n=6x=42, AABBDD), detection of induced mutations is hampered by the presence of duplicate and triplicate genes. Induced changes in spike characteristics are known, but mutants with changed glume colour do not seem to have been reported. Physical mutagens such as gamma rays, thermal neutrons and fast neutrons, and chemical mutagens like EMS, El, dES and NEH have been extensively used for induction of mutations in bread wheat but it seems as if these mutagens did not induce mutants with changed glume colour. We used sodium azide for inducing mutations in the widely adapted cultivar 'Sonalika', which is characterized by brown glume colour. Presoaked seeds were treated with 0.2M sodium azide for 3 hours. Three spikes were harvested from each M 1 plant. M 2 generation was space-planted as spike progeny. We were successful in identifying 3 mutants with golden glumes. The mutants resemble 'Sonalika' in other spike characteristics. The mutants glume colour was confirmed in M 3 . The mutants were also evaluated for agronomically important characteristics. Some characters were significantly different from the parent. Glume colours may be useful as genetic markers since such characters are less influenced by the environment. Our investigation confirms that also agronomically useful genetic variation may be readily induced in bread wheat through sodium azide

  13. Surface-enhanced Raman scattering from silver electrodes

    International Nuclear Information System (INIS)

    Trott, G.R.

    1982-01-01

    The chemical and physical origins of the anomalously large enhancement of the Raman scattering cross section for molecules adsorbed on silver electrodes in an electrochemical cell were investigated. The effect of the chemical reactions which occur during the anodization/activation procedure were studied using the Ag-CN system. It was shown that the function of the anodization process is to roughen the electrode surface and create an activated site for bonding to the cyanide. A new nonelectrochemical technique for activating the silver surface, along with a study of the enhanced cyanide Raman scattering in different background electrolytes, showed that the Raman active entity on the surface must be a silver-cyanide complex. In order to study the physical mechanism of the enhancement, the angular dependence of the scattered radiation was measured from pyridine adsorbed on an evaporated silver electrode. Both polycrystalline and single crystalline silver films were used. The angular dependence of the scattered radiation from these films showed that the metal surface was controlling the directional properties of the scattered radiation, and not the polarizability tensor of the adsorbate. Based on these experimental results, it was concluded that for weakly roughened silver electrodes the source of the anomalous enhancement is due to a resonant Raman scattering process

  14. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    Science.gov (United States)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  15. Synthesis and Luminescence Properties of Iridium(III Azide- and Triazole-Bisterpyridine Complexes

    Directory of Open Access Journals (Sweden)

    Timothy W. Schmidt

    2013-07-01

    Full Text Available We describe here the synthesis of azide-functionalised iridium(III bisterpyridines using the “chemistry on the complex” strategy. The resulting azide-complexes are then used in the copper(I-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition “click chemistry” reaction to from the corresponding triazole-functionalised iridium(III bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III bisterpyridines, but this effect can be reversed by the addition of copper(II sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III bisterpyridines can be functionalized for use in “click chemistry” facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.

  16. The sorption of silver by poorly crystallized manganese oxides

    Science.gov (United States)

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  17. Thio-phene-2-carbonyl azide.

    Science.gov (United States)

    Hsu, Gene C; Singer, Laci M; Cordes, David B; Findlater, Michael

    2013-01-01

    The title compound, C5H3N3OS, is almost planar (r.m.s. deviation for the ten non-H atoms = 0.018 Å) and forms an extended layer structure in the (100) plane, held together via hydrogen-bonding inter-actions between adjacent mol-ecules. Of particular note is the occurrence of RC-H⋯N(-)=N(+)=NR inter-actions between an aromatic C-H group and an azide moiety which, in conjunction with a complementary C-H⋯O=C inter-action, forms a nine-membered ring.

  18. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  19. Electro-catalytic properties of graphene composites containing gold or silver nanoparticles

    International Nuclear Information System (INIS)

    Pruneanu, Stela; Pogacean, Florina; Biris, Alexandru R.; Coros, Maria; Watanabe, Fumiya; Dervishi, Enkeleda; Biris, Alexandru S.

    2013-01-01

    Highlights: ► Graphene sheets with embedded gold or silver nanoparticles were prepared by RF-cCVD method. ► The crystallinity of the composite samples is less influenced by the type of metallic nanoparticles (silver or gold). ► The composite nanostructures exhibit excellent electro-catalytic properties toward carbamazepine oxidation. -- Abstract: Composite nanostructures based on few-layers graphene with encased gold or silver nanoparticles (denoted as Gr-Au and Gr-Ag, respectively) were separately prepared in a single-step synthesis by radio frequency catalytic chemical vapor deposition (RF-cCVD) over Au x /MgO and Ag x /MgO catalytic system (where x = 3 wt.%), respectively. Their morphological properties were investigated by electron microscopy techniques (TEM/HRTEM), which demonstrated that the number of graphitic layers within the sheet varied between 2 and 7. Thorough TEM analysis also indicated that gold nanoparticles had a mean size of 22 nm, while silver nanoparticles were found to be larger with a mean size of 35 nm. X-ray powder diffraction proved that the crystallinity of the Gr-Au or Gr-Ag samples is less influenced by the type of metallic nanoparticles (silver or gold) encased between the graphitic layers. The mean value of the crystalline domain perpendicular to graphene (0 0 2) crystallographic plane was determined to be approximately 2.25 nm (for Gr-Au sample) and 2.14 nm (for Gr-Ag sample), both corresponding to 6 graphitic layers. Gr-Ag and Gr-Au nanostructures were used to modify platinum substrates and subsequently employed for the electrochemical analysis of carbamazepine. A significant decrease in the electrochemical oxidation potential of carbamazepine (150 mV) was obtained with both modified electrodes. The detection limit (DL) was found to be 2.75 × 10 −5 M and 2.92 × 10 −5 M for the Pt/Gr-Ag and Pt/Gr-Au electrode, respectively

  20. Asymmetric Catalysis with Organic Azides and Diazo Compounds Initiated by Photoinduced Electron Transfer.

    Science.gov (United States)

    Huang, Xiaoqiang; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2016-09-28

    Electron-acceptor-substituted aryl azides and α-diazo carboxylic esters are used as substrates for visible-light-activated asymmetric α-amination and α-alkylation, respectively, of 2-acyl imidazoles catalyzed by a chiral-at-metal rhodium-based Lewis acid in combination with a photoredox sensitizer. This novel proton- and redox-neutral method provides yields of up to 99% and excellent enantioselectivities of up to >99% ee with broad functional group compatibility. Mechanistic investigations suggest that an intermediate rhodium enolate complex acts as a reductive quencher to initiate a radical process with the aryl azides and α-diazo carboxylic esters serving as precursors for nitrogen and carbon-centered radicals, respectively. This is the first report on using aryl azides and α-diazo carboxylic esters as substrates for asymmetric catalysis under photoredox conditions. These reagents have the advantage that molecular nitrogen is the leaving group and sole byproduct in this reaction.

  1. High temperature creep of single crystals of gold, silver and solid solution gold silver 50-50

    International Nuclear Information System (INIS)

    Dorizzi, Paul

    1973-01-01

    We have studied in compression creep along a direction, single crystals of gold, silver and a 50-50 gold-silver solid solution. The experiments were made at temperatures above 0.7 Tf. We have shown that under these conditions and for these three metals a new slip system is operating: the deformation is due to the slip of dislocations having a 1/2 burgers vector on the {110} planes. For gold the activation energy for creep is equal to the self-diffusion energy. We found the same result for silver when the contribution of divacancies to the self-diffusion energy is taken into account. For the alloy the activation energy for creep is very close to the self-diffusion energy of gold in a 50-50 gold-silver alloy, gold being the slower diffusing species in the alloy. The curves giving the creep rate versus the stress can be fitted with the following laws: ε 0 = σ 5 for gold; ε 0 = σ 2,2 for silver and ε 0 = σ 2,5 for the alloy. The dislocation substructure was studied using the crystalline contrast given by the electron microprobe. This new method gives images which are very sensitive to the sub-grains misorientation. The substructure is made of parallelepipedic cells divided by tilt boundaries that are perpendicular to the {110} slip planes. (author) [fr

  2. Biological and genetic effects of combined treatments of sodium azide, gamma rays and EMS in barley

    International Nuclear Information System (INIS)

    Cheng, X.Y.; Gao, M.W.

    1988-01-01

    Dry seeds of diploid barley were subjected to mutagenic treatments of sodium azide, gamma rays and EMS alone or in combination. Damage (reduction in seedling height, plant height and fertility), the frequency of chimeras in the M1 generation, and the frequency of chlorophyll-deficient mutations as well as morphological mutations in the M2 generation induced by combined treatments were greater than those by either of the single treatments. Synergistic increase in the frequency of chimeras, chlorphyll-deficient mutations and morphological mutations were observed in both sodium azide post-irradiation treatments and pre-EMS treatments; interaction among the mutagens in the treatment combinations on M1 damage was generally subtractive. An 8- to 16-hr soaking period of irradiated seeds in distilled water prior to sodium azide treatment significantly increased chlorophyll mutation frequency, as compared to that from the non-soaking treatment. Damage and frequency of chimeras, chlorophyll mutations and morphological mutations were consistently reduced by the soaking treatment in sodium azide plus EMS treatments. (author)

  3. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    Science.gov (United States)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  4. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.

    Science.gov (United States)

    Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu

    2011-01-04

    Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.

  5. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium.

    Science.gov (United States)

    Bankura, K P; Maity, D; Mollick, M M R; Mondal, D; Bhowmick, B; Bain, M K; Chakraborty, A; Sarkar, J; Acharya, K; Chattopadhyay, D

    2012-08-01

    A simple one-step rapid synthetic route is described for the preparation of silver nanoparticles by reduction of silver nitrate (AgNO3) using aqueous dextran solution which acts as both reducing and capping agent. The formation of silver nanoparticles is assured by characterization with UV-vis spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The absorbance of the silver nanoparticles is observed at 423 nm. The AFM image clearly shows the surface morphology of the well-dispersed silver nanoparticles with size range of 10-60 nm. TEM images show that the nanoparticles are spherical in shape with ∼5-10 nm dimensions. The crystallinity of Ag nanoparticles is assured by XRD analysis. The antimicrobial activity of as synthesized silver nanoparticles is tested against the bacteria, Bacillus subtilis, Bacillus cereus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth is inhibited by gradual reduction of the concentration of the silver nanoparticles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Growth and galvanic replacement of silver nanocubes in organic media

    Science.gov (United States)

    Polavarapu, Lakshminarayana; Liz-Marzán, Luis M.

    2013-05-01

    Although metal nanoparticles with various shapes can be prepared in polar organic solvents, little has been advanced toward the shape-controlled synthesis in non-polar solvents. We report a simple method for the synthesis of nearly monodisperse single crystalline silver nanocubes in a non-polar solvent (1,2-dichlorobenzene) by using oleylamine as both a reducing and capping agent. Mechanistic studies based on the time evolution of Ag nanoparticles revealed that multiply twinned nanocrystals form at the beginning of the reaction, which are gradually transformed into single crystalline Ag nanocubes by oxidative etching. Control experiments showed that the solvent plays an important role in the formation of such single crystalline Ag nanocubes. The effects of reaction temperature, oleylamine concentration, solvent, and the nature of the silver ion precursor on the morphology and monodispersity of the nanoparticles were systematically investigated. Additionally, the galvanic replacement reaction with HAuCl4 in an organic medium was implemented to prepare hydrophobic hollow Au-Ag nanocages with tunable localized surface plasmon resonances.Although metal nanoparticles with various shapes can be prepared in polar organic solvents, little has been advanced toward the shape-controlled synthesis in non-polar solvents. We report a simple method for the synthesis of nearly monodisperse single crystalline silver nanocubes in a non-polar solvent (1,2-dichlorobenzene) by using oleylamine as both a reducing and capping agent. Mechanistic studies based on the time evolution of Ag nanoparticles revealed that multiply twinned nanocrystals form at the beginning of the reaction, which are gradually transformed into single crystalline Ag nanocubes by oxidative etching. Control experiments showed that the solvent plays an important role in the formation of such single crystalline Ag nanocubes. The effects of reaction temperature, oleylamine concentration, solvent, and the nature of the

  7. Silver nanoparticles: Large scale solvothermal synthesis and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wani, Irshad A.; Khatoon, Sarvari [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmed, Jahangeer; Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmad, Tokeer, E-mail: tokeer.ch@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2010-08-15

    Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH{sub 4} as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m{sup 2}/g. UV-visible studies show the absorption band at {approx}425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%.

  8. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  9. [3 + 2]-Cycloadditions of nitrile ylides after photoactivation of vinyl azides under flow conditions

    Directory of Open Access Journals (Sweden)

    Stephan Cludius-Brandt

    2013-08-01

    Full Text Available The photodenitrogenation of vinyl azides to 2H-azirines by using a photoflow reactor is reported and compared with thermal formation of 2H-azirines. Photochemically, the ring of the 2H-azirines was opened to yield the nitrile ylides, which underwent a [3 + 2]-cycloaddition with 1,3-dipolarophiles. When diisopropyl azodicarboxylate serves as the dipolarophile, 1,3,4-triazoles become directly accessible starting from the corresponding vinyl azide.

  10. Facile synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters.

    Science.gov (United States)

    Miura, Tomoya; Funakoshi, Yuuta; Fujimoto, Yoshikazu; Nakahashi, Junki; Murakami, Masahiro

    2015-05-15

    A sequential procedure for the synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters is reported. A copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with thionoesters in the presence of a rhodium(II) catalyst. The resulting 3-sulfonyl-4-thiazolines subsequently aromatize into the corresponding 2,5-disubstituted thiazoles by elimination of the sulfonyl group.

  11. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L.

    Directory of Open Access Journals (Sweden)

    Fatima Abu Bakar

    2011-08-01

    Full Text Available Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM, X-ray diffraction (XRD and UV–Visible (UV-Vis spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10–30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0.

  12. PVDF nanofibers with silver nanoparticles and silver/titanium dioxide for antimicrobial applications;Eletrofiacao de nanofibras de PVDF com nanoparticulas de prata e de prata/dioxido de titanio para aplicacoes antimicrobiais

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ligia M.M.; Olyveira, Gabriel M. de, E-mail: gmolyveira@yahoo.com.b, E-mail: ligialmmc@hotmail.co [Universidade Federal de Sao Carlos (PPGCEM/UFScar), SP (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais; Gregorio Filho, Rinaldo; Pessan, Luiz A., E-mail: pessan@ufscar.b, E-mail: gregorio@ufscar.b [Universidade Federal de Sao Carlos (UFScar), SP (Brazil)

    2009-07-01

    PVDF nanofibers with and without nanoparticles were produced by the method of electro spinning using dimethylformamide (DMF). Silver nitrate nanoparticles (0,5 and 2 wt %) and silver/titanium dioxide nanoparticles obtained by the reduction method (2 wt %) were synthesized and added to the PVDF solution to prepared nanofibers. The processes of electrospinning and film preparation using PVDF with the nanoparticles were compared. Silver/titanium dioxide nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) with EDX and x-ray photoelectron spectroscopy (XPS) to show silver/titanium dioxide nanoparticles. Nanofibers mats were characterized with SEM to study the effects of the addition of the nanoparticles on the morphology behavior and spectroscopy by Fourier transform infrared (FTIR) to analyze the crystalline phase of PVDF films. (author)

  13. INVESTIGATIONS THE EFFECT OF EOSIN B DYE ON X- RAY DIFFRACTION PATTERN OF SILVER NITRATE DOPED PVP FILMS

    Directory of Open Access Journals (Sweden)

    Mahasin F. Hadi Al-Kadhemy

    2017-07-01

    Full Text Available In this research, X-ray diffraction of the powder (PVP polymer, Eosin B dye, and silver nitrate and (EB/PVP, AgNO3/PVP, EB/AgNO3/PVP films have been studied. Casting method is used to prepare homogeneous films on plastic petri dishes. All parameters accounted for the X-ray diffraction; full width half maximum (FWHM, Miller indices (hkl, size of crystalline (D, Specific Surface Area (S and Dislocation Density (δ.The nature of the structural of materials and films will be investigated. The XRD pattern of PVP polymer was amorphous structure with two broader peaks and the Eosin B dye and silver nitrate have crystalline structure. While the mixture between these materials led to appearing some crystalline peaks into XRD pattern of PVP polymer.

  14. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.

    Science.gov (United States)

    Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker

    2015-02-01

    Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Glycosyl azide-a novel substrate for enzymatic transgycosylations

    Czech Academy of Sciences Publication Activity Database

    Fialová, Pavla; Carmona, A. T.; Robina, I.; Ettrich, R.; Sedmera, Petr; Přikrylová, Věra; Hušáková, Lucie; Křen, Vladimír

    2005-01-01

    Roč. 46, - (2005), s. 8715-8718 ISSN 0040-4039 R&D Projects: GA ČR GA203/05/0172; GA MŠk OC D25.002 Grant - others:GA KONTAKT 1862/04 Institutional research plan: CEZ:AV0Z50200510 Keywords : enzyme catalysis * glycosyl azide * molecular modelling Subject RIV: EE - Microbiology, Virology Impact factor: 2.477, year: 2005

  16. Morphogical effects of sodium azide on tomato ( Lycopersicon ...

    African Journals Online (AJOL)

    Dry seeds of tomato (Lycopersicon esculentun Mill), varieties T106, T244 and T420 obtained from the Institute of Agriculture Research, Ahmadu Bello University Zaria, Nigeria were treated with sodium azide at concentrations of 1.0, 2.0 and 4.0 mM aimed at determining the effects of the mutagen on the morphological ...

  17. Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices

    Science.gov (United States)

    Rodionov, Ilya A.; Baburin, Alexander S.; Zverev, Alexander V.; Philippov, Ivan A.; Gabidulin, Aidar R.; Dobronosova, Alina A.; Ryzhova, Elena V.; Vinogradov, Alexey P.; Ivanov, Anton I.; Maklakov, Sergey S.; Baryshev, Alexander V.; Trofimov, Igor V.; Merzlikin, Alexander M.; Orlikovsky, Nikolay A.; Rizhikov, Ilya A.

    2017-08-01

    During last 20 years, great results in metamaterials and plasmonic nanostructures fabrication were obtained. However, large ohmic losses in metals and mass production compatibility still represent the most serious challenge that obstruct progress in the fields of metamaterials and plasmonics. Many recent research are primarily focused on developing low-loss alternative materials, such as nitrides, II-VI semiconductor oxides, high-doped semiconductors, or two-dimensional materials. In this work, we demonstrate that our perfectly fabricated silver films can be an effective low-loss material system, as theoretically well-known. We present a fabrication technology of plasmonic and metamaterial nanodevices on transparent (quartz, mica) and non-transparent (silicon) substrates by means of e-beam lithography and ICP dry etch instead of a commonly-used focused ion beam (FIB) technology. We eliminate negative influence of litho-etch steps on silver films quality and fabricate square millimeter area devices with different topologies and perfect sub-100 nm dimensions reproducibility. Our silver non-damage fabrication scheme is tested on trial manufacture of spasers, plasmonic sensors and waveguides, metasurfaces, etc. These results can be used as a flexible device manufacture platform for a broad range of practical applications in optoelectronics, communications, photovoltaics and biotechnology.

  18. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    Science.gov (United States)

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A Direct Comparison of Azide and Nitrile Vibrational Probes

    Science.gov (United States)

    Gai, Xin Sonia; Coutifaris, Basil A.; Brewer, Scott H.; Fenlon, Edward E.

    2011-01-01

    The synthesis of 2′-azido-5-cyano-2′-deoxyuridine, N3CNdU (1), from trityl-protected 2′-amino-2′-deoxyuridine was accomplished in four steps with a 12.5% overall yield. The IR absorption positions and profiles of the azide and nitrile group of N3CNdU were investigated in 14 different solvents and water/DMSO solvent mixtures. The azide probe was superior to the nitrile probe in terms of its extinction coefficient, which is 2–4 times larger. However, the nitrile IR absorbance profile is generally less complicated by accidental Fermi resonance. The IR frequencies of both probes undergo a substantial red shift upon going from water to aprotic solvents such as THF or DMSO. DFT calculations supported the hypothesis that the molecular origin of the higher observed frequency in water is primarily due to hydrogen bonds between the probes and water molecules. PMID:21336362

  20. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles.

    Science.gov (United States)

    Ahmad, Tokeer; Wani, Irshad A; Manzoor, Nikhat; Ahmed, Jahangeer; Asiri, Abdullah M

    2013-07-01

    An eco friendly simple biosynthetic route was used for the preparation of monodisperse and highly crystalline gold and silver nanoparticles using cell free extract of fungus, Candida albicans. Transmission electron microscopic studies show the formation of gold and silver nanocrystals of average size of 5 nm and 30 nm with the specific surface areas of 18.9 m(2)/g and 184.4 m(2)/g respectively. The interaction of gold and silver nanoparticles with proteins has been formulated by FT-IR spectroscopy and thermal gravimetric analysis. The formation of gold and silver nanoparticles was also confirmed by the appearance of a surface plasmon band at 540 nm and 450 nm respectively. The antimicrobial activity of the synthesized gold and silver nanoparticles was investigated against both Staphylococcus aureus and Escherichia coli. The results suggest that these nanoparticles can be used as effective growth inhibitors against the test microorganisms. Greater bactericidal activity was observed for silver nanoparticles. The E. coli, a gram negative bacterium was found to be more susceptible to gold and silver nanoparticles than the S. aureus, a gram positive bacterium. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    Science.gov (United States)

    Amaladhas, T. Peter; Sivagami, S.; Akkini Devi, T.; Ananthi, N.; Priya Velammal, S.

    2012-12-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV-Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9-31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was -36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus.

  2. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    International Nuclear Information System (INIS)

    Peter Amaladhas, T; Akkini Devi, T; Ananthi, N; Priya Velammal, S; Sivagami, S

    2012-01-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV–Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9–31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was –36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus. (paper)

  3. Studies on extracellular biosynthesis of silver nanoparticles by the fungus aspergillus niger

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.

    2011-01-01

    An eco-friendly process for the synthesis of silver nanoparticles has been attempted, using the culture filtrate of various microorganisms, included bacteria, fungi and yeast. Only fungi, especially aspergillus niger, were capable of synthesizing silver nanoparticles. The culture filtrate treated with AgNo 3 (1 mM) turned dark brown after 72 h of incubation, indicating reduction of silver ions into silver nanoparticles. This observation was confirmed with UV-vis spectroscopy analysis;a large broad band with long tail was detected at 430 nm,this band is characteristic of several metal nanoparticles.X ray diffraction revealed the crystalline nature of obtained nanoparticles. The TEM and SEM analysis showed particles spherical in shape. The average particles size determined by DLS analysis was 94.2 nm.EDX analysis indicated the presence of silver element in the nanoparticles. FT-IR analysis confirmed the presence of protein associated with the synthesized silver nanoparticles. The maximum biosynthesis of nanoparticles was achieved when the culture filtrate was treated with 4.0 mM of AgNo 3 , adjusted to ph 8.0, and incubated at 50 degree C for 96 h. Silver nanoparticles showed antibiotic activity exceeding that of silver ions against various microorganisms

  4. Targeted Diazotransfer Reagents Enable Selective Modification of Proteins with Azides.

    Science.gov (United States)

    Lohse, Jonas; Swier, Lotteke J Y M; Oudshoorn, Ruben C; Médard, Guillaume; Kuster, Bernhard; Slotboom, Dirk-Jan; Witte, Martin D

    2017-04-19

    In chemical biology, azides are used to chemically manipulate target structures in a bioorthogonal manner for a plethora of applications ranging from target identification to the synthesis of homogeneously modified protein conjugates. While a variety of methods have been established to introduce the azido group into recombinant proteins, a method that directly converts specific amino groups in endogenous proteins is lacking. Here, we report the first biotin-tethered diazotransfer reagent DtBio and demonstrate that it selectively modifies the model proteins streptavidin and avidin and the membrane protein BioY on cell surface. The reagent converts amines in the proximity of the binding pocket to azides and leaves the remaining amino groups in streptavidin untouched. Reagents of this novel class will find use in target identification as well as the selective functionalization and bioorthogonal protection of proteins.

  5. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Sutanuka Pattanayak

    2017-09-01

    Full Text Available The work deals with an environmentally benign process for the synthesis of silver nanoparticle using Butea monosperma bark extract which is used both as a reducing as well as capping agent at room temperature. The reaction mixture turned brownish yellow after about 24 h and an intense surface plasmon resonance (SPR band at around 424 nm clearly indicates the formation of silver nanoparticles. Fourier transform-Infrared (FT-IR spectroscopy showed that the nanoparticles were capped with compounds present in the plant extract. Formation of crystalline fcc silver nanoparticles is analysed by XRD data and the SAED pattern obtained also confirms the crystalline behaviour of the Ag nanoparticles. The size and morphology of these nanoparticles were studied using High Resolution Transmission Electron Microscopy (HRTEM which showed that the nanoparticles had an average dimension of ∼35 nm. A larger DLS data of ∼98 nm shows the presence of the stabilizer on the nanoparticles surface. The bio-synthesized silver nanoparticles revealed potent antibacterial activity against human bacteria of both Gram types. In addition these biologically synthesized nanoparticles also proved to exhibit excellent cytotoxic effect on human myeloid leukemia cell line, KG-1A with IC50 value of 11.47 μg/mL.

  6. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  7. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    International Nuclear Information System (INIS)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-01-01

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  8. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunfa; Zhang, Xianglin, E-mail: hust_zxl@mail.hust.edu.cn; Cai, Hao

    2014-01-15

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications.

  9. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    International Nuclear Information System (INIS)

    Dong, Chunfa; Zhang, Xianglin; Cai, Hao

    2014-01-01

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications

  10. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  11. Stereoselective Synthesis of(Z)-4-(2-Bromovinyl)benzenesulfonyl Azide and Its Synthetic Utility for the Transformation to(2)-N-[4-(2-Bromovinyl)benzenesulfonyl]imidates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wensheng; KUANG Chunxiang; YANG Qing

    2009-01-01

    A novel method for the stereoselective synthesis of(Z)-4-(2-bromovinyl)benzenesulfonyl azide by simultaneous azidation and debrorninative decarboxylation of anti-2,3-dibromo-3-(4-chlorosulfonylphenyl)propanoic acid using NaN3 only was developed.Facile transformation of(Z)-4-(2-bromovinyl)benzenesulfonyl azide to(Z)-N-[4(2-bromovinyl)benzenesulfonyl]imidates was also achieved by Cu-catalyzed three-component coulping of (Z)-4-(2-bromovinyi)benzenesulfonyl azide,terminal alkynes and alcohols/phenols.

  12. Studies on ternary silver sulfides; Fukugo gin ryukabutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-31

    Some sulfides containing silver show high ion mobility based on movability of silver, whose application is expected. Studies have been carried out centrally on synthesis of new compounds of ternary silver sulfides by elucidating the relationship among their compositions, structures and properties by means of crystal chemical studies mainly on their phase relationship. A few new compounds have been synthesized, such as the ones having the argyrodite family compound structure including transition metals. The synthesizing process takes a kind of turbulent liquid state structure at elevated temperatures because of movability of silver, but silver is fixed at low temperatures in different sites between skeleton structures made by other atoms. These studies on phase transfer, structures, and silver movability have been based on X-ray diffraction, infrared and Raman spectroscopic measurements, NMR, measurements of electric and thermal characteristics. For the studies related to compositions and structures of ternary metal sulfides which take compound crystalline structure, a structure analyzing method based on multi-dimensional hyperspatial groups was used. This paper reports the summary of the studies in seven chapters, and dwells on the remaining problems and future prospects. 158 refs., 114 figs., 65 tabs.

  13. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    Science.gov (United States)

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  14. Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers

    International Nuclear Information System (INIS)

    Zheng, Yijun; Cui, Jiaxi; Ikeda, Taichi

    2015-01-01

    Graphical abstract: - Highlights: • Electrochemically-active self-assembled monolayers with phenyl-capped bithiophene were prepared. • Post-functionalization method based on click chemistry solved the solubility issue of phenyl-capped thiophene alkanethiol. • The capture and release of the counter anions during the redox reaction were detectable by E-QCM. - Abstract: We immobilized tetra(ethylene glycol)-substituted phenyl-capped bithiophene with alkyne terminals (Ph2TPh-alkyne) on azide-terminated self-assembled monolayers (N 3 -SAMs) by Cu-catalyzed azide-alkyne cycloaddition reaction. Ph2TPh-functionalized SAMs on a gold substrate showed reversible electrochemical response. The surface densities of the azide groups in N 3 -SAMs and Ph2TPh units in Ph2TPh-functionalized SAMs were estimated to be 7.3 ± 0.3 × 10 −10 mol cm −2 and 4.6 ± 0.3 × 10 −10 mol cm −2 , respectively, by quartz crystal microbalance (QCM). Most of Ph2TPh-alkynes are considered to be anchored on N 3 -SAMs via both terminal groups. Ph2TPh-functionalized SAMs exhibited reversible redox peaks in cyclic voltammetry (CV). In redox reaction, reversible capture and release of the counter anion could be monitored by electrochemical QCM (E-QCM).

  15. Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yijun; Cui, Jiaxi [Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, Mainz 55128 (Germany); Ikeda, Taichi, E-mail: IKEDA.Taichi@nims.go.jp [Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, Mainz 55128 (Germany); Polymer Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • Electrochemically-active self-assembled monolayers with phenyl-capped bithiophene were prepared. • Post-functionalization method based on click chemistry solved the solubility issue of phenyl-capped thiophene alkanethiol. • The capture and release of the counter anions during the redox reaction were detectable by E-QCM. - Abstract: We immobilized tetra(ethylene glycol)-substituted phenyl-capped bithiophene with alkyne terminals (Ph2TPh-alkyne) on azide-terminated self-assembled monolayers (N{sub 3}-SAMs) by Cu-catalyzed azide-alkyne cycloaddition reaction. Ph2TPh-functionalized SAMs on a gold substrate showed reversible electrochemical response. The surface densities of the azide groups in N{sub 3}-SAMs and Ph2TPh units in Ph2TPh-functionalized SAMs were estimated to be 7.3 ± 0.3 × 10{sup −10} mol cm{sup −2} and 4.6 ± 0.3 × 10{sup −10} mol cm{sup −2}, respectively, by quartz crystal microbalance (QCM). Most of Ph2TPh-alkynes are considered to be anchored on N{sub 3}-SAMs via both terminal groups. Ph2TPh-functionalized SAMs exhibited reversible redox peaks in cyclic voltammetry (CV). In redox reaction, reversible capture and release of the counter anion could be monitored by electrochemical QCM (E-QCM).

  16. Thermal Decompositon Studies Of Pre-Irradiated Nickel (II) Azides ...

    African Journals Online (AJOL)

    The effect of pre-irradiation on the thermal decomposition of three samples of nickel (II) azide was studied. It was found that the rates of thermal decomposition of Ni(OH)N3 increased substantially with increase in pre-irradiation dosage. The initial reaction rates change from time-dependant nucleation law for the unirradiated ...

  17. Evolving Structural Diversity and Metallicity in Compressed Lithium Azide

    KAUST Repository

    Prasad, Dasari L. V. K.

    2013-10-10

    In pursuit of new stable nitrogen-rich phases and of a possible insulator-metal transition, the ground-state electronic structure of lithium azide, LiN3, is investigated from 1 atm to 300 GPa (∼2-fold compression) using evolutionary crystal structure exploration methods coupled with density functional theoretical calculations. Two new LiN3 phases, containing slightly reduced and well-separated N2 units, are found to be enthalpically competitive with the known lithium azide crystal structure at 1 atm. At pressures above 36 GPa nitrogen-rich assemblies begin to evolve. These incorporate NN bond formation beyond that in N2 or N3 -. N6 rings and infinite one-dimensional linear nitrogen chains (structural analogues to polyacetylene) appear. Above 200 GPa quasi-one- and two-dimensional extended puckered hexagonal and decagonal nitrogen layers emerge. The high-pressure phase featuring linear chains may be quenchable to P = 1 atm. With increasing pressure the progression in electrical conductivity is from insulator to metal. © 2013 American Chemical Society.

  18. Photocatalytic decomposition of diclofenac potassium using silver-modified TiO2 thin films

    International Nuclear Information System (INIS)

    Cavalheiro, A.A.; Bruno, J.C.; Saeki, M.J.; Valente, J.P.S.; Florentino, A.O.

    2008-01-01

    The effects of silver insertion on the TiO 2 photocatalytic activity for the degradation of diclofenac potassium were reported here. Techniques such as X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy were used to comprehend the relation between structure and properties of the silver-modified TiO 2 thin films obtained by the sol-gel method. The lattice parameters and the crystallinity of TiO 2 anatase phase were affected by inserted silver, and the film thickness increased about 4 nm for each 1 wt.% of silver inserted. The degradation of diclofenac potassium and by-products reached an efficiency of 4.6 mg C W -1 when the material was modified with silver. Although the first step of degradation involves only the photochemical process related to the loss of the chlorine and hydrogen atoms. This cyclization reaction leads to the formation of intermediate, which degradation is facilitated by the modified material

  19. Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation

    International Nuclear Information System (INIS)

    Hoeng, Fanny; Denneulin, Aurore; Neuman, Charles; Bras, Julien

    2015-01-01

    Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension

  20. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  1. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    Science.gov (United States)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  2. Comparison of physiological and genetic effects of gamma radiation and sodium azide on two rice (Oryza sativa, L.) genotypes

    International Nuclear Information System (INIS)

    Faracco, A.L.A.

    1990-01-01

    The sensitivity of both genotypes (Oryzica 1 and Strain 30036) to gamma rays and sodium azide is studied. Doses of gamma-rays and concentrations of sodium azide were chosen so as to produce around 20%-25% height reduction in these genotypes. Emergence, survival and fertility were the physiological effects on M 1 generation analysed after the final treatment. The number of chlorophyll mutations and the number of seedling mutants were counted in M 2 generation. Taking into consideration, specially M 1 generation sterility, it was concluded that for the two genotypes studied, sodium azide presented a greater mutagen effect. (M.A.C.)

  3. Phytosynthesis and Characterization of Silver Nanoparticles Using Callus of JATROPHA CURCAS: a Biotechnological Approach

    Science.gov (United States)

    Demissie, A. G.; Lele, S. S.

    2013-06-01

    The present study reports a rapid plant-based biosynthesis of silver nanoparticles using callus extract of Jatropha curcas L. The particle size and morphological analyses were carried out using Zetasizer, SEM, TEM. The physicochemical properties were monitored using UV-Vis spectroscopic, IR and DSC. The formation of silver nanoparticle was confirmed by using UV-Vis spectrophotometer and absorbance peaks at 421 nm. The silver nanoparticle was found to be a negatively charged with size ranging from 2 nm to 50 nm. The morphology of the nanoparticle is uniformly spherical and has a dispersion ratio of 0.14. The physicochemical study using DSC indicated significant thermal stability and crystalline nature of the nanoparticle. This intracellular biosynthesis of silver nanoparticles is simple, cheap and eco-friendly than other mechanical and chemical approaches.

  4. Efficacy of silver/hydrophilic poly(p-xylylene) on preventing bacterial growth and biofilm formation in urinary catheters.

    Science.gov (United States)

    Heidari Zare, Hamideh; Juhart, Viktorija; Vass, Attila; Franz, Gerhard; Jocham, Dieter

    2017-01-18

    Catheter associated urinary tract infections (CAUTI), caused by several strains of bacteria, are a common complication for catheterized patients. This may eventually lead to a blockage of the catheter due to the formation of a crystalline or amorphous biofilm. Inhibiting bacteria should result in a longer application time free of complaints. This issue has been investigated using an innovative type of silver-coated catheter with a semipermeable cap layer to prevent CAUTI. In this work, two different types of silver catheters were investigated, both of which were capped with poly(p-xylylene) (PPX-N) and exhibited different surface properties that completely changed their wetting conduct with water. The contact angle of conventionally deposited PPX-N is approximately 80°. After O 2 plasma treatment, the contact angle drops to approximately 30°. These two systems, Ag/PPX-N and Ag/PPX-N-O 2 , were tested in synthetic urine at a body temperature of 37 °C. First, the optical density and the inhibition zones of both bacteria strains (Escherichia coli and Staphylococcus cohnii) were examined to confirm the antibacterial effect of these silver-coated catheters. Afterward, the efficacy of silver catheters with different treatments of biofilm formed by E. coli and S. cohnii were tested with crystal violet staining assays. To estimate the life cycles of silver/PPX-catheters, the eluted amount of silver was assessed at several time intervals by anodic stripping voltammetry. The silver catheter with hydrophilic PPX-N coating limited bacterial growth in synthetic urine and prevented biofilm formation. The authors attribute the enhanced bacteriostatic effect to increased silver ion release detected under these conditions. With this extensive preparatory analytic work, the authors studied the ability of the two different cap layers (without silver), PPX-N and oxygen plasma treated PPX-N, to control the growth of a crystalline biofilm by measuring the concentrations of the Ca 2

  5. Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation

    DEFF Research Database (Denmark)

    Bak, Börge; Jansen, Peter; Stafast, Herbert

    1975-01-01

    The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes...

  6. Effects of sodium azide on yield parameters of groundnut (Arachis ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... Cowpea and mungbean improvement by mutation induction Mutation Breeding Newsletter, 21: 9. Gregory WC (1955). X-ray breeding of peanuts Arachis hypogaea L.,. Agron. J. 47: 394-399. Kleinhofs W, Sander C (1975). Azide mutagenesis in Barley. Third. Barley Genetics Symp. Garching. Proceedings of ...

  7. Functionalised Silver Nanowire Structures

    International Nuclear Information System (INIS)

    Andrew, Piers; Ilie, Adelina

    2007-01-01

    Crystalline silver nanowires 60-100 nm in diameter and tens of micrometres in length have been fabricated using a low temperature, solution synthesis technique. We explore the potential of this method to produce functional nanowire structures using two different strategies to attach active molecules to the nanowires: adsorption and displacement. Initially, as-produced silver nanowires capped with a uniaxial-growth-inducing polymer layer were functionalised by solution adsorption of a semiconducting conjugated polymer to generate fluorescent nanowire structures. The influence of nanowire surface chemistry was investigated by displacing the capping polymer with an alkanethiol self-assembled monolayer, followed by solution adsorption functionalisation. The success of molecular attachment was monitored by electron microscopy, absorption and fluorescence spectroscopy and confocal fluorescence microscopy. We examined how the optical properties of such adsorbed molecules are affected by the metallic nanowires, and observed transfer of excitation energy between dye molecules mediated by surface plasmons propagating on the nanowires. Non-contact dynamic force microscopy measurements were used to map the work-function of individual wires, revealing inhomogeneity of the polymer surface coverage

  8. The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses

    Science.gov (United States)

    Oreshkina, K. V.; Dubrovin, V. D.; Ignat'ev, A. I.; Nikonorov, N. V.

    2017-10-01

    The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses is studied. Multicomponent photosensitive glasses of the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, antimony, silver) and halogenides (fluorine and bromine) are synthesized. Ultraviolet irradiation and thermal treatment below the glass-transition temperature of the glasses cause the formation of silver molecular clusters, which exhibit luminescence in the visible and infrared regions. UV irradiation and thermal treatment of glasses above the glass-transition temperature lead to the growth of silver nanoparticles with plasmon resonance peak in the region of 420 nm. Further thermal treatment of glasses above the glass-transition temperature shifts the plasmon-resonance maximum by 70 nm to longer wavelengths, which is related to the growth of a crystalline shell consisting of mixed silver and sodium bromides on nanoparticles. This formation of a crystalline phase on colloidal centers results in a local increase in the refractive index of the irradiated region by +Δ n 900 ppm compared to the nonirradiated region. Photo-thermo-refractive glasses with increased silver concentration are promising photosensitive materials for creating holographic optical elements and devices for line narrowing and stabilizing filters, spectral beam combiners, and filters for increasing the spectral brightness of laser diodes. A positive change in the refractive index of Photo-thermo-refractive glasses provides the possibility of recording in them 3D waveguide and integrated-optical structures.

  9. INDUCED-GROWTH AND YIE BY SODIUM AZIDE IN TOMATO ...

    African Journals Online (AJOL)

    userpc

    ABSTRACT. The mutagenic effect of various concentra traits of three varieties of tomato was inve quantity of the traits of economic importa. Roma, UC and a Local variety were treated. (0.1mM, 1.0 mM, 2.0 mM and 0.0 mM as con seasons. The results obtained revealed high various concentrations of sodium azide on.

  10. Hydrothermal synthesis of hydroxyapatite nanoparticles decorated with silver nanoparticles for application in biomaterials

    International Nuclear Information System (INIS)

    Assis, Jordanna Fernandes; Arantes, Tatiane Moraes; Cristovan, F.H.; Tada, Dayane Batista

    2016-01-01

    Full text: The hydroxyapatite nanoparticles (HA) have research attention because are material that exhibit biocompatibility with bone mineral phase of human body is great interest in the scientific community. Synthetic hydroxyapatite nanoparticles have excellent biocompatibility and bioactivity, due biocompatibility and osteo inducibility [1-3]. The hydroxyapatite nanoparticles were synthesized by hydrothermal processing and were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD and Raman spectra showed crystalline hydroxyapatite colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated hydroxyapatite surface. TEM images showed HA nanoparticles presented a well defined nanorod shapes and narrow size distributions with dimensions (width and length) around of 5 nm and 50 nm decorated with silver nanoparticles of spherical shape about 20 nm in diameter The results showed that crystalline hydroxyapatite colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. These nanoparticles The cell viability of the HA and HA/Ag was analyzed by reduction of the tetrazolium salt (MTT test). Embryonic mouse fibroblast cells were grown in the presence of nanoparticles for a total period of 96 hours. Analyses were made in 24h, 48h, 72h and 96h. The suspensions at the end of each period were analyzed in spectrophotometer. The 24h experiments were the most conclusive, with the silver presence in the HA, there is an increased in cellular proliferation. The results demonstrated that the HA/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  11. Hydrothermal synthesis of hydroxyapatite nanoparticles decorated with silver nanoparticles for application in biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Jordanna Fernandes; Arantes, Tatiane Moraes, E-mail: fernandes.jordanna9@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil); Cristovan, F.H.; Tada, Dayane Batista [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The hydroxyapatite nanoparticles (HA) have research attention because are material that exhibit biocompatibility with bone mineral phase of human body is great interest in the scientific community. Synthetic hydroxyapatite nanoparticles have excellent biocompatibility and bioactivity, due biocompatibility and osteo inducibility [1-3]. The hydroxyapatite nanoparticles were synthesized by hydrothermal processing and were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD and Raman spectra showed crystalline hydroxyapatite colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated hydroxyapatite surface. TEM images showed HA nanoparticles presented a well defined nanorod shapes and narrow size distributions with dimensions (width and length) around of 5 nm and 50 nm decorated with silver nanoparticles of spherical shape about 20 nm in diameter The results showed that crystalline hydroxyapatite colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. These nanoparticles The cell viability of the HA and HA/Ag was analyzed by reduction of the tetrazolium salt (MTT test). Embryonic mouse fibroblast cells were grown in the presence of nanoparticles for a total period of 96 hours. Analyses were made in 24h, 48h, 72h and 96h. The suspensions at the end of each period were analyzed in spectrophotometer. The 24h experiments were the most conclusive, with the silver presence in the HA, there is an increased in cellular proliferation. The results demonstrated that the HA/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  12. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-05

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Screen printed silver top electrode for efficient inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junwoo [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Duraisamy, Navaneethan [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of); Lee, Taik-Min [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Kim, Inyoung, E-mail: ikim@kimm.re.kr [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Choi, Kyung-Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of)

    2015-10-15

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.

  14. Screen printed silver top electrode for efficient inverted organic solar cells

    International Nuclear Information System (INIS)

    Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min; Kim, Inyoung; Choi, Kyung-Hyun

    2015-01-01

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells

  15. Photocatalytic decomposition of diclofenac potassium using silver-modified TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cavalheiro, A.A. [Depto de Quimica - Instituto de Biociencias - UNESP, Distrito de Rubiao Junior, s/n, Zip Code 18.618-000, P.O. Box 510, Botucatu, SP (Brazil)], E-mail: albecava@bol.com.br; Bruno, J.C.; Saeki, M.J.; Valente, J.P.S.; Florentino, A.O. [Depto de Quimica - Instituto de Biociencias - UNESP, Distrito de Rubiao Junior, s/n, Zip Code 18.618-000, P.O. Box 510, Botucatu, SP (Brazil)

    2008-07-31

    The effects of silver insertion on the TiO{sub 2} photocatalytic activity for the degradation of diclofenac potassium were reported here. Techniques such as X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy were used to comprehend the relation between structure and properties of the silver-modified TiO{sub 2} thin films obtained by the sol-gel method. The lattice parameters and the crystallinity of TiO{sub 2} anatase phase were affected by inserted silver, and the film thickness increased about 4 nm for each 1 wt.% of silver inserted. The degradation of diclofenac potassium and by-products reached an efficiency of 4.6 mg{sub C} W{sup -1} when the material was modified with silver. Although the first step of degradation involves only the photochemical process related to the loss of the chlorine and hydrogen atoms. This cyclization reaction leads to the formation of intermediate, which degradation is facilitated by the modified material.

  16. Polymerization of nitrogen in cesium azide under modest pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoli, E-mail: use126126@126.com, E-mail: lijianfu@lyu.edu.cn [Institute of Condensed Matter Physics, Linyi University, Linyi 276005 (China); Beijing Computational Science Research Center, Beijing 100084 (China); State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China); Li, Jianfu, E-mail: use126126@126.com, E-mail: lijianfu@lyu.edu.cn [Institute of Condensed Matter Physics, Linyi University, Linyi 276005 (China); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Zhu, Hongyang [State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China); Chen, Li [Institute of Condensed Matter Physics, Linyi University, Linyi 276005 (China); Lin, Haiqing [Beijing Computational Science Research Center, Beijing 100084 (China)

    2014-07-28

    Alkali metal azides can be used as starting materials in the synthesis of polymeric nitrogen, a potential high-energy-density material. The structural evolutionary behaviors of nitrogen in CsN{sub 3} have been studied up to 200 GPa using particle swarm optimization structure search combining with density functional theory. Three stable new phases with C2/m, P2{sub 1}/m, and P-1 structure at pressure of 6, 13, and 51 GPa are identified for the first time. The phase transition to chain like structure (P-1 phase) occurs at a modest pressure 51 GPa, the azide ions N{sub 3}{sup −} (linear chains of three N atoms with covalent bonds and interact weakly with each other) begin to show remarkable polymeric N properties in the CsN{sub 3} system. Throughout the stable pressure range, the structure is metallic and consists of N atoms in sp{sup 2} hybridizations. Our study completes the structural evolution of CsN{sub 3} under pressure and reveals that the introduced Cs atoms are responsible for the decreased synthesis pressure comparing to pure molecular nitrogen under compression.

  17. X-ray diffraction analysis of synthesized silver nanohexagon for the study of their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Das, Ratan, E-mail: dasratanphy@gmail.com; Sarkar, Sumit, E-mail: sarkarsumit07phy@gmail.com

    2015-11-01

    Silver nanohexagons have been prepared through the chemical reduction method using poly(vinyl pyrrolidone) (PVP) as a capping agent. High Resolution Transmission Electron Microscopic (HRTEM) study shows that average size of the prepared silver nanoparticles is 45 nm approximately with nearly hexagon shape. The peaks in the X-Ray Diffraction (XRD) pattern are in good agreement with that of face centered cubic structure. Williamson–Hall plots (W–H plot) have been analyzed to study the crystalline size and lattice strain considering the peak broadening of the AgNHs. The mechanical properties such as strain, stress and energy density of prepared nanohexagon have been calculated assuming uniform deformation model (UDM), uniform stress deformation model (USDM), and uniform deformation energy density model (UDEDM) and size–strain plot method (SSP). From all these results, it is found that the size and strain estimated from W–H analysis and SSP method are in good agreement. - Highlights: • PVP capped silver nanohexagons have been synthesized by chemical reduction method. • HRTEM images show that the average size of the prepared nanohexagons is 45 nm. • X-ray diffraction study confirms the crystallinity of silver nanohexagons. • Elastic properties have been calculated by W–H analysis using different models. • Further, the results from UDM, USDM, and UDEDM matches with SSP method.

  18. Introduction of sample tubes with sodium azide as a preservative for ethyl glucuronide in urine.

    Science.gov (United States)

    Luginbühl, Marc; Weinmann, Wolfgang; Al-Ahmad, Ali

    2017-09-01

    Ethyl glucuronide (EtG) is a direct alcohol marker, which is widely used for clinical and forensic applications, mainly for abstinence control. However, the instability of EtG in urine against bacterial degradation or the post-collectional synthesis of EtG in contaminated samples may cause false interpretation of EtG results in urine samples. This study evaluates the potential of sodium azide in tubes used for urine collection to hinder degradation of ethyl glucuronide by bacterial metabolism taking place during growth of bacterial colonies. The tubes are part of a commercial oral fluid collection device. The sampling system was tested with different gram-positive and gram-negative bacterial species previously observed in urinary tract infections, such as Escherichia coli, Staphylococcus aureus, Enterecoccus faecalis, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa. Inhibition of bacterial growth by sodium azide, resulting in lower numbers of colony forming units compared to control samples, was observed for all tested bacterial species. To test the prevention of EtG degradation by the predominant pathogen in urinary tract infection, sterile-filtered urine and deficient medium were spiked with EtG, and inoculated with E. coli prior to incubation for 4 days at 37 °C in tubes with and without sodium azide. Samples were collected every 24 hours, during four consecutive days, whereby the colony forming units (CFU) were counted on Columbia blood agar plates, and EtG was analyzed by LC-MS/MS. As expected, EtG degradation was observed when standard polypropylene tubes were used for the storage of contaminated samples. However, urine specimens collected in sodium azide tubes showed no or very limited bacterial growth and no EtG degradation. As a conclusion, sodium azide is useful to reduce bacterial growth of gram-negative and gram-positive bacteria. It inhibits the degradation of EtG by E. coli and can be used for

  19. Synthesis of radiolabelled aryl azides from diazonium salts: experimental and computational results permit the identification of the preferred mechanism.

    Science.gov (United States)

    Joshi, Sameer M; de Cózar, Abel; Gómez-Vallejo, Vanessa; Koziorowski, Jacek; Llop, Jordi; Cossío, Fernando P

    2015-05-28

    Experimental and computational studies on the formation of aryl azides from the corresponding diazonium salts support a stepwise mechanism via acyclic zwitterionic intermediates. The low energy barriers associated with both transition structures are compatible with very fast and efficient processes, thus making this method suitable for the chemical synthesis of radiolabelled aryl azides.

  20. Self-organization of mesoscopic silver wires by electrochemical deposition

    Directory of Open Access Journals (Sweden)

    Sheng Zhong

    2014-08-01

    Full Text Available Long, straight mesoscale silver wires have been fabricated from AgNO3 electrolyte via electrodeposition without the help of templates, additives, and surfactants. Although the wire growth speed is very fast due to growth under non-equilibrium conditions, the wire morphology is regular and uniform in diameter. Structural studies reveal that the wires are single-crystalline, with the [112] direction as the growth direction. A possible growth mechanism is suggested. Auger depth profile measurements show that the wires are stable against oxidation under ambient conditions. This unique system provides a convenient way for the study of self-organization in electrochemical environments as well as for the fabrication of highly-ordered, single-crystalline metal nanowires.

  1. A small azide-modified thiazole-based reporter molecule for fluorescence and mass spectrometric detection

    Directory of Open Access Journals (Sweden)

    Stefanie Wolfram

    2014-10-01

    Full Text Available Molecular probes are widely used tools in chemical biology that allow tracing of bioactive metabolites and selective labeling of proteins and other biomacromolecules. A common structural motif for such probes consists of a reporter that can be attached by copper(I-catalyzed 1,2,3-triazole formation between terminal alkynes and azides to a reactive headgroup. Here we introduce the synthesis and application of the new thiazole-based, azide-tagged reporter 4-(3-azidopropoxy-5-(4-bromophenyl-2-(pyridin-2-ylthiazole for fluorescence, UV and mass spectrometry (MS detection. This small fluorescent reporter bears a bromine functionalization facilitating the automated data mining of electrospray ionization MS runs by monitoring for its characteristic isotope signature. We demonstrate the universal utility of the reporter for the detection of an alkyne-modified small molecule by LC–MS and for the visualization of a model protein by in-gel fluorescence. The novel probe advantageously compares with commercially available azide-modified fluorophores and a brominated one. The ease of synthesis, small size, stability, and the universal detection possibilities make it an ideal reporter for activity-based protein profiling and functional metabolic profiling.

  2. Metal-Free Poly-Cycloaddition of Activated Azide and Alkynes toward Multifunctional Polytriazoles: Aggregation-Induced Emission, Explosive Detection, Fluorescent Patterning, and Light Refraction.

    Science.gov (United States)

    Wu, Yongwei; He, Benzhao; Quan, Changyun; Zheng, Chao; Deng, Haiqin; Hu, Rongrong; Zhao, Zujin; Huang, Fei; Qin, Anjun; Tang, Ben Zhong

    2017-09-01

    The metal-free click polymerization (MFCP) of activated alkynes and azides or activated azide and alkynes have been developed into powerful techniques for the construction of polytriazoles without the obsession of metallic catalyst residues problem. However, the MFCP of activated azides and alkynes is rarely applied in preparation of functional polytriazoles. In this paper, soluble multifunctional polytriazoles (PIa and PIb) with high weight-average molecular weights (M w up to 32 000) are prepared via the developed metal-free poly-cycloaddition of activated azide and alkynes in high yields (up to 90%). The resultant PIa and PIb are thermally stable, and show aggregation-induced emission characteristics, enabling their aggregates to detect explosives with superamplification effect. Moreover, thanks to their containing aromatic rings and polar moieties, PIa and PIb exhibit high refractive indices. In addition, they can also be cross-linked upon UV irradiation to generate 2D fluorescent patterning due to their remaining azide groups and containing ester groups. Thus, these multifunctional polytriazoles are potentially applicable in the optoelectronic and sensing fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrical conductivity modification using silver nano particles of Jatropha Multifida L. and Pterocarpus Indicus w. extracts films

    Energy Technology Data Exchange (ETDEWEB)

    Diantoro, Markus, E-mail: markus.diantoro.fmipa@um.ac.id; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin,; Sujito,; Hidayat, Arif [Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5 Malang 65145 (Indonesia)

    2016-03-11

    Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C{sub 6}-C{sub 3}-C{sub 6} carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.

  4. Theoretical investigation of some high-performance novel amine azide propellants

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Debasis [Computational Fluid Dynamics Research Corp., Huntsville, AL 35805 (United States); Raman, Sumathi [Department of Chemistry, Oakwood College, 2000 Adventist Blvd., Huntsville, AL 35896 (United States)

    2007-08-15

    Monomethylhydrazine (MMH) is currently the most widely used hypergolic propellant, due to its high performance and low ignition delay. However, its toxicity is a major concern. The present work aims at developing high-performance hypergolic fuels that are based on tertiary amine azide functionality. A number of potential amine azide candidates have been proposed, and some of their physical and chemical properties have been computed using state-of-the-art molecular modeling techniques. Gas-phase heats of formation have been calculated using the CBS-QB3 method, and the first-principle COSMO-RS method has been used to compute heats of vaporization and vapor pressures. A density correlation, based on molecular-volume calculation, has been established to predict the densities of the candidate molecules. Finally, the liquid-phase heats of formation and densities have been used to predict the specific and density impulses of the proposed candidate molecules. The results show that many of the molecules proposed here have much higher density impulse than that of MMH, and may be considered for experimental studies. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun; Ajitha, Manjaly John; Lang, Ming; Huang, Kuo-Wei; Wang, Jian

    2017-01-01

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha

  6. Size-dependent structure of silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  7. Consecutive hydrazino-Ugi-azide reactions: synthesis of acylhydrazines bearing 1,5-disubstituted tetrazoles

    Directory of Open Access Journals (Sweden)

    Angélica de Fátima S. Barreto

    2017-12-01

    Full Text Available Isocyanide-based multicomponent reactions (IMCRs allow the construction of relatively complex molecules through a one-pot synthesis. The combination of IMCRs in a consecutive or sequential fashion further extends the complexity of the molecules obtained. Herein, we report the efficient application of this approach to the synthesis of acylhydrazines bearing 1,5-disubstituted tetrazoles. Our strategy was accomplished in only three steps: first, a one-pot hydrazino-Ugi-azide four-component reaction; second a hydrazinolysis and finally an additional hydrazino-Ugi-azide reaction. This sequence provides the title compounds in moderate to excellent yields. The products synthesized herein contain functional groups within their structures that can be easily modified to obtain new acylhydrazino 1,5-disubstituted tetrazoles.

  8. Intramolecular Azide to Alkene Cycloadditions for the Construction of Pyrrolobenzodiazepines and Azetidino-Benzodiazepines

    Czech Academy of Sciences Publication Activity Database

    Hemming, K.; Chambers, Christopher S.; Jamshaid, F.; O´Gorman, Paul A.

    2014-01-01

    Roč. 19, č. 10 (2014), s. 16737-16756 ISSN 1420-3049 Institutional support: RVO:61388971 Keywords : azide * cycloadditions * benzodiazepines Subject RIV: CC - Organic Chemistry Impact factor: 2.416, year: 2014

  9. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite-Pd nanocomposites

    Science.gov (United States)

    Maghemite-supported ultra-fine Pd (1-2 nm) nanoparticles, prepared by a simple co-precipitation method, find application in the catalytic continuous flow hydrogenation of nitroarenes, azides, and alkenes wherein they play an important role in reduction of various functional group...

  10. Ultrafast infrared and UV-vis studies of the photochemistry of methoxycarbonylphenyl azides in solution.

    Science.gov (United States)

    Xue, Jiadan; Luk, Hoi Ling; Eswaran, S V; Hadad, Christopher M; Platz, Matthew S

    2012-06-07

    The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a), and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitrene 4b. The presence of water does not change the chemistry or kinetics of singlet nitrenes 2b and 3b, but leads to protonation of 4b to produce nitrenium ion 4f. Singlet nitrenes 2b and 3b have lifetimes of 2 ns and 400 ps, respectively, in solution at ambient temperature. The singlet nitrene 4b in acetonitrile has a lifetime of about 800 ps, and reacts with water with a rate constant of 1.9 × 10(8) L·mol(-1)·s(-1) at room temperature. These results indicate that a methoxycarbonyl group at either the para or ortho positions has little influence on the ISC rate, but that the presence of a 2-methoxy group dramatically accelerates the ISC rate relative to the unsubstituted phenylnitrene. An ortho-methoxy group highly stabilizes the corresponding nitrenium ion and favors its formation in aqueous solvents. This substituent has little influence on the ring-expansion rate. These results are consistent with theoretical calculations for the various intermediates and their transition states. Cyclization from the nitrene to the azirine intermediate is favored to proceed toward the electron-deficient ester group; however, the higher energy barrier is the ring-opening process, that is, azirine to ketenimine formation, rendering the formation of the ester-ketenimine (4d') to be less favorable than the isomeric MeO-ketenimine (4d).

  11. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    International Nuclear Information System (INIS)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E.

    2014-01-01

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH 4 amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green

  12. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    Science.gov (United States)

    Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti

    2013-09-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.

  13. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    Science.gov (United States)

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  14. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: Implications for the enzyme mechanism‡

    Science.gov (United States)

    Ogura, Hiroshi; Evans, John P.; Peng, Dungeng; Satterlee, James D.; de Montellano, Paul R. Ortiz; Mar, Gerd N. La

    2009-01-01

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase-1, (hHO) has been investigated by 1H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. 2D 1H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts, that places the lone iron π-spin in the dxz orbital, rather than the dyz orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy and magnetic susceptibilities argues for a low-spin, (dxy)2(dyz,dxz)3, ground state in both azide and cyanide complexes. The switch from singly-occupied dyz for the cyanide to dxz for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide π-plane in the latter complex, which is ∼90° in-plane rotated from that of the imidazole π-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicate that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 → Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed. PMID:19243105

  15. Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires

    Science.gov (United States)

    Zhong, Xing; Qu, Yongquan; Lin, Yung-Chen; Liao, Lei; Duan, Xiangfeng

    2011-01-01

    Porous silicon nanowire is emerging as an interesting material system due to its unique combination of structural, chemical, electronic, and optical properties. To fully understand their formation mechanism is of great importance for controlling the fundamental physical properties and enabling potential applications. Here we present a systematic study to elucidate the mechanism responsible for the formation of porous silicon nanowires in a two-step silver-assisted electroless chemical etching method. It is shown that silicon nanowire arrays with various porosities can be prepared by varying multiple experimental parameters such as the resistivity of the starting silicon wafer, the concentration of oxidant (H2O2) and the amount of silver catalyst. Our study shows a consistent trend that the porosity increases with the increasing wafer conductivity (dopant concentration) and oxidant (H2O2) concentration. We further demonstrate that silver ions, formed by the oxidation of silver, can diffuse upwards and re-nucleate on the sidewalls of nanowires to initiate new etching pathways to produce porous structure. The elucidation of this fundamental formation mechanism opens a rational pathway to the production of wafer-scale single crystalline porous silicon nanowires with tunable surface areas ranging from 370 m2·g−1 to 30 m2·g−1, and can enable exciting opportunities in catalysis, energy harvesting, conversion, storage, as well as biomedical imaging and therapy. PMID:21244020

  16. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    Science.gov (United States)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Silver micro- and nano-particles obtained using different glycols as reducing agents and measurement of their conductivity

    Directory of Open Access Journals (Sweden)

    Moudir Naïma

    2016-01-01

    Full Text Available Synthesis of silver micro- and nano-particles for the preparation of conductive pastes for the metallization of solar cells was realized by chemical reduction in the presence and absence of poly(vinyl-pyrrolidone (PVP. Silver nitrate was used as a precursor in the presence of three polyols (ethylene glycol, di-ethylene glycol and propylene glycol tested at experimental temperatures near their boiling points. Six samples were obtained by this protocol. Three silver powders obtained without the use of PVP have a metallic luster appearance; however, the samples produced using an excess of PVP are in the form of stable colloidal dispersions of silver nano-particles. Structural characterizations of samples using a scanning electron microscope and X-ray diffractometer show a good crystallinity and spherical morphology. From DSC and TGA analyses, it was noticed that all the nano-silvers present in the colloidal suspension have the same thermal behavior.

  18. Alkylating efficiency of sodium azide on pod yield, nut size and ...

    African Journals Online (AJOL)

    Mutation has been utilised to improve growth and yield of many food crops, but only little effort has been made to ascertain the nutritional advantages in such improved crops. The present study evaluates the alkylating efficiency of sodium azide of different concentrations on pod yield, nut size and nutritional composition of ...

  19. Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.

    Science.gov (United States)

    Fu, Hongxia; Li, Yanru; Sun, Lingbo; He, Pan; Duan, Xinrui

    2015-11-17

    Click chemistry with metabolic labeling has been widely used for selectively imaging biomacromolecules in cells. The first example of azide-alkyne cycloaddition for ratiometric fluorescent imaging of live cells is reported. The precursor of the azido fluorophore (cresyl violet) has a fluorescence emission peak at 620 nm. The electron-rich nitrogen of the azido group blue-shifts the emission peak to 566 nm. When the click reaction occurs, an emission peak appears at 620 nm due to the lower electronic density of the newly formed triazole ring, which allows us to ratiometrically record fluorescence signals. This emission shift was applied to ratiometric imaging of propargylcholine- and dibenzocyclooctyne-labeled human breast cancer cells MCF-7 under laser confocal microscopy. Two typical triazole compounds were isolated for photophysical parameter measurements. The emission spectra presented a fluorescence emission peak around 620 nm for both click products. The results further confirmed the emission wavelength change was the result of azide-alkyne cycloaddition reaction. Since nearly all biomolecules can be metabolically labeled by reported alkyne-functionalized derivatives of native metabolites, our method can be readily applied to image these biomacromolecules.

  20. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  1. In situ generation of the Ohira-Bestmann Reagent from stable sulfonyl azide

    DEFF Research Database (Denmark)

    Jepsen, Tue Heesgaard; Kristensen, Jesper Langgaard

    2014-01-01

    We report an improved method for in situ generation of the Ohira-Bestmann reagent. Using the recently reported bench stable imidazole-1-sulfonyl azide as diazotransfer reagent, this new method represents a safe and scalable approach for the transformation of aldehydes into terminal alkynes...

  2. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: implications for the enzyme mechanism.

    Science.gov (United States)

    Ogura, Hiroshi; Evans, John P; Peng, Dungeng; Satterlee, James D; Ortiz de Montellano, Paul R; La Mar, Gerd N

    2009-04-14

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase 1 (hHO) has been investigated by (1)H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. Two-dimensional (1)H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts that places the lone iron pi-spin in the d(xz) orbital, rather than the d(yz) orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy, and magnetic susceptibilities argues for a low-spin, (d(xy))(2)(d(yz),d(xz))(3), ground state in both azide and cyanide complexes. The switch from singly occupied d(yz) for the cyanide to d(xz) for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide pi-plane in the latter complex, which is approximately 90 degrees in-plane rotated from that of the imidazole pi-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicates that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 --> Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed.

  3. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    International Nuclear Information System (INIS)

    Tripathi, R M; Shrivastav, Archana; Gupta, Rohit Kumar; Singh, M P; Shrivastav, B R; Singh, Priti

    2013-01-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV–Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV–Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8–24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity. (paper)

  4. Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones

    Directory of Open Access Journals (Sweden)

    Farhan R. Bou-Hamdan

    2011-08-01

    Full Text Available Photolysis of aryl azides to give nitrenes, and their subsequent rearrangement in the presence of water to give 3H-azepinones, is performed in continuous flow in a photoreactor constructed of fluorinated ethylene polymer (FEP tubing. Fine tuning of the reaction conditions using the flow reactor allowed minimization of secondary photochemical reactions.

  5. Copper-Catalyzed Sulfonyl Azide-Alkyne Cycloaddition Reactions: Simultaneous Generation and Trapping of Copper-Triazoles and -Ketenimines for the Synthesis of Triazolopyrimidines.

    Science.gov (United States)

    Nallagangula, Madhu; Namitharan, Kayambu

    2017-07-07

    First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.

  6. Isolation and identification of burn wound superbugs by molecular technique and their susceptibility to silver nanoparticles

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby

    2018-02-01

    Burn wound is a global problem affecting millions of people. It is the major cause of mortality and morbidity. This study was aimed to isolate and identify the wound isolates by 16S rRNA and to assess their susceptibility to antibiotics and silver nanoparticles. Silver nanoparticles were synthesized using aqueous extract of A.indica. The silver nanoparticles were characterized by FESEM, XRD, FTIR and DSC. Antibacterial susceptibility of the isolates was assessed by well diffusion method. The wound isolates were identified as S.aureus and E.coli. Both isolates were resistant to β lactum antibiotics, aminoglycoside, quinolones and macrolides. The inhibition zone exhibited by all antibiotics against both organisms was less than 5 mm. The size of silver nanoparticles were recorded as 55 nm. XRD confirmed the crystalline nature of the nanoparticles. TGA and DSC of silver nanoparticles showed the loss of weight and the melting point of silver nanoparticles was recorded at 871.3°C. Silver nano particles inhibited S.aureus and E.coli with an inhibition zone of 27 mm and 32 mm respectively. Therefore the study demonstrated that only silver containing dressings can be used in burn wounds infected by multi drug resistant super bugs.

  7. Azidoperfluoroalkanes: Synthesis and Application in Copper(I)-Catalyzed Azide-Alkyne Cycloaddition

    Czech Academy of Sciences Publication Activity Database

    Blastik, Zsófia E.; Voltrová, Svatava; Matoušek, V.; Jurásek, Bronislav; Manley, David W.; Klepetářová, Blanka; Beier, Petr

    2017-01-01

    Roč. 56, č. 1 (2017), s. 346-349 ISSN 1433-7851 EU Projects: European Commission(XE) 607787 - FLUOR21 Institutional support: RVO:61388963 Keywords : azides * click reactions * fluorine * perfluoroalkanes * triazoles Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 11.994, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/anie.201609715/full

  8. Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures.

    Directory of Open Access Journals (Sweden)

    Ming-Show Wong

    Full Text Available BACKGROUND: Titania dioxide (TiO(2 photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. METHODOLOGY/PRINCIPAL FINDINGS: Using thermal reduction method, here we synthesized silver-nanostructures coated TiO(2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO(2, carbon-doped TiO(2 [TiO(2 (C] and nitrogen-doped TiO(2 [TiO(2 (N], TiO(2 (N showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO(2 (N substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. CONCLUSION/SIGNIFICANCE: Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.

  9. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Department of Physics, Lampung University, Bandar Lampung (Indonesia); Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Triyana, Kuwat, E-mail: triyana@ugm.ac.id; Harsojo,, E-mail: harsojougm@ugm.ac.id; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia)

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  10. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    International Nuclear Information System (INIS)

    Junaidi; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  11. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    International Nuclear Information System (INIS)

    Junaidi; Yunus, Muhammad; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  12. Phosphoramidite accelerated copper(I)-catalyzed [3+2] cycloadditions of azides and alkynes

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Mirfeizi, Leila; Dierckx, Rudi A.; Elsinga, Philip H.; Feringa, Ben L.

    2009-01-01

    Monodentate phosphoramidite ligands are used to accelerate the copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) rapidly yielding a wide variety of functionalized 1,4-disubstituted-1,2,3-triazoles; Cu(I) and Cu(II) salts both function as the copper source in aqueous

  13. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  14. Growth and galvanic replacement of silver nanocubes in organic media

    OpenAIRE

    Polavarapu, Lakshminarayana; Liz-Marzan, Luis M.

    2013-01-01

    Although metal nanoparticles with various shapes can be prepared in polar organic solvents, little has been advanced toward the shape-controlled synthesis in non-polar solvents. We report a simple method for the synthesis of nearly monodisperse single crystalline silver nanocubes in a non-polar solvent (1,2-dichlorobenzene) by using oleylamine as both a reducing and capping agent. Mechanistic studies based on the time evolution of Ag nanoparticles revealed that multiply twinned nanocrystals f...

  15. Experimental evidence for the involvement of dinuclear alkynylcopper(I) complexes in alkyne-azide chemistry.

    Science.gov (United States)

    Buckley, Benjamin R; Dann, Sandra E; Heaney, Harry

    2010-06-01

    Dinuclear alkynylcopper(I) ladderane complexes are prepared by a robust and simple protocol involving the reduction of Cu(2)(OH)(3)OAc or Cu(OAc)(2) by easily oxidised alcohols in the presence of terminal alkynes; they function as efficient catalysts in copper-catalysed alkyne-azide cycloaddition reactions as predicted by the Ahlquist-Fokin calculations. The same copper(I) catalysts are formed during reactions by using the Sharpless-Fokin protocol. The experimental results also provide evidence that sodium ascorbate functions as a base to deprotonate terminal alkynes and additionally give a convincing alternative explanation for the fact that the Cu(I)-catalysed reactions of certain 1,3-diazides with phenylacetylene give bis(triazoles) as the major products. The same dinuclear alkynylcopper(I) complexes also function as catalysts in cycloaddition reactions of azides with 1-iodoalkynes.

  16. Silver nanocombs and branched nanowires formation in aqueous binary surfactants solution

    International Nuclear Information System (INIS)

    Umar, Akrajas Ali; Oyama, Munetaka; Salleh, Muhamad Mat; Majlis, Burhanuddin Yeop

    2012-01-01

    Branched nanocrystals, particularly nanocombs, are a unique 1D-morphology that is normally formed in polytypic materials, such as ZnO, and rarely occurs in the highly symmetric fcc metallic system. Here, we report the chemical synthesis of nanocombs of a highly symmetrical fcc silver system that is realized by reducing the silver ions in the presence of a mixture of silver nanoseeds and binary surfactants, namely cetyltrimethylammonium bromide (CTAB) and hexamethylenetetramine (hexamine or HMT), under an alkaline condition. The silver nanocombs feature a high-degree branching orientation toward a single direction with good branch-to-branch spacing. The nanocombs formation was very sensitive to the concentrations of CTAB, HMT and NaOH in the reaction in which, in a typical case, nanocombs or curly nanowires were produced by controlling the concentration of these chemicals in the reaction. We hypothesized that the branching could be due to: (i) a kind of polytypism in such highly symmetrical fcc nanocrystals that was enabled by a selective surfactant adhesion process on the growing crystalline plane and (ii) lattice defects or twinning induced growth redirection in the nanocrystals. The silver nanocombs might generate a peculiar characteristic that is probably superior to those produced by other morphologies, such as nanorods, nanowires, and so on. Thus, it should find extensive use in the currently existing applications.

  17. Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

    2012-01-01

    The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. - Highlights: ► The synthesis is environmentally benign, easy to perform, and of low-cost. ► DL-Alanine was employed both as reducing and capping agent. ► Mean size of 7.5 nm, narrow size distribution, and spherical shape of particles. ► Increased sensitivity and reduced energetic dependence compared with pure alanine. ► The nanocomposite has potential application for ESR dosimetry.

  18. Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity

    International Nuclear Information System (INIS)

    Mane Gavade, S J; Nikam, G H; Dhabbe, R S; Sabale, S R; Tamhankar, B V; Mulik, G N

    2015-01-01

    In this study well defined silver nanoparticles were synthesized by using carambola fruit extract. After exposing the silver ions to the fruit extract, the rapid reduction of silver ions led to the formation of stable AgNPs in solution due to the reducing and stabilizing properties of carambola fruit juice. The synthesized NPs were analyzed by ultraviolet-visible spectroscopy and x-ray diffraction pattern. The as-synthesized AgNPs were phase pure and well crystalline with a face-centered cubic structure. The AgNPs were characterized by TEM to determine their size and morphology. The antimicrobial activity of the synthesized AgNPs was investigated against Escherichia coli and Pseudomonas aeruginosa by agar well diffusion method. This newly developed method is eco-friendly and could prove a better substitute for the current physical and chemical methods for the synthesis of AgNPs. (paper)

  19. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372

  20. Quorum quenching and antibacterial activity of silver nanoparticles synthesized from Sargassum polyphyllum

    Directory of Open Access Journals (Sweden)

    Mani Arunkumar

    2014-03-01

    Full Text Available Development of efficient methodology for the green synthesis of silver nanoparticles using marine algae is a modern area of research in the field of phyconanotechnology. In this regard, the present study deals with green synthesis of silver nanoparticles (AgNPs by using aqueous extracts of marine brown seaweed Sargassum polyphyllum. UV-visible spectral analysis reveals the formation of AgNPs by showing absorption maximum at 420 nm wavelength and SEM analysis clearly elucidate the polydispersed structure of AgNPs without aggregation and ranged in size from 37-43 nm. X-ray Diffraction pattern confirmed the AgNPs crystalline personality. The synthesized AgNPs showed more enduring antibacterial activity against test bacterial pathogens. Furthermore, the synthesized AgNPs exhibited varying level of inhibition of violacein production and swarming motility. In the near future, silver nanoparticles can be extremely useful in clinical medicine as an alternative method for the treatment of wound infection.

  1. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  2. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    International Nuclear Information System (INIS)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R.; Arrieta, M.L. Pérez; Meza-Rocha, A.N.; Rivera-Álvarez, Z.; Falcony, C.

    2013-01-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min −1 at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min −1 were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s

  3. Hydrothermal synthesis, characterization, and thermal properties of alumino silicate azide sodalite, Na8[AlSiO4]6(N3)2

    Science.gov (United States)

    Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.

    2017-07-01

    First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.

  4. Nonafluorobutanesulfonyl azide as a shelf-stable highly reactive oxidant for the copper-catalyzed synthesis of 1,3-diynes from terminal alkynes.

    Science.gov (United States)

    Suárez, José Ramón; Collado-Sanz, Daniel; Cárdenas, Diego J; Chiara, Jose Luis

    2015-01-16

    Nonafluorobutanesulfonyl azide is a highly efficient reagent for the copper-catalyzed coupling of terminal alkynes to give symmetrical and unsymmetrical 1,3-diynes in good to excellent yields and with good functional group compatibility. The reaction is extremely fast (<10 min), even at low temperature (−78 °C), and requires substoichiometric amounts of a simple copper(I) or copper(II) salt (2–5 mol %) and an organic base (0.6 mol %). A possible mechanistic pathway is briefly discussed on the basis of model DFT theoretical calculations. The quantitative assessment of the safety of use and shelf stability of nonafluorobutanesulfonyl azide has confirmed that this reagent is a superior and safe alternative to other electrophilic azide reagents in use today.

  5. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi ( Ocimum sanctum) leaf

    Science.gov (United States)

    Philip, Daizy; Unni, C.

    2011-05-01

    Aqueous extract of Ocimum sanctum leaf is used as reducing agent for the environmentally friendly synthesis of gold and silver nanoparticles. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. These methods allow the synthesis of hexagonal gold nanoparticles having size ∼30 nm showing two surface plasmon resonance (SPR) bands by changing the relative concentration of HAuCl 4 and the extract. Broadening of SPR is observed at larger quantities of the extract possibly due to biosorption of gold ions. Silver nanoparticles with size in the range 10-20 nm having symmetric SPR band centered around 409 nm are obtained for the colloid synthesized at room temperature at a pH of 8. Crystallinity of the nanoparticles is confirmed from the XRD pattern. Biomolecules responsible for capping are different in gold and silver nanoparticles as evidenced by the FTIR spectra.

  6. Plectranthus amboinicus-mediated silver, gold, and silver-gold nanoparticles: phyto-synthetic, catalytic, and antibacterial studies

    Science.gov (United States)

    Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun

    2017-08-01

    Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.

  7. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles

    Science.gov (United States)

    Eremenko, A. M.; Petrik, I. S.; Smirnova, N. P.; Rudenko, A. V.; Marikvas, Y. S.

    2016-01-01

    Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes . Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.

  8. Synthesis of antimicrobial silver/hydroxyapatite nanocomposite by gamma irradiation

    International Nuclear Information System (INIS)

    Akhavan, A.; Sheikh, N.; Khoylou, F.; Naimian, F.; Ataeivarjovi, E.

    2014-01-01

    Silver nanoparticles (AgNPs) were synthesized through γ-irradiation reduction of silver ions into hydroxyapatite as a solid support. The formation of AgNPs incorporated in the hydroxyapatite composite was studied as a function of γ-irradiation doses. The X-ray diffraction and transmission electron microscopy (TEM) measurements showed the fabrication of face-centered cubic AgNPs with a mean diameter of about 39 nm at 20 kGy absorbed dose. When the absorbed dose increases from 20 to 40 kGy the size of AgNPs particles partially increases, while with increasing absorbed dose from 40 to 60 kGy the particle diameters decreases. In addition, the results of XRD analysis indicated that increasing of γ-irradiation doses from 20 to 40 kGy enhances the concentration of AgNPs, without inducing significant changes in degree of HA crystallinity. The antibacterial test study of samples against Escherichia coli indicated a significant enhancement in the antibacterial property of Ag/HA nanocomposites. - Highlights: • Silver/hydroxyapatite nanocomposites are synthesized through γ-irradiation method. • Ag/HA nanocomposites have good antibacterial properties. • Fabricated pure nanocomposites are suitable for medical and dental applications

  9. Silver Modified Degussa P25 for the Photocatalytic Removal of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Neil Bowering

    2007-01-01

    Full Text Available A study of the photocatalytic behaviour of silver modified titanium dioxide materials for the decomposition and reduction of nitric oxide (NO gas has been carried out. The effects of silver loading, calcination temperature, and reaction conditions have been investigated. Prepared photocatalysts were characterised using XRD, TEM, and XPS. A continuous flow reactor was used to determine the photocatalytic activity and selectivity of NO decomposition in the absence of oxygen as well as NO reduction using CO as the reducing agent, over the prepared photocatalysts. XRD and TEM analysis of the photocatalysts showed that crystalline silver nitrate particles were present on the titanium dioxide surface after calcination at temperatures of up to 200∘C. The silver nitrate particles are thermally decomposed to form metallic silver clusters at higher temperatures. XPS analysis of the photocatalysts showed that for each of the temperatures used, both Ag+ and Ag0 were present and that the Ag0/Ag+ ratio increased with increasing calcination temperature. The presence of metallic silver species on the TiO2 surface dramatically increased the selectivity for N2 formation of both decomposition and reduction reactions. When CO was present in the reaction gas, selectivities of over 90% were observed for all the Ag-TiO2 photocatalysts that had been calcined at temperatures above 200∘C. Unfortunately these high selectivities were at the expense of photocatalytic activity, with lower NO conversion rates than those achieved over unmodified TiO2 photocatalysts.

  10. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or more...

  11. Gamma ray and sodium azide induced heterophylly of Bhindi and Clusterbean

    International Nuclear Information System (INIS)

    Khaleel Basha, S.; Gopala Rao, P.

    1988-01-01

    Gamma rays (35, 45 Krad) and sodium azide (100, 200 ppm) and their combinations caused heterophylly in Bhindi (Hibiscus esculentus) and Clusterbean (Cyamopsis tetragonoloba). Changes like notching of leaf at the tip region, reduction of secondary and tertiary veins, formation of 2,4 leaflets, reduction of leaf lobes and change of shape were noticed. More changes were observed at higher doses of the mutagens. (author). 12 refs

  12. Functionalization of Graphene Nanoplatelets Using Sugar Azide for Graphene/Epoxy Nanocomposites

    Science.gov (United States)

    2014-06-20

    supercapacitor electrode . Nanotechnology, 22, 295202(2011). doi:10.1088/0957-4484/22/29/295202 20. Leinonen H, Pettersson M, Lajunen M, Water-soluble...Azide for Graphene/Epoxy Nanocomposites Saswata Bose1, Lawrence T. Drzal 1* Dept of Chemical Engineering and Materials Science Composite Materials ...ORGANIZATION NAME(S) AND ADDRESS(ES) Dept of Chemical Engineering and Materials Science,Composite Materials and Structures Center,2100 Engineering

  13. Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study

    Science.gov (United States)

    Ojha, Sunita; Sett, Arghya; Bora, Utpal

    2017-09-01

    In this study, we report synthesis of silver nanoparticles (RcAgNPs) from silver nitrate solution using methanolic leaf extract of Ricinus communis var. carmencita. The polyphenols present in the leaves reduce Ag++ ions to Ag0 followed by a color change. Silver nanoparticle formation was ensured by surface plasmon resonance between 400 nm to 500 nm. Crystallinity of the synthesized nanoparticles was confirmed by UHRTEM, SAED and XRD analysis. The capping of phytochemicals and thermal stability of RcAgNPs were assessed by FTIR spectra and TGA analysis, respectively. It also showed antibacterial activity against both gram positive and gram negative strains. RcAgNPs were non-toxic against normal cell line (mouse fibroblast cell line L929) at lower concentrations (80 µg ml-1).

  14. Facile synthesis of silver nanoparticles and their application in dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Siby, E-mail: sibyjoseph4@gmail.com [Department of Chemistry, St. George' s College, Aruvithura, Kottayam 686122, Kerala (India); Mathew, Beena, E-mail: beenamscs@gmail.com [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India)

    2015-05-15

    Graphical abstract: - Highlights: • This synthetic method uses the novel reducing agent hexamine. • The method is simple, fast and environment friendly. • This is a cost-effective method as all materials used are inexpensive and readily available. • The method provides highly stable spherical silver nanoparticles. • The nanoparticles show outstanding catalytic activity in the degradation of organic dyes. - Abstract: The present article reports a simple, facile and eco-friendly method based on microwave irradiation for the synthesis of silver nanoparticles in aqueous medium using starch as stabilizing agent and a new reducing agent namely hexamine. The silver nanoparticles were characterized by UV–vis, FTIR, XRD and HR-TEM analysis. UV–vis spectroscopic studies provided sufficient evidences for the formation of nanoparticles. The role of starch in the synthesis and stabilization of the nanoparticles was obtained from FTIR studies. The XRD and HR-TEM investigations clearly demonstrated the crystalline nature of the nanoparticles. From the TEM images, the silver nanoparticles were found to be spherical and of nearly uniform size with an average diameter of 18.2 ± 0.97 nm. The nanoparticles showed excellent catalytic activity in the degradation of methyl orange and rhodamine B by NaBH{sub 4}.

  15. Facile synthesis of silver nanoparticles and their application in dye degradation

    International Nuclear Information System (INIS)

    Joseph, Siby; Mathew, Beena

    2015-01-01

    Graphical abstract: - Highlights: • This synthetic method uses the novel reducing agent hexamine. • The method is simple, fast and environment friendly. • This is a cost-effective method as all materials used are inexpensive and readily available. • The method provides highly stable spherical silver nanoparticles. • The nanoparticles show outstanding catalytic activity in the degradation of organic dyes. - Abstract: The present article reports a simple, facile and eco-friendly method based on microwave irradiation for the synthesis of silver nanoparticles in aqueous medium using starch as stabilizing agent and a new reducing agent namely hexamine. The silver nanoparticles were characterized by UV–vis, FTIR, XRD and HR-TEM analysis. UV–vis spectroscopic studies provided sufficient evidences for the formation of nanoparticles. The role of starch in the synthesis and stabilization of the nanoparticles was obtained from FTIR studies. The XRD and HR-TEM investigations clearly demonstrated the crystalline nature of the nanoparticles. From the TEM images, the silver nanoparticles were found to be spherical and of nearly uniform size with an average diameter of 18.2 ± 0.97 nm. The nanoparticles showed excellent catalytic activity in the degradation of methyl orange and rhodamine B by NaBH 4

  16. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun

    2017-02-15

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha,beta-unsaturated acyl azoliums. High yields and broad scope as well as the investigation of reaction mechanism are reported.

  17. Silver nanowires as catalytic cathodes for stabilizing lithium-oxygen batteries

    Science.gov (United States)

    Kwak, Won-Jin; Jung, Hun-Gi; Lee, Seon-Hwa; Park, Jin-Bum; Aurbach, Doron; Sun, Yang-Kook

    2016-04-01

    Silver nanowires have been investigated as a catalytic cathode material for lithium-oxygen batteries. Their high aspect ratio contributes to the formation of a corn-shaped layer structure of the poorly crystalline lithium peroxide (Li2O2) nanoparticles produced by oxygen reduction in poly-ether based electrolyte solutions. The nanowire morphology seems to provide the necessary large contact area and facile electron supply for a very effective oxygen reduction reaction. The unique morphology and structure of the Li2O2 deposits and the catalytic nature of the silver nano-wires promote decomposition of Li2O2 at low potentials (below 3.4 V) upon the oxygen evolution. This situation avoids decomposition of the solution species and oxidation of the electrodes during the anodic (charge) reactions, leading to high electrical efficiently of lithium-oxygen batteries.

  18. A Humidity Sensor Based on Silver Nanoparticles Thin Film Prepared by Electrostatic Spray Deposition Process

    Directory of Open Access Journals (Sweden)

    Thutiyaporn Thiwawong

    2013-01-01

    Full Text Available In this work, thin film of silver nanoparticles for humidity sensor application was deposited by electrostatic spray deposition technique. The influence of the deposition times on properties of films was studied. The crystal structures of sample films, their surface morphology, and optical properties have been investigated by X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, and UV-VIS spectrophotometer, respectively. The crystalline structure of silver nanoparticles thin film was found in the orientation of (100 and (200 planes of cubic structure at diffraction angles 2θ  =  38.2° and 44.3°, respectively. Moreover, the silver nanoparticles thin films humidity sensor was fabricated onto the interdigitated electrodes. The sensor exhibited the humidity adsorption and desorption properties. The sensing mechanisms of the device were also elucidated by complex impedance analysis.

  19. [1+1+3] Annulation of Diazoenals and Vinyl Azides: Direct Synthesis of Functionalized 1-Pyrrolines through Olefination.

    Science.gov (United States)

    Kanchupalli, Vinaykumar; Katukojvala, Sreenivas

    2018-05-04

    A dirhodium carboxylate catalyzed [1+1+3] annulation reaction of diazoenals and vinyl azides that gives synthetically important enal-functionalized 1-pyrroline derivatives was developed. The reaction involves a novel rhodium-catalyzed olefination of diazoenals with vinyl azides via electrophilic enal carbenoids, resulting in a new class of enal acrylates. The annulation reaction was used for the direct synthesis of valuable deuterated 1-pyrrolines. Structural diversification of the enal-functionalized 1-pyrrolines resulted in the biologically important pyrrolidine-fused oxaziridine, amino acid derivatives, and a 6-azabicyclo[3.2.1]octane motif present in polycyclic alkaloids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rice mutants obtained through sodium azide (NaN3) treatment

    International Nuclear Information System (INIS)

    Silva, E.F.; Ando, A.; Tulmann Neto, A.

    2001-01-01

    The successful utilization of sodium azide to generate genetic variability in plant breeding has been reported in barley, rice, and other crops. Rice seeds of 'Dourado Precoce', Brazilian upland cultivar, were treated with 5x10 -3 M of sodium azide, prepared in buffer solution of pH 3,0, for 8 hours at laboratory temperature. Ten short culm mutant lines were selected in the M 2 , M 3 and M 4 generations. In the M 5 generation, the mutant lines were evaluated for flowering and maturing cycles, tiller number per plant, plant height, panicle number per m 2 , panicle length, fertility of panicle, weight of 1.000 grains, productivity, percentage of intact grains after milling, width and thickness of peeled and polished grains and length/width grain ratio. The experiment was conducted in the Centro Experimental of Instituto Agronomico, Campinas, Sao Paulo, Brazil, during the period of 1993/94, utilizing randomized block design with four replications. Each experimental plot consisted of five rows of four meters in length, 50 cm between rows, with 75 seeds sown per meter. The cultivar 'IAC 201' and the original Dourado Precoce were planted as checks. All observations were made on the three central rows of each experimental plot. The data was analysed by the SANEST statistical program and the mean values were discriminated by the Tukey's test at the level 5% of probability

  1. C,N-Chelated Organotin(IV) Azides: Synthesis, Structure and Use within the Click Chemistry.

    Czech Academy of Sciences Publication Activity Database

    Švec, P.; Bartoš, K.; Růžičková, Z.; Cuřínová, Petra; Dušek, L.; Turek, J.; de Proft, F.; Růžička, A.

    2016-01-01

    Roč. 40, č. 7 (2016), s. 5808-5817 ISSN 1144-0546 Grant - others:FWO(BE) 12T6615N Institutional support: RVO:67985858 Keywords : organotin(IV)azides * click chemistry * chelation Subject RIV: CC - Organic Chemistry Impact factor: 3.269, year: 2016

  2. Green Biosynthesis of Silver Nanoparticles Using Callicarpa maingayi Stem Bark Extraction

    Directory of Open Access Journals (Sweden)

    Mohammed Zidan

    2012-07-01

    Full Text Available Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis, powder X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray fluorescence (EDXF spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.

  3. Biomimetic Synthesis of Silver Nanoparticles Using Endosymbiotic Bacterium Inhabiting Euphorbia hirta L. and Their Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Baker Syed

    2016-01-01

    Full Text Available The present investigation aims to evaluate biomimetic synthesis of silver nanoparticles using endophytic bacterium EH 419 inhabiting Euphorbia hirta L. The synthesized nanoparticles were initially confirmed with change in color from the reaction mixture to brown indicating the synthesis of nanoparticles. Further confirmation was achieved with the characteristic absorption peak at 440 nm using UV-Visible spectroscopy. The synthesized silver nanoparticles were subjected to biophysical characterization using hyphenated techniques. The possible role of biomolecules in mediating the synthesis was depicted with FTIR analysis. Further crystalline nature of synthesized nanoparticles was confirmed using X-ray diffraction (XRD with prominent diffraction peaks at 2θ which can be indexed to the (111, (200, (220, and (311 reflections of face centered cubic structure (fcc of metallic silver. Transmission electron microscopy (TEM revealed morphological characteristics of synthesized silver nanoparticles to be polydisperse in nature with size ranging from 10 to 60 nm and different morphological characteristics such as spherical, oval, hexagonal, and cubic shapes. Further silver nanoparticles exhibited bactericidal activity against panel of significant pathogenic bacteria among which Pseudomonas aeruginosa was most sensitive compared to other pathogens. To the best of our knowledge, present study forms first report of bacterial endophyte inhabiting Euphorbia hirta L. in mediating synthesizing silver nanoparticles.

  4. Synthesis of polynorbornene with pendant moiety bearing azide and terminal alkyne groups

    Institute of Scientific and Technical Information of China (English)

    Ze Zhang; Zhi Wei Peng; Kun Zeng Fan

    2011-01-01

    A powerful approach to the synthesis of an unprecedented polynorbornene with pendant moiety bearing azide and terminal alkyne groups is developed. Two key intermediates, namely, 3-azido-5-(2-(trimethylsilyl)ethynyl) benzyl alcohol and 4-(4-aza-tricyclo [5.2.1.02.6]dec-8-en-4-yl) benzoic acid, were optimally synthesized for convergent synthesis of the corresponding monomer.

  5. Copper on Chitosan: A Recyclable Heterogeneous Catalyst for Azide-alkyne Cycloaddition Reactions in Water

    Science.gov (United States)

    Copper sulfate is immobilized over chitosan by simply stirring an aqueous suspension of chitosan in water with copper sulfate; the ensuing catalyst has been utilized for the azide-alkyne cycloaddition in aqueous media and it can be recycled and reused many time without loosing it...

  6. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  7. Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens

    Directory of Open Access Journals (Sweden)

    Kanniah Paulkumar

    2014-01-01

    Full Text Available Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, energy dispersive X-ray analysis (EDAX, and Fourier Transform Infrared Spectroscopy (FTIR. The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.

  8. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    Science.gov (United States)

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  9. A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayaz Ahmed, Khan Behlol; P, Suresh Kumar; Veerappan, Anbazhagan, E-mail: anbazhagan@scbt.sastra.edu

    2016-09-15

    Herein, we report a laboratory convenient method for the preparation of blue color emitting fluorescent carbon dots (C-dots) in 60 min by boiling the alkaline solution of pectin. The C-dots derived from pectin detects selectively silver ion by forming silver nanoparticles (AgNPs) without any irradiation or heating or additional reducing agents. As prepared AgNPs appears yellow in color and showed the characteristic surface plasmon resonance maximum at 410 nm. Transmission electron microscopy (TEM) revealed crystalline, spherical AgNPs with size range from 10–15 nm. Cyclic voltammetry study revealed that the lower reduction potential of C-dots than that of silver ion favors the reduction of Ag{sup +} to Ag°. Electrochemical impedance spectroscopy showed the charge transfer value for the redox reaction of C-dots as 200 Ωcm{sup 2}. In the presence of Ag{sup +}, C-dots fluorescence emission was turned from blue to cyan to green to colorless, accompanying the quenching and red shift in emission maximum at 450 nm. Interference study clearly showed that the C-dots have high preference for Ag{sup +} ion than the other interfering metal ions. The proposed sensor system selectively senses Ag{sup +} ion in water at micromolar concentration and also offers an easy procedure to prepare AgNPs in the presence of other interfering metal ions. - Highlights: • Blue color emitting C-dots was prepared by boiling alkaline pectin solution. • C-dots sense silver ion at micromolar concentration. • C-dots recognize silver ion in the presence of interfering metal ions. • Reduction potential of C-dots was estimated by cyclic voltammeter as – 0.2 V.

  10. The effects of sodium azide on seed germination and seedling growth of chili pepper (Capsicum annum L. cv. Landung)

    Science.gov (United States)

    Yafizham; Herwibawa, B.

    2018-01-01

    This study was aimed to determine the effects of sodium azide on the performance of chili pepper. Dry seeds from pure lines of chili pepper cv. Landung were used in this experiment. Each set containing 50 seeds was placed in nylon fishner bags, washed in flowing water and soaked in distilled water for four hours. After soaking, four sets of seeds were dabbed dry with tissue paper and were treated for two hours at 30 0C in appropriate solution of 0, 0.10, 0.20, 0.40, 0.80, 1.60 mM sodium azide with phosphate buffer at pH 3. After treatment, the seeds were germinated in plastic boxes containing sterilized sand and kept under laboratory condition by supplied with water everyday. The seeds for M1 germination percentage, seedling height, plant height and number of leaves were recorded 30 days and 60 days after treatment, respectively. Seeds which radicle emerged were considered germinated, the seedling and plant height were measured from the tip of primary root to the base of the first leaf pair, and the number of leaves were counted for only fully expanded leaves. A completely randomized block design in four replicates was used throughout the experiment. Data obtained were analysed for range, mean, standard of deviation, and percent of control using Microsoft Office Excel 2007 software. It was concluded that different doses of sodium azide influenced the performances of chili pepper cv. Landung. Very low doses of sodium azide (0-1.60 mM) might be used to study the improvement of chili pepper diversity.

  11. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications

    Science.gov (United States)

    Pugazhendhi, S.; Palanisamy, P. K.; Jayavel, R.

    2018-05-01

    Green synthesis techniques are developing as more simplistic and eco-friendly approach for the synthesis of metal nanoparticles compared to chemical reduction methods. Herein we report Synthesis of highly stable silver nanoparticles using Mirabillis jalapa seed extract as a reducing and capping agent. The as-prepared silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) to confirm the formation of silver nanoparticles by its characteristic surface plasmon resonance peak observed at 420 nm. The Powder X-ray diffraction (P-XRD) revealed the structure and crystalline nature of synthesized silver nanoparticles, The Fourier transform infra-red spectroscopic (FT-IR) revealed the presence of the biomolecules in the extract that acted as reducing as well stabilizing agent. The high resolution transmission electron microscopic (HRTEM) images divulged that the synthesized silver nanoparticles were spherical in shape and poly dispersed. The energy dispersive X-ray diffraction (EDX) profile revealed the elements present in the as-synthesized colloidal silver nanoparticles and its percentages. The Zeta potential measured for silver nanoparticles evidenced that the prepared silver nanoparticles owned high stability in room temperature itself. The as-synthesized silver nanoparticles (AgNPs) in colloidal form were showed good antimicrobial effects and it's were found to exhibit third order optical nonlinearity as studied by Z-scan technique using 532 nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215 M-50 diode pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles.

  12. Determination of microgramme amounts of osmium and ruthenium based on inhibition of the iodine-azide reaction by their complexes with 6-mercaptopurine

    International Nuclear Information System (INIS)

    Matusiewicz, H.; Kurzawa, Z.

    1976-01-01

    A new kinetic method of the determination of microamounts of osmium and ruthenium has been developed. The reaction between sodum azide and iodine induced by 6-mercaptopurine (6-MP) was used for this purpose. Under suitable experimental conditions the induction coefficient of 6-MP amounts to 1750+-40. The formed complexes of the metals are stable in the medium containing an excess of azide ions and do not induce the iodine-azide reaction. The method consists in the determination of the 6-MP not bound to the metal. The amount of osmium or ruthenium is then determined from linear relations. Before the determination osmium and ruthenium must be separated from other cations and from each other by distillation as volatile tetroxides. The iodine-azide method is simple, sensitive and does not require any apparatus. The range of the determination is 0.1-5.0 μg in 5 cm 3 of the solution of Os(8) and 0.5-5.0 μg for Ru(8). The error of the determination is +-6.4% and +- 6.1% for osmium and ruthenium, respectively. The time of the determination is 30 minutes not taking into account 2-hour waiting time necessary for the formation of the complexes. (author)

  13. Preconcentration of silver as silver xanthate on activated carbon

    International Nuclear Information System (INIS)

    Ramadevi, P.; Naidu, U.V.; Naidu, G.R.K.

    1988-01-01

    Silver from aqueous solution was preconcentrated by adsorption on activated carbon as silver xanthate. Factors influencing the adsorption of silver were studied. Optimum conditions for the preconcentration of silver were established. (author) 9 refs.; 3 tabs

  14. Design and Synthesis of New Chacones Substituted with Azide/Triazole Groups and Analysis of Their Cytotoxicity Towards HeLa Cells

    Directory of Open Access Journals (Sweden)

    José A. F. P. Villar

    2012-08-01

    Full Text Available A series of new chalcones substituted with azide/triazole groups were designed and synthesized, and their cytotoxic activity was evaluated in vitro against the HeLa cell line. O-Alkylation, Claisen-Schmidt condensation and Cu(I-catalyzed cycloaddition of azides with terminal alkynes were applied in key steps. Fifteen compounds were tested against HeLa cells. Compound 8c was the most active molecule, with an IC50 value of 13.03 µM, similar to the value of cisplatin (7.37 µM.

  15. Photobiosynthesis of stable and functional silver/silver chloride nanoparticles with hydrolytic activity using hyperthermophilic β-glucosidases with industrial potential.

    Science.gov (United States)

    Araújo, Juscemácia N; Tofanello, Aryane; da Silva, Viviam M; Sato, Juliana A P; Squina, Fabio M; Nantes, Iseli L; Garcia, Wanius

    2017-09-01

    The β-glucosidases are important enzymes employed in a large number of processes and industrial applications, including biofuel production from biomass. Therefore, in this study, we reported for the first time the photobiosynthesis of stable and functional silver/silver chloride nanoparticles (Ag/AgCl-NPs) using two hyperthermostable bacterial β-glucosidases with industrial potential. The syntheses were straightforward and rapid processes carried out by mixing β-glucosidase and silver nitrate (in buffer 10mM Tris-HCl, pH 8) under irradiation with light (over a wavelength range of 450-600nm), therefore, compatible with the green chemistry procedure. Synthesized Ag/AgCl-NPs were characterized using a series of physical techniques. Absorption spectroscopy showed a strong absorption band centered at 460nm due to surface plasmon resonance of the Ag-NPs. X-ray diffraction analysis revealed that the Ag/AgCl-NPs were purely crystalline in nature. Under electron microscopy, Ag/AgCl-NPs of variable diameter ranging from 10 to 100nm can be visualized. Furthermore, electron microscopy, zeta potential and Fourier transform infrared spectroscopy results confirmed the presence of β-glucosidases coating and stabilizing the Ag/AgCl-NPs. Finally, the results showed that the enzymatic activities were maintained in the β-glucosidases assisted Ag/AgCl-NPs. The information described here should provide a useful basis for future studies of β-glucosidases assisted Ag/AgCl-NPs, including biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM

    Directory of Open Access Journals (Sweden)

    Vikas Sarsar

    2015-11-01

    Full Text Available The biofabricated silver nanoparticles are extensively used in environmental, biotechnological and biomedical applications. The synthesis of SNPs has been carried out by using the filtrate extract of novel fungal strain Penicillium atramentosum KM. To undertake this study, P. atramentosum KM extract was exposed to silver nitrate and the obtained SNPs were thoroughly analyzed using physicochemical characterization tools such as UV–visible spectroscopy (UV–vis, Fourier transformation infrared (FTIR, X-ray diffraction (XRD and transmission electron microscopy (TEM. As evident from the FTIR spectra plausibly the protein components of fungal extract caused the reduction of silver nitrate. The SNPs showed a characteristic UV–visible peak at 420 nm with an average size of 5–25 nm. The XRD record exhibited the characteristic peaks of 111, 200, 220 and 311 nanoparticles signifying that these nanoparticles were crystalline in nature. Parametric optimization showed maximum absorbance of 420 nm at pH 7, 25 °C with 3 mM silver nitrate, concentration ratio of fungal extract and silver nitrate was 5:5 in 72 h. The synthesized SNPs showed antimicrobial activity against bacterial strains.

  17. Azide- and Alkyne-Functionalised α- and β3-Amino Acids

    DEFF Research Database (Denmark)

    Sminia, T.J.; Pedersen, Daniel Sejer

    2012-01-01

    The synthesis and full characterisation of bifunctional β -amino acids that have side chains functionalised with terminal azides (S)-4 and (R)-4 or acetylenes 5 and 6 is reported for the first time. The building blocks incorporate a turn-inducing β -segment and a side chain that can...... be functionalised further, for example, through copper-catalysed Huisgen cycloaddition. Moreover, the corresponding α-amino acids 1 and 3 have been synthesised and characterised. All amino acid building blocks were of high optical purity as demonstrated by derivatisation and subsequent NMR analysis....

  18. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  19. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  20. Direct C–H Azidation of Calix[4]arene as a Novel Method to Access Meta Substituted Derivatives

    Czech Academy of Sciences Publication Activity Database

    Stejskal, F.; Eigner, V.; Dvořáková, H.; Cuřínová, Petra; Lhoták, P.

    2015-01-01

    Roč. 56, č. 39 (2015), s. 5357-5361 ISSN 0040-4039 Institutional support: RVO:67985858 Keywords : calixarene * azidation * regionselectivity Subject RIV: CC - Organic Chemistry Impact factor: 2.347, year: 2015

  1. Spectroscopic and microscopic characterization of silver nanoparticles synthesized using Justicia adhatoda flower

    Science.gov (United States)

    Singh, Tej; Shekhawat, Dharmender Singh; Jyoti, Kumari

    2018-05-01

    The synthesis of silver nanoparticles (SNPs) by chemical and physical methods produce harmful products which may cause various environmental problems, thus, there is an increasing demand to use ecofriendly methods. Therefore, biosynthesis of SNPs using Justicia adhatoda flower extract is demonstrated in the present study. The biosynthesized SNPs were characterized by UV-visible spectroscopy, Fourier transform-infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and atomic force microscopy (AFM) analysis. The result of UV-visible spectroscopy peaked at 417 nm corresponding to the plasmon absorbance of SNPs. The TEM and SAED result reveals the crystalline nature of SNPs. FTIR spectroscopy used to identify the possible biomolecules responsible for the conversion of silver ions to SNPs. The study concluded that Justicia adhatoda flower extract act as an excellent reducing agent and the green synthesized SNPs are safer to the environment.

  2. Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: implications for steric ligand tilt.

    Science.gov (United States)

    Peng, Dungeng; Ogura, Hiroshi; Ma, Li-Hua; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2013-04-01

    Solution 2D (1)H NMR was carried out on the azide-ligated substrate complex of human heme oxygenase, hHO, to provide information on the active site molecular structure, chromophore electronic/magnetic properties, and the distal H-bond network linked to the exogenous ligand by catalytically relevant oriented water molecules. While 2D NMR exhibited very similar patterns of two-dimensional nuclear Overhauser spectroscopy cross peaks of residues with substrate and among residues as the previously characterized cyanide complex, significant, broadly distributed chemical shift differences were observed for both labile and non-labile protons. The anisotropy and orientation of the paramagnetic susceptibility tensor, χ, were determined for both the azide and cyanide complexes. The most significant difference observed is the tilt of the major magnetic axes from the heme normal, which is only half as large for the azide than cyanide ligand, with each ligand tilted toward the catalytically cleaved α-meso position. The difference in chemical shifts is quantitatively correlated with differences in dipolar shifts in the respective complexes for all but the distal helix. The necessity of considering dipolar shifts, and hence determination of the orientation/anisotropy of χ, in comparing chemical shifts involving paramagnetic complexes, is emphasized. The analysis shows that the H-bond network cannot detect significant differences in H-bond acceptor properties of cyanide versus azide ligands. Lastly, significant retardation of distal helix labile proton exchange upon replacing cyanide with azide indicates that the dynamic stability of the distal helix is increased upon decreasing the steric interaction of the ligand with the distal helix. Copyright © 2013. Published by Elsevier Inc.

  3. Well-defined polyethylene-based graft terpolymers by combining nitroxide-mediated radical polymerization, polyhomologation and azide/alkyne “click” chemistry†

    KAUST Repository

    Alkayal, Nazeeha

    2016-03-30

    Novel well–defined polyethylene–based graft terpolymers were synthesized via the “grafting onto” strategy by combining nitroxide-mediated radical polymerization (NMP), polyhomologation and copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry. Three steps were involved in this approach: (i) synthesis of alkyne-terminated polyethylene-b-poly(ε-caprolactone) (PE-b-PCL-alkyne) block copolymers (branches) by esterification of PE-b-PCL-OH with 4-pentynoic acid; the PE-b-PCL-OH was obtained by polyhomologation of dimethylsulfoxonium methylide to afford PE-OH, followed by ring opening polymerization of ε-caprolactone using the PE-OH as macroinitiator, (ii) synthesis of random copolymers of styrene (St) and 4-chloromethylstyrene (4-CMS) with various CMS contents, by nitroxide-mediated radical copolymerization (NMP), and conversion of chloride to azide groups by reaction with sodium azide (NaN3) (backbone) and (iii) “click” linking reaction to afford the PE-based graft terpolymers. All intermediates and final products were characterized by high-temperature size exclusion chromatography (HT-SEC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC).

  4. Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Faezeh Sajadi

    2016-05-01

    Full Text Available Background and Aim: Cadmium (Cd is one of the most toxic heavy metals in water that mostly enters the water cycle through industrial waste water. Silver nanoparticles have the capacity to remove heavy metals from the water resources through the mechanism of adsorption. The present study aimed at producing  silver bio-nanoparticles and optimizing . Cd removal from aquatic solutions. Materials and Methods: Silver bio-nanoparticles were extracted via a micro-algae Chlorella vulgaris extract and silver nitrate synthesis. Then, the characteristics of the particles were  determined using FT-IR, XRD, SEM devices. In order to optimize Cadmium adsorption by means of silver nanoparticles, parameters including pH, reaction time, initial concentration of Cd and concentrations of nanoparticles were studied under different conditions. Results: The resulting nanoparticles were spherical, single and crystalline, whose sizes were 10-45 nm.  Under the condition of PH = 8, the initial concentration of cadmium 0.5 mg/L, adsorbent dosage of 0.5 mg, reaction time of 10 min, temperature of 300C and mixing speed of 200 rpm, 99% of cadmium was removed. Isotherm of Cadmium-ion adsorption followed Langmuir (R2> 0/96 (and Freundlich (R2> 0/94 models. Conclusion: Under optimal conditions, silver bio-nanoparticles had the capacity of quick and effective adsorption of cadmium. Thus, with a cheap, non-toxic and environmentally friendly method  can remove heavy metals in a short time.

  5. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    Science.gov (United States)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-05-01

    This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 106 and detection limit of 1.0 × 10-7 M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  6. Solid-phase synthesis of NH-1,2,3-triazoles using 4,4′- bismethoxybenzhydryl azide

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil O'Hanlon; Le Quement, Sebastian Thordal; Nielsen, Thomas Eiland

    2014-01-01

    Readily available 4,4′-bismethoxybenzhydryl azide was found to be a useful building block for the synthesis of NH-1,2,3-triazoles through copper(I)-catalyzed cycloaddition reactions with solid-supported terminal alkynes, followed by acid-mediated deprotection. Peptide-containing NH-1,2,3-triazole...

  7. Green recovery of silver as crystalline Nano-particles from corresponding waste solutions by Lime Juice as compared with Ascorbic acid and Citric acid

    OpenAIRE

    Hamid Reza Safaei

    2017-01-01

    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs), However, none of them have concerned to do recovery, removal and separation as a goal. In this study silver nanoparticles (Ag-NPs) were recovered from fixer effluent solution as waste solution of silver by interacting with Lime juice as a bio-reducing and bio-capping agent. The best conditions for obtaining Ag NPs were determined by UV-Visible, FT-IR spectroscopy, DLS technique, SEM and X...

  8. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.; Gumus, A.; Kutbee, A. T.; Wehbe, N.; Ahmed, S. M.; Ghoneim, M. T.; Lee, K. -T.; Rogers, J. A.; Hussain, M. M.

    2016-01-01

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  9. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.

    2016-11-30

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  10. Green synthesis and antibacterial activity screening of silver nanoparticles reduced by papaya (Carica papaya L.) leaves extract

    International Nuclear Information System (INIS)

    Esplana, Camille S.; Cabling, Mercedes Q.

    2013-01-01

    The field of nano technology is the most active area of research in modern material sciences. Though there are many chemical, as well as physical methods, green synthesis is the most emerging method of synthesis. This study aimed to describe a cost effective and environment friendly technique for green synthesis of silver nanoparticles. The synthesis of silver nanoparticles was prepared by adding Carica papaya L. leaves extract to 1mM silver nitrate solution. The color change in reaction mixture (pale yellow to dark brown color was observed during the incubation period , due to excitation of surface plasmon vibrations in silver nanoparticles. Nanoparticles were characterized using UV-Visible absorption spectroscopy, X-Ray Diffraction (XRD) pattern, Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDX) analysis. Absorption spectra of silver nanoparticles formed in the reaction media has absorbance peak at 280 nm, broadening of peak indicates that the particles are poly dispersed. SEM analysis described the morphology and the size of the particles. XRD confirmed the crystalline structure of the nanoparticles. The presence of the elemental silver was observed in the graph obtained from EDX analysis, which also supports the XRD results. The biomass of plants produces their nano materials by a process called bio mineralization. The tests cultures included in the study were Staphylococcus aureus, Escherichia coli and Salmonella. Results showed that the maximum inhibitory effect using 1mM silver nitrates against the microbes were obtained. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy alternative to conventional methods of silver nanoparticles synthesis (author)

  11. Plant-mediated synthesis of silver nanoparticles using parsley ( Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-12-01

    Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.

  12. Radiation-chemical decomposition of heavy metal azides - II. Silver azide radiolysis scheme

    International Nuclear Information System (INIS)

    Ryabykh, S.M.

    1987-01-01

    As a result of complex studies on the nature and properties of final products and intermediate particles using a wide number of experimental topography and radiolysis kinetics methods, we offer the AgN 3 radiolysis scheme including the following stages: homogeneous excitation of electron subsystem with 'hot' electrons and holes formed; 'hot' electron and hole thermalization with possible formation of N 4 - radical in volume on the point defects; electron localization on the immobile structural defects whose neighbourhood is rich in the mobile positively charged point defects; metal particle formation due to electrostatic attraction of the nearby mobile defect to the localized electron, with no thermal excitation; metal particle growth, according to both the diffusional mechanism of delivering the volume of corresponding positively charged point defect with consequent electron capture, and by decomposing anions on the interphase with the consequent border layer cation addition to the growing metal particle, interior space formation in the volume by disintegrating 'hot' excitons into ion defect pairs; nitrogen formation on the exterior and interior surfaces, as well as those formed by radiation, either by trapping the hole by surface cation vacancy or by removing the surface cation of the hole with the consequent addition of the second hole to the Vsub(F)-center, and by disintegrating the activated complex into three nitrogen molecules. For the above stages the characteristic parameters are determined by means of direct measurement and calculation. The kinetics and energy conditions of the process are also found. (author)

  13. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    Science.gov (United States)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  14. Oral toxicity of silver ions, silver nanoparticles and colloidal silver--a review.

    Science.gov (United States)

    Hadrup, Niels; Lam, Henrik R

    2014-02-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least a factor of five before a level of concern to the general population is reached. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A practical and azide-free synthetic approach to oseltamivir from diethyl D-tartrate.

    Science.gov (United States)

    Weng, Jiang; Li, Yong-Bo; Wang, Rui-Bin; Li, Feng-Quan; Liu, Can; Chan, Albert S C; Lu, Gui

    2010-05-07

    A short and practical synthesis of oseltamivir was accomplished in 11 steps from inexpensive and abundant diethyl D-tartrate starting material. This azide-free route featured an asymmetric aza-Henry reaction and a domino nitro-Michael/Horner-Wadsworth-Emmons (HWE) reaction as the key steps to construct the relevant cyclohexene ring of the product, which provided an economical and practical alternative for the synthesis of oseltamivir.

  16. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Lam, Henrik Rye

    2014-01-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin......, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts...... and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least...

  17. Synthesis of novel bis(perfluorophenyl azides) coupling agents: Evaluation of their performance by crosslinking of poly(ethylene oxide)

    KAUST Repository

    Mehenni, Hakim; Bakr, Osman

    2011-01-01

    Novel bis(perfluorophenyl azides) coupling agents, containing spacer arms from ethylene or ethylene glycol subunits, were successfully synthesized. Nitrenes photogenerated from these novel bis(PFPA) coupling agents were applied successfully

  18. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade; Cunha, Frederico Guilherme Carvalho [Clinica de Medicina Nuclear e Radiologia de Maceio (MedRadiUS), Radiology and Imaging Diagnosis at Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 deg C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  19. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Fisica; Cunha, Frederico Guilherme Carvalho [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 Degree-Sign C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  20. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Directory of Open Access Journals (Sweden)

    José Elisandro de Andrade

    2013-01-01

    Full Text Available In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA epoxy resin cured at 150 °C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111].

  1. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    Energy Technology Data Exchange (ETDEWEB)

    Susilowati, Endang, E-mail: endwati@yahoo.co.id; Ashadi [Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Sebelas Maret Surakarta (Indonesia); Maryani [Medical Doctor Program, Faculty of Medicine, Universitas Sebelas Maret Surakarta, Indonesia Jl. Ir Sutami 36 A Surakarta Indonesia 53126 (Indonesia)

    2016-02-08

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO{sub 3}) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 – 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.

  2. Cellulase assisted synthesis of nano-silver and gold: Application as immobilization matrix for biocatalysis.

    Science.gov (United States)

    Mishra, Abhijeet; Sardar, Meryam

    2015-01-01

    In the present study, we report in vitro synthesis of silver and gold nanoparticles (NPs) using cellulase enzyme in a single step reaction. Synthesized nanoparticles were characterized by UV-VIS spectroscopy, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Circular Dichroism (CD) and Fourier Transform Infrared Spectroscopy (FTIR). UV-visible studies shows absorption band at 415nm and 520nm for silver and gold NPs respectively due to surface plasmon resonance. Sizes of NPs as shown by TEM are 5-25nm for silver and 5-20nm for gold. XRD peaks confirmed about phase purity and crystallinity of silver and gold NPs. FTIR data shows presence of amide I peak on both the NPs. The cellulase assisted synthesized NPs were further exploited as immobilization matrix for cellulase enzyme. Thermal stability analysis reveals that the immobilized cellulase on synthesized NPs retained 77-80% activity as compared to free enzyme. While reusability data suggests immobilized cellulase can be efficiently used up to sixth cycles with minimum loss of enzyme activity. The secondary structural analysis of cellulase enzyme during the synthesis of NPs and also after immobilization of cellulase on these NPs was carried out by CD spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry.

    Science.gov (United States)

    Punjabi, Kapil; Yedurkar, Snehal; Doshi, Sejal; Deshapnde, Sunita; Vaidya, Shashikant

    2017-08-01

    The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp . Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.

  4. Electroless silver plating of the surface of organic semiconductors.

    Science.gov (United States)

    Campione, Marcello; Parravicini, Matteo; Moret, Massimo; Papagni, Antonio; Schröter, Bernd; Fritz, Torsten

    2011-10-04

    The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor. © 2011 American Chemical Society

  5. Sericins of mulberry and non-mulberry silkworms for eco-friendly synthesis of silver nanoparticles.

    Science.gov (United States)

    Chaisabai, Wanna; Khamhaengpol, Arunrat; Siri, Sineenat

    2018-05-01

    Green synthesis of silver nanoparticles (AgNPs) has received many interests as a simple, cost-effective, and environmentally friendly method. This study reported the use of sericins extracted from non-mulberry (Samia cynthia ricini) and mulberry (Bombyx mori) silkworms for green syntheses of AgNPs. Both sericins possessed the reducing activity, which the reducing activity of S. c. ricini sericin was significantly higher than that of B. mori sericin. The formation of AgNPs facilitated by S. c. ricini sericin was greater than B. mori sericin as determined by the intensity of the surfacing plasmon resonance peak of silver at 412 nm. The synthesized AgNPs using both sericins were spherical and uniform in size with the average diameter of ∼13 nm. The silver component and the crystalline structure was determined by energy-dispersive X-ray and X-ray diffraction analyses. The synthesized AgNPs exhibited the antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, suggesting their potential application as an effective antibacterial agent.

  6. Silver Accumulation in the Green Microalga Coccomyxa actinabiotis: Toxicity, in Situ Speciation, and Localization Investigated Using Synchrotron XAS, XRD, and TEM.

    Science.gov (United States)

    Leonardo, Thomas; Farhi, Emmanuel; Pouget, Stéphanie; Motellier, Sylvie; Boisson, Anne-Marie; Banerjee, Dipanjan; Rébeillé, Fabrice; den Auwer, Christophe; Rivasseau, Corinne

    2016-01-05

    Microalgae are good candidates for toxic metal remediation biotechnologies. This study explores the cellular processes implemented by the green microalga Coccomyxa actinabiotis to take up and cope with silver over the concentration range of 10(-7) to 10(-2) M Ag(+). Understanding these processes enables us to assess the potential of this microalga for applications for bioremediation. Silver in situ speciation and localization were investigated using X-ray absorption spectroscopy, X-ray diffraction, and transmission electron microscopy. Silver toxicity was evaluated by monitoring microalgal growth and photochemical parameters. Different accumulation mechanisms were brought out depending on silver concentration. At low micromolar concentration, microalgae fixed all silver initially present in solution, trapping it inside the cells into the cytosol, mainly as unreduced Ag(I) bound with molecules containing sulfur. Silver was efficiently detoxified. When concentration increased, silver spread throughout the cell and particularly entered the chloroplast, where it damaged the photosystem. Most silver was reduced to Ag(0) and aggregated to form crystalline silver nanoparticles of face-centered cubic structure with a mean size of 10 nm. An additional minor interaction of silver with molecules containing sulfur indicated the concomitant existence of the mechanism observed at low concentration or nanoparticle capping. Nanoparticles were observed in chloroplasts, in mitochondria, on the plasma membrane, on cytosolic membrane structures, and in vacuoles. Above 10(-4) M Ag(+), damages were irreversible, and photosynthesis and growth were definitely inhibited. However, high silver amounts remained confined inside microalgae, showing their potential for the bioremediation of contaminated water.

  7. Topological ferrimagnetic behaviours of coordination polymers containing manganese(II) chains with mixed azide and carboxylate bridges and alternating F/AF/AF'/AF'/AF interactions.

    Science.gov (United States)

    Wang, Yan-Qin; Liu, Hou-Ting; Qi, Yan; Gao, En-Qing

    2014-08-21

    Two Mn(ii) complexes with azide and a new zwitterionic tetracarboxylate ligand 1,2,4,5-tetrakis(4-carboxylatopyridinium-1-methylene)benzene (L(1)), {[Mn5(L(1))2(N3)8(OH)2]·12H2O}n () and {[Mn5(L(1))2(N3)8(H2O)2](ClO4)2·6H2O}n (), have been synthesized and characterized crystallographically and magnetically. and contain similar alternating chains constructed by azide and carboxylate bridges. The independent sets of bridges alternate in an ABCCB sequence between adjacent Mn(ii) ions: (EO-N3)2 double bridges (EO = end-on) (denoted as A), [(EO-N3)(OCO)2] triple bridges (denoted as B) and [(EO-N3)(OCO)] double bridges (denoted as C). The alternating chains are interlinked into 2D coordination networks by the tetrapyridinium spacers. Magnetic studies demonstrate that the magnetic coupling through the double EO azide bridges is ferromagnetic and that through mixed azide/carboxylate bridges is antiferromagnetic. The unprecedented F/AF/AF'/AF'/AF coupling sequence along the chain dictates an uncompensated ground spin state (S = 5/2 per Mn5 unit) and leads to one-dimensional topological ferrimagnetism, which features a minimum in the χT versus T plot.

  8. Allylic azides as potential building blocks for the synthesis of nitrogenated compounds

    Directory of Open Access Journals (Sweden)

    Sá Marcus M.

    2003-01-01

    Full Text Available The synthetic potential of multifunctional allylic azides and imines in attempted intramolecular cyclizations to nitrogen-containing heterocycles was investigated. Tandem Staudinger/aza-Wittig reaction of (E-3-aryl-2-(azidomethylpropenoates with triphenylphosphine and aldehydes yielded N-allylic imines in good yield. The (E-stereochemistry of C=C and C=N bonds was assigned based on NOESY experiments. AlCl3 mediated formation of 3-carbomethoxyquinoline from methyl (E-2-(azidomethyl-3-phenylpropenoate is also described.

  9. Synthesis of silver nanoparticles using Matricaria recutita (Babunah plant extract and its study as mercury ions sensor

    Directory of Open Access Journals (Sweden)

    Imran Uddin

    2017-11-01

    Full Text Available Silver (Ag nanoparticles comprise a highly selective approach for development of nanosensors for the detection of Hg2+ ions. When Ag nanoparticles mixes with Hg2+ ions, loses its UV–Vis absorption intensity. Here, green synthesis of Ag nanoparticles was done using plant extract of Matricaria recutita (Babunah under ambient conditions. Biosynthesized Ag nanoparticles are well-dispersed having quasi-spherical shape and average particle size of 11nm. XRD, SAED and HRTEM analysis showed that nanoparticles are well crystalline in nature and having cubic phase of geometry. We report here highly selective colorimetric detection of mercury ions (Hg2+ using biosynthesized Ag nanoparticles. Keywords: Herbal extract, Nanosensor, Biosynthesis, Matricaria recutita, Silver nanoparticles

  10. Development of an eco-friendly approach for biogenesis of silver nanoparticles using spores of Bacillus athrophaeus.

    Science.gov (United States)

    Hosseini-Abari, Afrouzossadat; Emtiazi, Giti; Ghasemi, Seyed Mahdi

    2013-12-01

    The biological synthesis methods have been emerging as a promising new approach for production of nanoparticles due to their simplicity and non-toxicity. In the present study, spores of Bacillus athrophaeus were used to achieve the objective of developing a green synthesis method of silver nanoparticles. Enzyme assay revealed that the spores and their heat inactivated forms (microcapsules) were highly active and their enzymatic contents differed from the vegetative cells. Laccase, glucose oxidase, and alkaline phosphatase activities were detected in the dormant forms, but not in the vegetative cells. Although no nanoparticle was produced by active cells of B. athrophaeus, both spores and microcapsules were efficiently capable of reducing the silver ions (Ag⁺) to elemental silver (Ag⁰) leading to the formation of nanoparticles from silver nitrate (AgNO₃). The presence of biologically synthesized silver nanoparticles was determined by obtaining broad spectra with maximum absorbance at 400 nm in UV-visible spectroscopy. The X-ray diffraction analysis pattern revealed that the nanoscale particles have crystalline nature with various topologies, as confirmed by transmission electron microscopy (TEM). The TEM micrograph showed the nanocrystal structures with dimensions ranging from 5 to 30 nm. Accordingly, the spore mixture could be employed as a factory for detoxification of heavy metals and subsequent production of nanoparticles. This research introduces an environmental friendly and cost effective biotechnological process for the extracellular synthesis of silver nanoparticles using the bacterial spores.

  11. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities

    International Nuclear Information System (INIS)

    Rao, N.Hanumanta; Lakshmidevi, N.; Pammi, S.V.N.; Kollu, Pratap; Ganapaty, S.; Lakshmi, P.

    2016-01-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV–Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (−) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. - Highlights: • Biosynthesis of silver nanoparticles (Ag NPs) using root extracts of Diospyros paniculata. • Average diameter of Ag NPs is about 17 nm from TEM analysis which is in good agreement with XRD analysis. • Antimicrobial activities of root extract mediated synthesis of silver Ag NPs were discussed in detail.

  12. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.Hanumanta [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Lakshmidevi, N. [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India); Pammi, S.V.N. [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejeon (Korea, Republic of); Kollu, Pratap [DST-INSPIRE Faculty, Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Ganapaty, S. [GITAM Institute of Pharmacy, GITAM University, Visakhapatnam (India); Lakshmi, P., E-mail: lmkandregula@gmail.com [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India)

    2016-05-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV–Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (−) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. - Highlights: • Biosynthesis of silver nanoparticles (Ag NPs) using root extracts of Diospyros paniculata. • Average diameter of Ag NPs is about 17 nm from TEM analysis which is in good agreement with XRD analysis. • Antimicrobial activities of root extract mediated synthesis of silver Ag NPs were discussed in detail.

  13. Contribution to the study of the structure of silver krypton solid solutions; Contribution a l'etude de la structure des solutions solides argent-krypton

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Tullairet, J; Delaplace, J; Antolin-Baudier, J; Adda, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [French] Les solutions solides argent, krypton, realisees par decharges electrique ont ete etudiees par Rayons X, resistivite electrique et microscopie electronique en transmission. Les mesures de parametre cristallin et de resistivite residuelle ont montre que le comportement de l'atome de krypton est tres different de celui des autres elements de la classification periodique en solution dans l'argent. La restauration du parametre cristallin et de la resistivite electrique en fonction de la temperature a ete etudiee. (auteurs)

  14. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    Science.gov (United States)

    Alleyne, Fatima Sierre

    of this study is to understand the resulting phase transformation behavior during Ag precipitation with the intent to ultimately control the electrical operation of AlN piezoelectric resonators in energy scavenging applications. In this work, multiple source reactive ion sputtering was employed to deposit a thin film of AlN on a 525 microns thick Si substrate, followed by ion implantation (Ag cathode) into the aluminum nitride, and subsequent thermal annealing. Computer simulations were conducted to elucidate the projected range of the silver in the AlN epilayer as a result of the ion implantation process. A myriad of characterization methods including Rutherford Backscattering Spectrometry (RBS), x-ray diffraction (XRD), rocking curve, electron microscopy was employed to quantify the concentration of silver, morphology of silver precipitates, as well as the composition, crystallinity and degree of damage in the ion-implanted AlN samples with respect to thermal annealing conditions. The presence, or lack of precipitates in the samples was utilized to draw conclusions about the feasibility of developing a buried conductive layer in a ceramic matrix via ion implantation. Computer simulations results obtained via TRIM and TRIDYN confirmed that the maximum concentration of silver lied within 30 -- 47 nm from the surface. The RBS data verified the presence of Si, Al, N, Ag, and O2 , whose concentration varied with temperature. X-ray diffraction and electron microscopy corroborated the crystallinity of the AlN epilayer. Electron diffraction confirmed both the epitaxy of the AlN film on the (001) Si substrate and the crystalline quality of the epilayer prior to and after the thermal annealing treatment. Electron microscopy revealed that the sputtered AlN film grew epitaxially in a columnar morphology and silver precipitates did form in some of the aluminum nitride samples implanted but only in those implanted with a higher concentration of Ag under high-energy implantation

  15. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei, E-mail: xuzhiwei@tjpu.edu.cn; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-05-01

    Highlights: • Graphene oxide sheets supported Ag nanoparticles composites are successfully prepared via γ-irradiation without surfactant or functional agent. • Ag nanoparticles exhibit single crystalline structure and parabolic distribution on the surface of graphene oxide sheets. • Proposing a view that the growth of intercellular AgNPs can be limited by graphite oxide. - Abstract: This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 10{sup 6} and detection limit of 1.0 × 10{sup −7} M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  16. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    International Nuclear Information System (INIS)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-01-01

    Highlights: • Graphene oxide sheets supported Ag nanoparticles composites are successfully prepared via γ-irradiation without surfactant or functional agent. • Ag nanoparticles exhibit single crystalline structure and parabolic distribution on the surface of graphene oxide sheets. • Proposing a view that the growth of intercellular AgNPs can be limited by graphite oxide. - Abstract: This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 10"6 and detection limit of 1.0 × 10"−"7 M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  17. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities

    International Nuclear Information System (INIS)

    Gogoi, Nayanmoni; Babu, Punuri Jayasekhar; Mahanta, Chandan; Bora, Utpal

    2015-01-01

    Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles. - Highlights: • The present study depicts the green synthesis of AgNPs using Nyctanthes arbortristis. • AuNPs found to be biocompatible and can be used for biomedical applications. • The FTIR, TGA and DTA results showed that AgNPs are bounded by organic coating. • The synthesized AgNPs showed antibacterial activity on E. Coli MTCC 443. • We investigated the antioxidant activity for both EFE and AgNPs

  18. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract.

    Science.gov (United States)

    Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2013-01-01

    To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.

  19. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    Science.gov (United States)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  20. Synthesis and characterization of lithium fluoride nano crystals doped with silver

    International Nuclear Information System (INIS)

    Rosario M, B. R.; Ramirez C, G.; Encarnacion E, E. K.; Sosa A, M. A.

    2017-10-01

    Thermoluminescence (Tl) is the emission of light by certain materials to be heated below its incandescence temperature, having previously been exposed to an exciting agent such as ionizing radiation. Lithium fluoride (LiF) is the thermoluminescent material used in the manufacture of Tl-100 dosimeters. What morphological characteristics (size, crystallinity) do the nano crystals of pure lithium fluoride (LiF) have when doped with silver (Ag) by the precipitation method? The objective of this study was to synthesize and characterize the LiF nano crystals doped with silver (Ag) in concentrations of 0.02, 0.04, 0.06, 0.08, 0.1 and 0.2%. The samples were synthesized using as reagents; distilled water, ammonium fluoride (NH 4 F), lithium chloride (LiCl), silver nitrate (AgNO 3 ); and materials such as: 0.1 mg precision balance, spatulas, test piece, magnetic stirrer, beaker, volumetric flask, burette, burette clamp, key and magnetic stirring wand. In the characterization process we used and X-ray diffractometer (XRD) with which we obtained the X-ray diffraction spectrum with well-defined peaks that are characteristic of LiF. Using the Scherrer equation we calculate the sizes of nano crystals. This study demonstrates that is possible to synthesize LiF using new dopant materials. (Author)

  1. The Analysis of Silver Nanoparticles After the Manipulation of Synthesis Parameters and with the Addition of Potassium 2-(9-Carboxy-1-Octylnonylsulfanyl)-Malonate

    International Nuclear Information System (INIS)

    Chin, S.Y.; Hakam, M.A.O.; Goh, S.C.; Yarmo, M.A.

    2011-01-01

    This research aimed to synthesize and characterize silver nanoparticles by manipulating the parameters involved in stabilizing the particles. The silver nanoparticles in this research were synthesized by reduction process of silver nitrate (AgNO 3 ) with sodium borohydrate (NaBH 4 ) as the reducing agent. The addition of potassium 2- (9-carboxy-1-octylnonylsulfanyl)-malonate into silver nanoparticles solution functioned as a stabilizing agent. The parameters involved in this research were the effect of time towards stability of silver nanoparticles, the effect of addition of potassium 2-(9-carboxy-1-octylnonylsulfanyl)- malonate and the pH level effect towards the synthesized silver nanoparticles. Based on the results obtained from Transmission Electron Microscopy (TEM), we have observed that the incorporation of potassium 2-(9-carboxy-1- octyl-nonanesulfonyl)-malonate as the stabilizing agent can prevent the agglomeration of silver nanoparticles within 16 days which is a breakthrough for the synthesis of silver nanoparticles by using sodium borohydride. The micrograph showed that the size of silver nanoparticles synthesized were within the range of 1.5 nm to 8.3 nm. In addition to that, Dynamic Light Scattering (DLS) technique was used in this research to measure the average size of the silver nanoparticles which stabilized with potassium 2-(9-carboxy-1-octyl-nonanesulfonyl)-malonate. X-Ray Diffraction (XRD) analysis was carried out to view the effect of manipulated pH level on crystalline silver nanoparticles structure. The XRD diffractogram showed the diffraction peaks which can be indexed to planes of face- centered cubic (fcc) of pure silver. (author)

  2. Facile and highly efficient approach for the fabrication of multifunctional silk nanofibers containing hydroxyapatite and silver nanoparticles.

    Science.gov (United States)

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung-Ho; Lee, Ok Joo; Park, Chan Hum

    2014-10-01

    In this study, a good combination consisting of electrospun silk fibroin nanofibers incorporated with high-purity hydroxyapatite (HAp) nanoparticles (NPs) and silver NPs is introduced as antimicrobial for tissue engineering applications. The variable pressure field emission scanning electron microscope results confirmed randomly placed nanofibers are produced with highly dispersed HAp and silver NPs in nanofibers after electrospinning. The X-ray diffraction results demonstrated crystalline features of each of the three components used for electrospinning. Moreover, the TEM-EDS analysis confirmed the presence and chemical nature of each component over individual silk nanofiber. The FT-IR analyses was used confirm the different vibration modes caused due to functional groups present in silk fibroin, Hap, and silver NPs. The obtained nanofibers were checked for antimicrobial activity by using two model organisms Escherichia coli and Staphylococcus aureus. Subsequently, the antimicrobial tests have indicated that prepared nanofibers do possess good bactericidal activity. The ability of N,N-dimethylformamide and silk fibroin used to reduce silver nitrate into silver metal was evaluated using MTT assay. The nanofibers were grown in presence of NIH 3T3 fibroblasts, which revealed toxic behavior to fibroblasts at higher concentrations of silver nitrate used in this study. Furthermore, cell attachment studies on nanofibers for 3 and 12 days of incubation time were minutely observed and correlated with the results of MTT assay. The reported results confirmed the high amounts of silver nitrate can lead to toxic effects on viability of fibroblasts and had bad effect in cell attachment. © 2013 Wiley Periodicals, Inc.

  3. Relative Performance of Alkynes in Copper-Catalyzed Azide-Alkyne Cycloaddition

    Science.gov (United States)

    Kislukhin, Alexander A.; Hong, Vu P.; Breitenkamp, Kurt E.; Finn, M.G.

    2013-01-01

    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) has found numerous applications in a variety of fields. We report here only modest differences in the reactivity of various classes of terminal alkynes under typical bioconjugative and preparative organic conditions. Propargyl compounds represent an excellent combination of azide reactivity, ease of installation, and cost. Electronically activated propiolamides are slightly more reactive, at the expense of increased propensity for Michael addition. Certain alkynes, including tertiary propargyl carbamates, are not suitable for bioconjugation due to copper-induced fragmentation. A fluorogenic probe based on such reactivity is available in one step from rhodamine 110 and can be useful for optimization of CuAAC conditions. PMID:23566039

  4. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  5. Antimicrobial effects of silver zeolite,silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon; Saengmee-anupharb; Toemsak; Srikhirin; Boonyanit; Thaweboon; Sroisiri; Thaweboon; Taweechai; Amornsakchai; Surachai; Dechkunakorn; Theeralaksna; Suddhasthira

    2013-01-01

    Objective:To evaluate the antimicrobial activities of silver inorganic materials,including silver zeolite(AgZ),silver zirconium phosphate silicate(AgZrPSi)and silver zirconium phosphate(AgZrp),against oral microorganisms.In line with this objective,the morphology and structure of each type of silver based powders were also investigated.Methods:The antimicrobial activities of AgZ,AgZrPSi and AgZrP were tested against Streptococcus mutans,Lactobacillus casei,Candida albicans and Staphylococcus aureus using disk diffusion assay as a screening test.The minimum inhibitory concentration(MIC)and minimum lethal concentration(MLC)were determined using the modified membrane method.Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials.Results:All forms of silver inorganic materials could inhibit the growth of all test microorganisms.The MIC of AgZ,AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L.In terms of morphology and structure.AgZrPSi and AgZrP had smaller sized particles(1.5-3.0μm)and more uniformly shaped than AgZ.Conclusions:Silver inorganic materials in the form of AgZ,AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers.These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  6. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-01-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  7. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  8. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  9. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications.

    Science.gov (United States)

    Singh, Priyanka; Singh, Hina; Kim, Yeon Ju; Mathiyalagan, Ramya; Wang, Chao; Yang, Deok Chun

    2016-05-01

    The present study highlights the microbial synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 strain, in an efficient way. The synthesized nanoparticles were characterized by ultraviolet-visible spectrophotometry, which displayed maximum absorbance at 424nm and 531nm for silver and gold nanoparticles, respectively. The spherical shape of nanoparticles was characterized by field emission transmission electron microscopy. The energy dispersive X-ray spectroscopy and elemental mapping were displayed the purity and maximum elemental distribution of silver and gold elements in the respective nanoproducts. The X-ray diffraction spectroscopy results demonstrate the crystalline nature of synthesized nanoparticles. The particle size analysis demonstrate the nanoparticles distribution with respect to intensity, volume and number of nanoparticles. For biological applications, the silver nanoparticles have been explored in terms of MIC and MBC against pathogenic microorganisms such as Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, Bacillus anthracis, Bacillus cereus and Staphylococcus aureus. Moreover, the silver nanoparticles in combination with commercial antibiotics, such as vancomycin, rifampicin, oleandomycin, penicillin G, novobiocin, and lincomycin have been explored for the enhancement of antibacterial activity and the obtained results showed that 3μg concentration of silver nanoparticles sufficiently enhance the antimicrobial efficacy of commercial antibiotics against pathogenic microorganism. Furthermore, the silver nanoparticles potential has been reconnoitered for the biofilm inhibition by S. aureus, Pseudomonas aeruginosa and E. coli and the results revealed sufficient activity at 6μg concentration. In addition, gold nanoparticles have been applied for catalytic activity, for the reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride and positive results were attained. Copyright © 2016 Elsevier Inc. All

  10. Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II ions

    Directory of Open Access Journals (Sweden)

    R. Sithara

    2017-11-01

    Full Text Available This study was focused on the synthesis of silver nanoparticles using Acalypha hispida leaf extract and the characterization of the particles using UV–Vis spectroscopy, XRD, FT-IR, and TEM. The results showed the formation of silver nanoparticles, crystalline in nature, with an average size of 20–50 nm. The leaf extract components were analyzed with GC–MS and exhibited a high content of Phytol (40.52%, n-Hexadecanoic acid (9.67%, 1,2,3-Benzenetriol (7.04%, α-d-Mannofuranoside methyl (6.22%, and d-Allose (4.45%. The optimization and statistical investigation of reaction parameters were studied and maximum yield with suitable properties of silver nanoparticles was obtained at leaf extract volume (0.5 mL, the concentration of silver nitrate (1.75 mM, and reaction temperature (50 °C. The method of detecting Mn2+ ions using the colloidal silver nanoparticles was discussed. The minimum and maximum detection limit were found to be 50 and 200 µM of Mn(II ions, respectively. Thus, the obtained results encourage the use of economical synthesis of silver nanoparticles in the development of nanosensors to detect the pollutants present in industrial effluents.

  11. The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles

    International Nuclear Information System (INIS)

    Fellahi, Ouarda; Marcon, Lionel; Coffinier, Yannick; Boukherroub, Rabah; Sarma, Rupak K; Saikia, Ratul; Das, Manash R; Hadjersi, Toufik; Maamache, Mustapha

    2013-01-01

    The paper reports on the preparation and antibacterial activity of silicon nanowire (SiNW) substrates coated with Ag or Cu nanoparticles (NPs) against Escherichia coli (E. coli) bacteria. The substrates are easily prepared using the metal-assisted chemical etching of crystalline silicon in hydrofluoric acid/silver nitrate (HF/AgNO 3 ) aqueous solution. Decoration of the SiNWs with metal NPs is achieved by simple immersion in HF aqueous solutions containing silver or copper salts. The SiNWs coated with Ag NPs are biocompatible with human lung adenocarcinoma epithelial cell line A549 while possessing strong antibacterial properties to E. coli. In contrast, the SiNWs decorated with Cu NPs showed higher cytotoxicity and slightly lower antibacterial activity. Moreover, it was also observed that leakage of sugars and proteins from the cell wall of E. coli in interaction with SiNWs decorated with Ag NPs is higher compared to SiNWs modified with Cu NPs. (paper)

  12. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    Science.gov (United States)

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis, solid-state structure, and bonding analysis of a homoleptic beryllium azide

    International Nuclear Information System (INIS)

    Naglav, Dominik; Tobey, Briac; Lyhs, Benjamin; Roemer, Beate; Blaeser, Dieter; Woelper, Christoph; Jansen, Georg; Schulz, Stephan

    2017-01-01

    [Ph 4 P] 2 [Be(N 3 ) 4 ] (1) and [PNP] 2 [Be(N 3 ) 4 ] (2; PNP=Ph 3 PNPPh 3 ) were synthesized by reacting Be(N 3 ) 2 with [Ph 4 P]N 3 and [PNP]N 3 . Compound 1 represents the first structurally characterized homoleptic beryllium azide. The electronic structure and bonding situation in the tetraazidoberyllate dianion [Be(N 3 ) 4 ] 2- were investigated by quantum-chemical calculations (NPA, ELF, LOL). (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Synthesis, Solid-State Structure, and Bonding Analysis of a Homoleptic Beryllium Azide.

    Science.gov (United States)

    Naglav, Dominik; Tobey, Briac; Lyhs, Benjamin; Römer, Beate; Bläser, Dieter; Wölper, Christoph; Jansen, Georg; Schulz, Stephan

    2017-07-10

    [Ph 4 P] 2 [Be(N 3 ) 4 ] (1) and [PNP] 2 [Be(N 3 ) 4 ] (2; PNP=Ph 3 PNPPh 3 ) were synthesized by reacting Be(N 3 ) 2 with [Ph 4 P]N 3 and [PNP]N 3 . Compound 1 represents the first structurally characterized homoleptic beryllium azide. The electronic structure and bonding situation in the tetraazidoberyllate dianion [Be(N 3 ) 4 ] 2- were investigated by quantum-chemical calculations (NPA, ELF, LOL). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava ( Psidium guajava) leaf extract

    Science.gov (United States)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-05-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava ( Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  16. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Raghunandan, Deshpande [H.K.E.S' s College of Pharmacy (India); Mahesh, Bedre D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Basavaraja, S. [Jawaharlal Nehru Centre for Advanced Scientific Research, Veeco-India Nanotechnology Laboratory (India); Balaji, S. D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Manjunath, S. Y. [Sri Krupa, Institute of Pharmaceutical Science (India); Venkataraman, A., E-mail: raman_chem@rediffmail.com [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India)

    2011-05-15

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 {+-} 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  17. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    International Nuclear Information System (INIS)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-01-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  18. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria.

    Science.gov (United States)

    da Silva Ferreira, Veronica; ConzFerreira, Mateus Eugenio; Lima, Luís Maurício T R; Frasés, Susana; de Souza, Wanderley; Sant'Anna, Celso

    2017-02-01

    Silver nanoparticles are powerful antimicrobial agents. Here, the synthesis of silver chloride nanoparticles (AgCl-NPs) was consistently evidenced from a commercially valuable microalgae species, Chlorella vulgaris. Incubation of C. vulgaris conditioned medium with AgNO 3 resulted in a medium color change to yellow/brown (with UV-vis absorbance at 415nm), indicative of silver nanoparticle formation. Energy-dispersive X-ray spectroscopy (EDS) of purified nanoparticles confirmed the presence of both silver and chlorine atoms, and X-ray diffraction (XRD) showed the typical pattern of cubic crystalline AgCl-NPs. Transmission electron microscopy (TEM) showed that most particles (65%) were spherical, with average diameter of 9.8±5.7nm. Fourier transform infrared spectroscopy (FTIR) of purified nanoparticle fractions suggested that proteins are the main molecular entities involved in AgCl-NP formation and stabilization. AgCl-NPs (from 10μg/mL) decreased by 98% the growth of Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae bacterial pathogens, and had a dose-dependent effect on cell viability, which was measured by automated image-based high content screening (HCS). Ultrastructural analysis of treated bacteria by TEM revealed the abnormal arrangement of the chromosomal DNA. Our findings strongly indicated that the AgCl-NPs from C. vulgaris conditioned medium is a promising 'green' alternative for biomedical application as antimicrobials. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Green synthesis,antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    Institute of Scientific and Technical Information of China (English)

    Ghassan; Mohammad; Sulaiman; Wasnaa; Hatif; Mohammed; Thorria; Radam; Marzoog; Ahmed; Abdul; Amir; Al-Amiery; Abdul; Amir; H.Kadhum; Abu; Bakar; Mohamad

    2013-01-01

    Objective:To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana(E.chapmaniana)and test the antimicrobial of the nanoparticles against different pathogenic bacteria,yeast and its toxicity against human acute promyelocytic leukemia(HL-60)cell line.Methods:Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h.A change from yellowish to reddish brown color was observed.Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed.Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,a yellow tetrazole was obtained on the human leukemia cell line(HL-60).Results:UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm.X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50°and 44.76°.The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner.Conclusions:It has been demonstrated that the extract of E.chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution.Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.

  20. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    Institute of Scientific and Technical Information of China (English)

    Ghassan Mohammad Sulaiman; Wasnaa Hatif Mohammed; Thorria Radam Marzoog; Ahmed Abdul Amir Al-Amiery; Abdul Amir H Kadhum; Abu Bakar Mohamad

    2013-01-01

    Objective: To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line.Methods:Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results: UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50 ° and 44.76 °. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions: It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.

  1. Electrically Conductive Silver Paste Obtained by Use of Silver Neodecanoate as Precursor

    Science.gov (United States)

    Shen, Longguang; Liu, Jianguo; Zeng, Xiaoyan; Ren, Zhao

    2015-02-01

    An electrically conductive silver paste has been prepared from an organometallic compound, silver neodecanoate, as silver precursor. The precursor was highly soluble in organic solvents and decomposed into metallic silver at low sintering temperatures (writing process, enabling production of silver lines on a substrate. The electrical resistivity of the silver lines was 9 × 10-6 Ω cm after sintering at 115°C for 60 min, 5.8 × 10-6 Ω cm when sintered at 150°C for 60 min, and 3 × 10-6 Ω cm when sintered above 300°C, values which are similar to those of bulk silver. Hence, the prepared paste can be successfully used on flexible substrates such as polymers.

  2. Intramolecular Azide to Alkene Cycloadditions for the Construction of Pyrrolobenzodiazepines and Azetidino-Benzodiazepines

    Directory of Open Access Journals (Sweden)

    Karl Hemming

    2014-10-01

    Full Text Available The coupling of proline- and azetidinone-substituted alkenes to 2-azidobenzoic and 2-azidobenzenesulfonic acid gives precursors that undergo intramolecular azide to alkene 1,3-dipolar cycloadditions to give imine-, triazoline- or aziridine-containing pyrrolo[1,4]benzodiazepines (PBDs, pyrrolo[1,2,5]benzothiadiazepines (PBTDs, and azetidino[1,4]benzodiazepines. The imines and aziridines are formed after loss of nitrogen from a triazoline cycloadduct. The PBDs are a potent class of antitumour antibiotics.

  3. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities.

    Science.gov (United States)

    Rao, N Hanumanta; N, Lakshmidevi; Pammi, S V N; Kollu, Pratap; S, Ganapaty; P, Lakshmi

    2016-05-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV-Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (-) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Leaching of Silver from Silver-Impregnated Food Storage Containers

    Science.gov (United States)

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  5. Silver niobates

    International Nuclear Information System (INIS)

    Tanirbergenov, B.; Rozhenko, S.P.

    1979-01-01

    By means of determination of residual concentrations and pH measurements investigated are the AgNO 3 -KNbO 3 -H 2 O, AgNO 3 -K 3 NbO 4 -H 2 O, AgNO 3 -K 8 Nb 16 O 19 -H 2 O systems and established is formation of meta-, ortho-and hexaniobates of silver. AgNbO 3 x H 2 O, Ag 8 Nb 6 O 19 x 6H 2 O and Ag 3 NbO 3 x 2.5H 2 O are separated from aqueous solution. Using the methods of differential-thermal, thermogravimetric and X-ray-phase analyses it is shown that silver metaniobate transforms into the crystal state at 530 deg C. Ortho- and hexaniobate of silver decompose at 500 deg C with formation of silver metaniobate and metal silver

  6. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  7. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    International Nuclear Information System (INIS)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-01-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO 3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi

  8. Gamma ray, EMS and sodium azide induced effectiveness and efficiency of chlorophyll mutations in basmati rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Singh, Sanjeev; Singh, J.; Singh, R.K.

    2001-01-01

    The effectiveness and efficiency of gamma ray, EMS, sodium azide alone or in combination in relation to chlorophyll mutations in two varieties of Basmati rice (Oryza sativa L.) in M 2 generation were studied. The chlorophyll mutations were induced by all the doses of mutagens alone or in combination relatively at a fair frequency in both the varieties in M 2 generation. In general, it was found that combination treatments of gamma rays and EMS were observed to be more efficient in Taraori Basmati, while EMS alone and combination treatment of gamma rays and EMS were more efficient in Pusa Basmati 1 on sterility and growth injury basis both. Sodium azide at 0.5 mM was found as the most effective dose in both Taraori Basmati and Pusa Basmati 1 cultivars. (author)

  9. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    Science.gov (United States)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  10. Azide-Alkyne Huisgen [3+2] Cycloaddition Using CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hyunjoon Song

    2012-11-01

    Full Text Available Recent developments in the synthesis of CuO nanoparticles (NPs and their application to the [3+2] cycloaddition of azides with terminal alkynes are reviewed. With respect to the importance of click chemistry, CuO hollow NPs, CuO hollow NPs on acetylene black, water-soluble double-hydrophilic block copolymer (DHBC nanoreactors and ZnO–CuO hybrid NPs were synthesized. Non-conventional energy sources such as microwaves and ultrasound were also applied to these click reactions, and good catalytic activity with high regioselectivity was observed. CuO hollow NPs on acetylene black can be recycled nine times without any loss of activity, and water-soluble DHBC nanoreactors have been developed for an environmentally friendly process.

  11. Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of Vigna mungo and their biological applications

    Science.gov (United States)

    Varadavenkatesan, Thivaharan; Vinayagam, Ramesh; Selvaraj, Raja

    2017-11-01

    Nanobiotechnology has rapidly become a critical facet of nanotechnology. The green synthesis of silver nanoparticles, making use of the hull of black gram (Vigna mungo), paves the way for a simple and eco-friendly utilization of a domestic waste to a product with antioxidant and anticoagulant activities. The emergence of silver nanoparticles was characterized by a variety of methods UV-visible spectrophotometry, scanning electron microscopy added to energy dispersive spectroscopy, X-ray diffractometry, particle size distribution and FT-IR spectroscopy analyses. A discrete band at 421 nm was obtained from UV-visible spectroscopy of the silver nanoparticle suspension. The extract sourced from the hull of black gram showed evidence of the presence of a variety of functional moieties of phytochemicals using FTIR spectroscopy. These were also deemed responsible for maintaining the stability of silver nanoparticles. SEM and EDAX techniques combined, proved that the zero-valent silver nanoparticles were lesser than 100 nm in size. The crystallinity of the nanoparticles was confirmed, as deduced by the (1 1 1) plane, from XRD analysis. The potential of the phytochemicals in maintaining the steadiness of nanoparticles was implied by the zeta potential value that stood at -30.3 mV. In the current study, we have endeavored to comprehend the antioxidant and anticoagulant nature of the green-synthesized benign silver nanoparticles.

  12. Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry.

    Science.gov (United States)

    Shabanpoor, Fazel; Gait, Michael J

    2013-11-11

    We describe a general methodology for fluorescent labelling of peptide conjugates of phosphorodiamidate morpholino oligonucleotides (PMOs) by alkyne functionalization of peptides, subsequent conjugation to PMOs and labelling with a fluorescent compound (Cy5-azide). Two peptide-PMO (PPMO) examples are shown. No detrimental effect of such labelled PMOs was seen in a biological assay.

  13. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.

    Science.gov (United States)

    Khan, Zia Ul Haq; Khan, Amjad; Shah, Afzal; Chen, Yongmei; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhamma, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah

    2016-03-01

    In the present research work a novel, nontoxic and ecofriendly procedure was developed for the green synthesis of silver nano particle (AgNPs) using Caruluma edulis (C. edulis) extract act as reductant as well as stabilizer agents. The formation of AgNPs was confirmed by UV/Vis spectroscopy. The small and spherical sizes of AgNPs were conformed from high resolution transmission electron microscopy (HRTEM) analysis and were found in the range of 2-10nm, which were highly dispersion without any aggregation. The crystalline structure of AgNPs was conformed from X-ray diffraction (XRD) analysis. For the elemental composition EDX was used and FTIR helped to determine the type of organic compounds in the extract. The potential electrochemical property of modified silver electrode was also studied. The AgNPs showed prominent antibacterial motion with MIC values of 125 μg/mL against Bacillus subtilis and Staphylococcus aureus while 250 μg/mL against Escherichia coli. High cell constituents' release was exhibited by B. subtilis with 2 × MIC value of silver nanoparticles. Silver nanoparticles also showed significant DPPH free radical scavenging activity. This research would have an important implication for the synthesis of more efficient antimicrobial and antioxidant agent. The AgNP modified electrode (GC/AgNPs) exhibited an excellent electro-catalytic activity toward the redox reaction of phenolic compounds. The AgNPs were evaluated for electrochemical degradation of bromothymol blue (BTB) dyes which showed a significant activity. From the strong reductive properties it is obvious that AgNPs can be used in water sanitization and converting some organic perilous in to non-hazardous materials. The AgNPs showed potential applications in the field of electro chemistry, sensor, catalyst, nano-devices and medical. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  15. Development kinetics of silver clusters on silver halides

    International Nuclear Information System (INIS)

    Grzesiak, S.; Belloni, J.; Marignier, J.-L.

    2008-01-01

    Silver nuclei are produced by pulse radiolysis at the surface of AgCl nanocrystallites in the presence of an electron donor, the methyl viologen, which induces the growth of silver nuclei. The experimental results observed on the increase of the silver atom concentration and on the decay of the donor concentration during this process, which is similar to the photographic development by an electron donor, are compared with the kinetics obtained from numerical simulation. The model assumes that the formation of silver clusters with a supercritical nuclearity is required before the start of an electron transfer reaction from the two reduced forms of the donor methyl viologen to the silver clusters. The reaction is controlled by the access of the donor to the surface sites of the AgCl crystallite. The rate constant values of the successive steps of the mechanism are derived from the adjustment of calculated kinetics to experimental signals under various conditions, using a single set of parameters which are fairly suitable under all conditions studied

  16. Biosynthesis, characterisation and antimicrobial activity of silver nanoparticles using Hibiscus rosa-sinensis petals extracts.

    Science.gov (United States)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-10-01

    Green synthesis of metallic nanoparticles has lured the world from the chemical and physical approaches owing to its rapid, non-hazardous and economic aspect of production mechanism. In this study, silver nanoparticles (AgNPs) were synthesised using petal extracts of Hibiscus rosa-sinensis. The AgNPs displayed characteristic surface plasmon resonance peak at around 421 nm having a mean particle size of 76.25±0.17 nm and carried a charge of -41±0.2 mV. The X-ray diffraction patterns displayed typical peaks of face centred cubic crystalline silver. The surface morphology was characterised by scanning electron microscopy and atomic force microscopy. Fourier transform infrared spectroscopy studies confirmed the surface modifications of the functional groups for the synthesis of AgNPs. Furthermore, the synthesised AgNPs displayed proficient antimicrobial activity against pathogenic strains of Vibrio cholerae, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus.

  17. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma.

    Science.gov (United States)

    Nayak, Debasis; Pradhan, Sonali; Ashe, Sarbani; Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-11-01

    Biological synthesis of silver nanoparticles is a cost effective natural process where the phytochemicals specifically phenols, flavonoids and terpenoids present in the plant extracts act as capping and reducing agent. Due to their nano size regime the silver nanoparticles may directly bind to the DNA of the pathogenic bacterial strains leading to higher antimicrobial activity. In the current study silver nanoparticles were synthesised using plant extracts from different origin Cucurbita maxima (petals), Moringa oleifera (leaves) and Acorus calamus (rhizome). The synthesised nanoparticles were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), field emission scanning electron microscopy (Fe-SEM) and Fourier transform infrared spectroscopy (FTIR). Highly crystalline, roughly spherical and cuboidal silver nanoparticles of 30-70 nm in size were synthesised. The nanoparticles provided strong antimicrobial activity against pathogenic strains. The effect of the synthesised nanoparticles against A431 skin cancer cell line was tested for their toxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. The IC50 values of 82.39±3.1, 83.57±3.9 and 78.58±2.7 μg/ml were calculated for silver nanoparticles synthesised by C. maxima, M. oleifera and A. calamus respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis

    Science.gov (United States)

    Philip, Daizy

    2010-03-01

    Biological synthesis of gold and silver nanoparticles of various shapes using the leaf extract of Hibiscus rosa sinensis is reported. This is a simple, cost-effective, stable for long time and reproducible aqueous room temperature synthesis method to obtain a self-assembly of Au and Ag nanoparticles. The size and shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Variation of pH of the reaction medium gives silver nanoparticles of different shapes. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR spectroscopy. Crystalline nature of the nanoparticles in the fcc structure are confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. From FTIR spectra it is found that the Au nanoparticles are bound to amine groups and the Ag nanoparticles to carboxylate ion groups.

  19. Russell-Silver syndrome

    Science.gov (United States)

    Silver-Russell syndrome; Silver syndrome; RSS; Russell-Silver syndrome ... One in 10 children with this syndrome has a problem involving chromosome 7. In other people with the syndrome, it may affect chromosome 11. Most of the time, it ...

  20. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    DEFF Research Database (Denmark)

    Löschner, Katrin; Hadrup, Niels; Qvortrup, Klaus

    2011-01-01

    Background: The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food...... and food contact materials. Results: AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study...... in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of Ag...

  1. Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil

    Science.gov (United States)

    Meena Kumari, M.; Philip, Daizy

    2013-07-01

    The use of edible oil for the synthesis of metal nanoparticles by wet chemical method is reported for the first time. The paper presents an environmentally benign bottom up approach for the synthesis of gold and silver nanoparticles using edible coconut oil at 373 K. The formation of silver nanoparticles is signaled by the brownish yellow color and that of gold nanoparticles by the purple color. Fine control over the nanoparticle size and shape from triangular to nearly spherical is achieved by varying the quantity of coconut oil. The nanoparticles have been characterized by UV-Visible, Transmission Electron Microscopy and X-ray Diffraction. The chemical interaction of capping agents with metal nanoparticles is manifested using Fourier Transform Infrared Spectroscopy. The stable and crystalline nanoparticles obtained using this simple method show remarkable size-dependent catalytic activity in the reduction of the cationic dye methylene blue (MB) to leuco methylene blue (LMB). The first order rate constants calculated uphold the size dependent catalytic activity of the synthesized nanoparticles.

  2. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  3. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC

    Directory of Open Access Journals (Sweden)

    Alessandro Mandoli

    2016-09-01

    Full Text Available The explosively-growing applications of the Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between organic azides and alkynes (CuAAC have stimulated an impressive number of reports, in the last years, focusing on recoverable variants of the homogeneous or quasi-homogeneous catalysts. Recent advances in the field are reviewed, with particular emphasis on systems immobilized onto polymeric organic or inorganic supports.

  4. Effects of ionic surfactants on the morphology of silver nanoparticles using Paan (Piper betel) leaf petiole extract.

    Science.gov (United States)

    Khan, Zaheer; Bashir, Ommer; Hussain, Javed Ijaz; Kumar, Sunil; Ahmad, Rabia

    2012-10-01

    Stable silver nanoparticles were synthesized by the reduction of silver ions with a Paan (Piper betel) leaf petiole extract in absence and presence of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS). The reaction process was simple and convenient to handle, and was monitored using ultraviolet-visible spectroscopy. Absorbance of Ag-nanoparticles increases with the concentrations of Paan leaf extract, acts as reducing, stabilizing and capping agents. The polyphenolic groups of petiole extract are responsible to the rapid reduction of Ag(+) ions into metallic Ag(0). The results indicated that the shape of the spectra, number of peaks and its position strongly depend on the concentration of CTAB, which played a shape-controlling role during the formation of silver nanoparticles in the solutions, whereas SDS has no significant effect. The morphology (spherical, truncated triangular polyhedral plate and some irregular nanoparticles) and crystalline phase of the particles were determined from transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata

    Science.gov (United States)

    Joseph, Siby; Mathew, Beena

    2015-02-01

    Herein, we report a simple microwave assisted method for the green synthesis of silver and gold nanoparticles by the reduction of aqueous metal salt solutions using leaf extract of the medicinal plant Aerva lanata. UV-vis., FTIR, XRD, and HR-TEM studies were conducted to assure the formation of nanoparticles. XRD studies clearly confirmed the crystalline nature of the synthesized nanoparticles. From the HR-TEM images, the silver nanoparticles (AgNPs) were found to be more or less spherical and gold nanoparticles (AuNPs) were observed to be of different morphology with an average diameter of 18.62 nm for silver and 17.97 nm for gold nanoparticles. In order to evaluate the effect of microwave heating upon rate of formation, the synthesis was also conducted under ambient condition without the assistance of microwave radiation and the former method was found to be much faster than the later. The synthesized nanoparticles were used as nanocatalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4.

  6. Photochemical Study of Silver Nanoparticles Formed from the Reduction of Silver Ions by Humic Acid

    Science.gov (United States)

    Leslie, Renee M.

    This study focuses on the ability of silver ions and humic acid to form silver nanoparticles in the presence of UV and visible light. Silver nanoparticles have a number of industrial applications due primarily to their antimicrobial properties, but these properties pose an environmental threat. Silver nanoparticles can directly disrupt sensitive ecosystems by harming bacteria. Consumption of silver nanoparticles results in silver ions and silver nanoparticles entering waterways; the presence of silver ions raises the question of whether nanoparticles can reform in environmental waters. As our data show, silver nanoparticles can form from the reduction of silver ions by humic acid after irradiation with UV and visible light. In order to better understand the mechanism of these naturally synthesized silver nanoparticles, we investigated the effects of reactant concentration, experimental conditions and presence of ions/reactive species. We monitored silver nanoparticle growth with UV-visible spectroscopy. The evolution in time of nanoparticle size was monitored by dynamic light scattering (DLS).

  7. Mineral commodity profiles: Silver

    Science.gov (United States)

    Butterman, W.C.; Hilliard, Henry E.

    2005-01-01

    Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the

  8. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  9. The influence of tertiary butyl hydrazine as a co-reactant on the atomic layer deposition of silver

    Energy Technology Data Exchange (ETDEWEB)

    Golrokhi, Zahra; Marshall, Paul A.; Romani, Simon [Centre for Materials and Structures, School of Engineering,The University of Liverpool, Liverpool L69 3GH (United Kingdom); Rushworth, Simon [EpiValence, The Wilton Centre, Redcar, Cleveland, TS10 4RF (United Kingdom); Chalker, Paul R. [Centre for Materials and Structures, School of Engineering,The University of Liverpool, Liverpool L69 3GH (United Kingdom); Potter, Richard J., E-mail: rjpott@liverpool.ac.uk [Centre for Materials and Structures, School of Engineering,The University of Liverpool, Liverpool L69 3GH (United Kingdom)

    2017-03-31

    Highlights: • We demonstrate metallic silver growth by direct liquid injection thermal ALD. • A substituted hydrazine is used as a powerful reducing agent for the first time. • The hydrazine extends the ALD temperature window compared with alcohol. • Hydrazine promotes a more planar growth mode compared to alcohol. • Film adhesion is improved using hydrazine compared with alcohol. - Abstract: Ultra-thin conformal silver films are the focus of development for applications such as anti-microbial surfaces, optical components and electronic devices. In this study, metallic silver films have been deposited using direct liquid injection thermal atomic layer deposition (ALD) using (hfac)Ag(1,5-COD) ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) as the metal source and tertiary butyl hydrazine (TBH) as a co-reactant. The process provides a 23 °C wide ‘self-limiting’ ALD temperature window between 105 and 128 °C, which is significantly wider than is achievable using alcohol as a co-reactant. A mass deposition rate of ∼20 ng/cm{sup 2}/cycle (∼0.18 Å/cycle) is observed under self-limiting growth conditions. The resulting films are crystalline metallic silver with a near planar film-like morphology which are electrically conductive. By extending the temperature range of the ALD window by the use of TBH as a co-reactant, it is envisaged that the process will be exploitable in a range of new low temperature applications.

  10. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  11. Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental mice.

    Science.gov (United States)

    Prasannaraj, Govindaraj; Venkatachalam, Perumal

    2017-02-01

    Nanoparticle based drug delivery can rapidly improves the therapeutic potential of anti-cancer agents. The present study focused to evaluate the hepatoprotective activity of silver nanoparticles (AgNPs) synthesized using aqueous extracts of Andrographis paniculata leaves (ApAgNPs) and Semecarpus anacardium nuts (SaAgNPs) against diethylnitrosamine (DEN) induced liver cancer in mice model. The physico-chemical properties of synthesized AgNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectrum, Zeta potential and Dynamic Light Scattering (DLS) analysis. The surface plasmon resonance (SPR) absorption spectrum revealed a strong peak at 420nm for both SaAgNPs and ApAgNPs. FTIR results exhibited the presence of possible functional groups in the synthesized AgNPs. TEM analysis determined the hexagonal, and spherical shape of the synthesized silver nanoparticles. The XRD and SAED pattern confirmed the crystalline nature and crystalline size of the AgNPs. EDX result clearly showed strong silver signals in the range between 2 and 4keV. Zeta potential measurements indicated a sharp peak at -3.93 and -13.8mV for ApAgNPs and SaAgNPs, respectively. DLS measurement expressed the particle size distribution was 70 and 60nm for ApAgNPs and SaAgNPs, respectively. DEN (20mg/kg b.wt.) was subjected to induce liver cancer in mice for 8weeks and treated with biosynthesized silver nanoparticles. Interestingly, ApAgNPs and SaAgNPs treated DEN induced animal groups show a decreased level of aspartate amino transferase (AST), alanine amino transferase (ALT), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) activity and elevated level of catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and superoxide dismutase (SOD) activity over untreated DEN control

  12. Role of Silver Salts Lattice Energy on Conductivity Drops in Chitosan Based Solid Electrolyte: Structural, Morphological and Electrical Characteristics

    Science.gov (United States)

    Aziz, Shujahadeen B.; Abdullah, Omed Gh.; Hussein, Sarkawt A.

    2018-03-01

    The influence of anion type on silver ion reduction and drop in direct current (DC) conductivity was investigated experimentally. The structural, optical, morphological and electrical properties of the samples were investigated using x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), optical micrographs (OM) and impedance spectroscopy. The XRD results reveal significant disruption in the crystalline structure of chitosan (CS) for different concentrations of silver nitrate (AgNt) salt. The localized surface resonance plasmonic (LSRP) peaks that were observed for CS:AgNt samples, along with the white silver specs detected by OM technique confirm the formation of Ag nanoparticles. The appearance of obvious dark regions in the CS:AgNt system reveals the existence of a large percentage of amorphous domains. The nonexistence of spherulitic texture confirms the amorphous nature of the samples. The second semicircle in an impedance plot can be attributed to an Ag nanoparticle grain boundary. The established relationships between dielectric constant and carrier concentration and the behavior of dielectric constant versus salt concentration were used to explain the phenomenon of ion-ion association. The continuous increase of DC conductivity was noticed at high temperatures, which was then explained on the basis of lattice energy of silver salts. The influences of anion size on the rate of silver ion reductions are also interpreted.

  13. Synthesis, solid-state structure, and bonding analysis of a homoleptic beryllium azide

    Energy Technology Data Exchange (ETDEWEB)

    Naglav, Dominik; Tobey, Briac; Lyhs, Benjamin; Roemer, Beate; Blaeser, Dieter; Woelper, Christoph; Jansen, Georg; Schulz, Stephan [Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), Duisburg-Essen Univ., Essen (Germany)

    2017-07-10

    [Ph{sub 4}P]{sub 2}[Be(N{sub 3}){sub 4}] (1) and [PNP]{sub 2}[Be(N{sub 3}){sub 4}] (2; PNP=Ph{sub 3}PNPPh{sub 3}) were synthesized by reacting Be(N{sub 3}){sub 2} with [Ph{sub 4}P]N{sub 3} and [PNP]N{sub 3}. Compound 1 represents the first structurally characterized homoleptic beryllium azide. The electronic structure and bonding situation in the tetraazidoberyllate dianion [Be(N{sub 3}){sub 4}]{sup 2-} were investigated by quantum-chemical calculations (NPA, ELF, LOL). (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Sequential continuous flow processes for the oxidation of amines and azides by using HOF·MeCN.

    Science.gov (United States)

    McPake, Christopher B; Murray, Christopher B; Sandford, Graham

    2012-02-13

    The generation and use of the highly potent oxidising agent HOF·MeCN in a controlled single continuous flow process is described. Oxidations of amines and azides to corresponding nitrated systems by using fluorine gas, water and acetonitrile by sequential gas-liquid/liquid-liquid continuous flow procedures are reported. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity

    Science.gov (United States)

    Choudhary, Manoj Kumar; Kataria, Jyoti; Cameotra, Swaranjit Singh; Singh, Jagdish

    2016-01-01

    The significant antibacterial activity of silver nanoparticles draws the major attention toward the present nanobiotechnology. Also, the use of plant material for the synthesis of metal nanoparticles is considered as a green technology. In this context, a non-toxic, eco-friendly, and cost-effective method has been developed for the synthesis of silver nanoparticles using seed extract of mung beans ( Vigna radiata). The synthesized nanoparticles have been characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The UV-visible spectrum showed an absorption peak at around 440 nm. The different types of phytochemicals present in the seed extract synergistically reduce the Ag metal ions, as each phytochemical is unique in terms of its structure and antioxidant function. The colloidal silver nanoparticles were observed to be highly stable, even after 5 months. XRD analysis showed that the silver nanoparticles are crystalline in nature with face-centered cubic geometry and the TEM micrographs showed spherical particles with an average size of 18 nm. Further, the antibacterial activity of silver nanoparticles was evaluated by well-diffusion method and it was observed that the biogenic silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be useful for nanotechnology-based biomedical applications.

  16. Measurement of the isotope effect of the diffusion of silver and gold in gold and of silver in silver-gold alloys

    International Nuclear Information System (INIS)

    Wolter, D.

    1974-01-01

    The silver isotopes Ag 105 and Agsup(110m) and the gold isotopes Au 195 and Au 199 were used for isotope effect measurements. The isotope effect of the gold self-diffusion was measured on four monocrystals samples at about 850 0 C, that of silver in gold monocrystals at five different temperatures between 731 0 C and 1050 0 C. Furthermore, the isotope effect for silver at 904 0 C was measured on seven silver-gold alloys of varying silver concentration. The correlation factor was determined from the measurements. (HPOE/LH) [de

  17. Effect of gamma radiations, ethyl methane sulfonate and sodium azide on the sennoside content in Cassia angustifolia

    International Nuclear Information System (INIS)

    Khalatkar, A.S.; Bhargava, Y.R.

    1987-01-01

    Cassia angustifolia commonly known as Tinnevelly Senna is an excellent source of sennosides. The leaflets of this plant constitute the principal raw material. To investigate the effect(s) of mutagenic treatments on phytochemical characteristics, the sand treated dry seeds of Senna were treated with different doses of gamma radiations, ethyl methane sulfonate and sodium azide for 18 hours duration at 24 ± 2°C. The treated population in M1 generation exhibited different degree of stimulation in growth. Other parameters were also affected by all the three mutagenic treatments. Seeds collected from M1 generation were sown and M2 plant progenies were raised. Morphological mutations with desirable characters were further investigated. Biochemical estimation of sennoside from the leaflets in vegetative and blooming phases was carried out. Of the three mutagens, 0.006% sodium azide yielded maximum sennoside in the vegetative phase; while, in the blooming phase, it was highest with 20 kR of gamma radiations. Seeds of these plant types hold promise for enhancing the sennoside yields per gram of tissue

  18. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon

    2013-01-01

    The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 μg/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as

  19. Highly efficient silver patterning without photo-resist using simple silver precursors

    International Nuclear Information System (INIS)

    Byun, Younghun; Hwang, Eoc-Chae; Lee, Sang-Yun; Lyu, Yi-Yeol; Yim, Jin-Heong; Kim, Jin-Young; Chang, Seok; Pu, Lyong Sun; Kim, Ji Man

    2005-01-01

    Highly efficient method for silver patterning without photo-resist was developed by using high photosensitive organo-silver precursors, which were prepared by a simple reaction of silver salts and excess of amines. The FT-IR and GC-MS spectra were recorded depending on UV exposure time, for (n-PrNH 2 )Ag(NO 3 ).0.5MeCN and (n-PrNH 2 )Ag(NO 2 ).0.5MeCN, to understand the photolysis mechanism. The results indicate not only dissociation of coordinated amine and acetonitrile, but also decomposition of corresponding anion upon UV irradiation. When a precursor thin film was exposed to broadband UV irradiation, a partially reduced and insoluble silver species were formed within several minutes. After development, the irradiated areas were treated with a reducing agent to obtain pure metallic patterns. Subsequently, annealing step was followed at 100-350 deg. C to increase the adhesion of interface and cohesion of silver particles. The line resolution of 5 μm was obtained by the present silver precursors. Film thickness was also controllable from 50 to 250 nm by repetition of the above procedure. The average electrical conductivity was in the range of 3-43 Ω cm, measured by four-point probe technique. AES depth profile of the silver pattern thus obtained showed carbon and oxygen contents are less than 1% through the whole range. Even though sulfur contaminant exists on the surface, it was believed that nearly pure silver pattern was generated

  20. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract

    Directory of Open Access Journals (Sweden)

    Khairia M. Al-Qahtani

    2017-12-01

    Full Text Available Cadmium (II is an important element used in various industries, however, it is a poisonous element that affects the health of plants, animals and humans alike. It’s very important to remove this element from contaminated waters. This study aims at synthesizing zero valent silver nanoparticles by environmentally ecofriendly method without using hazardous compounds (via green approach. In this work, silver nanoparticles were prepared using hot water for the Ficus tree (Ficus Benjamina leaf extract (FBLE. The size of crystalline for AgNPs was measured by UV–vis spectroscopy and flourier transform infrared (FTIR. The properties of nano-silver particles (AgNPs have been studied using scanning electron microscope (SEM. The capability of nanoparticles to remove Cd2+ from contaminated solution was then studied. Parameter like adsorbent dose, heavy metal concentration, pH, agitation speed and contact time were studied. Cadmium removal increased when the dosage of biosorbent increases, pH increased from 1 to 6, contact time from 5 to 40 and initial concentration of Cd decrease. Isotherm adsorption was also described by the Freundleich model with a constant correlation (R2 higher than 0.973.

  1. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  2. In vivo click reaction between Tc-99m-labeled azadibenzocyclooctyne-MAMA and 2-nitroimidazole-azide for tumor hypoxia targeting.

    Science.gov (United States)

    Sun, Wenjing; Chu, Taiwei

    2015-10-15

    The bioactivity of nitroimidazole in Tc-99m-labeled 2-nitroimidazole, a traditional solid tumor hypoxia-imaging agent for single photon emission computed tomography (SPECT), is reduced by the presence of large ligand and metallic radionuclide, exhibiting lower tumor-to-nontumor ratios. In an effort to solve this general problem, a pretargeting strategy based on click chemistry (strain-promoted cyclooctyne-azide cycloaddition) was applied. The functional click synthons were synthesized as pretargeting components: an azide group linked to 2-nitroimidazole (2NIM-Az) serves for tumor hypoxia-targeting and azadibenzocyclooctyne conjugated with monoamine monoamide dithiol ligand (AM) functions as radiolabeling and binding group to azides in vivo. 2NIM-triazole-MAMA was obtained from in vitro click reaction with a reaction rate constant of 0.98M(-1)s(-1). AM and 2NIM-triazole-MAMA were radiolabeled with Tc-99m. The hypoxia-pretargeting biodistribution was studied in Kunming mice bearing S180 tumor; (99m)Tc-AM and (99m)Tc-triazole-2NIM were used as blank control and conventional control. Compared to the control groups, the pretargeting experiment exhibits the best radio-uptake and retention in tumor, with higher tumor-to-muscle and tumor-to-blood ratios (up to 8.55 and 1.44 at 8h post-(99m)Tc-complex-injection, respectively). To some extent, the pretargeting strategy protects the bioactivity of nitroimidazole and therefore provides an innovative approach for the development of tumor hypoxia-SPECT imaging agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I-catalyzed azide-alkyne cycloaddition with retained activity.

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    Full Text Available Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC is an efficient reaction linking an azido and an alkynyl group in the presence of copper catalyst. Incorporation of a non-natural amino acid (NAA containing either an azido or an alkynyl group into a protein allows site-specific bioconjugation in mild conditions via CuAAC. Despite its great potential, bioconjugation of an enzyme has been hampered by several issues including low yield, poor solubility of a ligand, and protein structural/functional perturbation by CuAAC components. In the present study, we incorporated an alkyne-bearing NAA into an enzyme, murine dihydrofolate reductase (mDHFR, in high cell density cultivation of Escherichia coli, and performed CuAAC conjugation with fluorescent azide dyes to evaluate enzyme compatibility of various CuAAC conditions comprising combination of commercially available Cu(I-chelating ligands and reductants. The condensed culture improves the protein yield 19-fold based on the same amount of non-natural amino acid, and the enzyme incubation under the optimized reaction condition did not lead to any activity loss but allowed a fast and high-yield bioconjugation. Using the established conditions, a biotin-azide spacer was efficiently conjugated to mDHFR with retained activity leading to the site-specific immobilization of the biotin-conjugated mDHFR on a streptavidin-coated plate. These results demonstrate that the combination of reactive non-natural amino acid incorporation and the optimized CuAAC can be used to bioconjugate enzymes with retained enzymatic activity.

  4. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  5. Silver-containing mesoporous bioactive glass with improved antibacterial properties.

    Science.gov (United States)

    Gargiulo, Nicola; Cusano, Angela Maria; Causa, Filippo; Caputo, Domenico; Netti, Paolo Antonio

    2013-09-01

    The aim of the present work is the study of the bacteriostatic/bactericidal effect of a silver-containing mesoporous bioactive glass obtained by evaporation-induced self-assembly and successive thermal stabilization. Samples of the manufactured mesophase were characterized by means of transmission electron microscopy and N₂ adsorption/desorption at 77 K, revealing structural and textural properties similar to SBA-15 mesoporous silica. Glass samples used for bioactivity experiments were put in contact with a standardized, commercially available cell culture medium instead of lab-produced simulated body fluid, and were then characterized by means of X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. All these analyses confirmed the development of a hydroxyl carbonate apatite layer on glass particles. Moreover, the investigated mesostructure showed a very good antibacterial effect against S. aureus strain, with a strong evidence of bactericidal activity already registered at 0.5 mg/mL of glass concentration. A hypothesis about the mechanism by which Ag affects the bacterial viability, based on the intermediate formation of crystalline AgCl, was also taken into account. With respect to what already reported in the literature, these findings claim a deeper insight into the possible use of silver-containing bioactive glasses as multifunctional ceramic coatings for orthopedic devices.

  6. Target and identify: triazene linker helps identify azidation sites of labelled proteins via click and cleave strategy.

    Science.gov (United States)

    Lohse, Jonas; Schindl, Alexandra; Danda, Natasha; Williams, Chris P; Kramer, Karl; Kuster, Bernhard; Witte, Martin D; Médard, Guillaume

    2017-10-31

    A method for identifying probe modification of proteins via tandem mass spectrometry was developed. Azide bearing molecules are immobilized on functionalised sepharose beads via copper catalysed Huisgen-type click chemistry and selectively released under acidic conditions by chemical cleavage of the triazene linkage. We applied this method to identify the modification site of targeted-diazotransfer on BirA.

  7. Determination of gold osmium and ruthenium through iodine-azide reaction in presence of 2- or 6- mercaptopurine

    International Nuclear Information System (INIS)

    Matusiewicz, H.; Kurzawa, Z.

    1978-01-01

    The composition of osmium and ruthenium complexes with 6-mercaptopurine has been determined. The sensitivity of the method was enhanced due to a proper choice of the optimal time of the formation of these complexes and the time of equilibrium attainment in the presence of excess of azide. Also the gold complex with 2-mercaptopurine was investigated. (author)

  8. Localization of mineralization, its age, and relationship to magmatism at the Mogot silver-base-metal deposit, North Stanovoi metallogenic zone in the southeastern framework of the North Asian Craton

    Science.gov (United States)

    Buchko, I. V.; Buchko, Ir. V.; Sorokin, A. A.; Ponomarchuk, V. A.; Travin, A. V.

    2014-03-01

    The results of studying the Mogot silver-base-metal deposit located in the Dzhugdzhur-Stanovoi Superterrane are discussed in this paper. The main ore-controlling structural elements of the studied district are near-latitudinal and NE-trending faults, which are accompanied by zones of hydrothermal metasomatic potassic, propylitic, and argillic alterations, breccias with quartz and quartz-carbonate cement replacing metamorphic rocks and granitoids of the Late Stanovoi Complex. The total sulfide content in ore is 2-3%. The high Ag, Pb, and Zn contents in ore allow us to consider the Mogot deposit as silver-base-metal, since except of orebody 4, there are no silver minerals proper. This indicates that silver is incorporated into crystalline lattice of sulfides. The results of 40Ar/39Ar geochronological investigations show that the hydrothermal ore deposition dated at 127-125 Ma was related to emplacement of intrusions pertaining to the Tynda-Bakaran Complex.

  9. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  10. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  11. Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Parameshwaran, R., E-mail: parameshviews@gmail.com [Department of Mechanical Engineering, Anna University, Chennai 600 025 (India); Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India); Kalaiselvam, S., E-mail: kalai@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India); Department of Applied Science and Technology, Anna University, Chennai 600 025 (India); Jayavel, R., E-mail: rjvel@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India)

    2013-06-15

    The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH{sub 2}) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles. - Highlights: • Functionally stable and crystalline silver nanoparticles were green synthesized. • Beta vulgaris peel extract was used as potential reducing and stabilizing agent. • Amine groups in extract were expected to reduce Ag{sup +} and stabilize nanoparticles. • Induced

  12. Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.; Jayavel, R.

    2013-01-01

    The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH 2 ) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles. - Highlights: • Functionally stable and crystalline silver nanoparticles were green synthesized. • Beta vulgaris peel extract was used as potential reducing and stabilizing agent. • Amine groups in extract were expected to reduce Ag + and stabilize nanoparticles. • Induced intraparticle

  13. A Theoretical Study of the Relationship between the Electrophilicity ω Index and Hammett Constant σp in [3+2] Cycloaddition Reactions of Aryl Azide/Alkyne Derivatives

    Directory of Open Access Journals (Sweden)

    Hicham Ben El Ayouchia

    2016-10-01

    Full Text Available The relationship between the electrophilicity ω index and the Hammett constant σp has been studied for the [2+3] cycloaddition reactions of a series of para-substituted phenyl azides towards para-substituted phenyl alkynes. The electrophilicity ω index—a reactivity density functional theory (DFT descriptor evaluated at the ground state of the molecules—shows a good linear relationship with the Hammett substituent constants σp. The theoretical scale of reactivity correctly explains the electrophilic activation/deactivation effects promoted by electron-withdrawing and electron-releasing substituents in both azide and alkyne components.

  14. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    Directory of Open Access Journals (Sweden)

    Bianco C

    2015-03-01

    Full Text Available Carlotta Bianco,1 Sanja Kezic,2 Matteo Crosera,1 Vesna Svetličić,3 Suzana Šegota,3 Giovanni Maina,4 Canzio Romano,5 Francesca Larese,6,7 Gianpiero Adami11Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy; 2Academic Medical Center, Coronel Institute, University of Amsterdam, Amsterdam, the Netherlands; 3Laboratory for Bioelectrochemistry and Surface Imaging, Division for Marine and Environmental Research, Ruder Boškovic Institute, Zagreb, Croatia; 4Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; 5Department of Public and Pediatric Health Sciences, University of Turin, Turin, Italy; 6Unit of Occupational Medicine, University of Trieste, Trieste, Italy; 7Department of Medical Sciences, University of Trieste, Trieste, ItalyAbstract: The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were placed in the donor compartments of Franz cells for 24 hours. The concentration of silver in the donor phase and in the skin was determined by an electrothermal atomic absorption spectrometer (ET-AAS and by inductively coupled plasma mass spectrometer (ICP-MS. The characterization of silver species in the textiles and in the skin layers was made by scanning electron microscopy with integrated energy dispersive X-ray spectroscopy (SEM-EDX. Additionally, the size distribution of silver nanoparticles in the textiles was performed by atomic force microscopy (AFM. On the surface of all investigated materials, silver nanoparticles of different size and morphology were found. Released silver concentrations in the soaking solutions (ie, exposure concentration ranged from 0.7 to 4.7 µg/mL (0.6–4.0 µg/cm2, fitting the bactericidal range. Silver and silver

  15. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.; Srivastava, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Varshney, G. K. [Laser Bio-medical Applications & Instrumentation Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India)

    2016-05-23

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  16. Carboxymethyl glycoside lactone(CMGL) synthons:Scope of the method and preliminary results on step growth polymerization of α-azide-ω-alkyne glycomonomers

    Institute of Scientific and Technical Information of China (English)

    CHAMBERT; Stéphane; BERNARD; Julien; FLEURY; Etienne; QUENEAU; Yves

    2010-01-01

    Carboxymethyl glycoside lactones(CMGLs) are bicyclic synthons which open readily for accessing new types of pseudo-glycoconjugates,such as sugar-amino acid hybrids,neoglycolipids,pseudodisaccharides,and membrane imaging systems.After lactone opening,free OH-2 is available for further functionalization,leading to 1,2-bisfunctionalized derivatives.This strategy is illustrated herein with new polymerizable systems of the AB type bearing both azide and alkyne functions prepared from α or β gluco-CMGL synthons.After the reaction of lactones with propargylamine,an azido group was introduced by two different sequences leading to either the 2-manno-azido or the 6-gluco-azido products.The capability of these AB monomers to undergo step growth polymerization through copper(I) catalyzed alkyne-azide cycloaddition(CuAAC) and generate glycopolytriazoles was evidenced.

  17. Synthesis and characterization of silver nanoparticles by sol-gel route from silver nitrate

    International Nuclear Information System (INIS)

    Morales, Jorge; Moran, Jose; Quintana, Maria; Estrada, Walter

    2009-01-01

    Silver nanoparticles colloids have been synthesized by sol-gel method. This synthesis consists in silver nitrate reduction by ethylene glycol in a process called polyol. The growth of the nanoparticles have been controlled by the steric stabilization of the colloid with polyvinylpyrrolidone (PVP, M w = 40 000). The silver nanoparticle size and structure was depending on the control of parameters such as: molar concentrations ratio of silver nitrate and PVP, temperature of reaction and the reflux time. Colloids have been characterized by UV-vis spectroscopy in the range from 300 to 1000 nm. The results show that the typical peak of surface plasmon resonance is formed at 400-450 nm indicating the formation of silver nanoparticles. The presences of silver nanoparticles of spherical shape with size among 20-40 nm were observed by transmission electronic microscopy (TEM). Electron diffraction patterns confirmed that synthesized colloids contain metallic silver with a crystal structure face centered cubic FCC. (author)

  18. Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles

    International Nuclear Information System (INIS)

    Koch, Marcus; Kiefer, Silke; Cavelius, Christian; Kraegeloh, Annette

    2012-01-01

    For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag + } in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag + } values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO 3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag + } ≤ 9.2.

  19. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  20. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  1. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    International Nuclear Information System (INIS)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda; Burba, Christopher M.

    2006-01-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  2. AuBr3-catalyzed azidation of per-O-acetylated and per-O-benzoylated sugars.

    Science.gov (United States)

    Rajput, Jayashree; Hotha, Srinivas; Vangala, Madhuri

    2018-01-01

    Herein we report, for the first time, the successful anomeric azidation of per- O -acetylated and per- O -benzoylated sugars by catalytic amounts of oxophilic AuBr 3 in good to excellent yields. The method is applicable to a wide range of easily accessible per- O -acetylated and per- O -benzoylated sugars. While reaction with per- O -acetylated and per- O -benzoylated monosaccharides was complete within 1-3 h at room temperature, the per- O -benzoylated disaccharides needed 2-3 h of heating at 55 °C.

  3. Fractionation of silver isotopes in native silver explained by redox reactions

    Science.gov (United States)

    Mathur, Ryan; Arribas, Antonio; Megaw, Peter; Wilson, Marc; Stroup, Steven; Meyer-Arrivillaga, Danilo; Arribas, Isabel

    2018-03-01

    Scant data exist on the silver isotope composition of native silver specimens because of the relative newness of the technique. This study increases the published dataset by an order of magnitude and presents 80 silver new isotope analyses from native silver originating from a diverse set of worldwide deposits (8 deposit types, 33 mining districts in five continents). The measured isotopic range (defined as δ109Ag/107Ag in per mil units compared to NIST 978 Ag isotope standard) is +2.1 to -0.86‰ (2σ errors less than 0.015); with no apparent systematic correlations to date with deposit type or even within districts. Importantly, the data centering on 0‰ all come from high temperature hypogene/primary deposits whereas flanking and overlapping data represent secondary supergene deposits. To investigate the causes for the more fractionated values, several laboratory experiments involving oxidation of silver from natural specimens of Ag-rich sulfides and precipitation and adsorption of silver onto reagent grade MnO2 and FeOOH were conducted. Simple leach experiments demonstrate little Ag isotope fractionation occurred through oxidation of Ag from native Ag (Δsolution-native109Ag = 0.12‰). In contrast, significant fractionation occurred through precipitation of native Ag onto MnO2 (up to Δsolution-MnO2109Ag = 0.68‰, or 0.3amu). Adsorption of silver onto the MnO2 and FeOOH did not produce as large fractionation as precipitation (mean value of Δsolution-MnO2109Ag = 0.10‰). The most likely cause for the isotopic variations seen relates to redox effects such as the reduction of silver from Ag (I) to Ag° that occurs during precipitation onto the mineral surface. Since many Ag deposits have halos dominated by MnO2 and FeOOH phases, potential may exist for the silver isotope composition of ores and surrounding geochemical haloes to be used to better understand ore genesis and potential exploration applications. Aside from the Mn oxides, surface fluid silver

  4. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study.

    Science.gov (United States)

    Amouamouha, Maryam; Badalians Gholikandi, Gagik

    2017-11-12

    Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride) (PVDF) and polyethersulfone (PES) surfaces by physical vapor deposition (PVD). The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Scanning electron microscope (SEM) and atomic force microscopy (AFM) analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units) reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES.

  5. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Maryam Amouamouha

    2017-11-01

    Full Text Available Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride (PVDF and polyethersulfone (PES surfaces by physical vapor deposition (PVD. The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Scanning electron microscope (SEM and atomic force microscopy (AFM analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES.

  6. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  7. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  8. Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers

    Science.gov (United States)

    Ma, Xinfu; Guo, Qingquan; Xie, Yu; Ma, Haixiang

    2016-05-01

    The preparation of size- and shape-controlled metallic nanostructures in an eco-friendly manner has been regarded as one of the key issues in nanoscience research today. In this paper, biosynthesis of silver nanoflowers (AgNFs) using L-cysteine as reducing and capping agent in alkaline solution via 70 °C water bath for 4 h has been demonstrated. The formation of L-cys-AgNPs was observed visually by color change of the samples. The prepared samples were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). These results indicate that single-crystalline of AgNFs have been successfully synthesized.

  9. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach.

    Science.gov (United States)

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Khan, Shafiullah; Khan, Gul Majid; Tahir, Kamran; Khan, Arif Ullah; Raza, Muslim; Khan, Faheem Ullah; Yuan, Qiping

    2016-08-01

    After malaria, Leishmaniasis is the most prevalent infectious disease in terms of fatality and geographical distribution. The availability of a limited number of antileishmanial agents, emerging resistance to the available drugs, and the high cost of treatment complicate the treatment of leishmaniasis. To overcome these issues, critical research for new therapeutic agents with enhanced antileishmanial potential and low treatment cost is needed. In this contribution, we developed a green protocol to prepare biogenic silver nanoparticles (AgNPs) and amphotericin B-bound biogenic silver nanoparticles (AmB-AgNPs). Phytochemicals from the aqueous extract of Isatis tinctoria were used as reducing and capping agents to prepare silver nanoparticles. Amphotericin B was successfully adsorbed on the surface of biogenic silver nanoparticles. The prepared nanoparticles were characterized by various analytical techniques. UV-Visible spectroscopy was employed to detect the characteristic localized surface plasmon resonance peaks (LSPR) for the prepared nanoparticles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies revealed the formation of spherical silver nanoparticles with an average particle size of 10-20nm. The cubic crystalline structure of the prepared nanoparticles was confirmed by X-ray diffraction (XRD) study. FTIR spectroscopic analysis revealed that plant polyphenolic compounds are mainly involved in metal reduction and capping. Under visible light irradiation, biogenic silver nanoparticles exhibited significant activity against Leishmania tropica with an IC50 value of 4.2μg/mL. The leishmanicidal activity of these nanoparticles was considerably enhanced by conjugation with amphotericin B (IC50=2.43μg/mL). In conclusion, the findings of this study reveal that adsorption of amphotericin B, an antileishmanial drug, to biogenic silver nanoparticles, could be a safe, more effective and economic alternative to the available

  10. Synthesis and antibacterial activity of water-dispersible silver nanoparticles via micellar nanoreactors

    Science.gov (United States)

    Pofali, Prasad; Shirolikar, Seema; Borde, Lalit; Pattani, Aditya; Dandekar, Prajakta; Jain, Ratnesh

    2018-04-01

    We have synthesized silver nanoparticles (AgNPs) using micelles of sugar fatty acid ester by dissolving the surfactant in a mixture of iso-octane and n-butanol, with solid-liquid extraction. Highly concentrated, water-dispersible AgNPs were obtained after thorough washing with alcohol, to remove excess of sucrose fatty acid ester DK SS and salt, followed by drying. The particles were characterized for their size, morphology and crystallinity using UV-Visible spectrophotometry, Transmission Electron Microscopy and x-ray diffractometry. Antibacterial study, confirmed the activity of nanoparticles against E. coli, P. aeruginosa and S. aureus, which causes diseases including diarrhoea and several life-threatening infections. Antibacterial activity of E. coli and P. aeruginosa was found to be 2.5 fold and for S. aureus 1.6 fold compared to 50 ppm conc. of Silver Nitrate. Our method of producing nanoparticles is employed as a platform technology for synthesizing other inorganic nanoparticles. This is the first report discussing the use of micellar carriers for obtaining silver nanopowder, to the best of our knowledge, which has the potential to overcome limitations during fabrication of AgNPs using reverse/inverse micelles. Our method yielded nano-sized, water-dispersible AgNPs via an easy and economic approach. The one-pot approach possesses advantages in terms of cost and simplicity, as compared with traditional methods of producing powdered AgNPs using energy intensive and expensive techniques like lyophilisation. The developed method, thus, possesses immense potential for commercial synthesis of AgNPs.

  11. Production of silver ions from colloidal silver by nanoparticle iontophoresis system.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu

    2011-03-01

    Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.

  12. Fourier transform infrared spectroscopy of azide and cyanate ion pairs in AOT reverse micelles

    Science.gov (United States)

    Owrutsky, Jeffrey C.; Pomfret, Michael B.; Barton, David J.; Kidwell, David A.

    2008-07-01

    Evidence for ion pair formation in aqueous bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles (RMs) was obtained from infrared spectra of azide and cyanate with Li+, Na+, K+, and NH4+ counterions. The anions' antisymmetric stretching bands near 2000 cm-1 are shifted to higher frequency (blueshifted) in LiAOT and to a lesser extent in NaAOT, but they are very similar to those in bulk water with K+ and NH4+ as the counterions. The shifts are largest for low values of wo=[water]/[AOT] and approach the bulk value with increasing wo. The blueshifts are attributed to ion pairing between the anions and the counterions. This interpretation is reinforced by the similar trend (Li+>Na+>K+) for producing contact ion pairs with the metal cations in bulk dimethyl sulfoxide (DMSO) solutions. We find no evidence of ion pairs being formed in NH4AOT RMs, whereas ammonium does form ion pairs with azide and cyanate in bulk DMSO. Studies are also reported for the anions in formamide-containing AOT RMs, in which blueshifts and ion pair formation are observed more than in the aqueous RMs. Ion pairs are preferentially formed in confined RM systems, consistent with the well established ideas that RMs exhibit reduced polarity and a disrupted hydrogen bonding network compared to bulk water and that ion-specific effects are involved in mediating the structure of species at interfaces.

  13. Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver-palladium alloy composites

    Science.gov (United States)

    Pal, Hemant; Sharma, Vimal

    2014-11-01

    The mechanical, electrical, and thermal expansion properties of carbon nanotube (CNT)-based silver and silver-palladium (10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver-palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion (CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%-40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver-palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.

  14. Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

    Directory of Open Access Journals (Sweden)

    Komninou Philomela

    2009-01-01

    Full Text Available Abstract Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples.

  15. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  16. Ecofriendly Synthesis of Silver Nanoparticles from Garden Rhubarb (Rheum rhabarbarum

    Directory of Open Access Journals (Sweden)

    Palem Ramasubba Reddy

    2016-01-01

    Full Text Available Bioreduction of silver ions following one pot process is described to achieve Rheum rhabarbarum (RR based silver nanoparticles (SNPs which is termed as “RR-SNPs.” The Ultraviolet–visible spectroscopy (UV–vis confirms the characteristic surface plasmon resonance band for RR-SNPs in the range of 420–460 nm. The crystalline nature of SNPs was confirmed by X-ray diffraction (XRD peaks at 38.2°, 45.6°, 64.2°, and 76.8°. Transmission electron microscopy (TEM and scanning electronic microscopy (SEM confirm the shape of synthesized SNPs. They are roughly spherical but uniformly distributed, and size varies from 60 to 80 nm. These biogenic SNPs show persistent zeta potential value of 34.8 mV even after 120 days and exhibit potent antibacterial activity in presence of Escherichia coli (CCM 4517 and Staphylococcus aureus (CCM 4516. In addition, cytotoxicity of RR-SNPs against in vitro human epithelial carcinoma (HeLa cell line showed a dose-response activity. The lethal concentration (LC50 value was found to be 28.5 μg/mL for RR-SNPs in the presence of HeLa cells. These findings help us to evaluate their appropriate applications in the field of nanotechnology and nanomedicine.

  17. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  18. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections

    Directory of Open Access Journals (Sweden)

    Dhas SP

    2015-10-01

    Full Text Available Sindhu Priya Dhas, Suruthi Anbarasan, Amitava Mukherjee, Natarajan Chandrasekaran Center for Nanobiotechnology, VIT University, Vellore, India Abstract: Bombyx mori silk fibers are an important biomaterial and are used in surgical sutures due to their remarkable biocompatibility. The major drawback to the application of biomaterials is the risk of bacterial invasion, leading to clinical complications. We have developed an easy and cost-effective method for fabrication of antibacterial silk fibers loaded with silver nanoparticles (AgNPs by an in situ and ex situ process using an aqueous extract of Rhizophora apiculata leaf. Scanning electron microscopy revealed that well dispersed nanoparticles impregnated the silk fibers both in situ and ex situ. The crystalline nature of the AgNPs in the silk fibers was demonstrated by X-ray diffraction. The thermal and mechanical properties of the silk fibers were enhanced after they were impregnated with AgNPs. The silver-coated silk fibers fabricated by the in situ and ex situ method exhibited more than 90% inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. Silk fibers doped with AgNPs were found to be biocompatible with 3T3 fibroblasts. The results obtained represent an important advance towards the clinical application of biocompatible AgNP-loaded silk fibers for prevention of surgical wound infections. Keywords: silk fibers, silver nanoparticles, antibacterial activity, wound infections, cytotoxicity, 3T3 fibroblast cells

  19. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes

    Directory of Open Access Journals (Sweden)

    Muhammad Akram Raza

    2016-04-01

    Full Text Available Silver nanoparticles (AgNPs of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM, UV-visible spectroscopy (UV-VIS, and X-ray diffraction (XRD techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs.

  20. 21 CFR 310.548 - Drug products containing colloidal silver ingredients or silver salts offered over-the-counter...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug products containing colloidal silver... Drug products containing colloidal silver ingredients or silver salts offered over-the-counter (OTC) for the treatment and/or prevention of disease. (a) Colloidal silver ingredients and silver salts have...

  1. Copper-catalyzed azide alkyne cycloaddition polymer networks

    Science.gov (United States)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  2. Detection of Alkynes via Click Chemistry with a Brominated Coumarin Azide by Simultaneous Fluorescence and Isotopic Signatures in Mass Spectrometry.

    Science.gov (United States)

    Yang, Lihua; Chumsae, Chris; Kaplan, Jenifer B; Moulton, Kevin Ryan; Wang, Dongdong; Lee, David H; Zhou, Zhaohui Sunny

    2017-09-20

    Alkynes are a key component of click chemistry and used for a wide variety of applications including bioconjugation, selective tagging of protein modifications, and labeling of metabolites and drug targets. However, challenges still exist for detecting alkynes because most 1,2,3-triazole products from alkynes and azides do not possess distinct intrinsic properties that can be used for their facile detection by either fluorescence or mass spectrometry. To address this critical need, a novel brominated coumarin azide was used to tag alkynes and detect alkyne-conjugated biomolecules. This tag has several useful properties: first, it is fluorogenic and the click-chemistry products are highly fluorescent and quantifiable; second, its distinct isotopic pattern facilitates identification by mass spectrometry; and third, its click-chemistry products form a unique pair of reporter ions upon fragmentation that can be used for the quick screening of data. Using a monoclonal antibody conjugated with alkynes, a general workflow has been developed and examined comprehensively.

  3. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  4. Techniques in gas-phase thermolyses - Part 7. Direct surface participation in gas-phase Curie-point pyrolysis: The pyrolysis of phenyl azide

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars

    1986-01-01

    The possible direct participation of the hot reactor surface in the formation of pyrolysis products was elucidated through the pyrolytic decomposition of phenyl azide. It is demonstrated that the intermediate phenyl nitrene generated reacts with elemental carbon at the filament surface, leading...

  5. One-pot facile green synthesis of biocidal silver nanoparticles

    Science.gov (United States)

    Nudrat Hazarika, Shabiha; Gupta, Kuldeep; Shamin, Khan Naseem Ahmed Mohammed; Bhardwaj, Pushpender; Boruah, Ratan; Yadav, Kamlesh K.; Naglot, Ashok; Deb, P.; Mandal, M.; Doley, Robin; Veer, Vijay; Baruah, Indra; Namsa, Nima D.

    2016-07-01

    The plant root extract mediated green synthesis method produces monodispersed spherical shape silver nanoparticles (AgNPs) with a size range of 15-30 nm as analyzed by atomic force and transmission electron microscopy. The material showed potent antibacterial and antifungal properties. Synthesized AgNPs display a characteristic surface plasmon resonance peak at 420 nm in UV-Vis spectroscopy. X-ray diffractometer analysis revealed the crystalline and face-centered cubic geometry of in situ prepared AgNPs. Agar well diffusion and a colony forming unit assay demonstrated the potent biocidal activity of AgNPs against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas diminuta and Mycobacterium smegmatis. Intriguingly, the phytosynthesized AgNPs exhibited activity against pathogenic fungi, namely Trichophyton rubrum, Aspergillus versicolor and Candida albicans. Scanning electron microscopy observations indicated morphological changes in the bacterial cells incubated with silver nanoparticles. The genomic DNA isolated from the bacteria was incubated with an increasing concentration of AgNPs and the replication fidelity of 16S rDNA was observed by performing 18 and 35 cycles PCR. The replication efficiency of small (600 bp) and large (1500 bp) DNA fragments in the presence of AgNPs were compromised in a dose-dependent manner. The results suggest that the Thalictrum foliolosum root extract mediated synthesis of AgNPs could be used as a promising antimicrobial agent against clinical pathogens.

  6. Silver carbonate and stability in colloidal silver: A by-product of the electric spark discharge method

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tien, Der-Chi

    2010-01-01

    Many methods of producing colloidal silver (CS) include the introduction of surfactants to improve the suspensivity of the silver particles. The electric spark discharge method (ESDM) which involves pulses of direct current being passed through a silver electrode submerged in deionized water has been shown to successfully produce colloidal silver in a stable suspension without the use of chemical additives. A by-product of the electric spark discharge method, a silver ion compound (AgX), is shown to be the cause of the high suspensivity of the silver nanoparticles (AgNPs). The silver ion compound has been identified as Ag 2 CO 3 using X-ray diffraction, and it has been determined that the Ag 2 CO 3 is formed during the electric spark discharge process through a reaction with atmospheric CO 2 . It has been shown that an Ag 2 CO 3 concentration of 10 ppm or more is sufficient to generate a stable suspension of silver particles. Because of the occurrence of Ag 2 CO 3 , the electric spark discharge method can produce stable colloidal silver.

  7. Relaxation of the silver/silver iodide electrode in aqueous solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI

  8. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    International Nuclear Information System (INIS)

    Afanasiev, Pavel

    2016-01-01

    Silver nitrate hexamethylenetetramine [Ag(NO 3 )·N 4 (CH 2 ) 6 ] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H 2 O 2 electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO 3 )·N 4 (CH 2 ) 6 ] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  9. Facile solid-phase ruthenium assisted azide-alkyne cycloaddition (RuAAC) utilizing the Cp*RuCl(COD)-catalyst

    DEFF Research Database (Denmark)

    Engholm, Ebbe; sgz228, sgz228; Blixt, Klas Ola

    2017-01-01

    The ruthenium assisted azide-alkyne cycloaddition (RuAAC) reaction is a well-established method for the generation of 1,5- and 1,4,5-substituted 1,2,3-triazoles, which we have extended to the solid-phase synthesis of 1,2,3-triazole-peptides. The 1,2,3-triazole moieties were formed upon the reacti...

  10. Alternative Silver Production by Environmental Sound Processing of a Sulfo Salt Silver Mineral Found in Bolivia

    Directory of Open Access Journals (Sweden)

    Alexander Birich

    2018-02-01

    Full Text Available Very often, the production of silver causes devastating environmental issues, because of the use of toxic reagents like cyanide and mercury. Due to severe environmental damage caused by humans in the last decades, the social awareness regarding the sustainable production processes is on the rise. Terms like “sustainable” and “green” in product descriptions are becoming more and more popular and producers are forced to satisfy the rising environmental awareness of their customers. Within this work, an alternative environmental sound silver recovery process was developed for a vein type silver ore from Mina Porka, Bolivia. A foregoing characterization of the input material reveals its mineral composition. In the following mineral processing, around 92.9% silver was concentrated by separating 59.5 wt. % of non-silver minerals. Nitric acid leaching of the generated concentrate enabled a silver recovery of up to 98%. The dissolved silver was then separated via copper cementation to generate a metallic silver product of >99% purity. Summarizing all process steps, a silver yield of 87% was achieved in lab scale. A final upscaling trial was conducted to prove the process’ robustness. Within this trial, almost 4 kg of metallic silver with a purity of higher than 99.5 wt. % was produced.

  11. Franklin D. Roosevelt, Silver, and China.

    OpenAIRE

    Friedman, Milton

    1992-01-01

    The silver purchase program, initiated by Franklin Roosevelt in late 1933 in response to the economically small but politically potent silver bloc, gave a large short-run subsidy to silver producers at the cost of destroying any long-run monetary role for silver. More important, it imposed severe deflation on China, the only major country still on a silver standard, and forced it off the silver standard and on to a fiat standard, which brought forward in time and increased in severity the sub...

  12. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  13. Effect of metallic silver nanoparticles on the alignment and relaxation behaviour of liquid crystalline material in smectic C* phase

    Science.gov (United States)

    Vimal, Tripti; Kumar Gupta, Swadesh; Katiyar, Rohit; Srivastava, Atul; Czerwinski, Michal; Krup, Katarzyna; Kumar, Sandeep; Manohar, Rajiv

    2017-09-01

    The influence of silver nanoparticles dispersed in a Ferroelectric Liquid Crystal (FLC) on the properties of the resultant composite system has been investigated by thermal, electro-optical, and dielectric methods. We show that the concentration of thiol capped silver nanoparticles is a critical factor in governing the alignment of nanoparticles (NPs) in the host FLC. The orientation of NPs in composite samples affects the ordering of the LC (Liquid Crystal) phase and consequently changes the various phase transition temperatures of the host LC. Formation of self-assembled 2D (two dimensional) arrays of nanoparticles is observed for high concentration of dopant in the LC, oriented perpendicular to the direction of rubbing. We propose that the molecular interaction between the thiol capped NPs and LC molecules is the key factor behind such an arrangement of NPs. Orientation of NPs has affected the relaxation behaviour and various other material parameters, significantly. A noteworthy change in DC conductivity articulates our proposed idea of the formation of 2D array of NPs perpendicular to the direction of rubbing. This comprehensive study endorses the importance of dopant concentration in modifying the properties of the host LC material.

  14. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential

    International Nuclear Information System (INIS)

    Rastogi, Lori; Arunachalam, J.

    2011-01-01

    Highlights: → We report green synthetic route for the production crystalline silver nanoparticles using garlic as both reducing and stabilizing agent. → Synthesis has been achieved by exposing the solution mixture of [Ag(NH 3 ) 2 ] + and aqueous garlic extract under sunlight. → Role of light in the synthesis process has been investigated and is discussed in detail. → The antibacterial effect of the synthesized silver nanoparticles has been assessed against both Gram classes of bacteria. → Synthesized silver colloidal solutions were found to be stable for a very long period and retained their bactericidal potential. - Abstract: A green synthetic route for the production of highly stable silver nanoparticles using aqueous garlic extract is being reported for the first time. The silver nanoparticles were synthesized by exposing a mixture of 0.1 M [Ag(NH 3 ) 2 ] + and diluted aqueous garlic extract under bright sunlight for 15 min. The garlic extract components served as both reducing and capping agents in the synthesis of silver nanoparticles while the sunlight acted as catalyst in the synthesis process. The synthesized nanoparticles were characterized using UV-visible (UV-vis) spectrophotometer; transmission electron microscopy (TEM), glancing angle X-ray diffraction (GA-XRD) and Fourier transform infra red (FTIR) spectrometry. The nanoparticles were found to be poly-dispersed in nature, spherical in shape and of 7.3 ± 4.4 nm in size. The FTIR analysis was suggestive of proteins as capping agents around the nanoparticles. The yield of synthesized nanoparticles was calculated to be approximately 80% by dry weight and 85% ICP-AES method. The synthesized silver nanoparticles exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains, as measured using well diffusion assay. Most importantly, the silver colloidal solutions thus synthesized were found to be stable for a very long period (more than a year) and retained

  15. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles using Cell Free-Extracts of Enterococcus species

    Directory of Open Access Journals (Sweden)

    Iyabo C. OLADIPO

    2017-06-01

    Full Text Available Cell-free extracts of six strains of Enterococcus species obtained from fermented foods were used for the green synthesis of silver nanoparticles (AgNPs, which was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM. The biosynthesized AgNPs were dark brown in colour having surface plasmon resonance in the range of 420-442 nm. The spherical shaped AgNPs had sizes of 4-55 nm, whose formations were facilitated by proteins as indicated by the presence of peaks 1,635-1,637 and 3,275-3,313 cm-1 in the FTIR spectra. The energy dispersive x-ray (EDX showed prominent presence of silver in the AgNPs colloidal solution, while the selected area electron diffraction was typified by the face-centred crystalline nature of silver. The particles inhibited the growth of multi-drug resistant clinical isolates of Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris, and also potentiated the activities of ampicillin, ciprofloxacin and cefuroxime in the AgNPs-antibiotic synergy studies. In addition, the prospective relevance of the particles as nanopreservative in paints was demonstrated with the inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and A. flavus in AgNPs-paint admixture. This report further demonstrates the green synthesis of AgNPs by strains of Enterococcus species.

  16. Effect of preconditioning on silver leaching and bromide removal properties of silver-impregnated activated carbon (SIAC).

    Science.gov (United States)

    Rajaeian, Babak; Allard, Sébastien; Joll, Cynthia; Heitz, Anna

    2018-07-01

    Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag + ), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  18. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb. Miers and evaluate its antibacterial, antioxidant potential

    Directory of Open Access Journals (Sweden)

    Kandasamy Selvam

    2017-01-01

    Full Text Available The present study reports an eco-friendly, rapid and easy method for synthesis of silver nanoparticles (AgNPs using Tinospora cordifolia as a reducing and capping agent. The different factor such as silver nitrate (AgNO3 concentration, fresh weight of T. cordifolia leaf, incubation time, and pH affecting silver reduction was investigated using Response surface methodology based Box–Behnken design (BBD. The optimum conditions were AgNO3 (1.25 mM, incubation time (15 h, Temperature (45 °C and pH (4.5. T. cordifolia leaf extract can reduces silver ions into AgNPs within 30 min after heating the reaction mixture (60 °C as indicated by the developed reddish brown color. The UV-Vis spectrum of AgNPs revealed a characteristic surface plasmon resonance (SPR peak at 430 nm. AgNPs were characterized X-ray diffraction (XRD revealed their crystalline nature and their average size of nanoparticles was 30 nm as determined by using Scherrer's equation. Fourier transform infrared (FTIR spectroscopy affirmed the role of T. cordifolia leaf extract as a reducing and capping agent of silver ions. Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS showed spherical shaped and confirming presence of elemental silver. The synthesized AgNPs was found higher antioxidant activity than plant extract by dot plot assay. In addition, antibacterial activity against Staphylococcus sp. (NCBI-Accession: KC688883.1 and Klebsiella sp. (NCBI-Accession: KF649832.1, showed maximum zone of inhibition of 13 mm and 12.3 mm, respectively, at 10 μg/mL of AgNPs. From the results it is suggested that the synthesized AgNPs showed higher antioxidant and antibacterial activity than the plant extract, thus signification of the present study is the production of biomedical products.

  19. One-Pot Silver Nanoring Synthesis

    Science.gov (United States)

    Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre

    2010-03-01

    Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  20. Transport Properties Of PbI2 Doped Silver Oxysalt Based Amorphous Solid Electrolytes

    Science.gov (United States)

    Shrisanjaykumar Jayswal, Manishkumar

    Solid electrolytes are a class of materials that conduct electricity by means of motion of ions like Ag+, Na+, Li +, Cu+, H+, F-, O -2 etc. in solid phase. The host materials include crystalline, polycrystalline, glasses, polymers and composites. Ion conducting glasses are one of the most sought after solid electrolytes that are useful in various electrochemical applications like solid state batteries, gas sensors, supercapacitors, electrochromic devices, to name a few. Since the discovery of fast silver ion transport in silver oxyhalide glasses at the end of the 1960s, many glasses showing large ionic conductivity up to 10-4 10-2 S/cm at room temperature have been developed, chiefly silver and copper ion conductors. The silver ion conducting glasses owe their high ionic conductivity mainly to stabilized alpha-AgI. AgI, as we know, undergoes a structural phase transition from wurtzite (beta phase) at room temperature to body centered cubic (alpha phase) structure at temperatures higher than 146 °C. The alpha-AgI possesses approximately six order of higher ionic conductivity than beta-AgI. The high ionic conductivity of alpha-AgI is attributed to its molten sublattice type of structure, which facilitates easy Ag+ ion migration, like a liquid. And hence, several attempts have been made to stabilize it at room temperature in crystalline as well as non-crystalline hosts like oxide and non-oxide glasses. Recently, in order to stabilize AgI in glasses, instead of directly doping it, indirect routes have also been explored. Where, a metal iodide salt along with silver oxide or silver phosphate is taken and an exchange reaction permitted by Hard and Soft, Acid and Base (HSAB) principle occurs between the two and AgI and metal oxide form in the glass forming melt. Work done in the present thesis has been organized in seven chapters as follows: Chapter 1: A review and background information of different solid electrolyte materials and their development is presented. Along

  1. Traceless Azido Linker for the Solid-Phase Synthesis of NH-1,2,3-Triazoles via Cu-Catalyzed Azide-Alkyne Cycloaddition Reactions

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland

    2010-01-01

    A broadly useful acid-labile traceless azido linker for the solid-phase synthesis of NH-1,2,3-triazoles is presented. A variety of alkynes were efficiently immobilized on a range of polymeric supports by Cu(I)-mediated azide-alkyne cycloadditions. Supported triazoles showed excellent compatibility...

  2. In situ generation of the Ohira-Bestmann reagent from stable sulfonyl azide: scalable synthesis of alkynes from aldehydes.

    Science.gov (United States)

    Jepsen, Tue Heesgaard; Kristensen, Jesper Langgaard

    2014-10-03

    We report an improved method for in situ generation of the Ohira-Bestmann reagent. Using the recently reported bench-stable imidazole-1-sulfonyl azide as diazotransfer reagent, this new method represents a scalable and convenient approach for the transformation of aldehydes into terminal alkynes. The method features an easier workup compared to the existing in situ protocol due to increased aqueous solubility of waste products.

  3. Electronic effects of ruthenium-catalyzed [3+2]-cycloaddition of alkynes and azides

    KAUST Repository

    Hou, Duenren

    2010-11-01

    A combined experimental and theoretical study of ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) reactions is presented and various electronic analyses were conducted to provide a basis in understanding the observed regioselectivity of the 1,2,3-triazole products. Computational studies using density functional theory (DFT) and atoms in molecules quantum theory (AIM) further yield fresh details on the electronic factors that determine the regioselectivity in the RuAAC. It is found that the formation of 1,2,3-triazole products is irreversible and from the Hammett study, the pathway involving a vinyl cationic intermediate is ruled out. The electronic effect favors the formation of 5-electron-donating-group substituted-1,2,3-trizoles. © 2010 Elsevier Ltd. All rights reserved.

  4. Electronic effects of ruthenium-catalyzed [3+2]-cycloaddition of alkynes and azides

    KAUST Repository

    Hou, Duenren; Kuan, Tingchun; Li, YuKai; Lee, Richmond; Huang, Kuo-Wei

    2010-01-01

    A combined experimental and theoretical study of ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) reactions is presented and various electronic analyses were conducted to provide a basis in understanding the observed regioselectivity of the 1,2,3-triazole products. Computational studies using density functional theory (DFT) and atoms in molecules quantum theory (AIM) further yield fresh details on the electronic factors that determine the regioselectivity in the RuAAC. It is found that the formation of 1,2,3-triazole products is irreversible and from the Hammett study, the pathway involving a vinyl cationic intermediate is ruled out. The electronic effect favors the formation of 5-electron-donating-group substituted-1,2,3-trizoles. © 2010 Elsevier Ltd. All rights reserved.

  5. Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract

    Science.gov (United States)

    Mankamna Kumari, R.; Thapa, Nikita; Gupta, Nidhi; Kumar, Ajeet; Nimesh, Surendra

    2016-12-01

    The present study focuses on the biosynthesis of silver nanoparticles (AgNPs) along with its antibacterial and photocatalytic activity. The AgNPs were synthesized using Cordia dichotoma leaf extract and were characterized using UV-vis spectroscopy to determine the formation of AgNPs. FTIR was done to discern biomolecules responsible for reduction and capping of the synthesized nanoparticles. Further, DLS technique was performed to examine its hydrodynamic diameter, followed by SEM, TEM and XRD to determine its size, morphology and crystalline structure. Later, these AgNPs were studied for their potential role in antibacterial activity and photocatalytic degradation of azo dyes such as methylene blue and Congo red.

  6. One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process.

    Science.gov (United States)

    Ghandi, Mehdi; Salahi, Saleh; Taheri, Abuzar; Abbasi, Alireza

    2018-05-01

    A facile one-pot method has been developed for the synthesis of novel pyrrolo[2,1-a]pyrazine scaffolds. A variety of 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives were obtained in moderate to high yields in methanol using a one-pot four-component condensation of 1-(2-bromoethyl)-1H-pyrrole-2-carbaldehyde, amine, isocyanide and sodium azide at room temperature. These reactions presumably proceed via a domino imine formation, intramolecular annulation and Ugi-azide reaction. Unambiguous assignment of the molecular structures was carried out by single-crystal X-ray diffraction.

  7. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  8. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  9. Green synthesis of Silver and Gold Nanoparticles for Enhanced catalytic and bactericidal activity

    Science.gov (United States)

    Naraginti, S.; Tiwari, N.; Sivakumar, A.

    2017-11-01

    A rapid one step green synthetic method using kiwi fruit extract was employed for preparation of silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). They also exhibited excellent antimicrobial activity against clinically isolated Pseudomonas aeruginosa (P.aeruginosa) and Staphylococcus aureus (S.aureus). It was noticed that with increase in concentration of the aqueous silver and gold solutions, particle size of the Ag and Au NPS showed increase as evidenced from UV-Visible spectroscopy and TEM micrograph. The method employed for the synthesis required only a few minutes for more than 90% formation of nanoparticles when the temperature was raised to 80°C. It was also noticed that the catalytic activity of nanoparticles depends upon the size of the particles. These nanoparticles were observed to be crystalline from the clear lattice fringes in the transmission electron microscopic (TEM) images, bright circular spots in the selected area electron diffraction (SAED) pattern and peaks in the X-ray diffraction (XRD) pattern. The Fourier-transform infrared (FTIR) spectrum indicated the presence of different functional groups in the biomolecule capping the nanoparticles.

  10. One-Pot Silver Nanoring Synthesis

    Directory of Open Access Journals (Sweden)

    Drogat Nicolas

    2009-01-01

    Full Text Available Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  11. Silver diamine fluoride: a caries "silver-fluoride bullet".

    Science.gov (United States)

    Rosenblatt, A; Stamford, T C M; Niederman, R

    2009-02-01

    The antimicrobial use of silver compounds pivots on the 100-year-old application of silver nitrate, silver foil, and silver sutures for the prevention and treatment of ocular, surgical, and dental infections. Ag(+) kills pathogenic organisms at concentrations of linings, water purification systems, hospital gowns, and caries prevention. To distill the current best evidence relative to caries, this systematic review asked: Will silver diamine fluoride (SDF) more effectively prevent caries than fluoride varnish? A five-database search, reference review, and hand search identified 99 human clinical trials in three languages published between 1966 and 2006. Dual review for controlled clinical trials with the patient as the unit of observation, and excluding cross-sectional, animal, in vitro studies, and opinions, identified 2 studies meeting the inclusion criteria. The trials indicated that SDF's lowest prevented fractions for caries arrest and caries prevention were 96.1% and 70.3%, respectively. In contrast, fluoride varnish's highest prevented fractions for caries arrest and caries prevention were 21.3% and 55.7%, respectively. Similarly, SDF's highest numbers needed to treat for caries arrest and caries prevention were 0.8 (95% CI=0.5-1.0) and 0.9 (95% CI=0.4-1.1), respectively. For fluoride varnish, the lowest numbers needed to treat for caries arrest and prevention were 3.7 (95% CI=3.4-3.9) and 1.1 (95% CI=0.7-1.4), respectively. Adverse events were monitored, with no significant differences between control and experimental groups. These promising results suggest that SDF is more effective than fluoride varnish, and may be a valuable caries-preventive intervention. As well, the availability of a safe, effective, efficient, and equitable caries-preventive agent appears to meet the criteria of both the WHO Millennium Goals and the US Institute of Medicine's criteria for 21st century medical care.

  12. Investigation of interaction between silver oxide electrode and separator hydrated cellulose film in silver-cadmium accumulators

    International Nuclear Information System (INIS)

    Molotkova, E.N.; Yarochkina, E.N.

    1975-01-01

    Oxidation-reduction interaction of the oxysilver electrode with hydrocellulose film during storing charged silver-cadmium accumulators. It was demonstrated that accumulator electric characteristics durinq storing are linearly depending on the capacity of this hydrocellulose film to interact with silver oxide: the more silver is absorbed by film the quicker is the decreasing of the electromotive force and capacity of the accumulators. Preservation of the silver electrode capacity in the silver-cadmium accumulators is determined first of all by hydrocellulose separation film properties and especially by film layer adjacent to positive electrode. The more inert film layer is, regarding to silver oxide in the electrolite, the slower is dissolution of the electrode and also decompousing speed of AgO, the longer is the accumulator preservation time

  13. Low-silver radiographic detectors

    International Nuclear Information System (INIS)

    Troitskii, V.A.; Novikov, I.A.; Nikitin, V.F.; Krasnyi-Admoni, L.V.; Valevich, M.I.; Belyi, N.G.; Grom, V.S.

    1988-01-01

    X-ray films and screens with low silver content for use in weld radiography are reviewed and tested. Properties examined include image graininess, brightness, and sensitivity to x radiation. Results are given for radiography of steel 08Kh18N10T, St20, AMG-6, copper, and titanium welds. Processing techniques for low-silver films are discussed. It is established that films and screens containing little silver can replace many x-ray films containing much more silver. Monitoring methods were developed for the new materials to cover items in classes 3-7 on GOST 23075-78 when used with equipment of RUP-150/300-10 type or classes 4-7 with pulsed x-ray equipment

  14. One-pot silver nanoring synthesis.

    OpenAIRE

    Drogat , Nicolas; Granet , Robert; Sol , Vincent; Krausz , Pierre

    2009-01-01

    Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH...

  15. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon.fr

    2016-07-15

    Silver nitrate hexamethylenetetramine [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H{sub 2}O{sub 2} electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  16. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2017-11-01

    Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  18. High-performance electrically conductive silver paste prepared by silver-containing precursor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianguo; Cao, Yu; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan [Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Wuhan (China)

    2010-09-15

    A high-performance electrically conductive silver paste with no solid particles before drying and/or sintering is developed, in which silver-containing precursor is employed as conductive functional phase. Thermogravimetry analysis, volume electrical resistivity tests and sintering experiments show that the paste with about 14 wt.% silver pristine content is able to achieve the volume electrical resistivity of (2-3) x 10{sup -5} {omega} cm after it is sintered at 220 C. A micro-pen direct-writing process indicates that it is very suitable for the fabrication of high-resolution (25 {mu}m) and high-integration devices and apparatus. (orig.)

  19. The silver lining: towards the responsible and limited usage of silver.

    Science.gov (United States)

    Naik, K; Kowshik, M

    2017-11-01

    Silver has attracted a lot of attention as a powerful, broad spectrum and natural antimicrobial agent since the ancient times because of its nontoxic nature to the human body at low concentrations. It has been used in treatment of various infections and ulcers, storage of water and prevention of bacterial growth on the surfaces and within materials. However, there are numerous medical and health benefits of colloidal or nanosilver apart from its microbicidal ability which as yet has not been fully embraced by the medical community. These include antiplatelet activity, antioxidant effect, anticancer activity, wound healing and bone regeneration, enhancement of immunity, and increase in antibiotic efficiency. Additionally silver also provides protection against alcohol toxicity, upper respiratory tract infections and stomach ailments. Although nanosilver has been proposed for various topical applications, its usage by ingestion and inhalation remains controversial due to the lack of detailed and precise toxicity information. These beneficial properties of silver can be utilized by using silver at very low concentrations which are not harmful to the human body and environment. The following review discusses the diverse medical applications of silver and further recommends human clinical studies for its in vivo usage. #x00A9; 2017 The Society for Applied Microbiology.

  20. Exploration of Phyllanthus acidus mediated silver nanoparticles and its activity against infectious bacterial pathogen.

    Science.gov (United States)

    Sowmya, Cherukuri; Lavakumar, Vuppalapati; Venkateshan, Narayanan; Ravichandiran, Velayutham; Saigopal, D V R

    2018-04-20

    In our present investigation, synthesis of nontoxic, eco friendly and cost effective silver nanoparticles, Phyllanthus acidus (P. acidus) was used as starting material. The influence of phyto-constituents present in aqueous extracts of Phyllanthus acidus was found to be effective in reduction of silver nitrate to free silver nanoparticles (PA-AgNPs). HPTLC finger print analysis reveals the presence of flavonoid, quercetin in aqueous extracts of Phyllanthus acidus. Surface plasmon racemonance exhibited λ max at 462 nm through UV-Vis spectroscopy. Zeta size revealed that the size of nanoparticles were with in the range of 65-250 nm with polydisperse index (PDI) of 0.451. The negative charge of zeta potential value (- 16.4) indicates repulsion among PA-AgNPs with their excellent stability. FESEM-EDAX, XRD and TEM analysis confirmed the presence of nano-crystalline PA-AgNPs with different morphological textures. Further, PA-AgNPs has shown potent antibacterial effect on E. coli cells. The greater antibacterial effect (viable and dead cells) of PA-AgNPs were confirmed by using acridine orange (AO) dye which can able to provide insight of healthy as well as damaged DNA. Live cells emit florescence green and dead cells (treated with PA-AgNPS at 20 and 40 µg/ml) appear as pale orange red colour. Post treatment, investigations of PA-AgNPs on E. coli cells under SEM was found to be effective against cell membrane damages which leads to cell death or cell growth arrest. Hence, from the above findings, we strongly recommend silver nanoparticles from Phyllanthus acidus can be used as a potential source for antimicrobial agent for chronic infections and also against other harmful microorganisms.

  1. Green biosynthesis of silver nanoparticles using pomegranate peel and inhibitory effects of the nanoparticles on aflatoxin production

    International Nuclear Information System (INIS)

    Monira, A.O.; Mohammad, M.A.; Ashraf, H.A.

    2017-01-01

    In this work, pomegranate peel has been used as a natural and safe method for biosynthesis of silver nanoparticles. The synthesis of silver nanoparticles was confirmed using UV spectroscopy, which showed a peak around a wavelength of 437 nm. The morphology showed spherical and monodispersed nanoparticles with a size range between 5-50 nm. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD) experiments revealed their crystalline nature. Active functional groups in the synthesized silver nanoparticles were determined using Fourier transform infrared (FTIR) spectrometers contained four bands at 3281.21 cm/sup -1/, possibly indicating the participationof O-H functional group. The peak take place at 1,636.22 cm/sup -1/ may be pointed to C = N bending in the amide group or C = O stretching in carboxyl. Transfer in this peak (from 1,641 to 1,643 cm/sup -1/) shown the possible role of amino groups or carboxyl in nanoparticle synthesis. The peaks at 431.95 and 421.28 cm/sup -1/ be related to AgNPs bonding with oxygen from hydroxyl groups which confirm the role of pomegranate peel as a reducing agent. Furthermore, we investigated effects of these nanoparticles on aflatoxin B1 production by the fungus Aspergillus flavus, isolated from hazelnut. The results found that aflatoxin production in all A. flavus isolates decreased with an increase in the concentration of silver nanoparticles. Maximum suppression of aflatoxin production was recorded at a nanoparticle concentration of 150 ppm. (author)

  2. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, A. [VIT University, School of Biotechnology, Chemical and Biomedical Engineering (India); Raichur, Ashok M. [Indian Institute of Science, Department of Materials Engineering (India); Chandrasekaran, N.; Prathna, T. C.; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.co [VIT University, School of Biotechnology, Chemical and Biomedical Engineering (India)

    2010-01-15

    Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.

  3. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves

    International Nuclear Information System (INIS)

    Tripathy, A.; Raichur, Ashok M.; Chandrasekaran, N.; Prathna, T. C.; Mukherjee, Amitava

    2010-01-01

    Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.

  4. Evaluation of optimal silver amount for the removal of methyl iodide on silver-impregnated adsorbents

    International Nuclear Information System (INIS)

    Park, G.I.; Cho, I.H.; Kim, J.H.; Oh, W.Z.

    2001-01-01

    The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver-impregnated zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver impregnation amount for the removal of methyl iodide at temperatures up to 300 deg. C. The degree of adsorption efficiency of methyl iodide on silver-impregnated adsorbent is strongly dependent on impregnation amount and process temperature. A quantitative comparison of adsorption efficiencies on three adsorbents in a fixed bed was investigated. The influence of temperature, methyl iodide concentration and silver impregnation amount on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It shows that the effective impregnation ratio was about 10wt%, based on the degree of silver utilization for the removal of methyl iodide. The practical applicability of silver-impregnated zeolite for the removal of radioiodine generated from the DUPIC process was consequently proposed. (author)

  5. Bulk diffusion and solubility of silver and nickel in lead, lead-silver and lead-nickel solid solutions

    International Nuclear Information System (INIS)

    Amenzou-Badrour, H.; Moya, G.; Bernardini, J.

    1988-01-01

    The results of a study of solubility and bulk diffusion of /sup 110/Ag and /sup 63/Ni in lead, lead-silver and lead-nickel solid solutions in the temperature range 220 to 88 0 C are reported. Owing to the low solubility of silver and nickel in lead, Fick's solution corresponding to the boundary condition of a constant concentration of solute at the surface has been used. Depth profile concentration analysis suggests a fundamental difference between the diffusion mechanisms of silver and nickel. Since silver penetration profiles in pure lead give diffusion coefficients independent of the penetration depth and silver concentration, it is suggested that slight decreases of silver diffusivity in lead-silver solid solutions have no significance. This implies that the interstitial silver atoms do not associate significantly with each other to form Ag-Ag dimers. In contrast, different behaviors of /sup 63/Ni depth profile concentration in pure lead and saturated PbNi solid solutions agree with a Ni-Ni interaction leading to the formation of less mobile dimers near the surface in pure lead

  6. Reactive Energetic Plasticizers Utilizing Cu-Free Azide-Alkyne 1,3-Dipolar Cycloaddition for In-Situ Preparation of Poly(THF-co-GAP-Based Polyurethane Energetic Binders

    Directory of Open Access Journals (Sweden)

    Mingyang Ma

    2018-05-01

    Full Text Available Reactive energetic plasticizers (REPs coupled with hydroxy-telechelic poly(glycidyl azide-co-tetrahydrofuran (PGT-based energetic polyurethane (PU binders for use in solid propellants and plastic-bonded explosives (PBXs were investigated. The generation of gem-dinitro REPs along with a terminal alkyne stemmed from a series of finely designed approaches to not only satisfy common demands as conventional energetic plasticizers, but also to prevent the migration of plasticizers. The miscibility and rheological behavior of a binary mixture of PGT/REP with various REP fractions were quantitatively determined by differential scanning calorimetry (DSC and rheometer, respectively, highlighting the promising performance of REPs in the formulation process. The kinetics on the distinct reactivity of propargyl vs. 3-butynyl species of REPs towards the azide group of the PGT prepolymer in terms of Cu-free azide-alkyne 1,3-dipolar cycloaddition (1,3-DPCA was studied by monitoring 1H nuclear magnetic resonance spectroscopy and analyzing the activation energies (Ea obtained using DSC. The thermal stability of the finally cured energetic binders with the incorporation of REPs indicated that the thermal stability of the REP/PGT-based PUs was maintained independently of the REP content. The tensile strength and modulus of the PUs increased with an increase in the REP content. In addition, the energetic performance and sensitivity of REP and REP triazole species was predicted.

  7. Silver surface enrichment of silver-copper alloys: a limitation for the analysis of ancient silver coins by surface techniques

    International Nuclear Information System (INIS)

    Beck, L.; Bosonnet, S.; Reveillon, S.; Eliot, D.; Pilon, F.

    2004-01-01

    The surface enrichment of archaeological silver-copper alloys has been recognized for many years. However, the origin of this enrichment is not well defined and many hypotheses have been put forward to account for this behaviour: segregation of the components during casting, deliberate thermal and/or chemical post-treatment, abrasion or corrosion. Among the hypotheses mentioned above, we have focused our study on the first step of coin manufacturing. Replications of silver-copper standards of various compositions ranging from 30% to 80% Ag, reflecting the composition of silver blanks, have been produced. Metallographic examination, PIXE and SEM-EDS have been used for the characterization of each sample. A model of the direct enrichment has been established. This model allows us to propose a relationship between the surface composition and the silver content of the core. Comparison with data of Roman coins from the Roman site of Cha-hat teaubleau (France) and from the literature and consequences for the analyses of ancient coins by surface methods are presented

  8. Mineral resource of the month: silver

    Science.gov (United States)

    Brooks, William E.

    2007-01-01

    Silver has been used for thousands of years as ornaments and utensils, for trade and as the basis of many monetary systems. The metal has played an important part in world history. Silver from the mines at Laurion, Greece, for example, financed the Greek victory over the Persians in 480 B.C. Silver from Potosi, Bolivia, helped Spain become a world power in the 16th and 17th centuries. And silver from the gold-silver ores at the Comstock Lode in Virginia City, Nev., helped keep the Union solvent during the Civil War.

  9. Electromigration in gold and silver nanostructures; Elektromigration in Gold und Silber Nanostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmecke, Burkhard

    2008-01-15

    Electromigration is the current induced mass transport in metallic wires. It is the main reason for electrical breakdown in integrated circuits and has been studied for more than 50 years. In this thesis, the electromigration behavior in polycrystalline gold as well as in self-organized single crystalline silver wires are studied. To study the electromigration behavior in detail, in-situ investigations of the wires are performed in a scanning electron microscope, for which a new test rig was successfully installed. During electromigration, the development of voids on the cathode and hillocks on the anode side of the wire are observed. This behavior is studied in detail in this thesis. Electrical breakdown in the gold wires takes place due to the presence of slit-like voids perpendicular to the current direction. The void area grows linearly during the course of the experiments, and the electrical breakdown takes place when the total void area reaches a value of 2 % to 4 % of the total wire area. The influence of single voids on the electrical resistance during high current stressing is determined. The dependence of the electromigration behavior on the width and height as well as on the crystallinity and temperature of the gold wires is studied in detail. For high resolution imaging of the wires during the experiments, a special layout with arbitrary kinks is used. The dependence of electromigration effects on current density and on the influence of the measurement setup itself are also discussed in this thesis. When reversing the current direction, a reversible electromigration behavior is observed. Also, the lifetime of the wires grows considerably. According to the resistance data, a remarkable stabilization of the polycrystalline wires is observed during this experiments. Furthermore, it is possible to define an alternative sheet length according to the position of voids and hillocks in the wires. This leads also to the determination of the critical product for

  10. 50 K anomalies in superconducting MgB{sub 2} wires in copper and silver tubes

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Glowacki, B A [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom); Vickers, M E [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom)

    2002-02-01

    In situ and ex situ MgB{sub 2} wires were prepared by the powder-in-tube method. Copper and silver tubes were used as a cladding material. AC susceptibility measurements revealed a small anomalous decrease with onset around 50 K. This effect persisted also when the wires were ground into powders. Electron microscopy and x-ray studies were performed on copper clad samples. Spectroscopic measurements in a SEM showed that regions contained either Cu or Mg and B. X-ray diffraction gave the major crystalline phases as Cu, MgCu{sub 2} and MgB{sub 2}. Diffraction evidence for Cu substituting in the Mg position was inconclusive. (author)

  11. Characterization of silver-gallium nanowires for force and mass sensing applications

    International Nuclear Information System (INIS)

    Biedermann, Laura B; Reifenberger, Ronald G; Tung, Ryan C; Raman, Arvind; Yazdanpanah, Mehdi M; Cohn, Robert W

    2010-01-01

    We investigate the mechanical properties of cantilevered silver-gallium (Ag 2 Ga) nanowires using laser Doppler vibrometry. From measurements of the resonant frequencies and associated operating deflection shapes, we demonstrate that these Ag 2 Ga nanowires behave as ideal Euler-Bernoulli beams. Furthermore, radial asymmetries in these nanowires are detected through high resolution measurements of the vibration spectra. These crystalline nanowires possess many ideal characteristics for nanoscale force and mass sensing, including small spring constants (as low as 10 -4 N m -1 ), high frequency bandwidth with resonance frequencies in the 0.02-10 MHz range, small suspended mass (picograms), and relatively high Q-factors (∼2-50) under ambient conditions. We evaluate the utility of Ag 2 Ga nanowires for nanocantilever applications, including ultrasmall mass and high frequency bandwidth piconewton force detection.

  12. Two-step synthesis of silver selenide semiconductor with a linear magnetoresistance effect

    International Nuclear Information System (INIS)

    Yang, Fengxia; Xiong, Shuangtao; Liu, Fengxian; Han, Chong; Zhang, Duanming; Xia, Zhengcai

    2012-01-01

    A two-step synthesis method for polycrystalline β-silver selenide (β-Ag 2 Se) was developed. In the first step, nanopowder was prepared using a chemical conversion method at room temperature. In the second step, the nanopowder was compressed and then the bulk Ag 2 Se was fabricated by the solid-state sintering process. The crystalline phase and morphology were examined. The results showed that β-Ag 2 Se was fast fabricated at room temperature. The dense polycrystalline Ag-rich Ag 2 Se was synthesized successfully at 450 °C for 0.5 h under Argon flow. For the polycrystalline, the electronic properties and transverse magnetoresistance (TMR) in a pulsed magnetic field were investigated. The samples displayed n-type semiconducting behaviors and a critical temperature with a broaden temperature range of 140–150 K. Also, it presented a positive and nearly linear dependence on magnetic field H at H ≥ H c (crossover field) ranging from 2 to 20 T. Moreover, the linear dependence of TMR at strong field was non-saturating up to 35 T. Combining with the observation of morphology, it is thought that this unusual TMR effect was caused by slightly excess Ag. This new synthesis method provided a potential route to synthesize nonstoichiometric silver selenide. (paper)

  13. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    Energy Technology Data Exchange (ETDEWEB)

    Jegatheeswaran, S. [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India); Selvam, S. [Laser and Sensor Application Laboratory, Pusan National University, Busan 609735 (Korea, Republic of); Sri Ramkumar, V. [Deptartment of Environmental Biotechnology, School of Environmental, Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu (India); Sundrarajan, M., E-mail: sundrarajan@yahoo.com [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India)

    2016-05-15

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF{sub 4} ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  14. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    International Nuclear Information System (INIS)

    Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.

    2016-01-01

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF_4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  15. Halloysite nanotubes with immobilized silver nanoparticles for anti-bacterial application.

    Science.gov (United States)

    Jana, Subhra; Kondakova, Anastasiya V; Shevchenko, Svetlana N; Sheval, Eugene V; Gonchar, Kirill A; Timoshenko, Victor Yu; Vasiliev, Alexander N

    2017-03-01

    Halloysite nanotubes (HNTs) with immobilized silver (Ag) nanoparticles (NPs) were prepared by methods of wet chemistry and were characterized by using the transmission electron microscopy, x-ray diffraction, optical spectroscopy and experiments with E. coli bacteria in-vitro. It was found that Ag NPs with almost perfect crystalline structure and sizes from ∼9nm were mainly attached over the external surface of HNTs. The optical absorption measurement revealed a broad plasmonic resonance in the region of 400-600nm for HNTs with Ag NPs. The later samples exhibit bactericidal effect, which is more pronounced under illumination. A role of the plasmonic excitation of Ag NPs for their bioactive properties is discussed. The obtained results show that Ag NPs-decorated HNTs are promising agents for the antibacterial treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties.

    Science.gov (United States)

    Saravanakumar, Arthanari; Peng, Mei Mei; Ganesh, Mani; Jayaprakash, Jayabalan; Mohankumar, Murugan; Jang, Hyun Tae

    2017-09-01

    Low cost and eco-friendly green synthesis of silver nanoparticles (AgNPs) from silver nitrate (AgNO 3 ) using Prunus japonica leaves extract as reducing agent by a simple method at room temperature. The biosynthesized nanoparticles (NPs) were characterized by UV-Vis, tunneling electron microscopy (HR-TEM), scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectrophotometer (EDAX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In UV-Vis spectroscopy results, the λ max was observed at 441 nm. The AgNPs synthesized were spherical, hexagonal, and irregular in shapes. The EDAX and XRD spectrum confirmed the presence of silver ions and crystalline nature of synthesized AgNPs. FTIR showed the functional groups such as C = O, N-H and C-N groups involved in the reduction of Ag +  to Ag. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was performed and it showed the percentage inhibition in concentration-dependent manner. The synthesized AgNPs showed antibacterial activity against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Bacillus cereus to different extents and the higher activity was observed in Proteus vulgaris.

  17. A strategy to promote the electroactive platform adopting poly(o-anisidine)-silver nanocomposites probed for the voltammetric detection of NADH and dopamine.

    Science.gov (United States)

    Sangamithirai, D; Munusamy, S; Narayanan, V; Stephen, A

    2017-11-01

    A study on the voltammetric detection of NADH (β-nicotinamide adenine dinucleotide), Dopamine (DA) and their simultaneous determination is presented in this work. The electrochemical sensor was fabricated with the hybrid nanocomposites of poly(o-anisidine) and silver nanoparticles prepared by simple and cost-effective insitu chemical oxidative polymerization technique. The nanocomposites were synthesized with different (w/w) ratios of o-anisidine and silver by increasing the amount of o-anisidine in each, by keeping silver at a fixed quantity. The XRD patterns revealed the semi-crystalline nature of poly(o-anisidine) and the face centered cubic structure of silver. The presence of silver in its metallic state and the formation of nanocomposite were established by XPS analysis. Raman studies suggested the presence of site-selective interaction between poly(o-anisidine) and silver. HRTEM studies revealed the formation of polymer matrix type nanocomposite with the embedment of silver nanoparticles. The sensing performance of the materials were studied via cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. Fabricated sensor with 3:1 (w/w) ratio of poly(o-anisidine) and silver exhibited good catalytic activity towards the detection of NADH and DA in terms of potential and current response, when compared to others. Several important electrochemical parameters regulating the performance of the sensor have been evaluated. Under the optimum condition, differential pulse voltammetry method exhibited the linear response in the range of 0.03 to 900μM and 5 to 270μM with a low detection limit of 0.006μM and 0.052μM for NADH and DA, respectively. The modified electrodes exhibited good sensitivity, stability, reproducibility and selectivity with well-separated oxidation peaks for NADH and DA in the simultaneous determination of their binary mixture. The analytical performance of the nanocomposite as an electrochemical sensor was also

  18. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.

    Science.gov (United States)

    Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J

    2016-08-24

    We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive

  19. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Katrine Bilberg

    2012-01-01

    Full Text Available The influence of water chemistry on characterised polyvinyl pyrrolidone- (PVP- coated silver nanoparticles (81 nm was investigated. NaCl solution series of 100–800 mg L−1 lead to initial and temporal increase in nanoparticles size, but agglomeration was limited. pH variation (5–8 had only minor influence on the hydrodynamic particle size. Acute toxicity of nanosivler to zebrafish (Danio rerio was investigated in a 48-hour static renewal study and compared with the toxicity of silver ions (AgNO3. The nanosilver and silver ion 48-hour median lethal concentration (LC50 values were 84 μg L−1 and 25 μg L−1, respectively. To investigate exposure-related stress, the fish behaviour was observed visually after 0, 3, 6, 12, 24, 27, 30, and 48 hours of both nanosilver and ionic silver treatments. These observations revealed increased rate of operculum movement and surface respiration after nanosilver exposure, suggesting respiratory toxicity. The present study demonstrates that silver nanoparticles are lethal to zebrafish.

  20. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  1. Genetics Home Reference: Russell-Silver syndrome

    Science.gov (United States)

    ... Other Names for This Condition RSS Silver-Russell dwarfism Silver-Russell syndrome SRS Related Information How are ... M, Begemann M, Elbracht M. Epigenetic and genetic diagnosis of Silver-Russell syndrome. Expert Rev Mol Diagn. ...

  2. Nucleic acid nanomaterials: Silver-wired DNA

    Science.gov (United States)

    Auffinger, Pascal; Ennifar, Eric

    2017-10-01

    DNA double helical structures are supramolecular assemblies that are typically held together by classical Watson-Crick pairing. Now, nucleotide chelation of silver ions supports an extended silver-DNA hybrid duplex featuring an uninterrupted silver array.

  3. Synthesis of novel bis(perfluorophenyl azides) coupling agents: Evaluation of their performance by crosslinking of poly(ethylene oxide)

    KAUST Repository

    Mehenni, Hakim

    2011-11-01

    Novel bis(perfluorophenyl azides) coupling agents, containing spacer arms from ethylene or ethylene glycol subunits, were successfully synthesized. Nitrenes photogenerated from these novel bis(PFPA) coupling agents were applied successfully to the cross-linking of poly(ethylene oxide) (PEO10,000) in either aqueous medium or at the solid state, thus, we demonstrated the potential of these bis(PFPA) molecules as promising coupling agents in surface engineering. © 2011 Elsevier Ltd. All rights reserved.

  4. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  5. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  6. Silver precipitation from electrolytic effluents

    International Nuclear Information System (INIS)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  7. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    Science.gov (United States)

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  8. Silver doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 at% to 4.32 at% for steel and from 3.04 at% to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficacy (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using scratch test. The antibacterial efficacy changed with silver doping up to 99.9 %. Our investigation was focused on minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  9. Silver-doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316 L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 to 4.32 at% for steel and from 3.04 to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficiency (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using a scratch test. The antibacterial efficiency changed with silver doping up to 99.9 %. Our investigation was focused on the minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness. (paper)

  10. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  11. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  12. Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms

    Directory of Open Access Journals (Sweden)

    D. Tomacheski

    2017-12-01

    Full Text Available There is a growing consumer market for products that proclaim to decrease microorganism counts to prevent infections. Most of these products are loaded with silver in its ionic or nanoparticle form. Through use or during production, these particles can find their way into the soil and cause an impact in microbial and plant communities. This study aims to evaluate the impact of silver based particles in Avena byzantina (oat, Lactuca sativa (lettuce and Raphanus sativus (radish development and in the soil microorganism abundance. Oat, lettuce and radish plants were cultivated in soil contaminated with particles of bentonite organomodified with silver (Ag+_bentonite, silver phosphate glass (Ag+_phosphate and silver nanoparticles adsorbed on fumed silica (AgNp_silica. Plant development and microorganisms’ abundance were evaluated. To some degree, Ag+_bentonite impacted plants development and AgNp_silica causes an adverse effect on microbial abundance. The impact on plants and microorganisms was contradictory and varied according to soil and particles physicochemical characteristics.

  13. Synthesis of silver nanoparticles from stem bark of Cochlospermum religiosum (L.) Alston: an important medicinal plant and evaluation of their antimicrobial efficacy

    Science.gov (United States)

    Sasikala, A.; Linga Rao, M.; Savithramma, N.; Prasad, T. N. V. K. V.

    2015-10-01

    The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals. Herein, we report on rapid biosynthesis of silver nanoparticles (SNPs) from aqueous stem bark extract of Cochlospermum religiosum a medicinal plant. The reduced silver nanoparticles were characterized by using UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis, atomic force microscopy, and Fourier transform infrared (FT-IR). The UV-Visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 445 nm, XRD showed that the particles are crystalline in nature, with a face-centered cubic structure and the SEM images showed that the spherical-shaped silver nanoparticles were observed and the size range was found to be 20-35 nm. FT-IR spectroscopy analysis revealed that carbohydrate, polyphenols, and protein molecules were involved in the synthesis and capping of silver nanoparticles. These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. Cochlospermum religiosum aqueous stem bark extract of SNPs showed highest toxicity to Staphylococcus followed by Pseudomonas, Escherichia coli and Bacillus and lowest toxicity towards Proteus. Whereas in fungal species highest inhibition zone against Aspergillus flavus followed by Rhizopus, Fusarium, and Curvularia, and minimum inhibition zone was observed against Aspergillus niger species. The outcome of this study could be useful for the development of value added products from indigenous medicinal plants of India for nanotechnology-based biomedical applications.

  14. Silver powder effectiveness and mechanism of silver paste on silicon solar cells

    International Nuclear Information System (INIS)

    Tsai, Jung-Ting; Lin, Shun-Tian

    2013-01-01

    Highlights: ► Optimizing the silver paste in 80–85 wt.%. ► Optimizing its particle size in 1–1.5 μm spherical powder. ► The sheet resistance is 4 mΩ/sq during the 860 °C sintering process. ► Redox reaction cause Ag crystallites to grow on the interface. ► A thin layer of silicon oxide (75–150 nm) was formed. - Abstract: Since the silver paste plays a major role in the mass production of silicon solar cells, this work has succeeded in optimizing the silver paste in 80–85 wt.% and optimizing its particle size in 1–1.5 μm spherical powder. As the firing temperature is increased, the growth trend of silver grain is improved. The result of this work has showed that the lowest sheet resistance is 4 mΩ/sq during the 860 °C sintering process. The scanning electron microscope (SEM) observation has showed that the formation of silver oxide is formed during the melting process of glass and triggered redox reaction of Ag crystallites to grow on the interface. It has proven by transmission electron microscope (TEM) that a thin layer of silicon oxide (75–150 nm) was formed, respectively.

  15. Effets of Silver Salt Concentrations on Green Synthesis of Silver Nanoparticles Using the Plant Nigella Saliva

    Directory of Open Access Journals (Sweden)

    M.R. Saeri

    2016-03-01

    Full Text Available Bio-inspired silver nanoparticles were synthesized with the aid of a novel method, using leaves of the plant Nigella sativa. After drying the leaves in air, they were first sweltered in boiling distilled water and the liquid was filtered subsequently. The result was the brothused to reduce solutions including various concentrations of silver nitrate in a proper amount of pH. The displayed UV–visible spectra identified formation of silver nanoparticles whenever the colorless initial acclimated mixture turned brown. The centrifuged powder samples were examined using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (FESEM and energy dispersive X-ray diffraction analysis (EDX methods. The results clearly revealed that the final particles of precipitated powder are high purity agglomerates of silver nanoparticles. Besides, the effects of various amounts of the silver salt on particle size of nano silver were studied, using a particle size analyzer. FTIR results also indicated the role of different functional groups in the synthetic process.

  16. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Lori [National Center for Chemical Characterization of Materials, Bhabha Atomic Research Centre, ECIL-PO, Hyderabad 500 062 (India); Arunachalam, J., E-mail: aruncccm@rediffmail.com [National Center for Chemical Characterization of Materials, Bhabha Atomic Research Centre, ECIL-PO, Hyderabad 500 062 (India)

    2011-09-15

    Highlights: {yields} We report green synthetic route for the production crystalline silver nanoparticles using garlic as both reducing and stabilizing agent. {yields} Synthesis has been achieved by exposing the solution mixture of [Ag(NH{sub 3}){sub 2}]{sup +} and aqueous garlic extract under sunlight. {yields} Role of light in the synthesis process has been investigated and is discussed in detail. {yields} The antibacterial effect of the synthesized silver nanoparticles has been assessed against both Gram classes of bacteria. {yields} Synthesized silver colloidal solutions were found to be stable for a very long period and retained their bactericidal potential. - Abstract: A green synthetic route for the production of highly stable silver nanoparticles using aqueous garlic extract is being reported for the first time. The silver nanoparticles were synthesized by exposing a mixture of 0.1 M [Ag(NH{sub 3}){sub 2}]{sup +} and diluted aqueous garlic extract under bright sunlight for 15 min. The garlic extract components served as both reducing and capping agents in the synthesis of silver nanoparticles while the sunlight acted as catalyst in the synthesis process. The synthesized nanoparticles were characterized using UV-visible (UV-vis) spectrophotometer; transmission electron microscopy (TEM), glancing angle X-ray diffraction (GA-XRD) and Fourier transform infra red (FTIR) spectrometry. The nanoparticles were found to be poly-dispersed in nature, spherical in shape and of 7.3 {+-} 4.4 nm in size. The FTIR analysis was suggestive of proteins as capping agents around the nanoparticles. The yield of synthesized nanoparticles was calculated to be approximately 80% by dry weight and 85% ICP-AES method. The synthesized silver nanoparticles exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains, as measured using well diffusion assay. Most importantly, the silver colloidal solutions thus synthesized were found to be stable for

  17. Synthesis and characterization of monodispersed silver nanoparticles

    Science.gov (United States)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  18. Synthesis and characterization of monodispersed silver nanoparticles

    International Nuclear Information System (INIS)

    Christy, A Jegatha; Umadevi, M

    2012-01-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO 3 ), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM). (paper)

  19. RNA aptamers targeted for human αA-crystallin do not bind αB-crystallin, and spare the α-crystallin domain.

    Science.gov (United States)

    Mallik, Prabhat K; Shi, Hua; Pande, Jayanti

    2017-09-16

    The molecular chaperones, α-crystallins, belong to the small heat shock protein (sHSP) family and prevent the aggregation and insolubilization of client proteins. Studies in vivo have shown that the chaperone activity of the α-crystallins is raised or lowered in various disease states. Therefore, the development of tools to control chaperone activity may provide avenues for therapeutic intervention, as well as enable a molecular understanding of chaperone function. The major human lens α-crystallins, αA- (HAA) and αB- (HAB), share 57% sequence identity and show similar activity towards some clients, but differing activities towards others. Notably, both crystallins contain the "α-crystallin domain" (ACD, the primary client binding site), like all other members of the sHSP family. Here we show that RNA aptamers selected for HAA, in vitro, exhibit specific affinity to HAA but do not bind HAB. Significantly, these aptamers also exclude the ACD. This study thus demonstrates that RNA aptamers against sHSPs can be designed that show high affinity and specificity - yet exclude the primary client binding region - thereby facilitating the development of RNA aptamer-based therapeutic intervention strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Improving the Vase life of Cut Carnation ‘Tempo’ (Dianthus carryophyllusL. Flower by Silver Thiosulphate and Silver Nano-Particles

    Directory of Open Access Journals (Sweden)

    D. Hashemabadi

    2014-08-01

    Full Text Available Nanometer-sized silver particle can be act as an anti-microbial compound. Thus, in this research, the efficacy of silver thiosulphate and silver nano-particles as antimicrobial agents in extending the vase-life of cut carnation flowers was evaluated. A factorial experiment carried out based on randomized completely blocks design with two factors: silver thiosulphate (0, 0.1, 0.2 and 0.3 mM and silver nano-particles (0, 5, 10 and 15 mg/L. Mean comparison of the data showed that the combined treatments of 0.3 mM silver thiosulphate + 15 mg/L silver nano-particles had the highest vase life, water uptake and super oxide dismutase enzyme. Thus, the mentioned above treatment was proposed to increase prolong vase life and improvement of water relations and control of stem end blockage. Based to results of this study, silver thiosulphate and silver nano-particles can be used for increasing postharvest longevity of cut carnation "Tempo".

  1. Study of the effect of the silver content on the structural and mechanical behavior of Ag–ZrCN coatings for orthopedic prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Ferreri, I., E-mail: isabelferreri@gmail.com [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); CEB, Centre for Biological Engineering, University of Minho, Campus of Gualtar, 4700-057 (Portugal); Lopes, V. [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Calderon V, S. [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Tavares, C.J. [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Carvalho, S. [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal)

    2014-09-01

    With the increase of elderly population and health problems that are arising nowadays, hip joint prostheses are being widely used. However, it is estimated that 20% of hip replacement surgeries simply fails after few years, mainly due to wear fatigue. Bearing this in mind, this work reports on the development of new coatings that are able to sustain long and innocuous life inside the patient, which will confer to the usual biomaterials improved physical, mechanical and tribological properties. In particular, the development of multifunctional coatings based on Ag-ZrCN, prepared by DC reactive magnetron sputtering using two targets, Zr and a modified Zr target, in an Ar + C{sub 2}H{sub 2} + N{sub 2} atmosphere. Silver pellets were placed in the erosion area of the alloyed Zr target in order to obtain a silver content up to 8 at.%. The structural results obtained by x-ray diffraction show that the coatings crystallize in a NaCl crystal structure typical of ZrC{sub 1-x}N{sub x}. The increase of Ag content promoted the formation of an additional a-CN{sub x} amorphous phase, besides a silver crystalline phase. Hardness is decreasing, as increasing silver content. Despite the low thicknesses, adhesion values (L{sub C3}) can be considered as good. Dynamic fatigue results suggest that these coatings system can be a real asset in terms of mechanical properties, by improving the performance of usual Stainless Steel 316 L biomaterials. - Highlights: • ZrCN, silver and carbon based amorphous phases, form the structure of the coatings. • Ag–ZrCN coatings have a high capacity to withstand an impact load without fracturing. • Silver incorporation reduces the fatigue failures of the coatings. • The films possess mechanical resistance and biocompatibility, required in prostheses.

  2. Carboxylate and amino group coated silver nanoparticles as joining materials for copper-to-copper silver joints.

    Science.gov (United States)

    Oestreicher, A; Röhrich, T; Lerch, M

    2012-12-01

    Organic silver complexes are introduced where silver is linked either with a carboxyl group or with an amino group. Upon heating, nanoparticles are generated if the respective ligands are long enough to act as stabilizing agents in the nanoparticulate regime. With decomposition and volatilization of the organic material, the sintering of silver occurs. The thermal characteristics of the carboxylates silver-n-octanoate, silver-n-decanoate, and AgOOC(CH2OCH2)2CH2OCH3 are compared with silver-n-alkylamines (n = 8, 9, and 12), and their thermal behavior is discussed based on thermogravimetry (TG) measurements. The consecutive stages of a metallization process are addressed based on the properties of AgOOC(CH2OCH2)2CH2OCH3, and the usable effects of the individual phases of this metal organic compound are analyzed by cross-sectional scanning electron microscope (SEM) images of silver joints. Selection criteria are addressed based on the thermal behavior. A mechanism for the joining process is proposed, considering formation and sintering of the nanoparticles. It was found that the bulk material can be used for low-temperature joining processes. Strong adherence to copper as a basic material can be achieved.

  3. Stabilization of antimicrobial silver nanoparticles by a polyhydroxyalkanoate obtained from mixed bacterial culture.

    Science.gov (United States)

    Castro-Mayorga, J L; Martínez-Abad, A; Fabra, M J; Olivera, Catarina; Reis, M; Lagarón, J M

    2014-11-01

    The incorporation of antimicrobials into polymer matrices is a promising technology in the food packaging and biomedical areas. Among the most widely used antimicrobials, silver nanoparticles (AgNPs) have emerged as one of the most researched technologies to prevent microbial outbreaks. However, it is known that AgNPs are rather unstable and present patterns of agglomeration that might limit their application. In this work, AgNPs were produced by chemical reduction in suspensions of an unpurified poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) which was previously obtained from a mixed culture fermentation using a synthetic medium mimicking fermented cheese whey. The synthesis of AgNPs was carried out within the unpurified PHBV suspension (in situ) and by physical mixing (mix). The stability of crystalline and spherical nanoparticles (7±3nm) obtained in situ was found to be stable during at least 40 days. The results suggest that the unpurified PHBV appears to be a very efficient capping agent, preventing agglomeration and, thereby, stabilizing successfully the silver nanoparticles. The in situ obtained AgNP-PHBV materials were also found to exhibit a strong antibacterial activity against Salmonella enterica at low concentration (0.1-1ppm). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    Directory of Open Access Journals (Sweden)

    Kuppan Gokulan

    2017-04-01

    Full Text Available Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1 the presence of silver resistance genes in tested bacteria; or 2 lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]. This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella.

  5. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data.

    Science.gov (United States)

    Gokulan, Kuppan; Williams, Katherine; Khare, Sangeeta

    2017-04-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria ; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella .

  6. Exploring the flexible chemistry of 4-fluoro-3-nitrophenyl azide for biomolecule immobilization and bioconjugation.

    Science.gov (United States)

    Kumar, Saroj; Kumar, Dileep; Ahirwar, Rajesh; Nahar, Pradip

    2016-10-01

    Bioconjugation and functionalization of polymer surfaces are two major tasks in materials chemistry which are accomplished using a variety of coupling agents. Immobilization of biomolecules onto polymer surfaces and the construction of bioconjugates are essential requirements of many biochemical assays and chemical syntheses. Different linkers with a variety of functional groups are used for these purposes. Among them, the benzophenones, aryldiazirines, and arylazides represent the most commonly used photolinker to produce the desired chemical linkage upon their photo-irradiation. In this review, we describe the versatile applications of 4-fluoro-3-nitrophenyl azide, one of the oldest photolinkers used for photoaffinity labeling in the late 1960s. Surprisingly, this photolinker, historically known as 1-fluoro-2-nitro-4-azidobenzene (FNAB), has remained unexplored for a long time because of apprehension that FNAB forms ring-expanded dehydroazepine as a major product and hence cannot activate an inert polymer. The first evidence of photochemical activation of an inert surface by FNAB through nitrene insertion reaction was reported in 2001, and the FNAB-activated surface was found to conjugate a biomolecule without any catalyst, reagent, or modification. FNAB has distinct advantages over perfluorophenyl azide derivatives, which are contemporary nitrene-generating photolinkers, because of its simple, single-step preparation and ease of thermochemical and photochemical reactions with versatile polymers and biomolecules. Covering these aspects, the present review highlights the flexible chemistry of FNAB and its applications in the field of surface engineering, immobilization of biomolecules such as antibodies, enzymes, cells, carbohydrates, oligonucleotides, and DNA aptamers, and rapid diagnostics. Graphical Abstract An overview of the FNAB-engineered activated polymer surfaces for covalent ligation of versatile biomolecules.

  7. Silver as antibacterial towards Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Simone eBelluco

    2016-03-01

    Full Text Available Listeria monocytogenes is a serious foodborne pathogen that can contaminate food during processing and can grow during food shelf-life. New types of safe and effective food contact materials embedding antimicrobial agents, like silver, can play an important role in the food industry. The present work aimed at evaluating the in vitro growth kinetics of different strains of L. monocytogenes in the presence of silver, both in its ionic and nano form. The antimicrobial effect was determined by assaying the number of culturable bacterial cells, which formed colonies after incubation in the presence of silver nanoparticles (AgNPs or silver nitrate (AgNO3. Ionic release experiments were performed in parallel. A different reduction of bacterial viability between silver ionic and nano forms was observed, with a time delayed effect exerted by AgNPs. An association between antimicrobial activity and ions concentration was shown by both silver chemical forms, suggesting the major role of ions in the antimicrobial mode of action.

  8. High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays.

    Science.gov (United States)

    Luan, Chuhao; Shao, Yang; Lu, Qi; Gao, Shenghan; Huang, Kai; Wu, Hui; Yao, Kefu

    2018-05-17

    An efficient and selective catalyst is in urgent need for carbon dioxide electroreduction and silver is one of the promising candidates with affordable costs. Here we fabricated large-scale vertically standing Ag nanowire arrays with high crystallinity and electrical conductivity as carbon dioxide electroreduction catalysts by a simple nanomolding method that was usually considered not feasible for metallic crystalline materials. A great enhancement of current densities and selectivity for CO at moderate potentials was achieved. The current density for CO ( j co ) of Ag nanowire array with 200 nm in diameter was more than 2500 times larger than that of Ag foil at an overpotential of 0.49 V with an efficiency over 90%. The origin of enhanced performances are attributed to greatly increased electrochemically active surface area (ECSA) and higher intrinsic activity compared to those of polycrystalline Ag foil. More low-coordinated sites on the nanowires which can stabilize the CO 2 intermediate better are responsible for the high intrinsic activity. In addition, the impact of surface morphology that induces limited mass transportation on reaction selectivity and efficiency of nanowire arrays with different diameters was also discussed.

  9. Effect of Synthesis Parameters on the Structure and Magnetic Properties of Magnetic Manganese Ferrite/Silver Composite Nanoparticles Synthesized by Wet Chemistry Method

    DEFF Research Database (Denmark)

    Huy, L.T.; Tam, L.T.; Phan, V.N.

    2016-01-01

    In the present work, magnetic manganese ferrite/silver (MnFe2O4-Ag) composite nanoparticles were synthesized by wet chemistry method. This synthesis process consists of two steps: first, the seed of manganese ferrite nanoparticles (MnFe2O4 NPs) was prepared by a coprecipitationmethod; second......, growth of silver nanoparticles (AgNPs) on the MnFe2O4 seed by modified photochemical reaction. We have conducted systematically the effects of synthesis parameters such as pH value, synthesis time, precursor salts concentration, mass ratio and stabilizing agents on the structure and magnetic properties......-prepared MnFe2O4-Ag magnetic nanocomposites display excellent properties of high crystallinity, long-term aggregation stability in aqueous medium, large saturation magnetization in the range of 15-20 emu/g, and small sizes of Ag-NPs similar to 20 nm. These exhibited properties made the MnFe2O4-Ag...

  10. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

    International Nuclear Information System (INIS)

    Shams, Gholamabbas; Ranjbar, Morteza; Amiri, Aliasghar

    2013-01-01

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant’s productions for human consumptions.

  11. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Gholamabbas, E-mail: ghs@iaushiraz.net; Ranjbar, Morteza [Shiraz Branch, Islamic Azad University, Department of Physics (Iran, Islamic Republic of); Amiri, Aliasghar [Shiraz Branch, Islamic Azad University, Department of Chemistry (Iran, Islamic Republic of)

    2013-05-15

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant's productions for human consumptions.

  12. Synthesis and characterization of the silver methacrylate and its polymerization with gamma radiation

    International Nuclear Information System (INIS)

    Figueroa de Paz, Y. M.

    2014-01-01

    One of the traditional objectives in research has been the development of new and useful materials that combine the properties of polymers with metals. Synthesis of monomers containing metal, followed by a polymerization process, is a method to introduce metal ions in the structure of a polymer, and the gamma radiation was easily applied to initiate polymerization. The coordination polymers have high insolubility, which is a general problem of these materials, besides the lack of structural information available. Also, due to the difficulty of obtaining single crystals, it has hindered the identification of the structures of some coordination polymers, requiring the use of indirect methods for structural characterization. In this work the synthesis of silver poly-methacrylate (PMAAg), was performed using the gamma radiation as polymerization initiator, having as precursor to silver methacrylate monomer (MAAg). The combination of spectroscopic methods revealed structural changes in the coordination polymers. With scanning electron microscopy, it was observed that the morphology of the monomer and its polymers is fiber, which grows with increasing radiation dose; furthermore, this increase in size is related to Bet analysis result, since the monomer has a bigger superficial area to the irradiated polymers. In monomer and irradiated polymers the crystalline structure CCC was observed by X-ray diffraction. By thermogravimetric analysis the decomposition temperature of the products was determined, finding around 150 degrees C. The infrared spectroscopy confirmed the silver methacrylate polymerization, as with increasing radiation dose, also increases the degree of polymerization; likewise the form of coordination of the monomer was determined and its irradiated polymers which corresponds to a bi-dentate chelate, confirmed by X-ray photoelectron spectroscopy. (Author)

  13. Rational design of azide-bridged bimetallic complexes. Crystal structure and magnetic properties of Fe(III)MFe(III) (M = Ni(II) and Cu(II)) trinuclear species.

    Science.gov (United States)

    Colacio, Enrique; Costes, Jean-Pierre; Domínguez-Vera, José M; Maimoun, Ikram Ben; Suárez-Varela, José

    2005-01-28

    The first examples of azide-bridged bimetallic trinuclear complexes ([M(cyclam)][FeL(N3)(mu1,5-N3)]2) (H2L = 4,5-dichloro-1,2-bis(pyridine-2-carboxamido) benzene) have been structurally and magnetically characterized.

  14. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    International Nuclear Information System (INIS)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio

    2014-01-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag + ) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg −1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm

  15. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A., E-mail: joseph.caruso@uc.edu; Landero-Figueroa, Julio

    2014-10-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag{sup +}) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg{sup −1} detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.

  16. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre

    1978-01-01

    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  17. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion.

    Science.gov (United States)

    Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang

    2007-03-01

    A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.

  18. A high-temperature, high-pressure, silver-silver chloride reference electrode

    International Nuclear Information System (INIS)

    King, F.; Bailey, M.G.; Clarke, C.F.; Ikeda, B.M.; Litke, C.D.; Ryan, S.R.

    1989-05-01

    A high-temperature, high-pressure, silver-silver chloride reference electrode is described. This report is meant to serve as a user's guide to the experimentalist. Consequently, the design and construction of the electrode are dealt with in some detail. The problems that may be encountered, along with their possible causes and remedies, are also discussed. Conversion factors are given for both internal and external reference electrodes, so that measured potentials can be related to the standard hydrogen electrode scale

  19. Preparation of silver nanoparticles at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mini, E-mail: mishramini5@gmail.com [Centre of Environmental Science, Department of Botany, University of Allahabad, Allahabad, U.P. (India); Chauhan, Pratima, E-mail: mangu167@yahoo.co.in [Department of Physics, University of Allahabad, Allahabad U.P. (India)

    2016-04-13

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  20. Preparation of silver nanoparticles at low temperature

    International Nuclear Information System (INIS)

    Mishra, Mini; Chauhan, Pratima

    2016-01-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  1. Toxicological Assessment of a Lignin Core Nanoparticle Doped with Silver as an Alternative to Conventional Silver Core Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cassandra E. Nix

    2018-05-01

    Full Text Available Elevated levels of silver in the environment are anticipated with an increase in silver nanoparticle (AgNP production and use in consumer products. To potentially reduce the burden of silver ion release from conventional solid core AgNPs, a lignin-core particle doped with silver ions and surface-stabilized with a polycationic electrolyte layer was engineered. Our objective was to determine whether any of the formulation components elicit toxicological responses using embryonic zebrafish. Ionic silver and free surface stabilizer were the most toxic constituents, although when associated separately or together with the lignin core particles, the toxicity of the formulations decreased significantly. The overall toxicity of lignin formulations containing silver was similar to other studies on a silver mass basis, and led to a significantly higher prevalence of uninflated swim bladder and yolk sac edema. Comparative analysis of dialyzed samples which had leached their loosely bound Ag+, showed a significant increase in mortality immediately after dialysis, in addition to eliciting significant increases in types of sublethal responses relative to the freshly prepared non-dialyzed samples. ICP-OES/MS analysis indicated that silver ion release from the particle into solution was continuous, and the rate of release differed when the surface stabilizer was not present. Overall, our study indicates that the lignin core is an effective alternative to conventional solid core AgNPs for potentially reducing the burden of silver released into the environment from a variety of consumer products.

  2. Use of bioreporters and deletion mutants reveals ionic silver and ROS to be equally important in silver nanotoxicity.

    Science.gov (United States)

    Joshi, Nimisha; Ngwenya, Bryne T; Butler, Ian B; French, Chris E

    2015-04-28

    The mechanism of antibacterial action of silver nanoparticles (AgNp) was investigated by employing a combination of microbiology and geochemical approaches to contribute to the realistic assessment of nanotoxicity. Our studies showed that suspending AgNp in media with different levels of chloride relevant to environmental conditions produced low levels of ionic silver thereby suggesting that dissolution of silver ions from nanoparticulate surface could not be the sole mechanism of toxicity. An Escherichia coli based bioreporter strain responsive to silver ions together with mutant strains of E. coli lacking specific protective systems were tested against AgNp. Deletion mutants lacking silver ion efflux systems and resistance mechanisms against oxidative stress showed an increased sensitivity to AgNp. However, the bioreporter did not respond to silver nanoparticles. Our results suggest that oxidative stress is a major toxicity mechanism and that this is at least partially associated with ionic silver, but that bulk dissolution of silver into the medium is not sufficient to account for the observed effects. Chloride ions do not appear to offer significant protection, indicating that chloride in receiving waters will not necessarily protect environmental bacteria from the toxic effects of nanoparticles in effluents. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  4. Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying; Jiang, Yongyuan, E-mail: jiangyy@hit.edu.cn [Harbin Institute of Technology, Department of Physics (China)

    2015-01-15

    We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

  5. Ink composition for making a conductive silver structure

    Science.gov (United States)

    Walker, Steven B.; Lewis, Jennifer A.

    2016-10-18

    An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in the ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.

  6. Diameter-dependent coloration of silver nanowires

    International Nuclear Information System (INIS)

    Stewart, Mindy S; Qiu Chao; Jiang Chaoyang; Kattumenu, Ramesh; Singamaneni, Srikanth

    2011-01-01

    Silver nanowires were synthesized with a green method and characterized with microscopic and diffractometric methods. The correlation between the colors of the nanowires deposited on a solid substrate and their diameters was explored. Silver nanowires that appear similar in color in the optical micrographs have very similar diameters as determined by atomic force microscopy. We have summarized the diameter-dependent coloration for these silver nanowires. An optical interference model was applied to explain such correlation. In addition, microreflectance spectra were obtained from individual nanowires and the observed spectra can be explained with the optical interference theory. This work provides a cheap, quick and simple screening method for studying the diameter distribution of silver nanowires, as well as the diameter variations of individual silver nanowires, without complicated sample preparation.

  7. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  8. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    OpenAIRE

    Kuppan Gokulan; Katherine Williams; Sangeeta Khare

    2017-01-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysi...

  9. Studying the morphological features of plasma treated silver and PEGylated silver nanoparticles: antibacterial activity

    Science.gov (United States)

    Waseem, M.; Awan, T.; Yasin, H. M.; Rehman, N. U.

    2018-03-01

    A strategy to treat the silver and PEGylated silver nanoparticles with plasma was being purposed. Oil in water (o/w) microemulsion method was used for the synthesis of Ag nanoparticles (AgNPs). Polyethylene glycol (PEG) having molecular weight 600 was used to coat the surface of AgNPs. Optical emission spectroscopy (OES) was used to characterize the plasma and it is noted that plasma treatment is useful to modify the structural characteristic of silver nanoparticles. The nanoparticles were treated with helium-oxygen mixture plasma, generated in plasma needle at atmospheric pressure. Both AgNPs and PEGylated AgNPs before and after plasma treatment were characterized by x-rays diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The crystallite size of silver nanoparticles after the treatment of plasma decreases from 71 nm to 27 nm. The SEM micrographs show that the size of Ag nanoparticles was nearly 118 nm whereas the thickness of the silver needle was around 135 nm. All the characteristics IR bands associated to the silver nanoparticles were detected. The FTIR spectrum also support the accumulation of OH radicals in the plasma treated samples. The samples before and after plasma treatment were screened against Gram positive (Bacillus Subtilis and Staphylococcus Aureus) and Gram negative (Escherichia Coli and Pseudomonas Aeruginosa) bacteria. The promising response was detected when plasma treated PEGylated AgNPs was tested against bacterial strains.

  10. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  11. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  12. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  13. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat.

    Science.gov (United States)

    Gallocchio, Federica; Cibin, Veronica; Biancotto, Giancarlo; Roccato, Anna; Muzzolon, Orietta; Carmen, Losasso; Simone, Belluco; Manodori, Laura; Fabrizi, Alberto; Patuzzi, Ilaria; Ricci, Antonia

    2016-06-01

    Migration of nanomaterials from food containers into food is a matter of concern because of the potential risk for exposed consumers. The aims of this study were to evaluate silver migration from a commercially available food packaging containing silver nanoparticles into a real food matrix (chicken meat) under plausible domestic storage conditions and to test the contribution of such packaging to limit food spoilage bacteria proliferation. Chemical analysis revealed the absence of silver in chicken meatballs under the experimental conditions in compliance with current European Union legislation, which establishes a maximum level of 0.010 mg kg(-1) for the migration of non-authorised substances through a functional barrier (Commission Regulation (EU) No. 10/2011). On the other hand, microbiological tests (total microbial count, Pseudomonas spp. and Enterobacteriaceae) showed no relevant difference in the tested bacteria levels between meatballs stored in silver-nanoparticle plastic bags or control bags. This study shows the importance of testing food packaging not only to verify potential silver migration as an indicator of potential nanoparticle migration, but also to evaluate the benefits in terms of food preservation so as to avoid unjustified usage of silver nanoparticles and possible negative impacts on the environment.

  14. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  15. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid

    International Nuclear Information System (INIS)

    An Jing; Wang Desong; Luo Qingzhi; Yuan Xiaoyan

    2009-01-01

    Uniform silver nanoparticles and silver/polystyrene core-shell nanoparticles were successfully synthesized in a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM].BF 4 ). [BMIM].BF 4 plays a protective role to prevent the nanoparticles from aggregation during the preparation process. Transmission electron micrographs confirm that both silver nanoparticles and core-shell nanoparticles are regular spheres with the sizes in the range of 5-15 nm and 15-25 nm, respectively. The X-ray diffraction analysis reveals the face-centered cubic geometry of silver nanoparticles. The as-prepared nanoparticles were also characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. In addition, antimicrobial activities against E. coli and S. aureus were studied and the results show that both silver nanoparticles and core-shell nanoparticles possess excellent antimicrobial activities. The antimicrobial mechanism of the as-prepared nanoparticles was discussed.

  16. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  17. Magnetic resonance studies on the copper site of dopamine β-monooxygenase in the presence of cyanide and azide anions

    International Nuclear Information System (INIS)

    Obata, A.; Tanaka, H.; Kawazura, H.

    1987-01-01

    In order to elucidate the coordination state of water molecules in the Cu(II) site of dopamine [(3,4-dihydroxyphenyl)ethylamine] β-monooxygenase, measurements of the paramagnetic 1 H nuclear magnetic relaxation rate of solvent water in the enzyme solution containing cyanide or azide as an exogenous ligand were carried out to obtain the values of intrinsic paramagnetic relaxation rate decrements R/sub p/ 1 and R/sub p/ 2 for the ligand-enzyme 1:1 and 2:1 complexes, respectively. R/sub p/ 1 (percent) values were 53 (pH 5.5) and 52 (pH 7.0) for cyanide and 38 (pH 5.5) and 32 (pH 7.0) for azide, while R/sub p/ 2 (percent) values were 98 (pH 5.5) and 96 (pH 7.0) for azide. Although no R/sub p/ 2 values for cyanide were obtained because of its reducing power at the Cu(II) site, the R/sub p/ 1 and R/sub p/ 2 values obtained above prove that the Cu(II) center has two coordinated water molecules that are exchangeable for exogenous ligands at either pH. Supporting evidence was provided by electron paramagnetic resonance (EPR) titration, in which the enzyme solution containing cyanide-enzyme (1:1) complex in an equal proportion to uncomplexed enzyme gave an observed paramagnetic relaxation rate decrement, R/sub p/, of 23%. Another characteristic of the R/sub p/ 1 and R/sub p/ 2 values was their invariability with respect to pH, indicating that the three-dimensional structure of the Cu(II) site is pH-invariant within the range examined. Binding constants of ligand to enzyme K/sub b/ 1 and K/sub b/ 2 for 1:1 and 2:1 complex formation, respectively, were also determined through an analysis of the R/sub p/ values; it was found that K/sub b/ 1 was larger than K/sub b/ 2 irrespective of pH. On the basis of these results, together with the axial-symmetric EPR parameters of the 1:1 complexes, a possible coordination geometry of the two water molecules in the Cu(II) site of the enzyme is suggested

  18. Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure.

    Directory of Open Access Journals (Sweden)

    Jens Boenigk

    Full Text Available Among metal pollutants silver ions are one of the most toxic forms, and have thus been assigned to the highest toxicity class. Its toxicity to a wide range of microorganisms combined with its low toxicity to humans lead to the development of a wealth of silver-based products in many bactericidal applications accounting to more than 1000 nano-technology-based consumer products. Accordingly, silver is a widely distributed metal in the environment originating from its different forms of application as metal, salt and nanoparticle. A realistic assessment of silver nanoparticle toxicity in natural waters is, however, problematic and needs to be linked to experimental approaches. Here we apply metatranscriptome sequencing allowing for elucidating reactions of whole communities present in a water sample to stressors. We compared the toxicity of ionic silver and ligand-free silver nanoparticles by short term exposure on a natural community of aquatic microorganisms. We analyzed the effects of the treatments on metabolic pathways and species composition on the eukaryote metatranscriptome level in order to describe immediate molecular responses of organisms using a community approach. We found significant differences between the samples treated with 5 µg/L AgNO3 compared to the controls, but no significant differences in the samples treated with AgNP compared to the control samples. Statistical analysis yielded 126 genes (KO-IDs with significant differential expression with a false discovery rate (FDR <0.05 between the control (KO and AgNO3 (NO3 groups. A KEGG pathway enrichment analysis showed significant results with a FDR below 0.05 for pathways related to photosynthesis. Our study therefore supports the view that ionic silver rather than silver nanoparticles are responsible for silver toxicity. Nevertheless, our results highlight the strength of metatranscriptome approaches for assessing metal toxicity on aquatic communities.

  19. Novel Synthesis of 1,2,3-Triazoles via 1,3-Dipolar Cycloadditions of Alkynes to Azides in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    ZHONG,Ping(钟平); GUO,Sheng-Rong(郭圣荣)

    2004-01-01

    2-Azido-3,5-dichloropyridine and 2-azido-5-chloro-3-fluoropyridine were given by reaction of sodium azide with 2,3,5-trichloropyridine, 3,5-dichloro-2-fluoropyridine or 5-chloro-2,3-difiuoropyridine in ionic liquids.1,3-Dipolar cycloaddition of 2-azido-3,5-dichloropyridine or 2-azido-5-chloro-3-fluoropyridine to alkynes in ionic liquids afforded the corresponding 1,4,5-trisubstituted [1,2,3]-triazoles in good yields and regioselectivities.

  20. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  1. Contribution on creep polygonization study in crystals. Creep of single crystalline silver chloride and sodium chloride

    International Nuclear Information System (INIS)

    Pontikis, Vassilis

    1977-01-01

    Subgrain formation and their influence on plastic behavior of materials has been studied in the case of single crystals of silver chloride and sodium chloride crept at high temperature (T > 0.5 T melting ). It is shown that the creep rate ε is a function of the mean subgrain diameter d. For secondary creep ε ∝ d k with k = 2 for NaCl and AgCl. During secondary creep, the substructure changes continuously: sub-boundaries migrate and sub-grains rotate. We find that sub-boundaries migration accounts for 35 pc of the total strain and that subgrain misorientation θ increases linearly with strain ε: θ ∝ 0.14 ε. The stability of permanent creep seems related to the power that the substructure is able to dissipate. The possible subgrain formation mechanisms are examined. It is shown that subgrain formation is closely related to the geometrical conditions of deformation and to the heterogeneities of this later. (author) [fr

  2. Influence of nano-fiber membranes on the silver ions released from hollow fibers containing silver particles

    Directory of Open Access Journals (Sweden)

    Li Huigai

    2016-01-01

    Full Text Available Polyether sulfone was dissolved into dimethylacetamide with the concentration of 20% to prepare a uniform solution for fabrication of nanofiber membranes by bubble electrospinning technique. Morphologies of the nanofiber film were carried out with a scanning electron microscope. The influence on the silver ions escaped from hollow fiber loaded with silver particles was exerted by using different release liquid. The water molecular clusters obtained from the nanofiber membranes filter can slow down the release of silver ions. However, the effect of slowing was weakened with the time increasing. In the end, the trend of change is gradually consistent with the trend of release of silver ions in the deionized water.

  3. Colloidal complexed silver and silver nanoparticles in extrapallial fluid of Mytilus edulis.

    Science.gov (United States)

    Zuykov, Michael; Pelletier, Emilien; Demers, Serge

    2011-02-01

    Metal transport in mollusk extrapallial fluid (EPF) that acts as a "bridge" between soft tissues and shell has surprisingly received little attention until now. Using ultrafiltration and radiotracer techniques we determined silver concentrations and speciation in the EPF of the blue mussel Mytilus edulis after short-term uptake and depuration laboratory experiments. Radiolabelled silver ((¹¹⁰m)Ag) was used in dissolved or nanoparticulate phases (AgNPs silver nanoparticles were transported to the EPF of blue mussels at a level similar to the Ag ionic form. Bulk activity of radiolabelled silver in the EPF represented only up to 7% of the bulk activity measured in the whole mussels. The EPF extracted from mussels exposed to both treatments exhibited an Ag colloidal complexed form based on EPF ultrafiltration through a 3 kDa filter. This original study brings new insights to internal circulation of nanoparticles in living organisms and contributes to the international effort in studying the potential impacts of engineered nanomaterials on marine bivalves which play an essential role in coastal ecosystems, and are important contributors to human food supply from the sea. © 2010 Elsevier Ltd. All rights reserved.

  4. Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.

    Science.gov (United States)

    Lou, Yali; Darvell, Brain W; Botelho, Michael G

    2018-05-01

    To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.

  5. Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles.

    Science.gov (United States)

    Wentrup, Curt

    2017-03-08

    Flash vacuum pyrolysis (FVP) of azides is an extremely valuable method of generating nitrenes and studying their thermal rearrangements. The nitrenes can in many cases be isolated in low-temperature matrices and observed spectroscopically. NH and methyl, alkyl, aralkyl, vinyl, cyano, aryl and N-heteroaryl, acyl, carbamoyl, alkoxycarbonyl, imidoyl, boryl, silyl, phosphonyl, and sulfonyl nitrenes are included. FVP of triazoloazines generates diazomethylazines and azinylcarbenes, which often rearrange to the energetically more stable arylnitrenes. N 2 elimination from monocyclic 1,2,3-triazoles can generate iminocarbenes, 1H-azirines, ketenimines, and cyclization products, and 1,2,4-triazoles are precursors of nitrile ylides. Benzotriazoles are preparatively useful precursors of cyanocyclopentadienes, carbazoles, and aza-analogues. FVP of 5-aryltetrazoles can result in double N 2 elimination with formation of arylcarbenes or of heteroarylcarbenes, which again rearrange to arylnitrenes. Many 5-substituted and 2,5-disubstituted tetrazoles are excellent precursors of nitrile imines (propargylic, allenic, or carbenic), which are isolable at low temperatures in some cases (e.g., aryl- and silylnitrile imines) or rearrange to carbodiimides. 1,5-Disubstituted tetrazoles are precursors of imidoylnitrenes, which also rearrange to carbodiimides or add intramolecularly to aryl substituents to yield indazoles and related compounds. Where relevant for the mechanistic understanding, pyrolysis under flow conditions or in solution or the solid state will be mentioned. Results of photolysis reactions and computational chemistry complementing the FVP results will also be mentioned in several places.

  6. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  7. Silver sources of archaic Greek coinage

    International Nuclear Information System (INIS)

    Gentner, W.; Mueller, O.; Wagner, G.A.; Gale, N.H.

    1978-01-01

    The authors report on new chemical and lead isotopic results and interpretations of archaic Greek silver coins from the Asyut hoard which was buried around 475 B.C. Aeginetan coins were of central interest in this study. Possible ancient silver mines were explored in the Aegean region in the course of several geologic expeditions, and chemically and isotopically investigated. Some of the silver sources in Greece were traced by combination of the analytical methods and questions of provenance were solved. In addition, processes of silver smelting and refining were studied. Results and implications of this work are summarized in the final section on Conclusions. (orig.) [de

  8. Silver linings.

    Science.gov (United States)

    Bultas, Margaret W; Pohlman, Shawn

    2014-01-01

    The purpose of this interpretive phenomenological study was to gain a better understanding of the experiences of 11 mothers of preschool children with autism spectrum disorder (ASD). Mothers were interviewed three times over a 6 week period. Interviews were analyzed using interpretive methods. This manuscript highlights one particular theme-a positive perspective mothers described as the "silver lining." This "silver lining" represents optimism despite the adversities associated with parenting a child with ASD. A deeper understanding of this side of mothering children with ASD may help health care providers improve rapport, communication, and result in more authentic family centered care. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Large silver-cadmium technology program

    Science.gov (United States)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  10. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver q...... purposes. It was found, that in presence of a strong nucleophile (such as CN-), silver quantum clusters are dissolved into non-fluorescing AgCN complexes, resulting in a fast and observable decrease of the fluorescent signal....

  11. Solvent effect on copper-catalyzed azide-alkyne cycloaddition (CuAAC): synthesis of novel triazolyl substituted quinolines as potential anticancer agents.

    Science.gov (United States)

    Ellanki, Amarender Reddy; Islam, Aminul; Rama, Veera Swamy; Pulipati, Ranga Prasad; Rambabu, D; Krishna, G Rama; Reddy, C Malla; Mukkanti, K; Vanaja, G R; Kalle, Arunasree M; Kumar, K Shiva; Pal, Manojit

    2012-05-15

    A regioselective route to novel mono triazolyl substituted quinolines has been developed via copper-catalyzed azide-alkyne cycloaddition (CuAAC) of 2,4-diazidoquinoline with terminal alkynes in DMF. The reaction provided bis triazolyl substituted quinolines when performed in water in the presence of Et(3)N. A number of the compounds synthesized showed promising anti-proliferative properties when tested in vitro especially against breast cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    Science.gov (United States)

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  13. Intravenous Exposure of Pregnant Mice to Silver Nanoparticles: Silver Tissue Distribution and Effects in Maternal and Extra-Embryonic Tissues and Embryos

    Science.gov (United States)

    Austin, Carlye Anne

    This research explores the tissue distribution of silver, as well as adverse effects in pregnant mice and embryos, following prenatal silver nanoparticle (AgNP) exposure. Chapter one of this dissertation is a survey of the published literature on the reproductive and/or developmental toxicity of AgNPs. The available data indicate that AgNPs adversely affect sperm count, viability, and/or motility both in vivo and in vitro, and cause apoptosis and necrosis in spermatogonial stem cells and testicular cells. Additionally, AgNP exposure results in mortality and morphological deformities in fish embryos, but produces no adverse effects in chicken embryos. The current published research on in vivo AgNP exposure to mammals during gestation consists of only three studies, one of which is described in chapter two of this dissertation. These studies report results that may suggest a potential for adverse effects on fetal development (e.g. , decreased viability and fetal and placental weights, increased incidence of developmentally young embryos), but additional research is needed. Chapter two of this dissertation investigates the distribution of silver in tissues of pregnant mice and gestation day (GD) 10 embryos following intravenous maternal exposure to 50 nm AgNPs during early organogenesis (GDs 7-9). Examinations of embryo morphology and histology were also performed. Results demonstrated the presence of silver in all organs and tissues examined. Silver concentrations were highest in liver, spleen, and visceral yolk sac, and lowest in embryos. Groups of mice were also treated with soluble silver nitrate, and the pattern of silver tissue distribution following silver nitrate exposure was similar to that which followed AgNP treatment. Transmission electron microscopy-energy dispersive x-ray spectroscopy (TEM-EDS) confirmed the presence of vesicle-bound nanoparticulate silver in visceral yolk sac endoderm, but not mesoderm. This finding, along with the high silver

  14. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens.

    Science.gov (United States)

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale

    2017-07-01

    Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375-480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3-6 nm, 3-22 nm, and 3-18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized using UV

  15. Development of an improved and early sowing potential variety of jute - binadeshipat-2 using chemical mutagen sodium azide

    International Nuclear Information System (INIS)

    Shamsuzzaman, K.M.; Saha, C.S.; Azad, M.A.K.

    2001-01-01

    Jute is the important agricultural and industrial resource of Bangladesh for earning foreign currency. Seeds of the widely cultivated variety, CVL-1 were treated with 4 mM to 20mM of sodium azide (NaN3). The treated seeds were grown in M1 to M10 generations. A single plant (selection number C-278) was selected from M2 segregating population on the basis of early sowing potential and late flowering. Ten fiber quality characters were tested and it was found that the fiber quality of the mutant had been improved. Hence, the mutagen sodium azide showed extra potentiality to induce fiber quality characters of jute. The strain C-278 was also tested through Preliminary, Advanced, Zonal Yield Trial and Farmers field trial at different locations of the jute growing area in Bangladesh. The field evaluation team of the National Seed Board (NSB) visited most of the trials and reported that at early sowing and overall performance of the strain C-278 was found best than that of the mother variety. Besides these the strain produced 7.5% and 20% higher fiber yield than the mother variety CVL-1 and a local cultivar, D-154, respectively. After evaluation of the Technical Committee of NSB recommended that the strain C-278 may be released as a variety. The National Seed Board released the strain C-278 as a National jute variety under the name Binadeshipat-2 for cultivation in Bangladesh

  16. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    Science.gov (United States)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-07-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.

  17. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    International Nuclear Information System (INIS)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-01-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A −1 , 81.22 lm W −1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m −2 to 10 000 cd m −2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density–voltage ( J – V ) characteristics of the electron-only devices. In particular, by comparing the J – V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m −2 to 10870 cd m −2 , as is beneficial to the lighting application. (paper)

  18. The concern of emergence of multi-station reaction pathways that might make stepwise the mechanism of the 1,3-dipolar cycloadditions of azides and alkynes

    Science.gov (United States)

    Mohtat, Bita; Siadati, Seyyed Amir; Khalilzadeh, Mohammad Ali; Zareyee, Daryoush

    2018-03-01

    After hot debates on the concerted or stepwise nature of the mechanism of the catalyst-free 1,3-dipolar cycloadditions (DC)s, nowadays, it is being believed that for the reaction of each dipole and dipolarophile, there is a possibility that the reaction mechanism becomes stepwise, intermediates emerge, and the reaction becomes non-stereospecific. Yield of even minimal amounts of unwanted side products or stereoisomers as impurities could bring many troubles like difficult purification steps. In this project, we have made attempts to study all probable reaction channels of the azide cycloadditions with two functionalized alkynes, in order to answer this question: "is there any possibility that intermediates evolve in the catalyst-free click 1,3-DC reaction of azide-alkynes?". During the calculations, several multi-station reaction pathways supporting the stepwise and concerted mechanisms were detected. Also, the born-oppenheimer molecular dynamic (BOMD) simulation was used to find trustable geometries which could be emerged during the reaction coordinate.

  19. Nanostructured high valence silver oxide produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Russo, V.; Conti, C.; Ducati, C.; Casari, C.S.; Li Bassi, A.; Bottani, C.E.

    2009-01-01

    Among silver oxides, Ag 4 O 4 , i.e. high valence Ag(I)Ag(III) oxide, is interesting for applications in high energy batteries and for the development of antimicrobial coatings. We here show that ns UV pulsed laser deposition (PLD) in an oxygen containing atmosphere allows the synthesis of pure Ag 4 O 4 nanocrystalline thin films, permitting at the same time to control the morphology of the material at the sub-micrometer scale. Ag 4 O 4 films with a crystalline domain size of the order of tens of nm can be deposited provided the deposition pressure is above a threshold (roughly 4 Pa pure O 2 or 20 Pa synthetic air). The formation of this particular high valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere. In particular, expansion of the PLD plasma plume is accompanied by formation of low stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. Evidence of reactive collisions in the expanding ablation plume is obtained by analysis of the plume visible shape in inert and reactive atmospheres. In addition, we show how the dimensionless deposition parameter L, relating the target-to-substrate distance to the ablation plume maximum expansion length, can be used to classify different growth regimes. It is thus possible to vary the stoichiometry and the morphology of the films, from compact and columnar to foam-like, by controlling both the gas pressure and the target-to-substrate distance

  20. Test-to-Failure of Crystalline Silicon Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, P.; Terwilliger, K.; Glick, S.; Trudell, D.; Bosco, N.; Johnston, S.; Kurtz, S. R.

    2010-10-01

    Accelerated lifetime testing of five crystalline silicon module designs was carried out according to the Terrestrial Photovoltaic Module Accelerated Test-to-Failure Protocol. This protocol compares the reliability of various module constructions on a quantitative basis. The modules under test are subdivided into three accelerated lifetime testing paths: 85..deg..C/85% relative humidity with system bias, thermal cycling between ?40..deg..C and 85..deg..C, and a path that alternates between damp heat and thermal cycling. The most severe stressor is damp heat with system bias applied to simulate the voltages that modules experience when connected in an array. Positive 600 V applied to the active layer with respect to the grounded module frame accelerates corrosion of the silver grid fingers and degrades the silicon nitride antireflective coating on the cells. Dark I-V curve fitting indicates increased series resistance and saturation current around the maximum power point; however, an improvement in junction recombination characteristics is obtained. Shunt paths and cell-metallization interface failures are seen developing in the silicon cells as determined by electroluminescence, thermal imaging, and I-V curves in the case of negative 600 V bias applied to the active layer. Ability to withstand electrolytic corrosion, moisture ingress, and ion drift under system voltage bias are differentiated.